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Résumé 

Studying the beginning of the end: The roles of Tbf1 and Reb1 at subtelomeres 
 

Par Alexandra Krallis 
Programme de Microbiologie 

 
Mémoire présenté à la Faculté de médecine et des sciences de la santé en vue de 

l’obtention du diplôme de maitre en sciences (M. Sc.) en Microbiologie, Faculté de 
Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec, 

Canada, J1H 5N4 
 

Les séquences télomèriques chez S. cerevisiae recrutent une multitude de 
protéines afin de remplir ses fonctions essentielles pour le maintien de l’integrité 
genomique : la réplication complète des chromosomes et la protection des mécanismes 
de réparation de l'ADN. Cependant, il y a des indices que les régions sous-télomèriques, 
qui se trouvent directement à l'intérieur des répétitions télomèriques, peuvent aussi 
affecter les fonctions des extrémités chromosomiques. Deux des principales protéines 
recrutées aux sous-télomères sont Tbf1 et Reb1. Bien qu'elles se lient aux régions 
promotrices d'une multitude de gènes, leurs fonctions aux extrémités chromosomiques 
ne sont pas encore comprises. 

Des études précédentes suggèrent que Tbf1 et Reb1 pourraient jouer un rôle dans 
le maintien de la longueur des télomères et en empêcher la propagation de répression 
transcriptionnel des gènes près des télomères. Comme beaucoup de ces études ont été 
réalisées en l'absence de régions sous-télomèriques ou avec des allèles mutants, on ne 
sait pas si les phénotypes observés proviennent de changements dans les régions 
sous-télomèriques ou des altérations de la transcription des cibles Tbf1 ou Reb1. Afin 
d'éviter ces complications, un système a été conçu pour étudier les effets de l'absence de 
Tbf1 et Reb1 des sous- télomères avec des structures naturelles. 

L'utilisation de ce système a permis de découvrir que, Tbf1 et Reb1 ne sont pas 
très importantes pour le maintien de la longueur des télomères ou pour limiter la 
propagation de répression transcriptionnel. Cependant, il a été observé que Tbf1 et Reb1 
ont un rôle dans la répression de TERRA, un ARN long non codant transcrit à partir des 
régions sous-télomèriques. Récemment, il a été suggéré que TERRA pourrait jouer un rôle 
dans le maintien des télomères. Toutefois, il est crucial de limiter la transcription du 
télomère, car elle pourrait mener à une cassure de l’ADN et l'instabilité génomique. Cette 
étude souligne l'importance de travailler avec des régions sous-télomèriques non-
modifiées ou modifiées en étudiant les télomères et offre un nouvel aperçu de la 
régulation de TERRA. 
 
Mots-clés : Tbf1, Reb1, télomère, transcription, TERRA 
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Summary 
 

Telomeres protect the ends of linear chromosomes from being recognized as DNA 
breaks, helping to avoid events that could lead to genomic instability. The telomeric 
sequences in budding yeast recruit a multitude of proteins in order to carry out essential 
functions in end replication and protection from DNA repair machinery. However, there is 
evidence that subtelomeres, which lie directly interior to the telomeric repeats, may also 
affect the properties of the chromosomal ends. Two of the main proteins recruited to the 
subtelomeres are Tbf1 and Reb1. While they bind at promoter regions of a multitude of 
genes, their function at the chromosomal ends is still unclear. 

TBF1 and REB1 are both essential genes, with some overlapping targets and 
functions in fine tuning transcription and creating nucleosome free regions. Past work 
suggests both Tbf1 and Reb1 could have roles in telomere length maintenance and 
limiting the spread of telomere silencing. As many of these studies were done in the 
absence of subtelomeric regions, or with mutant alleles, it is unclear if the telomere 
phenotypes observed stem from changes in the subtelomere regions or from alterations 
in transcription of Tbf1 or Reb1 targets. This is evidenced by different studies producing 
conflicting evidence pertaining to the functions of these proteins. In order to avoid such 
complications, a system was designed to study the effects of the absence of Tbf1 and 
Reb1 at subtelomeres with otherwise native structures. 

Through the use of this system, it was found that Tbf1 and Reb1 may not be very 
important for telomere length maintenance or limiting the spread of telomere silencing. 
However, it was discovered that Tbf1 and Reb1 have a role in repressing TERRA, a long 
non-coding RNA transcribed from the subtelomere and telomeric repeats. Recent work 
suggests TERRA may have a role in telomere maintenance in the absence of telomerase. 
However, limiting transcription of the telomere is crucial, as it could lead to replication 
fork stalling, DNA breaks and genomic instability. This study underlines the importance of 
working with natural subtelomere regions when studying telomeres and offers a new 
insight into TERRA regulation. 
 
Keywords: Tbf1, Reb1, telomere, transcription, TERRA 
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Introduction 

 

Telomeres 

 

Eukaryotic genomes are arranged into multiple linear chromosomes beginning and 

ending with structures protecting them, named telomeres. These structures were first 

characterized by Herman Muller and Barbara McClintock (1939, 1941), who each noted 

that broken chromosomal ends were highly unstable and prone to fusion, while native 

chromosomal ends were resistant to chromosome fusion (McClintock, 1941; McClintock, 

1939; Muller, 1938). The structures at the chromosomal ends were named by Herman 

Muller (1938) after the Greek “telos” (end) “meros” (part) and are known to be essential 

for the maintenance of genome stability due to their ability to inhibit 

chromosome-chromosome fusions. 

The structure of telomeres is conserved throughout eukaryotes, while the exact 

sequence varies across species. Telomeric DNA is comprised of non-coding G-rich repeat 

sequences, with a double stranded portion and 3’ single stranded overhang (Larrivée et 

al., 2004; McElligott and Wellinger, 1997; Wellinger et al., 1993). The lengths of double 

and single stranded sections vary across different species. The telomeres carry out their 

main function, maintenance of genome stability, by recruiting various protein complexes. 

For example, in human cells, the TTAGGG (T2AG3) telomeric repeats (de Lange et al., 1990) 

form 5-15 kilobases (kb) of double stranded DNA and a 50-300 nucleotide (nt) 3’ single 

stranded overhang (McElligott and Wellinger, 1997). The T2AG3 sequence is conserved in 

all mammalian species, while the length of double strand and single strand sections of the 

telomeres can vary. This telomeric DNA associates with the shelterin complex, consisting 

of 6 protein subunits (Chen, 2019; De Lange, 2005). The shelterin complex specifically 

binds telomeres by proteins TRF1, TRF2 and POT1, which directly bind DNA in a sequence 

specific manner. TRF1 and TRF2 bind double stranded T2AG3 repeats through their two 

SANT/Myb type DNA binding domains, while POT1 binds the single stranded portion 

(Chen, 2019). Proteins Rap1, TIN2 and TPP1 bind and interconnect the DNA binding 
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proteins. Association with the shelterin complex remodels the telomeric DNA and recruits 

additional proteins to facilitate telomeric functions, such as inhibiting DNA repair 

mechanisms and maintaining telomere length homeostasis (Chen, 2019). 

Telomeres of S. cerevisiae (budding yeast), are structured similarly, although they 

do not interact with an analogous set of proteins. Telomeric DNA consists of 300  75 bp 

of double standed DNA with a TG1-3 degenerate repeat sequence (Wellinger and Zakian, 

2012). The 3’-single stranded overhang is also G-rich, with the same TG1-3 repeats and is 

12-15 nt long (Larrivée et al., 2004). Like the human telomere, budding yeast telomeres 

are bound by several protein factors. Although the proteins themselves vary, they too 

associate with telomeric DNA to allow the telomeres to carry out essential telomeric 

functions (Wellinger and Zakian, 2012). The yeast telomere and its binding factors are 

represented in Figure 1. Double stranded yeast telomeric DNA is covered with Rap1, an 

ortholog to human Rap1 (Li et al., 2000; Wellinger and Zakian, 2012). While the hRap1 

does not directly bind DNA, scRap1 binds telomeric DNA via its double myb domain and 

recruits Sir3/Sir4 and Rif1/Rif2 (Buck and Shore, 1995; Graham et al., 1999; Hardy et al., 

1992; Moretti and Shore, 2001; Moretti et al., 1994; Wotton and Shore, 1997). The Sir 

proteins form a complex involved in repressing transcription at the chromosomal ends 

and also interact with other proteins important for telomeric functions. In addition to this, 

Sir4 is involved in tethering the telomeres to the nuclear envelope, where they form foci 

in the G1-S-phase (Andrulis et al., 2002; Bupp et al., 2007; Taddei et al., 2004). Proteins 

Rif1 and Rif2 are important for telomere length homeostasis (Wellinger and Zakian, 2012). 

As in human telomeres, the 3’ single strand overhang is bound by a protein that 

recognizes single stranded DNA. Cdc13 binds single stranded TG1-3 repeats and interacts 

with different proteins, depending on the cell cycle phase (Mersaoui and Wellinger, 

2018). Cdc13 is involved in a variety of functions such as telomere elongation, telomere 

replication and chromosomal capping, by interacting with various proteins at different 

stages of the cell cycle (Mersaoui and Wellinger, 2018; Wellinger and Zakian, 2012). 

Telomeres are also bound by yKu70 and yKu80 proteins, which form a ring shaped yKu 

complex. The complex can either directly bind DNA or be recruited through interactions 
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between yKu80 and Sir4 (Gravel et al., 1998; Larcher et al., 2016; Roy et al., 2004). The 

yKu complex plays a role in chromosomal end capping, repression of transcription near 

telomeres, clustering telomeres near the nuclear envelope and telomere length 

maintenance (Boulton and Jackson, 1998; Fisher et al., 2004; Gallardo et al., 2011; 

Laroche et al., 1998; Polotnianka et al., 1998). However, it also has roles in DNA repair at 

double stranded breaks within the genome (Fell and Schild-Poulter, 2015). Many of the 

proteins involved in telomere functions also have roles in transcription or DNA repair 

pathways when bound at other genomic loci, some of which will be discussed below 

(Wellinger and Zakian, 2012). 

 

 
Figure 1: Schema of the telomere nucleoprotein structure in S. cerevisiae 
Double stranded DNA is bound by Rap1, which recruits proteins Sir2/3/4 to form the Sir 
complex. Rap1 also recruits Rif1 and Rif2 to negatively regulate telomere elongation. The 
yKu complex is formed by proteins yKu70 and yKu80 and binds at the double 
strand/single strand junction to function in end capping. The CST complex, a complex 

containing Cdc13, Stn1 and Ten1, binds to single stranded TG1-3 repeats. 
 

 

Essential functions of telomeres: chromosome capping 

 

As Muller (1938) and McClintock (1939) described in their experiments observing 

stable chromosome ends, the telomeres prevent fusion between chromosomes, which is 

essential for genome stability in a healthy cell. When DNA breaks occur within a 

chromosome, the cell must repair it through DNA repair mechanisms such as 

non-homologous end joining (NHEJ) or homologous recombination (HR). Recognition of 
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the telomeres as double stranded breaks would lead to the fusion of chromosomes by 

DNA repair mechanisms and create dicentric chromosomes. This process is propagated in 

daughter cells in a cycle called the breakage-fusion-bridge cycle and results in gross 

genomic instability (McClintock, 1939). NHEJ is particularly hazardous for unprotected 

chromosomal ends, as this DNA repair mechanism recognizes double stranded breaks and 

joins the DNA together, regardless of sequence. To prevent these events, the telomere 

nucleoprotein structures protect the chromosomal ends from recognition by DNA repair 

machinery as a double stranded break. This function is called chromosome capping 

(Garvik et al., 1995; Wellinger and Zakian, 2012). 

There are multiple proteins contributing to the capping functions of telomeres, 

however, many of these proteins have additional telomeric and non-telomeric functions. 

As is represented in Figure 1, Rap1 binds double stranded TG1-3 repeats (Conrad et al., 

1990; Gilson et al., 1993). In addition to Rap1 contributing to telomere capping by limiting 

resection of the C-rich strand, it recruits Rif2 and Sir4 proteins, which decrease 

chromosomal fusion by 2 different pathways (Marcand et al., 2008; Vodenicharov et al., 

2010). Rif2 is thought to inhibit telomere-telomere fusion by inhibiting the MRX complex 

required for NHEJ from functioning. Sir4 contributes to decreasing telomere-telomere 

fusion, possibly through interactions with yKu80. The yKu complex is a protein with 

functions at non-telomeric loci (Downs and Jackson, 2004). yKu facilitates NHEJ repair of 

double stranded breaks by binding to DNA at the breaks in a sequence independent 

manner and preventing MRX dependent 5’ end resection (Bonetti et al., 2010). When 

binding telomeres, for example after replication fork collapses, the yKu complex is 

implicated in telomere capping by inhibiting 5’-end resection (Gravel et al., 1998; Larcher 

et al., 2016; Vodenicharov et al., 2010). The single stranded telomeric repeats are bound 

by Cdc13, which carries out its protective functions by recruiting essential proteins Stn1 

and Ten1 to form the CST complex (Wellinger and Zakian, 2012). This complex protects 

the telomere from C-strand degradation and subsequent activation of DNA damage 

checkpoints (Garvik et al., 1995). The additional functions of Cdc13 in end-replication and 

telomere elongation events will be discussed below. 
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Essential functions of telomeres: chromosome end replication 

 

In addition to linear chromosomes being vulnerable to degradation and 

chromosomal fusion, they also present a problem for conventional DNA replication 

machinery. Each round of DNA replication causes a slight loss of terminal sequences at 

one end of each chromosome, represented in Fig. 2 (Olovnikov, 1973; Soudet et al., 2014). 

Replication of the leading and lagging strands at the ends of the chromosomes produces 

two different types of DNA ends (Lingner et al., 1995). The lagging strand is replicated via 

short Okazaki fragments, using the G-rich strand as a template. The degradation of the 

last short RNA primer after DNA replication results in the 3’ single stranded overhang 

required for the functional telomere structure and does not result in a loss of terminal 

sequences (Soudet et al., 2014). Replication of the leading strand in the 5’ to 3’ direction 

uses the C-rich strand as a template and continues until the end of the template 

(Olovnikov, 1973). The loss of terminal sequence occurs upon generation of the 3’ single 

stranded overhang. The newly replicated 5’ strand is resected in the 5’ to 3’ direction by 

an exonuclease and then filled in, leaving a 3’ overhang of 12-15 bp (Soudet et al., 2014). 

Thus, the newly synthesized G-rich leading strand is now 12-15 bp shorter than the 

original G-rich lagging strand. 
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Figure 2: End-replication problem. 
Parental 5’ and 3’ strands are indicated in dark blue and dark red respectively. Daughter 
5’ and 3’ strands are indicated in light blue and dark blue strands. After replication of the 
leading 5’ end, the 5’ strand is resected and subsequently filled in (light blue). RNA 
primers are shown by grey arrow. Sequence loss after replication of 5’ strand is indicated 
by dashed grey lines. 
 

As the telomeres are made of non-coding sequences, the gradual loss of DNA does 

not lead to a loss of coding genetic material. However, telomeric proteins involved in 

capping require certain lengths of telomeric sequences in order to bind effectively and 

carry out capping functions. Thus, human cells have a limit of cell divisions (Hayflick Limit) 

due to the progressive shortening of telomeric sequences that comes with DNA 

replication and cell division (Hayflick and Moorhead, 1961; Lundblad and Szostak, 1989). 

After somatic cells have reached this limit, they enter a G0 state and do not replicate 

further. This also serves to limit the accumulation of mutations, which could eventually 

lead to genetic instability and cancer. However, mammalian germ and stem cells, as well 

as yeast cells, have unlimited dividing potential. This is due to the presence of a reverse 

transcriptase called telomerase, which is able to counteract the progressive shortening of 

chromosomal ends by elongating telomeric sequences (Greider and Blackburn, 1985, 

1987; Morin, 1989). 
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Telomerase consists of an RNA scaffold that also encompasses a template for 

telomeric sequences, a catalytic protein subunit and several other proteins essential for in 

vivo function. In S. cerevisiae, the RNA moiety of the ribonucleoprotein, called TLC1, is a 

long non-coding RNA that possesses multiple distinct elements represented in Figure 3 

(Singer and Gottschling, 1994). Near the 17 nt template region at the center of the RNA is 

a template boundary element and a pseudo-knot structure (Dandjinou et al., 2004). The 

RNA is folded into 3 stem loops such that the 3’ end is in proximity with the 5’ end. The 

catalytic subunit, Est2 (ever shorter telomere), binds to the central area containing the 

template for elongation of the G-rich 3’ overhang (Chappell and Lundblad, 2004; 

Livengood et al., 2002). The Est1 accessory protein binds to a bulge on the third stem 

loop, with the Est3 protein bridging Est1 and Est2 (Seto et al., 2002; Tucey and Lundblad, 

2014). These proteins are all named for their “ever shorter telomere” phenotype, as their 

deletion causes progressive telomere shortening, eventually leading to genomic instability 

and cell death (Lendvay et al., 1996; Lundblad and Szostak, 1989). Proteins Pop1, Pop6 

and Pop7 are thought to stabilize the complex by binding the same bulge as Est1, 

potentially interacting with Est1 and Est2 (Lemieux et al., 2016; Laterreur et al., 2018). The 

3’ end of the RNA is bound by the Sm7 complex, which also contributes to the stability of 

the molecule (Seto et al., 1999). In order to import and retain the telomerase molecule in 

the nucleus, the yKU complex binds a 48 nt stem loop called the yKu binding stem 

(Gallardo et al., 2008; Seto et al., 1999; Stellwagen et al., 2003). 

 Telomerase is only recruited to specifically short telomeres in the late S phase of 

the cell cycle (Teixeira et al., 2004). At long telomeres, more Rap1 is associated to the 

double stranded TG1-3 repeats, recruiting Rif1 and Rif2. Rif2 inhibits 5’ to 3’ end resection 

by the MRX complex (Marcand et al., 2008). This limits the amount of 3’ single stranded 

overhang available for telomerase to associate with, thus limiting telomere elongation by 

telomerase. At short telomeres, less Rap1 is present, as there are less double stranded 

TG1-3 repeats, leading to a decreased presence of Rif2 (Levy and Blackburn, 2004; 

Marcand et al., 1997). This allows MRX to be activated by the Tel1 kinase, leading to 

resection of the C-rich strand (Goudsouzian et al., 2006; Martina et al., 2012). The 
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3’ single strand overhang produced then binds Cdc13, which, at this stage in the cell cycle, 

is not associated with Stn1 and Ten1, but recruits telomerase to the telomere via 

interactions with Est1 (Chen, 2019; Evans and Lundblad, 1999; Wu and Zakian, 2011). The 

3’ single stranded overhang is elongated. In the G2 phase, Cdc13 begins to associate with 

Stn1 and Ten1 to form the CST complex and recruit DNA polymerase  to fill in the 

telomeric C- strand, completing telomere elongation (Chandra et al., 2001; Grossi et al., 

2004; Mersaoui and Wellinger, 2018). 

 In the absence of telomere elongation by telomerase, telomeres will gradually 

shorten, and cells will enter a permanent cell cycle arrest and senesce (Lundblad and 

Szostak, 1989; Singer and Gottschling, 1994). The same can happen due to the presence 

of a single, critically short telomere when it is unable to be repaired by telomerase 

(Abdallah et al., 2009; Hackett et al., 2001; Khadaroo et al., 2009). However, a certain 

subset of these cells can evade replicative senescence and regain replicative capacities 

(Lundblad and Blackburn, 1993; Teng and Zakian, 1999). These so-called “survivors” 

maintain their telomere length by break induced replication (BIR), a form of homologous 

recombination (Kass- Eisler and Greider, 2000; Lundblad and Szostak, 1989). BIR occurs at 

collapsed replication forks, eroded, uncapped telomeres and is also recruited at RNA-DNA 

hybrids called R- loops (Balk et al., 2013; Lydeard et al., 2007). This alternative form of 

telomere maintenance can cause two different DNA arrangements at the chromosomal 

ends, causing cells to be classified as type I and type II survivors (Lundblad and Blackburn, 

1993; Teng and Zakian, 1999). Type I survivors are characterized by an amplification of Y’ 

elements and only short tracts of double stranded TG1-3 repeats. The formation of a type I 

survivor requires RAD52, RAD51, RAD54, RAD55 and RAD57 (Larrivée and Wellinger, 

2006; Lundblad and Blackburn, 1993). Type II survivors have only a slight amplification of 

the Y’ elements, but have an extremely variable extension of TG1-3 repeats, some arriving 

to be over 12 kb in length (Teng and Zakian, 1999; Teng et al., 2000). The process to form 

type II survivors requires the MRX complex, TEL1, SGS1 and RAD59. While type I survivors 

often form first in a population, they grow slowly and are frequently outcompeted by type 

II survivors in liquid cultures (Lundblad and Blackburn, 1993; Teng et al., 2000). 
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Subtelomeres 

 

The length of telomeres in S. cerevisiae can sometimes vary by approximately 

150 bp from telomere to telomere. Even in humans, some chromosomes have been noted 

to have consistently longer or shorter tracts of telomeric repeats (Martens et al., 1998). 

This could be influenced by the subtelomeric regions, which vary across chromosomal 

ends (Gilson and Londoño-Vallejo, 2007). In S. cerevisiae, telomeres can be divided into 

two classes, depending on their subtelomeric areas (Figure 3). XY’ telomeres posess both 

X and Y’ subtelomeric elements, while X-only telomeres only have X-elements. Y’elements 

are present at approximately half of the chromosomal ends in 1-4 copies and exist in two 

forms; Y’ short (5.2 kb) and Y’ long (6.7 kb) (Chan et al., 1983; Chan and Tye, 1983). These 

elements are homogenous in sequence, only differing from each other in some insertions 

and deletions and undergo frequent mitotic recombination (Horowitz et al., 1984; Louis 

and Haber, 1992). Furthermore, Y’elements contain nucleosomes and are transcriptionally 

active, although many contain dubious or uncharacterized ORFs (Mak et al., 2009; Zhu 

and Gustafsson, 2009). At XY’ telomeres, the Y’ element is bordering the telomeric 

repeats, with the X-element on the centromere proximal side of the Y’ element (Figure 3). 

X-elements are distinct from the Y’ elements in that they are present at every 

chromosomal end and are more heterogenous in size and sequence. In contrast to the Y’ 

elements, they have been reported to lack nucleosomes, but appear in a heterochromatic 

structure similar to telomeric repeats (Takahashi et al., 2011; Zhu and Gustafsson, 2009). 

The X-Core is a relatively homogenous sequence of approximately 475 bp, comprises an 

autonomously replicating sequence (ARS) and is present in all X-elements. Most 

X-elements also have XCR (X-element combinatorial repeats) sequences, made of 

different combinations of four subtelomeric repeated elements (STR- A, STR-B, STR-C, 

STR-D). The sequences of the individual STRs are quite conserved in telomeres of the 

same strains (Louis et al., 1994). STR-A contains at least one TTAGGG sequence, along 

with several degenerate copies. STR-B, STR-C and STR-D are conserved in length, with 

STR-C containing a TG1-3-like sequence TGGTGGT (Louis et al., 1994). STRs A-C all contain a 
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G-rich strand. Although each of these elements are individually more conserved than the 

X-Core sequence, they are combined differently amongst the individual X-elements, such 

that the XCR regions are variable in sequence and in length. Thus, X-elements range from 

0.5-4 kb in length. X-only telomeres have the XCR sequence directly bordering telomeric 

repeats, with the X-Core sequence on the centromere proximal side of the XCR (Figure 3). 

In XY’ telomeres, the X-element is separated from the telomeric repeats by the Y’ 

element. Some subtelomeres contain telomeric sequences between X and Y’ or Y’ and Y’ 

junctions (Walmsley et al., 1984). These are called interstitial telomeric repeat sequences 

(ITS). 

 
Figure 3: Subtelomeric sequences and binding proteins. 
The X-Core is approximately 475 bp long, is present at all chromosomal ends and has an 
ARS, bound by the Orc complex and Abf1 binding site. 15 of the 16 chromosomal ends 
contain the XCR, which contains binding motifs for Tbf1 and Reb1. 1-4 Y’ elements are 
present at approximately 50% of telomeres and exist in sizes of either 5.2 kb 6.7 kb. Y’ 
elements also contain binding sites for Tbf1 and Reb1 at the telomere proximal end. X-Y’ 
element junctions sometimes contain telomeric repeats, called interstitial telomeric 
repeat sequences (ITS). 
 

One manner in which the subtelomeric sequences could influence the properties 

of the downstream telomeres is by recruiting different proteins in a sequence specific 

manner. The X-Core sequence, containing an ACS, can recruit ORC (origin recognition 

complex) and the Abf1 transcription factor, both of which influence chromatin silencing 

when bound at HM loci (Diffley and Stillman, 1989; Kurtz and Shore, 1991). Most 

telomeres also recruit essential proteins Tbf1 and Reb1 (Koering et al., 2000). Both 

proteins have roles in transcriptional regulation when bound at other genomic loci and 



11  

have similar binding motifs at subtelomeres (Bosio et al., 2017; Koering et al., 2000; Liu 

and Tye, 1991). The subtelomeric proteins Abf1, Tbf1, Reb1, as well as the telomere 

repeat binding protein Rap1, are a group of general regulatory factors (GRFs), as they bind 

at a multitude of promoters throughout the genome and have various functions in 

transcriptional regulation at their targets (Bosio et al., 2017; Fourel et al., 2002; Koering et 

al., 2000). X-only telomeres contain Tbf1 and Reb1 consensus sequences in the XCR and 

one Reb1 binding site in the X-Core (Koering et al., 2000). The telomere of the right arm of 

chromosome VI (TEL06R), is the only exception, as the X-element of this telomere 

comprises only the X-Core sequence. XY’ telomeres can recruit Tbf1 and Reb1 via the 

X-element and Y’ element. Binding sequences for Tbf1 and Reb1 are located in the 

telomere proximal portion of Y’ elements, such that both XY’ and X-only telomeres have a 

cluster of Tbf1 and Reb1 at the telomere-subtelomere junction (Koering et al., 2000). The 

number of binding sites for these proteins can differ from subtelomere to subtelomere 

and may introduce differences in their individual properties. In addition to this, multiple 

transcription factors can bind to different subtelomeric areas in a variety of stress 

conditions, which could also influence telomeric behaviour (Mak et al., 2009). 

 

 

Telomeric properties: Telomere Position Effect 

 

The proteins recruited to the telomere repeats give the DNA in these areas’ unique 

properties. One of these properties is the telomere position effect (TPE), which describes 

the transcriptional silencing of DNA interior to the telomeric repeats (Gottschling et al., 

1990). This was initially thought to be directly dependent only on the Sir proteins and on 

the yKu complex (Boulton and Jackson, 1998). Rap1 recruits Sir3 and Sir4 to the telomere, 

followed by the recruitment of Sir2, a histone deacetylase, by Sir4 (Moretti and Shore, 

2001; Moretti et al., 1994). yKu is also able to recruit Sir2 via its interactions with Sir4 

(Tsukamoto et al., 1997). The deacetylation of histone tails by Sir2 is propagated far from 

the telomeric repeats due to Sir3 and Sir4 interactions with histones H3 and H4 (Hecht et 
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al., 1995; Strahl-Bolsinger et al., 1997). TPE was discovered by inserting a URA3 gene 

adjacent to a truncated telomere TEL07Ltr (URA-tel), lacking its subtelomeric sequence 

(Gottschling et al., 1990). Although cells expressing the URA3 gene are normally dead in 

the presence of 5-fluorotic acid (FOA), some cells with the URA-tel construct were 

resistant to FOA. This phenomenon was observed with various additional genes when 

localized near telomeric repeats (Gottschling et al., 1990). 

It was initially proposed that TPE gradually diminished with increasing distance 

from the telomeric repeats (Renauld et al., 1993). However, at natural telomeres 

possessing wild type X and Y’ elements there are large telomere dependent variations in 

TPE and its continuity, with some telomeres not exhibiting TPE at all (Pryde and Louis, 

1999). This is thought to be due to different transcription factors binding to different 

subtelomeric areas and acting as boundary elements, inhibiting TPE spread, or 

contributing to increased silencing (Fourel et al., 1999; Mak et al., 2009). The X-elements 

were found to have TPE increasing properties in the ACS of the X-Core, while sequences of 

the XCR were coined subtelomeric anti-silencing regions (STARs) (Fourel et al., 2001; 

Power et al., 2011). The discontinuity of TPE spreading was also observed in levels of the 

Sir proteins near telomeres (Ellahi et al., 2015; Zill et al., 2010). Sir proteins are found at 

telomeric repeats and spanning the X-elements, with the highest enrichments at the 

X-Core, potentially recruited by the ORC complex and Abf1 that bind there (Ellahi et al., 

2015). However spreading and gradual dissipation was not observed. Although 

transcription levels of genes within a distance of 20 kb were low, these areas are not 

transcriptionally silent (Ellahi et al., 2015; Wyrick et al., 1999). Furthermore, Sir proteins 

contribute to silencing of only 20 genes, most of which are located close to the telomere. 

(Wyrick et al., 1999). Thus, TPE may not be exclusively mediated by Sir proteins, as initially 

proposed. However, there seem to be other mechanisms in place to decrease 

transcription near chromosome ends, as evidenced by low transcription levels in these 

areas. For example, histone deacetylase I (HdaI), is responsible for repressing 

approximately 40 % of genes 10-25 kb from telomeres (Mak et al., 2009; Robyr et al., 

2002). Silencing at chromosomal ends could be important for the repression of these 
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genes, as many of them are related to stress responses. In support of this idea, 

subtelomeres have been found to recruit various transcription factors in different stress 

conditions (Mak et al., 2009). 

 

 

Telomeric Properties: Telomeric repeat containing RNA 

 

The telomeres of many eukaryotes are transcribed into long non-coding RNAs 

called telomeric repeat containing RNA (TERRA) (Azzalin et al., 2007; Feuerhahn et al., 

2010). In mammalian cells, TERRA was found to be involved in the regulation of 

telomerase, cellular differentiation and heterochromatinization of telomeres (Wang et al., 

2015). In budding yeast, TERRA may also have a role in regulating telomere length 

(Cusanelli and Chartrand, 2014). The transcription start site of TERRA has been mapped to 

the X-Core of telomere 1L and telomere proximal ends of some Y’ elements (Pfeiffer and 

Lingner, 2012). Thus, each TERRA RNA comprises sequences specific to the telomere it is 

transcribed from, as well as a G-rich sequence transcribed from telomeric repeats. TERRA 

is transcribed by RNA polymerase II to produce transcripts ranging in 100-1200 nt in 

length, some of which are poly-adenylated by poly(A) polymerase Pap1 (Luke et al., 2008). 

TERRA levels in yeast are extremely low, which is partially due to the degradation of these 

molecules by the Rat1 5’ to 3’ exonuclease (Luke et al., 2008). TERRA is also regulated on 

a transcriptional level via different pathways, depending on what telomere is being 

transcribed (Iglesias et al., 2011). Rap1 binds telomeric repeats and recruits Rif1/2 and 

Sir2/3/4 proteins, which have been found to regulate TERRA transcription. The deletion of 

any Sir proteins strongly derepresses TERRA transcription at X-only telomeres, but does 

not affect the transcription of XY’ telomeres. This is in accordance with findings indicating 

that Sir proteins are largely not localized in Y’ elements and would thus not be regulating 

transcription of these areas (Zhu and Gustafsson, 2009). Rif1 and, to a lesser extent, Rif2 

contribute to transcriptional repression at all telomeres (Iglesias et al., 2011). 

Multiple experiments have indicated that TERRA could be somehow involved in 
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regulating telomere length. Using a short inducible telomere, it was shown that TERRA 

transcription is increased upon telomere shortening and that the levels of TERRA from this 

telomere decrease gradually as the telomere is elongated by telomerase (Cusanelli et al., 

2013). By observing TERRA through live-cell imaging, it was found that TERRA forms foci 

along the nuclear periphery. Some of these foci colocalized with previously observed 

telomerase clusters (T-Recs). In addition, TERRA was found to associate with its telomere 

of origin in a manner dependent on Mre11, Tel1 and yKu70, which are factors also 

involved in telomerase recruitment. These observations suggest that TERRA transcribed 

from a short telomere recruits clusters of telomerase specifically for the elongation of the 

short telomere of origin. However, it was also observed that TERRA transcription may 

cause telomere shortening in cis, by impeding with the yKu complex’s function in blocking 

Exo1 resection activity at telomeres (Pfeiffer and Lingner, 2012). 

As TERRA transcription is generally increased in telomerase negative (tlc1∆) cells 

(Cusanelli et al., 2013), it has been proposed by multiple groups that TERRA transcription 

plays a role in maintaining telomeres through recombination pathways. In humans, 

increased TERRA levels have been identified as one of the hallmarks of ALT (alternative 

lengthening of telomeres) cells, in which telomeres are maintained by homologous 

recombination pathways in the absence of telomerase (Cesare and Reddel, 2010; 

Episkopou et al., 2014; Schoeftner and Blasco, 2008). This has recently been observed in 

yeast as well (Graf et al., 2017; Misino et al., 2018). It was found that an increase of TERRA 

can delay senescence by aiding in the formation of type II survivors. In telomerase 

negative yeast cells, telomeres are most likely maintained by break induced replication 

(BIR), which is triggered by the increased formation of DNA-RNA hybrids called R-loops 

(Balk et al., 2013; Lydeard et al., 2007). It was observed that TERRA forms such R-loops at 

the telomere it is transcribed from, by base pairing with subtelomeric and telomeric 

sequences (Graf et al., 2017). Degradation of “free” TERRA, not in R-loops, is mediated by 

Rat1 around the time of replication. An increase in TERRA and R-loops was observed in 

telomerase negative cells, particularly at critically short telomeres. The accumulation of 

TERRA originating specifically from short telomeres was attributed to a decrease in Rat1 
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mediated degradation, but not an increase in transcription, at these telomeres (Graf et 

al., 2017). Degradation of R-loops is mediated by RnaseH1 and RNaseH2, which are 

recruited by Rif2 (Graf et al., 2017; Misino et al., 2018). The increase in R-loops correlates 

with increased HDR events to elongate telomeres and delay senescence (Balk et al., 2013; 

Graf et al., 2017). HDR is presumably promoted by the DNA damage response due to the 

accumulation of Rad51 observed at very short telomeres with increased R-loops (Graf et 

al., 2017). Supporting this, the overexpression of RNase H1 and subsequent increase in 

R-loop degradation were found to slow the growth rates of type II survivors (Misino et al., 

2018; Yu et al., 2014). The increase in TERRA levels and formation of these R-loops occur 

in the G1/S transition, preceding the passage of the replication fork through the telomere. 

At short telomeres, it was proposed that a decrease in RNase H2 recruitment by Rif2 

allowed for the persistence of R-loops, leading to an increased possibility of a collision 

event with the replisome. This could lead to Rad51 inducing a DNA damage response, 

leading to HDR to elongate the telomere. The Rif2 mediated recruitment of RNase H2 was 

proposed to be the manner in which the cells inhibit R-loop accumulation at long 

telomeres, as the presence of Rif2 is decreased at short telomers (Graf et al., 2017; 

McGee et al., 2010). 

 

 

Tbf1 

 

Although many experiments implicate this essential protein in both telomeric and 

non-telomeric processes, its exact role remains elusive. It has been implicated in DNA 

damage response, telomere maintenance, transcription and chromatin remodelling 

(Arnerić and Lingner, 2007; Berthiau et al., 2006; Bonetti et al., 2013; Preti et al., 2010; 

Ribaud et al., 2012). Tbf1 was first identified by DNase I footprinting as telomere binding 

factor  (Tbf), due to its ability to bind TTAGGG sequences, which are mammalian 

telomere repeats (Liu and Tye, 1991). While Tbf1 is not able to bind yeast telomeric 

repeats, it was shown to associate to TAGGG consensus sequences located at the junction 



16  

of the telomere and subtelomeric repeats (Brigati et al., 1993; Koering et al., 2000; Liu and 

Tye, 1991). Tbf1 has similarities to the human proteins TRF1 and TRF2, as they all bind 

TTAGGG sequences conserved in many organisms (Brigati et al., 1993; Zhong et al., 1992). 

These proteins are able to specifically bind T2AG3 like motifs due to their telomeric DNA 

binding motifs, named the telobox (Bilaud et al., 1996). The telobox is conserved from 

plants to yeast to animals and binds to a core TAGGG motif (Bilaud et al., 1996; Koering et 

al., 2000). The telobox is related to the Myb-binding domain, however it only contains one 

out of the three tandem repeats typically seen in Myb binding motifs and thus does not 

bind typical Myb DNA binding sites (Bilaud et al., 1996; Vassetzky, 1999).  

Although Tbf1 binds subtelomeric repeats via a TAGGG motif found in both the X 

and Y’ elements, it is also found at a multitude of promoters in the genome (Koering et al., 

2000; Lavoie et al., 2010; Preti et al., 2010). It is suspected that its essential role is related 

to transcriptional regulation at non-telomeric loci (Bilaud et al., 1996). Due to the 

multitude of binding sites throughout the genome and its involvement in modulating 

chromatin structure and transcription, Tbf1 is considered a general regulatory factor 

(GRF) (Ko et al., 2008). In addition to binding upstream over 200 protein coding genes, 

such as ribosome biogenesis genes, Tbf1 also binds promoters of approximately 90 % of 

snoRNA genes (Bosio et al., 2017; Lavoie et al., 2010; Preti et al., 2010). Interestingly, Tbf1 

may be involved in the regulation of its own expression, as it binds its own promoter 

(Lavoie et al., 2010). At snoRNA promoters, it is suspected that Tbf1 is important for fine 

tuning snoRNA transcription (Preti et al., 2010). Its role at protein coding genes is quite 

different. In these areas, it binds with Vid22 and Env11 to form nucleosome depleted 

regions (NDR), indicating a role in chromatin remodeling (Badis et al., 2008; Preti et al., 

2010). The association of Tbf1 and Vid22 was also found to be important in DNA damage 

responses at double stranded breaks (Bonetti et al., 2013). Strains expressing loss of 

function Tbf1 and Vid22 alleles were shown to be more sensitive to DNA damage inducing 

drugs. This sensitivity is hypothesized to be connected to Tbf1’s role in generating an 

NDR, since the deletion of the histone deacetylase Rpd3 eliminated sensitivity to DSB 

inducing agents in tbf1 strains. Furthermore, Tbf1 and Vid22 were shown to be important 
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for the generation of 3’ single stranded DNA at HO-induced DSBs, which is necessary for 

DNA repair by homologous repair (HR). However, it is unknown how Tbf1 could be 

recruited to these DSBs, as its DNA binding is sequence specific (Bonetti et al., 2013; Preti 

et al., 2010). In general, the Longhese Lab suggests that the role of Tbf1 in chromatin 

compaction could impact 3’ end processing, thus affecting DDR pathways (Bonetti et al., 

2013).  

Given that Tbf1 is associated with 15 of the 16 chromosomal ends in S. cerevisiae, 

it is expected to have an important telomeric function (Preti et al., 2010). Studies done 

thus far have implicated that Tbf1 could participate in a variety of telomeric functions 

(Berthiau et al., 2006; Fourel et al., 1999; Hediger et al., 2006; Ribaud et al., 2012). More 

than one study suggests Tbf1 could have a role as a back-up length regulator, when 

telomerase is not functioning properly (Arnerić and Lingner, 2007; Berthiau et al., 2006; 

Ribaud et al., 2012). Monitoring the extension of single telomeres by STEX (Single 

Telomere Extension) assay revealed that in tel1∆ strains with short telomeres, the 

presence of the subtelomere or of Tbf1 near TG1-3 telomeric repeats restores the 

preferential elongation of short telomeres (Arnerić and Lingner, 2007). In tel1∆ strains, 

this property is lost in telomeres lacking a subtelomere. In these experiments, Tbf1 was 

expressed in fusion with a Gal4 binding domain (GBD) and tethered to truncated TEL07L 

(TEL07Ltr), lacking a subtelomeric area, by introducing UASG sites in the subtelomeric area 

to recruit the GBD-Tbf1N. A different study suggests that tethering GBD-Tbf1N to TEL07Ltr 

in tel1∆ backgrounds has a function in protecting this telomere from access to 

telomerase, as telomeres became increasingly shorter as more GBD-Tbf1N was tethered 

to the chromosomal ends (Berthiau et al., 2006). The conflicting results of these two 

studies can be explained by an experiment investigating the potential capping functions of 

Tbf1 when bound to de novo formed T2AG3 telomere repeats (Ribaud et al., 2012). The 

assay used to examine the formation of de novo telomere repeats involved integrating 

T2AG3 sequences of either 60 or 230 bp flanking an HO endonuclease recognition site in 

opposing orientations (Diede and Gottschling, 1999; Ribaud et al., 2012). After a cleavage 

by the HO endonuclease at the HO recognition site between the vertebrate repeats, these 
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would mimic the behaviour of short (60 bp) or long (230 bp) telomeres. A functional Tbf1 

was an important factor in regulating the length of the T2AG3 sequences. Telomerase was 

preferentially recruited to rapidly lengthen short 60 bp tracts, while long tracts were not 

lengthened (Ribaud et al., 2012). The localization of telomerase and subsequent 

lengthening of short telomeres, as well as the protection of “normal length”, 230 bp 

tracts, were dependent on a fully functional Tbf1 protein. Furthermore, in cells expressing 

a deficient tbf1∆i allele, long telomeres were recognized as double stranded breaks and 

caused a delay in the cell cycle. This was not the case in TBF1 strains. Thus, Tbf1 could be 

involved in recruiting telomerase to telomeres when present in small amounts, but 

increasing amounts lead to protection from over-elongation and the DDR (Arnerić and 

Lingner, 2007; Berthiau et al., 2006; Ribaud et al., 2012). 

One of the initial roles proposed for Tbf1 at telomeres is that of an insulator to 

prevent the spread of TPE (Fourel et al., 1999). Regions called STARs (Subtelomeric Anti- 

silencing Regions) were identified in X and Y’ elements and characterized as sequences 

with anti-silencing properties. These sequences contain binding sites for both of the main 

telomeric binding proteins, Tbf1 and Reb1 (Koering et al., 2000). The experiments were 

done as explained above (see section on TPE), by evaluating the expression of a URA3 

gene placed near telomeric repeats by monitoring resistance to growth on 5-FoA medium. 

These experiments also showed that when 1-3 Tbf1 binding sites were introduced into the 

subtelomere, there was a very slight decrease in TPE (Fourel et al., 1999). However, the 

insertion of 10 TTAGGG sequences in this area produced a stronger effect. The necessity 

to heavily alter the subtelomere to observe these functions, as well as the fact that the 

X-Core functions as a proto silencer overshadows the STARs anti-silencing effects and 

could reduce the importance of Tbf1 as an anti-silencer at the subtelomere (Fourel et al., 

1999; Power et al., 2011). 
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Reb1 

 

In addition to binding motifs for Tbf1, subtelomeres contain sequences that bind 

the essential general regulatory factor Reb1 (Chasman et al., 1990; Ju et al., 1990; Koering 

et al., 2000; Morrow et al., 1989). The REB1 gene was independently discovered several 

times and carried different names due to the multitude of targets it is associated with 

throughout the genome. It was first identified as Factor Y, binding to UASG, a stretch of 

upstream activation sequences between GAL1 and GAL10 genes to create nucleosome 

free regions in flanking sequences (Fedor et al., 1988). The same group later renamed the 

protein GRF2, as they discovered that it binds a multitude of UASs and, through its effects 

on chromatin structure, has a synergistic effect on transcriptional activation when in 

proximity to thymidine rich regions (Chasman et al., 1990). Another study identified it as 

the Q-binding protein (QBP), necessary for the TATA-independent activation of GCN4 

transcription (Brandl and Struhl, 1990). Around the same time, a different group found 

Reb1 as an rRNA enhancer binding protein, as it was found to bind enhancers and protect 

the bound sequences from access to other proteins and chemicals (Morrow et al., 1989). 

In addition to binding these enhancer regions, Reb1 binds a second site upstream the 

origin of transcription for rRNA and affects chromatin conformation. Additional studies 

found that Reb1 also binds sites in a number of promoters of genes transcribed by RNA 

polymerase II (Chasman et al., 1990; H. Wang et al., 1990). 

We now know that Reb1 is an essential protein with a myb-related binding 

domain, recognizing a CCGGGTAA consensus sequence (Ju et al., 1990; Morrow et al., 

1989). Indeed, it is found in the UASs of many genes involved in ribosome biogenesis 

(Ribi), along with Abf1, Rap1 and Tbf1, where it is important for the full expression of 

target promoters (Bosio et al., 2017). In terms of its role in establishing nucleosome free 

regions (NFRs), it has been shown that Reb1 is able to do so by recruiting the RSC 

chromatin remodeling complex when bound at promoter regions (Hartley and Madhani, 

2009). The same study showed that establishing NFRs is required for the recruitment of 

H2AZ variant nucleosomes that are characteristic of promoter regions. Furthermore, Reb1 
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bound to DNA forms a roadblock in order to induce termination of transcription by RNA 

polymerase II, yielding unstable transcripts that are degraded and impeding RNA pol II 

from transcribing into the next gene (Colin et al., 2014; Roy et al., 2016). The termination 

of transcription by Reb1 was found to be independent of NFRs. Reb1 also has a role in 

regulating the transcriptional start site (TSS) when bound at promoter regions (Challal et 

al., 2018). This study found that Reb1, as well as GRFs Abf1 and Rap1, are able to limit 

ectopic transcription by controlling nucleosome positioning such that transcription is 

initiated at the correct TSS. 

Despite these important roles in transcriptional regulation, the function of Reb1 

when bound at subtelomeres is not yet understood. Similar to Tbf1, the binding sites for 

Reb1 in the subtelomeric regions are variations of its consensus sequence, although they 

contain the core sequence GGGTAA (Koering et al., 2000). Tbf1 and Reb1 have been 

implicated in many of the same roles at subtelomeres. They have overlapping roles in 

anti-silencing, limiting the spread of TPE and both have binding sites in STARs (Fourel et 

al., 1999). Studies investigating the role of Tbf1 in telomere length maintenance have 

found Reb1 has similar roles in protecting telomeres from telomerase elongation 

(Berthiau et al., 2006). This study was also done by localizing Reb1 to truncated 

telomeres, lacking a subtelomere, in tel1∆ backgrounds with a short telomere phenotype. 

However, contrary to Tbf1, Reb1 does not have the same capping abilities, as it does not 

protect arrays of its consensus sequence from degradation and does not recruit 

telomerase to elongate these sequences (Ribaud et al., 2012). Thus, in the context of 

telomeric and non-telomeric functions, Tbf1 and Reb1 overlap in many ways, but also 

carry out distinct functions. 

 

 

Objectives 

 

There is clear evidence that both Tbf1 and Reb1 are important for cell function, as 

they are essential proteins, involved in transcriptional regulation and chromatin structure, 
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although it is still partially unclear how exactly they participate in these pathways. Despite 

these proteins being the main binding factors of the subtelomeric areas, their roles there 

are not yet well understood. Previous studies have shown that Tbf1 and Reb1 localized at 

chromosomal ends could be involved in telomere length maintenance and the telomere 

position effect. However, many experiments investigating the roles of Tbf1 and Reb1 at 

telomeres were done using heavily altered subtelomeres or expressing mutant protein 

alleles. A global reduction in DNA binding due to the expression of mutant Tbf1 and Reb1 

alleles could lead to alterations in transcription at their targets, which could eventually 

lead to effects at the telomere. Thus, the use of mutant alleles may give an inaccurate 

picture of the roles of subtelomeric Tbf1 and Reb1. Although inferences can be made, 

working with heavily altered subtelomeres, or truncated telomeres lacking subtelomeres, 

also does not give a complete picture of the roles of Tbf1 and Reb1 at native telomeres. 

Thus, there is a lack of information concerning the function of Tbf1 and Reb1 at native 

subtelomeres. 

The main objective of this project is to construct a system in which the roles of 

Tbf1 and Reb1 binding at a native subtelomere can be studied. This is achieved by 

introducing point mutations into Tbf1 and Reb1 binding sites of X-only telomeres TEL01L 

and TEL03L in order to decrease the binding efficiency at these sites. A further objective is 

to use this construct to evaluate the roles of Tbf1 and Reb1 in telomere length 

maintenance and telomere position effect, as these roles have not yet been examined 

using native subtelomere structures. In addition, the roles of Tbf1 and Reb1 in 

transcriptional regulation at telomeres is evaluated by monitoring TERRA transcription 

from wild type and mutated subtelomeres. 

As a secondary project, the role of the yKu complex as an RNA binding protein is 

investigated. yKu also has dual functions, being involved in NHEJ when bound at double 

stranded breaks and binding at chromosomal ends to carry out functions in silencing, 

chromosomal end capping and potential telomerase recruitment. The yKu complex also 

binds the TLC1 RNA, with roles in shuttling and nuclear retention. Recent data from the 

Wellinger Laboratory suggests that the yKu complex binds two other non-coding RNAs 



22  

transcribed from intergenic regions. In order to investigate the RNA binding capacities of 

the yKu complex, we aim to perform a cross-linking and analysis of cDNA sequencing 

(CRAC-seq) in collaboration with the Granneman Laboratory. For this project, the 

objective is to tag the yKu70 and yKu80 proteins with a 6xHis-TEV-3xFlag tag, used in the 

Granneman Laboratory for CRAC-seq and validate the compatibility of each aspect this tag 

with the proteins of interest. 



Materials and Methods 

 

Plasmid Cloning Methods 

 

All plasmids used in this study are listed in table 1. The plasmids were constructed 

in multiple steps using various cloning strategies, which will be described in detail below. 

All oligonucleotides used for plasmid construction are described in table 6. All sequencing 

for this project was done by the Plateforme de séquençage et génotypage des génomes at 

the CHU de Québec, Université de Laval (http://www.sequences.crchul.ulaval.ca/). 

 

Table 1: Plasmids referred to throughout this work. 

Plasmids used in this study: 

Name Description (Use) Reference 

pRS303 HIS3 (Cloning) Umen et al., 1996 

pRS304 
TRP1 (Cloning) 

Sikorski and Hieter, 
1989  

pRS305 
LEU2 (Cloning) 

Sikorski and Hieter, 
1989 

pRS306 
URA3 (Cloning) 

Sikorski and Hieter, 
1989  

pRS400 
KanMX4 (Cloning) 

Brachman et al., 
1998 

pADB5 
TRP1, RS-ARS1-RS, 4xLexAOp, 4xUASg (Cloning: 
intermediate plasmid) 

E. Pasquier, 
Wellinger Lab 

pEP21 
ARS/CEN, TRP1, Yku80-13xMYC, promGAL-RecR 
(Expression of Recombinase R) 

E.Pasquier, 
Wellinger Lab 

pEP19A 
HIS3, TG1-3 (Cloning) 

E. Pasquier, 
Wellinger Lab 

pB3 ARS/CEN, LEU2, promGAL-RecR (Cloning: Source 
of promGAL-Recombinase R) 

Griesenbeck et al., 
2003 

pB1539 
6xHIS-TEV-3xFlag, URA3 (Integrative, protein 
tagging) 

Granneman et al., 
2009 

pTbf1-myc 
KanMX, tbf1-453-13MYC (Integrative, protein 
tagging) 

E. Bonnell, Wellinger 
Lab 

pFA6a-
13Myc-KMX 13xMYC, HIS3MX6 (Integrative, protein tagging) 

Longtine et al., 1998 

http://www.sequences.crchul.ulaval.ca/)


24 
 

pFA6a-3HA-
HIS3MX 3xHA, HIS3MX6 (Integrative, protein tagging) 

Longtine et al., 1998 

pCT300 ~300 bp C1-3 repeats EcoRI fragment (Southern 
Blot probe) 

Bourns et al., 1998 

pAK003 RS-URA3-RS (Cloning, intermediate plasmid for 
integrative plasmide in S. cerevisiae) 

This work 

pAK002 TEL01Lmod WT XCR (Cloning, intermediate for 
integrative plasmid) 

This work 

pAK012 TEL01Lmod XCRmut (Cloning, intermediate for 
integrative plasmid) 

This work 

pT3F1 TEL03Lmod WT XCR RS-LEU2-RS (Cloning, 
intermediate for integrative plasmid) 

This work 

pRIM2D TEL03Lmod XCRmut RS-LEU2-RS (Cloning, 
intermediate for integrative plasmid) 

This work 

pAK007 TEL03Lmod XCRmut1 RS-LEU2-RS (Cloning, 
intermediate for integrative plasmid) 

This work 

pAK016 
TEL03Lmod WT XCR RS-LEU2-RS TG1-3 repeats  
(Integrative plasmid, linearization with 
NsiI/Eco53kI) 

This work 

pAK018 
TEL03Lmod XCRmut RS-LEU2-RS TG1-3 repeats 
(Integrative plasmid, linearization with 
NsiI/Eco53kI) 

This work 

pAK007T 
TEL03Lmod XCRmut1 RS-LEU2-RS TG1-3 repeats  
(Integrative plasmid, linearization with 
NsiI/Eco53kI) 

This work 

pAK013 TEL01Lmod XCRmut RS-URA-RS TG1-3 (Integrative 
plasmid, linearization with BamHI/ NotI) 

This work 

pAK014 TEL01Lmod WT XCR RS-URA-RS TG1-3 (Integrative 
plasmid, linearization with BamHI/ NotI) 

This work 

 

Traditional Cloning 

Traditional cloning was carried out by digesting a vector was with one or more 

restriction enzymes followed by ligation with a DNA fragment with compatible ends. The 

ligation was done using a Rapid DNA ligation Kit (Thermo Fisher Scientific), following 

manufacturer’s directions. For each ligation reaction, approximately 50 ng of vector 

plasmid was linearized with 1 or more restriction enzymes. If only one restriction enzyme 

was used, plasmid re-circularization was prevented with a dephosphorylation reaction. 
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DNA ends were dephosphorylated using the Alkaline Phosphatase Kit (Roche), in a 10 µl 

reaction with 1x phosphatase reaction buffer and 1 U Alkaline Phosphatase and incubated 

for 1 hour at room temperature, following the manufacturer’s protocol. The reaction was 

stopped by the addition of EDTA to a 20 mM final concentration and incubation at 68 ˚C 

for 10 minutes. Insert DNA was digested with restriction enzymes leaving DNA ends 

compatible to the vector. Both vector and plasmid DNA were purified on a 0.45 % agarose 

gel run in TAE, using Spin-X ® (Sigma) centrifuge tube filters. Vector and insert DNAs were 

combined at a 5:1 molecular ratio for ligation reactions. 

 

All Around the World PCR 

To introduce point mutations into a plasmid, primers were designed to span the 

area to be mutated, with 1-2 nucleotides difference from the plasmid sequence. The ends 

of the forward and reverse primers were aligned such that the whole plasmid was 

amplified. Q5 ® High Fidelity DNA polymerase (NEB) was used according to the 

manufacturer’s instructions, using a temperature gradient spanning  5 ˚C of the melting 

temperatures (Tm) of the forward and reverse primers (as determined by Snapgene 

software). Template DNA was degraded using the KLD Enzyme Kit (NEB) containing 

enzyme DpnI to target the cell-derived methylated DNA, as well as kinase and ligase for 

plasmid circularization. 1 µl PCR reaction was treated in a 10 µl total volume reaction 

containing 1 µl of enzyme mix and 5 µl 2x reaction buffer for 20 minutes at room 

temperature. 5 µl of the product was used for transformation into 50 µl One Shot ® Stbl3® 

chemically competent E. coli. 

 
Gibson Assembly 

The Gibson Assembly Kit® (NEB) was used to insert 2 or more DNA fragments into 

a vector plasmid linearized by restriction enzymes in a single step. The DNA fragments 

were amplified with primers designed to have overhanging flaps to add short regions with 

homology to the vector or neighbouring fragments. This homology ensures the fragments 

are assembled in the correct orientation and order. After PCR amplification of the primers 

from bacterial plasmids or yeast genomic DNA, the fragments were purified either by on a 
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0.45 % agarose gel in TAE using Spin-X® columns, or on columns from an EZ-10 Spin 

Column PCR Product Purification Kit (Biobasic). The Gibson Assembly reaction was carried 

out according to the manufacturer’s directions, in a 10 µl reaction. The products were 

diluted 1:5 in water before transforming 5 µl into One Shot ® Stbl3 ® chemically 

competent E. coli. (Thermo Fisher) (for plasmids containing telomeric repeats) or One 

Shot ® Top10 ® chemically competent E.coli (Thermo Fisher) bacteria as described below. 

 
 
Construction of TEL01Lmod and TEL03Lmod plasmids 

 

Mutation of TEL01L and TEL03L subtelomeres was achieved by cloning sequences 

interior to the telomeric DNA in bacterial plasmids and making desired changes using a 

combination of the cloning techniques described above. The steps used for the 

modification of TEL01L and TEL03L subtelomeres will be outlined in the following section. 

The resulting constructs depicted below (Figures 4, 5), are referred to as TEL01Lmod and 

TEL03Lmod. 

 

Construction of plasmids with modified TEL01L 

A plasmid containing the X-element of the TEL01L telomere (pAK002) was 

constructed using 2 fragment Gibson Assembly. Both fragments were amplified from 

genomic yeast DNA from the W3749 strain (W303 background) by PCR and cloned by 

Gibson Assembly into the pRS303 vector, which was linearized by digestion with the NotI 

restriction enzyme. Fragment 1 (2011 bp), amplified by primers 

TEL01L_GB_F/TEL01L_GB_RB, contained regions upstream of the subtelomere, including 

dubious ORFs PAU8 and YAL067W-A. Fragment 2 (primers: TEL01L_GB_R/TEL01L_GB_FB) 

contained the XCR and X-Core of the TEL01L X-element, as well as DNA upstream of the 

X-element (1404 bp). The Gibson Assembly reaction product was transformed into One 

Shot ® Stbl3 ® chemically competent E. coli (Thermo Fisher) as described below. The 

clones were screened by digestion with NsiI restriction enzyme and sent for sequencing 

with primers Xel-F and Xel-R. 
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Tbf1 and Reb1 Binding Site Mutation: 

The DNA binding sites in the TEL01L XCR for Tbf1 and Reb1 were mapped using the 

Yeast Transcription Factor Specificity Compendium (YetFaScO, 

http://yetfasco.ccbr.utoronto.ca/) (Figure 4). Tbf1 and Reb1 binding motifs both contain 

CCC or GGG in their core binding sequences (Koering et al., 2000). Thus, point mutations 

were introduced into these sequences of each predicted binding site by “All Around the 

World PCR”. Primer pairs spanning each binding site were designed with one mismatching 

nucleotide to introduce a point mutation, changing the cytosine nucleotide (C) to a 

guanosine nucleotide (G), or vice versa. All primer pairs used can be found in table 6 

under “TEL01Lmod XCR Site directed PCR mutagenesis”. 

 

 
Figure 4: Tbf1 and Reb1 binding sites in TEL01L XCR were mapped by YeTFasCo. 
The XCR sequence of TEL01L from the reference genome S288C is depicted, with Tbf1 
(blue) and Reb1 (green) binding sites, as identified by the YeTFasCo database. 
 

The PCR product was treated with the KLD Enzyme Mix (NEB) as described above 

and transformed into One Shot ® Stbl3 ® chemically competent E. coli cells. Plasmids were 

extracted using an EZ-10 Spin Column Plasmid DNA Miniprep Kit (Biobasic), screened by 

digestion with the XhoI restriction enzyme and sequenced to confirm. The resulting 

plasmid was subjected to another round of “All Around the World PCR” with primers 

introducing mutations to a second Tbf1 or Reb1 binding site, followed by the same steps 

of KLD treatment, transformation and screening. The process was repeated with each of 

the primer pairs in section “TEL01Lmod XCR Site directed PCR mutagenesis” (Table 6), 

resulting in the pAK012 plasmid containing point mutations in all Tbf1 and Reb1 binding 

sites. 

 

 

http://yetfasco.ccbr.utoronto.ca/)
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Insertion of URA3 flanked by RS sites: 

Plasmid pAK003 contains a URA3 gene flanked by two RS sequences (58 bp) in the 

same orientation, recognized by the recombinase R (Gartenberg, 2012). It was obtained 

by classical cloning. The vector pADB5 was linearized with NruI restriction enzyme, which 

cleaves at a restriction site between two RS sites. URA3 was amplified from the pRS303 

bacterial plasmid with primers URA3_NruI_F and URA3_HpaI_R, PCR purified and digested 

by NruI and HpaI. Vector and insert were purified on 0.45 % agarose gel gel prior to 

ligation with Rapid DNA Ligation Kit (Thermo Fisher), as described above. The plasmid was 

screened by digestion with StuI and PvuII restriction enzymes and confirmed by 

sequencing. The RS-URA3-RS sequence was cloned into the pAK012 (01L-XCRmut) and 

pAK002 (01L-WT XCR). pAK003 was digested by PvuII to obtain the RS flanked URA3 

insert, which was cloned into the vector plasmids linearized by HpaI. Clones of these 

intermediate plasmids were screened by digestion with the XhoI restriction enzyme and 

sequenced. 

 

Addition of telomeric repeats and integration into S. cerevisiae: 

Telomere repeats were amplified from the pEP19A plasmid with primers QP4-F 

and SSb-pRS1-F using the GoTaq ® Long PCR MasterMix (Promega) and then purified from 

a 1 % agarose gel by Spin-X ® column. The fragment was then digested with XbaI and SalI 

restriction enzymes, for cloning into vectors pAK002+RS-URA3-RS and pAK012+RS-URA3-

RS, digested with the same enzymes (see above protocol), and cloned in One Shot ® Stbl3 

chemically competent E. coli. Clones were screened by digestion with XhoI restriction 

enzyme and confirmed by sequenced, constructing final integrative plasmids pAK014 

(01L- WT XCR) and pAK013 (01L-XCRmut). 

 

 

Figure 5: TEL01Lmod integrative plasmid 
Schema of TEL01Lmod integrative plasmids (pAK014/pAK013) linearized by BamHI and 
NotI.Purple arrows indicate ORFs upstream of subtelomere. 
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Construction of plasmids with modified TEL03L 

1 Fragment Gibson Assembly was used to clone the TEL03L X-element and 

approximately 500 bp of upstream DNA into the pRS303 integrative plasmid. pRS303 was 

linearized by NotI and NsiI restriction enzymes and the Gibson Fragment was generated 

by PCR amplification of genomic yeast DNA from a W303 background strain, using primers 

GB_TY5_F and GB_X_R. The Gibson Assembly reaction products were transformed into 

One Shot ® Stbl3 chemically competent E. coli and plasmid DNA was extracted Miniprep 

Kit (Biobasic). Clones were screened by digestion with EcoRI restriction enzyme and 

confirmed by sequencing. 

 

Insertion of LEU2 flanked by RS sites: 

Gibson Assembly was used to insert the LEU2 marker flanked by RS sequences 

between the X-element and upstream genomic DNA cloned on the TEL03L intermediate 

plasmid. The TEL03L intermediate plasmid was amplified (primers: GB_X_F and GB_TY_R) 

to serve as a vector and the RS – LEU2 – RS DNA fragment was amplified (RS_LEU2_F and 

RS_LEU2_R) from plasmid pB3 (Griesenbeck et al., 2003). Vector and insert were purified 

on agarose gel by Spin-X ® column prior to Gibson Assembly reaction and transformation 

into One Shot ® Stbl3 ® chemically competent E. coli. Plasmid DNA was extracted by 

Miniprep Kit (Biobasic), screened by digestion with EcoRI and sequenced, producing the 

pT3F1 plasmid. 

 

Mutation of Tbf1 and Reb1 Binding sites: 

The binding site mutation process proceeded as with the plasmid containing the 

TEL01L subtelomere sequence. Tbf1 and Reb1 binding sites were mapped on the XCR of 

the TEL03L subtelomere using the YetFaSCo database (Figure 6). pT3F1 underwent 6 

rounds of All Around the World PCR with the Q5 Mutagenesis Kit using primers found in 

table 6 under “TEL03L XCR mutation”, as described above. All mutations were verified by 

sequencing and plasmids were cloned in One Shot ® Stbl3 ® chemically competent E. coli. 

Two mutant versions were produced. Plasmid pRIM2D contained point mutations in all 
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Tbf1 and Reb1 binding sites, while pAK007 had two Reb1 binding sites without mutations. 

 

 
Figure 6: Tbf1 and Reb1 binding sites in TEL03L XCR were mapped by YeTFasCo. 
The XCR sequence of TEL03L from the reference genome S288C is depicted, with Tbf1 
(blue) and Reb1 (green/grey) binding sites, as identified by the YeTFasCo database. Grey 
Reb1 binding sites have wild type sequences in pAK007 plasmids/03L-XCRmut1 strains. 
 

Addition of telomeric repeats and integration into S. cerevisiae: 

Traditional cloning strategies were used to clone DNA fragments with telomeric 

repeats in plasmids pT3F1 (03L-WT XCR), pRIM2D (03L-XCRmut) and pAK007 

(03L-XCRmut1). pEP19A was digested with restriction enzymes NotI and EcoRV to produce 

a fragment of 356 bp, containing TG1-3 repeats. pT3F1, pRIM2D and pAK007 were 

linearized by digestion with NotI. Vector and insert DNA were purified on 0.45 % agarose 

gel by Spin-X ® column and ligated with the T4 Rapid Ligation Kit (NEB). 2 µl of the ligated 

product was transformed in One Shot ® Stbl3 ® chemically competent E. coli bacteria as 

described above. Plasmid was DNA extracted and verified by sequencing. This produced 

final plasmids pAK016 (03L-WT XCR), pAK018 (03L-XCRmut) and pAK007T (03L-XCRmut1). 

 
 

Figure 7: TEL03Lmod linearized plasmids. 
Schema of TEL03Lmod integrative plasmid pAK018/pAK016 linearized by EcoR53kI and 
NsiI. Grey arrow marks an ORF upstream of TEL03L subtelomere. 
 
 
Cloning TEL01Lmod X-element∆, XCR∆ and X-Core∆ strains 

S. cerevisiae strains with modified, truncated TEL01L telomeres were constructed 

by creating intermediate integrative plasmids by 2 fragment Gibson Assembly ®. Four 

constructs were made for this experiment. All constructs were made by amplifying two 

fragments with Q5 ® High Fidelity DNA Polymerase (NEB) and assembling them in the 
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pAK014 vector plasmid, linearized by enzymes NruI and XbaI. Primer pairs and matrices 

used for each fragment and construct are indicated in table 2. pAK014 is depicted in 

Figure 8 to show the placement of primer pairs. In X-element∆ and XCR∆ constructs a 

constant distance of 1298 bp between telomeric repeats and the URA3 promoter was 

maintained by replacing X-element or XCR sequences with equal length fragments 

amplified from KanMX in pRS400. TEL01Lmod X-Core∆ was constructed without replacing 

the removed sequences with a KanMX sequence, leaving a distance of 1106 bp between 

telomeric repeats and URA3 promoter. A control construct “Short X-element” was made 

with a wild type TEL01Lmod X-element and a distance of 1106 bp between telomeric 

repeats and URA3 promoter. Gibson Assembly ® products were transformed into One 

Shot Top10 chemically competent E.coli (Thermo Fisher). Plasmids were extracted from 

clones and screened by digestion with XhoI and sequencing. Constructs were integrated 

into W3749 S. cerevisiae strains after linearization with BamHI and NotI. Yeast strains 

were screened by sequencing DNA extracted from multiple clones of each strain. 

Resulting strains were AKY054 (TEL01Lmod X-element∆), AKY055 (TEL01Lmod-XCR∆), 

AKY056 (TEL01Lmod X-element short), AKY057 (TEL01Lmod WT XCR X-Core∆), AKY058 

(TEL01Lmod XCRmut X-Core∆) (Table 3). 

 
Table 2: Gibson Assembly layout for modified TEL01L constructs. 

 Primer Pairs  
Construct Matrix plasmid Fragment 1 Fragment 2 amplicon length 

(bp) 
X-element ∆ pRS400 GB8F/GB14R  776 

pAK014  GB1F/GB16R 775 

XCR∆ pRS400 GB5F/GB4R  277 

pAK014  GB1F/GB15R 1230 

     

Short X-element pAK014 GB10F/GB2R  767 

pAK014  GB1F/GB11R 303 

X-Core∆ WT XCR pAK014 GB2R/GB12F  302 

pAK014  GB1F/GB13R 765 

X-Core∆ XCRmut pAK013 GB12F/GB3R  302 

pAK014  GB1F/GB13R 765 
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Figure 8: Primer placement on pAK014 
Binding sites for primers listed in table 2 amplifying fragments from pAK014 matrix shown 
in purple. XbaI and NruI restriction sites used for vector linearization are indicated in 
black. Elements of the TEL01Lmod construct are labelled. Distance from telomeric repeats 
(TELO) to URA3 promoter in the wild type construct is 1298 bp. 
 

 

E.coli Transformation 

 

50 µl of One Shot Stbl3 chemically competent E. coli or One Shot Top10 chemically 

competent E.coli (Thermo Fisher) cells were thawed on ice in 1.7 ml Eppendorf tubes for 

20 minutes. 2-5 µl of a ligation reaction, KLD treated PCR product or Gibson Assembly 

reaction were added, and cells were incubated on ice for 30 minutes. The samples were 

then heat shocked in a 42 ˚C water bath for 45 seconds and rested on ice for 2 minutes. 

1 ml of LB broth was added to the sample before incubation at 37 ˚C for 1 hr with 600 rpm 
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agitation. The cells were centrifuged for 1 minute at 21,000 x g and 800 µl of supernatant 

media was removed. The cell pellet was resuspended in the remaining media. 50 µl and 

150 µl of the cell mixture were spread with sterile acid washed beads on plates with Luria 

broth (LB) + ampicillin. The bacteria was grown overnight at 37 ˚C. Colonies selectively 

grown were transferred to 3 ml liquid LB + ampicillin media and grown once more 

overnight at 37 ˚C. Plasmid DNA was extracted from 1.5 ml of these cultures using EZ-10 

spin column plasmid DNA mini-preps kit (Biobasic), and conserved at -20 ˚C for further 

use. 

 

 

Yeast Strains 

 

Yeast strains with slight differences in their genetic backgrounds were used for 

different studies described here. The originally sequenced S288c strain (Mortimer and 

Johnston, 1986), was used by Brachman et al. (1998) to create, among other, the haploid 

BY4705 strain, in which non-essential auxotrophic genes are deleted. In this project, 

yKu70 and 80 were tagged in the BY4705 background. Experiments involving the 

subtelomere Tbf1 and Reb1 binding sites were conducted in haploid W3749 background 

strains (Lisby et al., 2004), which is derived from the W303 genetic background. All strains 

used in this study are described in Table 3. 

 

Table 3: S. cerevisiae strains referred to throughout this work. 

Yeast Strains used in this project: 

Name Genotype Reference 

W37491-A 
MatA can1-100 ura3-1 his3-11,15 leu2-3,112 trp1-1 
bar1∆::LEU2 

Lisby et al., 2004 

BY4705 
Mat alpha ade2Del::hisG his3Del200 leu2del0 lys2Del0 
met15Del0 trp1Del63 ura3Del0 

Brachmann et al., 
1998 

EPY06.6b 
MatA can1-100 ura3-1 his3-11,15 leu2-3,112 trp1-1 
bar1∆::KanMX 

E. Pasquier, 
Wellinger Lab, 
unpublished 

RWY046 
MatA can1-100 ura3-1 his3-11,15 leu2-3,112 
trp1-1 tel1∆::KanMX 

R. Wellinger, 
unpublished 
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EPY007 
Matα leu2-3,112 his3-11,15 trp1-1 MN-L1- RAP1 ura3-
1 ade2-1 can1-100 

Larcher et al., 
2016 

AKY001 EPY007 + TBF1-myc::KanMX This work 

AKY003 EPY007 + REB1-myc::HI3S This work 

EPY109 AKY001 + TEL03Lmod-WT XCR 
E. Pasquier, 
Wellinger Lab, 
unpublished 

EPY110 AKY003 + TEL03Lmod-WT XCR 
E. Pasquier, 
Wellinger Lab, 
unpublished 

EPY114 AKY001 + TEL03Lmod-XCRmut 
E. Pasquier, 
Wellinger Lab, 
unpublished 

EPY115 AKY003 + TEL03Lmod-XCRmut 
E. Pasquier, 
Wellinger Lab, 
unpublished 

AKY036 AKY001 + TEL01Lmod-WT XCR This work 

AKY025 AKY001 + TEL01Lmod-WT XCR This work 

AKY021 EPY007 + TEL01Lmod-WT XCR This work 

AKY018 AKY001 + TEL01Lmod-XCRmut This work 

AKY019 AKY003 + TEL01Lmod-XCRmut This work 

AKY020 EPY007 + TEL01Lmod-XCRmut This work 

EPY116 
MatA leu2-3 trp1-1 can1-100 ura3-1 his3- 11,15 
TEL03Lmod-WT XCR 

E. Pasquier, 
Wellinger Lab, 
unpublished 

EPY117 
MatA leu2-3 trp1-1 can1-100 ura3-1 his3- 11,15 
TEL03Lmod-XCRmut 

E. Pasquier, 
Wellinger Lab, 
unpublished 

AKY116 EPY116 + sir4∆::KanMX This work 

AKY115 EPY117 + sir4∆::KanMX This work 

AKY047 AKY116 + sir4∆::KanMX tbf1-453::NatMX This work 
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AKY012 W3749-1A TEL01Lmod-WT XCR::URA3 This work 

AKY013 W3749-1A TEL01Lmod-XCRmut::URA3 This work 

AKY046 AKY112 + tbf1-82::NatMX This work 

AKY022 
MatA can1-100 ura3-1 his3-11,15 leu2-3,112 trp1-1 
TEL01Lmod-WT XCR 

This work 

AKY023 
MatA can1-100 ura3-1 his3-11,15 leu2-3,112 trp1-1 
TEL01Lmod-XCRmut 

This work 

AKY050 AKY022 + sir4∆::KanMX This work 

AKY051 AKY023 + sir4∆::KanMX This work 

AKY027 EPY116 + yku80∆::KanMX This work 

AKY028 EPY117 + yku80∆::KanMX This work 

AKY030 EPY116 + tel1∆::KanMX This work 

AKY031 EPY117 + tel1∆::KanMX This work 

AKY052 AKY022 + tel1∆::KanMX This work 

AKY053 AKY023 tel1∆::KanMX This work 

AKY054 W3749-1A TEL01Lmod X-element∆::URA3 This work 

AKY055 W3749-1A TEL01Lmod XCR∆::URA3 This work 

AKY056 W3749-1A TEL01Lmod X-element short::URA3 This work 

AKY057 
W3749-1A TEL01Lmod WT XCR 
X-Core∆::URA3 

This work 

AKY058 
W3749-1A TEL01Lmod XCRmut 
X-Core∆::URA3 

This work 

AKY037 
BY4705 MatA bar1::HIS3 
YKU70-6xHIS-TEV-3xFLAG::URA3 

This work 

AKY038 
BY4705 MatA bar1::HIS3 yor162-163∆::KanMX YKU70-
6xHIS-TEV-3xFLAG::URA3 

This work 

AKY039 
BY4705 MatA bar1::HIS3 ylr176-177∆::KanMX YKU70-
6xHIS-TEV-3xFLAG::URA3 

This work 

AKY040 BY4705 MatA bar1::HIS3 yor162-163∆::KanMX This work 

AKY041 BY4705 MatA bar1::HIS3 yor176-177∆::KanMX This work 

AKY043 
BY4705 MatA bar1::HIS3 YKU80- 6xHIS-TEV-
3xFLAG::URA3 

This work 

AKY044 
BY4705 MatA bar1::HIS3 yor162-163∆::KanMX YKU80-
6xHIS-TEV-3xFLAG::URA3 

This work 
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AKY045 
BY4705 MatA bar1::HIS3 yor176-177∆::KanMX YKU80-
6xHIS-TEV-3xFLAG::URA3 

This work 

EVAY01 
BY4705 MatA bar1::HIS3 yku80∆::LEU2 
ade2del::hisG yor162-163D::KanMX 

E. Bouchard, 
Wellinger Lab, 
unpublished 

EVAY02 
BY4705 MatA bar1::HIS3 yku80∆::LEU2 
ade2del::hisG ylr176-177D::KanMX 

E. Bouchard, 
Wellinger Lab, 
unpublished 

 

 

Yeast Transformation 

 

A 5 ml culture of the desired yeast strain in YEPD liquid media was grown overnight at 

30 ˚C. The cells were diluted in 12 ml to an OD660 of 0.25 and grown 3-4hrs to an OD660 of 

0.8-1.0. OD660 was measured by a spectrophotometer and can be converted to cells/ml, 

using a standardized chart (http://www.pangloss.com/seidel/Protocols/ODvsCells.html).  

The culture was transferred to sterile 15 ml Falcon tubes and spun at 1500 x g for 

1 minute. The supernatant was removed, and the cell pellet was washed with 1 ml sterile 

nano H20 and transferred to a sterile 1.5 ml tube. The sample was spun 10 seconds at 

21,000 x g and all supernatant was removed. The pellet was resuspended in 50 µl 1X 

TE/1X LiAc. 2-5 µg DNA for transformation (DNA fragment or replicative plasmid) was 

added along with 5 µl 10 mg/ml herring sperm carrier ssDNA, denatured for 5 minutes at 

100 ˚C and 300 µl PEG solution (40 % PEG, 1X TE pH 10, 1X LiAc). The sample was 

incubated for 45 minutes at 30 ˚C with agitation at 350 rpm before a 20-minute heat 

shock at 42 ˚C. The sample was centrifuged twice 10 seconds at 21,000 x g in a 

microcentrifuge, removing all PEG solution after each spin. The cells were resuspended in 

sterile nano H20 and 40 µl and 160 µl were plated on selective media, spread by sterile, 

acid washed glass beads. For transformants containing antibiotic resistance markers, the 

final cell pellet was resuspended in 1 or 10 ml of YEPD liquid media and incubated with 

agitation for 2 hours or overnight at 30 ˚C prior to plating 200 µl and 400 µl on antibiotic 

containing plates. Cells were grown 2-3 days at 30 ˚C. 

http://www.pangloss.com/seidel/Protocols/ODvsCells.html)
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Tagging proteins in Yeast 

 
Various experiments performed required the tagging of yeast proteins. This was 

achieved by modifying the yeast genome such that the proteins of interest were 

expressed in fusion with protein sequences serving as epitopes, C or N terminally. The 

protein modifications were verified by Western Blot. 

 
Tbf1-myc 

Tbf1 was tagged in the strain EPY007 by digesting pTbf1-myc, containing a 13-MYC 

C-terminally tagged Tbf1 protein, with PvuII and EcoRV to obtain a DNA fragment 

containing 140 bp of the N-terminal of Tbf1, a 6 amino acid linker, a 13xMYC tag and a 

kanamycin (KanMX) antibiotic resistance cassette with a TEF promoter followed by a 

432 bp region of DNA from TBF1+395 bp. This was purified on agarose gel and 

transformed into the EPY007 strain, to create the strain AKY001 with the 

TBF1 13xMYC::KanMX gene locus. 

 
Reb1-myc 

Reb1 was C-terminally tagged with 13xMYC by using the PCR Flap method. Plasmids 

originally derived from the Pringle Labs pFA6a HisMX6 plasmids (Longtine et al., 1998) 

contained a 13xMYC tag with a HIS3 marker. Primers were designed to amplify to the tags 

and with the selection markers, with flaps of 40 bp containing homologous sequences to 

the REB1 DNA locus (Reb1_Tag_F, Reb1_Tag_R). More specifically, the flaps encompass 

the last 40 bp of the REB1 gene, excluding the terminating sequence and the first 40 bp 

after the termination sequence. Tags were amplified and purified by PCR column 

purification Kit (Biobasic) before transformation into yeast strain EPY007. 

 

Tagging proteins with His-Tev-Flag 

yKu70 was tagged with the 6xHIS-TEV-3xFLAG (HTF) tag by Flap PCR method 

amplifying the HTF tag with URA3 selection marker from the pBS1539 plasmid obtained 

from the Granneman Laboratory (Granneman et al., 2009). The flaps added sequence 
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homology to 50 bp at the end terminal of YKU70, and 50 bp directly downstream of the 

YKU70, eliminating the transcription termination sequence. yKu70 was tagged in BY4705 

to create AKY037 and then in EVAY01 and EVAY002. The latter two strains are from a 

yku80∆::LEU2 background and contain deletions of intergenic regions 

(yor162-163∆::KanMX and ylr176-177∆::KanMX respectively). They were mated with 

BY4705 (Matα), sporulated and microdissected. Cells containing the YKU80 gene were 

selected for by a lack of growth on YC-LEU medium. This process created the strains 

AKY038 and AKY039. 

yKu80 was tagged by the Flap PCR method described above, with 2 additional 

rounds of PCR amplification to add a total of 150 bp of homology to the YKU80 gene locus 

at the 5’ and 3’ end of the tagging cassette. The yKu80 protein was tagged in the wild type 

BY4705 strain, as well as in AKY040 and AKY041 strains. These were derived from the 

EVAY01 and EVAY02 parental strains, respectively, mated with BY4705 to regain a 

functional yKu80. 

 

Modification of TEL01L and TEL03L in S. cerevisiae 

 

Plasmids pAK013 and pAK014 were linearized with BamHI and NotI (see Fig. 1 for 

illustration) and transformed into various haploid yeast strains with a W303 background 

(see transformation protocol below), to obtain 01L-WT XCR::URA3 and 01L-XCRmut::URA3 

strains. Clones from each strain were screened by extracting DNA and performing PCR and 

southern blotting. PCR screening was performed with primers QP5-R and Arsdel-F. DNA 

for southern blotting was digested by SalI and probed with TEL01Lp1. Positive clones were 

sequenced. This resulted in a final close to native TEL01Lmod construct containing short 

sequences not present in the wild type subtelomere. Due to the cloning processes 

outlined above, a 51 bp sequence consisting of 3 bp pBluescript multiple cloning site, 

16 bp SK sequencing primer and 32 bp bacterial plasmid DNA was added between 

telomeric repeats and subtelomere XCR. Recombination was then induced to remove the 

URA3 gene and one RS site (see protocol below), leaving behind a 628 bp sequence of 
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wild type DNA upstream of TEL01L, followed by a 334 bp sequence of residual RS site and 

plasmid DNA. Integrative plasmids pAK018, pAK007T and pAK016 were linearized with 

NsiI and Eco53kI (see Fig. 3 for illustration) and transformed into various desired yeast 

strains in the W303 background. DNA was extracted for screening by PCR and southern 

blot. Primers QP5-R and SSB1-pRSF were used for PCR screening. DNA was digested by 

NruI and probed with TEL03Lp1 for southern blotting. Positive clones were sequenced. 

This produced strains containing 03L-WT XCR::LEU2 and 03L-XCRmut::LEU2. TEL03Lmod 

contains a sequence of 56 bp between telomeric repeats, consisting of 7 bp pBluescript 

multiple cloning site, 16 bp SK sequencing primer and 32 bp bacterial plasmid DNA. 

Directly upstream of the X-Core, TEL03L has a 136 bp sequence of residual non-native 

sequence after recombination to remove the LEU2 selection marker (see protocol below). 

 

Site-Specific Recombination 

 
In yeast strains with modified subtelomeres TEL01L and TEL03L, selection markers 

URA3 and LEU2, respectively, were removed by site-specific recombination, by 

Recombinase R. Recombinase R recognizes 58 bp RS sites and excises DNA between them 

when sequences are in the same orientation, creating DNA circles from excised DNA 

(Gartenberg, 2012). Replicative plasmid pEP21A containing TRP1 and Recombinase R 

(RecR) under a galactose (GAL1-10) promoter was derived from the pB3-X plasmid from 

the Kornberg Lab (Gartenberg, 2012; Griesenbeck et al., 2003). pEP21A was transformed 

into yeast cells with RS-URA3-RS or RS-LEU2-RS. Cells were grown on YC-TRP + glucose 

plates at 30 ˚C for 2-3 days. RecR expression was induced by restreaking colonies on to 

plates with galactose as a carbon source (YC-TRP + galactose). After growth on galactose 

containing media for 2-3 days at 30 ˚C, 2-3 colonies were grown in 3 ml liquid YEPD media 

overnight at 30 ˚C. The OD of these colonies were measured in order to plate an 

estimated 100 cells on YEPD plates, which were grown for 2-3 days at 30 ˚C. Successful 

site-specific recombination was evaluated by growth on selective media. Clones were 

streaked on selective plates lacking uracil or leucine (depending on what selection marker 

was removed) and grown for 2-3 days at 30 ˚C. A lack of growth on selective media 



40 
 

indicated successful URA3 or LEU2 excision. Clones that had expelled the replicative 

plasmid during incubation periods in non-selective media (YEPD) were screened for by 

lack of growth on Yc–TRP selective media for 2-3 days at 30 ˚C. 

 

Serial dilution growth tests on solid plates: “Spot Tests” 

 
Spot tests were used to visualize transcriptional silencing of URA3 when placed 

interior to the TEL01L telomere. Cells were taken from YEPD plates and grown to a 

stationary phase in liquid. An OD660 reading was taken and converted to cells/ml, as 

indicated above. Strains were diluted to 3 x 107 cells/ml in 1 ml of sterile nano H2O. 

Diluted cells were transferred to a 96-well plate and diluted in 5 serial 1:5 serial dilutions 

in sterile H2O. Serially diluted cells were spotted onto YC or YC+ 1mg/ml 5-FoA plates 

using a replica plater (Sigma-Aldrich) or multichannel pipette. When a multichannel 

pipette was used, 10 µl of each dilution was plated. Plates were grown for 4-5 days at 

specified temperatures and pictures were taken using an ImageQuant LAS4000 (GE 

Healthcare). 

 

PCR mediated Gene Deletions 

 
Multiple strains were created in which genomic loci were replaced with auxotrophic 

or antibiotic resistance cassettes using PCR generated deletion cassettes. These were 

amplified from pRS plasmids described by Brachman et al. (1998) or from genomic DNA 

from strains in which the gene was already deleted. Primers for gene deletion can be 

found in Table 6 (Brachmann et al., 1998). 

 

Mating, Sporulation and Microdissection 

 
Although the experiments done in these projects all involve haploid strains, mating 

was used in some occasions to facilitate genomic modification of yeast strains. Cells of 

opposite mating types (Matα; MatA) in liquid YEPD cultures were mixed together in a 1:1 



41 
 

ratio and grown for 3 hours to overnight. The cultures were diluted in 3 ml YEPD and 

grown overnight. Sporulation of these cells was induced by first pelleting 700 µl of the 

mated culture. These cells were washed three times in 5 ml sterile nano H2O and 

resuspended in 3 ml sterile 0.5 % KAc and grown for 3 days at 23 ˚C. The cells were 

observed under a light microscope to verify the presence of “tetrads” generated by the 

two successive cell divisions of meïosis within one cell. 300 µl of the sporulated culture 

was spun down and washed with 1 ml sterile nano H2O. The cell wall was digested by 

resuspending the pellet in 50 µl of zymolase, incubating for 5 minutes at room 

temperature and slowly adding 300 µl of sterile sorbitol to stop zymolase activity. 20 µl of 

the digested cells were spread along the edge of a YEPD plate for microdissection. During 

microdissection, individual spores were separated on the plate and grown for 3-5 days at 

30 ˚C. The genotypes of the spores were determined by growth on selective media to 

evaluate for the selection markers present or absent in each spore. 

 

Yeast Genomic DNA extraction and quantification 

 

3 ml of the desired yeast strains were grown in liquid YEPD or selective media 

overnight at 30 ˚C to a stationary phase. 1.5-3 ml cells were pelleted, washed once with 

ddH20 and transferred to 1.5 ml tubes. Cells were then lysed according to the Fast Prep or 

Slow Prep method, depending on downstream use of the extracted DNA: 

 

Fast Prep Method Lysis 

300 µl lysis buffer (100mM Tris, 50mM EDTA, 250mM NaCl, 1% SDS) and 300 µl acid 

washed beads were added to the cell pellet, and the tubes were sealed with parafilm. The 

cells were lysed using a FastPrep (MP Biomedicals) 2x 45 seconds at 4 m/s. The bottom of 

the 1.5 ml eppendorf tubes were pierced with a hot 23G1 needle and placed into a 

second tube. The stacked tubes were centrifuged for 1 minute at 400 x g in a 

microcentrifuge, allowing the lysed cells to pass through the beads into the new tube. 

300 µl lysis buffer was added to the lysate. 
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Slow Prep Method Lysis 

Cells were resuspended in 500 µl Winston lysis buffer (2 % Triton-X, 1 % SDS 10 %, 

100 mM 5mM NaCl, 10 mM 2 M Tris-HCl pH 8, 1 mM 0.5 M EDTA) and transferred to 5 ml 

glass tubes. 500 µl acid washed glass beads were added. Cells were lysed by vortexing for 

30 seconds and resting on ice 30 seconds, repeated nine times. Lysate was collected from 

beads with a pipette and transferred to 1.5 ml tubes. Beads were rinsed with 100 µl TE, 

which was collected again and added lysate. Subsequent steps are as below, using 750 µl 

phenol-chloroform and chloroform instead of 500 µl. 

 

Extraction continued 

DNA was extracted by adding 500 µl phenol-chloroform to the lysate and vortexing 

and spinning the sample for 5 minutes at 21,000 x g. 550 µl of the upper, aqueous phase 

was transferred to a new 1.5 ml tube and extracted again with 500 µl phenol-chloroform 

(vortexed and spun 5 minutes at 21,000 x g). 500 µl of the upper phase was transferred to 

a new 1.5 ml tube and extracted with 500 µl chloroform. The final 450 µl supernatant was 

transferred to a new tube and 1 ml -20 ˚C EtOH was added to precipitate DNA either for 

20 minutes at -80 ˚C, or minimum 1 hour at -20 ˚C. The DNA was centrifuged for 

20 minutes at 16,000 x g at 4 ˚C and the supernatant was removed. The pellet was 

washed with 1 ml of -20 ˚C 70% EtOH and centrifuged for 5 minutes at 4 ˚C. The EtOH was 

removed, pellets were resuspended in 500 µl TE/RNase (7.5 mg/ml RNAse in TE pH 8) and 

heated to 37 ˚C for 30 minutes, vortexing at 5 and 15 minutes. DNA was precipitated 

again by adding 1 ml cold EtOH, 15 µl 3 M NaOAc pH 5,2 and 1 µl glycogen 10 mg/ml, 

vortexing, and incubating the tubes for 20 minutes at -80 ˚C, or minimum 1 hour at -20 ˚C. 

The DNA was pelleted in a microcentrifuge at 4 ˚C for 20 minutes at 16,000 x g, and 

supernatant was removed. The pellet was washed with 1 ml 70 % EtOH as described 

previously. Excess EtOH was evaporated from DNA pellets under the fume hood 

(approximately 30 minutes). DNA was resuspended in 35 µl nano H20. DNA was quantified 

(ng/µl) by fluorescence spectroscopy, and the samples were conserved at -20 ̊ C. 
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Yeast total RNA extraction 

 
All buffers and solutions used for RNA extraction were RNAse free. Workspace, 

pipettes and tube racks were washed with RNAseZap Decontamination spray 

(ThermoFisher) before beginning experiments. 

 

10 ml of yeast cells were grown in liquid YEPD or selective media to OD660 0.8. Cells 

were pelleted in 15 ml tubes, washed with 1 ml sterile molecular grade H20 and 

transferred to 1.5 ml tubes. Cell pellets were resuspended in 300 µl 1X LETS buffer (see 

composition of 2X LETS below) and kept on ice from this point. 300 µl acid washed glass 

beads were added and tubes were sealed with parafilm. Cells were lysed using the MP 

Biomedicals FastPrep machine 45 seconds at 4 m/s two times, resting cells on ice for 

2 minutes between each round. Glass beads were removed by piercing a hole in the 

bottom of the 1.5 ml tube with a hot 23G1 needle, placing the tube into a new tube and 

centrifuging at 400 x g for 1 minute. 300 µl 1X LETS buffer was added to the lysate in the 

bottom tube. The RNA was extracted by adding 500 µl phenol-chloroform-isoamyl 

(25:24:1), then vortexing and spinning the sample for 5 minutes at 16,000 x g at 4 ̊ C. 

550 µl of the upper aqueous phase was transferred to a new tube, and the extraction step 

was repeated, transferring 500 µl to a new tube after the second spin. 500 µl chloroform-

isoamyl (24:1) was added to the sample before vortexing and spinning again for 5 minutes 

at 16,000 x g at 4 ˚C. 450 µl of the supernatant was transferred to a new 1.5 ml tube, and 

1 ml cold EtOH, 30 µl 3 M NaOAc pH 5.2 and 2 µl 10 mg/ml glycogen were added. The 

sample was vortexed and placed at -80 ˚C for 30-45 minutes or -20 ˚C minimum 1 hour to 

allow RNA to precipitate. RNA was pelleted in a microcentrifuge for 15 minutes at 

16,000 x g at 4 ˚C. The supernatant was removed, and the RNA pellet was washed with 

1 ml cold 70% EtOH and spun for 5 minutes at 16,000 x g at 4 ˚C. The supernatant was 

removed and the pellets were dried. The pellets were resuspended in 10 µl nuclease free 

H20 and 1:50 dilutions were quantified using NanoDrop Spectrophotometer (Thermo 

Fisher Scientific). 
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DNaseI Treatment of RNA 

 
50 µg of RNA (quantified by Nanodrop), was digested using DNaseI (New England 

BioLabs), according to the manufacturer’s directions. Instead of a heat inactivation of the 

enzyme, RNA was extracted one time with 500 µl phenol-chloroform-isoamyl (25:24:1) 

and one time with chloroform-isoamyl (24:1) as described above. RNA was precipitated 

from solution by adding 1 ml cold EtOH, 30 µl 3 M NaOAc pH 5.2, 2 µl 10 mg/ml glycogen, 

vortexing and placing at -80 ˚C for 45 minutes or -20 ˚C for minimum 1 hour. The RNA was 

pelleted for 15 minutes at 4 ˚C at 16,000 x g and washed with 70 % cold EtOH. The pellets 

were dried and a 1:50 dilution of the sample was quantified using the NanoDrop 

Spectrophotometer (Thermo Fisher Scientific). 

 

Yeast Rapid Protein TCA Extraction 

 
3 ml yeast culture was grown until OD660 1 and pelleted by centrifugation at 4 ˚C. 

Cells were washed with 1 ml cold nano H20 and transferred to 1.5 ml tubes and kept on 

ice from this point. 100 µl TCA 20 % and 100 µl acid washed glass beads were added to 

the cell pellet and tubes were sealed with parafilm before lysis using the FastPrep (MP 

Biomedicals) for 45 seconds at 4 m/s. The bottom of the tube was pierced with hot 23G1 

needles, placed in new 1.5 ml tubes, and centrifuged 30 seconds at 900 x g to collect the 

lysate. After removing the upper, bead-containing tube, the lysate was spun again for 

3 minutes at 16,000 x g at 4 ˚C. All TCA supernatant was removed by pipette, and the 

pellet was resuspended in a mix of 20 µl Laemmli Buffer 1x (4 % SDS 10%, 20 % Glycerol, 

120 mM 1 M Tris-HCl, 2.8 ml H2O), 5 µl 1 M DTT, after which the solution turned yellow. 

Tris Base 1 M pH 8.8 was added such that the solution changed from yellow to blue (5-10 

µl). The sample was incubated for 5 minutes at 100 ˚C and centrifuged at room 

temperature for 3 minutes at 21,000x g. The supernatant was conserved at -20 ˚C until 

further use. 
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Western Blot 

 
Western blots were essentially carried out as described previously (Towbin et al., 

1979). Extracted proteins in this project were analyzed on 8 % SDS-PAGE gels. Samples 

were migrated for 30 minutes at 120 V and approximately 2 hours at 150 V, using the 

PageRuler Prestained Protein Ladder (ThermoFischer Scientific) as a reference for 

molecular weight. Proteins were then transferred to Hybond-C nitrocellulose membranes 

(GE Healthcare) in a BioRad mini Trans-blot Cell apparatus for 90 minutes at 100 V. 

Membranes were stained with Ponceau S to verify protein quality and transfer efficiency. 

Membranes were blocked with 5 % m/v powdered milk or BSA dissolved in 1X Phosphate 

buffered saline (PBS) with 0.1 % Tween, for 1 hour at room temperature with agitation. 

Then they were washed two times for 15 minutes with PBS-Tween, changing the wash 

buffer for each wash. The membranes were incubated at 4 ˚C overnight with a 5 ml 

solution containing primary antibody in 1 % m/v powdered milk or BSA dissolved in 1xPBS. 

Table 4 depicts antibody concentration and blocking agents (BSA or Milk) for each 

antibody used in this project. The membranes were washed again as above and incubated 

for 1 hour with a secondary antibody, peroxidase conjugated anti-mouse at a 1:5000 

dilution in 1 % m/v powdered milk or BSA in PBS 1x. The membranes were washed, the 

proteins were exposed with 300-400 µl Enhanced Chemiluminescence (ECL) (Amersham) 

and visualized with an ImageQuant LAS 4000 (GE Healthcare). For experiments with yKu70 

and yKu80 immunoprecipitation using the anti-TAP or anti-Flag primary antibodies, 200 µl 

of ECL Plus (Amersham) was used per membrane. 

 

Table 4: Antibodies used in this project. 

Antibody Producer Dilution Solution 

Monoclonal ANTI-FLAG M2 antibody 
(mouse) 

 
Merck 

 
1:1000 

 
1 % Milk 

TAP Tag Monoclonal Antibody (mouse) Thermo Fisher 
1:500 1 % Milk 

1:1000 1 % BSA 

Anti-c-myc (mouse) Roche 1:1000 1 % Milk 

Anti-HA (mouse) Roche 1:1000 1 % Milk 
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Southern Blot 

 
In this project, Southern Blots were used to analyze telomere length and to screen 

for genomic modification of clones in yeast strains. Southern blotting was essentially 

carried out as described previously (Southern, 1975). After extraction and quantification 

of yeast DNA, 500 ng -1 µg was digested with restriction enzymes. In experiments 

measuring telomere length, enzymes XhoI, NruI or SalI were used to analyze global 

telomere length, TEL03L telomere length or TEL01L telomere length respectively. DNA 

was migrated on 0.75 % agarose gel in TBE buffer overnight at 35 V, or over day for 

3-4 hours at 75 V for screening experiments, and then transferred overnight to a 

Hybond-XL nylon membrane (GE Healthcare). The membrane was hybridized for a 

minimum of 6 hours with a radiolabeled probe containing a sequence specific to the DNA 

fragment to be visualized. Probes obtained by PCR amplification or plasmid digestion 

were 150-300 bp in length and radiolabelled using Klenow (SPP) random priming labeling 

procedure. 150 ng of probe was denatured in 9µl ddH20 before adding 11.4µl LS Buffer 

(see composition below), 1 µl 1 mM dATP dTTP Mix, 1 µl Klenow, 3 µl dCTP32, 3 µl dGTP32 

and incubated for 3 hours to overnight at room temperature. The reaction was stopped 

by the addition of 25 µl Stop Solution (0.2 % SDS, 50 mM EDTA, Tris pH 8) and heating to 

68 ˚C for 10 minutes. Probes were purified with ProbeQuant G-50 columns (GE 

Healthcare) as per the manufacturer’s directions. Probes were denatured for 5 minutes at 

100 ˚C before hybridization with a membrane. After hybridization, excess probe was 

removed by washing the membrane for 20 minutes with 2x SSC (saline-sodium citrate) at 

room temperature. Hybridized DNA was visualized using a Typhoon FLA9000 (GE 

Healthcare). Gel Analyzer software was used to determine the band size, using the 

radiolabelled molecular ladder (1 kb+, Thermo Fischer Scientific) as calibration. 

 

LS Buffer: 50 µl HEPES 1 M pH 6.6, 50 µl TM (250 mM Tris-HCl, 20 mM MgCl2, 50 mM 

-mercaptoethanol), 14 µl 2.1 mM Roche Random Hexamers 
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Northern Blot 

 
All buffers and solutions in used for RNA extraction were RNAse free. Workspace, 

pipettes and tube racks were washed with RNAseZap Decontamination spray 

(ThermoFisher) before beginning experiment. Samples of 15 µg of DNAseI treated RNA 

were diluted to 5 µl in nano H2O. A mixture of 2 µl MOPS 10 X (Wisent), 2 µl 

Formaldehyde 37 %, 2 µl RNA dye (see composition below) and 9 µl Formamide were 

added to each RNA sample. Northern blots for TERRA were carried out as described 

previously (Pfeiffer and Lingner, 2012). Samples were heated 10 minutes at 60 ˚C prior to 

migration in a 1.2 % formaldehyde agarose gel for approximately 5 hours at 70 V. The gel 

was treated through a 20 minute incubation in 50 mM NaOH, and then a 30 minute 

incubation in 10x SSPE (2.4 M NaCl, 0.3 M NaoAC, 0.2 M KH2PO4, 0.2 M EDTA), and 

transferred overnight to a Hybond N+ membrane (GE Healthcare). RNA samples were 

crosslinked to the membrane by exposure to 700000 J/cm2 UV for 2 minutes using the 

UVP HL-2000 HybriLinker. The membrane was then hybridized overnight with either a 

radiolabelled DNA fragment (see description for Klenow labeling above) at 65 ˚C, or an 

oligonucleotide probe, labeled with T4 polynucleotide kinase (New England Biolabs) 

according to the manufacturer’s directions, at 42 ˚C. The membrane was washed 

10 minutes at room temperature in 0.1x SCC+ 0.1 % SDS. Hybridized RNA was visualized 

using the Typhoon FLA9000 (GE Healthcare). 

 
RNA dye: 50 % Formamide, 0.1 % Bromophenol Blue, 0.1 % Xylene Cyanol 

 
 

Purification of His-Tev-Flag Tagged Proteins 

 
Purification of HTF tagged proteins was carried out as suggested by the 

Granneman Lab, based on a modified version of the technique used previously 

(Granneman et al., 2009). Strains with yKu70 and yKu80 tagged with His-Tev-Flag (HTF) 

and untagged strains were grown in 250 or 500 ml YEPD cultures at 30 ˚C to an OD660 of 

0.5-0.6. Cells were spun down, washed with 50 ml ice cold PBS and transferred to 50 ml 
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tubes. Pellets were weighed, frozen in liquid N2 and conserved at -80 ˚C until lysis and 

purification. Cells were lysed by adding 1 v/gram pellet TN150 buffer (50 mM Tris-HCl pH 

7.8, 150 mM NaCl, 0.1 % NP-40) and 2-3 v/v Zirconia beads to the cell pellet and repeating 

a cycle of 1 minute vortex and 1 minute rest on ice five times. 3 v/v of TN150 were added, 

the sample was vortexed and then spun at 4 ˚C for 30 minutes at 4600 x g. The 

supernatant was transferred to 1.5 ml tubes and spun at 4 ˚C for 20 minutes at 21,000 x g. 

The supernatant was transferred to new tubes and quantified by Bradford Assay 

(Bradford, 1976). HTF tagged yKu70 and yKu80 proteins were immunoprecipitated (IP) 

using 40 µl Anti-Flag M2 Magnetic Beads (Merck) for 2-3 mg total protein. The beads were 

equilibrated by washing twice with 10 gel volumes of TN150 buffer before adding whole 

cell extract (WCE) and adding TN150 buffer for a final volume of 1 ml. The proteins were 

incubated with beads overnight at 4 ˚C with rotation. The beads were collected with a 

magnet to discard the flow through and washed twice with 20 gel volumes of TN1000 

buffer (50 mM Tris-HCl pH 7.8, 1 M NaCl, 0.1 % NP-40) and twice with 20 gel volumes of 

TN150, inverting tubes several times between each wash. The beads were then 

resuspended in 100 µl of TN150. Cleavage of the tagged proteins from the magnetic 

beads was attempted by adding 5-20 u of His-TEV (provided by the Service de Purification 

de Proteines, UdeS) or AcTEV (Thermo Fisher) and incubating 1-6 hours at room 

temperature or overnight at 4 ˚C. 

 
 
Chromatin Immunoprecipitation (ChIP) 

 
ChIP was carried out essentially as described in previous studies, with some 

modifications (Adam et al., 2001; Larcher et al., 2016). 200 ml yeast culture of strains with 

untagged, or 13xmyc-tagged Tbf1 or Reb1 proteins were grown at 30 ˚C to OD600 0.5-0.8 in 

YEPD. 5.6 ml 37 % formaldehyde was added (1 % final concentration) and cultures were 

incubated for 20 minutes at room temperature, swirling briefly after 5 minutes. 12.5 ml 

filtered 2 M glycine was added (125 mM final concentration) and cells were incubated 

5 minutes at room temperature. The culture was split into 50 ml aliquots and cells were 
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pelleted at 4 ˚C for 5 minutes at 1600 x g and washed twice with cold TBS (20 mM Tris-HCl 

pH 7.5, 150 mM NaCl) and spun down at 4 ˚C for 5 minutes at 1600 x g between each 

wash. Washed pellets equivalent to 50 ml of culture were transferred to 1.5 ml tubes, 

frozen in liquid N2, and conserved at -80 ˚C until further use. 1 tube per IP was defrosted 

on ice and resuspended in 250 µl ChIP lysis buffer (50 mM HEPES-KOH pH 7.5, 140 mM 

NaCl, 1 mM EDTA pH 8.0, 1 % Triton X-100, 0.1 % Na-deoxycholate, 1 mM PMSF) 

containing 1X cOmplete Mini Protease Inhibitor (Roche). 250 µl acid washed lysing beads 

were added and the tube was sealed with parafilm. Cells were lysed with FastPrep (MB 

Biomedicals) 4 times for 30 seconds at 6.5 m/s, resting cells on ice for 2 minutes between 

each round of lysis. The tube was pierced with a heated 23G1 needle and placed in a 2 ml 

tube to collect the lysate by centrifugation for 1 minute at 400 x g. DNA was sheared by 

sonication 30 times for 1 minute at an amplitude of 100, inverting the tubes and resting 

on ice for 1 minute after every sonication round. The sample was centrifuged at 4 ˚C for 

10 minutes at 19,000 x g and the WCE (supernatant) was conserved. 5 µl 0.4 µg/µl 

monoclonal mouse anti-c-myc antibody (Merck) were added to 500 µl WCE and incubated 

overnight at 4 ˚C with rotation. 20 µl WCE was also incubated overnight at 4 ˚C without 

antibody to serve as the input fraction. 50 µl Pierce Protein A/G Magnetic Beads (Thermo 

Fisher Scientific) per IP were equilibrated by washing 3 times with 1 ml ChIP lysis buffer. 

Washed beads were added to tubes containing WCE and antibody and incubated for 

1 hour at 4 ˚C with rotation. Beads were washed for 4 minutes with 1 ml of the following 

cold buffers, and collected with a magnet between each wash: 

2 times with ChIP lysis buffer without Protease Inhibitor  

2 times with ChIP lysis buffer with 50 mM NaCl final 

2 times with ChIP wash buffer (10 mM Tris-HCl pH 8.0, 250 mM LiCl, 0.5 % IGEPAL 

CA630, 0.5 % Na-deoxycholate, 1 mM EDTA pH 8.0) 

1 time with TE pH 8 

The IP was eluted from the beads with 50 µl TE pH 8.0 + 0.1 % SDS and an incubation at 

65 ˚C with 1200 rpm agitation for 10 minutes. The sample was vortexed after 5 minutes. A 

second elution was done with 150 µl TE pH 8.0 + 0.1 % SDS for 5 minutes at 65 ˚C with 
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1200 rpm agitation. Each time, the beads were collected with a magnet. The supernatants 

were transferred to a new 1.5 ml tube. 180 µl TE pH 8.0 + 0.1 % SDS was added to the 

input fraction. All samples were incubated at 65 ˚C overnight to reverse the protein-DNA 

crosslink. The RNA was digested from the sample by adding 195 µl TE-SDS 0.1 %, 3 µl 

10 mg/ml RNaseA, 2 µl 20 mg/ml glycogen and incubating 1 hour at 37 ˚C. The samples 

were centrifuged for 1 minute at 16,000 x g to collect cap condensation, and 7.5 µl 

10 mg/ml Proteinase K and 11 µl SDS 10 % were added. Samples were incubated at 50 ˚C 

for 1 hour. DNA was extracted by adding 400 µl phenol-chloroform and vortexing before 

centrifugation for 5 minutes at 19,000 x g. 300 µl of the aqueous supernatant was 

transferred to a new tube and extracted again with 400 µl phenol-chlorofom. 

Centrifugation was repeated as above and 250 µl supernatant was transferred to a new 

tube. 400 µl chloroform was added and the samples were centrifuged as described above. 

200 µl aqueous supernatant was conserved and NaCl was added to a 200 mM final 

concentration, in addition to 2 volumes of cold EtOH. DNA was precipitated overnight at 

-20 ˚C and pelleted at 4 ˚C by spinning for 10 minutes at 19,000 x g. DNA pellets were 

washed with cold 70 % EtOH, dried under the fume hood and resuspended in 60 µl sterile 

molecular grade H20. DNA was conserved at -20 ˚C until used for qPCR reactions. 

 

Quantitative PCR (qPCR) 

 

qPCR in this project was carried out using the KAPA SYBR ® FAST qRT-PCR Master 

Mix Kit (KAPA Biosystems) as per the manufacturer’s protocol, as well as the UdeS 

RNomics Platform (https://rnomics.med.usherbrooke.ca/fr/welcome). Primer pairs were 

first tested on genomic DNA extracted from strains to be used in other experiments in 

order to ensure a good amplification efficiency and target specificity (see results, Chapter 

I). The geometric efficiency of each primer pair was assessed by evaluating the slope of a 

standard curve produced by Ct values measured from serial dilutions of amplified target 

DNA. qPCR was performed with genomic DNA in 5 serial dilutions of 1:8, starting with 

10 ng DNA. The slope was converted using an online qPCR Efficiency Calculator provided 
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by Thermo Fisher (https://www.thermofisher.com/uk/en/home/brands/thermo-

scientific/molecular-biology/molecular-biology-learning-center/molecular-biology-

resource-library/thermo-scientific-web-tools/qpcr-efficiency-calculator.html). 

Additionally, a no template control (H2O) and, when possible, DNA extracted from a 

negative control strain negative (lacking target locus) were included in each experiment. 

This allowed for an assessment of primer dimer formation, background amplification 

levels and non-specific amplification. The qPCRs were performed using either a 

touchdown qPCR assay (Zhang et al., 2015), TEL77 or TEL80 programs (below). The primer 

pairs used for all qPCR experiments and their amplification efficiencies are listed below 

(Table 5). 

 

Program TEL77 Program TEL80 

95 ˚C 15 seconds 95 ˚C 15 seconds 

60 ˚C 15 seconds 60 ˚C 15 seconds 

77 ˚C 30 seconds (Ct measurement) 80 ˚C 30 seconds (Ct measurement) 

Repeat steps 40x Repeat steps 40x 

95˚C 15 seconds 95 ˚C 15 seconds 

72 ˚C 15 seconds 72 ˚C 15 seconds 

Increase to 95 ˚C over 10 minutes 
(Ct measurement) 

Increase to 95 ˚C over 10 minutes 
(Ct measurement) 

95 ˚C 1 second 95 ˚C 1 second 

60 ˚C 15 seconds 60 ˚C 15 seconds 

72 ˚C 5 minutes 72 ˚C 5 minutes 
 

Table 5: Primer Pairs used for qPCR in this project 
% amplification efficiency was measured for each primer pair by evaluating the slope of a 
standard curve produced by Ct values measured from 1:8 serial dilutions of amplified target 
DNA  

Target Primer 1 Primer 2 % efficiency 

TEL01Lmod Ch2R TXCRM 90.50 

TEL03Lmod oEP008 QP5R 116.00 

TEL06R 6R_F1 6R_R1 93.40 

TEL15L oEP001 oEP002 92.40 

https://www.thermofisher.com/uk/en/home/brands/thermo-scientific/molecular-biology/molecular-biology-learning-center/molecular-biology-resource-library/thermo-scientific-web-tools/qpcr-efficiency-calculator.html
https://www.thermofisher.com/uk/en/home/brands/thermo-scientific/molecular-biology/molecular-biology-learning-center/molecular-biology-resource-library/thermo-scientific-web-tools/qpcr-efficiency-calculator.html
https://www.thermofisher.com/uk/en/home/brands/thermo-scientific/molecular-biology/molecular-biology-learning-center/molecular-biology-resource-library/thermo-scientific-web-tools/qpcr-efficiency-calculator.html
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TEL10R oEP005 oEP006 148.46 

RTP1 RTP1_For RTP1_Rev 91.40 

PAF1 Paf1B Paf1B 90.70 

HMRE HMRE-3F HMRE-2R 90.10 

 

 

ChIP qPCR 

 
qPCR was performed on DNA extracted from input and IP samples and diluted 1:8 

and 1:16 in nano H20, respectively. Each ChIP qPCR included a standard curve with a 4 

serial 1:8 dilutions of an input sample for each primer pair used. The percent amplification 

efficiency of the qPCR reaction with each primer pair was calculated based on the slope of 

the standard curve of Ct values, as described above. ChIP signals were calculated from Ct 

values to obtain the percentage of input immunoprecipitated. Experiments with 

TEL01Lmod strains normalized ChIP signals from tagged strains to untagged strains. ChIP 

experiments with TEL03Lmod strains were carried out with a no-antibody control sample 

set to normalize for background signal. The ChIP signals were normalized again to signals 

produced by negative control loci, as is shown in Results, Chapter I. 

 

 
Reverse Transcription qPCR 

 
1 µg of DNaseI treated RNA was reverse transcribed with M-MuLV reverse 

transcriptase (provided by Service de Purification de Proteines, UdeS). The reaction was 

set up on ice in RNase free conditions, including a reaction without reverse transcriptase 

(-RT) for each sample. TERRA was targeted for reverse transcription using a CA-primer. 

Act1 was used as a reference gene and was targeted for reverse transcription by a 

Random Hexamer Mix (Roche). 
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RT Mix: RT Program 

1 µg DNaseI treated RNA Step 1: 25 ˚C 5 minutes 

2 µl 60µM Random Primer Mix* Step 2: 42 ˚C 1 hour 

2 µl 10x MRT Buffer Step 3: 65 ˚C 20 minutes 

0.2 µl MMuLV RT 200 U/µl / H2O in -RT  
1 µl 10mM dNTP  
0.5 µl RNaseI Inhibitor 40 U/µl (SPP, #RI-L)  
1 µl 0.5 mM CA primer  
20 µl total volume  
 

* made by dilution of 14.2 µl 2.1mM Roche Random Hexamer Mix in 500 µl H2O 

 

The complementary DNA (cDNA) produced was diluted 1:5 in nano H2O. 2 µl of 

the diluted cDNA was used for qPCR reactions with KAPA SYBR ® FAST qRT-PCR Master 

Mix Kit or RNomics Platform. Each qPCR reaction included a serial dilution of cDNA (same 

as above) to ensure adequate amplification efficiency and cDNA quality. Fold change in 

TERRA RNA expression was calculated by ∆∆Ct method (Livak and Schmittgen, 2001), 

normalizing to Act1 transcription, then comparing normalized values from mutated XCR 

strains to wild type XCR strains. 

 

 

Telo-PCR 

 

Telo-PCR was used to amplify individual telomeres for subsequent length 

measurement by migration on agarose gel. DNA extracted by “Slow Prep” method (see 

above) was diluted to a 60 ng/µl concentration before C-tailing with TdT transferase (New 

England Biolabs). 9 µl H2O was added to 1 µl DNA, heated for 5 minutes at 95 ˚C and 

cooled on ice. 5 µl 10x Transferase buffer, 5 µl 2.5 mM CoCl2, 1 µl dCTP, 0.1 µl TdT 

transferase 20 U/µl and 28.9 µl H2O were added to the 10µl DNA. The solution was 

heated to 37 ˚C for 30 minutes and then 70 ˚C for 10 minutes. C-tailed DNA was then 

amplified by PCR using GoTaq Long PCR Master Mix (Promega) as shown below. 
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PCR Mix PCR Program 
1 µl C-tailed DNA Step 1: 95 ˚C 2 minutes 
10 µl GoTaq Long PCR Master Mix 10x Step 2: 94 ˚C 20 seconds 
0.5 µl Ars Seq R 20 µM Step 3: 65 ˚C 30 seconds 
1 µl YV6_teloPCR_dG 20 µM Step 4: 65 ˚C 2.5 minutes 
7.5 µl H2O Repeat Step 2-4 40x  

Step 5: 72 ˚C 10 minutes 
 

 
Table 6: Primers used in this project 
Name Sequence 5'-3' 

TEL03Lmod plasmid construction 

RS_LEU2_F TACGTTAATGACGTCATGGTCGCTCTAGAACTAGTGGATCC 

RS_LEU2_R ACTCAATTGCGTATCTATACCATGGTGCACCATATCGACTAGATCC 

GB_Ty5_F GAAGATGACAAGGTAATGCATGCTTTCATCATTCGCGCTG 

GB_Ty5_R ACCATGACGTCATTAACGTAAAAG 

GB_X_F GGTATAGATACGCAATTGAGTGTG 

GB_X_R GGATCCACTAGTTCTAGAGCTCGCGACATGCGGCCGCCCTAACACTAC
CCTAACACT 
TEL03Lmod XCR Site directed PCR mutagenesis 

tbf1_mut1_F TAGAGCGGCCGCCGTAACACTACCGTAACACTA 

SSb-pRS1-F GAATAGACCGAGATAGGGTTGAG 

tbf1_mut2_F CAACTTACTCTCCATTAGCCTACCTCTCC 

tbf1_mut3_F GGAGACAGGTAAAATCACGGTTAGAATAGGG 

tbf1mut-1b-F CTACGCTAACACTACGCTATTCTAACCGTGATTTTAC 

tbf1mut-1b-R TGTTAGCGCGGCCGCATGTCG 

tbf1_mut_4_F ACCGCTTAGCCTACCATCGAC 

tbf1_mut_4_R GTGGAGTTGGATACGGGTAG 

Reb1mut1F GTAGTTGGAGCGTAACGGTTATGGTGG 

Reb1mut1R GCGTATCCAACTCCACTACC 

Reb1mut2F CGTAACGAGTGGAGAGGTAG 

Reb1mut2R CTGTCTCATTCAACCGTACC 

TEL01Lmod plasmid construction 

TEL01L_GB_F GCTCCACCGCGGTGGCGGCCGCATGTATGATGCTGGGGAGG 

TEL01L_GB_RB CTTGTTAACTCGAGCTTAAGAGAAGTGACGCATATTCTATACG 

TEL01L_GB_FB TCTTAAGCTCGAGTTAACAAGAACAAGATTGCAGATCAGG 

TEL01L_GB_R GATCCACTAGTTCTAGAGCTCCTAACACTACCCTAACACAG 

URA3_NruI_F TCATTCGCGACAGATTGTACTGAGAGTGCAC 

URA3_HpaI_R CATTGTTAACGTGCGGTATTTCACACCG 

RS_URA3_F TATACTTAAGCGAAAAGTGCCACCTGACGT 

RS_URA3_R TACAGTTAACATAGTTAAGCCAGCCCCGAC 
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TEL01Lmod XCR Site directed PCR mutagenesis 

TEL01mut1-F TGGTAGCGTAAGTGGCAGTGGGTTG 

TEL01mut1-R TTACGCTACCATCCACCATGACCTAC 

TEL01mut2-F TGGGTGAGTGGTAGTAAGTAGAG 

TEL01mut2-R CCGTTACGCTCCAATTACCCATATCC 

TEL01mut3-F TGGAGGCAGCGTAATGGAGCGTAAGTTGAGAGACAGG 

TEL01mut3-R CTCGTTACGCTGTCCCATTCAACCATAC 

TEL01mut4-F CGCTGTGTTAGCGTAGTGTTAGGAGCTCTAG 

TEL01mut4-R CCTAATCTAACGCTGGCCAACCTGTC 

Sequencing of TEL01Lmod and TEL03Lmod X-elements 

Xel-F TACGCACACGGATGCTAC 

Xel-R GGTATAGACCGCTGAGGCAAG 

Reb1 tagging 

Reb1_Tag_F TGATTATTTTAGCTCCAATATTTCAATGAAAACAGAAAATCGGATCCCC
GGGTTAATTAA 

Reb1_Tag_R TTATTGAGTTTTTCGCTTTCACCAATTATATTTTCCGGAAGAATTCGAGC
TCGTTTAAAC 

yKu70 tagging 

Ku70_Tag_F CGATAAAAGAAGAAAAGAAGCCCTTTGATAAAAAGCCGAAATTCAAT
ATAGAGCACCATCACCATCACC 

Ku70_Tag_R CTACCAAATATTGTATGTAACGTTATAGATATGAAGGATTTCAATCGTC
TTACGACTCACTATAGGG 

yKu80 tagging 

yKu80_Tag_F TGAAGCGCGGTGAACAACACAGTAGGGGAAGTCCAAACAATAGCAAT
AATGAGCACCATCACCATCACC 

yKu80_Tag_R CTCTTTAACTGTGGTGACGAAAACATAACTCAAAGGATGTTAGACCTTT
TTACGACTCACTATAGGG 

Ku80htfTagAm
pli2_F 

AAACTGAGCTTGAGAGGGAAAAGATCCCGGACCTAGAAACGCTATTG
AAGCGCGGTGAAC 

Ku80htfTagAm
pli2_R 

AGTAGTATGACAATTATTTACCCGCTATTTATTTTTTTTTCTCTTTAACTG
TGGTGACGA 

Ku80htfTagAm
pli3_F 

ATCAAGAAAGTAGACAAATTAAAACTCGACTCCGAACTAAAAACTGAG
CTTGAGAGGG 

Ku80htfTagAm
pli3_R 

GCTAGTGTTCAAAGTTACAAGGTAACAATGCAAATCAGTAGTATGACA
ATTATTTACCCG 

Gene deletions and amplifications 

yKU80-480 
FOR 

TTGTTGGCGCAATCGGTAGC 

yKU80+472 
REV 

TCTTTTACACTTTTCAACCCCTGTTTGT 

SIR4-348-F GTATGTGAGTACATATATCCGCAG 

SIR4+220_3'-R GTTCTTGGTATTTGATGGGTTGCTC 

TELI-FOR AACACTAAGTGTGAAGCCTGATC 
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TELI-REV AGTTATACGATAACAGAGCTAGC 

yKu70F TGAATAAGCATGATATTAGACGG 

yKu70R GGACCCACAAAGTAATTGTCAGG 

tbf1-164 CCTCAATGCTTTGCCCTTCCTTG 

tbf+953 CCAACTTTCGCCAATCCTAACAGGA 

Construction of probes for Southern Blot 

TEL01Lp1F CCTTGAAACATCATAAAGTAGCTTTCCGGA 

TEL01Lp1R CAGGTACGAAACGCTAAGAAC 

TEL01L P3F ATCGTATGCATGACGTCTAAGAAAC 

TEL01L P3R TGCATAGTTAAGCCAGCCC 

TEL03L-p1F AGCTTTCATCATTCGCGCTGA 

TEL03L-p1R CGTCAACAGGTTATGAGCCCT 

6R_P1_F GAATTACAAGGGAACAATGAGCAG 

6R_P1_R TGTCTTTAATGATACCGCTTGACTTG 

7L_P1_F CCTGTAAACGACAAAGAACTTTAAATGTG 

7L_P1_R TACAGAGGAATTTTCTGAAGCTATTAATAGAAG 

11R_P1_F TTTTTGAATTTCTATCGATTAAGCTCTATACCAG 

11R_P1_R TAAAAGTAGTGCCACATTTCCTTTGC 

13R_P1_F AAACAAGTAGCAAATCATAGCAAGAG 

13R_P1_R CTATTCCATTTACAGTTACATAAAAAGTTAACC 

14R_P1_F CTTACACCGAAGACGCGG 

14R_P1_R AATTTGCACAAATAAAGAAGTCAGACATATC 

Ku70F Probe ATCGGGGAGAATAAGCCTATACGACT 

Ku70R Probe AACTCGTTGTCAAATGGTTTATCGGC 

yKu80 FOR P CCCTACTGTGTTGTTCACCG 

yKu80 REV P ATCCTCTTAGAATACCCACGGT 

PCT300 FOR TGCCTGCAGGTCGACTCTAG 

PCT300 REV AAACGACGGCCAGTGAATTG 

Amplification of specific X-only Subtelomeres (ChIP/ TERRA RT qPCR) 

QP5-R ACCCACACACTCTCTCACATCTAC 

oEP008 GAGAGTAAGTTGGGAGACAGGTAA 

TXCRM ATCTACCTCTACTCTGGGAATTC 

Ch2R GGGAATTCAGATCCACTAGTTCTAGAGCTCC 

TEL01L_XCA AGGTCATGGTGGATGGTAGG 

TEL01L_XCMB TGGCCAACCTGTCTCTCAACT 

oEP001 GGGTAACGAGTGGGGAGGTAA 

oEP002 CAACACTACCCTAATCTAACCCTGT 

oEP005 GGTTATGGTGGACGGTGGATG 

oEP006 CCTAACCCTATTCTAATCCAACCCTGATAA 

6R_F1 AAATGGCAAGGGTAAAAACCAG 

6R_R1 TCGGATCACTACACACGGAAAT 
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TERRA RT 

Act1F AACGAATTGAGAGTTGCCCC 

Act1R CAAGGACAAAACGGCTTGGATG 

CA TERRA RT CACCACACCCACACACCACACCCACA 

ChIP controls: genomic loci 

HMR-E3f CGAACGATCCCCGTCCAAGTTATG 

HMR-E2r TCGGAATCGAGAATCTTCGTAATGC 

PAF1A CATACACGCAATGAGAACCCTA 

PAF1B TCATCCAATGTTACAGTCGTCA 

RTP1_FOR AATCAAGGTTACCCGCAGTC 

RTP1_REV AGAAACATGAGGCGGTGATG 

Primers tested for qPCR amplification of TEL01Lmod 

TEL01L_Ch_R ATGGATGGTGGTTCGGAGT 

TEL01L_Ch_F CTCTCTCACATCTACCTCTACTCTGG 

TEL1Ch2-F GGGAATTCAGATCCACTAGTTCTAGAGCTCC 

TEL1Ch2-R TGAGTAGGTCATGGTGGATGGTAG 

TEL01LqPCR2F AGATCCACTAGTTCTAGAGCTCCTAACACTAC 

TEL01LqPCR3R CGGTGGGTGAGTGGTAGTAAGTAGA 

TEL01Fhage CTCCAATTACCCATATCCAA 

TEL01Lrhage ACGATCATTTGTTAGCGTTT 

Probes and oligonucleotides for Northern Blot 

TEL03L_TERRA
_Plong 

TCTCTCACATCTACCTCTACTCTGGGAATTCAGATCCACTAGTTCTAGA
GCGGCCG 

TEL03L_TERRA
_Pshort 

TCTGGGAATTCAGATCCACTAGTTCTAGAGCGGCCG 

t3TERRA_p1F ACCCACACACTCTCTCACAT 

t3TERRA_p1R AGTGTTAGcGCGGCC 

TLC1-probe 
FOR 

ATCTAAATGCATCGAAGGCAT 

TLC1-probe 
REV 

CCATGGGAAGCCTACCATCAC 

TeloPCR 

YV6_teloPCR_
d G 

GGGGGGGGGGGGGGGGGG 

QP4-F CCCTCACTAAAGGGAACAAAAGC 

ARS-seq-R GGGCCTCGTGATACGCCT 

Gibson Assembly for silencing constructs (TEL01Lmod) 

GB1F CTCTCAGTACAATCTGTCGCGAATGACGATTCGGGG 

GB11R AACATATTGGTAGAACACTAACCCCTCAGC 

GB13R GCTAACAAATCTTGTGGTAGCAACACTATCATGGTATCACT 

GB9R GCATAAATTCCTTGTGGTAGCAACACTATCATG 

GB16R CCTTACCCATCTTGTGGTAGCAACACTATCATG 
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GB10F GTTAGTGTTCTACCAATATGTTTATGTATTATTGTTGAAAAGTAG 

GB15R GAGGCATAAATTCGATCGTAAATAACACACACGTGC 

GB6F CTTGCCATCATTTGTTAGCGTTTCAATATGGTG 

GB12F CTACCACAAGATTTGTTAGCGTTTCAATATGGTGGG 

GB2R GGGAATTCAGATCCACTAGTTCTAGAGCTCCTAACACTACCCTAAC 

GB3R GGGAATTCAGATCCACTAGTTCTAGAGCTCCTAACACTACGCTAAC 

GB4R GGAATTCAGATCCACTAGTTCTAGCGTCATCAAAATCACTCGCA 

GB5F TACGATCGAATTTATGCCTCTTCCGACC 

GB7R GCTAACAAATGATGGCAAGATCCTGGTATCG 

GB8F CTACCACAAGATGGGTAAGGAAAAGACTCACG 

GB14R GGAATTCAGATCCACTAGTTCTAGTTTTGAAAAAGCCGTTTCTGTAATG
AAG 

 

 

 

 



Results Chapter I 
 

Construction of a system to deplete Tbf1 and Reb1 from a subset of subtelomeres 
 

 

Preamble 
 

A primary objective of this project was to construct a system in which solely the 

effects of Tbf1 and Reb1 at the chromosomal ends could be observed. Both Tbf1 and 

Reb1 are essential proteins (Brigati et al., 1993; Chasman et al., 1990), making it 

impossible to study their function by deleting the respective genes to evaluate potential 

phenotypic effects. This problem sometimes is bypassed by constructing hypomorphic 

alleles, which has been done for TBF1 and REB1. Those used in this study and in the 

Wellinger lab originate from the temperature sensitive (ts) library (Ben-Aroya et al., 

2010). However, as both proteins target a multitude of promoters (Bosio et al., 2017; Preti 

et al., 2010), expression of Tbf1 and Reb1 from hypomorphic alleles could lead to changes 

in transcription at their targets. This makes it difficult to attribute potential telomeric 

phenotypes only to the potential impairment of Tbf1 and Reb1 functions at the 

subtelomere. The phenotype could originate from upstream transcriptional changes in a 

number of Tbf1 and Reb1 targets. Work done by other groups to characterize the function 

of these proteins at subtelomeres used the wild type protein alleles, although they 

worked in systems with heavily modified subtelomeres, or no subtelomeres at all (Arnerić 

and Lingner, 2007; Berthiau et al., 2006; Fourel et al., 1999; Ribaud et al., 2012). Given the 

evidence showing that subtelomeres influence telomeric properties (Mak et al., 2009), it 

is difficult to rule out whether potential phenotypes are merely caused by an alteration of 

the subtelomeric chromatin. The system constructed in this project circumvents these 

obstacles by decreasing Tbf1 and Reb1 at two subtelomeres by introducing point 

mutations into the DNA sequences they are predicted to bind to. Although these modified 

subtelomeres are not completely wild type, they are minimally modified in attempts to 

maintain as close to native sequences and chromatin structure as possible. The 

modifications made to subtelomeres are outlined in this chapter. 



60  

Construction of TEL01Lmod and TEL03Lmod strains 

 

The TEL01L and TEL03L telomeres were cloned into bacterial plasmids in order to 

introduce Tbf1 and Reb1 binding site mutations and re-transformated back into yeast (see 

Materials and Methods). The potential Tbf1 and Reb1 binding sites at TEL01L and TEL03L 

were identified using the YeTFasCo database (http://yetfasco.ccbr.utoronto.ca/). Tbf1 and 

Reb1 have similar binding motif sequences, specifically a 3-cytosine (CCC) repeat 

sequence (Koering et al., 2000). It is in this CCC sequence to which the point mutation was 

introduced, exchanging the cytosine for a guanosine (G) nucleotide. The mutations were 

introduced by “Around the World” PCR (Materials and Methods), using primers designed 

to span each binding site. After amplification of the plasmid and introduction of the point 

mutation, the plasmid was transformed into One Shot Stbl3 Chemically competent E.coli 

cells (ThermoFisher). Plasmids were extracted, screened by digestion and sent to be 

sequencing to ensure that the X-element sequences were successfully mutated. The 

verified plasmid was then used for a subsequent round of amplification to introduce 

mutations into additional binding sites. The process of mutation, screening and 

sequencing was repeated until all predicted Tbf1 and Reb1 binding sites were mutated. 

 The original plasmid containing the wild type X-element sequence was kept and 

used as a “wild type” control for all future experiments done with this construct. The 

modified subtelomere constructs also contained genes LEU2 and URA3 used as selection 

markers for integration into the S. cerevisiae genome. These genes were flanked by RS 

sites, which are recognized by Recombinase R (Gartenberg et al., 2003). The RS sites are 

utilized to remove selection marker genes after integration into the yeast genome, as one 

of the benefits of this system is to maintain a close to native structure of the sequences 

upstream of the subtelomeric repeats. Cloning processes also resulted in some additional 

sequences upstream of the subtelomere. The native subtelomere and modified 

subtelomere structures are represented in Figure 9. Two versions of each modified 

telomere were constructed and transformed into S. cerevisiae. 01L-WT XCR (AKY022) and 

03L-WT XCR (EPY116) have wild type XCR sequences, but additional sequences of 334 bp 

http://yetfasco.ccbr.utoronto.ca/)
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(01L) and 136 bp (03L) upstream of the X-element and 51- 56 bp between the X-element 

and telomeric repeats. 01L-XCRmut (AKY023) and 03L-XCRmut (EPY117) have the same 

additional sequences, as well as mutations to the predicted Tbf1 and Reb1 sites in the 

XCR. Going forward, strains that have gone through this process of telomere modification 

will be referred to as TEL01Lmod and TEL03Lmod. 

 

 
Figure 9: Schema of subtelomeric areas discussed. 
Schema illustrating the difference between modified and wild type telomeres. Wild type 
telomeres are replaced with a modified telomere fragment containing homologous 
sequences upstream of the X-element, a selection marker (URA3 or LEU2) and wild type 
or mutated X-elements (indicated with dotted grey lines). Schema labelled “Modified 
TEL01L or TEL03L (Recombined)” depicts final modified telomere structure after 
recombinase R targets RS sites to excise the selection marker. Sizes of all elements in the 
modified subtelomere are indicated below. “UP” marks a sequence added upstream the 
subtelomere through cloning process. S/N indicates the site cleaved by SalI (S) and NruI 
(N) restriction enzymes for the visualization of TEL01L and TEL03L, respectively, by 
southern blots. 
 

Once plasmids were constructed containing TEL01L and TEL03L wild type and 

mutated X-elements, they were digested and integrated into the genome of a W303 

background S. cerevisiae strain (strain W3749). The DNA from a number of clones was 

extracted and used for screening by both PCR and Southern Blot. The size difference 

between modified and unmodified chromosomal ends allowed us to determine successful 

integration of the constructs. Shown below is an example of a Southern Blot used to 

screen for the modified TEL01L subtelomere (Figure 10). The X-element sequence of all 
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clones were verified once more by sequencing. 

 
Figure 10: Analysis of integration and recombination of TEL01Lmod subtelomeres. 
Southern blots with DNA from strains with wild type (WT) TEL01L, not recombined 
TEL01Lmod (NR) and TEL01Lmod after recombination (Rec) was extracted and digested 
with SalI. Lane M: Molecular size markers, sizes are indicated on sides of gels. TEL01L WT 
clones have unmodified TEL01L telomeres, evidenced by the band migration to the 
expected 4.3 kb (left). TEL01Lmod (NR) clones are from modified, non-recombined 
telomeres, migrating to the expected length of 5.9 kb. The right blot depicts one 
TEL01Lmod non-recombined clone with 4 clones of TEL01Lmod after recombination (REC), 
at 4.7 kb. DNA in lane X was not digested sufficiently. 
 

One of the benefits of constructing this system is that the chromatin structure 

immediately interior to the subtelomeric repeats remains as close to native as possible. 

To maintain this chromatin structure, it is also necessary to remove the URA3 and LEU2 

selection marker genes from their positions interior to the TEL01Lmod and TEL03Lmod 

subtelomeres, respectively. This was achieved by using recombinase R to target the 

Recombination System (RS) sites flanking the selection markers (Gartenberg, 2012). The 

strains were transformed with a replicative plasmid containing recombinase R (RecR) 

under control of a Gal1-10 promoter and a TRP1 auxotrophic marker (pEP21A). RecR 

expression was induced by growing the cells on plates containing galactose as a carbon 

source. After recombinase induction, the cells were grown in YC medium to allow plasmid 

expulsion. Clones lacking URA3 or LEU2 that had expelled pEP21A plasmids were selected 

by observing inability to grow on selective medium lacking leucine or uracil and 

tryptophan. This process reduces the amount of non-native sequence upstream of the 
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subtelomere from 3200 bp to 136 bp, in TEL03Lmod, and from 2209 bp to 334 bp, for 

TEL01Lmod. Southern blots performed on these clones demonstrated a decrease in size of 

the TEL01Lmod and TEL03Lmod fragments. Figure 10 shows the increase in TEL01L size 

with the integration of the TEL01Lmod, and the decrease after recombination. The final 

constructs are depicted in Figure 9. 

 

Optimizing amplification of TEL01Lmod 
 

Due to the sequence similarity of different subtelomeres, targeting a single 

telomere by qPCR requires testing and optimization to ensure that no non-specific 

amplification of other loci occurs. Multiple primer pairs were tested and optimized to 

obtain efficiently amplifying primers specific to the TEL01Lmodified locus. The primers 

were designed such that they did not span any Tbf1 or Reb1 binding sites and produced 

amplicons of approximately 100-200 bp (Figure 11). 

 
Figure 11: Primer pairs tested for TEL01Lmod ChIP qPCR. 
Schema of TEL01L and primer pair sites tested for ChIP qPCR (top). Amplicon sizes are 
indicated for each primer pair set. 
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To evaluate primer specificity, each assay included a sample of genomic DNA 

lacking the TEL01Lmodified construct, which should not generate any PCR products. 

Additionally, a no template control (H2O) was included in each experiment to assess 

primer dimer formation and background amplification levels. Initial tests showed non- 

specific amplification by primer pairs Ch2F/Ch2R and Ch2R/XCMB. Primer pair 

Ch2R/TXCRM showed specific amplification of TEL01Lmod DNA, although these assays 

had high volumes of primer dimer formation and overly high amplification efficiencies 

(Table 7). These initial assays were done using a touchdown qPCR program (Zhang et al., 

2015). Repetition of the qPCR with a program (TEL80, see Materials and Methods) 

measuring Ct at 80 ˚C improved amplification efficiency, as primer dimers form at a lower 

temperature and are not detected through this program. The qPCR was further optimized 

by changing the enzyme from a KlenTaq (SPP) to commercial KAPA SYBR FAST qPCR 

Master Mix (KAPA Biosystems). 

 

Table 7: The % efficiency of Ch2R/TXCRM primer pair measuring Tel01Lmod by qPCR. 
Geometric efficiency of Ch2R/TXCRM as assessed by evaluating the slope of a standard 
curve produced by Ct values measured from serial dilutions of target DNA. qPCR was 
performed with genomic DNA from 01L-WT XCR and 01L-XCRmut strains, in 5 serial 
dilutions of 1:8, starting with 10 ng DNA. The qPCR conditions are as indicated. 

 % efficiency 
qPCR condition 01L-WT XCR 01L-XCRmut 

TD program (KlenTaq) 221 235 

TEL80 program (KlenTaq) 143 116 

TD program (KAPA) 115 106 

 

Tbf1 and Reb1 ChIP signal is decreased at mutated TEL01Lmod and TEL03Lmod 
 

After mutation of the Tbf1 and Reb1 binding sites at TEL01L, the system was 

validated by Chromatin Immunoprecipitation (ChIP) qPCR (see Materials and Methods). 

TEL01L and TEL03L were modified in strains in which the Tbf1 or Reb1 proteins were 

C-terminally tagged with a 13xMYC tag. 01L-WT XCR, 01L-XCRmut, 03L-WT XCR and 
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03L-XCRmut constructs were integrated into Tbf1-myc (AKY001) and Reb1-myc (AKY003) 

tagged strains from integrative plasmids (Table 1). Recombination was induced in clones 

of TEL01Lmod and TEL03Lmod strains to remove the auxotrophic marker genes. ChIP was 

performed with these strains. Cells were grown to exponential phase and proteins were 

crosslinked to DNA through the addition of formaldehyde. The cells were lysed and 

sonicated to shear DNA into ~200 bp fragments prior to Tbf1-myc and Reb1-myc 

immunoprecipitation (IP) with a mouse anti-myc antibody (Roche) coupled to magnetic 

IgG beads (Pierce). After isolating precipitated DNA-protein complexes from the rest of 

the whole cell extract (WCE) through a series of washes, the crosslink was reversed and 

DNA was extracted. qPCR was performed on these samples, using primer pairs specific for 

genomic and subtelomeric loci. 

As shown in Figure 12A, Tbf1-myc ChIP signal at TEL01Lmod decreased 2.6-fold in 

strains with mutated XCR sequences. ChIP signals of TEL15L, an X-only telomere with Tbf1 

and Reb1 binding sites in the XCR, do not change in 01L-XCR strains. HMRE is a genomic 

locus that Tbf1 does not bind, serving as a negative control for Tbf1 binding. TEL01Lmod 

signal in 01L-XCRmut strains is lower than that of HMRE, a negative control locus. Figure 

12B shows that Reb1-myc IP efficiency at the mutated TEL01L XCR is decreased 2.52-fold. 

ChIP signals of TEL015L and RTP1 were measured as a positive controls, as both have 

binding sites for Reb1 (Bosio et al., 2017). Signals of both positive controls remain 

consistent in both strains. ChIP signals for 01L-XCRmut is similar to that of HMRE and 

TEL06R, which have little to no predicted Reb1 binding. The decrease in IP efficiencies of 

TEL01Lmod with mutated XCR suggests a decrease in Tbf1 and Reb1 binding after 

mutation of their core binding motifs. 
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Figure 12: ChIP qPCR of Tbf1-myc and Reb1-myc in TEL01Lmod strains. 
ChIP signal was calculated by using qPCR to determine percent of input DNA 
immunoprecipitated. ChIP signal of Tbf1-myc and Reb1-myc strains was normalized to 
that of an untagged strain and to ChIP signal from a negative control locus. Cumulative 
data is represented from 2 independent experiments. A. ChIP results for Tbf1-myc, 
normalized to TEL06R signal. The decrease in ChIP signal in TEL01Lmod strains is 
significant, with a p-value of 0.00086 generated by a one-tailed T-Test. B. ChIP results for 
Reb1-myc, normalized to signal from HMRE locus. The decrease in ChIP signal in 
TEL01Lmod strains is significant, with a p-value of 0.0068 generated by a one-tailed 
T-Test. 
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Tbf1-myc and Reb1-myc ChIP signal at mutated TEL03Lmod is also decreased 

when compared to binding at the wild type TEL03L XCR (Figure 13, 14). Figure 13 shows 

the ChIP signal for Tbf1-myc at subtelomeric and genomic loci. There is a 4.8-fold 

decrease in Tbf1-myc ChIP signal at TEL03Lmod when the Tbf1 and Reb1 binding sites are 

mutated. The TEL03Lmod signal in 03L-XCRmut strains is also lower than the signal for 

PUF6, the negative genomic control. Reb1-myc ChIP signal is decreased 2.46-fold at the 

mutated TEL03L telomere (Figure 14). The signal for Reb1-myc at 03L-XCRmut is similar to 

that of PAF1, the negative genomic control. The signal for TEL01L, the positive telomeric 

control, increases slightly in 03L-XCRmut strains. From these data, we can infer a decrease 

in Tbf1 and Reb1 binding at TEL03Lmod when predicted binding sites are mutated. 

Figure 13: ChIP qPCR of Tbf1-myc in TEL03Lmod strains. 
ChIP signal was calculated using qPCR to determine percent of input DNA 
immunoprecipitated. ChIP signal of Tbf1-myc strains was normalized to no-antibody 
control experiments and to ChIP signal from TEL06R negative control. ChIP signal for 
TEL03Lmod is 2.44 for 03L-WT XCR and 0.50 for 03L-XCRmut. Cumulative data is shown 
from 3 independent experiments. A one tailed T-test comparing fold change in ChIP signal 
from TEL03Lmod to PAF1 in WT XCR and XCRmut strains results in a p-value of 0.004, 
indicating a significant difference in fold change. 
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Figure 14: ChIP qPCR of Reb1-myc in TEL03Lmod strains. 
ChIP signal was calculated using qPCR to determine percent of input DNA 
immunoprecipitated. ChIP signal of Reb1-myc strains was normalized to no-antibody 
control experiments and to ChIP signal from TEL06R negative control. ChIP signal for 
TEL03Lmod is 0.74 for 03L-WT XCR and 0.3 for 03L-XCRmut. Cumulative data is shown 
from two independent experiments. A one tailed T-test comparing fold change in ChIP 
signal from TEL03Lmod to TEL01L in WT XCR and XCRmut strains results in a p-value of 
0.026, indicating a significant difference in fold change.



Results Chapter II 
 

Roles of Tbf1 and Reb1 in Telomere Length Maintenance 
 

 

Preamble 

 

Both Tbf1 and Reb1 are thought to have roles in the regulation of telomere length 

when bound interior to the telomere repeats (Arnerić and Lingner, 2007; Berthiau et al., 

2006). Most experiments done to evaluate the effects of these proteins on telomere 

length used heavily altered subtelomeres. This makes it difficult to pinpoint whether 

changes in telomere length observed are due to the presence or absence of the proteins 

of interest, or because of the changes made to the subtelomere structure. We attempted 

to clarify the role of Tbf1 and Reb1 in telomere length regulation by measuring telomere 

length in strains with decreased Tbf1 and Reb1 binding at telomeres with a close to native 

subtelomere structure. 

 

 

Global telomere length in TEL03L modified strains 

 

Telomere length was measured by southern blot in strains harbouring the 

modified TEL03L telomeres (TEL03Lmod), 03L-WT XCR (EPY116) and 03L-XCRmut 

(EPY117). 03L-XCRmut strains harboured mutations in the Tbf1 and Reb1 binding sites in 

the TEL03Lmod subtelomere that lead to a significant decrease in Tbf1 and Reb1 binding 

(see Results Chapter I). Global telomere length was analyzed by Teloblot, a type of 

Southern Blot for which DNA is digested overnight with the XhoI restriction enzyme and 

hybridized with a radiolabelled probe that specifically detects fragments with TG1-3 

telomeric repeats (called PCT300). The XhoI enzyme cleaves all telomeres with a Y’ 

subtelomere about 900 bp before the start of the telomeric repeats, creating a terminal 

restriction fragment (TRF) of about 1.2 kb. As these XY’ telomeres make up half of the 
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telomere bulk, the 1.2 kb TRF appears as a thick band on the teloblot and is frequently 

used to measure bulk telomere length in a population of cells. As expected, Teloblots did 

not reveal any difference in XY’ telomere length between 03L-WT XCR and 03L-XCRmut 

strains, as seen in Figure 15. 

 
Figure 15: XY’ telomere length in TEL03Lmod strains measured by Southern Blot. 
A. Southern blot of DNA from independent clones of 03L-WT XCR and 03L-XCRmut strains 
(listed at the top), digested with XhoI and hybridized with a PCT300 telomere-specific 
probe. Molecular marker is marked M. Smear corresponding to TRF is indicated at the 
bottom left. B. Schema of telomeres labelled by PCT300 probe. X-only telomeres migrate 
to different levels while XY’ telomeres migrate as a more uniform smear (TRF). 
 

 

Lengths of TEL01Lmod and TEL03Lmod telomeres 
 

Specific telomere length of the TEL01L and TEL03L modified telomeres was 

measured using radiolabeled probes designed to hybridize to DNA sequences of those 

specific telomeres. Southern blots were run as described above, using DNA digested by 

different restriction enzymes depending on the telomere analyzed. DNA from 2-7 clones 

of TEL03Lmod strains was digested with the NruI restriction enzyme and hybridized with 
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the TEL03Lp radiolabeled probe specific to a DNA sequence upstream of the TEL03L 

subtelomere (Figure 16A). 03L-WT XCR had no binding site mutations and was used as a 

control. 03L-WT XCRmut1 had partially mutated XCR sequence with two wild type Reb1 

binding sites (EPY118A) and 03L-WT XCRmut had all predicted Tbf1 and Reb1 binding sites 

in the TEL03L XCR mutated (EPY117). The southern blot shows a variation in the length of 

the TEL03Lmod telomeres in all clones (Figure 16B). While the length of 03L-XCRmut1 

clones only decreases slightly, we observe a significant decrease in telomere length in 

03L-XCRmut strains, even when considering the large deviations in telomere lengths of 

the clones. However, significant shortening of 03L-XCRmut is not observed in subsequent 

blots (Fig. 20, 23; Table 10, 12). This inconsistency is discussed in further detail in 

“Discussion of Chapters I-IV”. Figure 16 also demonstrates that the TEL03Lmod telomeric 

repeats are slightly longer than the average expected length of 300 bp, resulting in a 

TEL03Lmod fragment slightly longer than 2400 bp. This is a phenomenon we observe 

frequently with the TEL03L telomeres. Telomere lengths for each clone were measured 

using GelAnalyzer software and are displayed in table 8. The length of TEL03Lmod in 

different clones varied somewhat, with deviations of 16-43 bp. 
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Figure 16: TEL03L telomere length measured by southern blot. 
A. Schema of TEL03Lmod telomere labelled with TEL03Lp. B. Southern blot of DNA 
extracted from independent clones of TEL03Lmod strains (listed at top). Molecular marker 
is marked M. Bands at approximately 2.4 kb correspond to labelled TEL03Lmod fragment 
digested with NruI restriction enzyme. 
 

Table 8: Average telomere length of TEL03Lmod. 
TEL03L length and standard deviations as measured by southern blot, quantified by 
GelAnalyzer 2010 Software. 

Strain Mean Telomere Length (bp±bp) 

03L-WT XCR 2509±43 

03L-XCRmut1 2477±25 

03L-XCRmut 2432±16 
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The length of TEL01L modified telomeres was measured in a similar way. DNA of 3 

clones of strains of 01L-WT XCR (AKY022) and 01L-XCRmut (AKY023) was digested 

overnight with the SalI restriction enzyme, creating fragments of the modified TEL01L 

chromosomal end of approximately 4.7 kb. DNA was hybridized with the TEL01Lp1 

radiolabelled probe binding interior to the subtelomere region (Figure 17A). Although 

some shortening of the 01L-XCRmut clones is visible, it is not significant, as the standard 

deviations in length are overlapping (Figure 17B, Table 9). Further experiments did not 

show shortening of 01L-XCRmut telomeres (shown in Fig. 21, Table 10). 

 

Figure 17: TEL01L telomere length measured by southern blot. 
A. Schema of TEL01Lmod telomere labelled with TEL01Lp1. B. Southern blot of DNA 
extracted from independent clones of TEL01Lmod strains (listed at top). Molecular marker 
is marked M. Bands at approximately 4.7 kb correspond to labelled TEL01Lmod fragment 
digested with SalI-HF restriction enzyme. 
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Table 9: Average length of TEL01Lmod. 
TEL01Lmod length and standard deviations as measured by southern blot, quantified by 
GelAnalyzer 2010 Software. 

Strain Mean Telomere Length (bp±bp) 

01L-WT XCR 4716±24 

01L-XCRmut1 4652±61 

 

 

Tbf1 and Reb1 as backup telomere length regulators 

 

Tbf1 and Reb1 may have roles as back-up length regulators, maintaining telomere 

length homeostasis when conventional mechanisms are not fully functioning (Arnerić and 

Lingner, 2007; Berthiau et al., 2006). Experiments done by both groups were done in 

strains with a TEL1 deletion. TEL1 is important for telomere length maintenance as it 

recruits telomerase to critically short telomeres, thus tel1∆ strains have short, but stable 

telomeres (Greenwell et al., 1995). We also tested whether Tbf1 and Reb1 have an 

important role in length regulation when bound at natural subtelomeres in strains with 

short telomeres. Southern Blots were performed to measure telomere lengths in strains 

containing the modified TEL01L and TEL03L telomeres in cells with gene deletions causing 

short telomeres. TEL1 was deleted in TEL01Lmod and TEL03Lmod strains by integration of 

a PCR- generated deletion cassette to replace TEL1 with the KanMX antibiotic resistance 

gene. Clones generated were restreaked once on selective media and two additional 

times on YEPD plates to allow all telomeres to shorten, grown 3 days at 30 ˚C between 

streaking. The DNA was extracted and digested with XhoI for subsequent telomere length 

analysis by Teloblot (Figure 18, 19). 
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Figure 18: Global telomere length of TEL03Lmod strains with tel1∆, measured by 
Southern Blot.  
Southern blot of DNA from independent clones of genotypes listed at the top, digested 
with XhoI and hybridized with PCT300 telomeric probe. Molecular marker is marked 
M.Bottom smear corresponds to TRF and is shorter in tel1∆ strains, indicating telomere 
shortening 
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Figure 19: Global telomere length of TEL01Lmod strains with tel1∆, measured by 
Southern Blot. 
Southern blot of DNA from independent clones of genotypes listed at the top, digested 
with XhoI and hybridized with PCT300 telomeric probe. Molecular marker is marked M. 
Bottom smear corresponds to TRF. tel1∆/TEL01L is a previously verified strain used as a 
reference for telomere shortening. TEL1/01L-WT XCR and TEL1/01L-XCRmut are parental 
strains with wild type telomere length. 
 

Figure 19 shows that the bulk telomere length in tel1∆/TEL01Lmod strains, as well 

as the tel1∆/TEL01L reference strain presents as a smear, indicating non-uniform 

telomere shortening. Clones 2 of the tel1∆/01L- WT XCR and 1 of the tel1∆/01L-XCRmut 

were selected for use in later experiments as they reached equilibrium in shortening, as 

indicated by a more compact TRF band. Figure 18 and 19 demonstrate that in a short 

telomere background, a decrease of Tbf1 and Reb1 at XCR of TEL03Lmod and TEL01Lmod 

does not influence global telomere length. 
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We then measured individual telomere length of TEL03Lmod and TEL01Lmod by 

Southern Blot, using telomere specific radiolabeled probes. TEL03Lmod telomere length in 

tel1∆/TEL03Lmod strains (AKY030: tel1∆::KanMX 03L-WT XCR; AKY031: tel1∆::KanMX 03L- 

XCRmut) were analyzed by measuring the telomere length of 4 clones from each strain 

(Figure 20). We observe a large variability in TEL03Lmod length in AKY030, as well as 

slightly longer than average telomeres of 460 bp. In fact, in tel1∆ strains, telomeres 

shorten such that they are closer in length to the average wild type telomere length of 

approximately 300 bp. Quantification of telomere length with Gel Analyzer 2010 Software 

determined that there was a shortening of an average of 34 bp in 03L-XCRmut strains in 

the tel1∆ background, when compared to 03L-WT XCR strains (Figure 20, Table 9). 

 

Figure 20: TEL03L telomere length in tel1∆ background measured by southern blot. 
Southern blot of DNA extracted from clones of TEL03Lmod strains (listed at top). 
Molecular marker is marked M. Bands at approximately 2.3 kb correspond to labelled 
TEL03Lmod fragment digested with NruI restriction enzyme. 
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Table 10: Average telomere length of TEL03Lmod in tel1∆ strains 
TEL03Lmod length and standard deviations as measured by southern blot, quantified by 
GelAnalyzer 2010 Software. 

Strain Mean Telomere Length (bp ± bp) 

TEL1 03L-WT XCR 2540±26 

TEL1 03L-XCRmut 2541±34 

tel1∆ 03L-WT XCR 2390±70 

tel1∆ 03L-XCRmut 2356±35 

 

TEL01Lmod telomere was also measured in a tel1∆ background by comparing the 

telomere length of 3 clones of each strain (AKY022: tel1∆::kanMX 01L-WT XCR; AKY023 

tel1∆::kanMX 01L-WT XCR). Blots previously done to measure the length of the TEL01L 

modified telomere were executed with DNA digested with the SalI enzyme, producing a 

TEL01Lmod fragment of ~4.7 kb. The conditions were not ideal for a precise evaluation of 

change telomere length, as the large band size prevents migration at a high enough 

resolution to observe small differences in fragment size. We attempted to optimize the 

conditions for southern blot, first by using High Gel Strength Grade Agarose (BioShop) for 

low percentage 0.6 % gel, to allow for greater band separation. With these changes only a 

slight shortening of TEL01Lmod in tel1∆ strains could be observed (Figure 21A). We then 

decreased the size of the DNA fragments by digesting with the XhoI restriction enzyme, 

such that the fragments were approximately 2 kb, similar to those of TEL03L. As the 

cleavage site for XhoI on TEL01Lmod is interior to the binding site of the probe used 

previously, a new probe, TEL01Lp3 was constructed (Figure 21C). These conditions 

allowed us to observe a decrease of 125-176 bp shortening of TEL01Lmod in tel1∆ strains. 

There was no difference in TEL01Lmod length between 01L-WT XCR and 01L-XCRmut in 

tel1∆ strains. In a TEL1 background, TEL01L had a higher variability in strains with WT XCR, 

with a standard deviation of 51 bp, and was, on average, 33 bp longer than TEL01Lmod in 

01L-XCRmut. 
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Figure 21: Optimization to measure TEL01Lmod telomere length by southern blot.  
Southern blot of DNA extracted from clones of TEL01Lmod strains (listed at top of A. and 
B.). Molecular marker is marked M. A. DNA digested with SalI, hybridized with TEL01Lp1. 
Band at ~4.7 kb corresponds to TEL01Lmod fragment. B. DNA digested with XhoI, 
hybridized with TEL01Lp3. Band at ~2 kb corresponds to TEL01Lmod. C. Schema of 
TEL01Lmod probe placement, restriction enzyme sites and fragment sizes after digestion. 
 

An alternative approach used to evaluate telomere length of modified TEL01L was 

Telo-PCR. For this approach, DNA was extracted by Slow Prep method (see Materials and 

Methods), which produces larger, more homogenous fragments of DNA by lysing cells 
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through vortexing instead of with a FastPrep machine. The DNA fragments were C-tailed 

using a TdT transferase (see Materials and Methods). The C-tailed telomeres were 

amplified with the GoTaq Long PCR kit, using one G-repeat primer (YV216) and one primer 

binding to the 3’strand of the TEL01L modified subtelomere. The amplicon produced is 

slightly over 4.8 kb in size, consisting of ~4.5 kb of TEL01Lmod subtelomeric and genomic 

DNA, ~300 bp of telomeric repeats, and the C-tail. The PCR product was purified by 

column and digested with XhoI. This produced a telomere repeat-containing TEL01Lmod 

fragment of approximately 2 kb. Figure 22 shows the migration of digested amplicons.  

TEL01Lmod length is decreased in all tel1∆ strains, but when comparing TEL01Lmod 

length of 01L-WT XCR and 01L-XCRmut in tel1∆, no change was observed (Table 10). 

 
 
Figure 22: TELO PCR of TEL01Lmod before and after digestion with XhoI. 
DNA from clones of TEL01Lmod strains (indicated at top) was extracted by Slow Prep 
method, C-tailed with TDT transferase, and amplified with TEL01Lmod specific primers. 
Top gel: amplicons post-XhoI digestion. Upper band corresponds to DNA upstream of the 
subtelomere, cleaved by XhoI. Lower band contains DNA of TEL01Lmod digested with 
XhoI (shown in Fig. 14C). Origin of middle bands in clones 1 and 3 of tel1∆ 01L-WT XCR 
and 4 of tel1∆ 01L-XCRmut are unknown. Bottom gel: amplicons pre-XhoI digestion at 
approximately 4.8 kb. 
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Table 11: Mean telomere length of TEL01Lmod strains measured by Southern Blot and 
TELO PCR. 
TEL01Lmod length and standard deviations as measured by southern blot, quantified by 
GelAnalyzer 2010 Software. 

 Strain Mean Telomere Length (bp±bp) 

Southern Blot 

TEL1 01L-WT XCR 2076±51 

TEL1 01L-XCRmut 2043±6 

tel1∆ 01L-WT XCR 1909±23 

tel1∆ 01L-XCRmut 1918±17 

TELO PCR 

TEL1 01L-WT XCR 2202±24 

TEL1 01L-XCRmut 2213±20 

tel1∆ 01L-WT XCR 2031±0 

tel1∆ 01L-XCRmut 2022±27 

 

In a study evaluating the roles of Tbf1 and Reb1 in backup telomere length 

maintenance, telomere length was also measured in yku70∆ strains, which also have 

shortened telomeres (Berthiau et al., 2006; Porter et al., 1996). We proceeded to 

measure the length of TEL03Lmod in a yku80∆ genetic background, which also displays 

telomere shortening (Askree et al., 2004), to see if Tbf1 and Reb1 presence at the 

subtelomere affected telomere length maintenance in this short telomere background. 

YKU80 was deleted in TEL03Lmod strains by integration of a PCR-generated deletion 

cassette to replace YKU80 with the LEU2 auxotrophic marker. As shown in figure 23 and 

table 11, TEL03Lmod in yku80∆ strains is shorter than wild type. TEL03Lmod of YKU80 

strains has some variation, especially in clones of 03L-XCRmut. This variation is not 

present in TEL03Lmod of yku80∆ strains. Similar to results in tel1∆ background, a slight, 

41 bp, shortening in TEL03Lmod of clones from 03L-XCRmut strains, can be observed 

(table 11). 
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Figure 23: TEL03Lmod in yku80∆ background measured by southern blot.  
Southern blot of DNA extracted from clones of TEL03Lmod strains (listed at top). 
Molecular marker is marked M. Bands at between 2-3 kb correspond to labelled 
TEL03Lmod fragment digested with NruI restriction enzyme. 

 

Table 12: Mean telomere length of TEL03Lmod strains measured by Southern Blot  
TEL03Lmod length and standard deviations as measured by southern blot, quantified by 
GelAnalyzer 2010 Software. 

Strain Mean Telomere Length (bp±bp) 

YKU80 03L-WT XCR 2344±36 

YKU80 03L-XCRmut 2387±41 

yku80∆ 03L-WT XCR 2100±23 

yku80∆ 03L-XCRmut 2062±18 
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Deletion of Sir4 can affect the length of X-only telomeres 

 

Working with the modified and unmodified (wild type) TEL03L telomeres, one 

particular difference in their lengths was observed. As was pointed out from results in 

figures 9, 13 and 16, clones from TEL03Lmod strains display some variability in the length 

of telomeric repeats. This is observed to an even greater extent in wild type (unmodified) 

TEL03L telomeres as well. An additional unique property of TEL03L, is that the tracts of 

telomeric repeats frequently appear to be longer than 300 bp. This too, is observed at 

TEL03Lmod telomeres, but to a lesser extent. The phenomenon was previously 

investigated, when a group performed southern blots to measure telomere length of DNA 

digested with PvuII instead of XhoI (Vega-Palas et al., 1998). Digestion by PvuII does not 

create the TRF fragment at approximately 1kb consisting of XY’ telomeres. XY’ telomeres 

migrate in larger fragments and remain at the top of the gel, while many of the X-only 

telomeres migrate between 1.5 and 5 kb. Here too, a large variation in length of some 

telomeres was observed across clones of the same strain. However, the group observed 

that in sir3∆ strains, telomere length became more consistent amongst the clones and 

that some telomeres migrated very differently. As this group used a telomeric probe, they 

were unable to define which telomeres were exhibiting these changes. We performed 

southern blots with DNA from SIR4 and sir4∆ strains digested with PvuII and hybridized 

them with probes specific to telomeres TEL11R, TEL06R and TEL03L to specifically 

measure a change in telomere length and variation in sir4∆ backgrounds. Figure 24 shows 

that TEL11R telomere lengths do not vary from clone to clone, nor strain to strain. TEL03L 

length of clones in SIR4 strains varies, although a third clone would have allowed us to 

determine this more concretely. TEL03L length in SIR4 strains is above 3.1 kb, although 

the predicted length is approximately 2.6 kb, which translates to a telomere repeat length 

of over 500 bp. In sir4∆ strains, TEL03L length decreases drastically, such that all clones 

have a uniform TEL03L length of approximately 2.7 kb. This is observed to a lesser extent 

in TEL06R telomeres, as they are slightly longer than predicted in SIR4 strains and 

decrease in sir4∆ strains. 
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Figure 24: X-Only telomere length measured by Southern Blot. 
DNA was extracted from 3 clones of SIR4 and sir4∆ strains (indicated at top) and digested 
with PvuII. Blots were hybridized with probes for different telomeres (indicated below 
blot). Molecular marker is marker M. Expected lengths of telomeres detected (assuming 
300 bp telomeric repeats) are indicated below blots. Clone 2 of SIR4 for blots with labelled 
TEL03L did not appear due to low DNA concentration. 



Results Chapter III 

 

Effects of Tbf1 and Reb1 on TPE 

 

Preamble 

 

Tbf1 and Reb1 are described as “anti-silencers”, as they bind to STARs 

(Subtelomeric Anti-Silencing Regions), which have been found to counteract the Telomere 

Position Effect (TPE) (Fourel et al., 1999). TPE is the repression of telomere proximal genes 

mediated by the histone de-acetylase components (HDACs) of the Sir complex, which is 

recruited to the telomeric repeats by Rap1 (Gottschling et al., 1990; Hecht et al., 1995). In 

addition to the STAR components in the XCR of the subtelomere, the Ars consensus 

sequence (ACS) of the X-Core was found to contribute to silencing (Power et al., 2011). 

When both X-Core and XCR regions of the X-element are present, the silencing effect of 

the X-Core overpowers anti-silencing functions of the XCR region (Fourel et al., 1999; 

Power et al., 2011). We aimed to use the modified subtelomere system to determine if 

the depletion of Tbf1 and Reb1 proteins from a native subtelomere structure could 

influence the spreading of TPE. 

 

Effects of XCR and X-Core on Silencing at modified TEL01L 
 

Similar to previous studies investigating the impacts of subtelomeric elements on 

TPE, we monitored the propagation of gene silencing by evaluating the expression of a 

URA3 reporter gene interior to the subtelomere. The expression of URA3 on plates 

containing 5 fluoro-orotic acid (FoA) creates a toxic metabolite resulting in cell death 

(Boeke et al., 1987). Thus, all cells able to grow on Yc-5-FoA are presumed to possess a 

silenced URA3 gene. 

Silencing experiments were done in modified TEL01L strains, constructed as 

described previously. URA3 was used as a selection marker to integrate the modified 
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TEL01L fragment into the genome. For the gene silencing experiments, the step inducing 

recombination was omitted to retain URA3 as a reporter gene. This resulted in an initial 

construct with a wild type subtelomere structure and a total distance of 1.5 kb from the 

beginning of the URA3 promoter to the telomeric repeats (AKY012). 

We then constructed truncated TEL01L telomeres, using Gibson Assembly to 

replace the whole X-element or only the XCR with sequences of a KanMX gene. This was 

done to maintain a consistent distance between URA3 promoter and telomeric repeats, as 

TPE dissipates with increased distance from the telomere repeats (Gottschling 1990). The 

KanMX gene was chosen as it is not a native gene in S. cerevisiae and is expected to have 

a lower probability of interacting with additional proteins that could affect chromatin 

organization of the area. To further minimize the chance of the DNA of the KanMX gene 

having effects on silencing, the promoter sequence was not added to any contruct. The 

strains constructed for this experiment were 01L-X-element∆ (AKY054) and 01L-XCR∆ 

(AKY055) and 01L-WT XCR (AKY012), which contains the entire wild type X-element 

(Figure 25C). 

The spot tests in Figure 25B were performed with two verified clones of each 

construct. Cells from each strain were grown overnight in liquid YEPD medium at 30 ˚C, 

serially diluted 1:5, and then spotted with a multichannel pipette onto 5-FoA plates to test 

URA3 silencing, and YC plates. TPE was observed in all strains containing URA3 at 

TEL01Lmod, demonstrated by their ability to grow on YC+ 5-FoA plates (Figure 25A 

bottom). Strains containing constitutively expressed wild type genomic URA3 were unable 

to grow, while ura3∆ strains were able to grow without hindrance (Figure 25A, top). 

Individual colonies grown on 5-FoA and YC-complete medium were counted. The growth 

of each strain on YC+5-FoA was normalized to the strains’ growth on YC medium to 

quantify the resistance of each strain to 5-FoA (FoAR). The fold change in 5-FoA resistance 

of each strain was calculated by comparing the FoAR of cells from strains with 

subtelomeric deletions in TEL01L (AKY054; AKY055) to that of strains with wild type 

TEL01L subtelomeres (AKY012). 01L-X-element∆ (AKY054) clones had a decreased 

silencing ability, as they grew 0.8-fold less than 01L WT-XCR (AKY012) clones on 



87  

YC+ 5-FoA. 01L-XCR∆ (AKY055) clones possessing only the X-Core portion of the 

subtelomere grew slightly better on FoA, demonstrated by a 1.2-fold higher FoAR than WT 

(Figure 25). Given the standard deviations obtained, it remains unclear whether there 

really is a difference between these situations. 

 
Figure 25: Quantification of serial dilution growth tests of cells with URA3 at 01L-WT 
X-element, 01L X-element∆ and 01L-XCR∆. 
A. Cultures of cells with indicated genotypes were diluted to a uniform concentration of 
3 x 107 cells/100 µl and then serially diluted (1:5). 10 µl of each dilution was pipetted on 
YC and YC+ 1 mg/ mL 5-FoA plates and grown for 4 days at 30 ˚C. The experiment was 
done with 2 independent clones for each genotype. The spot tests shown are 
representative of one plating of 5-6 done. B. Fold Change in FoAR was calculated by 
counting colonies grown on each YC+5-FoA plate and normalizing to growth (colony 
number) on YC plates. FoAR of 01L-X-element∆ and 01L-XCR∆ were compared to 01L-WT 
XCR for Fold Change. C. Schema of constructs used for this experiment. URA3 (green box), 
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covered with nucleosomes (red circles), is 1.5 kb from telomeric repeats (green arrows). 
I. WT X-element with X-Core and XCR containing Tbf1 and Reb1 binding sites (grey lines), 
which have point mutations on 01L-XCRmut. II. X-element is replaced by a 776 bp 
fragment of the KanMX gene. III. The XCR is replaced by a 277 bp fragment of the KanMX 
gene. 
 

Tbf1 and Reb1 have no major effects on silencing at native subtelomere 

 

Figure 26 shows a spot test of TEL01Lmod strains containing a WT XCR (01L-WT XCR; 

AKY012) and XCR with mutated Tbf1 and Reb1 binding sites (01L-XCRmut; AKY013). The 

spot tests were done by serially diluting cells (1:5) and spotting with a 96- pinner, which 

does not allow for quantification of FoAR, as the exact volume released is not known. 

Visually, the same TPE effect was observed for the 01L-WT XCR as the 01L-XCRmut, as 

both were able to grow similarly on YC+5-FoA. A second set of serial dilution growth tests 

were done using a multi-channel pipette (Figure 25A) in order to be able to calculate the 

FoAR of each strain and quantify the silencing in more detail. In this assay, the average 

percentage of colonies with FoA resistance was 5.1 x 10-3 in strains with WT XCR, and 5.5 x 

10-3 in strains with mutated XCR, demonstrating that there is little, if any, change in TPE 

effect in the absence of Tbf1 and Reb1. 

 
Figure 26: Serial dilution growth test of cells with URA3 at 01L-WT XCR and 01L-XCRmut. 
Cultures of cells with indicated genotypes were diluted to a uniform concentration of 3 x 
107 cells / 100 µl and then serially diluted (1:5). Cells were spotted on YC plates and YC + 
1mg / mL 5-FoA and grown at 30 ˚C for 4 days. 
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X-Core deletion decreases TPE at TEL01L 

 

It has been observed in this project and previous studies, that X-Core has a strong 

silencing effect (Fourel et al., 1999; Power et al., 2011). It has also been shown previously, 

that the presence of the X-Core results in a weakening of the anti-silencing properties of 

the XCR (Fourel et al., 1999, 2001). To test the anti-silencing properties of Tbf1 and Reb1 

in the absence of the X-Core, the X-Core was deleted in plasmids containing 01L-WT XCR 

and 01L-XCRmut sequences. Two 01L-X-Core∆ constructs were created. 01L-X-Core∆ WT 

XCR contained a wild type WT XCR sequence (AKY057). 01L-X-Core∆ XCRmut contained an 

XCR with mutations in the Tbf1 and Reb1 binding sites (AKY058). To simplify the cloning, 

the X-Core was not replaced with KanMX, yielding constructs with a distance of 1.1 kb 

between the URA3 promoter and the telomeric repeats, instead of the 1.5 kb distance in 

the constructs used previously (explained in further detail in Materials and Methods). To 

control for the difference in distance from the URA3 promoter to the telomeric repeats, a 

control construct was made containing the wild type TEL01Lmod subtelomere, with a 

distance of 1.1 kb between the telomeric repeats and promoter (AKY056). 

Figure 27 shows spot tests plated with a multichannel pipette grown 4 nights at 

30 ˚C. Clones of all 01L-X-Core∆ strains display decreased growth on FoA plates. Clones of 

01L-X-Core∆ WT XCR strains show a 7-10-fold decrease in FoAR, although growth seems to 

vary between clones (Figure 27B). Both clones of 01L-X-Core∆ XCRmut strains display an 

approximate 10-fold decrease in FoA resistance. Thus, even in the absence of the X-Core, 

Tbf1 and Reb1 do not have major effects on anti-silencing effects at TEL01Lmod. 
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Figure 27: Quantification of serial dilution growth tests of cells with URA3 at 
01L-X-Core∆ WT XCR, 01L-X-Core XCRmut and 01L-WTshort. 
A. Cultures of cells with indicated genotypes were diluted to a uniform concentration of 
3 x 107 cells / 100 µl and then serially diluted (1:5). 10 µl of each dilution was pipetted on 
YC and YC + 1 mg / mL 5-FoA plates and grown for 5 days at 30 ˚C. The experiment was 
done with 2 independent clones for each genotype. The spot tests shown are 
representative of one plating out of 5-6 done. 
 

 

TPE decreases in tbf1-82 mutant with decreased DNA binding 

 

TPE was also tested in strains expressing the tbf1-82 heat sensitive allele, which 

has decreased binding at genomic and telomeric targets (Bonnell and Wellinger, 

unpublished data). Strains containing the 01L-WT XCR construct with URA3 gene (AKY012) 

were transformed with a PCR generated fragment containing tbf1-82::NatMX to construct 

AKY046 (01L-WT XCR/tbf1-82). Two independent clones for each strain were spotted. 
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Cells were grown for 4 days at the temperatures indicated in Figure 28. As expected, cells 

expressing tbf1-82 grew on YC at 30 ˚C, but not at 37 ˚C (Figure 28). We observed TPE 

again in clones expressing wild type Tbf1 in strains with URA3 at TEL01Lmod. However, in 

both clones of 01L-WT XCR/tbf1-82, TPE was no longer observed, as the cells were 

completely unable to grow on FoA plates. 

 
Figure 28: Serial dilution growth tests of cells expressing TBF1 or tbf1-82 and URA3 at 
01L-WT XCR. 
Cultures of cells with indicated genotypes were diluted to a uniform concentration of 
3 x 107 cells/ 100 µl and then serially diluted (1:5). Cells were spotted on YC plates and YC+ 
1 mg / mL 5-FoA with a 96-pinner and grown at the indicated temperature for 4 days. 



Results Chapter IV 

 

Effects of Tbf1 and Reb1 on TERRA 

 

Preamble 

 

Both Tbf1 and Reb1 are essential general regulatory factors when bound at 

genomic targets (Bosio et al., 2017; Fourel et al., 2002; Preti et al., 2010). The proteins 

often have overlapping targets, as both are important for creating nucleosome free 

regions and fine-tuning transcription. Reb1 is also important for regulating the 

termination of RNA polymerase II transcription and suppressing ectopic transcription at its 

targets (Challal et al., 2018; Colin et al., 2014). Telomeres are also transcribed into long 

non-coding RNA called TERRA (telomeric repeat containing RNA), with a transcriptional 

start site located in the subtelomere (Pfeiffer and Lingner, 2012). Telomeric transcription 

is conserved across species and TERRA function is thought to have important effects on 

telomere length regulation in human cells (Arora et al., 2011). Due to the importance of 

Tbf1 and Reb1 at genomic promoters, we wondered if they retained their function as 

transcription factors at their subtelomeric locations, in the form of regulators of TERRA 

transcription. 

 
 
Measuring TERRA from TEL03Lmod in sir4∆ by Northern Blot 
 

Given that TERRA is found in extremely low abundance in yeast cells, we chose to 

work in genetic backgrounds in which TERRA abundance is increased. At X-only telomeres 

such as TEL01L and TEL03L, the Sir complex is important for regulating TERRA 

transcription (Iglesias et al., 2011), presumably by propagating chromatin deacetylation. 

We used a PCR generated gene deletion cassette to replace SIR4 with a KanMX antibiotic 

resistance marker in strains with modified TEL03L and TEL01L telomeres. This produced 

strains AKY016 (sir4∆::KanMX 03L-WT XCR), AKY015 (sir4∆::KanMX 03L-XCRmut), AKY050 
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(sir4∆::KanMX 01L-WT XCR) and AKY051 (sir4∆::KanMX 01L-XCRmut), which were used to 

measure TERRA expression. In order to detect TERRA specifically transcribed from 

TEL03Lmod telomere, a probe was developed to bind the unique sequence inserted 

between the subtelomeric element and telomeric repeats (Figure 29A). Figure 29 shows 

that of the two probes developed, TERRA pShort probe was specific to TEL03Lmod 

sequences. The 36 nt oligonucleotide probe did not show any non-specific binding 

elsewhere in the genome, contrary to the 56 nt TERRA pLong probe (Figure 29 B, C). 

 

 

Figure 29: Probes developed to specifically detect TEL03Lmod 
A.Schema of two probes tested by southern blot. B. DNA of strains (indicated at top) 
digested by NruI and hybridized with TERRA pShort probe in a southern blot. No bands 
are visible in W3749 lanes, indicating probe specificity to TEL03Lmod sequence. C. DNA of 
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strains digested by NruI and hybridized with TERRA pLong probe in a southern blot. 
Non-specific (upper) band is detected in all strains. 
 

RNA was extracted from the strains EPY116, EPY117, AKY015, AKY016 and W3749 

and treated with DNase I. 10-15 µg RNA was run in a Northern Blot as described in 

Materials in Methods. The -ATP labelled oligonucleotide probe (TERRA pShort) was 

hybridized with the membrane overnight at 42 ˚C and then washed twice for 10 minutes. 

The membrane was exposed in a phosphor-cassette for 4 nights. The resulting blot 

showed cross hybridization between the probe and the 25S and 18S ribosomal RNAs 

(Figure 30), presumably due to the large quantity of RNA on the membrane. Aside from 

this cross hybridization, there was no indication of TERRA detection by Northern Blot. 

 

 

Figure 30: Northern Blots hybridized with TERRA pShort probe. 
RNA of 2 clones of each TEL03Lmod strains (indicated at top) run on northern blot and 
hybridized with TERRA pShort. RNA amounts loaded are indicated below. Dark lower band 
could correspond to 18S ribosomal RNA. 
 

 

As the inability to detect TERRA from TEL03L was likely due to its low abundance, 

several attempts were made to increase the specificity and strength of the probe. 

However, these attempts were not successful, as we were never able to detect TERRA by 

Northern Blot. From these tests, we concluded that it was not possible to assess the 
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TERRA levels of TEL03Lmod by Northern Blot, even in the sir4∆ background with increased 

TERRA abundance. 

 

 

TERRA levels increase when Tbf1 and Reb1 are depleted from subtelomeres 

 

According to research by other groups, TERRA originating from a single telomere 

can be measured by RT qPCR (Iglesias et al., 2011). We performed reverse transcription 

on RNA extracted from various strains with the sir4∆ background using random hexamer 

primers (Roche) and a C1-3A TERRA RT primer to target telomeric repeat sequences for 

reverse transcription. TERRA transcribed from different telomeres was then quantified by 

qPCR with primer pairs targeting subtelomeres of chromosomal ends TEL06R TEL15L, 

TEL10R, TEL01Lmod and TEL03Lmod. The telomeres at which TERRA levels were 

evaluated were all X-only telomeres. The subtelomeric region of TEL06R consists of only 

the X-Core and has only 1 predicted Reb1 binding site and no Tbf1 binding sites 

(YetFasCo:http://yetfasco.ccbr.utoronto.ca/). 

RT qPCR was done on two clones each of sir4∆ strains with either TEL03Lmod or 

TEL01Lmod. By RT qPCR of TEL03Lmod TERRA in sir4∆, we measured a 29.8-fold increase 

in TERRA levels from 03L-XCRmut compared to 03L-WT XCR. However, the abundance of 

TERRA from other X-only telomeres did not change in this strain (Figure 31). A similar 

trend was observed in strains with TEL01Lmod. TERRA abundance from modified 

01L-XCRmut was increased 3.7-fold. Little to no change in TERRA levels from other X-only 

telomeres was measured in clones from the same strain. These experiments indicate that 

the depletion of Tbf1 and Reb1 at one telomere causes an increase in TERRA abundance 

in cis, although the magnitude of the increase in seems to differ from telomere to 

telomere. 

http://yetfasco.ccbr.utoronto.ca/)
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Figure 31: TERRA measured from X-only telomeres in sir4∆ strains 
RT qPCR of RNA extracted from 2 clones of each indicated sir4∆ strains. TERRA signal was 
normalized to Act1. Fold change was calculated by ∆∆Ct method, comparing TERRA from 
XCRmut strains to WT XCR strains. Data labels indicate fold changes. Each RT-qPCR was 
repeated 5 times from new RNA extracts. A. Fold change in TERRA transcription in sir4∆ 
TEL03Lmod strains. B. Fold change in TERRA transcription in sir4∆ TEL01Lmod strains. 
 

We then examined TERRA expression in strains expressing the tbf1-453 cold 

sensitive allele, which has a decreased binding affinity to DNA (Bonnell and Wellinger, 

unpublished). The strain constructed (AKY046) contained sir4∆::KanMX tbf1-453::NatMX 

and 03L-WT XCR. Thus, this experiment measured TERRA from multiple X-only telomeres 

with decreased Tbf1 binding, but wild type Reb1 binding. As seen in Figure 32A, 

expression of tbf1-453 resulted in an increase of TERRA originating from telomeres 
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TEL03Lmod, TEL10R and TEL15L. The TERRA levels of TEL06R did not change significantly, 

which is expected as it does not have any predicted Tbf1 binding sites. With the tbf1-453 

decreasing Tbf1 presence at all telomeres, we observe again that TEL03Lmod has the 

highest increase in TERRA abundance compared to other telomeres. 

To verify if this was due to a difference in number of predicted Tbf1 binding sites 

at TEL03L, we used YetFasCo to map all predicted binding motifs for Tbf1 and Reb1 at 

telomeres 03L, 01L, 15L, 10R and 6R (Table 12). This showed, that although TEL03L had 

fewer predicted Tbf1 binding sites than TEL01L and TEL10R, it had similar amounts to 

TEL15L. In tbf1-453 sir4∆ strains, TEL15L TERRA increases 3.3-fold, while that of 

TEL03Lmod is increased 8.7-fold, indicating that the number of predicted binding sites 

does not necessarily impact TERRA abundance. It must be noted that a predicted binding 

site does not confirm that Tbf1 must be bound, simply that it may bind. 
 



98  

 
Figure 32: TERRA measured from X-only telomeres in sir4∆ tbf1-453 strains. 
A.RT qPCR of RNA extracted from 2 clones of each indicated sir4∆ strains. TERRA signal 
was normalized to Act1. Fold change was calculated by ∆∆Ct method, comparing TERRA 
from tbf1-453 strains to TBF1 strains. Data labels indicate fold changes. Each RT-qPCR was 
repeated 5 times from new RNA extracts. B. Schema of Tbf1 and Reb1 binding at 
subtelomeres throughout RT qPCR experiments. “XCR mutated” depicts 01L and 
03L-XCRmut, while “tbf1-453” represents all X-only telomeres in tbf1-453 strains. Rap1 
bound at telomeric repeats recruits Sir complex, from which Sir4 has been deleted. 
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Table 13: Predicted Tbf1 and Reb1 binding sites at X-only telomeres. 
Sequences of indicated telomeres were scanned by (http://yetfasco.ccbr.utoronto.ca/) to 
determine number of predicted Tbf1 and Reb1 binding sites, with a minimum of 75 % 
maximum score. 
 

 Number of predicted sites 

Telomere Tbf1 Reb1 

TEL01L 9 10 

TEL03L 5 9 

TEL06R 0 1 

TEL10R 10 10 

TEL15L 6 8 

http://yetfasco.ccbr.utoronto.ca/)


Results Chapter V 

 

Purification of yKu70 and yKu80 

 

 

Preamble 

 

The yKu complex is known to bind telomeric DNA, genomic DNA and the TLC1 

RNA, which is part of the telomerase RNP (Peterson et al., 2001). However, chromatin 

immunoprecipitation (ChIP) experiments by previous lab members R. Stephen MacDonald 

and Isabelle Dionne suggest that yKu80 also may co-transcriptionally bind two other RNA 

transcribed from intergenic regions (IGRs). ChIP-sequencing (ChIP-seq) data indicates that 

this yKu80-RNA interaction is independent of Sir4 but depends on yKu80 directly binding 

the nucleic acids (Dionne and Wellinger, unpublished). One of the sites identified in the 

yKu80 ChIP-seq is found on chromosome XII and is the 5’ UTR (untranslated region) for 

the verified ORF RFX1 (Yassoura et al., 2009), a transcriptional repressor of DNA damage 

regulated genes (Emery et al., 1996). We refer to this IGR as YLR176/177, as it is 

transcribed from the IGR of the YLR176 and YLR177 (uncharacterized) ORFs. The second 

site is the IGR of YOR162C and YOR163W on ChrXV. These are verified ORFs for proteins 

Yrr1 and Dop1 respectively. Yrr1 is a Zn2-Cys6 zinc-finger transcription factor which 

activates genes involved in drug resistance (Cui et al., 1998) and Dop1 is a protein 

involved in the Golgi networks vesicular transport (Cui et al., 1998; Gillingham et al., 

2006). Preliminary experiments were done to test whether yKu80 was binding to DNA or 

RNA transcribed from the IGRs. yKu80-myc was immunoprecipitated by ChIP technique 

and samples were treated with RNase, followed by qPCR of the IGRs and TLC1. Some of 

these experiments yielded a decrease in IP signal after treatment with RNase (McDonald 

and Wellinger unpublished). 

In order to determine the RNA binding capabilities of the yKu complex on all 

potential cellular RNA, we aimed to perform a cross-linking and analysis of cDNA 
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sequencing (CRAC-seq) experiment in collaboration with the Granneman Laboratory. In 

the CRAC technique, proteins of interest are tagged with a HIS-TEV-FLAG tag for a 

modified tandem affinity purification and they are crosslinked to total cellular RNA in 

living cells by UV irradiation (Granneman et al., 2009). The protein-RNA complexes are 

immunoprecipitated on beads, cleaved from the beads by tobacco etch virus (TEV) 

protease and purified by nickel affinity purification under denaturing conditions. The RNPs 

are partially digested by RNase, radioactively labelled and resolved on a gel to select the 

protein of interest based on relative molecular mass. The proteins are then digested in 

order to amplify the purified RNA by RT PCR for sequencing. Preliminary experiments 

were done to construct strains and controls designed for the CRAC technique. 

 
 
yKu70 and yKu80 were tagged with His-TEV-Flag 
 

yKu70 and yKu80 were each C-terminally tagged with the HTF tag as described in 

Materials and Methods. In addition to tagging the proteins in the wild type BY4705 strain, 

the proteins were also tagged in control strains containing deletions of the intergenic 

regions (yor162-163∆::KanMX; ylr176-177∆::KanMX, see Table 14).  
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Table 14: Strains constructed for this project. 
yKu70 and yKu80 were tagged with 6xHis-TEV-3xFlag. Schema of tag below. 

 
 

All strains were first tested by growing them in YEPD until OD660 of ~1.0 and 

extracting proteins by TCA preparation for a Western blot using the monoclonal anti-FLAG 

mouse M2 antibody (Sigma Aldrich) diluted 1:5000 in 1 % milk. The blots were exposed 

with 200 µl ECL plus (Amersham). The Western blots confirmed the presence of tagged 

yKu80 and yKu70 proteins (Figure 33). In addition to the bands corresponding to the 

tagged proteins, a non-specific (NS) band was visible in many strains. The first blot done 

with strains containing the yKu70-HTF protein showed that this band was present in all 

tagged and untagged strains (Figure 33A). Subsequent blots done to test yKu80-HTF tags 

also revealed a second band at the same size as in Figure 33A present in only tagged 

samples. The control strains AKY037 and yor162-163∆::KanMX used in Figure 27B were 

from the same TCA extracts as in the previous blot, though they did not have a NS band in 

Figure 33B. The parental BY4705 strains and a W3749 strain from the W303 genetic 

background were newly extracted to be tested for the presence of the second band by 

extracting proteins from newly streaked out strains. None of the new extracts presented 

with the NS band. 
 



103  

 
Figure 33: Testing yKu70-HTF and yKu80-HTF Flag tags by Western Blot. 
Western blots detecting HTF tagged proteins with anti-FLAG antibody. Molecular ladder is 
marked M. Solid arrows indicate bands representing yKu70-HTF while dashed arrow 
indicates yKu80-HTF bands. A. yKu70-HTF tagged in wild type, yor163-163∆::KanMX and 
ylr176-177∆::KanMX backgrounds (lower band). Band above 100 kDa in all strains is non-
specific (NS). B. Band below 100 kDa indicated yKu80HTF tagged in wild type, 
yor163-163∆::KanMX and ylr176-177∆::KanMX backgrounds. AKY037 and 
yor163-163∆::KanMX extracts were rerun (left) and did not show NS band. Wild type 
strains of W303 (W3749) and S288C (By4705) background did not display NS band. NS 
band at 100 kDa present in all clones of tagged strains except AKY045. X marks a lane with 
an unsuccessfully tagged clone of the AKY044 strain (discarded). 
 

Tagging yKu70 with His-TEV-Flag does not impact telomere length 

 

As the deletion or impairment of yKu70 leads to telomere shortening (Porter et al., 

1996), we verified telomere length of tagged protein to ensure telomere functions of a 

tagged yKu complex were not impaired. We performed teloblots with yKu70-HTF tagged 

proteins (Figure 34) and found that telomere length was only slightly shorter than in wild 

type strains, thus we could continue working with tagged yKu70-HTF. 
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Figure 34: Teloblot of yKu70 and yKu70-HTF strains. 
DNA was extracted from strains with yKu70 and yKu70-HTF (indicated at top) and 
subjected to teloblot. Molecular marker is labelled M. Bottom band is TRF representing 
global telomere length. 

 

 
Immunoprecipitation of yKu70-HTF and yKu80-HTF 

 

To prepare for the CRAC-seq protocol, each element of the His-TEV-Flag tag was 

tested to ensure its compatibility with the proteins of interest. The protein purification is 

described in detail in Materials and Methods. Briefly described, the cells were grown in 

250-500 ml YEPD cultures to OD660 ~0.6, pelleted, weighed and frozen with liquid 

nitrogen. The pellets were resuspended in TN150 buffer and lysed by the addition of 

zirconia beads and vortexing 5 times for one minute. The cell debris and beads were 

pelleted by centrifugation and the supernatant containing the proteins was transferred to 

new tubes. After a second round of centrifugation, the proteins were quantified by 
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Bradford Assay (Bradford 1976). 1 g cell pellet typically yielded a concentration of 7-10 mg 

total protein/ml. 

The proteins were immunoprecipitated with anti-FLAG M2 magnetic beads 

(Merck). In order to determine the optimal amount of anti-FLAG beads necessary for the 

IP, 2 mg of total protein extract was incubated overnight with 20 µl, 40 µl and 60 µl 

anti-FLAG magnetic beads previously equilibrated with 10 V TN150 buffer. The beads 

were washed twice with TN1000 wash buffer and heated to 65 ˚C for 5 minutes with 

agitation at 1200 rpm to elute proteins. The input, flow through, IP/elution and bead 

fractions were loaded in an 8 % acrylamide gel in a 1:1:12:12 ratio. The IP of yKu80-HTF 

proteins was done without an elution step and the beads still bound to the protein were 

loaded directly on to the gel. The Western Blot was done with the same anti-Flag antibody 

as described above. The IP showed that both yKu70-HTF and yKu80-HTF could be 

immunoprecipitated with anti-FLAG magnetic beads (Figure 35). We also see that the 

optimal volume of beads was between 40 µl and 60 µl per 2 mg total protein extract. The 

NS band persisted in all fractions of both tagged and untagged strains. 40 µl was chosen 

to be the preferable volume of beads for IP as the signal from the tagged proteins was 

stronger than that of the NS band in this condition. 
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Figure 35: Optimization of the IP of yKu70-HTF and yKu80-HTF 
2 mg protein extract was immunoprecipitated with 20 µl (A), 40 µl (B, C) and 60 µl (D) 
anti-FLAG magnetic beads. Black arrows indicate migration of proteins of interest. Input 
(IN), flowthrough (FT), Immunoprecipitation (IP) and bead (B) fractions were migrated in 8 
% polyacrylamide gels in 1:1:12:12 ratios. All fractions of all strains presented with the NS 
band (above ~100 kDa). Bead fractions also showed IgG proteins (~55 kDa) from magnetic 
beads. yKu80-HTF IP fraction (C) also has bead fractions as IP on beads were loaded 
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without elution step. 
 

 

TEV cleavage for the elution of protein of interest 

 

In order to elute the purified protein from the anti-Flag magnetic beads, TEV 

protease is used to specifically cleave the ENLYFQG sequence between the 6xHis and 

FLAG portions of the HTF flag. Before proceeding with the CRAC seq experiment, the TEV 

cleavage site on the yKu70-HTF and yKu80-HTF proteins was tested by performing test 

TEV cleavage experiments. TEV was added to whole cell extracts (WCE) or IP’s of the 

protein of interest and incubated 1 hour to overnight. Aliquots were removed at multiple 

timepoints. Eluates were collected by separating the magnetic beads from the 

supernatant by magnet and transferring the supernatant to a fresh tube. All fractions 

were analyzed by Western blot to evaluate the depletion of the protein of interest from 

the bead fraction. Since the FLAG epitope was to be cleaved off by the TEV protease, a 

mouse TAP Tag monoclonal antibody (ThermoFisher Scientific) was used in a 1:500 

dilution in 1 % milk to detect proteins after cleavage. 

The TEV protease was purified by Bruno Lemieux at the Service de Purification de 

Protéines (SPP) at Université de Sherbrooke. Cleavage efficiency was tested by adding a 

gradient (10 u, 5 u, 2.5 u, 1.25 u) of TEV protease to 2 mg of a control substrate protein 

(also provided by SPP) and incubating at 4 ˚C with rotation. Aliquots were removed at 

1 hr, 3 hrs and after overnight incubation. Western blot showed that the addition of 2.5 u 

completely cleaved 2 mg of substrate protein during an overnight incubation, while 10 u 

cleaved 2 mg substrate protein within a 1 hr incubation period at room temperature (data 

not shown). As the TEV protease contained a 6xHis tag that would interfere with the 

Nickel purification in the next step, we chose to begin testing with the minimal amount of 

2.5 u of TEV in the following experiments. 

An IP was done with 4mg of yKu70-HTF and yKu80-HTF. After the overnight 

incubation, the beads were resuspended in 100 µl TN150 before the addition of 2.5 u TEV 

protease. A 20 µl aliquot was removed after a 3 hours incubation at 4 ˚C. The magnetic 
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beads were collected and resuspended in 20 µl TN150 to remove them from the eluate in 

the supernatant. The same was done at the second timepoint after an overnight 

incubation. IN, FT and IP as well as the beads and eluates from each time point were 

analyzed by Western blot using the anti-TAP antibody (Figure 36). The blot shows that 

although the IP of both proteins was efficient, the bead fractions of both timepoints (T1B, 

T2B) still contain the proteins of interest, without any band shift to indicate a cleavage. 

There are no bands visible in the eluate fractions (T1, T2), indicating that the TEV cleavage 

in these experiments was not successful. 

 
Figure 36: TEV cleavage of yKu70-HTF and yKu80-HTF from beads and in whole cell 
extract. 
A. Western blot with anti-TAP to detect yKu70-HTF (right) and yKu80-HTF (left) IP and 

cleavage fractions. IP, T1, T2, T1B , T2B fractions were loaded in a 10:1 ratio compared to IN 
and FT fractions. Arrows indicate bands corresponding to yKu70-HTF and yKu80 HTF 
present in bead fractions without a shift in size. B. Western blot with anti-TAP showing 

WCE of tagged proteins before (T0) and after incubation with 10 u TEV for 2 hrs at 18 ˚C 
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(T1). NS band (above 100kDa) is visible in all lanes. Arrows indicate tagged proteins visible 
in T0 lanes, while only NS band is visible after TEV incubation. BY4705 was included as an 
untagged strain (leftmost band). 
 

We then tested the cleavage of the proteins of interest without the presence of 

the anti-Flag magnetic beads, in case the TEV protease was sterically hindered by their 

presence. Whole cell extracts (WCE) of AKY037 (yKu70-HTF::URA3) and AKY043 (yKu80-

HTF::URA3) were incubated with 10 u of TEV at 18 ˚C for two hours. The amount of TEV 

protease was increased to account for additional proteins in the WCE potentially 

inhibiting or competing for TEV protease. A downward shift in the band after incubation 

with TEV would indicate a cleavage of the protein of interest. However, as can be 

observed in Figure 36B, both proteins of interest disappear after the 2 hour time point, 

although they are clearly visible at T0. Meanwhile, the NS band was present before and 

after incubation with TEV. This indicated that the proteins of interest were degraded 

during the incubation period. In order to rule out degradation by proteases present in the 

WCE, we resumed experiments testing the cleavage of the yKu70-HTF and yKu80-HTF 

from beads. 

In order to be able to detect cleavage of smaller amounts of proteins from the 

beads, the experiments were repeated on a larger scale. An IP of 7 mg of yKu70-HTF and 

yKu80-HTF protein was done with 100 µl anti Flag magnetic beads. The IP of yKu70-HTF 

was resuspended in 150 µl and incubated with TEV for 2 hours at room temperature (T1) 

and then transferred to 4 ˚C for an overnight incubation. A new TEV protease, commercial 

AcTEV protease (ThermoFisher Scientific) was used for the cleavage of yKu80-HTF from 

and anti-FLAG beads. The beads were resuspended in a mixture of 10 units of AcTEV, 

1.5 µl 0.1 M DTT, 75 µl 2x TEV filled to 150 µl H20. The incubation time points were the 

same as for the cleavage of yKu70-HTF from beads by the original TEV protease. The 

western blots in Figure 37A show bands corresponding to both proteins of interest in the 

bead fractions of all timepoints. However, the elution fraction of the second timepoints 

for both proteins of interest revealed bands corresponding to yKu70 and yKu80. 

Furthermore, there is a downward shift in the eluted yKu70 protein. Although there is no 
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visible shift in the yKu80 eluted protein, this could be because of a lack of resolution, as it 

migrates higher on the gel. The NS band is also present in both the bead and eluate 

fractions. 

 
Figure 37: Cleavage of proteins of interest and control protein LexA-TAP by TEV Western  
blots of proteins immunoprecipitated with magnetic beads incubated with 10 u TEV. A. 
yKu70-HTF and yKu80-HTF IP and cleavage timepoints were detected with the anti-TAP 
antibody. Molecular ladder is marked M. The lane X was not loaded. Loading ratios were 

1:10:20 IN, FT: IP, T1, T1B: T2 ,T2B. Green arrows indicate the proteins of interest in the T2 elution 
fraction after O/N incubation with TEV. There is a downward band shift of yKu70-HTF in T2 fraction 
(left). NS band is also visible in both T2 elution fractions. B. LexA-TAP IP and cleavage detected 

with anti-TAP antibody. Loading ratios were 1:1:10:20 IN: FT: IP: T1, T1B. Molecular ladder is 

marked M. Green arrow indicates LexA-TAP is in the IP fraction at ~100 kDa. T1B shows NS band at 
55 kDa and green arrow indicates faint band at ~70 kDa (size of cleaved LexA-TAP). 
 

The TEV protocol was then tested by using control strain EPY06.3b with a LexA- 

TAP tagged protein (~100 kDa), which had previously been successfully cleaved with TEV. 

An IP of 15 mg of the LexA-TAP protein was done by incubating the WCE (extracted as 
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described above) with 40 µl magnetic beads coupled with rabbit IgG (Dynabeads Antibody 

Coupling Kit, ThermoFisher Scientific) equilibrated with TN150 buffer, for 1 hour at 4 ˚C. 

The beads were washed twice with TN1000 with a two minute rotation at 4 ˚C between 

each wash. The beads were then resuspended in 100 µl TN150 and incubated with 20 u 

TEV overnight at 4 ˚C. The beads were removed from the elution fraction with a magnet. 

Figure 37B shows the resulting western blot done with anti-TAP antibody (1:1000 dilution 

in BSA). There is a successful IP of the LexA-TAP protein (~100 kDa), in addition to a non- 

specific band (~55 kDa). No proteins are detected in the elution fraction (T1). The bead 

fraction (T1B) still contains the non-specific band, as well as a very faint signal at 

approximately 72 kDa, which is the migration size of the cleaved protein. No signal is 

detected corresponding to the uncleaved protein. This indicates some cleavage or 

degradation of the protein is occuring, but that the protein is no longer detectable after 

an overnight incubation with the TEV protease in the TN150 buffer. In order to continue 

with the remaining steps of the CRAC seq experiments, more research is necessary to 

uncover the problem in the TEV cleavage step and test the compatibility of the yKu70 and 

yKu80 proteins with the HTF tag. 



Discussion of Chapters I-IV 

 

Roles of Tbf1 and Reb1 at subtelomeres 

 

Previously, the functions of essential proteins Tbf1 and Reb1 have been 

investigated using hypomorphic alleles and through the insertion of artificial binding sites 

at various locations within the genome and at chromosomal ends. Tbf1 and Reb1 were 

found to have somewhat overlapping functions as general regulatory factors when bound 

at a multitude of promoters. Studies investigating the roles of Tbf1 and Reb1 at 

subtelomeres have implicated these proteins in telomere length maintenance and anti-

silencing. We have created a system in which the phenotypic effects of the reduction of 

Tbf1 and Reb1 at native structure subtelomeres can be observed. Through this system, we 

observed that Tbf1 and Reb1 at native structure subtelomeres may have a less 

pronounced roles in telomere length maintenance and anti-silencing than previously 

suggested. These experiments also uncovered a previously unknown role for Tbf1 and 

Reb1 at the subtelomeres – repression of TERRA transcription. 

 

 

System constructed for the study of Tbf1 and Reb1 at subtelomeres 

 

In order to observe the effects of decreasing Tbf1 and Reb1 solely at the 

subtelomere, we modified the subtelomere regions of X-only telomeres TEL01L and 

TEL03L. The choice to work with X-only telomeres was based on two factors. Firstly, the 

X-element is present at all telomeres and contains the binding sites for Tbf1 and Reb1 in 

telomere proximal regions of the XCR, while the Y’ elements are only present at 

approximately half of telomeres, although they too possess telomere proximal binding 

sites for Tbf1 and Reb1 (Koering et al., 2000). Secondly, working with telomere-specific Y’ 

elements would be technically difficult, due to their sequence homology. As we aim to 

target specific telomeres by radioactive probe or qPCR assays, the homology of Y’ 
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elements across different chromosomes would prove a less than ideal system to work 

with. 

As is visible in the schema of the modified subtelomere constructs (Figure 9, 

Results section), our system is a close to native structure, with some additional sequences 

not present in the wild type subtelomere. The presence of non-native sequences has been 

minimized where possible, through the use of the Recombinase R system targeting 58 bp 

RS sites to excise the selection markers used to integrate the constructs into yeast strains 

(Gartenberg, 2012). The final constructs contain ~55 bp sequences between the XCR and 

telomeric repeats. Upstream of the subtelomere, TEL01Lmod has a wild type sequence 

stretch of 628 bp, followed by a 334 bp stretch containing the remaining RS site and 

residual plasmid sequence. TEL03Lmod has a 136 bp sequence of plasmid DNA and RS site 

directly adjacent to the subtelomeric element. In order to account for any potential 

effects these alterations could have on subtelomere properties, a control is used in every 

experiment. Wild type modified telomeres were constructed the same way as mutated 

modified telomeres, aside from the mutation of the Tbf1 and Reb1 binding sites. In this 

way, we accounted for the modifications of the subtelomeres and ensured that observed 

phenotypes were only due to the mutations of the Tbf1 and Reb1 binding sites. 

Predicted Tbf1 and Reb1 binding sites were mutated by switching a single G or C 

nucleotide in the core binding motifs to a C or G nucleotide, respectively. These point 

mutations are advantageous as they maintain an X-element with as close to native 

structure as possible. Substituting the G or C nucleotide with a C or G nucleotide, disrupts 

the GGG or CCC core binding motifs for Tbf1 and Reb1, while still maintaining a native G/C 

rich DNA structure. The efficacy of these binding site mutations was evaluated by ChIP 

qPCR experiments (Results, Chapter I). These experiments showed a 2.6-fold decrease in 

ChIP signal from Tbf1-myc and 2.52-fold decrease ChIP signal from Reb1-myc IP of 

01L-XCRmut as compared to 01L-WT XCR. The decreases in ChIP signal were significant, as 

shown by p-values generated by one tailed T-tests. The ChIP signal from Tbf1-myc and 

Reb1-myc IP of TEL03Lmod were also decreased. ChIP with Tbf1-myc resulted in a 4.8-fold 

decrease in TEL03L XCRmut ChIP signal, while Reb1-myc signal of 03L-XCRmut was 
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decreased 2.46-fold. The fold changes in Tbf1-myc and Reb1-myc ChIP signal of 

03L-XCRmut and 03L-WT XCR were significant, according to p-values generated by a one 

tailed T-test. From this data, we can infer that the mutations in the Tbf1 and Reb1 binding 

sites lead to a decrease in Tbf1 and Reb1 binding. Furthermore, in many of these 

experiments, ChIP signals of mutated subtelomeres are close to those of negative control 

sites, indicating a background level of Tbf1 or Reb1 binding at mutated XCRs. However, it 

is noted, that the ChIP signals are only decreased approximately 2-5-fold from mutated 

subtelomeres, indicating that Tbf1 and Reb1 may still bind these sites. Thus, we speak of a 

decrease to minimum half of the wild type Tbf1 and Reb1 presence at mutated 

subtelomeres, not an abolishment. 

 

 

Weak roles of Tbf1 and Reb1 at native subtelomeres 

 

Previous research suggests that Tbf1 and Reb1 both have functions in 

counteracting the telomere position effect (TPE) and telomere length maintenance in a 

short telomere background (Arnerić and Lingner, 2007; Berthiau et al., 2006; Fourel et al., 

1999; Hediger et al., 2006). However, these roles were inferred from experiments using 

constructs with altered or absent subtelomere regions. Our aim was to use the modified 

telomere system to research the roles of Tbf1 and Reb1 when bound at a native 

subtelomere. In general, we have found that these proteins play a less important role in 

native conditions than has been observed in previous experiments with artificial 

subtelomeres. 

 

Telomere Length Maintenance 

Analysis of modified telomere length showed that the mutation of Tbf1 and Reb1 

binding sites trended in a slight decrease in telomere length of TEL03Lmod in TEL1, tel1∆ 

and yku80∆ strains. However, high standard deviations in length make it difficult to 

discern significant differences in telomere length. In a wild type background, one 
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southern blot assay showed that TEL03Lmod length appears to decrease progressively 

with the mutation of Tbf1 and Reb1 binding sites (Figure 16). However, this was not 

consistently visible in all experiments (Tables 10,12). This inconsistency may partly be 

explained by the smaller number of clones of the 03L-XCRmut strain used for the 

southern blot in Figure 16, indicating that the short 03L-XCRmut telomere may be an 

outlier. Indeed, subsequent blots (Figures 20, 23), using 4 clones of two independently 

constructed strains, for each genetic background, do not show significant shortening of 

03L-XCRmut telomeres. The mutated TEL03Lmod telomeres are decreased in length by 

40 bp in yku80∆ and 34 bp in tel1∆ backgrounds, again with high deviations of 20-70 bp in 

clones of the same strains (see Tables 11, 12). Analysis of the TEL01Lmod telomeres in 

tel1∆ background did not show any significant difference in length between WT XCR and 

XCRmut strains.  

Previous experiments have implicated Tbf1 and Reb1 in telomere length 

regulation in tel1∆ strains (Arnerić and Lingner, 2007; Berthiau et al., 2006). The Tel1 

kinase is important for the recruitment of telomerase specifically to short telomeres in a 

Rap1-dependent manner (Sabourin et al., 2007). Telomeres lacking a subtelomere area in 

tel1∆ strains are no longer preferentially elongated (Arnerić and Lingner, 2007). However, 

the presence of the subtelomere, or tethering of GBD-Tbf1N to the subtelomeric area 

restores the preferential elongation of short telomeres in tel1∆ backgrounds, indicating a 

Tel1- independent back-up mechanism for this function. Another study suggests that Tbf1 

is important in recruiting telomerase to short T2AG3 tracts at double stranded breaks, but 

protecting long T2AG3 tracts, from further elongation (Ribaud et al., 2012). This is 

consistent with the idea that Tbf1 could play a role in preferential elongation of short 

telomeres, but also suggests an additional role in capping of long telomeres. Similarly, a 

further study implicates both Tbf1 and Reb1 in inhibiting telomere elongation in tel1∆ 

backgrounds (Berthiau et al., 2006). From these studies, it seems that Tbf1 and Reb1 can 

affect telomere length in a system similar to the Rif complex, where small amounts of the 

proteins encourage preferential elongation, while increasing amounts inhibit it. 

However, these studies were also done using tracts of T2AG3 repeats as Tbf1 
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binding sites or tethering Tbf1 and Reb1 to subtelomeric areas. Thus, perhaps when Tbf1 

or Reb1 are the only proteins present in large numbers interior to the telomere repeats, 

without the presence of the subtelomeric element structures, they have the potential for 

a more robust effect on telomere length. By decreasing Tbf1 and Reb1 from a native 

subtelomere, we can see that their effects on telomere length are in fact much less 

impactful. These results indicate that the main role of Tbf1 and Reb1 at the subtelomere 

may not be in telomere length maintenance. On the other hand, if Tbf1 and Reb1 do have 

a small role in preferential elongation of short telomeres, the phenotype at 01L-XCRmut 

and 03L-XCRmut may be too subtle to detect by Southern blot, as this measures the bulk 

length of all TEL01Lmod or TEL03Lmod telomeres in a population of cells, rather than 

individual telomeres. Sequencing of multiple individual modified telomeres in mutated 

XCR and WT XCR strains would give a more accurate detection of telomere length and 

telomere elongation and could be done in the future. 

 

Anti-Silencing 

Contrary to what was expected based on the literature, we could not observe a 

difference in TPE between TEL01Lmod strains with wild type or mutated Tbf1 and Reb1 

binding sites (Figure 26), (Fourel et al., 1999). As Tbf1 and Reb1 bind STARs (subtelomeric 

anti-silencing regions) in Y’ elements and XCR portions of X-elements, the proteins are 

thought to be partially responsible for the anti-silencing properties of these regions 

(Fourel et al., 1999; Koering et al., 2000). The direct effects of the proteins as anti- 

silencers, or insulators, have also been observed in experiments in which Tbf1 or Reb1 

were situated between a URA3 or TRP1 gene and telomeric repeats (Fourel et al., 1999, 

2001). In these configurations, genes were still transcribed, indicating a protection from 

TPE. However, the same studies showed that anti-silencing properties of the XCR were 

greatly reduced in the presence of the X-Core. Similarly, we observed a slight decrease in 

URA3 silencing in a construct completely lacking an X-element, compared to one 

possessing a wild type TEL01Lmod subtelomere, indicating the X-Core has a stronger 

influence on the expression of URA3 than the XCR. 
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The role of the X-Core as a silencing element is not surprising, as the Sir proteins 

have been found to associate to it, at sites where ORC and Abf1 are also localized (Ellahi 

et al., 2015; Louis, 1995; Zhu and Gustafsson, 2009). We then hypothesized that the 

strong silencing functions of the X-ore were masking potential weaker functions of Tbf1 

and Reb1 as anti-silencers, making them unobservable by spot testing on plates. Thus, we 

conducted experiments with constructs of the TEL01Lmod subtelomere lacking the 

X-Core, containing either the wild type or mutated TEL01Lmod XCR (Figure 27). We 

observed a clear increase in URA3 expression in strains containing only an XCR. However, 

due to a large variation in 5-FOA resistance between clones of the wild type XCR strain, 

we cannot conclude that there is a difference between the anti-silencing of WT or 

mutated XCRs. 

Curiously, we observed a loss of TPE at TEL01Lmod in strains expressing the tbf1-82 

heat sensitive allele, which has decreased DNA binding at several predicted sites tested by 

ChIP qPCR (Figure 28)(Bonnell and Wellinger, unpublished data). The loss of resistance to 

5-FOA in tbf1-82 strains is surprising, as the loss of Tbf1’s predicted anti- silencing 

function would be expected to result in an increase in TPE (Fourel et al., 1999, 2001). As 

Tbf1 is a general regulatory factor and binds many promoters of coding and non-coding 

RNA throughout the genome, we cannot rule out that this change in 5-FOA resistance 

results from a change in transcription of one of Tbf1’s many targets (Koering et al., 2000; 

Preti et al., 2010). Indeed, it has been observed before that this assay is not compatible 

with certain genetic mutants, as they cause a sensitivity to the 5-FOA drug itself 

(Rossmann et al., 2011). Furthermore, the mere reduction of Tbf1 from the subtelomeric 

area was not expected to have such a large effect, as Reb1 still binds the subtelomere. 

Since Reb1 has a been shown to have significantly higher capacities in anti- silencing, a 

reduction in Tbf1 binding at the subtelomere should not be able to induce such a large 

change in TPE (Fourel et al., 1999, 2001). This all points to the change in TPE being related 

to upstream transcriptional changes rather than changes to the subtelomeric areas and 

underlines the importance of working with wild type Tbf1 and Reb1 alleles to fully 

understand their functions at subtelomeres. 
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These experiments do not show any clear changes in TPE when Tbf1 and Reb1 are 

decreased at the X-only telomere, TEL01Lmod. Of course, we cannot rule out that residual 

binding of Tbf1 and Reb1 in TEL01L-XCRmut strains are enough to maintain anti-silencing 

properties of the XCR, as we do observe a slight increase in 5-FOA resistance in strains 

with a deletion of the entire XCR. Alternatively, additional proteins may be recruited to 

the XCR in the absence of Tbf1 and Reb1, as it was observed that other proteins with 

transcription activation domains can also act as insulators (Fourel et al., 2001). Another 

study similarly reported inconsistencies in TPE that suggest that the subtelomeric 

elements are not the only determinants of TPE properties of each telomere (Mondoux 

and Zakian, 2007). Here, it was found that although the X-element of TEL06R was an 

effective proto-silencer at its native chromosome, transplanting it to TEL07Ltr resulted in a 

slight decrease, rather than increase in silencing. This indicates that the roles of the 

subtelomeric elements can differ slightly according to the surrounding DNA structures of a 

specific telomere, for example the chromatin structure of upstream DNA (Mondoux and 

Zakian, 2007). TPE has also been suspected to be related to the nuclear localization of 

individual telomeres, as they are found clustered at the nuclear periphery, which is largely 

thought to be a region where silent chromatin is localized (Andrulis et al., 1998; Bourgeois 

et al., 1985; Gotta et al., 1996). Indeed, it was observed that tethering telomeres to the 

nuclear periphery slightly increased TPE at these telomeres (Mondoux and Zakian, 2007). 

Although localization to the nuclear periphery does not replace the need for the Sir 

complex, it has been shown that interference with some proteins important for nuclear 

tethering also has effects on silencing (Mondoux et al., 2007; Poon and Mekhail, 2012). In 

summary, there seem to be multiple factors involved in regulating TPE and the complete 

mechanism is not yet fully understood. Although Tbf1 and Reb1 have the capacity to act 

as insulators when tethered in subtelomeric areas, this may be an artifact from their roles 

as general regulatory factors at promoters throughout the genome, and not their main 

purpose at the subtelomeres (Fourel et al., 1999, 2001; Koering et al., 2000). 
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Tbf1 and Reb1 regulate TERRA abundance 

 

In light of the functions of Tbf1 and Reb1 as transcriptional regulators of a 

multitude of coding and non-coding genes, we hypothesized that they could play a role in 

regulating the transcription of the long non-coding RNA, TERRA, which is transcribed from 

the subtelomeres into the telomeric repeats (Bosio et al., 2017; Koering et al., 2000; Luke 

et al., 2008). By RT qPCR, we observed that indeed, the decrease of Tbf1 and Reb1 from 

TEL03Lmod and TEL01Lmod resulted in an important increase in TERRA levels in cis in 

sir4∆ backgrounds. While TERRA levels from 01L-XCRmut increased 3.7-fold, they 

increased 29.8-fold from 03L-XCRmut, as compared to 01L-WT XCR and 03L-WT XCR, 

respectively (Figure 31). We tested the ability of Tbf1 alone to regulate TERRA abundance 

through the use of the tbf1-453 mutant allele, which is cold sensitive and has decreased 

DNA binding abilities (Bonnell and Wellinger, unpublished data). In a tbf1-453 sir4∆ 

double mutant, we also observed a 3.3 - 8.7-fold increase in TERRA from all three 

telomeres measured, except TEL06R (Figure 32). As TEL06R lacks an XCR and has only one 

predicted Reb1 binding site in its X-Core, its TERRA levels were not expected to vary in 

tbf1-453 sir4∆ strains. 

Further investigation is necessary to uncover what factors determine the degree 

to which TERRA abundance increases with the decrease of Tbf1 and Reb1, which is quite 

variable among different telomeres. The number of predicted Tbf1 and Reb1 binding sites 

do not seem to correlate with the increase of TERRA levels in tbf1-453 sir4∆ (Table 12). 

For example, while both TEL03Lmod and TEL15L have 5-6 predicted binding sites for Tbf1, 

TERRA from TEL03Lmod increases over 8-fold compared to 3-fold from TEL15L in tbf1-453 

sir4∆. The increase in TERRA levels from TEL03Lmod in tbf1-453 is not as great as in 

03L-XCRmut and we are unable to distinguish if this is due to a difference in degree of 

decrease of Tbf1 binding at the subtelomere, or if it is due to the continual presence of 

Reb1 at the subtelomere. Indeed, Reb1 has roles in the termination of RNA polymerase II 

transcription (Colin et al., 2014; Roy et al., 2016). Furthermore, Reb1 has been reported to 

repress ectopic transcription at its target promoters and could potentially retain this 
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function at subtelomeres (Challal et al., 2018). In light of the results shown here, Tbf1 may 

share these functions in repressing ectopic transcription. 

Experiments involving TERRA were all conducted in sir4∆ strains in order to 

increase TERRA transcription, which allows for easier detection by qPCR. However, 

preliminary results suggest that the effect of the XCR mutations combined with the 

deletion of SIR4 are cumulative, as neither the sir4∆ nor the 03L-XCRmut strains have 

TEL03Lmod TERRA levels as high as in the strains with combined mutations (data not 

shown). This suggests that Tbf1 and Reb1 could act in a pathway separate from the Sir 

proteins in ensuring TERRA transcription is limited. As the transcription start site for 

TERRA has been mapped to the X-Core, where Sir proteins are known to associate, Sir4 

may help regulate transcription start at the TSS and at the telomeric repeats (Ellahi et al., 

2015; Pfeiffer and Lingner, 2012). Providing the XCR is indeed an insulator, as has been 

suggested in multiple studies as well as this project, regulation by Sir proteins may not be 

effective in this region, creating a need for Tbf1 and Reb1 to regulate transcription there 

(Fourel et al., 1999, 2001). Thus, the removal of both regulatory systems would allow the 

complete derepression of TERRA transcription, while leaving either Sir4 or Tbf1 and Reb1 

in place could partially repress transcription. In order to further investigate the 

interactions between Tbf1, Reb1 and Sir proteins, an RT qPCR protocol must be optimized 

to allow more accurate measurements of even lower abundance transcripts.  

Although Tbf1 and Reb1 are both known for their roles in regulating transcription 

when bound at promoter regions, we are not able to conclude that they regulate TERRA 

abundance at a transcriptional level (Bosio et al., 2017; Koering et al., 2000; Preti et al., 

2017). The increases in TERRA levels may not be due to an increase in transcription, but 

due to defects in transcription termination or RNA degradation. Indeed, Reb1 has the 

potential to be involved in the termination of TERRA transcription (Colin et al., 2014; Roy 

et al., 2016). In some cases, when RNA polymerase II encounters Reb1-bound DNA, 

termination of transcription is triggered, and the resulting RNA transcript is degraded. 

Thus, it is possible that the increases in TERRA levels from mutated subtelomeres are due 

to a defect in the Reb1 termination pathway targeting TERRA transcripts for degradation. 
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However, not all Reb1 binding sites are known to cause termination of RNA polII 

transcription (Roy et al., 2016). Until now, studies have shown that TERRA degradation 

pathways involve Rat1 exonuclease and RNase H proteins (Graf et al., 2017; Luke et al., 

2008; Misino et al., 2018). Interestingly, it was also observed that deleting Trf4 in a rat1-1 

strain also resulted in a slight increase of TERRA abundance and length (Luke et al., 2008). 

This is of particular interest as Trf4 is involved in the same pathways as Reb1 mediated 

termination of RNA polII (Colin et al., 2014). RNA transcripts terminated due to a Reb1 

roadblock are polyadenylated by Trf4 and subsequently degraded (Colin et al., 2014). 

Thus, TERRA abundance may be regulated via multiple degradation pathways. In order to 

assess the role of Reb1 in transcription termination at subtelomeres, we attempted to 

measure the length of TERRA transcripts by Northern blot. Unfortunately, this was not 

possible as we were unable to generate a specific probe sensitive enough to detect the 

low abundance RNA. In summary, despite the observed increase in TERRA levels from 

mutated subtelomere constructs, it is unclear how Tbf1 and Reb1 repress TERRA levels. As 

it has been shown that Tbf1 is not involved in the termination of RNA polII transcription, it 

may not have a role in terminating the transcription of TERRA (Roy et al., 2016). However, 

Tbf1 is known to have roles in the regulation of transcription at many of its binding sites 

throughout the genome (Bosio et al., 2017; Koering et al., 2000; Preti et al., 2010). 

Furthermore, experiments with tbf1-453 sir4∆ strains show that the decrease of Tbf1 

from subtelomeres is sufficient to increase TERRA levels (Figure 32). Thus, it is conceivable 

that Tbf1 regulates TERRA from a transcriptional side, while Reb1 has a role in termination 

of transcription and RNA degradation.  

Unfortunately, these observations do not provide a complete picture of the roles 

of Tbf1 and Reb1 at telomeres, as the role of TERRA in S. cerevisiae is not yet completely 

understood. One study suggests that the increase in TERRA transcription via inducible GAL 

promoter leads to telomere shortening in cis (Pfeiffer and Lingner, 2012). This observation 

conflicts with our results, as we did not observe changes in telomere length of telomeres 

with mutated XCRs. However, as mentioned, further experiments could be done to better 

assess telomere length of modified telomeres, particularly in a sir4∆ background. Other 
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studies suggest that TERRA is involved in telomere length regulation, either by recruiting 

telomerase in T-Recs to its telomere of origin, or alternative elongation of telomeres in 

telomerase negative cells (Cusanelli et al., 2013; Graf et al., 2017; Misino et al., 2018). Cell 

death and senescence can be avoided in some telomerase negative “survivor” cells, by 

maintaining telomere length via BIR, a homologous repair pathway triggered by DNA-RNA 

hybrids called R-loops (Balk et al., 2013; Lydeard et al., 2007). TERRA, when found in 

increased abundance in telomerase negative cells, can form such R-loops by base pairing 

with the subtelomere it is transcribed from (Graf et al., 2017; Misino et al., 2018). If a 

decrease in Tbf1 and Reb1 leads to an increase in TERRA levels and TERRA is indeed 

involved in recruiting telomerase to short telomeres, this could be a reason for the 

discrepancy in observations in telomere length in this project and previous studies. As 

studies investigating the effects of Tbf1 and Reb1 on telomere length were conducted 

without the presence of a subtelomeric element, thus lacking the X-Core with TSS for 

TERRA, the effect of TERRA at short telomeres would not have been observed (Berthiau et 

al., 2006). In support of this, it was observed that preferential elongation of short 

telomeres occurred at telomeres with an intact subtelomere region, but not at those 

lacking a subtelomere (Arnerić and Lingner, 2007). 

Although TERRA may be useful for telomere maintenance in the absence of 

telomerase, increased telomeric transcription or increases in R-loops at telomeres may 

increase the vulnerability of telomeric DNA to replication fork stalling, which could lead to 

telomere breaks and genome instability (Gan et al., 2011; Maicher et al., 2012). Thus, 

despite TERRA’s potential role in maintaining telomere length, TERRA levels must be 

tightly regulated in order to avoid genomic instability. These negative effects of increased 

TERRA transcription have indeed been reported (Maicher et al., 2012). In strains without 

functional telomerase or HDR as telomere maintenance pathways, accelerated 

senescence was observed when increased telomeric transcription was induced long-term 

via a galactose inducible system. Moreover, while the mere induction of telomeric 

transcription lead to telomere shortening, which has been previously reported (Pfeiffer 

and Lingner, 2012), premature senescence was only observed in cells allowed to pass the 
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DNA-replication phase (S phase) (Maicher et al., 2012). This experiment suggests that 

either the act of increasing telomeric transcription, or the increased abundance of TERRA, 

leading to R-loops that cannot be resolved in the absence of HDR machinery, could lead to 

replication fork stalling or collapse (Graf et al., 2017; Maicher et al., 2012). Thus, telomeric 

transcription and TERRA levels must be tightly regulated in order to avoid genomic 

instability. Previous results from the Wellinger lab implicate Tbf1 in telomere 

maintenance, as accelerated senescence has been observed in telomerase negative 

strains expressing the tbf1-453 allele (Bonnell and Wellinger, 2020; in preparation). These 

results, along with the observation that TERRA levels are increased in tbf1-453 sir4∆ 

strains, provide a link between Tbf1, TERRA and senescence. It was also observed that 

telomere shortening was only induced when transcription proceeded into the telomeric 

repeats, where R-loops are more likely to occur (Maicher et al., 2012). This further 

supports the idea of Reb1 as an important transcription terminator, reducing transcription 

of the telomeric region in order to maintain genome stability. 

Thus, we propose that the roles of Tbf1 and Reb1 at the subtelomeres are to 

regulate TERRA levels in order to maintain chromosomal end integrity. Their depletion 

from the subtelomere leads to an increase in TERRA, which could result in chromosomal 

ends being more vulnerable, especially when conventional telomere maintenance 

mechanisms are compromised. This vulnerability may be simply due to the act of 

transcription, the increase of TERRA R-loops, or a combination of the two. In order to gain 

a better understanding of what roles TERRA, Tbf1 and Reb1 have at telomeres, we aim to 

sequence the telomeric repeats of modified subtelomeres. In addition to providing a more 

accurate reading of telomeric length, this would allow us to monitor increases in instances 

of telomere breaks and repairs through homologous recombination. Furthermore, the 

mechasisms by which Tbf1 and Reb1 repress TERRA levels must be further studied in 

order to determine how these proteins function at the chromosomal ends. This new link 

between Tbf1, Reb1 and TERRA transcription may allow a new avenue to research the 

roles of TERRA in S. cerevisiae. 
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Telomeric properties vary at different chromosomal ends 

 

In multiple experiments in this study, the chromosomal ends seemed to vary in 

their telomeric properties. One aim of subtelomere research is to clarify how the 

subtelomeric elements can influence telomere properties and determine whether they 

are the cause for the variability observed. TEL01Lmod and TEL03Lmod vary both in the 

average lengths of telomeric repeats and variability in lengths (see Results, Chapter II). 

While TEL01Lmod seems to consistently have approximately 330 bp of TG1-3 repeats in a 

wild type background, the number of repeats at TEL03Lmod are much longer, with an 

average of over 400 bp. They are also much more variable, with deviations of up to 70 bp 

between clones. When measuring the length of unmodified TEL03L in SIR4 and sir4∆ 

strains, we observed that this long telomere phenotype was even stronger, with TG1-3 

repeats over 500 bp long. As we always compared WT XCR and XCRmut in TEL03Lmod 

strains to evaluate effects of Tbf1 and Reb1, we were not concerned by this difference in 

TEL03L and TEL03Lmod telomeres. However, the TEL03L telomere continued to be of 

interest, as its length showed a particular sensitivity to the deletion of Sir4, along with 

TEL06R, to a lesser extent. In addition, it had a much higher increase in TERRA 

transcription in TEL03L-XCRmut sir4∆ strains. Whether the high increase in TERRA and 

telomere shortening are related remains to be determined. Curiously, a Southern blot 

done with a short migration period to test the specificity of the TEL03Lmod TERRA probes 

did not show consistent shortening in TEL03Lmod (Figure 29). This may be explained by 

the fact that the TEL03Lmod telomere seems to have a less pronounced “long telomere” 

phenotype than wild type TEL03L. However, repeating this experiment with a longer 

migration time and including more clones of each strain would provide more accurate 

information. The ability of the Sir proteins to affect the length of some telomeres, but not 

others, has been observed previously (Vega-Palas et al., 1998). By developing probes 

specific to subtelomeric areas, we were able to determine that in addition to TEL03L, 

TEL06R also shortened slightly after deletion of the Sir function (Figure 24). This 



125  

experiment showed that both telomeres were slightly longer than the expected 300 bp 

and that the deletion of Sir4 reduced the telomeres to their expected lengths. 

A closer look at other studies comparing the properties of chromosomal ends 

revealed that, unlike most telomeres, TEL03L has a large upstream region silenced by the 

Sir complex (Ellahi et al., 2015). Just 80 bp upstream of the X-element of TEL03L lies the 

non-functional YCLWTY5-1 transposon, which contains the three genes silenced by the Sir 

complex. The TY5 transposon has long been reported to localize to silenced chromatin, 

particularly near HMR and subtelomere regions (Zou et al., 1995). Interestingly, it has also 

been found that the machinery used to target TY5 to heterochromatin is also able to 

induce gene silencing (Xie et al., 2001). TEL03L also contains the silent mating type HML 

locus within approximately 11 kbp from the chromosomal end, which is still considered a 

“subtelomeric” region. Notably, TEL03L is the only telomere at which a large subtelomeric 

domain (almost 20 kbp) is silenced by hypoacetylation through the Sir2 deacetylase (Ellahi 

et al., 2015). As the Sir proteins can spread to form silent chromatin, perhaps the 

presence of multiple areas able to nucleate silencing in the larger subtelomeric area results 

in the creation of the large segment of hypoacetylated chromatin at TEL03L (Oppikofer et 

al., 2013). 

This does not explain the Sir4-dependent difference in telomere length observed. 

Interestingly strong Sir2-dependent silencing has been observed at TEL06R as well (Ellahi 

et al., 2015; Mondoux et al., 2007). The YFR057W gene, 200 bp upstream of the TEL06R X-

Core, is also under Sir mediated transcriptional regulation, providing a link between the 

two telomeres. Although TEL03L and TEL06R are not the only two telomeres with Sir-

mediated silencing of upstream genes, only 8 out of 32 other telomeres also 

demonstrated these properties. Investigating the lengths of these 8 additional telomeres 

may provide more links between the Sir complex and telomere length. If other telomeres 

with increased Sir mediated silencing also show increased telomere length, this could 

indicate a local increase in Sir proteins outcompeting Rif1 and Rif2 for binding to Rap1 

(Paolo Moretti et al., 1994; Wotton and Shore, 1997). As Rif1 and Rif2 negatively regulate 

telomere length, their decrease at certain telomeres would allow them to become 
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elongated more than the average 300 bp (Wotton and Shore, 1997). 



Discussion of Chapter V 

 

 

Purification of yKu70 and yKu80 

 

ChIP sequencing evidence from the Wellinger lab suggests that the yKu complex 

may have a role binding RNA other that TLC1. Given that one of the functions of yKu is the 

retention of TLC1 RNA in the nucleus, confirmation that the yKu complex binds to 

additional transcripts could lead to the discovery of a new role for this complex (Gallardo 

et al., 2008; Peterson et al., 2001; Stellwagen et al., 2003). Perhaps the yKu complex binds 

to several non-coding RNAs in order to retain them in the nucleus and protect them from 

degradation, as it seems to do with long non-coding RNA TLC1. Performing a CRAC seq 

would not only confirm the binding of the yKu complex with two IGR transcripts but may 

also reveal additional binding partners for the protein complex. Preliminary data also 

suggests that the yKu association with the IGR transcripts is independent of the Sir 

proteins, hinting that the complex may interact with the RNA by encircling it with its ring- 

like structure, as it does with TLC1 (Pfingsten et al., 2012). This is a further indication that 

there may be similarities in roles of yKu binding TLC1 and other RNAs. 

Although the tagging of yKu70 and yKu80 was successful and did not cause 

impairment of the functions of the yKu complex, the steps to purify either of the proteins 

were unsuccessful. Based on the experiments and controls done, it seems as though the 

proteins were never efficiently cleaved from the anti-Flag magnetic beads they were 

immunoprecipitated with (Figure 36, 37). The apparent cleavage in Figure 37 was later 

attributed to a long incubation time, where the proteins of interest may have gradually 

disassociated from the beads and were then cleaved. This conclusion is partly made due 

to the appearance of the non-specific band in the elution fraction, which should not be 

cleaved by the sequence specific TEV protease. Furthermore, the elution fractions contain 

very small amounts of protein, while the majority of the proteins seem to remain in the 

bead fraction. Thus, the tagged proteins may be sterically hindering the access by the TEV 
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protease when bound by the anti-Flag magnetic beads. Experiments were done to test the 

cleavage of the proteins of interest without interference of the magnetic beads, by 

incubating WCE with TEV protease (Figure 36B). However, rather than a band shift, which 

would indicate successful protein cleavage, we observed a disappearance of the bands 

representing yKu70-HTF and yKu80-HTF. This indicated that TEV cleavage could not be 

done without protein purification from the WCE, which could contain additional proteases 

responsible for the degradation of the proteins of interest during the incubation time. 

Performing IPs with different sets of beads and antibodies, using agarose or sepharose 

beads coupled with an anti-Flag antibody, would help determine whether different bead 

and anti-body combinations facilitate more efficient TEV cleavage. A control experiment 

using TAP tagged LexA protein, which has been previously successfully cleaved with TEV in 

the Wellinger laboratory, also showed some protein degradation, even when working 

with the purified LexA-TAP protein. As the TAP tag does not contain an epitope for the 

anti-Flag beads, the IP was done with magnetic beads coupled with IgG antibody. As we 

see only a slight signal for LexA-TAP in the bead fraction after TEV cleavage (Fig. 37B), 

while the non-specific signal persists, it is possible that the cleavage of the protein from 

the magnetic IgG beads is successful. This indicates that by changing the type of beads or 

antibodies used for the IP could indeed improve TEV efficiency. However, the lack of 

signal in the elution fraction indicates that some other form of protein degradation is 

taking place. Altering the buffers used during the IP and TEV cleavage steps could help 

rule out any incompatibilities or contaminants in the TN150 buffer that could lead to 

protein degradation after cleavage. 

Performing a CRAC-seq with the yKu70 and yKu80 proteins could confirm new RNA 

binding partners for the yKu complex and lead to the discovery of interesting new roles 

for yKu. It is clear from the experiments done thus far, that there is an incompatibility 

with the proteins of interest and the HTF tag, or other materials used in these 

experiments. As the CRAC-seq experiments are to be done in collaboration with the 

Granneman laboratory, where proteins of interest are purified via the HTF tag with the 

materials tested here, alternate buffers and bead types were avoided thus far. However, 
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in light of the unfavourable results obtained, it would be valuable to begin testing 

purification with alternate buffers and bead types in order to proceed with efficient yKu70 

and yKu80 purification. 



 

Conclusions and Perspectives 
 
 

For this project, a system was constructed in which telomeric phenotypes could be 

observed when Tbf1 and Reb1 were reduced from native subtelomere structures, without 

compromising the functions of either protein when bound elsewhere. Through this 

system, we observed that the roles of these main subtelomeric proteins as insulators or as 

direct regulators of telomere length may not be as important as previously indicated. 

Furthermore, we have uncovered a previously undocumented role for these proteins in 

the regulation of the telomeric transcript TERRA. As the transcriptional start site for 

TERRA is located within the subtelomeric sequences, this property may have been 

overlooked when working with truncated or heavily altered subtelomere structures. This 

underlines the importance of working with native subtelomere structures in order to 

develop a more complete and accurate understanding of these areas. 

After observing the increase of TERRA abundance at telomeres with decreased 

Tbf1 and Reb1 presence, we can ask what this means for genome stability and telomere 

maintenance, and how important Tbf1 and Reb1 are for these functions. Multiple studies 

indicate that TERRA could play a role in telomere maintenance in the absence of 

telomerase. Perhaps Tbf1 and Reb1 are involved in this by associating to the 

subtelomeres in a cell cycle or stress related manner. On the other hand, as increased 

telomeric transcription and R-loops are known to cause genomic instability through 

replication fork stalling and collapse, perhaps the sole role of Tbf1 and Reb1 are to limit 

TERRA in order to decrease telomeric vulnerability. In either case, it is important to 

research these possibilities further in order to fully understand events that could increase 

genomic instability or evade cellular senescence. 
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