
Claremont Colleges Claremont Colleges

Scholarship @ Claremont Scholarship @ Claremont

CMC Senior Theses CMC Student Scholarship

2020

Optimizing Router Performance Optimizing Router Performance

Bradley Newton
Claremont McKenna College

Radon Rosborough
Harvey Mudd College

Miles President
Harvey Mudd College

Hakan Alpan
Harvey Mudd College

Follow this and additional works at: https://scholarship.claremont.edu/cmc_theses

 Part of the Digital Communications and Networking Commons

Recommended Citation Recommended Citation
Newton, Bradley; Rosborough, Radon; President, Miles; and Alpan, Hakan, "Optimizing Router
Performance" (2020). CMC Senior Theses. 2511.
https://scholarship.claremont.edu/cmc_theses/2511

This Open Access Senior Thesis is brought to you by Scholarship@Claremont. It has been accepted for inclusion in
this collection by an authorized administrator. For more information, please contact
scholarship@cuc.claremont.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Scholarship@Claremont

https://core.ac.uk/display/344755961?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarship.claremont.edu/
https://scholarship.claremont.edu/cmc_theses
https://scholarship.claremont.edu/cmc_student
https://scholarship.claremont.edu/cmc_theses?utm_source=scholarship.claremont.edu%2Fcmc_theses%2F2511&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/262?utm_source=scholarship.claremont.edu%2Fcmc_theses%2F2511&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarship.claremont.edu/cmc_theses/2511?utm_source=scholarship.claremont.edu%2Fcmc_theses%2F2511&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@cuc.claremont.edu

Computer Science Clinic

Final Report for
Juniper Networks

Optimizing Router Performance

April 23, 2020

Team Members
Hakan Alpan
Bradley Newton (Fall Project Manager)
Miles President
Radon Rosborough (Spring Project Manager)

Advisor
Geoff Kuenning

Liaison
Ron Bonica

Abstract

To support its development of networking hardware and software, Juniper
Networks conducts research into enhancements to the protocols used on
the Internet, in coordination with standards bodies such as the Internet
Engineering Task Force. We helped Juniper Networks with two specific
research objectives. The first was to design and implement an improved
algorithm by which Internet hosts can establish the appropriate packet size
to maximize bandwidth while avoiding packet fragmentation. We produced
a working implementation of the improved algorithm in the Linux kernel.
The second objective was to measure the effect of different Internet Protocol
extension headers (specifically, Routing Header Type 0, the Segment Routing
Header, and the Compressed Routing Header) on router performance. We
produced code for running simple benchmarks locally, as well as a formal
Internet Draft specifying the procedure so that it can be run by Juniper
Networks on high-performance benchmarking hardware.

Contents

Abstract iii

Acknowledgments ix

1 Introduction 1

2 Fragmentation project 3
2.1 Background . 3

2.1.1 Maximum Transmission Unit 3
2.1.2 IP fragmentation . 4
2.1.3 Path MTU Discovery 5

2.2 Problem . 5
2.3 Our approach . 6
2.4 Development environment . 7
2.5 Implementation . 7

2.5.1 New ICMP message 8
2.5.2 Response to a fragmented packet 9
2.5.3 Response to ICMP Packet Reassembled 9

2.6 Testing . 9
2.7 Future work . 10

3 Benchmarking project 11
3.1 Background . 11
3.2 Problem . 14
3.3 Our approach . 15
3.4 Testing . 16
3.5 Future Work . 20

A Linux kernel patch 21

vi Contents

B Benchmarking Methodology for IPv6 Routing Extension Headers 25

Bibliography 31

List of Figures

2.1 IP fragmentation . 4
2.2 ICMP Packet Reassembled . 8

3.1 RH0 format . 12
3.2 SRH format . 13
3.3 CRH-16 format . 14
3.4 CRH-32 format . 14
3.5 Throughput by header type 17
3.6 Throughput by header type 18
3.7 Throughput by header type 19

Acknowledgments

The Juniper Networks Clinic Team would like to thank both the Juniper
Networks liaison Ron Bonica and our faculty advisor Geoff Kuenning for
their help and advice throughout both projects.

Chapter 1

Introduction

In addition to its development of networking hardware and software, Ju-
niper Networks proposes and contributes to the development of new stan-
dards for Internet protocols. There are many opportunities for improve-
ments in the Internet Protocol, and since our work on the first such opportu-
nity proceeded ahead of schedule, we subsequently advanced to work on a
second opportunity. The next two sections detail each of these opportunities,
and what our project contributed.

Chapter 2

Fragmentation project

New work on Internet protocols often occurs in response to limitations in
existing protocols that are discovered after they are deployed in production
systems. Our project addresses one such problem in the Internet Protocol, a
feature called IP fragmentation that is now recognized as undesirable.

2.1 Background

To give some background on the issues addressed by our project, we’ll first
give an overview of IP fragmentation and why it is inefficient.

2.1.1 Maximum Transmission Unit

Internet paths consist of a source, a destination, and all the routers and links
(e.g., wires or wireless connections) connecting them on that path. Because
the Internet is composed of many devices that use different hardware, dif-
ferent links may have different constraints on how large a packet they can
carry. This limit, a number of bytes, is called the maximum transmission
unit (MTU) for that link. The link with the smallest MTU on a path sets the
MTU for the entire path (called the path MTU, or PMTU), since any packet
traversing the path must travel through that link. The Ethernet standard
specifies that any link claiming to support Ethernet must have an MTU of
at least 1500 bytes, but other communication protocols may have larger or
smaller requirements.

4 Fragmentation project

2.1.2 IP fragmentation

When a packet with a size larger than the PMTU reaches a router that has
an outgoing link with a smaller MTU, the router will fragment the packet.
This means it creates a number of smaller packets, each of which has a new
header and only a portion of the contents from the original packet. Each
of the new packets is small enough that it can be transmitted individually
along the link with the small MTU, and its header includes some extra
information that allows the destination host to correctly reassemble the
fragments. This process is outlined in Figure 2.1.

Figure 2.1 Fragmentation and reassembly in IPv4 (Kurose and Ross, 2013).

When the destination host receives all the fragments that made up the
original packet, it reassembles them. If one or more of the fragments is
missing, the destination host discards them all. This highlights one of the
inefficiencies of fragmentation: how long should the destination host wait
to see if a missing fragment will arrive? Not waiting long enough means
that packets might be retransmitted unnecessarily, while waiting too long
means higher latency and wasted memory. And under the Transmission
Control Protocol (TCP), the most common protocol used for Internet traffic,
a dropped fragment means the entire original packet needs to be retransmit-
ted, leading to a more congested network.

In addition to incurring additional CPU time, memory overhead, and
network congestion, the fragmentation protocol has security vulnerabilities

Problem 5

and does not interact well with more advanced networking features. These
issues are outlined in detail in a current Internet Draft (Bonica et al., 2019).

2.1.3 Path MTU Discovery

Because of the performance problems and security risks we outlined above,
it is desirable to avoid IP fragmentation whenever possible. This is precisely
the goal of Path MTU Discovery (PMTUD). The PMTUD protocol allows
a sender to determine the PMTU on the path to the destination before it
starts transmitting packets. PMTUD works by sending an IP packet with the
Don’t Fragment (DF) bit set, which disallows fragmentation. If this packet
reaches a link that is too small, the router sees that the DF bit is set and
drops the packet, sending back an error message using the Internet Control
Message Protocol (ICMP). This ICMP message contains the MTU of the link
for which the packet was too large. When the sender receives this packet, it
can adjust its estimate of the PMTU accordingly, and try again with another
packet of this new size. This process is repeated until the PMTU estimate
is small enough for a packet to successfully traverse the entire path to the
destination without fragmentation.

2.2 Problem

As we saw in Section 2.1.2, IP fragmentation is generally undesirable. In ver-
sion 6 of the Internet Protocol (IPv6), fragmentation by intermediate routers
is no longer allowed. Even in IPv4, it is possible to disallow fragmentation
by setting the DF bit on a packet. However, IPv4 is still widely deployed and
some legacy technology and corner cases mean it is not always practical to
disallow fragmentation entirely. Thus another solution is needed. Although
PMTUD helps to deal with the fragmentation problem by trying to avoid
sending packets that are too large, fragmentation can still happen. There
are at least three reasons why PMTUD is not an adequate solution to the IP
fragmentation problem:

1. The first issue is that PMTUD is slow. Although it avoids fragmen-
tation, it increases latency on the delivery of some packets because
messages must be sent back and forth synchronously before the packet
exceeding the PMTU can be delivered successfully. With fragmen-
tation, on the other hand, all packets that are sent can be delivered
without a round trip, even if their processing is slower. PMTUD trades
one performance problem for one that is potentially worse.

6 Fragmentation project

2. In general, Internet traffic between two hosts does not follow the
same path for the entire duration of the connection. For example,
the network topology may change as hosts are added or removed, or
intermediate load balancers may redirect traffic depending on con-
gestion. This means that PMTUD needs to be performed periodically
throughout the connection; otherwise, the PMTU may change over
time and lead to fragmentation.

3. Most problematically, PMTUD suffers from an issue known as black-
holing. This occurs when an intermediate router fails to pass along
the ICMP messages meant to alert the sender that fragmentation is
required. Routers may do this for security reasons (since emitting less
diagnostic information makes an attack on the network more difficult)
or because they are misconfigured. In either case, if the ICMP message
is never delivered, then the source will never be informed that the
packet it sent was too large. Since PMTUD sets the DF bit in order
to generate this ICMP message, the packet will be dropped. Under
TCP, in which every data packet sent triggers an acknowledgement
(ACK) packet in response, the source will notice from the absence of
an ACK that its packet was not delivered. However, it will not know
to split the data into smaller packets, so it will fall into an infinite loop
sending the same packet over and over again. This failure condition is
much worse than the degraded performance of fragmentation.

2.3 Our approach

Our project mitigates the problem of IP fragmentation by introducing a new
Packet Reassembled ICMP message that the destination host can use to tell
the source that fragmentation occurred and it should send smaller packets
in the future. Specifically, we updated the Linux kernel IP stack in these two
ways:

1. When the IP layer reassembles a packet out of several fragments (mean-
ing that fragmentation occurred at some intermediate host during
routing), it will send an ICMP message back to the source indicating
that the packet was fragmented.

2. When the IP layer receives this ICMP message, it will update its
estimate of the PMTU so that it sends smaller packets that will not
lead to future fragmentation.

Development environment 7

This procedure has several key advantages over PMTUD. The first is
that it has a lower latency than PMTUD because packets never need to be
retransmitted synchronously. In essence, the PMTU is “discovered” asyn-
chronously, in parallel with continuous data transmission. If the network
topology changes over the life of a connection and the PMTU decreases, the
sending host will be alerted on the first instance of fragmentation and can
reduce its PMTU estimate accordingly, but this discovery does not interrupt
data transmission.

A second advantage is how our solution handles increases in the PMTU.
Notice that if the PMTU increases, then this does not produce an ICMP
message, so the source does not notice. The solution to this problem is to
periodically send a larger packet to probe for an increased PMTU. Under
PMTUD, deciding how often to probe is a difficult tradeoff, because each
probe will result in a synchronous hiccup in data transmission. But with our
solution, even very frequent probes will not interrupt the data stream.

The most important advantage of our approach, however, is that it
mitigates the blackholing problem because fragmentation is still enabled.
If an intermediate router fails to forward the ICMP Packet Reassembled
message, packets will be fragmented as normal and will still be delivered
successfully, albeit somewhat less efficiently.

2.4 Development environment

Building the Linux kernel from source is a complex process. As such, one of
the deliverables of our project is a fast and maintainable way to test kernel
changes that pertain to the networking stack. We used a standard piece of
software called Vagrant (HashiCorp, n.d.) to provision and manage a fleet
of virtual machines on a virtual network. Because of this, our first step was
generating a configuration for the Linux kernel that would allow it to boot
in this setup, and modifying this configuration to optimize build time. We
abstracted these and other tasks related to compilation, installation, and
network management into a set of scripts that can be used by any developer
to quickly reproduce our setup. This work can be reused in future projects
requiring kernel development, saving setup time.

2.5 Implementation

The code for the project consists of three parts: the definition of the new
ICMP message, the behavior for when a host receives a fragmented packet,

8 Fragmentation project

and the behavior for when a host receives our ICMP message (after having
sent a packet that was fragmented). We did not need to implement periodic
discovery of PMTU increases because this code already exists in the Linux
kernel and our implementation makes use of it implicitly.

Our code is available in a public GitHub repository at https://github.com/
raxod502/juniper-tools. Our fork of the Linux kernel is at https://github.com/
raxod502/juniper-linux.

2.5.1 New ICMP message

When a host receives and reassembles a fragmented packet, it delivers
our Packet Reassembled ICMP message back to the sender. This message
includes the size of the largest fragment that was received, which serves as
an estimate of the PMTU from the sender to the receiver. As with all ICMP
messages, it also contains the initial contents of the packet that caused the
ICMP message (i.e., the reassembled packet) as well as the length of that
packet measured in 32-bit words. The layout of the message is shown in
Figure 2.2.

Figure 2.2 Format for the ICMP Packet Reassembled message.

Initially, our ICMP message used its code field to indicate whether the
fragment reassembly was successful or encountered an error. However,
upon further reflection and discussion with our liaison, we decided that no
ICMP message should be sent when reassembly fails because in that case,
we can’t guarantee that the largest fragment received is representative of
the MTU. Therefore, in our final implementation, the code field is always
zeroed out.

https://github.com/raxod502/juniper-tools
https://github.com/raxod502/juniper-tools
https://github.com/raxod502/juniper-linux
https://github.com/raxod502/juniper-linux

Testing 9

2.5.2 Response to a fragmented packet

The code to respond to a fragmented packet and send the ICMP message
is mostly uninteresting except for the fact that our Packet Reassembled
message is not sent in response to fragmented ICMP messages. If it was,
and the new message traversed the same link that caused the fragmentation,
then it too would be fragmented, which would cause the original sender to
send a Packet Reassembled message back in response. This would lead to a
continuous cycle of fragmented Packet Reassembled messages between the
two hosts.

2.5.3 Response to ICMP Packet Reassembled

The code responding to our ICMP message closely follows the structure of
the existing kernel code. There is already an ICMP message called Fragmen-
tation Needed that is sent when a packet is dropped because it required
fragmentation, but its Don’t Fragment option was enabled. Because this mes-
sage is an error rather than a diagnostic, and is only sent when a packet is
dropped by an intermediate router rather than when a packet is successfully
reassembled at the destination, it differs from our ICMP Packet Reassembled
message, and does not present a solution to the problem our project solves.
However, the behavior when an ICMP Fragmentation Needed message
is received is virtually identical to the behavior when an ICMP Packet Re-
assembled message is received: upon receiving the message, we call the
handler corresponding to the protocol of the packet that was fragmented,
and carry out the PMTU estimate update within that handler using the MTU
information included in the ICMP message.

2.6 Testing

We have two different virtual network setups for testing our implementation.
The first includes only a source host and a destination host on the same
network. The second includes the source and destination hosts on different
networks along with two intermediate routers on the path between them.
This additional configuration allowed us to ensure that our implementation
worked properly even when neither the source nor the destination was
attached to the link constraining the MTU.

Throughout testing, we used the packet sniffing tool Wireshark to ex-
amine the structure of the packets we sent. Our testing procedure was as
follows:

10 Fragmentation project

1. Disable PMTUD and check that there is no data in the PMTU cache on
the source host, and if otherwise, clear it.

2. Establish a TCP connection between the source and destination hosts.

3. Reduce the MTU of the intermediate link (between the source and
destination hosts in the first configuration and between the interme-
diate routers in the second configuration). Note that this step is done
after establishing the TCP connection since TCP estimates the PMTU
during its initial handshake. This MTU reduction simulates a change
in the network topology during the lifetime of the connection.

4. Send a chunk of TCP data with a size exceeding the MTU of the inter-
mediate link from the source to the destination. Observe in Wireshark
that this packet is fragmented and that our ICMP message is sent in
response. Also observe that there is now data in the source host’s
PMTU cache.

5. Send another chunk of TCP data of the same size. Observe in Wire-
shark that TCP breaks the data up into segments of sizes less than the
MTU before it can reach the IP layer, thereby preventing fragmenta-
tion.

2.7 Future work

Because our project implements a new Internet standard, its next phase
is adoption within the Internet community and in the Linux kernel. We
worked with Juniper Networks to promote ICMP Packet Reassembled as a
standard, which involved conversing with influential Internet Area Working
Group members about the merit of ICMP Packet Reassembled as a good
solution to the IPv4 fragmentation problem and encouraging Linux kernel
developers to incorporate our change into newer releases of the kernel. We
expect that the relative simplicity of our code changes will be a key argument
in favor of their adoption, given the relative importance of the problem that
they solve.

Chapter 3

Benchmarking project

In our second project, we helped Juniper Networks measure the impact of
certain extensions to the Internet Protocol version 6 (IPv6) that implement
a feature called source routing. We produced code that can be used to run
basic tests locally, together with a formal procedure in Internet Draft format
specifying the procedure so that Juniper Networks can collect accurate data
using dedicated benchmarking hardware. With this data, Juniper Networks
will be able to ascertain whether replacing the existing Segment Routing
Header with their proposed Compressed Routing Header will improve
router performance.

3.1 Background

Under IPv6, each packet has a standard set of headers. In addition to these,
a packet may optionally include extension headers, which provide features
that are not needed by every packet. One application of extension headers
is source routing, which is a procedure by which the sender of a packet can
specify information about how it should be routed. Source routing can be
used to optimize the performance of a network; this application is called
traffic engineering. Source routing is especially useful in combination with
software-defined networking, a technology allowing some parts of network
behavior to be controlled by a centralized source that can determine the flow
of packets through the network in a holistic manner that optimizes overall
performance.

The original version of IPv6 included support for source routing by
means of the Routing Header Type 0 (RH0). The RH0 extension header,
shown in Figure 3.1, includes a list of IPv6 addresses that a packet must be

12 Benchmarking project

routed through before reaching its destination. When the RH0 header is
included, the packet is routed (using standard protocols) to the first listed
address, whereupon the header is adjusted to indicate that it should be
routed to the next address, and so on. Unfortunately, RH0 could be exploited
to perform an effective Denial of Service (DoS) attack, as documented in
RFC 4942 (Davies et al., 2007), so it was deprecated in 2007 by RFC 5095
(Abley et al., 2007), and support for it has since been removed from almost
all IPv6 hosts on the Internet.

Figure 3.1 Format of Routing Header Type 0 as specified in RFC 2460 (Deering
and Hinden, 1998).

However, source routing is still a desirable use case for IPv6, so a new
extension header, called the Segment Routing Header (SRH), was proposed
to replace RH0. This header was specified by RFC 8754 (Filsfils et al., 2020)
and is shown in Figure 3.2. Although SRH has many more features than

Background 13

RH0, its core functionality is similar; that is to say, it is possible to specify
a list of IPv6 addresses that a packet must visit before it is delivered to its
destination.

Figure 3.2 Format of Segment Routing Header as specified in RFC 8754.

One problem with SRH (and RH0) is that headers may grow to be very
large. This is because IPv6 addresses are 128 bits long, and many of them
may be included in an SRH (or RH0) header for practical implementations
of source routing. To address this concern, Juniper Networks has proposed
an alternative to SRH called the Compressed Routing Header (CRH). This
header is specified by the CRH Internet Draft (Bonica et al., 2020) and is
shown in Figures 3.3 and 3.4. The CRH does not specify intermediate
hosts with 128-bit IPv6 addresses, instead using 16-bit or 32-bit identifiers
that can be translated by routers into full IPv6 addresses. It is the job of
the intermediate routers to maintain lookup tables for the CRH identifiers,
which in many cases means there must be some infrastructure which is
capable of informing the intermediate routers of how to populate their

14 Benchmarking project

lookup tables. (That infrastructure is beyond the scope of our project.)

Figure 3.3 Format of Compressed Routing Header with 16-bit identifiers ((Bon-
ica et al., 2020)). For CRH-16, the Routing Type is 5 (pending IANA assignment).

Figure 3.4 Format of Compressed Routing Header with 32-bit identifiers ((Bon-
ica et al., 2020)). For CRH-32, the Routing Type is 6 (pending IANA assignment).

3.2 Problem

The differences in how source routing extension headers identify intermedi-
ate nodes cause variations in how quickly a packet is processed on its way
to its destination. Since routers have to copy packets into memory before
processing them, the larger RH0 and SRH packets incur extra overhead that
increases as the number of intermediate nodes increases. The lookup table
that CRH employs is also expensive, but it is a fixed cost that is independent
of the number of intermediate nodes.

The time it takes for a packet to travel from source to destination is
often a point of interest for optimization and comparison with different

Our approach 15

implementations. As such, Juniper Networks has asked us to construct
a framework for an experiment that examines this tradeoff by exploring
packet throughput relative to the type of routing header and the number of
intermediate nodes.

3.3 Our approach

Juniper Networks wanted us to design a procedure to test the performance
of their routers. When designing and testing our experiment, we wanted to
replicate such a setup, that is, a tester machine sending packets to a router
and measuring the throughput. However, for a number of reasons, we were
unable to use real routers or real machines in our setup.

We needed to test three different routing headers in different stages of
development. As mentioned previously, RH0 was deprecated in 2007, so
finding a router supporting RH0 was challenging. Also, CRH is currently
being developed by Juniper Networks and has not yet reached standardiza-
tion, so there is no available router that can support the processing of CRH.
Juniper Networks supplied us with a Linux kernel image that implements
CRH processing, so we used a virtual machine (VM) running that version of
Linux as a router. Since we had to a use a VM for the router processing CRH,
we used VMs for the other headers as well. To process RH0, we found an
Ubuntu 6 image from 2006, when RH0 was still supported, and used another
VM running that version of Linux. We did not have to use a separate VM
for the SRH header since the Linux image that Juniper Networks provided
supported that.

We encountered other problems when testing router throughput. One
problem in testing the throughput of a router is that we need a machine
that sends packets to a router at a very fast and consistent rate. Regular
machines cannot do that, since the operating system decides exactly when
to send a packet, which causes significant variance. Juniper Networks has
Ixia machines they can use for that purpose, but those are too expensive to
use in our Clinic project. Since we realized we could not reach the accuracy
we desired without proper hardware, we opted to use a virtual machine for
the tester device as well.

To get results from our tests, we needed to send packets fast enough to
overrun the router VMs under test. However, this proved to be challenging
because the sender VM simply could not send packets fast enoguh. We
initially thought that we would be able to overcome this issue by reducing
the processor speed of the router VMs we were using, but we were unable to

16 Benchmarking project

do so, so we used the traffic-control features of the Linux kernel to impose a
manual limit on the VMs’ interface bandwidths. Clearly this means we are
not measuring the true performance of routing header processing, but that
was not our goal in local testing. The interface-bandwidth constraint works
well enough to validate our benchmarking setup.

Most routers would likely behave similarly to the interface-constrained
router VMs we set up, because the limiting factor in practice is likely to be
interface bandwidth rather than actual processing time. However, Juniper
Networks also produces heavier-duty routers which can process a very
large interface bandwidth, and our test procedure would likely produce
more interesting data for those routers, since the extra CPU time incurred by
CRH lookups would become non-negligible in comparison to the interface
bandwidth constraint.

Overall, our setup consists of the tester VM sending packets to the router
VMs, which process those packets and send them back. Although we knew
that we would not be able to get accurate data with this setup, we were still
able to design a procedure that would yield useful data in a real setup. Since
we want to compare the efficiency of the routing headers, the procedure we
came up with runs throughput tests in accordance with RFC 2544 (Bradner
and McQuaid, 1999) for each of the headers, with the number of addresses
in the header ranging from one to fifteen. In an actual setup, we expect
CRH to be less efficient at first, and more efficient later, as the number of
addresses included in the header increases. We used Python scripts to run
these tests in our local setup and to plot the graphs comparing the headers.

After running tests, we wrote an Internet Draft, included in Appendix B,
outlining our procedure that tests routers on their performance of processing
different routing headers. This Internet Draft could be used by Juniper
Networks, or anyone wanting to benchmark their routers, as it is available
to the public.

3.4 Testing

Our implementation for local testing is “quick and dirty,” since we do not
expect to obtain meaningful data from this experiment. The code is available
in a public GitHub repository at https://github.com/raxod502/juniper-tools.

We run the tester machine and the routers as VMs using VirtualBox, and
provision them with the appropriate kernel and software using Vagrant and
associated scripts. To measure throughput, we use a variation of binary
search to implement the specification for throughput measurement outlined

https://github.com/raxod502/juniper-tools

Testing 17

in RFC 2544. Briefly, RFC 2544 states that to measure the throughput of
a router, one should send a sequence of packets with a given time inter-
val between each packet, and ascertain the minimum interval (and thus
maximum throughput) that the router can tolerate without dropping any
packets. Since we wanted to perform a large number of tests automatically,
we needed a fast way to determine the minimum interval. Our algorithm
is a variation of binary search that increases the inter-packet interval when
the router drops packets and decreases it when no packets are lost. As the
algorithm proceeds, it makes smaller and smaller changes to the interval
until it can set a bound on the difference between the current and minimum
possible intervals. Packets sent with this interval are then used to mea-
sure the throughput of the router, and the results of five tests are averaged
together. A sample run of this algorithm is graphed in Figure 3.5.

Figure 3.5 Actual throughput resulting from attempted throughput for rh0.

For each of the three types of extension headers (RH0, SRH, and CRH),
we measured throughput as a function of the number of IPv6 addresses
(or, for CRH, short identifiers) included in the header, from one to fifteen.
Because of the way in which we forced our router VMs to drop packets, the
resulting bandwidth (measured in packets per second) is inversely propor-

18 Benchmarking project

tional to packet size. As expected, we observed that CRH packets achieve
a higher throughput than SRH and RH0 packets, due to the use of shorter
identifiers rather than full 128-bit IPv6 addresses. SRH has lower throughput
than RH0 because the header is larger by a fixed size, even though addresses
are the same length. Furthermore, including more intermediate hosts in the
header results in a lower throughput, due to the increased header size. The
results of these tests are shown in Figures 3.6 and 3.7.

Figure 3.6 Average throughput for different header types.

Testing 19

Figure 3.7 Average throughput for different numbers of entries.

20 Benchmarking project

3.5 Future Work

The next step for this project will be the actual data collection carried out by
Juniper Networks using our experimental procedure and their specialized
hardware. This data will allow Juniper Networks to evaluate the perfor-
mance of their Compressed Routing Header in comparison with existing
types of routing headers and contribute toward its adoption as an Internet
standard.

Appendix A

Linux kernel patch

Here we include the contents of our Linux kernel patch.
diff --git a/ include /uapi/ linux /icmp.h b/ include /uapi/ linux /icmp.h
index 5589 eeb791ca .. ddaef4521e02 100644
--- a/ include /uapi/ linux /icmp.h
+++ b/ include /uapi/ linux /icmp.h
@@ -33,7 +33 ,8 @@

define ICMP_INFO_REPLY 16 /* Information Reply */
define ICMP_ADDRESS 17 /* Address Mask Request */
define ICMP_ADDRESSREPLY 18 /* Address Mask Reply */

-# define NR_ICMP_TYPES 18
+# define ICMP_PKT_REASM 253 /* Report Packet Reassembly */
+# define NR_ICMP_TYPES 253

/* Codes for UNREACH . */
@@ -80,6 +81 ,11 @@ struct icmphdr {

__be16 __unused ;
__be16 mtu;

} frag;
+ struct {
+ __u8 __unused ;
+ __u8 orig_dg_len ;
+ __be16 mtu;
+ } reasm ;

__u8 reserved [4];
} un;

};
diff --git a/net/ipv4/icmp.c b/net/ipv4/icmp.c
index 92 b3d2d1139e ..76 df9aafe32b 100644
--- a/net/ipv4/icmp.c
+++ b/net/ipv4/icmp.c
@@ -853 ,6 +853 ,9 @@ static bool icmp_unreach (struct sk_buff *skb)

if (icmph ->code == ICMP_EXC_FRAGTIME)
goto out;

break ;
+ case ICMP_PKT_REASM :
+ info = ntohs (icmph ->un. reasm .mtu);
+ break ;

}

/*
@@ -1099 ,7 +1102 ,8 @@ int icmp_err (struct sk_buff *skb , u32 info)

return 0;
}

- if (type == ICMP_DEST_UNREACH && code == ICMP_FRAG_NEEDED)
+ if ((type == ICMP_DEST_UNREACH && code == ICMP_FRAG_NEEDED) ||
+ type == ICMP_PKT_REASM)

ipv4_update_pmtu (skb , net , info , 0, IPPROTO_ICMP);
else if (type == ICMP_REDIRECT)

22 Linux kernel patch

ipv4_redirect (skb , net , 0, IPPROTO_ICMP);
@@ -1179 ,6 +1183 ,9 @@ static const struct icmp_control icmp_pointers [NR_ICMP_TYPES + 1] = {

[ICMP_ADDRESSREPLY] = {
. handler = icmp_discard ,

},
+ [ICMP_PKT_REASM] = {
+ . handler = icmp_unreach ,
+ },

};

static void __net_exit icmp_sk_exit (struct net *net)
diff --git a/net/ipv4/ ip_fragment .c b/net/ipv4/ ip_fragment .c
index cf2b0a6a3337 .. e5a50d8874d1 100644
--- a/net/ipv4/ ip_fragment .c
+++ b/net/ipv4/ ip_fragment .c
@@ -404 ,6 +404 ,8 @@ static int ip_frag_reasm (struct ipq *qp , struct sk_buff *skb ,

void * reasm_data ;
int len , err;
u8 ecn;

+ u_int16_t orig_dg_len ;
+ u_int32_t icmp_info ;

ipq_kill (qp);

@@ -449 ,6 +451 ,18 @@ static int ip_frag_reasm (struct ipq *qp , struct sk_buff *skb ,

ip_send_check (iph);

+ /* Original datagram length in 32- bit words ,
+ * up to 576 - 8 = 568 bytes (568 / 4 = 142 32- bit words) */
+ orig_dg_len = len > 568 ? 142 : (len - 1) / 4 + 1;
+ icmp_info = (orig_dg_len << 16) + IPCB(skb)-> frag_max_size ;
+
+ /* skb has no dst , perform route lookup again */
+ err = ip_route_input_noref (skb , iph ->daddr , iph ->saddr ,
+ iph ->tos , skb ->dev);
+
+ if (iph -> protocol != IPPROTO_ICMP)
+ icmp_send (skb , ICMP_PKT_REASM , 0, htonl (icmp_info));
+

__IP_INC_STATS (net , IPSTATS_MIB_REASMOKS);
qp ->q. rb_fragments = RB_ROOT ;
qp ->q. fragments_tail = NULL;

diff --git a/net/ipv4/ping.c b/net/ipv4/ping.c
index 9 d24ef5c5d8f ..67 d6d83bb33f 100644
--- a/net/ipv4/ping.c
+++ b/net/ipv4/ping.c
@@ -536 ,7 +536 ,9 @@ void ping_err (struct sk_buff *skb , int offset , u32 info)

harderr = 1;
break ;

case ICMP_DEST_UNREACH :
- if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
+ case ICMP_PKT_REASM :
+ /* Path MTU discovery */
+ if (type == ICMP_PKT_REASM || code == ICMP_FRAG_NEEDED) {

ipv4_sk_update_pmtu (skb , sk , info);
if (inet_sock -> pmtudisc != IP_PMTUDISC_DONT) {

err = EMSGSIZE ;
diff --git a/net/ipv4/raw.c b/net/ipv4/raw.c
index 40 a6abbc9cf6 .. a6b7a2c2f4a2 100644
--- a/net/ipv4/raw.c
+++ b/net/ipv4/raw.c
@@ -230 ,7 +230 ,8 @@ static void raw_err (struct sock *sk , struct sk_buff *skb , u32 info)

int err = 0;
int harderr = 0;

- if (type == ICMP_DEST_UNREACH && code == ICMP_FRAG_NEEDED)
+ if ((type == ICMP_DEST_UNREACH && code == ICMP_FRAG_NEEDED) ||
+ type == ICMP_PKT_REASM)

ipv4_sk_update_pmtu (skb , sk , info);
else if (type == ICMP_REDIRECT) {

ipv4_sk_redirect (skb , sk);
diff --git a/net/ipv4/ tcp_ipv4 .c b/net/ipv4/ tcp_ipv4 .c
index cfa81190a1b1 .. b1f9718d1095 100644
--- a/net/ipv4/ tcp_ipv4 .c
+++ b/net/ipv4/ tcp_ipv4 .c

23

@@ -498 ,10 +498 ,12 @@ int tcp_v4_err (struct sk_buff *icmp_skb , u32 info)
err = EPROTO ;
break ;

case ICMP_DEST_UNREACH :
- if (code > NR_ICMP_UNREACH)
+ case ICMP_PKT_REASM :
+ if (type == ICMP_DEST_UNREACH && code > NR_ICMP_UNREACH)

goto out;

- if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */
+ /* PMTU discovery (RFC1191) */
+ if (type == ICMP_PKT_REASM || code == ICMP_FRAG_NEEDED) {

/* We are not interested in TCP_LISTEN and open_requests
* (SYN -ACKs send out by Linux are always <576 bytes so
* they should go through unfragmented).

diff --git a/net/ipv4/udp.c b/net/ipv4/udp.c
index 665 f26e32d77 .. bdc2bfa68df4 100644
--- a/net/ipv4/udp.c
+++ b/net/ipv4/udp.c
@@ -709 ,6 +709 ,9 @@ int __udp4_lib_err (struct sk_buff *skb , u32 info , struct udp_table * udptable)

case ICMP_REDIRECT :
ipv4_sk_redirect (skb , sk);
goto out;

+ case ICMP_PKT_REASM :
+ ipv4_sk_update_pmtu (skb , sk , info);
+ goto out;

}

/*

Appendix B

Benchmarking Methodology
for IPv6 Routing Extension
Headers

On the following pages, we include the contents of our Internet Draft.

Independent Hakan Alpan

Internet-Draft Bradley Newton

Intended status: Informational Miles President

Expires: October 21, 2020 Radon Rosborough

 Harvey Mudd College

 May 2020

 Benchmarking Methodology for IPv6 Routing Extension Headers

 draft-clinic-ipv6-ext-hdr-bench-method-00

Abstract

 This document specifies a test procedure which should be used to

 evaluate the performance characteristics of a network interconnection

 device which processes IPv6 routing extension headers. The results

 of the test procedure can be used to compare the performance of the

 Compressed Routing Header (CRH) with the performance of other routing

 extension headers and with the performance of packets which do not

 include routing extension headers. The routing extension headers

 which may be compared with the CRH using the test procedure are the

 Segment Routing Header (SRH) and Routing Header Type 0 (RH0).

Status of This Memo

 This Internet-Draft is submitted in full conformance with the

 provisions of BCP 78 and BCP 79. Internet-Drafts are working

 documents of the Internet Engineering Task Force (IETF), its areas,

 and its working groups. Note that other groups may also distribute

 working documents as Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months

 and may be updated, replaced, or obsoleted by other documents at any

 time. It is inappropriate to use Internet-Drafts as reference

 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at

 http://www.ietf.org/1id-abstracts.html

 The list of Internet-Draft Shadow Directories can be accessed at

 http://www.ietf.org/shadow.html

Copyright Notice

 Copyright (c) 2020 IETF Trust and the persons identified as the

 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal

 Provisions Relating to IETF Documents

 (http://trustee.ietf.org/license-info) in effect on the date of

 publication of this document. Please review these documents

 carefully, as they describe your rights and restrictions with respect

 to this document. Code Components extracted from this document must

 include Simplified BSD License text as described in Section 4.e of

 the Trust Legal Provisions and are provided without warranty as

 described in the Simplified BSD License.

Table of Contents

 1. Introduction ..2

 2. Requirements Language ...2

 3. Test Procedure ..3

 3.1. DUT Setup ..3

 3.2. Independent Variables3

 3.3. Header Contents ..4

 3.4. Frame Sizes ..4

 4. IANA Considerations ...4

 5. Security Considerations ...4

 6. References ..4

 6.1. Normative References4

 6.2. Informative References5

1. Introduction

 IPv6 [RFC8200] source nodes use routing extension headers to specify

 the path that packets follow to reach their destination. The first

 routing extension header to be defined was Routing Header Type 0

 (RH0) [RFC2460]. This header was deprecated [RFC5095] and removed

 from current IPv6 implementations because it introduced security

 vulnerabilities.

 Two replacements to RH0 have been proposed, the Segment Routing

 Header (SRH) [RFC8754] and the Compressed Routing Header (CRH)

 [I-D.draft-bonica-6man-comp-rtg-hdr]. Both of these routing

 extension headers provide a superset of the functionality that was

 previously provided by RH0, and both address the security

 vulnerabilities of RH0.

 Both RH0 and the SRH specify intermediate nodes in the routing

 extension header as a list of 128-bit IPv6 addresses. The

 disadvantage of this is that routing headers may become very large,

 which may impose data transmission overhead and degrade router

 performance (see section 1 of [I-D.draft-bonica-6man-comp-rtg-hdr]).

 For this reason, in the CRH, intermediate nodes are specified using

 16-bit or 32-bit short identifiers which are mapped to IPv6 addresses

 by intermediate routers.

 For a given router, it is possible that either the SRH or the CRH

 would result in better performance. Processing a packet which uses

 the SRH requires the router to copy a larger header; however,

 processing a packet which uses the CRH requires the router to perform

 a lookup to translate the short identifier into an IPv6 address.

 This document defines a procedure that can be used to compare the

 performance of the CRH against other routing extension headers,

 namely: the SRH, RH0, and packets without routing extension headers.

2. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this

 document are to be interpreted as described in [RFC2119].

3. Test Procedure

 The performance characteristics of routing extension headers on a

 given device under test (DUT) SHOULD be measured following the

 guidelines in [RFC2544], except as specified in the following

 sections. The set of tests that is run SHOULD include a throughput

 test, and MAY also include other tests that are specified in

 [RFC2544].

3.1. DUT Setup

 The DUT to be tested MUST be able to process each of the routing

 extension headers whose performance will be compared. To get the

 most useful results, both the CRH and the SRH SHOULD be included. If

 possible, both 16-bit and 32-bit versions of the CRH SHOULD be

 included. RH0 and packets without a routing extension header MAY be

 included as well for comparison.

 The CRH has limited support in current IPv6 implementations, so the

 requirement to support the CRH is likely to be the most difficult to

 fulfill. Juniper Networks has produced implementations of the CRH in

 the Linux kernel and in the MX-series router (see section 11 of

 [I-D.draft-bonica-6man-comp-rtg-hdr]). However, these

 implementations currently support only the 16-bit version of the CRH.

 If the CRH is included in tests, then the router MUST have at least

 one SID configured to map to the tester’s IP address. This SID MUST

 be used in the CRH to cause the router to forward the packet back to

 the tester (or receiver, if separate transmitting and receiving

 devices are used).

 As per [RFC2544], configuration changes MUST NOT be made to the

 router between different tests.

3.2. Independent Variables

 The performance characteristics of routing extension header

 processing may be affected by several factors, which SHOULD be used

 as independent variables in the test procedure:

 o The type of routing extension header in use (the CRH, the SRH,

 RH0, or none).

 o For the CRH, whether 16-bit or 32-bit short identifiers are used.

 o For the CRH, the SRH, and RH0, the number of addresses (or, for

 the CRH, short identifiers) specified in the header. This

 variable SHOULD range at least from 1 to 15, but MAY include

 higher values if desired.

 o The number of data bytes included in the packets that are sent.

 This variable SHOULD take on the same set of values for each

 permutation of the other independent variables. See the

 discussion of frame sizes below.

 Each test SHOULD be run for every possible combination of the

 independent variables.

3.3. Header Contents

 No extension headers should be used except for the routing extension

 headers being tested. Only one extension header at a time should be

 used.

 The next segment in the SRH and RH0 MUST be the IP address of the

 tester (or, when using separate transmitting and receiving devices,

 the receiver). The next segment in the CRH MUST be an SID that the

 DUT has been configured to map to the IP address of the tester (or

 receiver). This configuration MUST be done before starting any

 tests.

 Apart from the next segment for the SRH and RH0, the IP addresses

 used in the CRH, the SRH, and RH0 should be selected randomly as

 outlined in appendix C of [RFC2544] from the ranges reserved for this

 purpose by IANA.

3.4. Frame Sizes

 The performance characteristics of routing extension headers may vary

 depending on frame size. Section 9 of [RFC2544] provides guidelines

 for selecting frame sizes. However, different routing extension

 headers use different amounts of space to encode the same

 information. In particular, the CRH uses less space to encode

 information about intermediate nodes than the SRH and RH0. For this

 reason, a fair comparison between two routing extension headers uses

 the same payload size for each rather than the same frame size for

 each.

 The set of payload sizes for the tests SHOULD be chosen so that the

 resulting set of frame sizes for each routing extension header and

 each number of addresses follows the guidelines set out in [RFC2544]

 as closely as possible.

4. IANA Considerations

 No IANA actions required.

5. Security Considerations

 No security considerations.

6. References

6.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate

 Requirement Levels", BCP 14, RFC 2119,

 DOI 10.17487/RFC2119, March 1997, <https://www.rfc-

 editor.org/info/rfc2119>.

 [RFC2460] Deering, S. and R. Hinden, "Internet Protocol, Version 6

 (IPv6) Specification", RFC 2460, DOI 10.17487/RFC2460,

 December 1998, <https://www.rfc-editor.org/info/rfc2460>.

 [RFC2544] Bradner, S. and J. McQuaid, "Benchmarking Methodology for

 Network Interconnect Devices", RFC 2544,

 DOI 10.17487/RFC2544, March 1999, <https://www.rfc-

 editor.org/info/rfc2544>.

 [RFC5095] Abley, J., Savola, P., and G. Neville-Neil, "Deprecation

 of Type 0 Routing Headers in IPv6", RFC 5095,

 DOI 10.17487/RFC5095, December 2007,

 <https://www.rfc-editor.org/info/rfc5095>.

 [RFC8200] Deering, S. and R. Hinden, "Internet Protocol, Version 6

 (IPv6) Specification", STD 86, RFC 8200,

 DOI 10.17487/RFC8200, July 2017,

 <https://www.rfc-editor.org/info/rfc8200>.

 [RFC8754] Filsfils, C., Ed., Dukes, D., Ed., Previdi, S.,

 Leddy, J., Matsushima, S., and D. Voyer, "IPv6 Segment

 Routing Header (SRH)", RFC 8754, DOI 10.17487/RFC8754,

 March 2020, <https://www.rfc-editor.org/info/rfc8754>.

6.2. Informative References

 [I-D.draft-bonica-6man-comp-rtg-hdr]

 Bonica, R., Kamite, Y., Niwa, T., Alston, A., and

 L. Jalil, "The IPv6 Compressed Routing Header (CRH)",

 draft-bonica-6man-comp-rtg-hdr-14 (work in progress),

 April 2020.

Acknowledgements

 The authors would like to thank Ron Bonica and Geoff Kuenning for

 their comments and suggestions that improved this document.

Authors’ Addresses

 Hakan Alpan

 Harvey Mudd College

 EMail: halpan@hmc.edu

 Bradley Newton

 Harvey Mudd College

 EMail: bnewton@hmc.edu

 Miles President

 Harvey Mudd College

 EMail: mpresident@hmc.edu

 Radon Rosborough

 Harvey Mudd College

 EMail: rrosborough@hmc.edu

Bibliography

Abley, J., P. Savola, and G. Neville-Neil. 2007. Deprecation of type 0 routing
headers in IPv6. RFC 5095, RFC Editor.

Bonica, Ron, Fred Baker, Geoff Huston, Robert Hinden, Ole Troan, and
Fernando Gont. 2019. IP fragmentation considered fragile. Internet Draft
draft-ietf-intarea-frag-fragile-16, IETF Secretariat. URL http://www.ietf.org/
internet-drafts/draft-ietf-intarea-frag-fragile-16.txt.

Bonica, Ron, Yuji Kamite, Tomonobu Niwa, Andrew Alston, and Luay
Jalil. 2020. The IPv6 compressed routing header (CRH). Internet-Draft
draft-bonica-6man-comp-rtg-hdr-13, IETF Secretariat.

Bradner, Scott, and Jim McQuaid. 1999. Benchmarking methodology for
network interconnect devices. RFC 2544, RFC Editor. URL http://www.
rfc-editor.org/rfc/rfc2544.txt.

Davies, E., S. Krishnan, and P. Savola. 2007. IPv6 transition/co-existence
security considerations. RFC 4942, RFC Editor.

Deering, Stephen E., and Robert M. Hinden. 1998. Internet protocol, version
6 (IPv6) specification. RFC 2460, RFC Editor. URL http://www.rfc-editor.org/
rfc/rfc2460.txt.

Filsfils, C., D. Dukes, S. Previdi, J. Leddy, S. Matsushima, and D. Voyer.
2020. IPv6 segment routing header (SRH). RFC 8754, RFC Editor.

HashiCorp. n.d. Vagrant. URL https://www.vagrantup.com. Accessed: 2020-
04-10.

Kurose, James F., and Keith W. Ross. 2013. Computer Networking: A Top-
Down Approach. Pearson Education, 6th ed.

http://www.ietf.org/internet-drafts/draft-ietf-intarea-frag-fragile-16.txt
http://www.ietf.org/internet-drafts/draft-ietf-intarea-frag-fragile-16.txt
http://www.rfc-editor.org/rfc/rfc2544.txt
http://www.rfc-editor.org/rfc/rfc2544.txt
http://www.rfc-editor.org/rfc/rfc2460.txt
http://www.rfc-editor.org/rfc/rfc2460.txt
https://www.vagrantup.com

	Optimizing Router Performance
	Recommended Citation

	Abstract
	Acknowledgments
	Introduction
	Fragmentation project
	Background
	Maximum Transmission Unit
	IP fragmentation
	Path MTU Discovery

	Problem
	Our approach
	Development environment
	Implementation
	New ICMP message
	Response to a fragmented packet
	Response to ICMP Packet Reassembled

	Testing
	Future work

	Benchmarking project
	Background
	Problem
	Our approach
	Testing
	Future Work

	Linux kernel patch
	Benchmarking Methodology for IPv6 Routing Extension Headers
	Bibliography

