
Machine Learning Assisted Non-Rigid Surface Tracking in Biological Systems

by William Henry Hempstead, M.S.B.E.

July 2020

Directed by: Zhen Zhu, Ph.D.

Department of Engineering

Occlusions, obstructions, and lighting changes that occur in a camera’s field-of-view (FOV)

during a medical procedure can cause tracking algorithms to lose track of a particular region-of-

interest (ROI). Various approaches to reacquire the tracking of rigid objects have been developed,

however, the non-rigid nature of biological structures requires more complicated approaches. The

purpose of this research is to improve the performance of an existing non-rigid tracking algorithm

under these types of adverse conditions. This existing algorithm was previously shown to be

accurate and efficient under ideal conditions but exhibited a high rate of tracking failures due to

the aforementioned occlusions, obstructions, and lighting changes. To improve tracking under

these conditions, a tissue motion machine learning model was developed to provide predictions of

future ROI grid motion. The combination of this machine learning technique along with various

improvements to the base algorithm was shown to greatly reduce the number of tracking resets and

allow the tracking grid to briefly follow an expected motion pattern during a simulated occlusion.

.

Machine Learning Assisted Non-Rigid Surface Tracking in Biological Systems

A THESIS

Presented to the Faculty of the Department of Engineering

College of Engineering and Technology

East Carolina University

In Partial Fulfillment of the Requirements For the Degree

Master of Science in Biomedical Engineering

by

William Henry Hempstead

July, 2020

©Copyright 2020

William Henry Hempstead

Machine Learning Assisted Non-Rigid Surface Tracking in Biological Systems

By

William Henry Hempstead

APPROVED BY:

DIRECTOR OF
THESIS:

Zhen Zhu, Ph.D.

A
COMMITTEE MEMBER:

Sunghan Kim, Ph.D.

A
COMMITTEE MEMBER:

Rui Wu, Ph.D.

A
GRADUATE PROGRAM DIRECTOR:

Sunghan Kim, Ph.D.

CHAIR OF THE
DEPARTMENT OF ENGINEERING:

Barbara J. Muller-Borer, Ph.D.

DEAN OF THE
GRADUATE SCHOOL:

Paul J. Gemperline, Ph.D.

"Those who have knowledge, don’t predict. Those who predict, don’t have knowl-
edge."

-Lao Tzu

ACKNOWLEDGMENTS

I would like to give my highest thanks to my thesis advisor, Dr. Zhen Zhu, of the Department

of Engineering at East Carolina University for his insight and guidance during the development of

this research.

In addition, I would like to thank the other members of my thesis committee, Dr. Sunghan Kim

of the Department of Engineering and Dr. Rui Wu of the Department of Computer Science, for

their continued support.

Thank you to Dr. Barbara Muller-Borer for your encouragement and support in my return to

study in the field of biomedical engineering.

Thanks to Dr. Cheng Chen and Dr. Bruce Ferguson of RFPi, Inc. for providing the data set

used in this research.

Finally, thank you to all of my friends, new and old, near and far, who have been supportive of

me during the course of this research.

TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS . v

LIST OF TABLES . x

LIST OF FIGURES . xi

CHAPTER

1. INTRODUCTION . 1

1.1 Problem Statement and Proposed Work . 1
1.2 Organization of Thesis . 3

2. BACKGROUND INFORMATION . 5

2.1 Previous Work . 5
2.2 Time Series Forecasting . 8

2.2.1 Characteristics of Time Series Data . 8
2.2.2 Deterministic Models . 10
2.2.3 Machine Learning Methods . 10

3. METHODS . 15

3.1 Programming Framework . 15
3.2 Software Packages and Development Environment . 16

3.2.1 MATLAB . 17
3.2.2 Linux . 17
3.2.3 Python . 18

3.2.4 OpenCV . 18
3.2.5 TensorFlow . 19
3.2.6 Hardware . 19

3.3 Improvements \ Changes to the Original Algorithm . 20

3.3.1 Frame Pre-processing . 20
3.3.2 Feature Detection Algorithm/Parameters . 24
3.3.3 Tracking Algorithm/Parameters . 25
3.3.4 Initial Frame Selection . 25
3.3.5 Pulse Detection . 26
3.3.6 Determination of Number of Patches . 27
3.3.7 Neighboring Patch Smoothness Constraint . 27
3.3.8 Tracking Re-initialization . 29
3.3.9 Parameter Values . 30
3.3.10 Occlusion Detection . 31

3.4 Feature Extraction . 32

3.4.1 Data Set . 32
3.4.2 Extraction Method / Algorithm . 34
3.4.3 Sequence Length . 35
3.4.4 Scaling . 36

3.5 Neural Network . 36

3.5.1 Architecture . 36
3.5.2 Training . 38

3.6 Testing Scenarios . 39

4. RESULTS . 41

4.1 Results for 20160725T124323.avi . 43
4.2 Results for 20160725T124609.avi . 46
4.3 Results for 20160725T124909.avi . 49
4.4 Results for 20160725T132840.avi . 52
4.5 Results for 20160725T133113.avi . 55
4.6 Neural Network Training . 57
4.7 Speed of Execution . 59

5. DISCUSSION . 61

5.1 Tracking Performance . 61
5.2 Prediction Performance . 62
5.3 Speed of Execution . 63
5.4 Limitations / Future Improvements . 65

5.4.1 Tracking Algorithm . 65
5.4.2 Data Collection . 66
5.4.3 Neural Network . 67
5.4.4 Speed of Execution . 68

6. CONCLUSIONS . 70

REFERENCES . 71

APPENDICES

APPENDICES . 77
A. SOURCE CODE . 78

A.1 Main Algorithm . 79

A.1.1 Overview . 80
A.1.2 Code . 81

A.2 Feature Point Sequence Extraction . 92

A.2.1 Overview . 92
A.2.2 Code . 93

A.3 Data Set Creation . 99

A.3.1 Overview . 99
A.3.2 Code . 100

A.4 Neural Network Training . 105

A.4.1 Overview . 105

A.4.2 Code . 106

A.5 Supporting Classes / Functions . 109

A.5.1 Classes . 109
A.5.2 Functions . 112

A.6 MAT to AVI Conversion . 151

LIST OF TABLES

Table Page

3.1 Extracted Sequence Example. 35

3.2 RNN Model Layers. 37

4.1 Tracking Performance Summary (20160725T124323.avi). 44

4.2 Tracking Performance Summary (20160725T124609.avi). 47

4.3 Tracking Performance Summary (20160725T124909.avi). 50

4.4 Tracking Performance Summary (20160725T132840.avi). 53

4.5 Tracking Performance Summary (20160725T133113.avi). 56

4.6 Execution Speed Summary. 60

5.1 Tracking Failure Summary and Comparison. 61

5.2 Grid Prediction Error Summary. 62

5.3 Profiler Summary for 20160725T124323.avi. 64

LIST OF FIGURES

Figure Page

1.1 Example of Occlusion from Data Set . 3

2.1 Example of Region-of-Interest (ROI) . 6

2.2 Simplified Block Diagram of Original Algorithm . 7

2.3 Components of a Time Series . 9

2.4 Multi-Layer Perceptron (MLP) Diagram . 11

2.5 Recurrent Neural Network (RNN) Diagram . 12

2.6 Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) Nodes 13

2.7 Convolutional Neural Network (CNN) Diagram . 14

3.1 Block Diagram of Improved Algorithm . 16

3.2 Comparison of Histogram Equalization Methods . 22

3.3 Comparison of Denoising Methods . 24

3.4 Optical Flow from Feature Point Movement . 27

3.5 Smoothness Criteria Constraint . 28

3.6 Sample Frame From Data Set . 33

3.7 Sample of Extracted Feature Points . 34

3.8 ROI Selection Landmarks . 39

4.1 Representative Screenshots (20160725T124323.avi). 43

4.2 Analysis Timeline (20160725T124323.avi) . 44

4.3 Average Grid Prediction Error (x, y, and x-y (absolute)) -
(20160725T124323.avi) . 45

4.4 Representative Screenshots (20160725T124609.avi). 46

4.5 Analysis Timeline (20160725T124609.avi) . 47

4.6 Average Grid Prediction Error (x, y, and x-y (absolute)) -
(20160725T124609.avi) . 48

4.7 Representative Screenshots (20160725T124909.avi). 49

4.8 Analysis Timeline (20160725T124909.avi) . 50

4.9 Average Grid Prediction Error (x, y, and x-y (absolute)) -
(20160725T124909.avi) . 51

4.10 Representative Screenshots (20160725T132840.avi) . 52

4.11 Analysis Timeline (20160725T132840.avi) . 53

4.12 Average Grid Prediction Error (x, y, and x-y (absolute)) -
(20160725T132840.avi) . 54

4.13 Representative Screenshots (20160725T133113.avi). 55

4.14 Analysis Timeline (20160725T133113.avi) . 56

4.15 Average Grid Prediction Error (x, y, and x-y (absolute)) -
(20160725T133113.avi) . 57

4.16 Neural Network Training Loss . 58

4.17 Neural Network Training Accuracy . 59

CHAPTER 1

INTRODUCTION

1.1 Problem Statement and Proposed Work

The increase in machine-assisted and robotic-assisted medical procedures over the past several

years has driven a need for more robust tracking techniques in computer vision. One of the most

well-known robotic surgical systems, the da Vinci Surgical System, has grown to 5,582 total instal-

lations since entering the market in 2000 with approximately 1,229,000 procedures performed in

2019 [1]. These robotic, as well as, traditional laparoscopic surgeries are increasingly dependent

on computer vision technologies for procedures such as tumor or cardiac ablations [2, 3] and tumor

resections [4] where the surgeon’s visibility and frame of reference are limited.

Other areas that can benefit from image-based tracking of organ surfaces are: fusion of various

diagnostic images and endoscopic camera feeds [4, 5], instrument guidance and motion compen-

sation [6, 7], and deformation/strain assessment of cardiac structures [8].

Fusion of different types of medical imagery can be useful in various types of robotic and

endoscopic surgery. For example, by projecting an ultrasound image of a liver tumor onto a live

camera feed of the moving organ surface, the surgeon can make better decisions about instrument

positioning and tissue removal [5]. These types of augmented reality (AR) overlays have shown

great promise in assisting with tasks such as tumor location, but accurate, precise tracking to the

sub-millimeter scale continues to be a challenge [4, 9].

Many endoscopic procedures, such as ablation of specific tissue regions to destroy tumors or

reduce internal hemorrhaging have become commonplace [10], while more complicated proce-

dures such minimally-invasive Coronary Artery Bypass Grafting (CABG) continue to develop and

2

improve [11]. These procedures require precise instrument movements synchronized with moving

tissue surfaces or normal breathing motions. A robust tissue tracking algorithm could be used in

such procedures to either mechanically compensate for organ movements [11, 12], or to trigger

timing of ultrasound therapies to direct energy to a specific target [6].

Tracking the deformation and strain of cardiac tissues has become an important monitoring

tool during complex heart surgeries. Techniques have been developed to calculate tissue strain

values via the displacements derived from optical flow in cardiac videos [8, 13]. These types of

measurements can serve as a "virtual" strain gauge indicating a relative load on the heart during

surgery.

The original algorithm that provides the basis for the research presented in this thesis has

demonstrated that accurate tracking of these non-rigid organ surfaces in 2-D imagery without a

priori understanding of the underlying motion is possible [14]. However, obscured surface features

cannot be tracked without some understanding of the underlying motion during extended periods

of surface occlusion.

Throughout any typical surgical procedure, numerous occlusions and obstructions can enter

the camera’s field-of-view (FOV) including those caused by instruments, surgical materials, glare,

or, in the case of open surgery, the surgeon’s hands. Figure 1.1 shows an example of a clamping

instrument and surgical thread in the FOV that could block a region-of-interest (ROI).

3

Figure 1.1: Example of Occlusions from Data Set. The left arrow points to a surgical thread and
the right arrow points to a clamping instrument.

This research aims to improve upon the original work through various refinements to the al-

gorithm and through implementation of a more optimized computer vision software library. A

machine learning model will be used to model and predict the motion of the ROI.

The proposed algorithm framework will:

• Modify the image pre-processing in the original tracking algorithm to improve identifi-

cation of image features.

• Improve the ROI re-acquisition strategy based on the cyclic motion of the target.

• Predict the future motion of an occluded region based on a window of previous motion.

1.2 Organization of Thesis

This research is presented as follows: Chapter 2 will review background relevant to the original

algorithm and sequence prediction. The underlying methods used for algorithm development and

4

the experimental design will be presented in Chapter 3. Lastly, results, discussion, and conclusions

will be presented in Chapters 4, 5, and 6 respectively. All of the source code used for this project

is listed in the Appendices.

CHAPTER 2

BACKGROUND INFORMATION

This chapter provides a review of topics relevant to the proposed work. The first section will

highlight some key points from the original research [14]. The second will discuss point sequence

prediction as a time series forecasting problem.

2.1 Previous Work

The research that established the original algorithm developed a method for tracking non-rigid

surfaces based on the establishment of constraints (statistical tests) for the optical flow of dis-

tinct feature points within small, piecewise areas (patches) of a particular region (See Figure 2.1).

Feature points are distinctive locations in an image that are detected through a particular detec-

tion algorithm (in this case Shi-Tomasi [15]). Figure 2.2 shows a simplified block diagram of the

original algorithm for reference.

6

Figure 2.1: Example of Region-of-Interest (ROI). The grid area is divided into smaller, piecewise
areas (patches).

7

Figure 2.2: Simplified Block Diagram of Original Algorithm [14].

These tracking constraints were: 1) the motion of feature points must follow a normal distri-

bution within a patch and 2) the motion of a particular patch must follow a normal distribution

relative to its neighboring patches. If these constraints are not met, tracking is re-initialized using

a more computationally expensive homography transform which warps the perspective of the grid

points to match a reference frame [16].

The original algorithm was able to continue tracking under some cases of partial occlusion,

but failed when the ROI was completely obscured. To improve the performance during a total

occlusion, the original research proposed the addition of machine learning-based ROI prediction.

By using some knowledge of the previous motion history of the ROI grid points before occlusion,

a prediction of future grid points could be made until the occlusion is cleared. This translates into

a multiple point sequence prediction problem.

8

2.2 Time Series Forecasting

The topic of point sequence prediction can be grouped under the larger category of time series

forecasting. Research has been done on many different types of data to predict future values based

on past history. Much of this research focuses on financial data analysis [17] and scientific sensor

data [18].

Most of these prediction approaches fall into two categories: deterministic models or machine

learning methods. The following sections will discuss these methods in greater detail along with

some of the characteristics of time series data important to forecasting.

2.2.1 Characteristics of Time Series Data

One of the fundamental assumptions for forecasting a time series with traditional techniques

is stationarity. If a data set is said to have stationarity, one of more of the statistical distribution

measures (mean, variance, and co-variance) are constant. Without at least one constant statistical

property, a signal would be considered noise and a reliable prediction would not be possible [19].

A typical time series can be separated into three components: a trend, seasonal (cyclic) varia-

tion, and random variation. Figure 2.3 demonstrates how each of these components contribute to

the overall series.

9

Figure 2.3: Components of a Time Series. The trend, seasonal, and random parts of the series sum
to form the composite signal.

A trend is a long term directional change in the data that can be either linear or nonlinear. Sea-

sonal (periodic cyclic) components are repeated, long or short-term patterns that occur throughout

the data series. On top of this trend/seasonal structure, a degree of randomness or noise from error

and unpredictability in measurements is typically present [19].

To achieve stationarity in a time series, mathematical transformations are performed to remove

the trend and seasonal components leaving an aperiodic data series. This can be achieved with

various filtering and differencing methods [19].

Time series data can also be classified as univariate or multivariate. Univariate time series data

consists of the values of a single variable over a period of time such as the daily temperature over a

10

year. Multivariate time series data consists of multiple variables such as temperature, rainfall, and

atmospheric pressure over a concurrent period of time.

2.2.2 Deterministic Models

A deterministic model would attempt to use mathematical formulas to strictly define the motion

based on expected patterns. The development of deterministic models is difficult in problems

dealing with non-rigid tissue motion because of the complex spatial dynamics of the surface, thus

this research will not focus on the use of deterministic models.

2.2.3 Machine Learning Methods

Various machine learning techniques have been developed to perform time series forecasting

on collected data. The two main methods found in the literature are Autoregression and Neural

Networks.

Autoregression

Autoregression analyses are a form of state-space models that use linear equations to predict

future values based on differences with previous values at various lag times. The state-space model

consists of two equations: an observation equation describing the output of a system and a state

equation describing a system’s current state based on a previous observation [19].

The Autoregressive Moving Average (ARMA) model is one of the standard analyses for sta-

tionary data and the Autoregressive Integrated Moving Average (ARIMA) model is used for non-

stationary data [19]. Univariate and multivariate versions of both of these techniques have been

developed.

A multivariate autoregression could be used to analyze several time sequences at once and make

a prediction for each sequence. An advantage of this approach would be that spatial relationships

between the time sequences could be preserved if the spatial locations were fixed.

11

Neural Networks

MLP Multi-layer perceptrons (MLPs) are one of the most basic types of neural networks

consisting of a series of input nodes connected to one or more layers of hidden nodes and output

nodes (Figure 2.4). MLPs are classified as feed-forward networks because the flow of information

is always from the input nodes through the hidden layers to the output nodes. Therefore, the MLP

network is said to have no "memory" or feedback of previous states or inputs [20].

The MLP network is initialized with a rigid input/output structure of a fixed size. While these

sizes are fixed, variable size inputs can be used with an MLP structure if the input size is chosen

to be greater than the longest individual input and the inputs are "zero-padded" [21], however, the

output size will remain a fixed length.

Figure 2.4: Multi-Layer Perceptron (MLP) Diagram.

RNN Recurrent Neural Networks (RNNs) have a structure similar to MLPs with the addition

of feedback connections to add a form of "memory" that can be useful in sequence analysis (See

12

Figure 2.5) [20]. One advantage of this type of network over a standard MLP is that it can fed with

variable length inputs to generate variable length outputs.

Figure 2.5: Recurrent Neural Network (RNN) Diagram.

One large disadvantage of RNNs is that the memory feedback loop can lead to the problem

of exploding or vanishing gradients during backprogation in the training phase. The errors in the

derivative calculations which determine the weighting of the nodes can, in some cases, drive the

weight gradients to very small values (vanishing) or to very large values (exploding) [21]. Either

case results in a network of limited value that cannot be effectively trained.

13

(a) LSTM Cell

(b) GRU Cell

Figure 2.6: Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) Nodes.

The addition of alternate information pathways, gates, within the network nodes can help to

better control the flow of the information through the network and eliminate the exploding/van-

ishing gradient issue. The two most well-known modifications to the RNN node are the Long

Short-Term Memory (LSTM) cell and the Gated Recurrent Unit (GRU) cell (Figure 2.6) [22]. The

LSTM cell has the addition of three gates: the forget gate, the input gate, and the output gate. The

GRU is a more recent invention intended to improve processing speed by reducing the number of

gates and, therefore, the number of operations. It only has two gates: the update gate and the reset

gate. These two network types can have similar performance in many situations, but research to

establish the best case uses is ongoing.

14

CNN A Convolutional Neural Network (CNN) is optimized for learning patterns in two-

dimensional data occurring in a regular spatial pattern [20]. This data could take the form of image

data or any other 2-D array of values in a grid-like structure. Data flows forward through the

network (See Figure 2.7) and is downsampled through a series of convolutions to extract essential

features and perform tasks such as classification and segmentation [23].

Figure 2.7: Convolutional Neural Network (CNN) Diagram.

CNNs have come into greater prominence after the success of the Krizhevsky et al. team in the

2012 ImageNet competition where image classification was improved by over 10% compared to

the previous year’s winner [24]. Recurrent CNNs (R-CNNs) have also been successfully applied

to many types of video analyses such as video captioning [25], object tracking [26], and frame

prediction [27]. The hardware requirements for network training are high [27], but inference op-

erations have been able to generate new complete frames in real-time (20-30 ms per image [~30

fps]) on a consumer level GPU [28].

CHAPTER 3

METHODS

The following sections describe the modifications to the original MATLAB code, the overall

framework for incorporating the occlusion prediction into the original algorithm, the rationale for

the selected software packages and neural network, and the structure of the experimental tests of

the framework.

3.1 Programming Framework

The overall structure of the research will be arranged as follows:

1. Rewrite the original algorithm [14] to improve tracking performance and support a

future real-time implementation.

2. Develop a feature extraction method to create a point motion sequence data set.

3. Train the selected machine learning model using the point motion sequence data set.

4. Integrate the machine learning model into the main algorithm for prediction of the

ROI.

5. Continue ROI tracking using the machine learning prediction.

6. Assess the performance of the tracking prediction.

Figure 3.1 shows a simplified block diagram of the improved algorithm.

16

Figure 3.1: Block Diagram of Improved Algorithm. The red outlines indicate added routines.

3.2 Software Packages and Development Environment

The following is a list of the main software packages and versions used in this research:

• MATLAB R2019a
• Linux - Ubuntu 18.04 LTS
• Python 3.6.9
• OpenCV 4.2.0-dev
• NumPy 1.18.1
• TensorFlow 2.0.0

The next sections give some background on each package and rationale for its use in this

research.

17

3.2.1 MATLAB

MATLAB is a programming environment/language developed by Mathworks that provides the

ability to create programs and run computational code for an array of scientific analyses. It has the

capability of running various image processing and computer vision algorithms and was used in

the original algorithm research [14].

In recent years, MATLAB has added more capabilities to interface with C++, NVIDIA Graph-

ics Processing Units (GPUs), and Python. Mathworks continues to improve the speed of its al-

gorithms by providing access to C++ functions through MEX [29], GPU-enabled algorithms, and

machine learning models that are claimed to be up to 7x faster than TensorFlow [30]. These ap-

proaches may be viable, but the practical implementation of combining and optimizing all of these

methods was beyond the scope of this research.

Therefore, a more streamlined approach was taken to keep everything open-source (free) and

cohesive by using the Python language combined with NumPy, SciPy, OpenCV Python, and Ten-

sorFlow. In addition, many of the MATLAB image processing functions are not optimized for a

GPU and the transfer of data between the CPU and GPU requires extra programming attention

to optimize speed. Mismanagement of the CPU-GPU data transfer can make the code run slower

than without a GPU [31].

3.2.2 Linux

Development for this project was done under the Linux operating system (Ubuntu 18.04 LTS

[Long Term Stable]). Linux is a free, open-source operating system and its ability to scale to many

different types of hardware could be useful for future implementation in a real-time system or

actual product.

18

3.2.3 Python

Python has become more popular as a programming language in recent years for scientific

computing due to its open-source nature, clear syntax, and the proliferation of add-on packages

that provide access to many essential programming functions [32].

C and C++ are traditionally the most popular languages for performance-driven computing

applications especially in embedded systems [33]. However, increasingly Python is being used

to create bindings to faster C++ functions to achieve similar performance with more intuitive,

understandable code. The Cython language, a superset of Python, can also be used to generate C

or C++ code from regular Python code for faster performance [34]. These are additional options

that may improve the performance of the code but were not implemented in this research.

Packages such as NumPy [35], SciPy [36], Scikit-learn [37], and Matplotlib [38] have given

Python expanded functionality for various mathematical and scientific computing operations. NumPy

adds support for array generation and manipulation similar to that found in MATLAB. SciPy

adds many scientific computation modules including modules for signal and image processing and

statistics. Matplotlib adds graphical plotting capabilities similar to those available with MATLAB.

3.2.4 OpenCV

OpenCV (Open-source Computer Vision) was developed as a cross-platform real-time com-

puter vision library and has both Python and C++ versions [39].

The conversion of the original MATLAB code to OpenCV provides several advantages. OpenCV

Python allows easy integration with other Python-based packages such as TensorFlow and NumPy.

OpenCV was developed for real-time systems and runs on Linux allowing applications to be more

easily scaled and ported to various types of hardware. Finally, OpenCV is open-source and free-

to-use compared to the cost of a non-educational MATLAB license.

At this time, the Python version of OpenCV is not optimized for the CUDA language. Compute

Unified Device Architecture (CUDA) is a software interface for graphical processing units (GPUs)

19

created by NVIDIA, the leading manufacturer of GPUs [40]. CUDA allows many operations to

be performed in parallel on NVIDIA GPUs including the types of matrix operations common in

image processing and machine learning.

OpenCV Python can, however, make use of OpenCL acceleration via the Transparent API (T-

API) added in OpenCV Version 3 [41]. OpenCL is a more general GPU language that can run

as an alternative to CUDA on non-Nvidia GPUs. It can also run on Nvidia GPUs, but has much

slower performance than CUDA. It is possible to create Python bindings for the C++ functions and

achieve increased speed using OpenCV with CUDA instead of OpenCL.

Due to the frame-by-frame nature of the tracking algorithm, the GPU was not used for pro-

cessing during tracking as these image processing tasks are better performed in large batches that

minimize the transfer of data between the system and GPU memory.

3.2.5 TensorFlow

TensorFlow is an open-source machine learning library developed and maintained by Google

that is compatible with Python, C++, and CUDA. Version 2.0 included the popular high-level

machine learning interface Keras as part of the core TensorFlow package. TensorFlow Lite allows

the flexibility to run models on less powerful devices [42].

3.2.6 Hardware

Image processing, neural network training, and final algorithm testing were performed on a

custom-built workstation containing the following components:

• Intel Core i9-9900X 3.5 GHz 10-Core Processor
• Zotac NVIDIA GeForce RTX 2080 Ti 11 GB Video Card
• Asus WS X299 SAGE SSI CEB LGA2066 Motherboard
• Corsair Vengeance LPX 32 GB (2 x 16 GB) DDR4-2133 CL13 Memory
• Samsung 960 EVO 500 GB M.2-2280 NVME Solid State Drive

20

These components are near the top of the performance ladder available for workstation desktop

PCs at the time of this research.

3.3 Improvements \ Changes to the Original Algorithm

The following sections describe the improvements and modifications that were made to the

original algorithm including changes to frame pre-processing, a new method to determine the

initial feature detection frame and detect the pulse cycle, a modification to the neighboring patch

constraint, and modifications to the tracking reset routine.

3.3.1 Frame Pre-processing

To improve feature point detection and tracking in the original algorithm, two standard imaging

processing techniques were applied to each frame: a histogram equalization and denoising (blur)

filter. These techniques are still used in the new framework, but they have been modified to give

better results as described in the following paragraphs.

Equalization

Histogram equalization enhances the contrast of the image by spreading the pixel intensity

levels across the full spectrum of grayscale levels. By improving contrast, features on the surface

will be more distinct and more easily found by the feature detection and tracking algorithms.

The histogram equalization algorithm used in the original research was the Matlab function

"histeq" with its default settings [43]. For this research, improved performance was found by using

the Contrast Limited Adaptive Histogram Equalization (CLAHE) algorithm of OpenCV [44]. This

algorithm performs a similar function as the "histeq" algorithm multiple times on smaller tiled

sections of the image with an additional option to limit the amount of level changes. A 20x20 pixel

tile with a level clip threshold of 30 was found to give good performance on this data set.

21

Figure 3.2 shows an example of the difference in enhancement between these two equalization

algorithms. The original images were very dark near the low end of the intensity scale. The basic

Matlab and OpenCV equalization algorithms give different results but both spread the intensity

levels across the full grayscale range. The CLAHE algorithm gives much greater contrast across

the image than the basic equalization algorithm with a more dense histogram. The main coronary

artery is much more defined in the equalized image using this method. It is expected to provide

better point feature tracking performance. The highlights in the areas of glare (upper right center)

are also greatly reduced helping to improve tracking performance.

22

(a) Unprocessed Image (b) Unprocessed Image - Histogram

(c) MATLAB Basic Equaliza-
tion [14]

(d) MATLAB Basic Equalization -
Histogram [14]

(e) OpenCV Basic Equaliza-
tion

(f) OpenCV Basic Equalization -
Histogram

(g) OpenCV CLAHE Equal-
ization

(h) OpenCV CLAHE Equalization
- Histogram

Figure 3.2: Comparison of Histogram Equalization Methods.

23

Denoising

Denoising, or blurring, can remove or reduce small, speckle-like artifacts in the image by

applying a smoothing filter. This helps the feature detector or tracker to focus on the strongest

image features instead of the undesired noise artifacts.

OpenCV has multiple denoising algorithms: the box filter, gaussian filter, median filter, and

bilateral filter. The first three of these algorithms are effective in reducing noise but can also smooth

over the edges in the image [45]. The bilateral filter takes the pixel intensity of neighboring pixels

into account to reduce noise while better preserving edges [45].

The original research used the median filter in MATLAB. After some experimentation using the

different blurring filters, this research chose to use the bilateral filter for its slight improvement in

retaining edges which are important for optimal feature detection. Figure 3.3 shows a comparison

of the unblurred image, median filter, and bilateral filter. The difference is subtle, but there is a

slight increase in edge contrast with the bilateral filter (more apparent in the magnified images).

24

(a) No Filter (b) Median Filter (c) Bilateral Filter

(d) No Filter - Magnified (e) Median Filter - Magnified (f) Bilateral Filter - Magnified

Figure 3.3: Comparison of Denoising Methods. The Bilateral filter reduces speckling while better
preserving edges.

3.3.2 Feature Detection Algorithm/Parameters

The original algorithm uses the MATLAB function “detectMinEigenFeatures” to detect the ini-

tial feature points [14]. This function incorporates the Shi-Tomasi minimum eigenvalue algorithm

to find feature points [46].

The equivalent OpenCV function is “goodFeaturesToTrack” which uses the Shi-Tomasi algo-

rithm [47]. By setting the “useHarrisDetector” parameter to “False” or “0,” this function will use

the minimum eigenvalue calculation and operate similar to the MATLAB function.

The “qualityLevel” parameter was decreased to 0.001 from the 0.005 value used in the original

research which gave a better distribution of points within the ROI.

25

3.3.3 Tracking Algorithm/Parameters

The original algorithm uses the MATLAB function “vision.PointTracker” to track the set of

detected points throughout the image sequence [48]. This function incorporates the Kanade-Lucas-

Tomasi (KLT) feature-tracking algorithm [49].

The equivalent OpenCV function is “calcOpticalFlowPyrLK” which uses the iterative Lucas-

Kanade method with pyramids [50].

The implementation of the OpenCV KLT tracker is different from the MATLAB KLT tracker

and does not include the error parameter, “MaxBidirectionalError,” that is set to “1” in the original

research. This parameter does a calculation forward and backward between frames to double-

check the tracking calculation and uses this difference as an error criterion at the cost of additional

computational overhead [48]. With a setting of “1”, the tracking would be considered invalid if

the difference in the forward and backward tracking location was greater than 1. According to the

OpenCV documentation, this backward check is implemented into “calcOpticalFlowPyrLK” but

control of this error criterion is not directly accessible [50].

3.3.4 Initial Frame Selection

A recommendation was made in the previous research to use machine learning to assist in the

selection of the initial feature point detection frame. It was also found that the diastole point of

the cycle was the best frame to use for initialization of the feature points [14]. This finding makes

intuitive sense because the tissue surface is most relaxed and stretched during diastole and thus

covers more surface area (pixels) providing more information to the feature detector.

While a machine learning approach may be viable, it would require an effort to collect and

label many examples of heart images at the diastole phase and training of another classification

algorithm. A more simple approach can make use of the pulse detection algorithm described in the

next section to determine the approximate frame corresponding to the diastole phase.

26

3.3.5 Pulse Detection

A method for detecting the pulse cycle was implemented in order to assist in the initialization

of feature detection described in Section 3.3.4 and the re-initialization of tracking. An additional

benefit of pulse cycle detection is the calculation of an approximate heart rate based only on the

video imagery.

To detect the cycle, a sparse KLT feature point tracker (using the 10 strongest features across

the entire frame) is started at the beginning of the video sequence. The average of the absolute

Euclidean distance of all of the tracked points from their initial location is calculated for each

frame. This distance should have a rough correlation to the overall motion in the frame.

The peaks of this average distance should correspond to the approximate systole and diastole

points of the cardiac cycle where motion is at a minimum and changing direction. By tracking

the direction of the distance changes, the type of peak can be determined (i.e. increasing distance

before a peak would correspond to a diastole [relaxation expansion] and decreasing distance would

correspond to a systole [contraction]).

This cycle detection runs continuously in the background independently of the main feature

tracker for the selected ROI. An example of this overlay of the optical-flow based cycle is shown

in the red graph at the bottom of Figure 3.4.

27

Figure 3.4: Optical Flow from Feature Point Movement.

3.3.6 Determination of Number of Patches

The function to determine the number of patches in the original algorithm relied on incremen-

tally increasing the number of patches until the two constraint conditions described in Section 2.1

were met. The patches are set to increase as a square matrix (i.e. 2x2, 3x3) to a maximum of 36

patches (6x6). This is similar to the method in the original algorithm.

If the maximum number of patches is reached without satisfying the constraint criteria, the

calculation will proceed, but a warning will be displayed.

3.3.7 Neighboring Patch Smoothness Constraint

Criteria

The neighboring patch smoothness constraint (Section 2.1, Constraint 2) from the original

algorithm tested the normality of the optical flow difference values of each patch’s corresponding

28

row and column and reinitialized tracking if this condition was not met (See Examples in Fig. 3.5

a, b).

(a) Original Constraint 2 Compari-
son - Example 1

(b) Original Constraint 2 Compari-
son - Example 2

(c) New Constraint 2 Compar-
ison to Surrounding Neigh-
bors

(d) Outside Threshold Range -> Failed Constraint Check

Figure 3.5: Smoothness Criteria Constraint.

Because this algorithm consisted of several nested loops that were slow, unclear, and difficult to

modify, a different measure of smoothness was implemented in this research. Instead of calculating

multiple U (horizontal) and V (vertical) flow differences between each patch in the entire row and

column and then checking normality, the average U and V flow for each patch will be calculated

and compared to the average of the neighboring patch flows (See Figure 3.5 c).

29

This allows for a simpler constraint check as a comparison of the individual patch flow to the

expected range of neighbor flow. In addition, the influence of the immediate diagonal neighboring

patches is now considered without the influence of distant patches. The next paragraph describes

how the flow threshold range was determined.

Threshold Range

After the number of patches are determined during the first full heart cycle, the difference be-

tween the average optical flow of each patch and the average optical flow of its neighbors is mon-

itored during the second heart cycle. Each patch is assigned a maximum and minimum threshold

range (plus margin) based on the observed difference values for later comparison during tracking.

Any patch with an extreme difference from its neighboring patches would violate these thresholds

and the patch would be flagged as failing the constraint check (See Fig. 3.5 d).

The original algorithm included analysis of several frames in order to determine a maximum

threshold for the smoothness across a cycle. This was performed in the same routine used to de-

termine the number of patches and slowed program execution during calculation. In this research,

this threshold determination procedure was moved into a separate routine to allow for more options

to calculate the threshold while the video sequence is moving forward.

3.3.8 Tracking Re-initialization

The original algorithm re-initialized tracking after the constraint check failed on three consec-

utive frames. Once three failures were detected, another routine began to search backward from

the current frame through previous frames to find a best homography match. This homography

was used to transform the region of interest boundaries and reacquire tracking points.

This algorithm has a long execution time as implemented and could benefit from several im-

provements. The backward search through multiple frames performs the same calculations multi-

ple times which is inefficient for use in a real-time application. Performing operations in a forward

30

direction would be more desirable in a live video stream application. Thus, in this research, the

original ROI selection frame and ROI grid are saved and used to obtain a homography matrix when

tracking is lost. The homography matrix is used to warp the original ROI grid to the current frame.

In scenarios where frames with occluded ROIs could be compared to the non-occluded selec-

tion frame, re-initialization error is likely to be high, triggering more constraint failures and at-

tempts to re-initialize tracking, but tracking should return to normal when the occlusion is cleared.

Future work could add changes to limit this undesired behavior.

A homography re-initialization is also done at each diastole cycle whether or not there has been

a tracking failure. This modification should help to reduce tracking failures in general and periodic

tracking resets are recommended by the OpenCV development team for more robust tracking [51].

While each added re-initialization slows performance, it was anecdotally observed that less total

re-initializations were needed with periodic resets compared to waiting for tracking failure.

3.3.9 Parameter Values

Optimization of the tracking parameters is not the focus of this research, but several observa-

tions were made while re-factoring the algorithm. The quality of unobstructed tracking depends

on a balance of the number of initial points tracked, the tracking failure threshold number, size of

the ROI, and the presence of glare.

Ensuring that there are a minimum number of points within each patch to meet the statistical

normality tests is a good guideline for setting the number of corner feature points to detect. If the

maximum number of patches is set to 36 (6 x 6) and the minimum number of points to meet the

normality test is 20, a minimum of 36 x 20 = 720 points would be required. More points than the

minimum required should lead to better tracking that is less sensitive to outliers. The detection

threshold was set to 1000 features in this research to give 720 points plus a margin. Care should be

taken to avoid using an excessive number of points which would slow down the overall calculation

31

time. A dynamic patch point threshold of 20 points per patch (plus a margin) could be set to reduce

excess feature points and improve run times.

The threshold for the number of tracking failures before a reset can be increased if the tracking

error is relatively low. Setting the failure limit too low can lead to frequent, perhaps unnecessary,

re-initializations that can cause slow-downs and potential re-initialization errors. The failure limit

setting is also closely related to the frame rate of the video under analysis. If the frame rate is very

high, multiple failures may occur over several frames that represent a very short length of time.

Setting the failure limit high could be warranted in this case to prevent resets from occurring too

often. Likewise, if the frame rate is very low, movement (and error) could be higher from frame to

frame and a lower failure limit would be justified. The tracking failure limit in this research was

able to be increased to five consecutive failures without excessive tracking resets.

In general, larger ROIs with larger patch sizes were tracked better than smaller overall ROIs

or ROIs with smaller patches. This is likely due to a larger ROI containing a greater number of

distinctive features overall and more detected features within each patch. This may vary with the

resolution of the frame as well.

ROI areas with glare seemed to generate more overall tracking resets. Glare is similar to an

occlusion in the sense that it hides the tissue surface information from the view of the camera.

However, some amount of glare is likely always visible in biological images due to moisture and

ambient lighting. This may be reduced using the CLAHE equalization described in Section 3.3.1,

however, it will not be completely eliminated because the pixel intensity has been saturated to a

maximum value and texture detail will be lost in the overexposed areas.

3.3.10 Occlusion Detection

No changes were made in this research to improve the detection of occlusions in the original

algorithm. The original research assumed that a partial occlusion would trigger constraint failure

and an eventual re-initialization. Failure of constraints on all of the patches would be considered a

32

full, non-recoverable occlusion and may require a pause of tracking until the occlusion is removed

[14].

In this research, a full occlusion will be simulated by switching the ROI grid from the tracking

algorithm to a prediction from the machine learning model for a specified selection of frames. A

shaded rectangle will be displayed to indicate an occlusion, but this is cosmetic and does not trigger

the prediction or affect the tracking algorithm.

In a final implementation, additional work may be needed to define criteria for switching to a

neural network prediction or triggering a tracking re-initialization. Actual occlusions would have

several variables such as the speed across the ROI, the size relative to the ROI, and the period of

occlusion which could trigger unwanted and inaccurate re-initialization behavior.

Expected types of real occlusions fall into three categories: glare, shadows, and objects. Rou-

tines could be created to deal with the unique properties of each of these separately. Glare causes

a complete saturation of intensity levels, shadows cause a partial decrease in intensity levels, and

an object introduces new features and edges that can confuse the feature detector/tracker.

3.4 Feature Extraction

3.4.1 Data Set

Five data files containing image sequences of cardiac motion were provided by Dr. Bruce

Ferguson and Dr. Cheng Chen for the previous research [14]. These images were obtained during

an unrelated, previously conducted porcine (pig) animal study conducted at ECU facilities under

Institutional Animal Care and Use Committee (IACUC) supervision and approval.

The image sequences contain an upright, anterior view of the heart with the coronary artery in

a horizontal orientation within the image frame as shown in Figure 3.6. The heart rate for all of

the sequences is approximately 60-70 beats per minute (bpm). The image intensity levels are very

low (dark) without any level adjustments.

33

Figure 3.6: Sample Data Set Image Frame. Raw image levels adjusted for clarity.

For the majority of the heart cycles, most of the heart surface is in clear view with minimal

occlusion of the moving surface. Occasionally, a pair of forceps or surgical threading material

moves across the heart surface temporarily obstructing a part of the surface. This occurs mainly in

the lower left area of the frame.

The files were provided in a MATLAB data file format (.mat). Each file contains approximately

2,430 grayscale, 8-bit image frames at 800 x 800 resolution captured at 81 frames per second (fps).

This corresponds to a total image sequence time of 30 seconds.

The original filenames are: 20160725T124323.mat, 20160725T124609.mat, 20160725T124909.mat,

20160725T132840.mat, 20160725T133113.mat. The filenames correspond to the date and time of

image capture.

A MATLAB script (Appendix A.6) was created to convert the .mat image sequence files into

uncompressed audio-video interleave (.avi) video files that can be read by the OpenCV file input

algorithms.

34

To increase the speed of processing, each file was downsampled by a factor of 3 to 27 fps. The

original files were captured at a high camera frame rate that is not necessary for accurate tracking

and 27 fps is closer to the 30 fps framerate that is typical of many commonly available cameras.

3.4.2 Extraction Method / Algorithm

An OpenCV Python script (Appendix A.2) was created to perform feature point detection and

tracking on each video and save each point sequence to a NumPy data file (.npy). This tracking

script uses the pulse detection method described in Section 3.3.5 to locate the peak values of the

flow corresponding the systole and diastole phases of the cycle.

Initial feature detection will begin at the first diastole frame and tracking will continue through

the remainder of the video as shown in Figure 3.7. Point sequences that the tracking algorithm

designates with a "lost" status will not be saved.

(a) Start of Tracking (b) Middle of Tracking (c) End of Tracking

Figure 3.7: Sample of Extracted Feature Points Across Tracking Period.

The points are detected in a circular region in the center of the image to avoid collecting un-

wanted data from tracking points on the surgical instruments or from stationary tissues. This will

limit predictions to the central area of the image frame.

Each frame is pre-processed before feature detection and tracking using the equalization and

denoising techniques described in Section 3.3.

35

3.4.3 Sequence Length

The continuous data sequence for each point can be divided up into sub-sequences of arbitrary

length. These smaller sub-sequences will be used as training data for the neural network.

A sub-sequence length of 10 time steps (frames) was chosen. At a heart rate of approximately

70 bpm and frame rate of 27 fps, each cardiac cycle would cover approximately 32 frames and

each 10 step sub-sequence would contain information for approximately 1/3 of a cardiac cycle.

With approximately 7000 points detected in each video and 810 frames per video, this would

generate over 5.6 million training sequences per video and over 28 million sequences for the entire

data set.

Table 3.1 shows a typical example of an extracted point sequence that will used to train the

neural network. Out of the 10 steps captured, the first nine points will be the training features

(used to set the weights of the network), and the last point will be a training label (target predicted

output of the network). Note that even though pixel image coordinates are normally expressed in

integer values, the tracking algorithm uses subpixel (decimal) values to estimate pixel locations.

Training and tracking did not perform well when these values were rounded to integers likely due

to accumulation of rounding errors.

Table 3.1: Extracted Sequence Example.

Data Type Sequence Step Coordinate Values (x,y)

Feature 1 [381.06005859, 410.21243286]
2 [380.56082153, 415.64233398]
3 [380.24166870, 424.26119995]
4 [387.43267822, 427.93359375]
5 [396.51394653, 432.11978149]
6 [400.73373413, 434.64465332]
7 [389.73266602, 428.98709106]
8 [369.53717041, 414.84133911]
9 [349.72045898, 402.50061035]

Label 10 [342.07440000, 400.10553000]

36

3.4.4 Scaling

While not always required, neural networks typically perform better with normalized data

(scaled to -1 to 1 or 0 to 1) or standardized data with a zero mean and unit variance [52].

The entire data set will be standardized using the StandardScaler function of Scikit-learn before

it is used in the neural network. Outputs of the neural network will thus be standardized and require

inverse scaling to return to image coordinates. The scaler is fit only on the training data set to

maintain data independence.

Data should also normally be transformed to remove stationarity [52], but, in this case since the

time sequences cover a short period without significant trends no stationarity transform is added.

3.5 Neural Network

This section describes the selected neural network architecture and training parameters.

3.5.1 Architecture

As described in Section 2.2.3, MLPs, RNNs, and CNNs can all be applied to learn patterns in

sequential data. This research will focus on the use of the RNN due to its strengths in dealing with

variable length inputs and the capability to generate variable outputs. While we will only predict

one future sequence point at a time with each new frame, multiple-step predictions could be useful

in further experiments that expand upon this research.

The multivariate autoregression and CNN networks should have an advantage in their ability

to better capture spatial dependencies between features compared to a single sequence prediction

model. However, because of the variable ROI selection and non-ordered nature of feature point

detection used in the baseline algorithm, these networks are not practical. The autoregression and

CNN networks assume a fixed number of inputs or grid points, but the baseline algorithm can have

a variable number of patches and grid points determined at the time of ROI selection. Collection

of training data would be complicated by the large number of grid sequences that would need

37

to be collected in order to cover the entire range of possible grid permutations. In addition, if

the prediction of a series of tracked point features is desired rather than ROI grid points, there

would be no a priori knowledge of the number or order of features nor any consistent structure

to the feature locations since any ROI location could be selected. Individual grid point prediction

could be desirable in a future iteration where the ROI is partially obscured and additional statistical

checks are required for a single patch.

The RNN will be structured with GRU cells to improve speed due to the reduced number of

operations (See Section 2.2.3). The model will consist of two GRU layers and one dense layer as

shown in Table 3.2.

Table 3.2: RNN Model Layers.

Number Layer Type Activation Output Shape Parameter Number

1 GRU ReLU (None, None, 64) 13,056

2 GRU ReLU (None, 32) 9,408

3 Dense Linear (None, 2) 66

Total Parameters: 22,530

Trainable Parameters: 22,530

Non-trainable Parameters: 0

The input GRU layer will have 64 units (nodes), the second GRU layer will have 32 units, and

the final Dense layer has 2 units to match the size of the desired output (x and y point coordinates).

Each GRU layer uses the default "ReLU" activation function. ReLU stands for Rectified Linear

Unit and is a type of function applied to transform each node summation value to an output value in

a way that minimizes computations and allows for larger networks that do not suffer from vanishing

38

gradients [20]. The final layer uses a "Linear" activation function which is recommended for

regression outputs [53].

Initial experiments added dropout layers after each GRU layer which can aid in reducing over-

fitting via a sampling process that simulates an average of many possible network configurations

[54]. However, prediction performance for this data set was improved by removing these dropout

layers. Predictions using the dropout layer model had large deformation and location errors.

3.5.2 Training

The network will be trained using a split of 80% of the data set as training data and 20% of

the data set as testing (validation) data. The testing data will be held back during each training

iteration (epoch) and used as a test of how well the network was trained on the other 80%. One

measure of optimal training for a neural network is when the overall network losses on the training

data are approximately equal to the losses on the testing data [55]. Before the data split, the point

sequences are shuffled so that the training and test data are randomly distributed.

The losses will be calculated using the Mean Squared Error (MSE) metric which emphasizes

large errors in the predictions and results in worse loss values for these cases [56]. Because the

network is trained on individual point sequences, these losses would be related to an individual

point prediction and not the overall grid.

The accuracy of the model is a percentage value calculated based on a comparison of how well

the model has predicted the last sequence point during inference compared with the training label.

The Adaptive Momentum (AdaM) optimization algorithm was chosen for training as this is

becoming more of an industry standard [57]. The optimization algorithm is the particular conver-

gence method used to set the network weights while minimizing the overall loss through the net-

work. AdaM adds some enhancements to the traditional gradient descent approaches to dampen

the convergence to a system minimum and thereby greatly speed up training [58].

39

Figure 3.8: ROI Selection Landmarks. Repeatable points were chosen for use in the manual ROI
selection step for each video. The left arrow points to the intersection of the larger artery with a
smaller branch. The right arrow points to the middle of a large, circular dark region.

3.6 Testing Scenarios

Because each video will have some variation in the heart surface and orientation at diastole,

each tracking sequence will be initiated with manual selection of a ROI based on repeatable land-

marks. Figure 3.8 shows the landmarks chosen for the experiments presented in this research.

These landmarks were chosen to be near the center of the frame (within the feature extraction ROI

- See Section 3.4) and contain a region that may be more clinically relevant (coronary artery). The

upper left landmark is at the intersection of the coronary artery and the indicated vessel branch and

the lower right landmark is near the center of the dark circular region indicated.

The performance of the grid prediction will be measured over 30 frames. At each frame, the

predicted grid points will be added to the grid point sequence history and used as the next input

sequence for prediction. Frames 201 to 230 will be selected for the prediction period in each video.

The heart cycles are not synchronized across the videos so this frame range will begin at different

40

points in the cardiac cycle. After the prediction period, normal tracking will continue until the end

of the video.

CHAPTER 4

RESULTS

The following sections provide a summary of the tracking and grid prediction results for each

data set.

A series of representative screenshots from normal tracking (green grid) and predictive tracking

(yellow grid) are shown for each data set. At the top of each screenshot is an overlay that displays

the current frame number, the data set name, the estimated heart rate, and the total number of beats

counted (diastole peaks). At the bottom of each screenshot is an overlay showing a plot of the

pulse cycle (based on overall optical flow) with frame markers above. Each black (+) marker on

the bottom overlay represents a frame with failed constraints. Each red (4) marker represents a

tracking re-initialization due to multiple consecutive constraint failures.

A summary of tracking results is presented in a table and in a timeline graph. Each of these

figures show: the total number of frames in the video, the number of frames where the track-

ing algorithm was active, the number of diastole peaks detected (and corresponding homography

re-initialization), the number tracking resets (undesired homography re-initialization due to con-

secutive failure of the tracking constraints), the number of frames that had a failure of one or

more constraints (flag raised), and the number of frames where the grid prediction was active. The

tracking resets and failed constraints percentages are relative to the number of tracked frames.

The prediction performance is presented in a graph that shows the distance between the pre-

dicted grid points and the actively tracked grid points (ground truth) versus the predicted frame

number. These values are shown as differences in the x-direction only, the y-direction only, and

the absolute Euclidean distance in the x-y plane. The average of all the differences across the entire

42

grid is shown by the main marker. Error bars have been added to each marker to show the max-

imum and minimum grid differences for each ROI prediction. This allows the graph to show the

overall spread of differences for the entire ROI without showing each individual grid difference.

43

4.1 Results for 20160725T124323.avi

(a) Tracking Screenshot - Start (b) Prediction Screenshot - Start

(c) Prediction Screenshot - Middle (d) Prediction Screenshot - End

Figure 4.1: Representative Screenshots (20160725T124323.avi).

Figure 4.1 shows that the prediction begins close to the tracked ROI and continues to deviate

as the prediction continues. In the middle of the prediction, the predicted grid has a similar shape

44

as the ground truth. By the last prediction frame, the predicted grid has remained centered in the

same area, but it is further deformed compared to the ground truth.

Table 4.1: Tracking Performance Summary (20160725T124323.avi).

Parameter Total % of Total

Total Frames 810 -
Tracked Frames 721 89.0 %
Diastole Peaks 32 4.0 %
Tracking Resets 4 0.6 %
Flag Raised 234 32.5 %
Predicted Frames 30 4.0 %

Figure 4.2: Analysis Timeline (20160725T124323.avi).

Figure 4.2 shows that there are a large number of frames where the optical flow has not passed

both of the tracking constraint criteria (flag raised) but only 4 frames where the tracking was forced

to reset.

45

Figure 4.3: Average Grid Prediction Error (x, y, and x-y [absolute]). Error bars show max and min
error values. Image is 800 x 800 pixels. Initial ROI is ~160 x 280 pixels. (20160725T124323.avi).

Figure 4.3 shows that the average difference, as well as the spread of the differences, generally

increases as the prediction time increases. However, the graph shows that there are periods during

which the errors decrease as the cyclic motion changes direction. This is more evident in the video

output files. The average error remains below 50 pixels throughout the prediction and remains

consistent in the x- and y-directions.

46

4.2 Results for 20160725T124609.avi

(a) Tracking Screenshot - Start (b) Prediction Screenshot - Start

(c) Prediction Screenshot - Middle (d) Prediction Screenshot - End

Figure 4.4: Representative Screenshots (20160725T124609.avi).

Figure 4.4 shows that the prediction begins close to the tracked ROI and continues to deviate as

the prediction continues. In the middle of the prediction, the predicted grid has moved in a similar

47

direction as the ground truth, but it shows a large amount of deformation. By the last prediction

frame, the predicted grid has a similar amount of deformation as the middle frame.

Table 4.2: Tracking Performance Summary (20160725T124609.avi).

Parameter Total % of Total

Total Frames 810 -
Tracked Frames 729 90.0 %
Diastole Peaks 34 4.2 %
Tracking Resets 1 0.1 %
Flag Raised 255 35.0 %
Predicted Frames 30 4.0 %

Figure 4.5: Analysis Timeline (20160725T124609.avi).

Figure 4.5 shows that there are a large number of frames where the optical flow has not passed

both of the tracking constraint criteria (flag raised) but only 1 frame where the tracking was forced

to reset.

48

Figure 4.6: Average Grid Prediction Error (x, y, and x-y [absolute]). Error bars show max and min
error values. Image is 800 x 800 pixels. Initial ROI is ~160 x 280 pixels. (20160725T124609.avi).

Figure 4.6 shows that the average difference, as well as the spread of the differences, generally

increases as the prediction time increases. However, the graph shows that there are periods during

which the errors decrease as the cyclic motion changes direction. This is more evident in the video

output files. The average error remains below 50 pixels throughout the prediction. The errors are

lower in the x-direction than in the y-direction.

49

4.3 Results for 20160725T124909.avi

(a) Tracking Screenshot - Start (b) Prediction Screenshot - Start

(c) Prediction Screenshot - Middle (d) Prediction Screenshot - End

Figure 4.7: Representative Screenshots (20160725T124909.avi).

Figure 4.7 shows that the prediction begins close to the tracked ROI and continues to deviate as

the prediction continues. In the middle of the prediction, the predicted grid has moved in a similar

50

direction as the ground truth with some deformation. By the last prediction frame, the predicted

grid error and deformation has further increased.

Table 4.3: Tracking Performance Summary (20160725T124909.avi).

Parameter Total % of Total

Total Frames 810 -
Tracked Frames 712 87.9 %
Diastole Peaks 35 4.3 %
Tracking Resets 6 0.8 %
Flag Raised 304 42.7 %
Predicted Frames 30 4.1 %

Figure 4.8: Analysis Timeline (20160725T124909.avi).

Figure 4.8 shows that there are a large number of frames where the optical flow has not passed

both of the tracking constraint criteria (flag raised) but only 6 frames where the tracking was forced

to reset.

51

Figure 4.9: Average Grid Prediction Error (x, y, and x-y [absolute]). Error bars show max and min
error values. Image is 800 x 800 pixels. Initial ROI is ~160 x 280 pixels. (20160725T124909.avi).

Figure 4.9 shows that the average difference, as well as the spread of the differences, generally

increases as the prediction time increases. However, the graph shows that there are periods during

which the errors decrease as the cyclic motion changes direction. This is more evident in the video

output files. The average error remains below 50 pixels throughout the prediction. The errors are

lower in the y-direction than in the x-direction.

52

4.4 Results for 20160725T132840.avi

(a) Tracking Screenshot - Start (b) Prediction Screenshot - Start

(c) Prediction Screenshot - Middle (d) Prediction Screenshot - End

Figure 4.10: Representative Screenshots (20160725T132840.avi)

Figure 4.10 shows that the prediction begins close to the tracked ROI and continues to deviate

as the prediction continues. In the middle of the prediction, the predicted grid has moved in a

53

similar direction as the ground truth and has a very similar shape. By the last prediction frame, the

predicted grid error has increased, and the grid shape shows larger deformation.

Table 4.4: Tracking Performance Summary (20160725T132840.avi).

Parameter Total % of Total

Total Frames 810 -
Tracked Frames 705 88.1 %
Diastole Peaks 40 5.0 %
Tracking Resets 4 0.6 %
Flag Raised 257 36.5 %
Predicted Frames 30 4.1 %

Figure 4.11: Analysis Timeline (20160725T132840.avi).

Figure 4.11 shows that there are a large number of frames where the optical flow has not passed

both of the tracking constraint criteria (flag raised) but only 4 frames where the tracking was forced

to reset.

54

Figure 4.12: Average Grid Prediction Error (x, y, and x-y [absolute]). Error bars show max and min
error values. Image is 800 x 800 pixels. Initial ROI is ~160 x 280 pixels. (20160725T132840.avi).

Figure 4.12 shows that the average difference, as well as the spread of the differences, generally

increases as the prediction time increases. However, the graph shows that there are periods during

which the errors decrease as the cyclic motion changes direction. This is more evident in the video

output files. The average error remains below 50 pixels throughout the prediction. The errors are

lower in the y-direction than in the x-direction.

55

4.5 Results for 20160725T133113.avi

(a) Tracking Screenshot - Start (b) Prediction Screenshot - Start

(c) Prediction Screenshot - Middle (d) Prediction Screenshot - End

Figure 4.13: Representative Screenshots (20160725T133113.avi).

Figure 4.13 shows that the prediction begins close to the tracked ROI and continues to deviate

as the prediction continues. In the middle of the prediction, the predicted grid has moved in a

56

similar direction as the ground truth and shows a moderate amount of deformation. By the last

prediction frame, the predicted grid has a large error and deformation.

Table 4.5: Tracking Performance Summary (20160725T133113.avi).

Parameter Total % of Total

Total Frames 810 -
Tracked Frames 731 90.2 %
Diastole Peaks 33 4.1 %
Tracking Resets 6 0.8 %
Flag Raised 297 40.6 %
Predicted Frames 30 4.0 %

Figure 4.14: Analysis Timeline (20160725T133113.avi).

Figure 4.14 shows that there are a large number of frames where the optical flow has not passed

both of the tracking constraint criteria (flag raised) but only 6 frames where the tracking was forced

to reset.

57

Figure 4.15: Average Grid Prediction Error (x, y, and x-y [absolute]). Error bars show max and min
error values. Image is 800 x 800 pixels. Initial ROI is ~160 x 280 pixels. (20160725T133113.avi).

Figure 4.15 shows that the average difference, as well as the spread of the differences, generally

increases as the prediction time increases. However, the graph shows that there are periods during

which the errors decrease as the cyclic motion changes direction. This is more evident in the video

output files. The average error remains below 50 pixels throughout the prediction. The errors are

in the x- and y-direction are of similar magnitude, but the x-direction shows more cyclical motion.

4.6 Neural Network Training

The neural network was trained for 5 epochs with a batch size of 512. After 5 epochs, the

losses on the training and testing data sets were approximately equal as shown in Figure 4.16. The

58

accuracy of both data sets begins to plateau after 4 epochs as shown in Figure 4.17. Training time

was a total of 14 minutes. See Section 3.5.2 for a discussion of the loss and accuracy calculation.

Figure 4.16: Neural Network Training Loss.

59

Figure 4.17: Neural Network Training Accuracy.

4.7 Speed of Execution

Table 4.6 provides a summary of the run time for each file. The file read/write time was sub-

tracted from the total time and frame rate calculation to give a better estimate of the performance

that might be expected from a live camera with better frame buffering (See Section 5.4.4).

60

Table 4.6: Execution Speed Summary.

Data Set Execution Time (s) Approximate Frame Rate (FPS)

20160725T124323.avi 55.1 13.1
20160725T124609.avi 47.0 15.5
20160725T124909.avi 51.4 13.9
20160725T132840.avi 49.1 14.4
20160725T133113.avi 47.2 15.5

Average 50.0 14.5

CHAPTER 5

DISCUSSION

This chapter discusses the results presented in Chapter 4.

5.1 Tracking Performance

While a direct comparison to the original research is not made (due to the difference in the

selected ROI and change in constraint failure limit), the results from Chapter 4 demonstrate that

the tracking failure rate is improved in the new implementation. Table 5.1 below gives a summary

and comparison of the failure rates between the new and original algorithm.

Table 5.1: Tracking Failure Summary and Comparison.

Tracking Resets
Original New

Data Set Failures Diastole Failures

20160725T124323.avi 22.2% 4.0% 0.6%
20160725T124609.avi 16.8% 4.2% 0.1%
20160725T124909.avi 17.2% 4.3% 0.8%
20160725T132840.avi 30.8% 5.0% 0.6%
20160725T133113.avi 11.7% 4.1% 0.8%

Average 19.7% 4.3% 0.6%

Table 5.1 demonstrates that the changes to re-initializing tracking at every diastole peak greatly

reduces the overall reset rate from almost 20% to 5%. If tracking can be maintained through

62

multiple diastole peaks without resetting, the reset rate may be further reduced. The equalization,

denoising, and failure limit changes drive the resets due to failure close to zero.

5.2 Prediction Performance

The results shown in Chapter 4 demonstrate that the motion of cardiac images contained in

the data set was learned by the neural network model. Table 5.2 below gives a summary and

comparison of the x-y error across the range of predicted frames.

Table 5.2: Grid Prediction Error Summary.

x-y Errors (pixels)

Frame 1 Frame 15 Frame 30

Data Set Min Avg Max Min Avg Max Min Avg Max

20160725T124323.avi 1.0 3.2 5.1 1.0 19.4 22.5 5.1 30.6 48.0
20160725T124609.avi 2.2 3.8 5.7 3.2 26.7 61.6 4.2 26.7 59.0
20160725T124909.avi 0.0 1.7 3.6 1.0 22.0 35.4 3.0 21.5 45.1
20160725T132840.avi 2.2 4.7 7.1 9.9 17.3 24.8 2.8 26.5 50.8
20160725T133113.avi 0.0 2.8 4.5 5.4 20.9 34.0 18.0 53.2 81.5

Average 1.1 3.2 5.2 4.1 21.3 35.7 6.6 31.7 56.9

Table 5.2 shows that the neural network model was able to predict the grid point locations

for the overall data set with an average maximum distance error of 56.9 pixels after a 30 frame

prediction period. The mean average error for all of the data sets gradually increased throughout

the prediction period from 3.2 pixels to 31.7 pixels. The overall maximum error was below 81.5

pixels across the prediction period for all data sets.

The errors quickly accumulate and become large across the prediction period which may limit

the practical usefulness of the prediction depending on the application. An average 50 pixel offset

could mean the grid point is off by ~15-30% of the grid dimensions. In a precise tumor tracking

63

application this offset may not be acceptable, but in longer term monitoring of tissue strain, for

example, it may be acceptable. However, further training with better data or different network

configurations may reduce the errors.

5.3 Speed of Execution

One of the original goals of this research was to improve the implementation of the baseline

algorithm so that it could run in real-time on a live camera feed. The original research did not

include any information on the algorithm execution time, but, in informal testing, the frame rate

was around 5 fps. The results shown in Section 4.7 demonstrate that the new implementation

improves the frame rate to around 14.5 fps.

By examining the output of the code profiling tool included with Python, other improvements

can be identified. Table 5.3 shows a summary of the most time consuming functions in the algo-

rithm grouped by type for one video file. Results were typical across the data set.

64

Table 5.3: Profiler Summary for 20160725T124323.avi.

Function Name Number
of Calls

Cumulative
Time (s)

Total
Time (s)

TensorFlow Functions:

TFE_Py_execute 792 15.076 15.076
TFE_Py_FastPathExecute 2560 1.116 1.116

NumPy Functions:

implement_array_function 7085963/
2741625

18.85 5.416

append 1932354 10.892 1.73
ravel 2082699 3.821 1.155
array 4824238 2.408 2.404
reduce 465898 1.014 1.011

OpenCV Functions:

calcOpticalFlowPyrLK 1592 4.561 4.561
Write cv2.VideoCapture object 809 4.534 4.534
Bilateral Filter 810 2.72 2.72
norm 6472 1.787 1.787
detectAndCompute 35 1.69 1.69
Read cv2.VideoCapture object 811 1.654 1.654

Other:

update_patch_flow 783 25.359 2.428

The second column shows the total number of times the function is called. The third column

shows the total time for that function along with all of the functions called within that function.

The last column shows the total time used within that function only.

Overall, the NumPy functions use the most amount of runtime with millions of calls to func-

tions that manipulate the feature point lists. The "update_patch_flow" function shown on the last

row is where many of these operations occur.

65

The TensorFlow inference operations also take a significant amount of the total run time as

inference is performed one point at a time.

The last category of time-consuming functions relate to OpenCV. Two of these functions are

used to read from the input video file and write to a new file and may be unnecessary with a live

camera feed. The optical flow tracker, feature detection, denoising filter, and norm operation (used

for calculating the pulse tracker optical flow) are the most intensive image processing operations.

5.4 Limitations / Future Improvements

Several improvements could be added in future research to improve the tracking algorithm,

neural network prediction accuracy, and execution speed.

5.4.1 Tracking Algorithm

Further work could be done to develop additional constraints for the tracking algorithm. Ad-

ditional criteria could be added to help distinguish non-rigid motion from the motion of occluding

objects to trigger a switch from tracking to prediction or detect corner cases where the tracking

algorithm does not fail but has an undesired shape (grid lines overlapping, etc.).

The smoothness constraint threshold could be improved by addition of an extreme event detec-

tion algorithm using Extreme Value Theory (EVT) which could continuously monitor and update

the threshold range dynamically as tracking progresses [59, 60]. The current method assumes that

the motion during the second diastole is representative of the rest of the video and may require

periodic threshold resets as motion changes over longer periods.

A tracking re-initialization that occurs within the 10-step sequence history just prior to a pre-

diction could cause an abrupt change within the sequence that may introduce additional errors. An

adjustment to smooth large re-initialization changes may reduce errors and improve the predic-

tions.

66

The tracked feature points can sometimes exhibit unstable jumps to other image areas when de-

tails are suddenly lost (e.g. glare) or when objects enter the ROI. A more robust method of handling

outlier motion could help to screen out these points and improve the tracking performance.

The switch to triggering re-initialization during cardiac diastole peaks required some knowl-

edge of the period and type of tissue motion. Future implementations for other organs may require

changes specific to that tissue motion.

5.4.2 Data Collection

As can be seen in Figure 3.7, the extracted data point features tended to cluster over the length

of the tracking sequence. Performing a periodic re-initialization of the features to reduce this

clustering could result in better training data. However, because these sequences were sliced into

relatively small sequences, any long term clustering effects would only minimally affect the final

sequences. There could be a bias of more sequences based on the clustered areas, but this might

not necessarily be detrimental since the clusters are likely to form in more well-defined areas of

the image.

A large number of points (10,000 maximum) were used in the feature detection step in order

to obtain more points along the coronary artery. This area did not show many detected features

without a high maximum point threshold setting. Further changes to the feature detection routine

to improve detection along the artery, divide the initial detection into zones with different detec-

tion settings, or eliminate excess feature points in certain regions could reduce the size of the data

set. The total number of point sequences obtained from the combined data set after slicing the 30

second time series numbered approximately 28 million sequences. Out of memory errors were en-

countered during training with this data set so only 40% of the collected sequences (after shuffling)

were used.

67

Valid predictions would be limited to the central area of the image due to the circular feature

extraction area chosen. The feature extraction method should be tailored to each specific tissue

and data set as necessary.

Finally, all videos in this data set had a similar field of view and similar, regular heart rates.

An increase in the variation of angles, heart rates, and beat patterns would allow better prediction

in other scenarios. On another data set with different heartrates, prediction accuracy might be

reduced due to the difference in distance moved (tissue speed) during each frame. More data could

be collected at several heart rates or, assuming the cyclic motion is similar across all heart rates,

a scaling algorithm could be developed to scale the predicted output based on the detected heart

rate. Collection of data with no foreign objects in the frame would also improve the quality of the

data and require less post-processing.

5.4.3 Neural Network

Adopting a different neural network structure may yield improved results by better capturing

the spatial relationships between grid points. As described in Section 2.2.3, a CNN network can

learn these spatial relationships, but it typically performs operations on entire images or fixed grids

unlike the moving, user-selected ROI grids created in this research. However, a CNN-LSTM com-

bination trained on the entire set of image frames could predict regional optical flows and adjust

grid point locations [61, 62]. Other recent research into using Convolutional LSTMs or LSTMs

with attention mechanisms for analysis of non-uniform sensor data may provide a framework for

using the variable grids generated in this research with a CNN [63, 64]. Further exploration of the

addition of dropout layers may yield better, more generalized prediction results.

In this research, a simple 80% (training) / 20% (testing) data split was performed after shuffling

the entire data set. Thus, the network model accuracy calculated during training is limited to

this single data split configuration. A more robust approach to calculating accuracy is to use k-

fold cross-validation in which several data splits (folds) are generated and used to train the model

68

multiple times. This helps to ensure that no single portion of data is over-emphasized in the results.

The average accuracy of multiple training runs on a single model is also better suited for use in

comparisons to different network models with different hyper-parameters [20]. In this instance,

20% of the data is 1/5 of the data set, hence, a 5-fold cross-validation would train the model 5

times with different 20% test data split.

5.4.4 Speed of Execution

Achieving real-time performance for use during a surgery is an eventual goal for this type of

tissue tracking system. While real-time performance was not achieved in this research due to sev-

eral factors (See Section 5.3), several improvements can be added that would significantly increase

performance. Simply adding additional computing power (faster CPUs, GPUs) may provide im-

proved performance (and additional hardware cost), but optimization of the programming routines

could provide a similar or greater performance boost while allowing the algorithm to run on less

powerful hardware.

Various programming improvements could increase the speed of calculations. Loops should

be re-examined and optimized to take advantage of NumPy vector operations when possible as

vectorization can speed up array operations by orders of magnitude [65]. Additional performance

may be possible on large data sets by using CyPy, a CUDA accelerated version of NumPy [66,

67]. Conversion of double-precision values to single-precision may improve performance if the

reduction in precision can be tolerated [31]. Image processing functions should generally perform

better on GPU hardware, but care must be taken to balance the performance decrease due to the

transfer of data to and from the GPU with the performance improvement of a specific routine

[31]. However, various OpenCV functions may or may not necessarily always benefit from being

executed on a GPU [68]. Parallel threads to perform the grid point prediction may greatly improve

the speed of inference and would be necessary for a real-time grid prediction.

69

One bottleneck identified in Section 5.3 is in the file reading and writing routines. This is

consistent with the experience of other software developers and is a known issue when reading

image frames from video files [69]. Similar issues may be encountered when quickly reading

frames from a video camera [70]. Frame buffering and multi-threaded operations are recommended

to improve the input/output performance in both cases [69, 70].

A final way to dramatically increase speed is to simply reduce the frame rate to a lower value.

For example, a frame rate reduction of 30 fps to 20 fps should reduce the overall amount of com-

putation by about 1/3. The frame rate would need to high enough that each motion step does not

increase to a level that causes tracking to fail and the neural network would need to be retrained on

data adjusted to that frame rate.

CHAPTER 6

CONCLUSIONS

A method was successfully developed to predict a non-rigid tracking grid location from a neural

network model that has learned similar types of motion. This method was applied to a cardiac video

data set and integrated with an existing non-rigid tissue tracking algorithm.

Several improvements were made to increase the performance of the baseline algorithm. A

complete rewrite from Matlab into Python code was finished to simplify the code and increase

readability. This rewrite also allowed the use of industry-standard, open-source software libraries.

A pulse tracking routine based on optical flow was added to aid in feature detection and re-

initialization of tracking. This gives the additional benefit of adding an estimate of heart rate to

the algorithm. If developed further, this optical flow measurement could be used as an additional

diagnostic parameter during surgery to monitor overall tissue strain as described in Chapter 1.

The final speed of execution was about one-half of that required for a real-time system. The

performance bottlenecks identified in Section 5.4.4 have great potential for optimization suggest-

ing that real-time performance is achievable on the current generation of high-end desktop/laptop

computers.

Other future improvements identified in Section 5.4 include developing additional tracking

constraints, improving occlusion detection, improving the quality of the data collection, and ex-

perimenting with more neural network configurations.

Finally, this technique need not be limited to cardiac images. It could be applied to other

types of non-rigid motion tracking outside of biological tissues such as ocean surface tracking for

weather and energy research or fabric motion tracking for augmented reality applications.

REFERENCES

[1] Intuitive Surgical Inc. Intuitive surgical, inc. - annual report 2019, 2019.
https://investor.intuitivesurgical.com/static-files/31b5c428-1d95-4c
01-9c85-a7293bac5e05, Accessed 05/21/2020.

[2] Koichiro Yamakado. Image-guided ablation of adrenal lesions. Seminars in Interventional
Radiology, 31(2):149–156, Jun 2014.

[3] Nebojša Mujović, Milan Marinković, Radoslaw Lenarczyk, Roland Tilz, and Tatjana Potpara.
Catheter ablation of atrial fibrillation: An overview for clinicians. Advances in Therapy,
34(8):1897–1917, Aug 2017.

[4] Marlène C. H. Hekman, Mark Rijpkema, Johan F. Langenhuijsen, Otto C. Boerman, Egbert
Oosterwijk, and Peter F. A. Mulders. Intraoperative imaging techniques to support complete
tumor resection in partial nephrectomy. European Urology Focus, 4(6):960–968, 2017.

[5] Michele Solis. New frontiers in robotic surgery: The latest high-tech surgical tools allow for
superhuman sensing and more. IEEE Pulse, 7(6):51–55, Nov 2016.

[6] O. Lorton, P. C. Guillemin, N. Mori, L. A. Crowe, S. Boudabbous, S. Terraz, C. D. Becker,
P. Cattin, R. Salomir, and L. Gui. Self-scanned hifu ablation of moving tissue using real-time
hybrid us-mr imaging. IEEE transactions on bio-medical engineering, 66(8):2182–2191,
August 01 2019.

[7] T. Bader, A. Wiedemann, K. Roberts, and U. D. Hanebeck. Model-based motion estimation
of elastic surfaces for minimally invasive cardiac surgery. pages 2261–2266, 2007.

[8] A. Soltani, J. Lahti, K. Jarvela, S. Curtze, J. Laurikka, M. Hokka, and V. T. Kuokkala. An
optical method for the in-vivo characterization of the biomechanical response of the right
ventricle. Scientific reports, 8(1):6831–z, May 01 2018.

[9] Archie Hughes-Hallett, Erik K. Mayer, Hani J. Marcus, Thomas P. Cundy, Philip J. Pratt,
Ara W. Darzi, and Justin A. Vale. Augmented reality partial nephrectomy: Examining the
current status and future perspectives. Urology, 83(2):266–273, 2014.

https://investor.intuitivesurgical.com/static-files/31b5c428-1d95-4c01-9c85-a7293bac5e05
https://investor.intuitivesurgical.com/static-files/31b5c428-1d95-4c01-9c85-a7293bac5e05

[10] T. R. McCarty and T. Rustagi. New indications for endoscopic radiofrequency ablation. Clin-
ical gastroenterology and hepatology : the official clinical practice journal of the American
Gastroenterological Association, 16(7):1007–1017, July 01 2018.

[11] R. Richa, A. P. Bo, and P. Poignet. Towards robust 3d visual tracking for motion compensa-
tion in beating heart surgery. Medical image analysis, 15(3):302–315, June 01 2011.

[12] G. R. Hale, F. Pesapane, S. Xu, I. Bakhutashvili, N. Glossop, B. Turkbey, P. A. Pinto, and
B. J. Wood. Tracked foley catheter for motion compensation during fusion image-guided
prostate procedures: a phantom study. European radiology experimental, 4(1):24–4, April
16 2020.

[13] A. Soltani, J. Lahti, K. Jarvela, J. Laurikka, V. T. Kuokkala, and M. Hokka. Characterization
of the anisotropic deformation of the right ventricle during open heart surgery. Computer
methods in biomechanics and biomedical engineering, 23(3):103–113, February 01 2020.

[14] Bryent Tucker. Development of a heart motion tracking system using non-invasive imaging
data. Master’s thesis, 2017. Copyright - Database copyright ProQuest LLC; ProQuest does
not claim copyright in the individual underlying works.; Last updated - 2017-11-07.

[15] Jianbo Shi and Tomasi. Good features to track. In 1994 Proceedings of IEEE Conference on
Computer Vision and Pattern Recognition, pages 593–600, 1994.

[16] Basic concepts of the homography explained with code. https://docs.opencv.org/mast
er/d9/dab/tutorial_homography.html, Accessed 05/21/2020.

[17] A. Sharaff and M. Choudhary. Comparative analysis of various stock prediction techniques.
In 2018 2nd International Conference on Trends in Electronics and Informatics (ICOEI),
pages 735–738, 2018.

[18] N. Muralidhar, S. Muthiah, K. Nakayama, R. Sharma, and N. Ramakrishnan. Multivariate
long-term state forecasting in cyber-physical systems: A sequence to sequence approach. In
2019 IEEE International Conference on Big Data (Big Data), pages 543–552, 2019.

[19] Peter J. Brockwell and Richard A. Davis. Introduction to time series and forecasting.
Springer, New York, 2002.

[20] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016.
http://www.deeplearningbook.org.

[21] J. Brownlee. Deep Learning With Python: Develop Deep Learning Models on Theano and
TensorFlow Using Keras. Machine Learning Mastery, 2017. v1.8.

72

https://docs.opencv.org/master/d9/dab/tutorial_homography.html
https://docs.opencv.org/master/d9/dab/tutorial_homography.html
http://www.deeplearningbook.org

[22] Kyunghyun Cho, Bart van Merrienboer, Çaglar Gülçehre, Fethi Bougares, Holger Schwenk,
and Yoshua Bengio. Learning phrase representations using RNN encoder-decoder for statis-
tical machine translation. CoRR, abs/1406.1078, 2014.

[23] R. Yamashita, M. Nishio, R. K. G. Do, and K. Togashi. Convolutional neural networks: an
overview and application in radiology. Insights into imaging, Jun 22, 2018.

[24] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification with deep
convolutional neural networks. In Proceedings of the 25th International Conference on Neu-
ral Information Processing Systems - Volume 1, NIPS’12, page 1097–1105, Red Hook, NY,
USA, 2012. Curran Associates Inc.

[25] M. Amaresh and S. Chitrakala. Video captioning using deep learning: An overview of meth-
ods, datasets and metrics. In 2019 International Conference on Communication and Signal
Processing (ICCSP), pages 0656–0661, 2019.

[26] L. Zhang and P. N. Suganthan. Visual tracking with convolutional neural network. In 2015
IEEE International Conference on Systems, Man, and Cybernetics, pages 2072–2077, 2015.

[27] Ting-Chun Wang, Ming-Yu Liu, Jun-Yan Zhu, Guilin Liu, Andrew Tao, Jan Kautz, and Bryan
Catanzaro. Video-to-video synthesis, 2018.

[28] Ting-Chun Wang, Ming-Yu Liu, Jun-Yan Zhu, Andrew Tao, Jan Kautz, and Bryan Catan-
zaro. High-resolution image synthesis and semantic manipulation with conditional gans. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018.

[29] Choosing mex applications - matlab. https://www.mathworks.com/help/matlab/matl
ab_external/choosing-mex-applications.html, Accessed 05/21/2020.

[30] Bill Chou. Implement deep learning applications for nvidia gpus with gpu
coder. https://www.mathworks.com/videos/implement-deep-learning-applicati
ons-for-nvidia-gpus-with-gpu-coder-1512748950189.html, Accessed 05/21/2020.

[31] Mathworks. Measure and improve gpu performance. https://www.mathworks.com/he
lp/parallel-computing/measure-and-improve-gpu-performance.html, Accessed
05/21/2020.

[32] Python. https://www.python.org/.

[33] Tom Radcliffe. Python vs. c/c++ in embedded systems, 08/29/16 08/29/16. https://open
source.com/life/16/8/python-vs-cc-embedded-systems, Accessed 05/21/2020.

[34] Cython. https://www.cython.org.

73

https://www.mathworks.com/help/matlab/matlab_external/choosing-mex-applications.html
https://www.mathworks.com/help/matlab/matlab_external/choosing-mex-applications.html
https://www.mathworks.com/videos/implement-deep-learning-applications-for-nvidia-gpus-with-gpu-coder-1512748950189.html
https://www.mathworks.com/videos/implement-deep-learning-applications-for-nvidia-gpus-with-gpu-coder-1512748950189.html
https://www.mathworks.com/help/parallel-computing/measure-and-improve-gpu-performance.html
https://www.mathworks.com/help/parallel-computing/measure-and-improve-gpu-performance.html
https://www.python.org/
https://opensource.com/life/16/8/python-vs-cc-embedded-systems
https://opensource.com/life/16/8/python-vs-cc-embedded-systems
https://www.cython.org

[35] Numpy. https://numpy.org/.

[36] Scipy. https://www.scipy.org/.

[37] Scikit-learn. https://scikit-learn.org/.

[38] Matplotlib. https://matplotlib.org/.

[39] Opencv: About. https://opencv.org/about/, Accessed 05/21/2020.

[40] Cuda zone | nvidia developer. https://developer.nvidia.com/cuda-zone, Accessed
05/21/2020.

[41] Opencv: Opencl. https://opencv.org/opencl/, Accessed 05/21/2020.

[42] Why tensorflow. https://www.tensorflow.org/about, Accessed 05/21/2020.

[43] Mathworks. Enhance contrast using histogram equalization - matlab histeq. https://www.
mathworks.com/help/images/ref/histeq.html, Accessed 05/21/2020.

[44] OpenCV. Histograms - 2: Histogram equalization. https://docs.opencv.org/master/d
5/daf/tutorial_py_histogram_equalization.html, Accessed 05/21/2020.

[45] Opencv: Smoothing images. https://docs.opencv.org/master/dc/dd3/tutorial_g
ausian_median_blur_bilateral_filter.html, Accessed 05/21/2020.

[46] Mathworks. Detect corners using minimum eigenvalue algorithm and return cornerpoints
object - matlab detectmineigenfeatures. https://www.mathworks.com/help/vision/re
f/detectmineigenfeatures.html, Accessed 05/21/2020.

[47] OpenCV. Shi tomasi corner detector and good features to track. https://docs.opencv.or
g/master/d4/d8c/tutorial_py_shi_tomasi.html, Accessed 05/21/2020.

[48] Mathworks. Track points in video using kanade-lucas-tomasi (klt) algorithm - mat-
lab. https://www.mathworks.com/help/vision/ref/vision.pointtracker-system
-object.html, Accessed 05/21/2020.

[49] Bruce D. Lucas and Takeo Kanade. An iterative image registration technique with an appli-
cation to stereo vision. In Proceedings of the 7th International Joint Conference on Artificial
Intelligence - Volume 2, IJCAI’81, page 674–679, San Francisco, CA, USA, 1981. Morgan
Kaufmann Publishers Inc.

[50] OpenCV. Opencv: Object tracking. https://docs.opencv.org/master/dc/
d6b/group__video__track.html#ga473e4b886d0bcc6b65831eb88ed93323, Accessed
05/21/2020.

74

https://numpy.org/
https://www.scipy.org/
https://scikit-learn.org/
https://matplotlib.org/
https://opencv.org/about/
https://developer.nvidia.com/cuda-zone
https://opencv.org/opencl/
https://www.tensorflow.org/about
https://www.mathworks.com/help/images/ref/histeq.html
https://www.mathworks.com/help/images/ref/histeq.html
https://docs.opencv.org/master/d5/daf/tutorial_py_histogram_equalization.html
https://docs.opencv.org/master/d5/daf/tutorial_py_histogram_equalization.html
https://docs.opencv.org/master/dc/dd3/tutorial_gausian_median_blur_bilateral_filter.html
https://docs.opencv.org/master/dc/dd3/tutorial_gausian_median_blur_bilateral_filter.html
https://www.mathworks.com/help/vision/ref/detectmineigenfeatures.html
https://www.mathworks.com/help/vision/ref/detectmineigenfeatures.html
https://docs.opencv.org/master/d4/d8c/tutorial_py_shi_tomasi.html
https://docs.opencv.org/master/d4/d8c/tutorial_py_shi_tomasi.html
https://www.mathworks.com/help/vision/ref/vision.pointtracker-system-object.html
https://www.mathworks.com/help/vision/ref/vision.pointtracker-system-object.html
https://docs.opencv.org/master/dc/d6b/group__video__track.html#ga473e4b886d0bcc6b65831eb88ed93323
https://docs.opencv.org/master/dc/d6b/group__video__track.html#ga473e4b886d0bcc6b65831eb88ed93323

[51] OpenCV. Opencv: Optical flow. https://docs.opencv.org/master/d4/dee/tutorial
_optical_flow.html, Accessed 05/21/2020.

[52] Jason Brownlee. Time series forecasting with the long short-term memory network in
python, April 7, 2017. https://machinelearningmastery.com/time-series-forecas
ting-long-short-term-memory-network-python/, Updated August 5, 2019, Accessed
05/21/2020.

[53] Stacey Ronaghan. Deep learning: Which loss and activation functions should i use?, July 26,
2018. https://towardsdatascience.com/deep-learning-which-loss-and-activa
tion-functions-should-i-use-ac02f1c56aa8, Accessed 05/21/2020.

[54] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdi-
nov. Dropout: A simple way to prevent neural networks from overfitting. J. Mach. Learn.
Res., 15(1):1929–1958, January 2014.

[55] Jason Brownlee. How to diagnose overfitting and underfitting of lstm models, September
1, 2017. https://machinelearningmastery.com/diagnose-overfitting-underfit
ting-lstm-models/, Updated on January 8, 2020, Accessed 05/21/2020.

[56] Jason Brownlee. Time series forecasting performance measures with python, February 1,
2017. https://machinelearningmastery.com/time-series-forecasting-perform
ance-measures-with-python/, Updated on August 21, 2019, Accessed 05/21/2020.

[57] John Pomerat, Aviv Segev, and Rituparna Datta. On neural network activation functions and
optimizers in relation to polynomial regression. pages 6183–6185, 12 2019.

[58] Rochak Agrawal. Optimization algorithms for deep learning, July 23, 2019.
https://medium.com/analytics-vidhya/optimization-algorithms-for-deep
-learning-1f1a2bd4c46b, Accessed 05/21/2020.

[59] Daizong Ding, Mi Zhang, Xudong Pan, Min Yang, and Xiangnan He. Modeling extreme
events in time series prediction. In Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, page 1114–1122, 2019.

[60] Alban Siffer, Pierre-Alain Fouque, Alexandre Termier, and Christine Largouet. Anomaly
detection in streams with extreme value theory. In Proceedings of the 23rd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, page 1067–1075, 2017.

[61] Pengpeng Liu, Michael Lyu, Irwin King, and Jia Xu. Selflow: Self-supervised learning of
optical flow, 2019.

75

https://docs.opencv.org/master/d4/dee/tutorial_optical_flow.html
https://docs.opencv.org/master/d4/dee/tutorial_optical_flow.html
https://machinelearningmastery.com/time-series-forecasting-long-short-term-memory-network-python/
https://machinelearningmastery.com/time-series-forecasting-long-short-term-memory-network-python/
https://towardsdatascience.com/deep-learning-which-loss-and-activation-functions-should-i-use-ac02f1c56aa8
https://towardsdatascience.com/deep-learning-which-loss-and-activation-functions-should-i-use-ac02f1c56aa8
https://machinelearningmastery.com/diagnose-overfitting-underfitting-lstm-models/
https://machinelearningmastery.com/diagnose-overfitting-underfitting-lstm-models/
https://machinelearningmastery.com/time-series-forecasting-performance-measures-with-python/
https://machinelearningmastery.com/time-series-forecasting-performance-measures-with-python/
https://medium.com/analytics-vidhya/optimization-algorithms-for-deep-learning-1f1a2bd4c46b
https://medium.com/analytics-vidhya/optimization-algorithms-for-deep-learning-1f1a2bd4c46b

[62] A. M. Fiorito, A. Østvik, E. Smistad, S. Leclerc, O. Bernard, and L. Lovstakken. Detection
of cardiac events in echocardiography using 3d convolutional recurrent neural networks. In
2018 IEEE International Ultrasonics Symposium (IUS), pages 1–4, 2018.

[63] Chaoyun Zhang, Marco Fiore, Iain Murray, and Paul Patras. Cloudlstm: A recurrent neural
model for spatiotemporal point-cloud stream forecasting, 2019.

[64] Yuxuan Liang, Songyu Ke, Junbo Zhang, Xiuwen Yi, and Yu Zheng. Geoman: Multi-level at-
tention networks for geo-sensory time series prediction. In Proceedings of the Twenty-Seventh
International Joint Conference on Artificial Intelligence, IJCAI-18, pages 3428–3434. Inter-
national Joint Conferences on Artificial Intelligence Organization, 7 2018.

[65] George Seif. One simple trick for speeding up your python code with numpy, Jun 5,
2019. https://towardsdatascience.com/one-simple-trick-for-speeding-up-yo
ur-python-code-with-numpy-1afc846db418, Accessed 05/21/2020.

[66] Ryosuke Okuta, Yuya Unno, Daisuke Nishino, Shohei Hido, and Crissman Loomis. Cupy:
A numpy-compatible library for nvidia gpu calculations. In Proceedings of Workshop on
Machine Learning Systems (LearningSys) in The Thirty-first Annual Conference on Neural
Information Processing Systems (NIPS), 2017.

[67] George Seif. Here’s how to use cupy to make numpy over 10x faster, August 22,
2019. https://towardsdatascience.com/heres-how-to-use-cupy-to-make-numpy
-700x-faster-4b920dda1f56, Accessed 05/21/2020.

[68] James Bowley. Opencv 3.4 gpu cuda performance comparison (nvidia vs intel), February 28,
2018. https://jamesbowley.co.uk/opencv-3-4-gpu-cuda-performance-comparis
on-nvidia-vs-intel/, Accessed 05/21/2020.

[69] Adrian Rosebrock. Faster video file fps with cv2.videocapture and opencv, February 6,
2017. https://www.pyimagesearch.com/2017/02/06/faster-video-file-fps-wit
h-cv2-videocapture-and-opencv/, Accessed 05/21/2020.

[70] Najam R Syed. Multithreading with opencv-python to improve video processing perfor-
mance, July 5, 2018. https://nrsyed.com/2018/07/05/multithreading-with-open
cv-python-to-improve-video-processing-performance, Accessed 05/21/2020.

76

https://towardsdatascience.com/one-simple-trick-for-speeding-up-your-python-code-with-numpy-1afc846db418
https://towardsdatascience.com/one-simple-trick-for-speeding-up-your-python-code-with-numpy-1afc846db418
https://towardsdatascience.com/heres-how-to-use-cupy-to-make-numpy-700x-faster-4b920dda1f56
https://towardsdatascience.com/heres-how-to-use-cupy-to-make-numpy-700x-faster-4b920dda1f56
https://jamesbowley.co.uk/opencv-3-4-gpu-cuda-performance-comparison-nvidia-vs-intel/
https://jamesbowley.co.uk/opencv-3-4-gpu-cuda-performance-comparison-nvidia-vs-intel/
https://www.pyimagesearch.com/2017/02/06/faster-video-file-fps-with-cv2-videocapture-and-opencv/
https://www.pyimagesearch.com/2017/02/06/faster-video-file-fps-with-cv2-videocapture-and-opencv/
https://nrsyed.com/2018/07/05/multithreading-with-opencv-python-to-improve-video-processing-performance
https://nrsyed.com/2018/07/05/multithreading-with-opencv-python-to-improve-video-processing-performance

APPENDICES

77

APPENDIX A

SOURCE CODE

A.1 Main Algorithm

The following code is a re-factored version of the original MATLAB algorithm [14] into Python
with the various improvements described in Chapter 3.

79

A.1.1 Overview

Algorithm 1: Main Tracking.

Result: Track a region-of-interest through an image sequence

begin
pre-load neural network model and scaler
open data set input video

while new frame available do
pre-process frame (equalize histogram, de-noise)

if first frame then
begin pulse tracker

else if first diastole detected then
prompt for ROI selection determine number of patches

else if second diastole detected then
set neighbor flow difference thresholds

else if normal tracking is started (third diastole detected) then
update optical flow
TODO add criteria to identify occlusion and switch to prediction

if neural net prediction frames active then
run neural net grid point prediction

else
check constraints
re-initalize tracking on each diastole or constraint failure

end

record grid point history sequences
write and display current frame with overlays

end

end

close data set input video
close tracking output video

end

80

A.1.2 Code

1 # ===
2 #
3 # file: main.py
4 # version: v1.0.0
5 # author: Billy Hempstead
6 #
7 # summary: The purpose of this program is to loop through an entire data set
8 # to track the boundary edges of a selected ROI, fix failed estimate,
9 # and quantify current track estimate.

10 #
11 # Piecewise tracking algorithm loop for data set with ML tracking
12 # improvements
13 #
14 # Based on the code from the thesis work:
15 # "Development of a Heart Motion Tracking System using Non-invasive
16 # Imaging Data" by Bryent Tucker, July, 2017
17 #
18 # ===
19
20 # Initialization ==
21 import cv2
22 import tensorflow as tf
23 import numpy as np
24 import matplotlib.pyplot as plt
25 import os, time, math
26 import functions as f
27 import classes as c
28 import cProfile, io, pstats
29 from scipy import stats as spstats
30 from sklearn.externals import joblib
31 from tkinter import filedialog
32 from tkinter import *
33
34 # Global Variables ==
35
36 # algorithm selection
37 # the ’Canny’ and ’approxcanny’ methods are not supported on a GPU.
38 edge_method = "Canny"
39 edge_threshold = (0.025, 0.3)
40

81

41 # plot options
42 edges_on = True
43 patches_on = True
44 points_on = False
45 ROI_on = True
46
47 # tracking reset parameters
48 tracking_enabled = True
49 n_patches_max = 36
50 n_patch_rows = 3
51 n_patches_found = False
52 ML_enabled = True
53 pulse_detection_enabled = False
54 min_corners_in_patch = 8
55 sufficient_corners = False
56 last_peak = 0
57
58 # pulse tracking parameters
59 pulse_max_corners = 10
60 pulse_quality_level = 0.5
61 pulse_min_distance = 25
62 pulse_block_size = 3
63 pulse_use_harris = 0
64 pulse_k = 0.04
65
66 # optical flow settings
67 OF_win_size = (15, 15)
68 OF_max_level = 2
69
70 # colors
71 colors = c.Colors()
72
73 # drawing options
74 show_contours = False
75
76 # Main Loop ===
77
78 # start profiler
79 pr = cProfile.Profile()
80 pr.enable()
81
82 # get filename

82

83 root = Tk()
84 root.fullpath = filedialog.askopenfilename(initialdir="./data",
85 filetypes =(("AVI FIle", "*.avi"),("All Files","*.*")),
86 title = "Choose a file.")
87 fullpath = root.fullpath
88 root.destroy()
89
90 pathname = os.path.dirname(fullpath)
91 input_file = os.path.basename(fullpath)
92 basename = os.path.splitext(input_file)[0]
93 output_path = "./output/"
94 output_file = output_path + basename + "_output.avi"
95 text_output_file = output_path + basename + "_summary.txt"
96 ML_model_path = "./models/sequence_model.h5"
97 scaler_model_path = "./models/scaler_model.pkl"
98
99 # initialize local variables

100 corners = []
101 corners_pulse = []
102 peaks = []
103 flow_avg = []
104 contours = []
105 hierarchy = []
106 diastole_frames = []
107 new_peak = False
108 main_tracking_start = False
109 main_tracking_start_frame = -1
110 peak_count = 0
111 screenshot_count = 0
112 t_read = 0
113
114 # filtering parameters
115 lowcut = 30/60 # Hz
116 highcut = 70/60 # Hz
117
118 # initialize constraints object
119 constraints = c.Constraints()
120
121 # set length of sequence for prediction
122 sequence_history_length = 10
123
124 # pre-load neural network

83

125 if ML_enabled == True:
126 model = tf.keras.models.load_model(ML_model_path)
127 scaler = joblib.load(scaler_model_path)
128
129 # load input / initialize output video
130 cap, output_vid, frame_width, frame_height, n_last_frame, FPS = \
131 f.import_video(fullpath, output_file)
132
133 # create region of interest rectangle and mask
134 ROI = c.Rect(100, 100, 200, 200) # (x, y, w, h)
135
136 # define area of occlusion and frame range
137 occluded_area = c.Rect(150, 150, 500, 450)
138 occluded_frames = (201, 230)
139
140 # define frame range for analysis
141 frame_range = (0, n_last_frame)
142 n_frames = frame_range[1] - frame_range[0]
143 cap.set(cv2.CAP_PROP_POS_FRAMES, frame_range[0])
144
145 # loop through frames
146 while(cap.isOpened()):
147
148 # get current frame
149 frame_count = int(cap.get(cv2.CAP_PROP_POS_FRAMES))
150
151 # update progress
152 # os.system(’clear’) # slows down execution a lot
153 print(’Processing frame: ’, int(frame_count), ’ of ’, int(n_last_frame))
154
155 # exit loop early if desired
156 if frame_count > frame_range[1]:
157 break
158
159 # get a new frame from video
160 t1_read = time.time()
161 ret, frame = cap.read()
162 t2_read = time.time()
163 t_read = t_read+(t2_read-t1_read)
164
165 if ret == True:
166

84

167 # equalize and de-noise frame
168 frame_gray = f.preprocess_frame(frame, ’adaptive’, ’bilateral’)
169 frame_gray_original = np.copy(frame_gray)
170
171 if main_tracking_start == False:
172 if frame_count == frame_range[0]:
173
174 # initalize corners for pulse tracking on first frame
175 corners_pulse = cv2.goodFeaturesToTrack(frame_gray,
176 maxCorners = pulse_max_corners,
177 qualityLevel = pulse_quality_level,
178 minDistance = pulse_min_distance, mask = None,
179 blockSize = pulse_block_size,
180 useHarrisDetector = pulse_use_harris, k = pulse_k)
181
182 else:
183
184 # update pulse detection tracker
185 hr, flow_avg, flow_avg_scaled, peaks, new_peak, corners_pulse =

f.detect_pulse(frame_gray, frame_gray_old, corners_pulse,
186 peaks, flow_avg, lowcut, highcut, FPS,

frame_count, n_frames)
187
188 # determine number of patches based on first diastole
189 if len(peaks) == 1:
190
191 # save reference frame and SURF features for reinitialization
192 if ’frame_ref’ not in locals():
193 frame_ref = np.copy(frame_gray)
194 detector = cv2.xfeatures2d.SURF_create(hessianThreshold =

1000, nOctaves = 4,
195 nOctaveLayers = 3,

extended = True,
196 upright = True)
197 pts_ref, dsc_ref = detector.detectAndCompute(frame_ref, None)
198
199 t1_roi = time.time()
200 # select tracking ROI
201 ROI = f.ROI_selection(frame_gray, ROI)
202 t2_roi = time.time()
203 t_roi = t2_roi - t1_roi
204

85

205 if n_patches_found == False:
206 if ’frame_diastole_1’ not in locals():
207 # detect corner points for use in tracker on first peak
208 frame_diastole_1 = frame_gray_old
209 diastole_frames.append(frame_count)
210
211 patches, n_patch_rows, n_patches, n_patches_found =

f.determine_n_patches(frame_diastole_1, frame_ref, ROI,
n_patch_rows, n_patches_max)

212
213 if n_patches_found == True:
214 last_peak = len(peaks)
215 x_grid_ref, y_grid_ref = f.create_grid(patches)
216 x_grid_ML = np.zeros_like(x_grid_ref)
217 y_grid_ML = np.zeros_like(y_grid_ref)
218 x_grid_hist = [[] for _ in range(x_grid_ref.size)]
219 y_grid_hist = [[] for _ in range(y_grid_ref.size)]
220 x_grid_ML_hist = [[] for _ in range(x_grid_ref.size)]
221 y_grid_ML_hist = [[] for _ in range(y_grid_ref.size)]
222
223 # set neighbor flow threshold based on cycle after next diastole
224 if len(peaks) > last_peak and n_patches_found == True:
225
226 if ’frame_diastole_2’ not in locals():
227 # reinitialize on peak
228 diastole_frames.append(frame_count)
229 frame_diastole_2 = frame_gray_old
230 patches, corners, _, _, _ =

f.reinitialize_tracking(frame_ref, frame_gray,
frame_gray_old, patches, x_grid_ref, y_grid_ref,
pts_ref, dsc_ref)

231
232 # set neighbor flow thresholds
233 patches = f.set_flow_thresholds(frame_gray, frame_gray_old,

corners, patches)
234
235 # start main tracker on next diastole
236 if len(peaks) > last_peak + 1:
237
238 main_tracking_start = True
239 main_tracking_start_frame = frame_count+1
240 diastole_frames.append(frame_count)

86

241
242 # initialize timers
243 t0_sec = time.time()
244 t0 = time.ctime()
245 print(t0)
246 t_write = 0
247 t_read = 0
248 frame_start_tracking = frame_count
249
250 patches, corners, _, _, _ = f.reinitialize_tracking(frame_ref,

frame_gray, frame_gray_old, patches, x_grid_ref, y_grid_ref,
pts_ref, dsc_ref)

251
252 # initialize grid sequences
253 grid_sequences = [[] for _ in range(x_grid_ref.size)]
254
255 frame_final_RGB = f.write_frame(frame_gray_original, ROI, [], [],
256 [], [], output_vid, [], [],
257 [], [], frame_count, frame_range,
258 occluded_frames, n_frames,

n_last_frame,
259 peaks, flow_avg_scaled, hr,

constraints, basename)
260
261 elif main_tracking_start == True:
262
263 last_peak = len(peaks)
264
265 # draw occluded rectangle on prediction frames
266 if occluded_frames[0] <= frame_count <= occluded_frames[1] and

"occluded_frames" in locals():
267 frame_gray_original = f.rectangle_occlusion(frame_gray_original,

occluded_area, alpha = 0.5)
268
269 # analyze frame
270 patches, corners, grid_sequences, constraints, x_grid, y_grid,

x_grid_ML, y_grid_ML = \
271 f.analyze_frame(frame_gray, frame_gray_old, frame_ref, ROI,

patches,
272 corners, grid_sequences, constraints,

frame_count, cap,

87

273 ML_enabled, model, scaler,
sequence_history_length, occluded_frames,

274 x_grid_ref, y_grid_ref, x_grid_ML, y_grid_ML,
pts_ref, dsc_ref)

275
276 # detect edges
277 if show_contours == True:
278 contours, hierarchy = f.find_contours(frame_gray, x_grid, y_grid)
279
280 # update pulse detection tracker
281 hr, flow_avg, flow_avg_scaled, peaks, new_peak, corners_pulse =

f.detect_pulse(frame_gray, frame_gray_old, corners_pulse,
282 peaks, flow_avg, lowcut, highcut, FPS, frame_count,

n_frames)
283
284 # reset corners on diastole
285 if len(peaks) > last_peak:
286 patches, corners, corners_new, x_grid, y_grid =

f.reinitialize_tracking(frame_ref,
287 frame_gray, frame_gray_old, patches, x_grid_ref,

y_grid_ref, pts_ref, dsc_ref)
288 diastole_frames.append(frame_count)
289
290 # save corner sequences
291 if occluded_frames[0] <= frame_count <= occluded_frames[1]:
292 grid_sequences = f.append_grid_sequences(grid_sequences, x_grid_ML,

y_grid_ML)
293 x_grid_hist, y_grid_hist, x_grid_hist_ML, y_grid_hist_ML =

f.append_grid_prediction_history(x_grid, y_grid, x_grid_ML,
294 y_grid_ML, x_grid_hist, y_grid_hist,

x_grid_ML_hist, y_grid_ML_hist)
295 else:
296 grid_sequences = f.append_grid_sequences(grid_sequences, x_grid,

y_grid)
297
298 # write frame to file
299 t1_write = time.time()
300
301 frame_final_RGB = f.write_frame(frame_gray_original, ROI, patches,

corners,
302 contours, hierarchy, output_vid,
303 x_grid, y_grid, x_grid_ML, y_grid_ML,

88

304 frame_count, frame_range, occluded_frames,
n_frames,

305 n_last_frame, peaks, flow_avg_scaled,
306 hr, constraints, basename)
307
308 t2_write = time.time()
309 t_write = t_write + (t2_write - t1_write)
310
311 # show current frame
312 if frame_count == frame_range[0]:
313 cv2.imshow(’Current Frame’, frame_gray)
314 else:
315 cv2.imshow(’Current Frame’, frame_final_RGB)
316 if cv2.waitKey(1) & 0xFF == ord(’q’):
317 break
318
319 # save frame at desired frames
320 if frame_count in [main_tracking_start_frame, occluded_frames[0],

occluded_frames[1], int((occluded_frames[1]+occluded_frames[0])/2)]:
321 screenshot_count +=1
322 screenshot_filename = output_path + ’plots/’ + ’screenshot_’ +

str(screenshot_count) + ’_’ + basename + ’.png’
323 cv2.imwrite(screenshot_filename, frame_final_RGB)
324
325 # save current frame for next cycle
326 frame_gray_old = frame_gray.copy()
327
328 # break the loop
329 else:
330 break
331
332 # Post-processing ===
333
334 # close video files
335 cap.release()
336 cv2.destroyAllWindows()
337 output_vid.release()
338
339 # update timer
340 t1_sec = time.time()
341 t1 = time.ctime()

89

342 total_secs = t1_sec - t0_sec - t_roi - t_read - t_write # subtract out frame read
/ write time

343 actual_FPS = (n_frames-frame_start_tracking)/total_secs
344
345 # print info
346 os.system(’clear’)
347
348 n_tracked_frames = int(n_frames-main_tracking_start_frame+1)
349 n_diastole_frames = len(diastole_frames)
350 n_failed_frames = len(constraints.failed_frames)
351 n_reinit_frames = len(constraints.reinitialized_frames)
352 n_predicted_frames = int(occluded_frames[1]-occluded_frames[0]+1)
353
354 fout = open(text_output_file,’w’)
355 print("Filename:", input_file, file=fout)
356 print("\n", file=fout)
357 print("ROI: Upper Left:", ROI.start_pt, "Lower Right:", ROI.end_pt)
358 print("End Time:", t1, file=fout)
359 print("Total Tracking Time:", round(total_secs,1), " secs", file=fout)
360 print("Tracking Framerate:", round(actual_FPS, 1), " FPS", file=fout)
361 print("Percent of Full Speed:", round(actual_FPS/FPS*100, 1), "%", file=fout)
362 print("\n", file=fout)
363 print("Total Frames:", n_frames, file=fout)
364 print("Tracked Frames:", n_tracked_frames, ’(’,

round(n_tracked_frames/n_frames*100, 1), ’%)’, file=fout)
365 print("Re-Initalized Frames (Diastole):", n_diastole_frames, ’(’,

round(n_diastole_frames/n_frames*100, 1), ’%)’, file=fout)
366 print("Re-Initalized Frames (Failures):", n_reinit_frames, ’(’,

round(n_reinit_frames/n_tracked_frames*100, 1), ’%)’, file=fout)
367 print("Failed Frames (Diastole):", n_failed_frames, ’(’,

round(n_failed_frames/n_tracked_frames*100, 1), ’%)’, file=fout)
368 print("Predicted Frames:", n_predicted_frames, ’(’,

round(n_predicted_frames/n_tracked_frames*100, 1), ’%)’, file=fout)
369 print("ROI: Upper Left:", ROI.start_pt, "Lower Right:", ROI.end_pt)
370 fout.close()
371
372 print("Filename:", input_file)
373 print("\n")
374 print("ROI: Upper Left:", ROI.start_pt, "Lower Right:", ROI.end_pt)
375 print("End Time:", t1)
376 print("Total Tracking Time:", round(total_secs,1), " secs")
377 print("Tracking Framerate:", round(actual_FPS, 1), " FPS")

90

378 print("Percent of Full Speed:", round(actual_FPS/FPS*100, 1), "%")
379 print("\n")
380 print("Total Frames:", n_frames)
381 print("Tracked Frames:", n_tracked_frames, ’(’,

round(n_tracked_frames/n_frames*100, 1), ’%)’)
382 print("Re-Initalized Frames (Diastole):", n_diastole_frames, ’(’,

round(n_diastole_frames/n_frames*100, 1), ’%)’)
383 print("Re-Initalized Frames (Failures):", n_reinit_frames, ’(’,

round(n_reinit_frames/n_tracked_frames*100, 1), ’%)’)
384 print("Failed Frames (Diastole):", n_failed_frames, ’(’,

round(n_failed_frames/n_tracked_frames*100, 1), ’%)’)
385 print("Predicted Frames:", n_predicted_frames, ’(’,

round(n_predicted_frames/n_tracked_frames*100, 1), ’%)’)
386
387 # create plots
388 f.create_grid_plots(x_grid_hist, y_grid_hist, x_grid_ML_hist, y_grid_ML_hist,

basename, output_path, text_output_file)
389 f.create_timeline_plots(constraints, n_last_frame, diastole_frames,

main_tracking_start_frame, occluded_frames, basename, output_path)
390
391 # end profiler
392 pr.disable()
393 s = io.StringIO()
394 ps = pstats.Stats(pr, stream=s).sort_stats(’tottime’)
395 ps.print_stats()
396
397 with open(text_output_file, ’a’) as fout:
398 fout.write(s.getvalue())

91

A.2 Feature Point Sequence Extraction

A.2.1 Overview

Algorithm 2: Feature Point Sequence Extraction.

Result: Obtain a sequence of feature points for each motion cycle in a video and save to
file

begin
open data set input video

while new frame available do
pre-process frame (equalize histogram, denoise)

if first frame then
begin pulse tracker

if first diastole detected then
start feature tracker

update optical flow for pulse and feature tracker
append new feature locations to sequence array
write and display current frame with overlays

end
save sequence array to file
close data set input video
close feature extraction output video

end

92

A.2.2 Code

1 # ===
2 #
3 # file: feature_extraction.py
4 # version: v1.0.0
5 # author: Billy Hempstead
6 #
7 # summary: Opens an .avi file, extracts the feature points, and saves to .csv
8 #
9 # ===

10
11 # Imports ===
12
13 import cv2
14 import numpy as np
15 import matplotlib.pyplot as plt
16 import time, os, math
17 import functions as f
18 import classes as c
19 from sklearn import preprocessing
20 from scipy.signal import find_peaks
21 from tkinter import filedialog
22 from tkinter import *
23
24 # Global Variables ==
25
26 # ROI size
27 ROI_radius = 250
28
29 # optical flow settings
30 OF_win_size = (15, 15)
31 OF_max_level = 2
32
33 # filtering parameters
34 lowcut = 30/60 # Hz
35 highcut = 70/60 # Hz
36
37 # colors
38 colors = c.Colors()
39
40 # output folder

93

41 output_path = ’./data_feature_extraction/’
42
43 # initialize heart rate parameters
44 hr = 0
45 new_peak = False
46 peaks = []
47 corners_1 = []
48 corners_new_1 = []
49 corners_new_pulse = []
50 status_1 = []
51 status_1_lost_index = []
52 err_1 = []
53 flow_avg = []
54
55 # initialize sequence lists
56 sequences = []
57
58 # tracking parameters
59 trk_max_corners = 10000
60 trk_quality_level = 0.001
61 trk_min_distance = 3
62 trk_block_size = 3
63 trk_use_harris = 0
64 trk_k = 0.004
65
66 # pulse tracking parameters
67 pulse_max_corners = 10
68 pulse_quality_level = 0.005
69 pulse_min_distance = 25
70 pulse_block_size = 3
71 pulse_use_harris = 0
72 pulse_k = 0.004
73
74 # Main Loop ===
75
76 # get filename
77 root = Tk()
78 root.fullpath = filedialog.askopenfilename(initialdir="./data/",
79 filetypes =(("AVI FIle", "*.avi"),("All Files","*.*")),
80 title = "Choose a file.")
81 fullpath = root.fullpath
82 root.destroy()

94

83
84 pathname = os.path.dirname(fullpath)
85 input_file_name = os.path.basename(fullpath)
86 basename = os.path.splitext(input_file_name)[0]
87 output_csv = pathname + ’/’ + basename + ’.csv’
88 output_npy = output_path + basename + ’.npy’
89 input_file = fullpath
90 output_file = output_path + basename + ’_w_features.avi’
91
92 # load input video and initialize output video
93 cap, output_vid, frame_width, frame_height, n_frames, FPS = \
94 f.import_video(input_file, output_file)
95
96 # set sampling frequency
97 fs = FPS
98
99 # initialize timer

100 t0_sec = time.time()
101 t0 = time.ctime()
102 print(t0)
103
104 # create ROI mask
105 mask = np.zeros((frame_width, frame_height), dtype=np.uint8)
106 mask = cv2.circle(mask, center = (int(frame_width/2), int(frame_height/2)),
107 radius = ROI_radius, color = colors.white,

thickness = -1)
108
109 # loop through frames
110 while(cap.isOpened()):
111
112 # get current frame
113 frame_count = int(cap.get(cv2.CAP_PROP_POS_FRAMES))
114
115 # update progress
116 os.system(’clear’)
117 print(’Processing frame: ’, int(frame_count), ’ of ’, int(n_frames))
118
119 # get a new frame from video
120 ret, frame = cap.read()
121
122 if ret == True:
123

95

124 # adjust frame
125 frame_gray = f.preprocess_frame(frame, ’adaptive’, ’bilateral’)
126
127 if frame_count == 0:
128
129 # detect pulse corners
130 corners_pulse = cv2.goodFeaturesToTrack(frame_gray, pulse_max_corners,
131 pulse_quality_level, pulse_min_distance, mask, pulse_block_size,
132 pulse_use_harris, pulse_k)
133
134 # convert first frame to RGB
135 frame_RGB = cv2.cvtColor(frame_gray, cv2.COLOR_GRAY2RGB)
136
137 # save current frame for pulse calculation
138 frame_gray_old = frame_gray.copy()
139
140 elif len(peaks) == 1 and new_peak == True:
141
142 # detect feature corners on first diastole
143 corners_1 = cv2.goodFeaturesToTrack(frame_gray, trk_max_corners,
144 trk_quality_level, trk_min_distance, mask, trk_block_size,
145 trk_use_harris, trk_k)
146
147 # convert frame to RGB
148 frame_RGB = cv2.cvtColor(frame_gray, cv2.COLOR_GRAY2RGB)
149
150 # initialize corner sequences
151 corners_1_seq = [[] for _ in range(corners_1.shape[0])]
152
153 for i, corner in enumerate(corners_1):
154 corners_1_seq[i] = np.append(corners_1_seq[i], corner[0])
155
156 elif frame_count > 0:
157
158 # update pulse tracker
159 corners_new_pulse, _, _ = cv2.calcOpticalFlowPyrLK(frame_gray_old,
160 frame_gray, corners_pulse, OF_win_size, OF_max_level)
161
162 # update feature tracker
163 if len(corners_1) > 0:
164 corners_new_1, status_1, err_1 = cv2.calcOpticalFlowPyrLK(

96

165 frame_gray_old, frame_gray, corners_1, OF_win_size,
OF_max_level)

166
167 # collect lost feature indices
168 if status_1.min() == 0:
169 status_1_lost_index = np.append(status_1_lost_index,

np.where(status_1 == 0)[0])
170 status_1_lost_index = np.unique(status_1_lost_index)
171
172 # append new corners to sequence
173 for i, corner in enumerate(corners_new_1):
174 corners_1_seq[i] = np.append(corners_1_seq[i], corner)
175
176 # save new corners for next cycle
177 corners_1 = corners_new_1
178 corners_pulse = corners_new_pulse
179
180 # calculate flow, heart rate, phase
181 hr, flow_avg, flow_avg_scaled, peaks, new_peak, corners = f.detect_pulse(
182 frame_gray, frame_gray_old, corners_pulse, peaks, flow_avg,
183 lowcut, highcut, fs, frame_count, n_frames)
184
185 # draw overlays
186 frame_RGB = f.draw_overlays_extraction(frame_gray, corners_new_1,
187 status_1, frame_width, frame_height, frame_count,
188 n_frames, peaks, new_peak, flow_avg_scaled, basename, hr,

ROI_radius)
189
190 # save current frame for next cycle
191 frame_gray_old = frame_gray.copy()
192
193 # write frame to file
194 output_vid.write(frame_RGB)
195
196 # show converted frame
197 cv2.imshow(’Current Frame’,frame_RGB)
198 if cv2.waitKey(1) & 0xFF == ord(’q’):
199 break
200
201 # break the loop
202 else:
203 break

97

204
205 # Post-processing ===
206
207 # close video files
208 cap.release()
209 cv2.destroyAllWindows()
210 output_vid.release()
211
212 # stop timer
213 t1_sec = time.time()
214 t1 = time.ctime()
215 total_secs = t1_sec-t0_sec
216
217 # reshape sequences
218 sequence_length = int(len(corners_1_seq[0])/2)
219 for i, sequence in enumerate(corners_1_seq):
220 corners_1_seq[i] = sequence.reshape((sequence_length, 2))
221
222 # remove lost sequences
223 for ele in sorted(status_1_lost_index, reverse = True):
224 del corners_1_seq[int(ele)]
225
226 # save data
227 np.save(output_npy, corners_1_seq)
228
229 # print info
230 os.system(’clear’)
231 print("Number of Point Sequences Extracted:", len(corners_1_seq))
232 print("End Time:", t1)
233 print("Total Seconds:", round(total_secs,3))
234 print(’\n’)

98

A.3 Data Set Creation

A.3.1 Overview

Algorithm 3: Data Set Creation.

Result: Consolidate and process extracted data into training and testing data sets

begin
open each point sequence file

append to data set array

shuffle data set

create array of shorter sub-sequences

shuffle data set

split data set into training and test data sets

fit a Standard scaler to training data set only

scale training and test data set values

separate training and test data sets into features and labels

save training and test data sets and scaler model

end

99

A.3.2 Code

1 # ===
2 #
3 # file: create_dataset.py
4 # version: v1.0.0
5 # author: Billy Hempstead
6 #
7 # summary: Compiles extracted data sequences into a single dataset.
8 #
9 # ===

10
11 # Initialization ==
12
13 from __future__ import absolute_import, division, print_function, unicode_literals
14
15 import numpy as np
16
17 from sklearn.model_selection import train_test_split
18 from sklearn.externals import joblib
19 from sklearn import preprocessing
20 from sklearn.utils import shuffle
21
22 import os, argparse, platform, math, time, io, glob
23
24 # Functions ===
25
26 def load_dataset(data_file_dir):
27
28 files = sorted(glob.glob(data_file_dir + ’/*.npy’))
29 arrays = []
30 data_lengths = []
31
32 for f in files:
33 temp_data = np.load(f, allow_pickle=True)
34 data_lengths.append(temp_data.shape[1])
35
36 min_data_length = min(data_lengths)
37
38 for f in files:
39 temp_data = np.load(f, allow_pickle=True)
40 temp_data = temp_data[:, :min_data_length]

100

41 arrays.append(temp_data)
42
43 data = np.concatenate(arrays)
44
45 return data
46
47 # ---
48
49 def get_scaler(data, scaler_type):
50
51 os.system(’clear’)
52 print("Fitting Scaler")
53
54 step_size = data[0].shape[0]
55
56 if scaler_type == "minmax":
57 scaler = preprocessing.MinMaxScaler()
58 elif scaler_type == "standard":
59 scaler = preprocessing.StandardScaler()
60 elif scaler_type == "robust":
61 scaler = preprocessing.RobustScaler()
62
63 data_flat = np.concatenate(data)
64 data_flat = np.concatenate(data_flat)
65
66 scaler.fit(data_flat.reshape(-1,1))
67
68 return scaler
69
70 # ---
71
72 def scale_dataset(data, scaler, transform_type):
73
74 os.system(’clear’)
75 print("Scaling Data")
76
77 data_flat = np.concatenate(data)
78 data_flat = np.concatenate(data_flat)
79
80 if transform_type == ’transform’:
81 data_flat = scaler.transform(data_flat.reshape(-1,1))
82

101

83 elif transform_type == ’inverse’:
84 data_flat = scaler.inverse_transform(data_flat.reshape(-1,1))
85
86 os.system(’clear’)
87
88 return data_flat
89
90 # ---
91
92 def shift_dataset(data, step_size):
93
94 # create shifted versions of each sequence
95 n_seq = data.shape[0]
96 data_shifted = []
97 sequence_size = int(step_size*2)
98
99 for i, sequence in enumerate(data):

100
101 os.system(’clear’)
102 print("Creating shifted copies - Processing sequence number", i+1, ’of’,

n_seq)
103
104 for j in range(len(sequence)):
105 shifted_seq = sequence[j:j+step_size]
106 if shifted_seq.size == sequence_size:
107 data_shifted.append(shifted_seq)
108
109 os.system(’clear’)
110
111 return data_shifted
112
113 # ---
114
115 def split_data(data, validation_split):
116
117 # should be done after shuffling
118
119 data_length = len(data)
120 split_point = int(data_length * (1-validation_split))
121
122 train_data = data[:split_point]
123 test_data = data[split_point:]

102

124
125 return train_data, test_data
126
127 # ---
128
129 def separate_dataset(data, step_size):
130
131 n_seq = int(len(data)/step_size/2)
132 data = data.reshape((n_seq, step_size, 2))
133
134 features = data[:,:-1]
135 labels = data[:,-1]
136
137 return features, labels
138
139 # Main ==
140
141 # display version info
142 print(’Python Version: ’, platform.python_version())
143 print(’Numpy Version: ’, np.__version__)
144
145 step_size = 10
146 data_reduction_ratio = 0.4
147
148 data_file_dir = ’./data_feature_extraction’
149
150 # load and compile datafiles
151 data = load_dataset(data_file_dir)
152
153 # create shifted versions of sequences
154 data_split = int(data_reduction_ratio*len(data))
155 data = shuffle(data[:data_split])
156 data = shift_dataset(data, step_size = step_size)
157
158 # shuffle all of the sequences
159 data = shuffle(data, random_state = 0)
160
161 # separate shuffled sequences into training and testing data
162 train_data, test_data = split_data(data, validation_split = 0.2)
163
164 # scale data based on training data only

103

165 # train_split = int(train_split_ratio*len(train_data)) # reduce amount of data to
scaler to avoid out of memory

166 scaler = get_scaler(train_data, ’standard’)
167 train_data = scale_dataset(train_data, scaler, ’transform’)
168 test_data = scale_dataset(test_data, scaler, ’transform’)
169
170 # separate features and labels
171 train_data_x, train_data_y = separate_dataset(train_data, step_size)
172 test_data_x, test_data_y = separate_dataset(test_data, step_size)
173
174 # save files
175 joblib.dump(scaler, ’./models/scaler_model.pkl’)
176 joblib.dump([train_data_x, train_data_y, test_data_x, test_data_y],

’./models/dataset.pkl’)
177
178 # print sample
179 sample_number = np.random.randint(0, train_data_x.shape[0])
180 print(’Features: ’, ’\n’, train_data_x.shape)
181 print(train_data_x[sample_number])
182 print(’Labels: ’, ’\n’, train_data_y.shape)
183 print(train_data_y[sample_number])
184
185 print(’Features: ’, ’\n’, train_data_x.shape)
186 # print(scale_dataset(train_data_x[sample_number], scaler, ’inverse’))
187 print(scaler.inverse_transform(train_data_x[sample_number]))
188
189 print(’Labels: ’, ’\n’, train_data_y.shape)
190 # print(scale_dataset(train_data_y[sample_number], scaler, ’inverse’))
191 print(scaler.inverse_transform(train_data_y[sample_number].reshape(1,-1)))

104

A.4 Neural Network Training

A.4.1 Overview

Algorithm 4: Neural Network Training.

Result: Train the neural network on the point sequence data set

begin
open training and test data sets and scaler model

create NN model

for number of epochs do
train model with training data set
check performance on test data set

end

run a sample prediction to check output

save trained model

end

105

A.4.2 Code

1 # ===
2 #
3 # file: nn_training.py
4 # version: v1.0.0
5 # author: Billy Hempstead
6 #
7 # summary: Neural Network training code for extracted heart feature point
8 # sequences.
9 #

10 # ===
11
12 # Initialization ==
13
14 from __future__ import absolute_import, division, print_function, unicode_literals
15
16 import tensorflow as tf
17 import numpy as np
18 import matplotlib.pyplot as plt
19
20 from sklearn.model_selection import train_test_split
21 from sklearn.externals import joblib
22 from sklearn import preprocessing
23 from sklearn.utils import shuffle
24
25 import os, argparse, platform, math, time, io, glob
26
27 # Main ==
28
29 # display version info
30 print(’Python Version: ’, platform.python_version())
31 print(’Tensorflow Version:’, tf.__version__)
32 print(’Numpy Version: ’, np.__version__)
33
34 earlystop_callback = tf.keras.callbacks.EarlyStopping(monitor=’val_loss’,

patience=3)
35
36 # import dataset and scaler
37 train_data_x, train_data_y, test_data_x, test_data_y =

joblib.load(’./models/dataset.pkl’)
38 scaler = joblib.load(’./models/scaler_model.pkl’)

106

39
40 # start timer
41 t0_sec = time.time()
42
43 # create model
44 model = tf.keras.models.Sequential()
45 model.add(tf.keras.layers.GRU(64, input_shape=(None, 2), return_sequences = True))
46 # model.add(tf.keras.layers.Dropout(0.2))
47 model.add(tf.keras.layers.GRU(32))
48 # model.add(tf.keras.layers.Dropout(0.2))
49 model.add(tf.keras.layers.Dense(2, activation = ’linear’))
50
51 # train model
52 # opt = tf.keras.optimizers.SGD(lr=0.01, momentum=0.9, decay=0.01)
53 opt = tf.keras.optimizers.Adam()
54 model.compile(loss=’mean_squared_error’, optimizer=opt, metrics=[’accuracy’])
55 model.summary()
56 history = model.fit(train_data_x, train_data_y, validation_data=(test_data_x,

test_data_y), batch_size=512, epochs=5)#, callbacks=[earlystop_callback])
57
58 # update timer
59 t1_sec = time.time()
60 total_min = (t1_sec - t0_sec)/60
61
62 # save model
63 model.save(’./models/sequence_model.h5’)
64
65 # plot loss during training
66 plt.title(’Loss / Mean Squared Error’)
67 plt.plot(history.history[’loss’], label=’train’)
68 plt.plot(history.history[’val_loss’], label=’test’)
69 plt.legend()
70 plt.xlabel(’Epochs’)
71 plt.ylabel(’Loss’)
72 plt.savefig(’./models/loss.png’)
73 plt.show()
74
75 # plot accuracy during training
76 plt.title(’Accuracy’)
77 plt.plot(history.history[’accuracy’], label=’train’)
78 plt.plot(history.history[’val_accuracy’], label=’test’)
79 plt.legend()

107

80 plt.xlabel(’Epochs’)
81 plt.ylabel(’Accuracy’)
82 plt.savefig(’./models/accuracy.png’)
83 plt.show()
84
85 # check output
86 sample_number = np.random.randint(0, test_data_x.shape[0])
87 sample = test_data_x[sample_number].reshape((1,

test_data_x[sample_number].shape[0], test_data_x[sample_number].shape[1]))
88 pred = model.predict(sample)
89 sample = scaler.inverse_transform(sample[-1])
90 pred = scaler.inverse_transform(pred)
91
92 print(sample)
93 print(pred)
94
95 # print info
96 print()
97 print("Total Training Time:", round(total_min,1), "min")

108

A.5 Supporting Classes / Functions

The following code provides classes and supporting functions that are called in the source files
in previous sections.

A.5.1 Classes

1 # ===
2 #
3 # file: classes.py
4 # version: v1.0.0
5 # author: Billy Hempstead
6 #
7 # summary: Contains classes for use with the main piecewise tracking algorithm
8 #
9 # ===

10
11 import numpy as np
12 import math
13
14 class Patch:
15
16 def __init__(self):
17
18 self.index = 1 # overall patch number
19
20 # corners points of patch (UL, UR, LR, LL)
21 self.corners = np.empty([4,2], dtype=’int’)
22
23 # index of points inside patch
24 self.point_idx = np.empty([0], dtype=’int’)
25
26 self.u_avg = 0 # average horizontal flow
27 self.v_avg = 0 # average vertical flow
28 self.u_avg_neighbors = 0
29 self.v_avg_neighbors = 0
30 self.u_diff = 0
31 self.v_diff = 0
32 self.u_diff_min = 0
33 self.u_diff_max = 0
34 self.v_diff_min = 0
35 self.v_diff_max = 0

109

36 self.normal_corner_dist = False # do points have normal dist.?
37 self.continuous_neighbor_flow = False # is neighbor flow continuous?
38 self.u_std_dev = 0
39 self.v_std_dev = 0
40 self.u_outliers = 0
41 self.v_outliers = 0
42
43 # method to move the corners of each patch by the average of the optical flow
44 def update_corners(self):
45
46 if not math.isnan(self.u_avg):
47 for i in range(4):
48 self.corners[i][0] = round(float(self.corners[i][0]) + self.u_avg)
49
50 if not math.isnan(self.v_avg):
51 for i in range(4):
52 self.corners[i][1] = round(float(self.corners[i][1]) + self.v_avg)
53
54 return self.corners
55
56 class Rect:
57
58 def __init__(self, x, y, width, height):
59 self.x = x
60 self.y = y
61 self.width = width
62 self.height = height
63 self.start_pt = (self.x, self.y)
64 self.end_pt = (self.x + self.width, self.y + self.height)
65
66 class Constraints:
67
68 def __init__(self):
69 self.all_normal = False
70 self.neighbor_flow_continuous = False
71 self.passed = False
72 self.failed_frames = []
73 self.reinitialized_frames = []
74 self.fails = 0
75 self.fail_limit = 5
76
77 class Colors:

110

78
79 def __init__(self):
80 self.blue = (255, 0, 0)
81 self.red = (0, 0, 255)
82 self.green = (0, 255, 0)
83 self.white = (255, 255, 255)
84 self.black = (0, 0, 0)
85 self.dark_green = (0, 125, 0)
86 self.magenta = (225, 0, 255)
87 self.cyan = (255, 255, 0)
88 self.yellow = (0, 255, 255)

111

A.5.2 Functions

1 # ===
2 #
3 # file: functions.py
4 # version: v1.0.0
5 # author: Billy Hempstead
6 #
7 # summary: Contains functions for use with the main piecewise tracking algorithm
8 # and feature extraction
9 #

10 # ===
11
12 # Initialization ==
13
14 import cv2
15 import tensorflow as tf
16 import numpy as np
17 import matplotlib.pyplot as plt
18 from matplotlib.ticker import FormatStrFormatter
19 from matplotlib.ticker import PercentFormatter
20 import time
21 import os
22 import math
23 import classes as c
24 from scipy import stats as spstats
25 from scipy import ndimage
26 from scipy.signal import butter, lfilter
27 from sklearn import preprocessing
28 from scipy.signal import find_peaks
29 from scipy.spatial import distance
30
31 # Global Variables ==
32
33 # colors
34 colors = c.Colors()
35
36 # SURF detector and matcher
37 detector = cv2.xfeatures2d.SURF_create(hessianThreshold = 1000, nOctaves = 4,
38 nOctaveLayers = 3, extended = True,
39 upright = True)
40

112

41 matcherBF = cv2.BFMatcher(cv2.NORM_L2, crossCheck=False)
42
43 # detection parameters
44 det_max_corners = 1000
45 det_quality_level = 0.001
46 det_min_distance = 3
47 det_block_size = 3
48 det_use_harris = 0
49 det_k = 0.04
50
51 # convolution kernel for neighbor flow average
52 kernel = np.ones((3, 3))
53 kernel[1, 1] = 0
54
55 # equalization / blur settings
56 CLAHE_clip_limit = 30.0
57 CLAHE_tile_size = (20, 20)
58 median_blur_level = 5
59 BLF_dia = 5
60 BLF_sigma_color = 60
61 BLF_sigma_space = 60
62
63 # tracker settings
64 OF_win_size = (15, 15)
65 OF_max_level = 2
66
67 # constraint settings
68 flow_threshold_margin = 0.1
69 min_corners_in_patch = 8
70
71 # contours settings
72 contours_max_level = 2
73 contours_lower_th = 0
74 contours_upper_th = 255
75
76 # grid settings
77 grid_outline_thickness = 4
78 grid_color_normal = colors.green
79 grid_color_ML = colors.yellow
80
81 # drawing options
82 draw_ROI = False

113

83 draw_grid = True
84 draw_grid_ML = True
85 draw_corners = True
86 draw_contours = False
87 draw_patch_corners = False
88 draw_overlays = True
89 draw_failed_frames = True
90
91 # Functions ===
92
93 # === Input/Output ==
94
95 def import_video(input_file, output_file):
96
97 # open input file
98 cap = cv2.VideoCapture(input_file)
99

100 # check if file opened successfully
101 if (cap.isOpened() == False):
102 print("Error opening video stream or file")
103
104 # get video properties
105 frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
106 frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
107 n_last_frame = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
108 FPS = cap.get(cv2.CAP_PROP_FPS)
109
110 # create writer object
111 fourcc = cv2.VideoWriter_fourcc(*’XVID’)
112 out = cv2.VideoWriter(output_file,fourcc, FPS, (frame_height, frame_width))
113
114 return cap, out, frame_width, frame_height, n_last_frame, FPS
115
116 # === Image Processing ==
117
118 def preprocess_frame(frame, equalization_type, blur_type):
119
120 # operations performed on each frame before tracking
121
122 # convert frame to grayscale
123 if len(frame.shape) == 3:
124 frame = cv2.cvtColor(frame, cv2.COLOR_RGB2GRAY)

114

125
126 # equalize frame
127 if equalization_type == ’normal’:
128 frame = cv2.equalizeHist(frame)
129
130 elif equalization_type == "adaptive":
131 # apply Contrast Limited Adaptive Histogram Equalization (CLAHE)
132 clahe = cv2.createCLAHE(clipLimit = CLAHE_clip_limit, tileGridSize =

CLAHE_tile_size)
133 frame = clahe.apply(frame)
134
135 else:
136 frame = frame
137
138 # blur to reduce noise to focus on actual features
139 if blur_type == ’median’:
140 frame = cv2.medianBlur(frame, median_blur_level)
141
142 elif blur_type == ’bilateral’:
143 # better retains edges
144 frame = cv2.bilateralFilter(frame, BLF_dia, BLF_sigma_color,

BLF_sigma_space)
145
146 else:
147 frame = frame
148
149 return frame
150
151 # === Analysis ==
152
153 def analyze_frame(frame_curr, frame_prev, frame_ref, ROI, patches, corners,
154 grid_sequences, constraints, frame_count, cap, ML_enabled, model,
155 scaler, sequence_history_length, occluded_frames,
156 x_grid_ref, y_grid_ref, x_grid_ML, y_grid_ML, pts_ref, dsc_ref):
157
158 # tracking/flow update and patch analysis for current frame
159
160 # update tracker
161 corners_new, _, _ = cv2.calcOpticalFlowPyrLK(frame_prev, frame_curr, corners,

OF_win_size, OF_max_level)
162
163 # calculate flow of features between frames

115

164 patches = update_patch_flow(patches, corners, corners_new)
165
166 # check constraints
167 constraints.all_normal, constraints.neighbor_flow_continuous =

check_constraints(patches)
168
169 if constraints.all_normal or constraints.neighbor_flow_continuous == False:
170 constraints.passed = False
171 constraints.fails += 1
172 constraints.failed_frames.append(frame_count)
173
174 else:
175 constraints.passed = True
176 constraints.fails = 0
177
178 # trigger reinitialization
179 if constraints.fails == constraints.fail_limit:
180 constraints.reinitialized_frames.append(frame_count)
181 patches, corners, corners_new, _, _ = reinitialize_tracking(frame_ref,
182 frame_curr, frame_prev, patches,

x_grid_ref, y_grid_ref, pts_ref,
dsc_ref)

183
184 # move patch boundaries by flow
185 for patch in patches:
186 patch.update_corners()
187
188 # save corners for next cycle
189 corners = corners_new
190
191 # get updated grid locations
192 x_grid, y_grid = create_grid(patches)
193
194 # ML prediction loop
195 if occluded_frames[0] <= frame_count <= occluded_frames[1]+1:
196
197 x_grid_ML = np.zeros(len(grid_sequences))
198 y_grid_ML = np.zeros_like(x_grid_ML)
199 n_rows = int(np.sqrt(len(x_grid_ML)))
200
201 for i, sequence in enumerate(grid_sequences):
202 print(’Predicting point ’, i, ’ of ’, len(grid_sequences))

116

203 output = run_NN(sequence[-(int(sequence_history_length*2)):], model,
scaler)

204 x_grid_ML[i] = output[0][0]
205 y_grid_ML[i] = output[0][1]
206
207 x_grid_ML = x_grid_ML.reshape(n_rows, n_rows).astype(int)
208 y_grid_ML = y_grid_ML.reshape(n_rows, n_rows).astype(int)
209
210 return patches, corners, grid_sequences, constraints, x_grid, y_grid,

x_grid_ML, y_grid_ML
211
212 # ---
213
214 def ROI_selection(frame, ROI):
215
216 # prompts user for selection of ROI
217
218 cv2.destroyAllWindows()
219 ROI_sel = cv2.selectROI("Select Region-of-Interest", frame)
220 cv2.waitKey(0)
221 cv2.destroyAllWindows()
222
223 ROI.x = ROI_sel[0]
224 ROI.y = ROI_sel[1]
225 ROI.width = ROI_sel[2]
226 ROI.height = ROI_sel[3]
227 ROI.start_pt = (ROI_sel[0], ROI_sel[1])
228 ROI.end_pt = (ROI_sel[0]+ROI_sel[2], ROI_sel[1]+ROI_sel[3])
229
230 return ROI
231
232 # ---
233
234 def determine_n_patches(frame_diastole, frame_next, ROI, n_patch_rows,

n_patches_max):
235
236 # gradually increases the number of patches until all patches meet constraint 1
237
238 print(’Determining Number of Patches within ROI’)
239
240 n_patch_rows +=1
241 patches, corners, n_patches = create_patches(frame_next, ROI, n_patch_rows)

117

242
243 # calculate optical flow between diastole frame and prev frame
244 corners_new, _, _ = cv2.calcOpticalFlowPyrLK(frame_diastole, frame_next,

corners, OF_win_size, OF_max_level)
245
246 # update patch flow
247 patches = update_patch_flow(patches, corners, corners_new)
248
249 constraint_1, _ = check_constraints(patches)
250
251 for patch in patches:
252 if len(patch.point_idx) >= min_corners_in_patch:
253 sufficient_corners = True
254 else:
255 sufficient_corners = False
256 break
257
258 # constraint 1 and minimum number of points per patch must be met
259 # continue on if constraints met or number of patches exceeds max
260 # TODO determine how to handle constraints never met
261 if constraint_1 == True and sufficient_corners == True or n_patches ==

n_patches_max:
262 n_patches_found = True
263 else:
264 n_patches_found = False
265
266 return patches, n_patch_rows, n_patches, n_patches_found
267
268 # ---
269
270 def set_flow_thresholds(frame_curr, frame_prev, corners, patches):
271
272 # adjusts the neighbor difference thresholds based on latest tracking update
273
274 print(’Setting Flow Thresholds’)
275
276 # calculate optical flow
277 corners_new, _, _ = cv2.calcOpticalFlowPyrLK(frame_curr, frame_prev, corners,

OF_win_size, OF_max_level)
278
279 # update patch flow
280 patches = update_patch_flow(patches, corners, corners_new)

118

281
282 for i, patch in enumerate(patches):
283 patch.u_diff = patch.u_avg - patch.u_avg_neighbors
284 patch.v_diff = patch.v_avg - patch.v_avg_neighbors
285
286 if patch.u_diff < patch.u_diff_min:
287 patch.u_diff_min = patch.u_diff * (1 + flow_threshold_margin)
288 #TODO should subtract margin in next version
289 elif patch.u_diff > patch.u_diff_max:
290 patch.u_diff_max = patch.u_diff * (1 + flow_threshold_margin)
291
292 if patch.v_diff < patch.v_diff_min:
293 patch.v_diff_min = patch.v_diff * (1 + flow_threshold_margin)
294 #TODO should subtract margin in next version
295 elif patch.v_diff > patch.v_diff_max:
296 patch.v_diff_max = patch.v_diff * (1 + flow_threshold_margin)
297
298 return patches
299
300 # ---
301
302 def detect_pulse(frame_curr, frame_prev, corners, peaks, flow_avg, lowcut,

highcut,
303 fs, frame_count, n_frames):
304
305 # updates pulse detection history
306
307 frame_height = frame_curr.shape[0]
308 frame_width = frame_curr.shape[1]
309
310 flow = 0
311 hr = 0
312
313 # calculate optical flow
314 corners_new, _, _ = cv2.calcOpticalFlowPyrLK(frame_prev, frame_curr, corners,

OF_win_size, OF_max_level)
315
316 # calculate average point flow
317 for i in range(len(corners_new)):
318 p1 = corners_new[i]
319 p2 = corners[i]
320 dist = cv2.norm(p1,p2)

119

321 flow += dist
322
323 flow_avg = np.append(flow_avg, flow/len(corners_new))
324
325 # filter/scale average flow
326 flow_avg_filtered = butter_bandpass_filter(flow_avg, lowcut, highcut, fs,

order=5)
327 flow_avg_scaled = preprocessing.scale(flow_avg_filtered)
328
329 # plot graph
330 # normalization to fit to canvas dimension
331 flow_avg_scaled = np.asarray(flow_avg_scaled, dtype = np.float32)
332
333 # detect peaks
334 num_peaks = len(peaks)
335 peaks, _ = find_peaks(-flow_avg_scaled, height = 0.1)
336
337 if len(peaks) > num_peaks:
338 new_peak = True
339 else:
340 new_peak = False
341
342 # calculate heart rate
343 if len(peaks) > 1:
344 average_frames_per_cycle = sum(np.diff(peaks))/(len(peaks)-1)
345 time_per_frame = 1/fs
346 time_per_cycle = average_frames_per_cycle * time_per_frame
347 hr = int(60 / time_per_cycle) # bpm
348
349 return hr, flow_avg, flow_avg_scaled, peaks, new_peak, corners_new
350
351 # ---
352
353 def find_contours(frame, x_grid, y_grid):
354
355 # finds the contours (edges) within the ROI
356
357 pts = get_grid_outline(x_grid, y_grid)
358 pts = np.asarray(pts, dtype = np.int32).reshape((-1,1,2))
359
360 mask = np.zeros((frame.shape[0], frame.shape[1], 1), np.uint8)
361 mask = cv2.polylines(mask, [pts], True, colors.white, thickness = 2)

120

362 mask = cv2.fillPoly(mask, [pts], [255])
363
364 frame = cv2.bitwise_and(frame, frame, mask = mask)
365
366 # # apply blur
367 # frame = cv2.medianBlur(frame, median_blur_level)
368
369 # apply thresholding
370 retval, frame = cv2.threshold(frame, contours_lower_th, contours_upper_th,

cv2.THRESH_OTSU)
371
372 # detect contours
373 contours, hierarchy = cv2.findContours(frame, cv2.RETR_CCOMP,

cv2.CHAIN_APPROX_SIMPLE)
374
375 return contours, hierarchy
376
377 # === Filtering ===
378
379 def butter_bandpass(lowcut, highcut, fs, order=5):
380 nyq = 0.5 * fs
381 low = lowcut / nyq
382 high = highcut / nyq
383 b, a = butter(order, [low, high], btype=’band’)
384 return b, a
385
386
387 def butter_bandpass_filter(data, lowcut, highcut, fs, order=5):
388 b, a = butter_bandpass(lowcut, highcut, fs, order=order)
389 y = lfilter(b, a, data)
390 return y
391
392 # === Neural Network ==
393
394 def run_NN(sequence, model, scaler):
395
396 # run a new point prediction
397
398 # scale sequence
399 x_input = np.asarray(sequence)
400 x_input = scaler.transform(x_input.reshape(-1,1))
401 x_input = x_input.reshape(1, int(len(sequence)/2), 2)

121

402
403 # run prediction
404 yhat = model.predict(tf.cast(x_input,tf.float32), verbose=0)
405
406 # inverse scale prediction
407 yhat = scaler.inverse_transform(yhat)
408
409 return yhat
410
411 # === Re-initialization ===
412
413 def reinitialize_tracking(frame_ref, frame_curr, frame_prev, patches,
414 x_grid_ref, y_grid_ref, pts_ref, dsc_ref):
415
416 # performs a homography operation to regain tracking
417
418 # detect features
419 pts_prev, dsc_prev = detector.detectAndCompute(frame_prev, None)
420
421 # match descriptors
422 matches = matcherBF.match(dsc_prev, dsc_ref)
423 matches_d_sort = sorted(matches, key = lambda x:x.distance)
424
425 # extract the matched keypoints
426 pts_prev_match = np.float32([pts_prev[m.queryIdx].pt for m in

matches_d_sort]).reshape(-1,1,2)
427 pts_ref_match = np.float32([pts_ref[m.trainIdx].pt for m in

matches_d_sort]).reshape(-1,1,2)
428
429 # find homography matrix using RANSAC
430 H, _ = cv2.findHomography(pts_ref_match, pts_prev_match, \
431 method = cv2.RANSAC, ransacReprojThreshold = 100.0)
432
433 # transform grid points with homography matrix
434 x = x_grid_ref.flatten()
435 y = y_grid_ref.flatten()
436 grid = np.array([list(zip(x,y))], dtype=np.float32)
437 grid_warp = cv2.perspectiveTransform(grid, H)
438
439 # unravel warped combined grid back to x and y grid arrays
440 w = x_grid_ref.shape[0]
441 h = x_grid_ref.shape[1]

122

442 x_grid_new = grid_warp[0][:,0]
443 y_grid_new = grid_warp[0][:,1]
444 x_grid_new = np.reshape(x_grid_new.astype(int), (w,h))
445 y_grid_new = np.reshape(y_grid_new.astype(int), (w,h))
446
447 # mask to patch border
448 pts = get_grid_outline(x_grid_new, y_grid_new)
449 pts = np.asarray(pts, dtype = np.int32).reshape((-1,1,2))
450
451 mask = np.zeros((frame_prev.shape[0], frame_prev.shape[1], 1), np.uint8)
452 mask = cv2.polylines(mask, [pts], True, colors.white, thickness = 2)
453 mask = cv2.fillPoly(mask, [pts], [255])
454
455 corners = cv2.goodFeaturesToTrack(frame_prev, maxCorners=det_max_corners,
456 qualityLevel=det_quality_level,
457 minDistance=det_min_distance,
458 blockSize = det_block_size,
459 useHarrisDetector = det_use_harris, mask=mask,
460 k = det_k)
461
462 corners_new, _, _ = cv2.calcOpticalFlowPyrLK(frame_prev, frame_curr, corners,

OF_win_size, OF_max_level)
463
464 # reassign corner points after adjusting patch boundaries
465 patches = move_patch_corners(patches, x_grid_new, y_grid_new)
466 patches = assign_patch_points(patches, corners)
467 patches = update_patch_flow(patches, corners, corners_new)
468
469 return patches, corners, corners_new, x_grid_new, y_grid_new
470
471 # === Patch-Related ===
472
473 def assign_corners_to_patches(corners, ROI, n_patches):
474
475 # calculates initial boundary points of patches based on region of interest
476 # and number of patches
477
478 patches = []
479
480 # calculate the width and height of each patch
481 patch_width = math.floor(ROI.width / np.sqrt(n_patches))
482 patch_height = math.floor(ROI.height / np.sqrt(n_patches))

123

483
484 # assume the number of rows and columns are equal
485 n_cols = np.sqrt(n_patches)
486 n_rows = n_cols
487 row_ct = 0
488 col_ct = 0
489
490 # assign point locations
491 for i in range(n_patches):
492 patches.append(c.Patch())
493 patches[i].index = i + 1
494 patches[i].corners[0][0] = ROI.x + patch_width * col_ct
495 patches[i].corners[0][1] = ROI.y + patch_height * row_ct
496 patches[i].corners[1][0] = patches[i].corners[0][0] + patch_width
497 patches[i].corners[1][1] = patches[i].corners[0][1]
498 patches[i].corners[2][0] = patches[i].corners[1][0]
499 patches[i].corners[2][1] = patches[i].corners[1][1] + patch_height
500 patches[i].corners[3][0] = patches[i].corners[0][0]
501 patches[i].corners[3][1] = patches[i].corners[0][1] + patch_height
502
503 if col_ct == n_cols-1:
504 col_ct = 0
505 row_ct += 1
506 else:
507 col_ct += 1
508
509 return patches
510
511 # ---
512
513 def assign_patch_points(patches, corners):
514
515 # checks which corners are within the patches
516
517 for idx, point in enumerate(corners):
518 for patch in patches:
519
520 if idx == 0:
521 patch.point_idx = np.empty([0], dtype=’int’)
522
523 point_in_patch = cv2.pointPolygonTest(patch.corners, tuple(point[0]),
524 False)

124

525
526 # 1 means inside, 0 means on edge, -1 means outside
527 if point_in_patch == 1 or 0:
528 patch.point_idx = np.append(patch.point_idx, idx)
529
530 return patches
531
532 # ---
533
534 def update_patch_flow(patches, corners, corners_new):
535
536 # updates the optical flow based on the new tracked corner values and checks
537 # constraints
538
539 # initialize flow vectors
540 u_point_all = []
541 v_point_all = []
542
543 # generate list of horizontal and vertical optical flow values for each corner
544 for i, point in enumerate(corners):
545 u_point_all = np.append(u_point_all, corners_new[i][0][0] -

corners[i][0][0])
546 v_point_all = np.append(v_point_all, corners_new[i][0][1] -

corners[i][0][1])
547
548 # calculate parameters for each patch
549 # only update flow if there are sufficient number of samples (10)
550 for patch in patches:
551
552 # get points within current patch
553 if patch.point_idx.size > 0:
554
555 u_p_value = 0
556 v_p_value = 0
557
558 u_point_patch = u_point_all[patch.point_idx]
559 v_point_patch = v_point_all[patch.point_idx]
560
561 # calculate patch flow after excluding outliers
562 z_u = np.abs(spstats.zscore(u_point_patch))
563 z_v = np.abs(spstats.zscore(v_point_patch))
564

125

565 u_outlier_idx = np.where(z_u < 2)[0]
566 v_outlier_idx = np.where(z_v < 2)[0]
567
568 u_point_patch = u_point_patch[u_outlier_idx]
569 v_point_patch = v_point_patch[v_outlier_idx]
570
571 if len(u_point_patch) > 0:
572 patch.u_avg = np.mean(u_point_patch)
573 else:
574 patch.u_avg = 0
575 if len(v_point_patch) > 0:
576 patch.v_avg = np.mean(v_point_patch)
577 else:
578 patch.v_avg = 0
579
580 # calculate stats if there are enough points for comparison
581 # test for normal distribution
582
583 if u_point_patch.size > 8: # skewtest minimum
584 _, u_p_value = spstats.skewtest(u_point_patch)
585
586 if v_point_patch.size > 8: # skewtest minimum
587 _, v_p_value = spstats.skewtest(v_point_patch)
588
589 alpha = 0.005
590
591 if u_p_value >= alpha and v_p_value >= alpha:
592 patch.normal_corner_dist = True
593 else:
594 patch.normal_corner_dist = False
595
596 # set the patch flow to zero if fewer than specified points in patch
597 else:
598 patch.u_avg = 0
599 patch.v_avg = 0
600 patch.u_std_dev = 0
601 patch.v_std_dev = 0
602 patch.normal_corner_dist = True
603
604 # set patches with zero flow to average neighbor flow after all patch flows
605 # have been calculated
606

126

607 # create matrices for u and v avg
608 x_dim = int(np.sqrt(len(patches)))
609 u_avg_all = np.zeros(len(patches))
610 v_avg_all = np.zeros(len(patches))
611
612 for i, patch in enumerate(patches):
613 u_avg_all[i] = patch.u_avg
614 v_avg_all[i] = patch.v_avg
615
616 u_avg_all = np.reshape(u_avg_all, (x_dim, x_dim))
617 v_avg_all = np.reshape(v_avg_all, (x_dim, x_dim))
618
619 # find average of neighbors by convolution
620 u_avg_neighbors = ndimage.generic_filter(u_avg_all, np.nanmean,

footprint=kernel, mode=’constant’, cval=np.NaN)
621 v_avg_neighbors = ndimage.generic_filter(v_avg_all, np.nanmean,

footprint=kernel, mode=’constant’, cval=np.NaN)
622
623 # flatten for iteration
624 u_avg_neighbors = np.ndarray.flatten(u_avg_neighbors)
625 v_avg_neighbors = np.ndarray.flatten(v_avg_neighbors)
626
627 # set zero flows to neighbor average
628 for i, patch in enumerate(patches):
629 patch.u_avg_neighbors = u_avg_neighbors[i]
630 patch.v_avg_neighbors = v_avg_neighbors[i]
631
632 if patch.u_avg == 0 and patch.v_avg == 0:
633 patch.u_avg = patch.u_avg_neighbors
634 patch.v_avg = patch.u_avg_neighbors
635
636 # check for continuous flow between neighbors
637 for patch in patches:
638 patch.u_diff = patch.u_avg - patch.u_avg_neighbors
639 patch.v_diff = patch.v_avg - patch.v_avg_neighbors
640
641 if patch.u_diff_min <= patch.u_diff <= patch.u_diff_max and \
642 patch.v_diff_min <= patch.v_diff <= patch.v_diff_max:
643
644 patch.continuous_neighbor_flow = True
645 else:
646 patch.continuous_neighbor_flow = False

127

647
648 return patches
649
650 # ---
651
652 def create_patches(frame, ROI, n_patch_rows):
653
654 # creates a patch object with corners
655
656 patches = []
657
658 n_patches = int(n_patch_rows**2)
659 # rows, cols are always equal; done for convenience in this project but
660 # could be changed to allow non-square grid; would require more changes to the

functions
661
662 # detect initial corners
663 mask = np.zeros(frame.shape, dtype=np.uint8)
664 mask = cv2.rectangle(mask, ROI.start_pt, ROI.end_pt, (255,255,255), -1)
665
666 corners = cv2.goodFeaturesToTrack(frame, maxCorners = det_max_corners,
667 qualityLevel = det_quality_level,
668 minDistance = det_min_distance,
669 blockSize = det_block_size,
670 useHarrisDetector = det_use_harris,
671 mask = mask,
672 k = det_k)
673
674 # run function to determine initial patch corner points
675 patches = assign_corners_to_patches(corners, ROI, n_patches)
676
677 # assign points to patches
678 patches = assign_patch_points(patches, corners)
679
680 return patches, corners, n_patches
681
682 # ---
683
684 def move_patch_corners(patches, x_grid, y_grid):
685
686 # updates patch boundaries to match grid
687

128

688 n_rows = int(np.sqrt(len(patches)))
689 n_cols = n_rows
690
691 row = 0
692 col = 0
693
694 for patch in patches:
695 patch.corners[0] = [x_grid[row, col], y_grid[row, col]]
696 patch.corners[1] = [x_grid[row, col+1], y_grid[row, col+1]]
697 patch.corners[2] = [x_grid[row+1, col+1], y_grid[row+1, col+1]]
698 patch.corners[3] = [x_grid[row+1, col], y_grid[row+1, col]]
699
700 if patch.index % n_rows == 0:
701 row +=1
702 col = 0
703 else:
704 col += 1
705
706 return patches
707
708 # ---
709
710 def check_constraints(patches):
711
712 # checks that the conditions for piecewise flow are met
713
714 # initialize constraints
715 constraint_1 = True
716 constraint_2 = True
717
718 # check constraints
719 for patch in patches:
720
721 # 1. all corners within each patch must be normally distributed
722 if patch.normal_corner_dist == False:
723 constraint_1 = False
724 break
725
726 # 2. the average flow measure between neighboring patches is continuous
727 if patch.continuous_neighbor_flow == False:
728 constraint_2 = False
729 break

129

730
731 return constraint_1, constraint_2
732
733 # === Grid-Related ==
734
735 def append_grid_sequences(grid_sequences, x_grid, y_grid):
736
737 # adds the current grid points to the sequence history array
738
739 x_grid = np.ndarray.flatten(x_grid)
740 y_grid = np.ndarray.flatten(y_grid)
741
742 for i, sequence in enumerate(grid_sequences):
743 sequence.append(x_grid[i])
744 sequence.append(y_grid[i])
745
746 return grid_sequences
747
748 # ---
749
750 def get_grid_outline(x_grid, y_grid):
751
752 # returns the outline shape (points) of the grid
753
754 n_rows = x_grid.shape[0]
755 n_cols = x_grid.shape[1]
756
757 pts = []
758
759 # top row
760 for col in range(n_cols):
761 pts.append([x_grid[0, col], y_grid[0, col]])
762 # right col
763 for row in range(n_rows):
764 pts.append([x_grid[row, n_cols-1], y_grid[row, n_cols-1]])
765 # bottom row
766 for col in reversed(range(n_cols)):
767 pts.append([x_grid[n_rows-1, col], y_grid[n_rows-1, col]])
768 # left col
769 for row in reversed(range(n_rows)):
770 pts.append([x_grid[row, 0], y_grid[row, 0]])
771

130

772 return pts
773
774 # ---
775
776 def append_grid_prediction_history(x_grid, y_grid, x_grid_ML, y_grid_ML,
777 x_grid_hist, y_grid_hist,
778 x_grid_ML_hist, y_grid_ML_hist,):
779
780 # creates history arrays for the ground truth grid and predicted grid
781
782 rows = x_grid.shape[0]
783 cols = x_grid.shape[1]
784
785 x_grid = x_grid.flatten()
786 y_grid = y_grid.flatten()
787 x_grid_ML = x_grid_ML.flatten()
788 y_grid_ML = y_grid_ML.flatten()
789
790 for i in range(x_grid.size):
791 x_grid_hist[i] = np.append(x_grid_hist[i], x_grid[i])
792 y_grid_hist[i] = np.append(y_grid_hist[i], y_grid[i])
793 x_grid_ML_hist[i] = np.append(x_grid_ML_hist[i], x_grid_ML[i])
794 y_grid_ML_hist[i] = np.append(y_grid_ML_hist[i], y_grid_ML[i])
795
796 return x_grid_hist, y_grid_hist, x_grid_ML_hist, y_grid_ML_hist
797
798 # ---
799
800 def create_grid(patches):
801
802 # creates a grid array from the patch boundaries
803
804 # determine size of grid - 1 more dimension than number of patches
805 n_patches = len(patches)
806 n_rows_patch = int(np.sqrt(n_patches))
807 n_cols_patch = n_rows_patch
808 n_rows_grid = n_rows_patch + 1
809 n_cols_grid = n_rows_grid
810 x_grid = np.zeros((n_rows_grid, n_cols_grid), dtype = ’int’)
811 y_grid = np.zeros((n_rows_grid, n_cols_grid), dtype = ’int’)
812
813 # start counting rows/cols of patch

131

814 patch_row = 1
815 patch_col = 1
816
817 # assign grid points based on corners in each patch
818 for i, patch in enumerate(patches):
819
820 patch_num = i + 1
821
822 # grid point indices start at 0
823 grid_row = patch_row - 1
824 grid_col = patch_col - 1
825
826 # assign top left point
827 x_grid[grid_row, grid_col] = patch.corners[0][0]
828 y_grid[grid_row, grid_col] = patch.corners[0][1]
829
830 # assign bottom left point on last row
831 if patch_row == n_rows_patch:
832 x_grid[grid_row+1, grid_col] = patch.corners[3][0]
833 y_grid[grid_row+1, grid_col] = patch.corners[3][1]
834
835 # assign top right point on last column
836 if patch_col == n_cols_patch:
837 x_grid[grid_row, grid_col+1] = patch.corners[1][0]
838 y_grid[grid_row, grid_col+1] = patch.corners[1][1]
839
840 # assign bottom left point at end
841 if patch_num == n_patches:
842 x_grid[grid_row+1, grid_col+1] = patch.corners[2][0]
843 y_grid[grid_row+1, grid_col+1] = patch.corners[2][1]
844 break
845
846 # increment counters (patchNum indexed to 0)
847 if not patch_num == n_patches:
848 if patch_num % n_cols_patch == 0:
849 patch_col = 1
850 patch_row += 1
851 else:
852 patch_col += 1
853
854 return x_grid, y_grid
855

132

856 # ---
857
858 def update_grid_flow(patches, x_grid, y_grid):
859
860 # moves grid points based on patch movements
861
862 n_patches = len(patches)
863 n_cols = int(np.sqrt(n_patches))
864 n_rows = n_cols
865
866 # "current" patch will be lower left relative to the grid
867 curr_patch = 0
868
869 # move patch corners by average patch U and V flow
870 for row in range(n_rows):
871 for col in range(n_cols):
872
873 neighbors = []
874 u_vals = 0
875 v_vals = 0
876
877 # find neighboring patches (LR, LL, UR, UL)
878
879 # top row left
880 if row == 0 and col == 0:
881 neighbors.append(curr_patch)
882
883 # top row center
884 elif row == 0 and 0 < col < n_cols:
885 neighbors.append(curr_patch)
886 neighbors.append(curr_patch-1)
887
888 # top row right
889 elif row == 0 and col == n_cols:
890 neighbors.append(curr_patch-1)
891
892 # interior points
893 elif 0 < row < n_rows and 0 < col < n_cols:
894 neighbors.append(curr_patch)
895 neighbors.append(curr_patch-1)
896 neighbors.append(curr_patch-1-n_cols)
897 neighbors.append(curr_patch-n_cols)

133

898
899 # bottom row left
900 elif row == n_rows and col == 0:
901 neighbors.append(curr_patch-n_cols)
902
903 # bottom row center
904 elif row == n_rows and 0 < col < n_cols:
905 neighbors.append(curr_patch-n_cols)
906 neighbors.append(curr_patch-n_cols)
907
908 # bottom row right
909 elif row == n_rows and col == n_cols:
910 neighbors.append(curr_patch-n_cols-1)
911
912 # left column center
913 elif col == 0 and 0 < row < n_rows:
914 neighbors.append(curr_patch)
915 neighbors.append(curr_patch-n_rows)
916
917 # left column right
918 elif col == n_cols and 0 < row < n_rows:
919 neighbors.append(curr_patch-1)
920 neighbors.append(curr_patch-1-n_rows)
921
922 # get average flow
923 for n in neighbors:
924 u_vals += patches[n].u_avg
925 v_vals += patches[n].v_avg
926
927 x_grid[row, col] += u_vals/len(neighbors)
928 y_grid[row, col] += v_vals/len(neighbors)
929
930 curr_patch += 1
931
932 return x_grid, y_grid
933
934 # === Drawing ===
935
936 def rectangle_occlusion(frame, ROI, alpha):
937
938 # adds a rectangle overlay to a frame
939

134

940 # convert frame to RGB
941 if len(frame.shape) == 2:
942 frame = cv2.cvtColor(frame,cv2.COLOR_GRAY2RGB)
943
944 overlay = np.zeros(frame.shape, dtype=np.uint8)
945 overlay = cv2.rectangle(overlay, ROI.start_pt, ROI.end_pt, color =

colors.white, thickness = -1)
946
947 frame = cv2.addWeighted(overlay, alpha, frame, 1, 0, frame)
948
949 return frame
950
951 # ---
952
953 def draw_overlays_main(frame, frame_count, frame_range, n_frames, n_last_frame,

peaks,
954 flow_avg_scaled, hr, constraints, basename):
955
956 # draws top and bottom information overlays for main analysis
957
958 frame_height = frame.shape[0]
959 frame_width = frame.shape[1]
960 font_scale = 1
961
962 # apply the transparent header/footer shaded overlay
963 overlay = np.zeros(frame.shape, dtype=np.uint8)
964 overlay = cv2.rectangle(overlay, (0, 660), (frame_width, frame_height), color

= colors.white, thickness = -1)
965 overlay = cv2.rectangle(overlay, (0, 0), (frame_width, 80), color =

colors.white, thickness = -1)
966 frame = cv2.addWeighted(overlay, 0.7, frame, 1, 0, frame)
967
968 # scale pulse values and draw to frame
969 t = []
970 flow_avg_scaled_max = max(flow_avg_scaled)
971
972 # had some issues with divide by zero here hence the conditional statements
973 # scale to 5% of frame height then offset to bottom
974 if abs(flow_avg_scaled_max) > 0:
975 flow_avg_scaled = frame_height*0.05 * flow_avg_scaled /

flow_avg_scaled_max + (frame_height - 50)
976 else:

135

977 flow_avg_scaled = frame_height*0.05 * flow_avg_scaled / 0.1 +
(frame_height - 50)

978
979 for i, point in enumerate(flow_avg_scaled):
980 t_increment = (frame_width * i / n_frames)
981 t = np.append(t, t_increment)
982
983 flow_avg_scaled = np.vstack((t,flow_avg_scaled)).T.astype(np.int)
984
985 frame = cv2.polylines(frame, [flow_avg_scaled], color = colors.red, thickness

= 2, isClosed = False)
986
987 # plot cycle peaks and sequence numbers
988 if len(peaks) > 0:
989 for i, peak in enumerate(peaks):
990 x = flow_avg_scaled[peak][0]
991 y = flow_avg_scaled[peak][1]
992 frame = cv2.drawMarker(frame, tuple(flow_avg_scaled[peak]),

colors.magenta, cv2.MARKER_CROSS, 5, 4, cv2.LINE_AA)
993
994 # draw failed frame markers
995 if draw_failed_frames == True:
996 if len(constraints.failed_frames) > 0:
997 for frame_number in constraints.failed_frames:
998 frame_number_scaled = round((frame_number -

frame_range[0])/n_frames * frame.shape[0])
999 cv2.drawMarker(frame, (frame_number_scaled, 670), colors.black,

cv2.MARKER_CROSS, 8, 1, cv2.LINE_AA)
1000
1001 if len(constraints.reinitialized_frames) > 0:
1002 for frame_number in constraints.reinitialized_frames:
1003 frame_number_scaled = round((frame_number -

frame_range[0])/n_frames * frame.shape[0])
1004 cv2.drawMarker(frame, (frame_number_scaled, 680), colors.red,

cv2.MARKER_TRIANGLE_UP, 8, 1, cv2.LINE_AA)
1005
1006 # print header text
1007 # heart rate
1008 text_hr = "HR: " + str(hr) + ’ BPM’
1009 frame = cv2.putText(frame, text_hr, (560,30), fontFace =

cv2.FONT_HERSHEY_DUPLEX,
1010 fontScale = font_scale, color = colors.dark_green)

136

1011
1012 # frame number
1013 text_fn = str(frame_count) + " of " + str(n_last_frame)
1014 frame = cv2.putText(frame, text_fn, (10,30), fontFace =

cv2.FONT_HERSHEY_DUPLEX,
1015 fontScale = font_scale, color = colors.dark_green)
1016
1017 text_tb = "Total beats: " + str(len(peaks))
1018 frame = cv2.putText(frame, text_tb, (500,65), fontFace =

cv2.FONT_HERSHEY_DUPLEX,
1019 fontScale = font_scale, color = colors.dark_green)
1020
1021 text_fn = basename + ".avi"
1022 frame = cv2.putText(frame, text_fn, (10,65), fontFace =

cv2.FONT_HERSHEY_DUPLEX,
1023 fontScale = font_scale, color = colors.dark_green)
1024
1025 return frame
1026
1027 # ---
1028
1029 def draw_overlays_extraction_old(frame, corners_1, corners_2, status_1, status_2,

frame_width, frame_height,
1030 frame_count, n_frames, peaks, new_peak, flow_avg_scaled,

basename, hr, ROI_radius):
1031
1032 # draws top and bottom information overlays for feature extraction
1033
1034 frame_height = frame.shape[0]
1035 frame_width = frame.shape[1]
1036 font_scale = 1
1037
1038 # separate points into lost and found
1039 if new_peak == False and len(corners_1) > 0 and len(corners_2) > 0:
1040 status_found_idx_1 = np.where(status_1 == 1)[0]
1041 status_lost_idx_1 = np.where(status_1 == 0)[0]
1042
1043 corners_found_1 = corners_1[status_found_idx_1]
1044 corners_lost_1 = corners_1[status_lost_idx_1]
1045
1046 if len(peaks) > 1:
1047 status_found_idx_2 = np.where(status_2 == 1)[0]

137

1048 status_lost_idx_2 = np.where(status_2 == 0)[0]
1049
1050 corners_found_2 = corners_2[status_found_idx_2]
1051 corners_lost_2 = corners_2[status_lost_idx_2]
1052
1053 else:
1054 if len(peaks > 0):
1055 corners_found_1 = corners_1
1056 corners_lost_1 = []
1057
1058 if len(peaks) > 1:
1059 corners_found_2 = corners_2
1060 corners_lost_2 = []
1061
1062 # draw corners within ROI
1063 frame = cv2.cvtColor(frame, cv2.COLOR_GRAY2RGB)
1064
1065 if len(peaks) > 0:
1066 if (len(corners_found_1) > 0):
1067 for point in corners_found_1:
1068 cv2.drawMarker(frame, tuple(point[0]), colors.magenta,

cv2.MARKER_CROSS, 5, 1, cv2.LINE_AA)
1069
1070 if (len(corners_lost_1) > 0):
1071 for point in corners_lost_1:
1072 cv2.drawMarker(frame, tuple(point[0]), colors.green,

cv2.MARKER_CROSS, 20, 2, cv2.LINE_AA)
1073
1074 if len(peaks) > 1:
1075 if (len(corners_found_2) > 0):
1076 for point in corners_found_2:
1077 cv2.drawMarker(frame, tuple(point[0]), colors.cyan,

cv2.MARKER_CROSS, 5, 1, cv2.LINE_AA)
1078
1079 if (len(corners_lost_2) > 0):
1080 for point in corners_lost_2:
1081 cv2.drawMarker(frame, tuple(point[0]), colors.green,

cv2.MARKER_CROSS, 20, 2, cv2.LINE_AA)
1082
1083 # draw ROI
1084 frame = cv2.circle(frame,
1085 center = (int(frame_height/2), int(frame_width/2)),

138

1086 radius = ROI_radius,
1087 color = colors.green,
1088 thickness = 2)
1089
1090 # apply the header/footer shaded overlay
1091 overlay = np.zeros(frame.shape, dtype=np.uint8)
1092 overlay = cv2.rectangle(overlay, (0, 660), (frame_width, frame_height), color

= colors.white, thickness = -1)
1093 overlay = cv2.rectangle(overlay, (0, 0), (frame_width, 80), color =

colors.white, thickness = -1)
1094
1095 alpha = 0.7
1096 frame = cv2.addWeighted(overlay, alpha, frame, 1, 0, frame)
1097
1098
1099 # scale pulse values to frame
1100 t = []
1101 flow_avg_scaled_max = max(flow_avg_scaled)
1102
1103 # had some issues with divide by zero here hence the conditional statements
1104 # scale to 5% of frame height then offset to bottom
1105 if abs(flow_avg_scaled_max) > 0:
1106 flow_avg_scaled = frame_height*0.05 * flow_avg_scaled /

flow_avg_scaled_max + (frame_height - 50)
1107 else:
1108 flow_avg_scaled = frame_height*0.05 * flow_avg_scaled / 0.1 +

(frame_height - 50)
1109
1110 for i, point in enumerate(flow_avg_scaled):
1111 t_increment = (frame_width * i / n_frames)
1112 t = np.append(t, t_increment)
1113
1114 flow_avg_scaled = np.vstack((t,flow_avg_scaled)).T.astype(np.int)
1115 frame = cv2.polylines(frame, [flow_avg_scaled], color = colors.red, thickness

= 2, isClosed = False)
1116
1117 # plot cycle peaks and sequence numbers
1118 if len(peaks) > 0:
1119 for i, peak in enumerate(peaks):
1120 x = flow_avg_scaled[peak][0]
1121 y = flow_avg_scaled[peak][1]
1122

139

1123 if i % 2 == 0:
1124 peak_color = colors.magenta
1125 frame = cv2.line(frame, (x, y-10), (x, 670), colors.black, 2)
1126 if i != 0:
1127 frame = cv2.putText(frame, str(int(i-1)), (x-5,795), fontFace =

cv2.FONT_HERSHEY_DUPLEX,
1128 fontScale = .5, color = colors.black)
1129 frame = cv2.drawMarker(frame, tuple(flow_avg_scaled[peak]),

peak_color, cv2.MARKER_CROSS, 5, 4, cv2.LINE_AA)
1130
1131 else:
1132 peak_color = colors.cyan
1133 frame = cv2.line(frame, (x, y+10), (x, 800), colors.black, 2)
1134 frame = cv2.putText(frame, str(int(i-1)), (x-5,680), fontFace =

cv2.FONT_HERSHEY_DUPLEX,
1135 fontScale = .5, color = colors.black)
1136 frame = cv2.drawMarker(frame, tuple(flow_avg_scaled[peak]),

peak_color, cv2.MARKER_CROSS, 5, 4, cv2.LINE_AA)
1137
1138
1139 # print header text
1140 text_fn = str(frame_count) + " of " + str(n_frames)
1141 frame = cv2.putText(frame, text_fn, (10,30), fontFace =

cv2.FONT_HERSHEY_DUPLEX,
1142 fontScale = font_scale, color = colors.dark_green)
1143
1144 text_hr = "HR: " + str(hr) + ’ BPM’
1145 frame = cv2.putText(frame, text_hr, (560,30), fontFace =

cv2.FONT_HERSHEY_DUPLEX,
1146 fontScale = font_scale, color = colors.dark_green)
1147
1148 text_tb = "Total beats: " + str(len(peaks))
1149 frame = cv2.putText(frame, text_tb, (500,65), fontFace =

cv2.FONT_HERSHEY_DUPLEX,
1150 fontScale = font_scale, color = colors.dark_green)
1151
1152 text_fn = basename + ".mat"
1153 frame = cv2.putText(frame, text_fn, (10,65), fontFace =

cv2.FONT_HERSHEY_DUPLEX,
1154 fontScale = font_scale, color = colors.dark_green)
1155
1156 return frame

140

1157
1158 # ---
1159
1160 def draw_overlays_extraction(frame, corners_1, status_1, frame_width, frame_height,
1161 frame_count, n_frames, peaks, new_peak, flow_avg_scaled,

basename, hr, ROI_radius):
1162
1163 # draws top and bottom information overlays for feature extraction
1164
1165 frame_height = frame.shape[0]
1166 frame_width = frame.shape[1]
1167 font_scale = 1
1168
1169 # separate points into lost and found
1170 if len(corners_1) > 0 and new_peak == False:
1171 status_found_idx_1 = np.where(status_1 == 1)[0]
1172 status_lost_idx_1 = np.where(status_1 == 0)[0]
1173
1174 corners_found_1 = corners_1[status_found_idx_1]
1175 corners_lost_1 = corners_1[status_lost_idx_1]
1176
1177 else:
1178 if len(peaks > 0):
1179 corners_found_1 = corners_1
1180 corners_lost_1 = []
1181
1182 # draw corners within ROI
1183 frame = cv2.cvtColor(frame, cv2.COLOR_GRAY2RGB)
1184
1185 if len(peaks) > 0:
1186 if (len(corners_found_1) > 0):
1187 for point in corners_found_1:
1188 cv2.drawMarker(frame, tuple(point[0]), colors.magenta,

cv2.MARKER_CROSS, 5, 1, cv2.LINE_AA)
1189
1190 if (len(corners_lost_1) > 0):
1191 for point in corners_lost_1:
1192 cv2.drawMarker(frame, tuple(point[0]), colors.green,

cv2.MARKER_CROSS, 20, 2, cv2.LINE_AA)
1193
1194 # draw ROI
1195 frame = cv2.circle(frame,

141

1196 center = (int(frame_height/2), int(frame_width/2)),
1197 radius = ROI_radius,
1198 color = colors.green,
1199 thickness = 2)
1200
1201 # apply the header/footer shaded overlay
1202 overlay = np.zeros(frame.shape, dtype=np.uint8)
1203 overlay = cv2.rectangle(overlay, (0, 660), (frame_width, frame_height), color

= colors.white, thickness = -1)
1204 overlay = cv2.rectangle(overlay, (0, 0), (frame_width, 80), color =

colors.white, thickness = -1)
1205
1206 alpha = 0.7
1207 frame = cv2.addWeighted(overlay, alpha, frame, 1, 0, frame)
1208
1209 # scale pulse values to frame
1210 t = []
1211 flow_avg_scaled_max = max(flow_avg_scaled)
1212
1213 # had some issues with divide by zero here hence the conditional statements
1214 # scale to 5% of frame height then offset to bottom
1215 if abs(flow_avg_scaled_max) > 0:
1216 flow_avg_scaled = frame_height*0.05 * flow_avg_scaled /

flow_avg_scaled_max + (frame_height - 50)
1217 else:
1218 flow_avg_scaled = frame_height*0.05 * flow_avg_scaled / 0.1 +

(frame_height - 50)
1219
1220 for i, point in enumerate(flow_avg_scaled):
1221 t_increment = (frame_width * i / n_frames)
1222 t = np.append(t, t_increment)
1223
1224 flow_avg_scaled = np.vstack((t,flow_avg_scaled)).T.astype(np.int)
1225 frame = cv2.polylines(frame, [flow_avg_scaled], color = colors.red, thickness

= 2, isClosed = False)
1226
1227 # plot cycle peaks and sequence numbers
1228 if len(peaks) > 0:
1229 for i, peak in enumerate(peaks):
1230 x = flow_avg_scaled[peak][0]
1231 y = flow_avg_scaled[peak][1]
1232

142

1233 peak_color = colors.magenta
1234 frame = cv2.drawMarker(frame, tuple(flow_avg_scaled[peak]), peak_color,

cv2.MARKER_CROSS, 5, 4, cv2.LINE_AA)
1235
1236 # print header text
1237 text_fn = str(frame_count) + " of " + str(n_frames)
1238 frame = cv2.putText(frame, text_fn, (10,30), fontFace =

cv2.FONT_HERSHEY_DUPLEX,
1239 fontScale = font_scale, color = colors.dark_green)
1240
1241 text_hr = "HR: " + str(hr) + ’ BPM’
1242 frame = cv2.putText(frame, text_hr, (560,30), fontFace =

cv2.FONT_HERSHEY_DUPLEX,
1243 fontScale = font_scale, color = colors.dark_green)
1244
1245 text_tb = "Total beats: " + str(len(peaks))
1246 frame = cv2.putText(frame, text_tb, (500,65), fontFace =

cv2.FONT_HERSHEY_DUPLEX,
1247 fontScale = font_scale, color = colors.dark_green)
1248
1249 text_fn = basename + ".avi"
1250 frame = cv2.putText(frame, text_fn, (10,65), fontFace =

cv2.FONT_HERSHEY_DUPLEX,
1251 fontScale = font_scale, color = colors.dark_green)
1252
1253 return frame
1254
1255 # ---
1256
1257 def draw_grid_lines(frame, x_grid, y_grid, color):
1258
1259 # draw gridlines on frame
1260
1261 # plot grid lines over an image
1262 n_cols = len(x_grid)
1263 n_rows = n_cols
1264
1265 if n_cols > 1:
1266
1267 for row in range(n_rows):
1268 for col in range(n_cols):
1269

143

1270 # draw vertical lines
1271 if row < n_rows - 1:
1272 cv2.line(frame,
1273 tuple((x_grid[row, col], y_grid[row, col])),
1274 tuple((x_grid[row+1, col], y_grid[row+1, col])),
1275 color)
1276
1277 # draw left/right outline
1278 if col == 0 or col == n_cols - 1:
1279 cv2.line(frame,
1280 tuple((x_grid[row, col], y_grid[row, col])),
1281 tuple((x_grid[row+1, col], y_grid[row+1, col])),
1282 color, grid_outline_thickness)
1283
1284
1285 # draw horizontal lines
1286 if col < n_cols - 1:
1287 cv2.line(frame,
1288 tuple((x_grid[row, col], y_grid[row, col])),
1289 tuple((x_grid[row, col+1], y_grid[row, col+1])),
1290 color)
1291
1292 # draw top/bottom outline
1293 if row == 0 or row == n_rows - 1:
1294 cv2.line(frame,
1295 tuple((x_grid[row, col], y_grid[row, col])),
1296 tuple((x_grid[row, col+1], y_grid[row, col+1])),
1297 color, grid_outline_thickness)
1298
1299 return frame
1300
1301 # ---
1302
1303 def create_grid_plots(x_grid_hist, y_grid_hist, x_grid_ML_hist, y_grid_ML_hist,

basename, output_path, text_output_file):
1304
1305 # calculations
1306
1307 # absolute distances
1308 x_grid_hist = np.asarray(x_grid_hist)
1309 y_grid_hist = np.asarray(y_grid_hist)
1310 x_grid_ML_hist = np.asarray(x_grid_ML_hist)

144

1311 y_grid_ML_hist = np.asarray(y_grid_ML_hist)
1312
1313 x_grid_diff_abs = np.abs(x_grid_hist - x_grid_ML_hist)
1314 y_grid_diff_abs = np.abs(y_grid_hist - y_grid_ML_hist)
1315 grid_diff_abs = np.zeros_like(x_grid_diff_abs)
1316
1317 for i in range(len(x_grid_hist)):
1318 for j in range(len(x_grid_hist[0])):
1319 point1 = (x_grid_hist[i][j], y_grid_hist[i][j])
1320 point2 = (x_grid_ML_hist[i][j], y_grid_ML_hist[i][j])
1321 grid_diff_abs[i][j] = np.abs(distance.euclidean(point1, point2))
1322
1323 x_max_idx = np.argmax(x_grid_hist, axis=0)
1324
1325 x_grid_avg_diff_abs = np.mean(x_grid_diff_abs, axis=0)
1326 x_grid_max_diff_abs = np.max(x_grid_diff_abs, axis=0)
1327 x_grid_min_diff_abs = np.min(x_grid_diff_abs, axis=0)
1328
1329 y_grid_avg_diff_abs = np.mean(y_grid_diff_abs, axis=0)
1330 y_grid_max_diff_abs = np.max(y_grid_diff_abs, axis=0)
1331 y_grid_min_diff_abs = np.min(y_grid_diff_abs, axis=0)
1332
1333 grid_avg_diff_abs = np.mean(grid_diff_abs, axis=0)
1334 grid_max_diff_abs = np.max(grid_diff_abs, axis=0)
1335 grid_min_diff_abs = np.min(grid_diff_abs, axis=0)
1336
1337 f_nos = np.arange(1, len(x_grid_avg_diff_abs)+1)
1338
1339 yerr_x_abs = [np.abs(x_grid_min_diff_abs-x_grid_avg_diff_abs),

np.abs(x_grid_max_diff_abs-x_grid_avg_diff_abs)]
1340 yerr_y_abs = [np.abs(y_grid_min_diff_abs-y_grid_avg_diff_abs),

np.abs(y_grid_max_diff_abs-y_grid_avg_diff_abs)]
1341 yerr_abs = [np.abs(grid_min_diff_abs-grid_avg_diff_abs),

np.abs(grid_max_diff_abs-grid_avg_diff_abs)]
1342
1343 # plot grid differences - average
1344 fig, axs = plt.subplots(3, figsize=(8.5,5.5))
1345 title_string = ’Average Grid Prediction Error (pixels) \n (’ + basename +

’.avi)’
1346 fig.suptitle(title_string)
1347 axs[0].errorbar(f_nos, x_grid_avg_diff_abs, yerr = yerr_x_abs, label =

’x-diff’, linewidth=2, elinewidth = 1, capsize = 3)

145

1348 axs[0].plot(f_nos, x_grid_avg_diff_abs, ’ok’)
1349 axs[0].set_xticks(f_nos, minor=False)
1350 axs[0].tick_params(labelsize=13)
1351 axs[0].legend(loc = 2, ncol = 1)
1352 axs[0].grid(color = ’lightgray’, linestyle = ’--’, linewidth = 1)
1353
1354 axs[1].errorbar(f_nos, y_grid_avg_diff_abs, yerr = yerr_y_abs, label =

’y-diff’, linewidth=2, elinewidth = 1, capsize = 3)
1355 axs[1].plot(f_nos, y_grid_avg_diff_abs, ’ok’)
1356 axs[1].set_xticks(f_nos, minor=False)
1357 axs[1].tick_params(labelsize=13)
1358 axs[1].legend(loc = 2, ncol = 1)
1359 axs[1].grid(color = ’lightgray’, linestyle = ’--’, linewidth = 1)
1360
1361 axs[2].errorbar(f_nos, grid_avg_diff_abs, yerr = yerr_abs, label = ’xy-diff’,

linewidth=2, elinewidth = 1, capsize = 3)
1362 axs[2].plot(f_nos, grid_avg_diff_abs, ’ok’)
1363 axs[2].set_xticks(f_nos, minor=False)
1364 axs[2].tick_params(labelsize=13)
1365 axs[2].legend(loc = 2, ncol = 1)
1366 axs[2].grid(color = ’lightgray’, linestyle = ’--’, linewidth = 1)
1367
1368 fig.text(0.5, 0.01, ’Predicted Frame Number’, ha=’center’, fontsize=13)
1369 fig.text(0.01, 0.5, ’Difference from Ground Truth (pixels)’, va=’center’,

rotation=’vertical’, fontsize=13)
1370
1371 fig.subplots_adjust(hspace=0.8, left=0.1, right=0.99)
1372
1373 plt.savefig(output_path + ’plots/’ + ’grid_diff_avg_’ + basename + ’.png’)
1374 plt.show()
1375
1376 # plot grid differences - histogram - first frame
1377 n_bins = 10
1378 plt.hist(x_grid_diff_abs[:,0], bins=’auto’, facecolor=’blue’, alpha=0.5,

edgecolor=’black’)
1379 title_string = ’First Frame Differences (pixels) \n (’ + basename + ’.avi)’
1380 plt.title(title_string)
1381 plt.xlabel(’Difference from Ground Truth (pixels)’)
1382 plt.ylabel(’Number of Values’)
1383 plt.savefig(output_path + ’plots/’ + ’grid_diff_hist_patches_’ + basename +

’.png’)
1384 plt.show()

146

1385
1386 # plot grid differences - boxplot - patches
1387 patch_nos = np.arange(x_grid_diff_abs.shape[0])+1
1388 plt.boxplot(np.transpose(x_grid_diff_abs), meanline = True)
1389 title_string = ’Per Patch Grid Prediction Error (pixels) \n (’ + basename +

’.avi)’
1390 plt.title(title_string)
1391 plt.grid(color = ’lightgray’, linestyle = ’--’, linewidth = 1)
1392 plt.xlabel(’Patch Number’)
1393 plt.ylabel(’Difference from Ground Truth (pixels)’)
1394 plt.xticks(patch_nos,patch_nos-1)
1395 plt.savefig(output_path + ’plots/’ + ’grid_diff_patches_’ + basename + ’.png’)
1396 plt.show()
1397
1398 f1 = 0
1399 f3 = len(grid_avg_diff_abs)-1
1400 f2 = int(f3/2)
1401
1402 fout = open(text_output_file,’a’)
1403 print("\n", file=fout)
1404 print("x-y Distances", file=fout)
1405 print(" F", f1, "|F", f2, "|F", f3, file=fout)
1406 print("Min:", round(grid_min_diff_abs[f1], 1), round(grid_min_diff_abs[f2],1),

round(grid_min_diff_abs[f3],1), file=fout)
1407 print("Avg:", round(grid_avg_diff_abs[f1], 1), round(grid_avg_diff_abs[f2],1),

round(grid_avg_diff_abs[f3],1), file=fout)
1408 print("Max:", round(grid_max_diff_abs[f1], 1), round(grid_max_diff_abs[f2],1),

round(grid_max_diff_abs[f3],1), file=fout)
1409 print(" ")
1410 fout.close()
1411
1412 return
1413
1414 # ---
1415
1416 def create_timeline_plots(constraints, n_last_frame, diastole_frames,

main_tracking_start_frame, occluded_frames, basename, output_path):
1417
1418 # calculations
1419 predicted_frames = np.arange(occluded_frames[0], occluded_frames[1])
1420 frame_numbers = np.arange(0, n_last_frame)
1421

147

1422 diastole_frames_y = np.empty(len(diastole_frames))
1423 diastole_frames_y.fill(2)
1424 reinitialized_frames_y = np.empty(len(constraints.reinitialized_frames))
1425 reinitialized_frames_y.fill(3)
1426 failed_frames_y = np.empty(len(constraints.failed_frames))
1427 failed_frames_y.fill(4)
1428 predicted_frames_y = np.empty(len(predicted_frames))
1429 predicted_frames_y.fill(5)
1430
1431 # plot timeline
1432 plt.figure(figsize=(8, 3))
1433 plt.plot(main_tracking_start_frame, 1, ’|k’, markersize = 10)
1434 plt.plot(diastole_frames, diastole_frames_y, ’|r’, markersize = 10)
1435 plt.plot(constraints.reinitialized_frames, reinitialized_frames_y, ’|m’,

markersize = 10)
1436 plt.plot(constraints.failed_frames, failed_frames_y, ’|b’, markersize = 10)
1437 plt.plot(predicted_frames, predicted_frames_y, ’|y’, markersize = 10)
1438
1439 title_string = ’Analysis Timeline \n (’ + basename + ’.avi)’
1440 plt.title(title_string)
1441 plt.xlabel(’Frame Number’, fontsize = 12)
1442 ax = plt.gca()
1443 ax.xaxis.grid()
1444 plt.xticks(fontsize=12)
1445 ax.set_xlim(0, n_last_frame)
1446 ax.set_ylim(0, 6)
1447 ax.set_yticks([1, 2, 3, 4, 5])
1448 ax.set_yticklabels([’Tracking Start’, ’Diastole Frames’, ’Tracking Resets’,

’Failed Constraints’, ’Predicted Frames’], fontsize = 12)
1449 plt.tight_layout()
1450 plt.savefig(output_path + ’plots/’ + ’timeline_’ + basename + ’.png’,

bbox_inches=’tight’)
1451 plt.show()
1452
1453 return
1454
1455 # ---
1456
1457 def write_frame(frame, ROI, patches, corners, contours, hierarchy, vid, x_grid,
1458 y_grid, x_grid_ML, y_grid_ML, frame_count, frame_range,

occluded_frames,

148

1459 n_frames, n_last_frame, peaks, flow_avg_scaled, hr, constraints,
basename):

1460
1461 # draws on current frame and writes to file
1462
1463 # convert frame to RGB
1464 if len(frame.shape) == 2:
1465 frame_RGB = cv2.cvtColor(frame,cv2.COLOR_GRAY2RGB)
1466 else:
1467 frame_RGB = frame
1468
1469 # draw overlays including pulse
1470 if draw_overlays == True:
1471 frame_RGB = draw_overlays_main(frame_RGB, frame_count, frame_range,

n_frames, n_last_frame, peaks, flow_avg_scaled, hr, constraints,
basename)

1472
1473 # draw corner points
1474 if draw_corners == True:
1475 # draw corners within ROI
1476 if len(corners) > 0:
1477 for point in corners:
1478 cv2.drawMarker(frame_RGB, tuple(point[0]), colors.magenta,

cv2.MARKER_CROSS, 5, 1, cv2.LINE_AA)
1479
1480 # draw contours
1481 if draw_contours == True:
1482 if len(contours) > 0:
1483 frame_RGB = cv2.drawContours(frame_RGB, contours, -1, hierarchy =

hierarchy, \
1484 maxLevel = contours_max_level, color =

colors.yellow, thickness = 1)
1485
1486 # draw patch corners
1487 if draw_patch_corners == True:
1488 for i in range(0, len(patches)):
1489 cv2.line(frame_RGB, tuple(patches[i].corners[0]),

tuple(patches[i].corners[1]), colors.yellow, 1, 1)
1490 cv2.line(frame_RGB, tuple(patches[i].corners[1]),

tuple(patches[i].corners[2]), colors.yellow, 1, 1)
1491 cv2.line(frame_RGB, tuple(patches[i].corners[2]),

tuple(patches[i].corners[3]), colors.yellow, 1, 1)

149

1492 cv2.line(frame_RGB, tuple(patches[i].corners[3]),
tuple(patches[i].corners[0]), colors.yellow, 1, 1)

1493
1494 # draw grids
1495 if draw_grid == True:
1496 frame_RGB = draw_grid_lines(frame_RGB, x_grid, y_grid, grid_color_normal)
1497
1498 if draw_grid_ML == True and occluded_frames[0] <= frame_count <=

occluded_frames[1]:
1499 frame_RGB = draw_grid_lines(frame_RGB, x_grid_ML, y_grid_ML, grid_color_ML)
1500
1501 # draw ROI
1502 if draw_ROI == True:
1503 cv2.rectangle(frame_RGB, ROI.start_pt, ROI.end_pt, colors.green, thickness

= 2)
1504
1505 # write frame to file - needs RGB
1506 vid.write(frame_RGB)
1507
1508 return frame_RGB

150

A.6 MAT to AVI Conversion
1 % ===
2 %
3 % file: mat2avi.m
4 % version: v1.0.0
5 % author: Billy Hempstead
6 %
7 % summary: Converts a .mat video file to a .avi file
8 %
9 % ===

10
11 clear all
12 close all
13 clc
14
15 frameskip = 2;
16
17 % select and load data file
18 load_msg = ’Loading Datafile’;
19 disp(load_msg)
20
21 [filename, pathname] = uigetfile(’*.mat’);
22 fullpath = strcat(pathname,filename);
23 load(fullpath)
24
25 % setup output video
26 output_file = strcat(pathname,filename(1:end-4),’.avi’);
27 output_vid = VideoWriter(output_file, ’Grayscale AVI’);
28 fps = IDS.CAM.FPS;
29 output_vid.FrameRate = fps/frameskip;
30 open(output_vid);
31
32 % write frames to output video
33 n_frames = length(IDS.ImgVIS);
34
35 for i = 1:frameskip:n_frames
36 clc
37 update_msg = strcat({’Processing frame ’}, num2str(i), {’ of ’},

num2str(n_frames));
38 disp(update_msg)
39 frame = IDS.ImgVIS(:,:,i);

151

40 writeVideo(output_vid,frame);
41 end
42
43 close(output_vid);

152

	Acknowledgments
	List of Tables
	List of Figures
	Introduction
	Problem Statement and Proposed Work
	Organization of Thesis

	Background Information
	Previous Work
	Time Series Forecasting
	Characteristics of Time Series Data
	Deterministic Models
	Machine Learning Methods

	Methods
	Programming Framework
	Software Packages and Development Environment
	MATLAB
	Linux
	Python
	OpenCV
	TensorFlow
	Hardware

	Improvements \ Changes to the Original Algorithm
	Frame Pre-processing
	Feature Detection Algorithm/Parameters
	Tracking Algorithm/Parameters
	Initial Frame Selection
	Pulse Detection
	Determination of Number of Patches
	Neighboring Patch Smoothness Constraint
	Tracking Re-initialization
	Parameter Values
	Occlusion Detection

	Feature Extraction
	Data Set
	Extraction Method / Algorithm
	Sequence Length
	Scaling

	Neural Network
	Architecture
	Training

	Testing Scenarios

	Results
	Results for 20160725T124323.avi
	Results for 20160725T124609.avi
	Results for 20160725T124909.avi
	Results for 20160725T132840.avi
	Results for 20160725T133113.avi
	Neural Network Training
	Speed of Execution

	Discussion
	Tracking Performance
	Prediction Performance
	Speed of Execution
	Limitations / Future Improvements
	Tracking Algorithm
	Data Collection
	Neural Network
	Speed of Execution

	Conclusions
	References
	APPENDICES
	Source Code
	Main Algorithm
	Overview
	Code

	Feature Point Sequence Extraction
	Overview
	Code

	Data Set Creation
	Overview
	Code

	Neural Network Training
	Overview
	Code

	Supporting Classes / Functions
	Classes
	Functions

	MAT to AVI Conversion

