
 

 

Abstract 

CRABS & ‘CROBES: THE TRIPARTITE RELATIONSHIP OF A HOST, PARASITE, AND 

THEIR RESPECTIVE MICROBIOMES 

by 

Kyle L. Swanson 

July, 2020 

Directors of Thesis: April M. H. Blakeslee & Erin K. Field 

Major Department: Biology 

  

Growing evidence suggests that the associated microbiome of organisms (the holobiont) 

has been shaping the evolutionary pathways of macroorganisms for thousands of years, and that 

these tiny symbionts can influence species interactions. Yet, while studies have investigated 

host-parasites and microbiomes separately, how the two systems interact and influence each 

other has only begun to be explored. This relationship among hosts, parasites, and microbial 

communities changes the dynamic of host-parasite evolution from a more traditional co-

evolution, to a tripartite evolutionary relationship. My research aimed to resolve questions about 

the community composition and diversity of microbial symbionts associated with host and 

parasite separately and when combined (parasitized hosts). My research also developed a 

methodology that can be used in future studies to manipulate microbiomes, in the pursuit of 

understanding how the loss or manipulation of the microbiome affects parasitism. Developing 

the methodology for future microbiome manipulation included determining a method for 

bacterial inhibition and testing the effects of inhibition on community diversity. For the first part 

of the research, infected and uninfected crab hosts were sampled from a coastal North Carolina 



 

 

oyster reef three times over a four-month period. Tissue samples were collected from four 

biological groups: uninfected crab viscera, infected crab viscera (i.e. host + parasite), the entire 

adult parasite externa, and parasite larvae. Microbial DNA was extracted from tissue samples 

and sequenced using the V6-V8 region of the 16S rRNA microbial gene to determine the 

community composition and diversity of the microbiome for each biological sample and across 

time. Microbial community analysis revealed that parasite externae and larvae had very similar 

microbiomes but were significantly different from the microbiomes of the crabs. Microbiomes of 

infected versus uninfected crabs were also significantly different. Both adult parasite externae 

and parasite larvae were found to have bacteria including Pseudoalteromonas species, which 

provide natural antimicrobial defenses, while uninfected crabs were mainly comprised of 

Rhodobacteraceae, commonly associated with photo- and chemoautotrophy. To develop the 

methodology for the second part of the research, modified Kirby-Bauer disk diffusion technique 

was used to determine the effects of biological sample, antibiotic type, antibiotic concentration, 

and time to inhibition of bacteria. Three broad spectrum antibiotics (ampicillin, chloramphenicol, 

and gentamicin) and their combinations (total of seven antibiotics and combinations) were tested 

across four concentrations against all four biological groups. Chloramphenicol, at 2mg/mL, was 

found to be the most effective antibiotic at inhibiting microbial growth across all four biological 

samples. To determine the effect of chloramphenicol on microbial community composition and 

diversity, this treatment (or a no treatment control) was applied to live infected and uninfected 

crabs for 24 hours. After which, microbial DNA was extracted from all four biological samples 

and will be sent for sequencing, thus the results of bacterial community diversity are pending. 

Understanding the microbial community composition of a host and parasite, and developing a 

methodology for manipulating those microbiomes, is an important step to beginning to 



 

 

understand the microbiome’s role in the host-parasite relationship and determining how the 

tripartite relationship impacts coevolutionary processes. 
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CHAPTER 1: MICROBIAL COMMUNITY ANALYSIS OF A CRAB HOST AND ITS 

RHIZOCEPHALAN PARASITE 

Introduction: 

 The biosphere is filled with millions of species that live in restricted ranges but do not 

exist in a microcosm. This means that species are interacting with each other constantly, and in a 

variety of different ways. Interactions can be commonly placed into five groupings (Lidicker 

1979), based on how individuals are impacted when they interact. While broad interactions, such 

as those that occur between predator and prey, tend to be more easily observable, the more 

cryptic and intimate interactions between host and parasite can be just as important to 

community interactions (Toft and Karter 1990). These close-knit interactions, referred to as 

symbioses, occur when two or more species coevolve, and form a longer-term, interactive 

relationship. Symbioses can take a variety of forms, depending on which organisms are 

benefiting from the interaction and how dependent an organism is on its symbiont. Once such 

symbiotic interaction is parasitism, where one organism gains an advantage at the detrimental 

cost to another (Lidicker 1979, Toft and Karter 1990, Alvarez et al. 1995, Lively 1996, Morran 

et al. 2011). While the macro-symbiotic relationship between hosts and parasites has been well 

studied for decades, broader understanding of the microbiome has opened up new interactions 

between these microbial symbionts and macro-organisms.  

 The microbiome is the collection of symbiotic bacteria that work in tandem with an 

organisms’ cells to assist in tasks ranging from digestion of material that the host would be 

otherwise incapable of obtaining nutrients from, to pathogen defense that a host’s immune 

system might be unable to resist (Turnbaugh et al. 2007, Grice and Segre 2011, Koch and 

Schmid-Hempel 2011, King et al. 2016). In these microbial endosymbiotic relationships, the host 
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provides protection against biotic and abiotic factors that could disrupt, or even kill, the 

microbial community, and also provides a stable environment for the microbial population to 

flourish (Ley et al. 2006, Lau and Lennon 2012, Wong et al. 2015, Dirksen et al. 2016). A stable 

environment is important to microbial symbionts as they are heavily influenced by changes in 

temporal, seasonal, and spatial scale (Fierer 2008, Wilhelm et al. 2014, Sun et al. 2017). 

However despite the relative stability of a host, seasonality can still affect the microbial 

symbionts of host, due to changes in behaviors or diet in a host, that are associated with changes 

in seasons (Davenport et al. 2014, Hu et al. 2018). Because of their high variability due to space 

and time, and to moderate the changes to the microenvironment or to increase the number of 

hosts, some microbial symbionts directly affect the behavior of their host organism (Ley et al. 

2006, Huttenhower 2012, Li et al. 2012). 

 While extensive literature exists on the community composition of the human 

microbiome, and several other vertebrate and invertebrate species, the evolutionary implications 

of hosts and their microbiomes has only recently been explored (Turnbaugh et al. 2007, Grice 

and Segre 2011, Huttenhower 2012, Li et al. 2012). With the explosion of research into 

microbial ecology and symbioses, there is more compelling evidence that the interdependence of 

microbes and their hosts cannot be ignored, and that the interactions these groups share may have 

far ranging effects on the evolution of a species (McFall-Ngai et al. 2013, Barbearán et al. 2014, 

Colston and Jackson 2016, Kopac and Klassen 2016, Webster 2017). One of the most 

compelling cases for microbial influence on hosts is the modification of host behavior to suit a 

situation that allows the spread of microbes. If populations of host organisms have slightly 

different microbiomes that modulate a critical behavior, such as mating, variations can lead to 

hosts being unable to identify each other as the same species, and over the evolutionary course of 
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hundreds of generations, these groups can differentiate into new species (Vavre and Kremer 

2014, Venu et al. 2014, Archie and Tung 2015, Wong 2015). In conjunction with the behavior 

modification, microbes may also act as a sort of ‘evolutionary toolbox’ that a host species might 

use to adapt to novel abiotic or biotic conditions (Montllor et al. 2002, Colston and Jackson 

2016). This toolbox may not be something that is consciously used by a host, but rather if a host 

encounters a stressor, such as a parasite, and it has a microbial symbiont that provides a greater 

resistance to parasitism, the host and microbe might coevolve to mitigate the stressor and 

increase fitness (Kim et al. 2012). Microbial symbionts have been shown to have significant 

effects in populations of Caenorhabditis elegans, and their ability to survive diseases. 

Staphylococcus aureus is a pathogenic bacteria that lyses the gastric cell lining in the nematode 

C. elegans, causing 100% mortality. However, when worms were exposed to a less virulent 

pathogen, Enterococcus faecalis, the mortality dropped to <1%, indicating that microbial 

communities might potentially reduce the virulence of a pathogen when working in concert with 

a host’s natural defenses to increase their own fitness (Ford et al. 2016, King et al. 2016). 

 With microbes influencing these kinds of processes, it is likely that microbes could play a 

role in more complex interactions between macroorganisms, such as the coevolutionary arms 

race between parasites and their hosts. The host-parasite coevolutionary race is when a host 

constantly evolves traits and defenses to reduce its chances of being parasitized, while at the 

same time the parasite is evolving to counteract those adaptations (Lively 1996, Morran et al. 

2011). If parasites behave in a similar manner to some pathogens, then hosts with weakened 

microbiomes may become easier potential targets for parasitic infection as there are fewer 

challenges to overcome, similar to an immunocompromised organism being more susceptible to 

a pathogen (Ford et al. 2016, King et al. 2016). This changes the coevolutionary arms race 
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between parasites and hosts from its more traditional two part struggle into a tripartite 

relationship, with the host, parasite, and the microbiota all evolving in concert to improve their 

own fitness (Currie et al. 2003, Little et al. 2005, Koch and Schmid-Hempel 2011).  

 With a tripartite relationship, the same “Red Queen” relationship exists (Van Valen 

1973), where organisms are constantly evolving at the same rate as their parasite. In this 

scenario, it is occurring among the host, the parasite, and each of their respective microbiomes 

(Toft and Karter 1990, Lively 1996, Morran et al. 2011). For the hosts and parasites, this remains 

relatively unchanged, with hosts continuing to evolve defenses against parasites, and parasites 

evolving new adaptations to facilitate infection. But the microbial community is evolving too and 

at a faster rate than their eukaryotic host, with a host’s microbiome changing to provide a 

competitive edge to the host, so that both host and microbial symbiont can continue their 

partnership (Toft and Karter 1990, King et al. 2016, Dheilly et al. 2017). This can result in 

systems where hosts become dependent on their microbial symbionts to perform functions, rather 

than evolving their own responses to a stressor. For example, in leafcutter ants, the combination 

of sterile working techniques employed by the ants, paired with a microbial antibiotic defense 

against the fungal parasite Escovopsis spp., produces a potent combination of ant behavior and 

microbial secretions that have helped the ant colonies cultivate fungi for millions of years (Currie 

et al. 2003, Little et al. 2005). Though it is hard to pinpoint exactly what behaviors are induced 

by microbial communities and which are natural defenses from the host itself, it is clear that the 

tripartite relationship among microbes, hosts, and parasites is not just feasible, but likely (Currie 

et al. 2003, Little 2005, Koch and Schmid-Hempel 2011, Clay 2014, Vavre and Kremer 2014, 

Dheilly et al. 2015, Dheilly et al. 2017, Zeng 2017). This seems more possible when considering 

that in experiments where microbial communities have been disrupted, the occurrence of 
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parasitism is at higher levels than in populations where the microbial community is left intact 

(Dong et al. 2009, Dheilly et al. 2015, Dheilly et al. 2017).A study investigating mosquito 

(Anopheles gambiae) reliance on the microbiome to defend against parasitic malaria 

(Plasmodium falciparum) was detrimentally impacted by the removal of the microbiome (Dong 

et al. 2009). Mosquitos were found to possess genes that were used to inhibit parasitism, 

however their effectiveness at inhibiting the malaria parasite was dependent on the presence of 

their natural microbiome (Dong et al. 2009). This highlights the fact that within the host-parasite 

tripartite relationship both the host and the hosts’ microbiome are developing in concert with 

each other to defend against a parasite, however the lack of gene activation with the loss of the 

microbiome also shows the interdependence of the host on microbial symbionts within this 

tripartite relationship. 

 In this study, I investigated this tripartite relationship among host, parasite, and their 

respective microbiomes in a Western Atlantic system, where a native host crab, Eurypanopeus 

depressus (flatback mud crab), is infected by an invasive parasite Loxothylacus panopaei (Van 

Engel et al. 1966, Hines et al. 1997, Kruse and Hare 2007). The host crab, E. depressus, is a 

common mud crab species found primarily in mid to higher salinity estuarine waters in 

structured environments like oyster reefs (Williams 1984).  

 The parasite, L. panopaei, is a member of the derived superorder Rhizocephala, a group 

of parasitic barnacles that specialize in the infection of decapod hosts (Van Engel et al. 1966, 

Walker et al. 1992, Walker 2001). Loxothylacus panopaei starts its life cycle when an externa 

releases a brood of nauplii, which are tiny free swimming larvae (Fig. 1). Because the larvae 

have a limited amount of reserved resources, they quickly molt into their next stage, the cyprid 

larvae, which begin to actively seek out a host using chemical cues (Walker et al. 1992, Alvarez 
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et al. 1995, Høeg 1995, Pasternak et al. 2005). Once a prospective host has been identified, the 

female cyprid attaches to the gills or body of a molted crab and undergoes another metamorphic 

molt, becoming a kentrogon, which quickly penetrates the host with a specialized stylet (Høeg 

1995, Walker 2001, Glenner et al. 2001). After penetration, the female injects a vermigon larvae 

into the hemolymph of the host, which the parasite uses to transport to the hepatopancreas where 

the female barnacle will mature and spend the rest of her life (Høeg 1995, Walker 2001, Glenner 

et al. 2001). Once the vermigon is situated near the digestive organs of the host, it begins to form 

a root system that burrows into the soft tissues of the crab and extracts nutrients from the host 

(Høeg 1995, Walker 2001, Glenner et al. 2001). The barnacle grows over a 20-25 day period into 

a mature interna, which consists of little more than a small conglomeration of parasite cells 

attached to the host via the network of rootlets (Høeg 1995, Walker 2001, Glenner et al. 2001). 

Water is pulsed over the interna to supply oxygen, but otherwise the parasite remains immobile 

for the rest of its life. Once the interna has matured, the parasite begins to develop a virgin 

externa which, once fully developed, can then be fertilized by a male to begin the process over 

(Høeg 1995, Walker 2001, Glenner et al. 2001). In male crabs, the parasitic infection results in 

changes in pleon shape and modifies crab behavior so that they will protect and brood the 

parasitic externa, instead of trying to remove it (Walket et al. 1992, Høeg 1995, Walker 2001). 

Loxothylacus panopaei is a warm water parasite, naturally occurring throughout the Gulf of 

Mexico all the way to Florida (Van Engel et al. 1966, Hines et al. 1997), but with the assistance 

of anthropogenic forces, it has been able to expand its range up a large portion of the Eastern 

Seaboard. In the native coevolved range of the parasite, crab infection rate is relatively low, 

~10% of the population, or so-to-speak a “crab winning” population (Tepolt et al. 2019). 

However, the invaded range sees a much higher infection rate, 80-90% but sometimes as high as  
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Figure 1: Infection cycle of Loxothylacus panopaei with its crab host. (1) In an infected crab, a 

mature (fertilized) externa of the parasite releases (2) male and female larvae. (3) The latter 

infects a new crab, extending a series of nutrient rhizoids throughout its body and eventually 

produces (4) a virgin externa, an unfertilized sac on the crab’s abdomen. (5) Once fertilized by 

the male, (1) the externa becomes mature, beginning the cycle anew [Diagram: R. Houghton, 

A. Blakeslee, A. Fowler] 
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100% in some samples, indicating a “crab losing” scenario (Van Engel et al. 1966, Hines et al. 

1997, Tepolt et al. 2019). Parasites are prevalent in these crab losing regions likely because of 

their hosts’ naiveté (Tepolt et al. 2019). Loxothylacus panopaei has coevolved with crabs 

throughout its natural range in the gulf coast, and both it and its microbial community have had 

to adapt to continue infecting a host constantly evolving to reduce parasitism. Since the naïve 

hosts have never had to coevolve, they lack any of the natural defenses that conspecifics have 

gained over thousands of years of evolution, which is likely why infection is more prevalent in 

the invaded range (Tepolt et al. 2019). 

 My study focused on identifying microbial community composition and diversity of 

microbes in uninfected crabs, infected crabs, and the rhizocephalan parasite (externa of adult 

parasite and parasite larvae). Uninfected crabs and parasite larvae were expected to have 

significant differences in microbial community composition. This is because the parasite larvae 

are free-living and unassociated with the crab host (Fig. 1) at the larval stage, thus I expected that 

microbial community composition and diversity would be distinct between these two biological 

samples. Parasite larvae and parasite externae were expected to have the most similar 

microbiomes. This is because the externae is a parasite structure, so it was expected to contain 

mostly parasite microbial communities. Infected crabs were expected to differ from both 

uninfected crabs and free-living parasites. This was expected because of the widely distributed 

rootlet system of the parasite throughout the host, which should contain parasite microbial 

symbionts, and the tissues of the crab which contain crab microbial symbionts. The result of 

these mixed microbial communities was hypothesized to result in unique microbiomes in 

infected crabs. My study further addresses the potential effect of season on community 

composition and diversity. Because microbial communities are impacted by seasonal changes, I 
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hypothesized that microbial communities would change over time (from summer to fall). To test 

these hypotheses, crabs and parasites were collected three times over a four-month period, and 

microbial communities were sequenced and analyzed to determine the community composition 

and diversity of the crab and barnacle microbiomes, and how these communities changed over 

time. 

 

Methodology: 

Crab Collection: 

 Prior to the start of the experiment, passive crab traps were deployed at a restored oyster 

reef near Bogue Sound, NC (Fig. 2) which is inhabited by both infected and uninfected E. 

depressus mud crabs. Passive crab traps (“crab condos”) consisted of a 19 x 22 x 16 cm milk 

crate filled with 3.5lbs of autoclaved oyster shell, and covered in mesh (Fig. 3). These traps were 

staked into place just outside an oyster reef where infected E. depressus had been observed 

before (Walker 1992). Passive traps were left for several weeks before the first sampling trip, to 

allow crabs to use them as an artificial refuge, and to make crab collection easier (Roche and 

Torchin 2007, Fowler et al. 2013, Tepolt et al. 2019). In cases where passively collected crab 

numbers were low, hand collection from the oyster reef was used to supplement collections. To 

reduce the chance of contaminating the microbiome of crabs, gloves were worn by collectors, 

and when sorted gloves were wiped with 70% ethanol between handling individuals. Crabs were 

visually inspected in situ to determine infection status (presence of a mature externa) (Fig. 1). 

Thirty crabs, 15 each of infected and uninfected, were collected. Five additional crabs were to 

account for crabs that might have died during transportation. An additional 15 infected crabs  
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Figure 2: Location of crab collection site at Hoop Pole Creek, NC (34°42’29.12”N, 

76°45’6.84”W) [Figure made with Google Earth Pro] 
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Figure 3: Passive collector “crab condos” that were deployed at the collection site [Photo taken 

by KL Swanson].  
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were collected to act as lab brooders so samples of parasite larvae could be collected for 

microbial analysis. All crabs were rinsed with sterilized sea water, reducing the possibility of 

transportation of foreign microbial communities from nearby sediment and oyster shells. Once 

crabs were washed, they were placed into individual compartments of an 18-compartment 26 x 

15 x 4 cm plastic jewelry case to prevent any possible cross microbial contamination among 

individuals. Crabs were transported back to the ECU campus in coolers and all experimental 

crabs, with the exception of the predetermined brooders, were rinsed with sterilized sea water 

and then immediately frozen. Crabs were dissected within 12hrs of being collected. Brooder 

crabs were stored in a new sterilized jewelry case once returned to the lab, with 30mL of 

sterilized 20‰ water. To reduce the chance of microbial contamination of larvae samples water 

was changed daily in brooding crabs and wells were checked daily for any signs of larval broods. 

Collections were repeated three times (20th July, 14th September, 26th October 2019) to test the 

seasonal effects on the microbiome, and 45 crabs (15 infected and uninfected, and an additional 

15 designated lab brooders) were collected at each time point. 

 

Crab Dissections: 

Dissections were performed such that all the soft tissues inside the crab, including 

gonads, hepatopancreas, heart, and gills, could be extracted. Because of the distributed nature of 

the adult barnacle rootlets when it is parasitizing a crab, the best method of extracting as much 

usable microbial DNA as possible, based on unpublished pilot studies that I performed, was to 

remove all visceral materials. During dissection, uninfected crab viscera were visually examined 

to ensure that no parasite rootlets were present, as the externae in parasitized crabs can be 

removed with the parasite still alive, making infected crabs appear uninfected from external 
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inspection. Because only visual examination was used, it is possible that may have been in early 

stages of infection and counted as uninfected. Dissections were performed using a sterilized 

razor blade to cut the crab’s carapace between the telson and the top of the carapace, and 

sterilized fine nose tweezers were used to separate the upper and lower carapace. Next, a 

different pair of sterilized tweezers was used to collect the visceral mass of the crab from within 

the upper and lower carapace. All tools and work stations were sterilized with 70% ethanol 

solution between dissections. All visceral mass per crab was collected into 1.5mL Eppendorf 

tubes and mixed with 250µL of PBS (phosphate buffer solution). Infected crabs also had their 

externa(e) removed using a third set of sterilized tweezers, which was deposited in a separate 

Eppendorf tube and also submerged in 250µL of PBS, resulting in two samples from each 

infected crab, one viscera and one externa, and one viscera sample from each uninfected crab. 

For parasite larvae, brooder crabs were observed daily. For any crabs that released a brood of 

nauplii larvae, multiple live larvae (>100 individuals) were collected via positive phototaxis 

using a 250µL pipette. Five samples were collected from every brood, then all samples from the 

same crab were centrifuged to pellet the larvae. This pellet, in addition to 50µL of the water, 

were added together to produce one sample with a higher concentration of larvae to increase the 

amount of microbial DNA. 

A total of 98 samples were collected over a four-month period from three distinct time 

periods. Each time period had 10 infected viscera, 10 externae, and 10 uninfected viscera, and 

additionally September had 6 larvae samples, and October had 2 larvae samples (Table 1). Larval 

sampling was highly variable as there was no way of inducing the release of larvae, so samples 

could only be collected if females were brooding and releasing larvae. Since females generally  
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Table 1: Number of usable samples in each sampling trip and biological group. Ten of each 

group besides larvae were sampled, but for some samples, there was not enough DNA 

amplification for microbial community analysis. Sample size refers to the number of samples 

that had enough DNA for amplicon sequencing. Sampling occurred on 20th July, 14th September, 

26th October 2019. 

  

Sample Group Sample Size 

Air Temp 

(℃) 

Water Temp 

(℃) 

Salinity 

(ppt) 

July Externae 10 

36 32 15 July Infected Viscera 9 

July Uninfected Viscera 7 

September Larva 6 

31 28 15 

September Externae 10 

September Infected Viscera 7 

September Uninfected Viscera 6 

October Externae 10 

26 22 16 

October Infected Viscera 10 

October Larva 2 

October Uninfected Viscera 5 
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release larvae every 5-6 days (Walker 2001), larvae were only collected within the first week of 

being captured, to retain as much of the natural microbiome as possible.  

 

Microbial Extraction: 

Samples were subjected to a rigorous DNA extraction process, designed to separate as 

much microbial DNA as possible from the crab and parasite tissues. Samples were first placed in 

a sonication water bath for 10 minutes. Samples were then sonicated at 35 Khz to lyse the host 

eukaryotic cells and release more bacterial cells to increase the potentially accessible microbial 

DNA from each sample. After sonication, samples were extracted using the Qiagen DNeasy 

PowerSoil Pro kit (Hilden, Germany). Initially, samples were extracted with the DNeasy 

PowerSoil kit; however, quantification numbers obtained from the amplified samples were 

insufficient to be sequenced. The inclusion of Qiagen’s inhibitor removal technology seemed to 

be critical to obtaining samples that could be sequenced, and so the PowerSoil Pro kit was 

chosen for its inclusion of this technology. Although designed for extracting microbial DNA 

from soil samples, the PowerSoil kit was also ideal for separating microbially symbionts from 

the tissues of the crabs and parasite larvae. Once microbial DNA had been extracted, samples 

were amplified using the V6-V8 region of the 16S rRNA gene. Although the V4 region of the 

gene is commonly used to amplify and identify microbial DNA, the V4 region in bacterial DNA 

has a corresponding region in the Eukaryotic 18S rRNA gene, and thus a section of the gene that 

did not have a corresponding Eukaryotic region had to be selected. DNA extracts from positive 

amplified samples that also contained more than 2ng/µL of DNA were shipped to Dalhousie 

University for bacterial V6-V8 amplicon sequencing. 
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Statistical Analyses: 

 Microbial sequences were analyzed using open source Mothur v1.44.1 and a published 

pipeline (Kozich et al. 2013). These analyses produced taxonomic level data from phylum to 

species of microbial associates for each of the biological sample types. To examine community 

richness across broader and more specific taxonomic classifications, phyla, class, and genus level 

community richness data were included as response variables in statistical analyses. Normality 

was assessed via community richness, using the lm function from base RStudio v1.2.5033, and 

goodness-of-fit tests did not show significant deviation from normality. Biological group, time, 

temperature, and salinity were all included as fixed effects in initial linear models. In preliminary 

runs, neither salinity nor temperature had a significant effect on taxonomic diversity and were 

removed from subsequent models. Sampling time, biological sample, and the interaction of time 

and sample were therefore included in linear models at the phyla, class, and genus levels to 

determine their effects on community richness.  

Visualizations of sampling time, biological sample, and the interaction of time and 

biological samples were performed using non-metric multi-dimensional scaling models (nMDS) 

at the three taxa levels on bacterial diversity. nMDS models were run using the vegan v2.5-4 

package from taxa diversity data obtained from Mothur, and models were plotted in ggplot 

v3.3.1.  

Taxa level plots compared the relative abundance of bacterial communities of each 

taxonomic group in samples, thereby indicating the bacterial community diversity of samples. To 

create taxa level plots of microbial community diversity, taxfiles and sharedfiles generated in 

Mothur were imported to RStudio. Phyloseq v1.16.2 and dplyr v0.7.8 were used to import and 

interpret data (Haverkamp 2018, 
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https://norwegianveterinaryinstitute.github.io/BioinfTraining/phyloseq_tutorial.html). Phylum 

level plots were sorted by taxonomic diversity with a >2% cutoff to filter groups that had low 

community representation, and all phyla that were below the 2% community representation of 

the total 16S rRNA gene sequences were pooled as ‘Other’ in order to reach a sum of 100% 

relative abundance. This was performed for each sample. When possible, genera level plots used 

a >5% cutoff for community diversity; however, some samples had too high a diversity making 

visualization difficult. For these groups, a cutoff of >7.5% or 9% was used to filter out the 

numerous less abundant taxa, and to make community analysis visualization clearer. As with 

phyla level taxonomic plots, groups of bacteria that were below the 5%, 7.5%, or 9% taxonomic 

diversity cutoff were combined into an ‘Other’ category so that relative abundance summed to 

100% relative abundance. 

 

Results and Discussion: 

Influence of the Interaction of Biological Sample and Time on Microbial Community 

Richness and Composition: 

Interactions between time and biological sample type were found to significantly 

influence microbial community richness for all three taxonomic groupings (phyla t=6.528, class 

t=6.309, genera t=7.563, p<0.0001) (Fig. 4) suggesting that microbial communities associated 

with the different biological samples are influenced by seasonal changes (e.g. time). The 

biological group that experienced the greatest change in community richness, at all three 

taxonomic levels, due to seasonality was the uninfected crab viscera (Fig. 4, Table 2). At the 

genera level, uninfected crabs had significantly lower taxa richness than parasite externae  

https://norwegianveterinaryinstitute.github.io/BioinfTraining/phyloseq_tutorial.html
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Figure 4 i) phylum level, ii) class level, iii) genus level. NMDS plots of microbial community 

diversity of all samples comparing the interaction of biological sample and sampling time at. 

Colors signify month and shapes signify biological groups. 
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Table 2: Table of statistical analysis of taxa richness, comparing interactions of sampling time and biological 

sample type. Taxa richness was compared at three taxonomic levels (phylum, class, genus) for all samples.  
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samples in July samples (t=-5.824, p<0.001); however, in September and October sampling 

taxonomic the genera richness increased, bringing it closer to the parasite externae samples 

(t=1.357, p=0.179; t=2.601, p=0.0113 respectively). A similar trend was observed in infected 

crab viscera, with infected crab genera being significantly different in July samples (t=-2.526, 

p=0.0138); and greater genera diversity in the September and October sampling periods (t=-

0.011, p=0.9914; t=-0.005, p=0.996 respectively). Externae remained consistent among the three 

sampling periods with only slight fluctuations in genera taxa richness in September and October 

samples (t=0.315, 0.754; t=0.4, p=0.6904). The higher seasonal variation in uninfected crabs, 

and the less extreme changes in infected crabs suggests that uninfected crab microbiomes may be 

more impacted by seasonal changes, while the parasite seems to have a stabilizing effect on the 

taxa richness in parasitized crabs (Table 2). Because only two time periods were sampled 

(summer and fall), it is unknown if this trend would continue to fluctuate throughout the year.  

 

Influence of Time on Microbial Community Richness and Composition: 

Sampling time did not have significant impacts on taxa richness at the phylum and class 

taxonomic levels (F=1.526, p=0.2237; F=1.77, p=0.177, respectively), but showed near 

significance at the genus level (F=2.532, p=0.0859). Taxa richness at the genus level increased 

from the summer July sampling to the fall September sampling, which resulted in a near 

significant shift in community richness (t=1.925, p=0.0578). The later October samples were 

slightly more diverse than the earlier September samples resulting in a significant increase of 

taxa richness between the July and October sampling times (t=1.994, p=0.0496). Because larvae 

were only sampled in September and October time periods (Table 1), it may be that parasite 

larvae were driving some of the increased taxa richness in fall samples. To compensate for this, a 
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second analysis at the genus level was performed with larvae removed, to determine if time had 

significant impacts on community richness in the uninfected crabs, infected crabs, and parasite 

externae. Overall the, model with larvae removed was still not significant, even at the genus level 

(F=1.904, p=0.1565). Between months, there was no significant change in genus taxa richness 

between July and September (t=1.247, p=0.2165), and there was a near significance between 

July and October sampling periods at the genus level (t=1.915, p=0.0595). Comparing the 

analysis with larvae and the analysis without larvae, the same trend appears, with taxa richness 

increasing throughout the end of summer and into the fall sampling periods. October had the 

greatest community richness at the genus level, with September as an intermediary, suggesting 

that taxa richness increases from the summer months towards the fall (Table 2). A similar trend 

was observed in genus level nMDS plots, in which July community diversity was visually 

disparate from September and October sampling periods, which were clustered together more 

tightly (Fig. 5). These results were contrary to other work in deer and humans that showed that 

an organisms’ microbial richness decreases in the colder months (Davenport et al. 2014, Hu et al. 

2018). It could be that crabs and parasites are more seasonally impacted than deer and humans, 

possibly due to the lack of homeothermy, and thus their microbiomes mirror the environmental 

bacterial community shifts more closely. Although time was only near significant, the observable 

changes in taxa richness and diversity, combined with literature, suggest that a longer study time 

with more sample points would show time and seasonality to be a significant driver of bacterial 

richness and diversity (Ghiglione and Murray 2011). 
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Figure 5 i) phylum level, ii) class level, iii) genus level. NMDS plots of microbial community 

diversity of all samples compared by sampling month at. Colors signify month. Dashed circles 

represent the confidence of the mean of the time groups. 
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Influence of Biological Sample on Microbial Community Richness and Composition: 

 Taxa richness was found to be significantly impacted by the type of biological tissues that 

bacterial communities came from at all three taxonomic levels (phylum; F=12.58, p<0.0001, 

class; F=14.39, p<0.0001, genus; F=16.87, p<0.0001). Yet, in pairwise comparisons, not all 

biological groups were significantly different from each other. Parasite externae and parasite 

larvae were very similar in taxa richness (t=0.067, p=0.947), with larvae having only around 

two genera more than the parasite externae, which had around 380 genera. The similarity in taxa 

richness of the parasite externae and parasite larvae is mirrored in the community diversity found 

in the nMDS plot (Fig. 6iii) where parasite larvae are nested entirely within parasite externae at 

the genus level. This supports the hypothesis that, because parasite externae and parasite larvae 

are two different tissue types of the same organism, they would contain similar microbiomes. 

Infected crab viscera samples were significantly different from parasite externae (t=-4.161, 

p<0.0001) containing almost 100 fewer genera then the parasite externae’s 380. This difference 

paled in comparison to the uninfected crabs, which were also significantly different (t=-6.507, 

p<0.0001), and only contained around 130 genera, less than half of the parasite externae’s genus 

level taxa richness of 380. This showed a clear trend with parasite samples having the highest 

taxa richness and uninfected crabs having the lowest, while infected crabs had an intermediate 

taxa richness. These results also supported the hypotheses that uninfected crabs and parasite 

samples would be most different from each other, while infected crabs would have intermediate 

taxa richness due to mixing of parasite and crab microbiomes. This was also visualized in nMDS 

plots which showed that infected crab’s viscera partially overlapped with the parasite externae, 

and the majority of the uninfected crab viscera samples (Fig. 6iii).  
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Figure 6 i) phylum level, ii) class level, iii) genus level. NMDS plots of microbial community 

diversity of all samples compared by biological type at Colors signify month. Dashed circles 

represent the confidence of the mean of the biological groups. 
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Community Composition and Diversity of Biological Groups: 

All Samples: 

 Proteobacteria and Bacteroidota were the two most abundant bacterial phyla, and both 

groups were found in high proportions in the four biological groups sampled (uninfected crabs, 

infected crabs, parasite externae, parasite larvae) (Fig. 7i. 8i. 9i). Proteobacteria has been shown 

to consist of a high proportion of marine seawater samples, with communities consisting of ~25-

28% Proteobacteria in the Southeastern United States Atlantic coast (González and Moran 1997,  

Wagner-Döbler and Biebl 2006). In this study, they comprised >50% Proteobacteria in all 

samples (Fig. 7i. 8i. 9i). Bacteroidota are also common bacteria in sediment and sea water 

communities, and they also have strong symbiotic ties with the gut microbiota of many animals, 

where they can be some of the most abundant community members (Thomas et al. 2011). The 

high proportions of Bacteroidota in all biological groups in my study are likely due to their close 

association with the gut microbiomes of macro-organisms, although some rare taxa may have 

been obtained from the environment.  

 

Uninfected Crabs:  

 The family of bacteria, Rhodobacteraceae, were consistently the most prominent group of 

Proteobacteria in uninfected crabs, comprising 50-75% of almost all Proteobacteria diversity 

(Fig. 7ii). This trend continued from July to September, and although October uninfected crab 

samples still contained high amounts of Rhodobacteraceae, they were in lower relative 

abundancies (Fig. 8ii, 9ii). Rhodobacteraceae are a fairly common family of bacteria that are 

associated with chemo- and photoautotrophs found in marine sediments (Pohlner et al. 2019). 

Because of the vast underrepresentation of Rhodobacteraceae (Pohlner et al. 2019), it was  
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Figure 7 (top) phyla level taxa plots with >2% relative abundance cutoff, (middle) Proteobactera 

genera taxa plots with >5% relative abundance cutoff, (bottom) Bacteroidoia genera taxa plots 

with >9% relative abundance cutoff. Community diversity taxa plots for the July sampling 

period. Biological groups are boxed together to highlight community differences between 

individuals. The first number in labels refers to the sampling period (2 = July), the letter refers to 

sample type (E is externa, I is infected viscera, U is uninfected viscera, and the second number 

refers to replicate id (e.g. 2E1 is July externa sample 1, 2I7 is July infected viscera sample 7). 
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difficult to determine which, if any, of these may have been actual symbionts of the uninfected 

crabs. It may also be that, because of their more variable seasonal microbiome (Fig. 5), 

uninfected crabs are able to incorporate many different bacteria into their microbiome, resulting 

in more cosmopolitan microbial communities. This incorporation of microbiomes may be 

correlated with environmental microbial communities; however, because some crab’s total 

microbiome is comprised of up to 10% Rhodobacteracea, it seems unlikely that this large 

community composition is entirely due to environmental contamination, but rather the sediment 

may be a source of the uninfected crab’s microbiome. Additionally, because the dissection 

methodology was designed to reduce any outside microbial contamination, it seems more likely 

that the uninfected crabs are something of ‘microbial community generalists’ that are able to use 

wide ranges of communities. 

Rhizobiaceae were detected in a few uninfected crabs in July and October samples (Fig. 

7ii, 9ii). These bacteria are close symbionts of plants, assisting or hindering plant development 

(Spaink et al. 1998). Because of this group’s close association with plant material (Spaink et al. 

1998), in addition to the dissection method of collecting all internal viscera, including digestive 

organs, it could be that the Rhizobiaceae were detected in uninfected crabs that had consumed 

algae containing these microbial communities. 

Another group unique to uninfected crabs were Marinifilaceae. As with Rhizobiaceae, 

these bacteria were sporadic, only appearing in some crabs in July and October (Fig. 7ii, 9ii). 

The Marinifilaceae are also typically associated with sediment microbiota, which may indicate 

that crabs are able to incorporate abundant taxa from their environments into their microbiomes, 

resulting in some groups that are facultative microbial community members, as opposed to a 

more obligate microbial symbiont. 
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Figure 8 (top) phyla level taxa plots with >2% relative abundance cutoff, (middle) Proteobactera 

genera taxa plots with >7.5% relative abundance cutoff, (bottom) Bacteroidoia genera taxa plots 

with >7.5% relative abundance cutoff. Community diversity taxa plots for the September 

sampling period. Biological groups are boxed together to highlight community differences 

between individuals. The first number in labels refers to the sampling period (3 = September), 

the letter refers to sample type (E is externa, I is infected viscera, U is uninfected viscera, and the 

second number, or letter for larvae samples, refers to replicate id (e.g. 3E1 is September externa 

sample 1, 3A, B, C, D, F, G are larvae samples). 
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Infected Crabs: 

 One of the most abundant groups within the infected crab samples were members of the 

Chitinophagaceae family. This group has the ability to break down complex molecules, including 

chitin, the compound the group is named for (Sangkhobol and Skerman 1981). The higher 

abundance of these chitin-hydrolysing bacteria could be a potentially significant interaction of 

the crab and parasite microbiomes during infection. One of the side effects of parasitism by some 

groups of Rhizocephalan barnacles is the inability for hosts to molt and continue growing 

(Walker 2001). If communities of Chitinophagaceae associated with the barnacle parasite are 

able to proliferate within the crab host’s body, and are able to hydrolyse any new chitin that the  

host might produce, then host crabs would be unable to produce new layers of chitin, stunting 

growth of the crab. The increased numbers of Gammaproteobacteria could be a direct result of 

this Chitophagaceae infection, and an example of the microbiomes of crab and host competing to 

produce more desirable outcomes for their respective symbiont. If Chitinophagaceae have strong 

ties with crab parasitism, then their high abundance in samples could be used as a potential 

indicator for crabs that have no visual infection, due to the parasite not being fully developed. 

 

Uninfected and Infected Crabs: 

Unclassified members of Gammaproteobacteria comprised a major portion of the 

Proteobacteria communities in both uninfected and infected crabs. Gammaproteobacteria 

contains a variety of bacteria; however, many of these are associated with microbial symbionts 

that produce natural antibiotics. Because of the unclassified nature of the group, it is challenging 

to determine their interaction with uninfected and infected crabs; however, research has shown 

that some marine crabs have defenses against bacterial infection (Noga 2010). If crab 

immunological defenses against bacteria are amplified by the presence of bacterial symbionts,  
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Figure 9 (top) phyla level taxa plots with >2% abundance cutoff, (middle) Proteobacteria genera 

taxa plots with >7.5% abundance cutoff, (bottom) Bacteroidota genera taxa plots with >9% 

abundance cutoff. Community diversity taxa plots for the October sampling period. Biological 

groups are boxed together to highlight community differences between individuals. The first 

number in labels refers to the sampling period (4 = October), the letter refers to sample type (E is 

externa, I is infected viscera, U is uninfected viscera, and the second number, or letter for larvae 

samples, refers to replicate id (e.g. 4E1 is October externa sample 1, 4J and 4K are larvae 

samples).  
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then the unclassified Gammaproteobacteria could possibly assist in the protection of crabs from 

diseases (Dong et al. 2009, Noga 2010). The differences in community composition of 

Gammaproteobacteria between uninfected and infected crabs lends some support to the 

hypothesis that these unclassified Gammaproteobacteria may be immunologically symbiotic in 

nature. Infected crabs had much higher proportions of the unclassified Gammaproteobacteria 

than uninfected crabs, which could be the crab microbiome’s response to the presence of the 

parasite and the parasitic microbial community. 

Unclassified representatives of the order Flavobacteriales were present in uninfected and 

infected crab samples, although the frequency that they appeared in biological groups varied with 

the presence of parasitic infection, with only ~50% of uninfected crabs containing  

Flavobacteriales, and infected crabs containing 100%. Flavobacteriales are a common 

community member in marine sediments and marine water, comprising of up to 20% of 

community composition in some systems, but can also be found as symbionts in the gut of 

macro-organisms (Yang et al. 2017). Although other groups, such as the Marinifilaceae, are 

thought to have been incorporated into the crab microbiome from abundant environmental 

communities, the Flavobacteriales likely have some community members that are gut symbionts 

of the uninfected and infected crabs. Why infected crabs have a higher frequency of 

Flavobacteriales is unknown; however, the variation of Flavobacteriales, may indicate that both 

uninfected and infected crabs are able to utilize some available communities to assist in gut 

functions, as opposed to requiring specific microbial symbionts for all gut functions. Varied gut 

communities could also be indicative to crab diet, as changes in diet can change prevalence of 

gut microbial communities (Thomas et al. 2001, Davenport 2014, David et al. 2014). 

 



 

32 
 

Externae and Larvae: 

A shared group between parasite larvae and parasite externae samples is 

Pseudoalteromonas. This group of bacteria have been well documented as symbionts of marine 

eukaryotes that produce antibacterial agents, and additionally reduce settlement of fouling 

plankton on an organism (Holmström and Kjelleberg 2006). This could suggest that the 

Pseudoalteromonas collected from parasite externae and parasite larvae samples also assist in 

preventing bacterial infection in the parasite. Additionally Pseudoalteromonas could provide 

additional benefits for parasite externae by reducing fouling of the parasite brood sac 

(Holmström and Kjelleberg 2006). 

 

Parasite Externae: 

 Parasite externae had several taxa that were unique when compared to uninfected and 

infected crab samples, and additionally taxa composition seemed much more consistent both 

between samples, and over seasonal gradients. This more highly conserved microbiome in the 

parasite externae could be the result of the barnacle being more dependent on specific taxa, and 

these biological groups may not be able to passively incorporate as much of the microbiome, as 

hypothesized in the uninfected crab samples. The first of these prevalent groups in parasite 

externae were unclassified Vibrioaceae, and the members from the genus Vibrio (Fig. 7ii, 8ii, 

9ii). Vibrio bacteria are most commonly found in estuarine systems, and several species are 

associated with marine organisms, such as oysters (Marhsall et al. 2016). Vibrio bacteria are 

notorious pathogens that occur in the tissues of marine biota, causing diseases in organisms that 

consume the Vibrio contaminated tissues (Marhsall et al. 2016). It may be that the Vibrio 

associated with the parasite externae could act as a deterrent to predators and fouling organisms. 
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 Phaeobacter were another genus prominent throughout seasonal samplings of parasite 

externae (Fig. 7ii, 8ii, 9ii). Phaeobacter has been shown to have a selective, pathogenic 

relationship with marine algae (Bramucci et al. 2018). (Bramucci et al. 2018). The relationship 

results from the bacteria killing certain haploid cell types in the tissue it inhabits. It is unclear if 

the relationship with the parasite externae is similar, and if  Phaeobacter is present in both 

internal and external portions of the externae, there may be some kind of evolutionary tradeoff 

that exists between potential protection from predation and the production of parasite offspring.  

 Externae also had communities of Tenacibaculum throughout the seasons (Fig. 7iii, 8iii, 

9iii). Tenaciaculum are known for infecting the kidneys of marine organisms, especially fish, and 

inducing necrosis in the infected tissues, usually killing the host (Avendaño-Herrera et al. 2006). 

While these Tenaciaculum are likely pathogenic, their interaction with the host and parasite are 

unknown. They could be a pathogen of the parasite itself, or they could be a pathogen of the 

crab.  

 The last group unique to the parasite externae is the family Saprospiraceae, whose 

members are best known for their abilities to break down complex organic compounds in the 

environment (Rosenberg et al. 2014) (Fig. 7iii, 8iii, 9iii). As with the Rhodobacteraceae in 

uninfected crabs, these Saprospiraceae bacteria may be community members that are 

incorporated into the parasite via passive acquisition of abundant taxa in the environment. 

 

Larvae: 

 Three unique genera of Flavobacteraceae were sampled from larvae, including 

Muricauda, Maribacter, and Croceibacter. Flavobacteriaceae were thought to be associated with 

the microbiome of the host crab’s gut microbiome, with some potential for incorporation from 



 

34 
 

environmental samples. Because great care was taken to limit contamination of designated 

brooders, it seems unlikely that these are passive environmental communities that are being 

incorporated into the parasite larvae. Some work has shown that a few species in Maribacter 

have some natural antibiotic resistance, and the presence of these groups might be indicative of 

groups of bacteria that assist the larvae in overcoming defenses in a potential host and its 

microbiome (Nedashkovskaya et al. 2010).  

 

Conclusion: 

Because of the differences in bacterial richness between infected crabs and uninfected 

crabs, there seems to be evidence of parasitism changing the microbiome of the crabs. The 

changes in microbiome due addition of a parasite were most evident at the genus level indicating 

that microbiome studies should focus on this detailed taxa level analysis (Fig. 6iii). Some of 

these changes may be due to two organism’s microbiomes, the host crab and parasitic barnacle, 

being combined in each of the infected crab samples. It is also possible that host microbiome was 

being modified by the parasite, adding to the changes in microbiome. A few examples of host 

microbiome modification have been studied, and there is evidence that host microbiomes can be 

pushed towards either higher or lower taxa richness by a parasite (Zaiss and Harris 2015, Kelly 

2017). For instance, in experiments with humans and pigs, the addition of parasitic helminths 

increased the bacterial species richness in stool samples when compared to uninfected 

individuals (Zaiss and Harris 2015). Some of this change was noted to be the host’s own 

microbiome responding to physiological changes in the host due to the increased mucosal habitat 

that was formed due to the parasite. It could be that host modification of the microbiome is not 

entirely due to competition between host and parasite microbiomes, but that anatomical or 
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physiological changes in the host due to parasitism can also induce changes in bacterial 

community richness and/or diversity (Zaiss and Harris 2015). Understanding when and how the 

parasite modifies the host’s microbiome could reveal more about the parasitism process, and 

specifically the roles that microbes play in the process of infection. For example, studies on a 

freshwater prawn have shown that the microbial community varies drastically between different 

molt stages of the decapod (Mente 2016). It could be that L. panopaei takes advantage of this 

shift in the microbiome when it infects crabs during the molting stages (Dheilly et al. 2015, Zaiss 

and Harris 2015, Kelly 2017). All infected crabs that were sampled had already developed their 

carapace from the molt when they had been parasitized, so there is no baseline in this system for 

how the microbiomes changes during molts, or if the parasite used these changes in molt 

microbiomes to its advantage. 

The significant differences among biological samples at every taxa level, but especially 

the genera level (Fig. 6iii) also highlight the uniqueness of each biological group’s microbiome 

and how the microbiomes of the host and parasite interact with each other, and are impacted by 

time (Fig. 4iii). Differences in community composition, and the symbionts of each biological 

group, could be used to understand more about the evolutionary pressures that each species is 

under. For instance, the presence of Phaobacter in parasite externae samples suggest that fouling 

of the externae is detrimental to the parasite, and so it has coevolved with a microbial symbiont 

to overcome this problem. Community composition of hosts and parasites could also create the 

framework for understanding how the microbial symbionts of the host and parasite interact with 

each other in the tripartite relationship. With more sampling times and a longer sampling period, 

the bacterial communities of the uninfected crabs and infected crabs could even be used as early 

bio-indicators for parasite infection, especially if groups such as the Chitinophagaceae are an 
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important community member in the microbiome of infected crabs, while uninfected hosts have 

lower or absent representatives of these bio-indicator species.  

Although crabs were checked for infection in situ via presence of externae, and visually 

inspected during dissection for the presence of rootlets, there was still a potential for early 

infection crabs, infected crabs where the externa had fallen off, or crabs with a less distributed 

rootlet system, to be counted as uninfected crabs. This could potentially skew data and make 

uninfected crabs appear more similar to infected crabs. Additionally, there were potentials for 

bacterial contamination at several steps in the collection and dissection process, despite 

precautions. One potential example of this was the dissection process for the parasite externae. 

Because the externae is fully exposed to the environment, environmental bacteria could have 

remained embedded on the internal or external surfaces of the externae, despite the washes of 

sterilized water in situ and in the lab prior to dissections.  

In sum, there are clear differences in groups of bacteria among biological groups, and in 

groups where parasites and hosts are interacting. The community composition of each organism 

suggests that interactions between host and parasite microbial communities are occurring, 

resulting in significantly different communities in infected and uninfected crabs. The variability 

of uninfected crabs and, to a lesser degree, infected crabs, also suggests that crabs are able to 

incorporate a variety of bacteria, resulting in more microbiomes that may not have as strong of 

association to hosts as the microbiomes in the parasite. When a parasite infects a host, although 

there is a significant increase in taxa richness within infected crabs, the microbial community 

also loses some of the diversity between individuals. This trend seems to be a direct result of 

parasitism, either due to combinations of both host and parasite microbiomes, or through host 

microbiome modification by the parasite. Although parasite externae and larvae have the most 
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genera richness of any samples, they also have the most similar communities between samples, 

indicating higher conservation of microbial communities. Future studies in host and parasite 

microbial communities could examine the microbial communities utilized in the native range of 

the parasite, to determine if the trend of microbial community conservation occurs only in the 

invasive range of the parasite, or if it is a trend that continues in both its native and invasive 

ranges. 



 

 
 

CHAPTER 2: ANTIBIOTIC TREATMENT OF MICROBIAL COMMUNITIES 

Introduction: 

 While many studies examining close-knit species interactions focus on the two primary 

members of that relationship (e.g., a host and its parasite) (Lidicker 1979, Toft and Karter 1990, 

Morran et al. 2011), it is clear that species interactions are often much more complicated and 

likely involve multiple species beyond just the host and parasite (Little et al. 2005, Koch and 

Schmid-Hempel 2011, Dheilly et al. 2015). For example, recent studies have shown that 

microbial symbionts can be highly influential to macroorganism species interactions, potentially 

shaping, protecting, or even inhibiting those relationships (Barbearán 2014, Clay 2014, Dirksen 

2016). Yet to understand the role that these microbiota have on species interactions, a 

methodology for disrupting the microbiome must be developed, such that species interactions 

can be compared with conspecifics that possess an intact microbiome (Currie et al. 2003, 

Kennedy et al. 2018). Developing a methodology that could be used to manipulate the 

microbiome is a critical step in studying and understanding the microbiome on the tripartite 

relationship between host, parasite, and microbial symbionts. 

 One methodology for testing the microbial holobiont’s role in a tripartite relationship, 

such as among a host, parasite, and their respective microbiomes, would be to lab rear 

microbially-sterile hosts and parasites and test infection prevalence by crossing groups of sterile 

and non-sterile parasites and hosts. While it is possible to rear organisms that are completely 

microbe-free, there are several hurdles with this methodology. Mainly, the rearing of germ-free 

organisms is an expensive and time-consuming process that requires special facilities to maintain 

microbe-free environments (Forbes and Park 1959, Kennedy et al. 2018). Additionally, because 
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the extent of crab reliance on the microbiome is unknown, the loss of the microbiome to create a 

microbe-free crab lineage could have additional impacts on the host-parasite relationship.  

Because obtaining microbial sterile crabs and hosts is challenging, different methods are 

required to effectively disrupt the microbiome without killing the test subjects and still be able to 

test the infection rates of parasites. Perhaps one of the most mainstream and cost-effective 

methods of altering the microbiome in test subjects is the use of antibiotics (Gould et al. 1952, 

Blaser 2016, Kennedy et al. 2018, Zhu and Zhou 2018). Antibiotics are readily controllable by 

changing dosage and targeting of specific taxa is feasible as an antibiotics’ effectiveness against 

specific bacterial groups is well-studied (Kennedy et al. 2018, Zhu and Zhou 2018). In addition, 

the use of broad-spectrum antibiotics can be effective at removing large groups of microbial 

communities, thereby reducing the number of treatments that might need to be exposed to a 

subject (Robinson and Young 2010, Blaser 2016, Kennedy et al. 2018). If smaller groups of 

bacteria are to be tested, then replacing broad spectrum antibiotics with more targeted antibiotics 

is a simple change in methodology to manipulate the microbiome (Robinson and Young 2010, 

Blaser 2016).   

Antibiotic exposure can greatly influence how microbial communities are disrupted, while 

dosage and frequency of antibiotic delivery can impact the amount of antibiotic resistance 

microbial communities develop over time (Blaser 2016, Zhu and Zhou 2018). To test this, many 

researchers use press and pulse experiments to determine the resilience of an ecosystem in 

response to some kind of stressor or disturbance and the frequency of that disturbance (Ostfeld 

and Keesing 2000, Braverman and Mamdani 2008, Hamman and McCoy 2018, Jentsch and 

White 2019). In medical fields, press and pulse experiments test antibiotics used to treat bacterial 

infections and a bacterial community’s response and resistance to antibiotics (Levy and Marshall 
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2004, Tan et al. 2012). When bacteria are exposed to intense, but brief, concentrations of 

antibiotics, many bacteria are either killed or become inhibited in their ability to grow and divide 

due to excessive stress (Kirby and Craig 1981, Roberts et al. 2016). However, when the 

antibiotic stressor has been flushed from the system, or as bacteria develop antibiotic resistance 

in response to stress, bacterial communities become active once more. Any bacteria that survived 

propagate and spread, potentially allowing the spread of antibiotic resistant strains (Roberts et al. 

2016, Zhu and Zhou 2018). Bacteria with a greater resistance to antimicrobial antibiotics 

sometimes respond better to high-dose pulse treatments (Kirby and Craig 1981, Roberts et al. 

2016). Yet, the most effective way of eliminating infections is by using a long-term press 

application of antibiotics to completely eliminate the bacteria through attrition (Roberts et al. 

2016, Zhu and Zhou 2018). The downside to this approach is that longer exposure to an 

antibiotic increases the chances of a microbial community developing antibiotic resistance 

(Blaser 2016, Zhu and Zhou 2018) 

Additionally, a metric was needed to determine the stress the host crabs endured during 

antibiotic treatment trials. Several studies have shown that when crabs are exposed to a stressor, 

their righting response slows as they struggle to flip over, resulting in a reliable proxy for 

determining the stress that a crab is experiencing (Rebach 1974, Warrenchuk and Shirley 2002, 

Blakeslee et al. 2015). Because the disruption of the microbiome via the use of antibiotics could 

incur a stress to the crabs, the use of righting response trials provided understanding of that stress 

on the host. 

In my investigation, I aimed to test the influence of microbial disruption on community 

composition and diversity in infected and uninfected crabs, and how microbial disruption may 

affect host behavior in terms of righting response. Three broad spectrum antibiotics (ampicillin, 
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chloramphenicol, and gentamicin) were selected to provide the greatest potential in community 

disruption as they are all commonly used antibiotics, broad-spectrum, and cost effective (Box 1). 

Ampicillin weakens the cell wall of gram-positive bacteria and therefore was expected to be 

most effective against groups like Actinobacteria (NCBI 2019). Chloramphenicol is a very 

potent antibiotic that blocks the addition of proteins to amino acids and was expected to be 

effective against a broad range of bacterial colonies (NCBI 2019). Gentamicin interrupts the 

reading of tRNA and tends to be most effective against gram-negative bacteria such as 

Bacteroidetes and Proteobacteria (NCBI 2019).  Based on prior antibiotic work (Hamamoto et al. 

2004), and some preliminary work in the Field lab (unpublished), I hypothesized that 

chloramphenicol would be the most effective at disrupting a broad range of microbial 

communities during single antibiotic treatments from four host and parasite biological samples 

(uninfected crab viscera, infected crab viscera, parasite externae, parasite larvae). This is because 
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of chloramphenicol’s recorded effectiveness against several pathogens that are difficult to 

remove without potent antibiotics, like typhoid (NCBI 2019) (Box 1). Yet past research has also 

shown that a cocktail of antibiotics can sometimes compensate for individual antibiotic 

weaknesses, making them more effective than any one antibiotic (Robinson and Young 2010, 

Blaser 2016, Kennedy et al. 2018). I therefore hypothesized that a combination of the three 

antibiotics would induce the greatest disruption in microbial communities. I also hypothesized 

that the highest concentrations would make the antibiotic combinations the most effective, as 

there would be more antibiotic molecules to interact with the microbial communities and would 

also limit the amount of antibacterial resistance the microbial communities would be able to 

produce (Levy and Marshall 2004, Tan et al. 2012). In righting response trials, I hypothesized 

that infected crabs would have slower righting response times versus uninfected crabs due to the 

combined stress of parasitism and antibiotic exposure, as demonstrated in past studies (Blakeslee 

Box 1: Background information on Antibiotics. 

 

Ampicillin (Amp) – This broad-spectrum antibiotic is a derivative of penicillin antibiotics. While 

it is generally used in pharmacology to fight gram-positive bacteria, it can also be used on gram-

negative species. Ampicillin targets the penicillin-binding proteins of the bacterial cell wall, 

resulting in wall weakening, which leads to cell lysis. Ampicillin is also resistant to several types 
β-lactam, which is a naturally occurring antibiotic resistance that is produced by a number of 

gram-positive and negative species of bacteria. This antibiotic is expected to be most effective 

against Actinobacteria (National Center for Biotechnology Information 2019). 

 

Chloramphenicol (Chl) – Another broad-spectrum antibiotic, chloramphenicol is an incredibly 

toxic substance to both Prokaryotes and Eukaryotes. Because of its potency, it is generally used 

against more extreme bacterial infections, like typhoid fever. This antibiotic targets peptidyl 

transferase, interfering with a bacteria’s proteins ability to add amino acids to peptide chains. 

While chloramphenicol prevents bacterial reproduction and growth, it does not necessarily kill 

bacteria. Chloramphenicol is expected to be effective against all bacteria types (National Center 

for Biotechnology Information 2019). 

 
Gentamicin (Gen) – The third broad-spectrum antibiotic being tested is gentamicin, which is 

generally used against aerobic gram-negative bacteria. While it can be used to target gram-

positive bacteria, the concentrations are typically toxic to hosts as well. Gentamicin works by 

targeting the 30S ribosomal subunit and interrupts the reading of tRNA, resulting in an inability 

of targeted bacteria to synthesize proteins. This antibiotic is expected to work best against 

Bacteroidetes, Proteobacteria, and Tenericutes (National Center for Biotechnology Information 

2019). 
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PART 2A. ANTIBIOTIC TESTING 

Methodology: 

Antibiotic Calculations: 

Antibiotic concentrations were normalized by antibiotic units (X) so the effectiveness 

between different antibiotics could be directly compared, as molecular weights and solubility 

between differ between antibiotics. Although the maximum concentration of chloramphenicol 

that is soluble in water is 2.5 mg/mL (125X), in combination with other antibiotics, 

chloramphenicol precipitated out of solution (O’Neil 2013). Because of this, the maximum 

testable solubility of each antibiotic, was 100X (10 mg/mL ampicillin, 2 mg/mL 

chloramphenicol, 2 mg/mL gentamicin). For treatments where combinations of antibiotics were 

used, concentrations remained constant across tests and treatments were not diluted. For 

example, in the 100X ampicillin and gentamicin (100X amp + gen) treatment, 100X ampicillin 

(10 mg/mL) and 100X gentamicin (2 mg/mL) were combined. This was done rather than dilute 

samples, such that they would add up to 100X (e.g., 50X (5mg/mL) amp + 50X (1 mg/mL) gen, 

for a total of 100X) (Table 3).  

 

Disk diffusions: 

 A modified Kirby-Bauer disk diffusion technique was used to determine the most 

effective dosage of antibiotics for the four biological sample types. Disk diffusions are 

commonly used in antibiotic concentration experiments to determine a bacterial communities’ 

response to different concentration levels of antibiotics (Andrews 2001, Fiebelkorn et al. 2003, 

Jorgensen and Ferraro 2009). To perform disk diffusions, a single biological sample was added 

to 500µL of PBS (phosphate buffer solution) after dissection, which was then absorbed with a  



 

44 
 

Table 3: Table showing concentrations of antibiotics that were used in modified Kirby-Bauer 

disk diffusion and crab experiments. Amp, Chl, and Gen correspond to ampicillin, 

chloramphenicol, and gentamicin, respectively. Concentrations in ‘X’ are normalized 

concentrations of each specific antibiotic. 
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sterilized cotton swab and applied over a large agar plate. Plates were poured from a marine agar 

(BD Difco, Fisher Scientific), as preliminary work showed that the most bacteria were able to 

grow on marine agar compared to standard nutrient agar plates likely due to their natural marine 

habitat . Once the material had been spread across the entire surface, eight 6.35 mm diameter 

sterilized antibiotic sensitivity disks were applied equidistant from each other and ~3-4cm from 

the outside of each agar plate (Fig. 10). 10µL of each of the seven antibiotic treatments (Table 3) 

were applied to a randomly assigned disk on each plate, and the eighth disk received 10µL of 

deionized (DI) water to act as a control. Five replicates from each biological group (uninfected 

viscera, infected viscera, parasite externae, parasite larvae) were used at each of the four 

antibiotic normalized concentrations (Table 3) for a total of 80 plates, all of which were stored in 

a 20°C incubator and monitored for 72 hours. Zones of inhibition, i.e., the radius from the edge 

of the disk to the edge of clearing where microbial growth began, were measured at 24hr, 48hr, 

and 72hrs. Only the best microbial inhibitor, defined as the antibiotic treatment had the greatest 

zone of inhibition, over the longest time, among all biological groups, was chosen for use on live 

subjects (Gould et al. 1952, Andrews 2001). In addition to complete inhibition, zones needed to 

last for the entire duration of the timed trials (72hrs), and the selected antibiotics needed to be 

effective against all four types of biological samples. Inhibition (Fig. 11) was determined by the 

highest letter ranking as described in Gould et al. (1952), with ‘A’ inhibition meaning that all 

bacterial growth was completely inhibited. Once bacterial colonies reached the disk but if growth 

was still patchy, the zone would be measured as a ‘B’ group. Once bacterial growth had formed a 

lawn, the disk was given an ‘E’ grouping, and zones of inhibition were not measured in ‘E’ 

groups. 
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Figure 10: Example disk diffusion plate. A, C, and G correspond to ampicillin, chloramphenicol, 

and gentamicin respectively and ‘-’ is the control disk. Treatments with combined antibiotics 

have multiple letters (e.g. ACG is the ampicillin, chloramphenicol, and gentamicin combination 

treatment). [Photo taken by KL Swanson]. 
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Figure 11: Top) Example of an ‘A’ inhibition zone surrounding a disk that was treated with 

chloramphenicol labeled as “C”. Center) Example of a ‘B’ inhibition zone around a disk that was 

treated with a combination of ampicillin and gentamicin, labeled as “AG”. Bottom) Example of 

an ‘E’ inhibition zone surrounding a control disk labeled with a “-”. [Photos taken by KL 

Swanson]. 
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Statistical Analyses: 

Because of the variable growth on some disk diffusion plates (likely due to differences in 

original cell densities among biological sample tissues), data were normalized to prevent trends 

that made it appear that zones of inhibition increased over time due to larger sample size. To 

compensate for this, the first day that plates were observed to have growth was called 24hrs for 

that specific plate. To test effects on ‘A’ inhibition radii, a linear mixed-effects model (lmer) 

from the package lme4 1.1-23 was run in Rstudio. The inhibition radius response variable was 

tested against the fixed effects of antibiotic concentrations (100X, 75X, 50X, 25X), biological 

samples (uninfected viscera, infected viscera, parasite externae, parasite larvae), antibiotic types 

and combinations (Table 3), and observation time points (24hrs, 48hrs, 72hrs). Additionally, a 

random effect was added for the response of radii to their plate. Because inhibition radii 

depended on the time that each plate was measured at, time points were nested within plate 

replicates. Initial models with interactions between all four fixed effects found only the 

interaction between antibiotic treatments and concentrations to be significant. Biological sample 

type and time were included as non-interacting fixed effects in the model analyzing inhibition 

radii. 

 

Results and Discussion: 

Influence of the Interaction of Antibiotic Type and Concentration: 

Antibiotic types, and the dose at which they were administrated, was shown to have a 

significant effect on the amount of bacterial growth that was inhibited (F=3.7831, p <0.0001). 

This shows that, in addition to the type of antibiotic that is administered, the dosage had 

significant impacts on how quickly bacteria will develop antibiotic resistance. This dosage and 



 

49 
 

treatment dependency was best demonstrated when comparing similar antibiotic groups across 

different concentration levels. For instance, at 100X normalized concentrations, a combination of 

ampicillin and chloramphenicol inhibited an average radius of 1.9mm. As concentration of 

antibiotics decreased the overall effectiveness of antibiotics decreased: 75X amp+chl inhibited 

0.8mm; 50X amp+chl inhibited 0.4 mm; and 25X inhibited 0.4 mm. Overall, among all antibiotic 

combinations and concentrations, 100X chl (2mg/mL) had the highest amount of inhibition over 

the course of the experiment (t=11.987, p <0.0001) (Table 4). 

 

Influence of Antibiotic Type: 

 The types of antibiotics that were administered had significant effects on the amount of 

inhibition that was observed on the plates across all time periods (F=80.1774, p<0.0001). 

Because of the difference in effectiveness of antibiotics against different groups of bacteria, there 

were expected to be variations in overall inhibition. It was expected that the combination of all 

three antibiotics would provide the greatest range of bacterial inhibition, with gentamicin being 

most effective against gram-negative bacteria, ampicillin inhibiting gram-positive bacteria, and 

chloramphenicol inhibiting both groups. However, contrary to predictions, chloramphenicol by 

itself was the most effective antibiotic, inhibiting significantly larger radii (t=12.139, p<0.0001) 

for longer periods of time (Fig. 12, 13). Possible reasoning for why chloramphenicol and 

gentamicin performed poorly together is that they have an antagonistic relationship, meaning the 

presence of one, in this case chloramphenicol, negatively affects the effectiveness of another 

(White and White 1964, Sande and Overton 1973). This antagonistic relationship between 

antibiotics is due to the chemical pathways that are inhibited. When a bacterial cell is undergoing 

protein synthesis, mRNA is transcribed from cellular DNA and is received by bacterial peptidyl  
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Table 4: Interaction between antibiotic combinations and antibiotic concentrations, and their 

effect on the inhibition of bacterial growth. Amp is ampicillin, Chl is chloramphenicol, and Gen 

is gentamicin. Concentration correspond to calculated concentrations in Table 3. 

 

 

 

 Estimate t-value p-value 

(Intercept) 1.655 5.816 1 

25X -0.0463 -0.279 0.7802 

50X 0.0112 0.08 0.9361 

75X -0.0061 -0.05 0.96 

Amp+Chl 0.8545 8.863 <0.0001 

Amp+Chl+Gen 0.6915 7.158 <0.001 

Amp+Gen -0.121 -1.179 0.2387 

Chl 1.154 11.987 <0.0001 

Chl+Gen 0.5593 5.773 <0.0001 

Gen -0.3024 -2.962 0.003 

Uninfected Viscera -0.088 -1.467 0.1436 

Infected Viscera -0.1966 -3.331 0.001 

Parasite Larvae -0.2451 -3.823 0.0001 

Time 48 -0.5292 -1.386 1 

Time 72 -0.8495 -2.22 1 

25X:Amp+Chl -0.6708 -3.619 0.0003 

50X:Amp+Chl -0.3662 -2.31 0.021 

75X:Amp+Chl -0.2256 -1.633 0.1028 

25X:Amp+Chl+Gen -0.6699 -3.578 0.0003 

50X:Amp+Chl+Gen -0.2653 -1.647 0.0998 

75X:Amp+Chl+Gen -0.3201 -2.298 0.0217 

25X:Amp+Gen -0.0256 -0.128 0.8984 

50X:Amp+Gen 0.0955 0.536 0.5918 

75X:Amp+Gen 0.0298 0.204 0.8382 

25X:Chl -0.8576 -4.595 <0.0001 

50X:Chl -0.3354 -2.113 0.0348 

75X:Chl -0.4339 -3.117 0.0018 

25X:Chl+Gen -0.9091 -4.761 <0.0001 

50X:Chl+Gen -0.4073 -2.505 0.0123 

75X:Chl+Gen -0.3294 -2.365 0.0182 

25X:Gen -0.0385 -0.129 0.8974 

50X:Gen -0.4263 -2.132 0.0332 

75X:Gen -0.3215 -2.13 0.0333 
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Figure 12: i) uninfected crab viscera, 22) infected crab viscera, iii) parasite externae, iv) parasite 

larvae. Inhibition radii of ‘A’ zones grouped by antibiotics at 100X concentrations broken down 

by biological samples. Antibiotics are compare over the 72 hour observation period. Amp is 

ampicillin, Chl is chloramphenicol, and Gen is gentamicin. Inhibition is measured by inhibition 

radius in millimeters of ‘A’ inhibited zones.  
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Figure 13: Inhibition radii of ‘A’ zones grouped by antibiotics at 100X concentrations and all 

biological samples. Antibiotic treatments are compared over the 72 hour observation period. 

Amp is ampicillin, Chl is chloramphenicol, and Gen is gentamicin. Inhibition is measured by 

inhibition radius in millimeters of ‘A’ inhibited zones. 
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transferase where the mRNA strand is read with the 30s subunit protein, and the transferase 

forms peptidyl bonds between amino acids and produces a strand of tRNA corresponding to the 

mRNA strand. However, chloramphenicol blocks the peptidyl transferase, interfering with the 

cell’s ability to read mRNA and add amino acids to peptidyl chains (White and White 1964, 

Sande and Overton 1973). This directly impacts the function of gentamicin, which prevents the 

30s RSU from reading the mRNA strand, thereby preventing translation and the formation of 

proteins. But if peptidyl transferase is being inhibited, then everything downstream from that 

step-in protein synthesis, including the reading of mRNA strands, will be blocked, making 

gentamicin redundant and decreasing its overall effectiveness (White and White 1964, Sande and 

Overton 1973). If this were the entirety of gentamicin’s shortcoming when combined with 

chloramphenicol, then inhibition would be expected to be higher in the gentamicin treatments 

then what was observed in the gen+chl treatments. The fact that gentamicin was consistently the 

lowest performing antibiotic suggests that gentamicin and chloramphenicol’s antagonistic 

relationship is likely not the only reason for lowered inhibition in treatments where the 

antibiotics are combined, and that there must be another reason that gentamicin performs so 

poorly in inhibiting the growth of the crab and parasite microbiomes. 

 

Influence of Concentration: 

 Concentration also had a significant effect on the inhibition of bacterial groups within 

biological samples and antibiotic types (F=16.0399, p<0.0001). On average lower concentrations 

had decreased inhibition radii (Table 4), although the 50X concentration had a slightly larger 

zones of inhibition than 100X treatments over the 72 hour study period (t=0.08 p=0.9361) (Fig. 

14). Most of this increased  
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inhibition at the 50X concentration level seems to come from the amp+gen combination 

 

Figure 14: Inhibition radii of ‘A’ zones of the top performing antibiotic: chloramphenicol. 

Inhibition radii are grouped by concentration level and all biological samples. Antibiotic 

treatments are compared over the 72 hour observation period. Inhibition is measured by 

inhibition radius in millimeters of ‘A’ inhibited zones. 
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treatments (Table 4). At 100X, the amp+gen treatments had smaller measured zones of inhibition 

(t=-1.179, p=0.2387) than the 50X treatments (t=0.536, p=0.5918) which had larger zones of 

inhibition. This could be a result of the gentamicin, which seemed to inhibit bacteria slightly 

better at lower concentration levels. At 100X concentration, gentamicin had much smaller 

inhibition zones (t=-2.962, p=0.003), and inhibition zones size increased through moderate 

treatments at 50X (t=-2.132, p=0.0332), and had the highest inhibition at 25X concentration (t=-

0.129, p=0.8974). 

 

Influence of Biological Sample: 

 While interactions among biological samples were small, there was still a significant 

effect of biological sample on inhibition radii (F=6.216, p=0.0004), with some sample types 

seeming to be more resistant to bacterial inhibition (Fig. 14). Bacterial communities were shown 

to be quite different among different biological samples in Chapter 1 (Fig. 7, 8, 9), and these 

changes in community composition are likely the main drivers for why different biological 

samples experienced different amounts of inhibition. The interesting result from the influence of 

biological sample, is that the parasite externae and uninfected crab viscera, two groups that were 

shown to be significantly different from each other in experiment 1, had the most similar 

amounts of inhibition. This could be due to bacterial communities in different biological samples 

being susceptible to the same types of antibiotics, despite being comprised of different species.  

Interestingly, the two biological groups that had the most similar taxa communities, had the most 

dissimilar amount of inhibition that occurred, with larvae having smaller inhibition radii than the 

parasite externae (t=-2.731, p=0.0068) (Fig. 15). Since parasite larvae and externae were most  
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Figure 15: i) uninfected crab viscra, ii) infected crab viscera, iii) parasite externae, iv) parasite 

larvae. Inhibition of all antibiotics at 100X concentration split by biological sample. Amp is 

ampicillin, Chl is chloramphenicol, and Gen is gentamicin. Inhibition is measured by inhibition 

radius in millimeters of ‘A’ inhibited zones. All inhibition radii are compared at 24 hrs. 
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similar to each other, in terms of taxa richness and community composition, these were the 

groups that were expected to have similar amounts of inhibition. These differences in bacterial 

inhibition between samples that should have behaved similarly could have come from the media 

that antibiotic tests were performed on. Marine agar was used to grow the most microorganisms 

due to the marine environment the biological samples came from, and it is possible that some 

groups of bacteria grew in different proportions than what would normally be in the crab tissues. 

It could also be that some groups of bacteria unique to parasite larvae, such as the Maribacter, 

could be responsible for the increase in antibiotic resistance in the larvae samples. Literature has 

shown that some species within Maribacter have natural antibiotic resistance, and it could be 

groups of bacteria like these, with associations with only the parasite larvae, that are increasing 

community antibiotic resistance via horizontal gene transfer between bacterial groups. 

 

Influence of Time: 

 The amount of time that bacteria were expose to antibiotic treatments had significant 

impacts on the amount of inhibition that occurred (F=2.5162, p<0.0001). This trend was 

observed across all biological samples, antibiotic treatments, and concentration levels (Fig. 12, 

13, 14, 15), and resulted in smaller inhibition zones at later time points. Initial measurements of 

inhibition radii at 24hrs had significantly larger inhibition radii (t=49.557, p<0.0001), than the 

intermediate sized 48hr time period (t=-7.932, p<0.0001), or the smallest 72hr inhibition radii 

(t=-11.515, p<0.0001). The significant differences in inhibition radius sizes between all three 

treatments shows that bacterial antibiotic resistance was gained throughout the experiment, 

which was why shorter pulse dosages of antibiotics was expected to result in less antibiotic 

resistance gained by crabs and parasite microbiomes. The fact that this trend was consistent 
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across all biological sample types, antibiotic concentration levels, and antibiotic combinations, 

suggests that future experiments performed with antibiotic disruption of microbial communities 

will be impacted by the microbiome’s ability to develop antibiotic resistance. 

PART 2B. COMMUNITY DISRUPTION AND HOST BEHAVIOR 

Methods: 

Antibiotic Dosing and Community Diversity:  

To test the effects of antibiotic exposure on host stress response, crabs were exposed to the most 

effective antibiotic dosage (100X, 2 mg/mL chl). Crabs were exposed to the antibiotics either for 

a 24 hour period (pulse) or a 72 hour period (press). However, following preliminary trials, the 

press experiment had to be abandoned as it led to excessively high mortality (91%) in infected 

crabs exposed to the antibiotic. As a result, only the 24 hour pulse experiment is described 

below. Crabs were subjected to righting response trials before and after the 24 hour experiment 

(described below). After testing righting response, crabs were given a 24 hour resting period 

before the start of the dosage trial to ensure that any stress induced mortality was due to the 

antibiotics and not the righting response trials. 

Sterilized jewelry boxes were randomly assigned based on treatment (antibiotic or no 

antibiotic = control) and infection status (infected or uninfected). A total of 19 crabs were used in 

each of the uninfected control, the uninfected antibiotic, and the infected control groups, and 18 

crabs were used in the infected antibiotic group (one died prior to the start of the experiment). A 

treatment stock was made with 1.14L of 20‰ sterilized sea water and 2.28g of chl to create a 

100X (2 mg/mL) stock solution. The solution was extracted using a motorized pipette, and 30mL 

of the antibiotic stock was added to each of the appropriate wells within the jewelry cases, while 

the control wells received 30mL of 20‰ sterilized sea water. After all wells had been filled, 
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crabs were transferred from holding cases to experimental cases, which were randomly stored in 

an incubator for 24hr at 20°C and a 16:8 light:dark cycle. After 24 hours, cases were removed 

from the incubator and placed at 0°C for 30 minutes. Crabs were dissected as described in 

Chapter 1. The crab visceral mass was removed and stored in Eppendorf tubes with 250µL of 

PBS (phosphate buffered solution), and externa(e) from infected crabs were removed and stored 

in a separate tube with 250µL of PBS. Crabs that died during the experiment were not included 

in downstream genetic analyses because the microbiome of organisms begins to change as soon 

as the host has died (Hauther et al. 2015). A total of five crabs died in the infected chl treatment 

group from an initial population of 18 (27% mortality), and one crab died in the uninfected chl 

treatment group from an initial population of 19 (5% mortality). DNA extractions followed the 

same protocol as described in Chapter 1. PCR and sequencing are in progress, and thus the 

results of antibiotic disruption on community composition and diversity are forthcoming and not 

included in this chapter.  

 

Righting Response Trials: 

All 69 living crabs (19 uninfected control, 19 infected control, 18 uninfected treatment, 

13 infected treatment) were tested for righting response trials pre- and post-treatment. Each crab 

was individually placed on the middle of a large flat cutting board and subjected to three 

repeated flip trials, and the time it took for a crab to right itself was recorded. Occasionally, it 

was noted that crabs would flip most of the way until they were resting right on the joining of 

their carapace and abdomen, and sometimes would remain there for the rest of the time trial. If a 

crab performed this type of partial flipping behavior, the partial flip time was recorded, and a 

second time was taken if they completed righting themselves within the time limit. If a crab did 
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not right itself within 120 seconds, that trial was ended. This was repeated three times, 

concurrently to get an average righting response for each individual crab. Once a crab had 

finished its righting response trials, it was placed in a new jewelry box with 30mL of 20‰ 

sterilized sea water, and the cutting board was wiped down with 70% ethanol solution between 

each individual to reduce the chance of cross contamination.  

 

Statistical Analyses: 

 For crab righting response, data was skewed to the right in a poisson distribution, and a 

generalized linear model was used to analyze the results using the glm function in base RStudio. 

Interactions between treatment and infection were analyzed in the glm, and righting response 

times were visualized in the base Rstudio boxplot function with the righting response times as a 

function of antibiotic and infection groups. 

 Analysis of disrupted microbial communities will be performed using the methodology 

from Chapter 1. Mothur v1.44.1 will be used along with the previous pipeline (Kozich et al. 

2013) for interpretation of sequenced communities. Community composition between antibiotic 

treated crabs and control crabs will be compared to determine antibiotic effectiveness at 

disrupting the microbiome. These communities will be plotted in RStudio v1.2.5033 in nMDS 

plots using the vegan v2.5-4 package and ggplot v3.3.1, and community taxa plots will be made 

using Phyloseq v1.16.2 and dplyr v0.7.8. Phyla plots will again be sorted by taxa >2% while 

genera will use the >5% cutoff, unless high numbers of rare taxa exist, in which cast the >7.5% 

cutoff will be used.  
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Results and Discussion: 

Righting Response Trials: 

 Prior to treatment, there was no statistical difference in righting response between 

infected and uninfected crabs (p=0.8252). This was surprising, given that L. panopaei has been 

shown to have a significant detrimental effect on its host, altering behavior and enhancing 

mortality (Alvarez et al. 1995). Unlike some parasite species that require host death to progress 

to the next stage in their life cycle (Trail 1980), L. panopaei has a direct lifecycle, and thus if the 

host dies, the parasite also dies. Thus, behavioral modification that too greatly enhances host 

mortality would not be adaptive to the parasite. Therefore, the righting response trials likely 

suggest that crabs that survived the infection process can compensate for the parasite and 

continue to perform defensive and predator avoidance behaviors.  

Interactions between infection and treatments was shown to significantly impact the 

righting response time of crabs (df=68, t=-2.437 p=0.0176), with infected crabs taking a longer 

time to right themselves then uninfected crabs that were also treated (Fig. 16). There was also a 

difference in mortality in treatment crabs; five (27%) infected treatment crabs died during the 

experiment, while only one (5%) uninfected treatment crab died. For both infected and 

uninfected crabs, the addition of 100X (2mg/mL) chloramphenicol increased righting time by 

over six times the initial righting times (t=0.889, p<0.0001). This supported the hypothesis that 

the addition of antibiotics would increase the righting response time, although the response time 

was much longer in the uninfected crabs than was anticipated. Infected control crabs were not 

significantly different from uninfected control crabs in righting response at the end of the 

experiment (t=-0.506, p=0.615). 

The increased righting response time suggests that treatment groups were being affected  
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Figure 16: Boxplots showing crab righting response times after the 24hr experimental period. In 

(infected) and Un (uninfected) indicate if crabs were infected with the parasite Loxothylacus 

panopaei. Treatment groups refer to if crabs were dosed with chloramphenicol (treat) or not 

(control). All trials were stopped at 2 minutes so the upper limit of the righting response times is 

120 seconds. 
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by the addition of antibiotics, although if this was due to loss of microbiome or a physiological 

response from the crabs remains unknown. The observed increased stress in the infected crabs 

versus the uninfected crabs also suggests that while the control infected crabs were able to right 

themselves at nearly the same rate as control uninfected crabs, the additional stressor of the 

antibiotics had a significantly greater strain on the infected treatment crabs, when compared to 

their uninfected counterparts. This type of response has been observed in a few systems. For 

instance, the parasitized moth larvae of Lymantria dispar were unable to handle environmental 

stressors that non-parasitized con-specifics were able to withstand (Bischof 1995). In the 

stickleback Gasterosteus aculeatus, parasitized individuals died much faster than their non-

parasitized counterparts under food stress (Pascoe and Mattey 1977). 

 

Community Diversity: 

To date, all DNA has been extracted from the treated or untreated crabs. Following 

methodology from Chapter 1, I will perform PCR using the same primers and protocols and will 

send these samples for sequencing. Sequencing results are forthcoming. 

 

Conclusion and Future Directions: 

The main purpose of Chapter 2 was to establish a methodology that can be used in future 

studies to disrupt the microbiome of the crab and parasite to test the microbiome’s role in the 

tripartite relationship. Because much of the evolutionary impacts of the microbiome on the host-

parasite relationship are still unknown, developing a methodology that can be used to begin 

manipulating the microbiomes is a much needed step towards understanding the tripartite 

relationship. Concentration and antibiotic type both showed significant impacts on the amount of 
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microbial community that was able to be disrupted over a short period. The broad spectrum 

chloramphenicol was also shown to be an effective inhibitor of the microbiomes of both 

parasitized and unparasitized crabs. Because of chloramphenicol’s effectiveness against bacteria 

that are notoriously resistant to weaker antibiotics, this suggests that more potent antibiotics are 

required to inhibit the microbiome of this host and parasite. This could simply be due to the fact 

that the antibiotics that were tested were not specifically designed to eliminate the microbiomes 

that are native to the crabs and parasites. This could be compounded by a number of factors, such 

as the marine environment of the microbiomes, however without further testing it is difficult to 

say why gentamicin and ampicillin did not inhibit as much of the microbiome as 

chloramphenicol. Further refinement of antibiotics and dosages will likely be required, as 

different biological samples have been shown to response differently to different antibiotics, and 

some communities might be resistant to the broad spectrum antibiotics that were tested in this 

experiment. Analysis of treated crab microbiomes from the dosage trials will assist in 

determining the efficacy of chloramphenicol at disrupting the microbiomes of the crabs and 

parasites. Future work using the methodology developed could be critical in unraveling the 

tripartite relationship in the host-parasite-microbiome system, and uncovering how the 

microbiome impacts this complex relationship between two organisms.
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