Mwai Karimi

Benchmarking of RDBMS and NoSQL
Performance on Unstructured Data

@ UAlg FCT

UNWFRSIDADF DD AL GAR‘..-?F

2018

https://core.ac.uk/display/344753410?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Mwai Karimi

Benchmarking of RDBMS and NoSQL
Performance on Unstructured Data

Mestrado em Engenharia Informatica
Trabalho efetuado sob a orientacao da:
Professora Paula Ventura.

@ UAlg FCT

UNTUFREiDM’)F DO AL EhHUF

2018

BENCHMARKING OF RDBMS AND NOSQL
PERFORMANCE ON UNSTRUCTURED
DATA

Declaracao de autoria de trabalho
Declaro ser o(a) autor(a) deste trabalho, que é original e inédito. Autores e trabalhos
consultados estao devidamente citados no texto e constam da listagem de

referéncias incluida.

Assinatura do candidato:

A Universidade do Algarve tem o direito, perpétuo e sem limites geograficos, de
arquivar e publicitar este trabalho através de exemplares impressos reproduzidos
em papel ou de forma digital, ou por qualquer outro meio conhecido ou que venha a
ser inventado, de o divulgar através de repositorios cientificos e de admitir a sua
cépia e distribuicdo com objetivos educacionais ou de investigagdo, ndo comerciais,
desde que seja dado crédito ao autor e editor.

Copyright © 2018 Mwai Karimi

Abstract

New requirements are arising in the database field. Big data has been soaring.

The amount of data is ever increasing and becoming more and more varied. Traditional
relational database management systems have been a dominant force in the database field
but due to the massive growth of unstructured and multiform data, firms are now turning to
architectures that have scale-out capabilities using open source software, commodity
servers, cloud computing and services like Database as a Service. Due to this, relational
databases ought to adopt and meet these new data requirements with easier and faster data
processing capabilities and also provide multiple analytical tools that have the possibility of
displaying analytics instantly. This study aims to benchmark the performance of relational
systems and NoSQL systems on unstructured data.

Keywords
Relational database, NoSQL, big data, MySQL, MongoDB

Resumo

Novos requisitos estao surgindo na area das bases de dados. “Big data” permitiu avangos
consideraveis em varios setores.

O volume de dados tem aumentado e torna-se cada vez mais variado. Os sistemas
tradicionais de gestdo de base de dados relacionais tém sido uma forca dominante na area,
mas devido ao crescimento massivo de dados nao estruturados e multiformes, as empresas
agora recorrem a arquiteturas que possuem recursos escalaveis usando software livre,
servidores, computagdo em nuvem e servicos, tais como “base de dados como um servigo”.
Nesse sentido, as bases de dados relacionais devem considerar e adotar novos requisitos
de dados com maior agilidade no seu processamento e também fornecer multiplas
ferramentas analiticas com a possibilidade de mostrar analises em tempo real. Este estudo
tem como objetivo avaliar o desempenho de sistemas relacionais e sistemas NoSQL em
dados nao estruturados.

Palavras-chave
Base de dados relacional, NoSQL, big data, MySQL, MongoDB

Acknowledgments

| want to thank the academic staff of the University of the Algarve, who have been of
tremendous help during my learning period at the university. Special thanks go to my
supervisor, Professor Paula Ventura, for her advice and guidance.

| would also love to thank portal 47 for affording me a glorious opportunity to do my
traineeship at their company. Without them, this research work wouldn’t have been possible.

Last but not least, | thank my family for their unwavering and steadfast love and support
during the whole period of my study.

Table of Contents

Abstract

Resumo
Acknowledgments
Index of Figures

Index of Tables
Abbreviations
Introduction and Motivation
Scope and Limitations
Goals

Main Contributions
Structure of the Thesis
Chapter 1

Internship

1.1 Host Organisation
1.2 Internship Position
Chapter 2

Development Environment

2.1 Python

2.2 MySQL

2.3 PostgreSQL

2.4 Apache Solr

2.5 Chartio

2.6 Sphinx

2.7 Scrum

Chapter 3

Plan and Mission
3.1 Work Plan
3.2 Monitoring Plan
3.3 Objectives
3.4 Tasks
3.5 Detailed Internship Progress

© O A~ O

10
11
12
13
13
13
14
15
15
15
15
16

16
16
17
17
17
17
17
18

19

19
19
19
20
20
21

Chapter 4

Internship Assessment
4.1 Technical Skills
4.2 Professional Skills
4.3 Conclusion

Chapter 5

Methodology
5.1 Method
5.1 Data Collection
5.2 Cases
5.3 Data Analysis
Summary

Chapter 6

Related Work
6.1 Database Systems
6.1.1 Relational Databases
6.1.2 Non-Relational Databases
6.1.2.1 Types of NoSQL Systems
6.1.2.1.1 Key-Value Stores
6.1.2.1.2 Document Data Stores
6.1.2.1.3 Wide Column Data Stores
6.1.2.1.4 Graph Data Stores
6.2 ACID Model
6.3 BASE Model
6.4 CAP Theorem
6.5 Comparison of Relational and NoSQL Systems
6.5.1 MySQL
6.5.2 MongoDB
6.5.3 Terms and Concepts
6.5.3.1 Executables
6.5.3.2 Create and Alter
6.5.3.3 Insert
6.5.3.4 Select
6.5.3.5 Update
6.5.3.6 Delete
6.5.3.7 Aggregation
Summary

Chapter 7

Performance Evaluation Metrics
7

24

24
24
25
25

27

27
27
28
28
29
29

30

30
30
30
31
32
32
33
33
34
34
35
36
38
38
38
39
39
40
40
41
41
41
42
42

44
44

7.1 Index Performance

7.2 JOINS and The Aggregation Framework
7.3 Application Integration

7.4 Replication

Chapter 8

Case Study
8.1 Environment Set-up
8.1.1 Implementation Details
8.1.2 Database Configurations
8.1.2.1 MySQL
8.1.2.2 MongoDB
8.1.3 Benchmarking Tool
8.2 Metrics
8.3 Methodology
8.3.1 Data
8.3.2 Cases
8.3.3 Results and Analysis
8.3.3.1 Index Performance
8.3.3.2 Aggregation Framework & JOINS
8.3.3.3 Application Integration
8.3.3.4 Replication

Chapter 9

Conclusion and Future Work
9.1 Conclusion
9.2 Future Work

References

Annex
Benchmarking Results
Index Performance
Aggregation Framework
Application Integration
Replication
Configuration
MongoDB.
MySQL
YCSB
To run a workload in MongoDB:
To run a workload in MySQL:
Pymysql Connection String

44
44
45
45

47

47
47
47
47
47
48
48
48
49
49
50
50
50
53
55
56

58

58
58
58

60

64
64
64
64
65
65
66
66
67
68
68
68
69

Pymongo Connection String

69

Index of Figures

Figure 6(a) Representation of a relational database model....................ocooi

Figure 6(b) Implementation of a key-value store........
Figure 6(c) Implementation of a document data store.

Figure 6(e) lllustration of a graph database implementation......................

(
(
(
Figure 6(d) Wide column database implementation....
(
(

Figure 6(f) The Cap Theorem.............ccceevvevninannn..
Figure 8.3.3.1(a) MySQL vs. MongoDB, workload C -
Figure 8.3.3.1(b): MySQL vs. MongoDB, Workload C

100 % read, 1 thread.........................

- 100% reads, 2 threads......................

Figure 8.3.3.1(c): Index Performance, Workload D - read-update-insert, 2 threads................
Figure 8.3.3.2(a): Aggregation queries, read-only workload...................cocooiiiiiiiiiin .

Figure 8.3.3.2(b): Aggregation queries, Workload B...

Figure 8.3.3.3(a): Application Integration | Workload A - read-write (50:50)..............c..ccetis

Figure 8.3.3.3(b): Application Integration | workload F

- read/read-modify-update (50:50).........

Figure 8.3.3.4(a): Asynchronous single-thread replication...................ccooviiiiiiiiiii i,

Figure 8.3.3.4(b): Replication with different workloads

10

33
34
35
35
36
38
51
51
52
52
54
55
55
56
57

Index of Tables

Table 6a ACID and BASE featuresc.ooviiiiiiii i

Table 6b MySQL, MongoDB feature terminologycoooveiviiiiininnee

Table 6¢c MySQL, MongoDB terminologycocoeuviiiiiiiiiiiiiieeee

Table 6d MongoDB and MySQL executablescoocviiiiiiinienn..

Table 6e Create and Alter statementscoooiiiiiiiiii e

Table 6f Insert Statements

Table 6g Select statements

Table 6h Update statements ...

Table 6i Delete statements

Table 6] Aggregation Terminologyooeieeiiiiiiiii e,

Table 6k Aggregation example

11

37

38

39

39

39

40

40

40

41

42

44

Abbreviations

ETL .. Extraction, Transform, Load

APl ... Application Programming Interface

UX User Interface

XML .. Extensible Markup Language

JSON ... JavaScript Object Notation

RDBMS ... Relational Database Management System
SQL ..., Structured Query Language

ACID ..., Atomicity, Consistency, Isolation, Durability
BASE ... Basically Available, Soft State, Eventual Consistency
CAP ... Consistency, Availability, Partition Tolerance
OTTR i, Observe, Think, Test, Review

YCSB ..o Yahoo! Cloud Serving Benchmark

12

Introduction and Motivation

With the current massive increase in data, it becomes inevitable to adapt to new
technologies in order to store data in natural formats. Relational systems mostly store
structured data. Structured data is data that is organized or that is contained in fixed fields.
This data has to be mapped in pre-designed field names or what is normally referred to as
schemas [1][2]. Unstructured data has no predefined model or schema. This data can be
found in weblogs, social media data, multimedia content, sales automation, customer
interactions, and even emails. Companies and organizations are continuously producing
more and more of this data from their activities. This data is pushing relational systems to
their limits creating the need for a replacement on legacy infrastructure. Relational systems
follow an inflexible structure to store and organize their data [3]. It is due to this structure,
that relational systems cannot scale effectively. This often inhibits the agility of businesses.

While doing my internship at Portal 47, a company with a heavy reliance on relational
infrastructure, | experienced several performance issues that highlight the limits of relational
database systems when working with unstructured data. Some of the main problems
experienced were as a result of executing queries with aggregation functions on large data
sets. While working with such queries, operations became slow to impractical speeds once
the dataset went beyond trivial, for example, a few hundred thousand rows, which meant
having to create extract, transform and load (ETL) processes to aggregate long-running
calculations. This was costly. Moreover, scaling was slow as the hardware could only scale
to a certain limit. To optimize query performance, indexes were used but were still quite slow
due to the size of the data sets. Application integration was delayed because in some
instances, schema changes had to be made. This, in general, delayed the development
process. Due to some of these problems, the company is looking at non-relational systems
in order to handle some of their multi-structured data types and also be able to scale beyond
the capacity of their existing systems.

There has also been a need to adopt agile development as new applications which continue
producing unstructured data are being developed differently with different agile methods [4].
Development is also happening in agile sprints as opposed to the traditional waterfall
methods [5]. This means that in place systems need to have the ability to meet the current
development needs and also be able to handle the output of massive data.

Since their inception in 2009, NoSQL systems have become favoured due to their flexibility
and ability to handle large unstructured data [6]. They have different features to relational
systems but could still be used for similar applications. However, this does not mean that one
is supposed to be a substitute for the other. This study will benchmark performance between
relational and NoSQL systems. Comparing these two will enable us to draw conclusions with
regard to how fast they process data and how they handle large amounts of it. These
conclusions can help us access the necessity of migrating from a relational to a NoSQL
system. It would be fundamentally important to know which database works best for a
particular application as making a bad choice could have devastating effects.

13

Scope and Limitations

The internship conducted at Portal 47 focussed on equipping the trainee with the
fundamentals of data analysis and engineering. To that end, | interacted with database
systems, different programming languages and had a first-hand experience of working in an
agile environment.

The scope area of this study is benchmarking performance in relational and NoSQL
database systems. The databases used were MySQL and MongoDB. The metrics used are
core features of both database systems. The study investigated index performance, union of
tables and collections, application integration and scalability of both databases.

Although this study was executed successfully, some limitations were inevitable. First of all,
the research was conducted with a dataset of up to 2 million rows. To mimic a real
production environment, we would need a huge dataset spanning more than 100 million
rows.

In addition to that, the infrastructure was inadequate. Due to a lack of hardware resources,
the databases could not be tested extensively as you can only perform operations to a
certain limit depending on CPU and memory limits. Better hardware would have allowed for
more extensive and comprehensive tests.

Goals

One of the main goals of my internship was to fulfil my academic requirement, which would
eventually culminate in the research work. Other goals included training and equipping me
with the fundamentals of data analysis, learning the best practices of database optimization,
agile development and solving real-world problems with data science.

The main goal of the research work was to benchmark the performance of relational and
NoSQL systems on unstructured data, in particular, MongoDB and MySQL. This would
enable us to understand whether migration from a relational system would be worth it. The
specific objectives were to understand how indexes affect read operations, how both
systems differ when it comes to joining different tables or collections in the same database,
how fast both systems are able to perform read and write operations through third-party
drivers and last but not least how both systems perform when replicating data.

Main Contributions

Past research done on the comparison of database systems has concluded that NoSQL
systems are the go-to systems when it comes to big data and high throughput web
applications. This research work aims to contribute to that narrative by including new
performance metrics. Thus, this study avails a unique perspective on the comparison of

14

relational and NoSQL systems by furthering our knowledge of the core features of these
database systems.

Structure of the Thesis

This thesis is organized in 2 parts which make up 8 chapters. The first part talks about my
internship at Portal 47 Ltd. Chapter 1 gives a basic introduction to the company and details
about the position | was offered. Chapter 2 covers the tools that | worked with during this
period while chapter 3 gives describes the work plan, tasks that | performed and a
breakdown of what was done for each month. Chapter 4 gives an assessment of the
internship with a final conclusion.

The second part expounds on the research work conducted. Chapter 5 discusses the
methodology used for the research work while chapter 6 talks about relational and NoSQL
systems and their models and gives a comparison of both systems. Chapter 7 covers the
metrics that were used in the research work while chapter 8 illustrates the case study and
results obtained. Chapter 9 concludes with a conclusion of the research work and discusses
possible future work.

15

Chapter 1

Internship

The following section describes my internship at Portal 47 Ltd. My traineeship period was
from the 27" of June 2017 until the 22" of December 2017. The discussion centres around
the company, work plan, tasks given, detailed internship progress and skills acquired after
the traineeship.

1.1 Host Organisation

Portal 47 is a real estate portal company that has been in existence since 2003 and is
located in Bath, United Kingdom. The company runs an online real estate platform called
Kyero[7], with the main focus being the selling of property in Spain and now recently in
Portugal. The company also acts as an advisor to property developers, agents, buyers, and
sellers. Portal 47 has close to 30 employees spread across the UK, Spain and Portugal. The
company is divided into 4 departments: Data, Marketing, Design and Engineering and
Administration.

The data team is in charge of the technical and data operations. This includes architecting
systems and data stores, building data pipelines and systems programming. The marketing
team is in charge of marketing the product, studying competition, creating content and
innovating amongst others. Design and Engineering team is comprised of User Interface
(UX) designers and software engineers responsible for a seamless user experience on the
website, launching of tools and making sure that the whole product is functioning as
expected as far as the technical bit is concerned.

1.2 Internship Position

My role in this internship was a Data Analysis Engineer. | was integrated into the Data
department where | had one supervisor, Mr. Richard Spiegel, the head of research. The Data
team had 5 members including myself. The company takes a flexible approach to the tools
they use, as long as it solves the particular task at hand efficiently and effectively. Despite
this, they have a default technological stack of tools that holds everything together. | discuss

this in the next subsection.

16

Chapter 2

Development Environment

This chapter details the development environment that | worked with during the period of my
internship.

Flexibility in the tools to be used in a company depends on their availability and cost. To
minimize cost and save time, the company relies heavily on open source software. Open
source software is software with source code that can be modified, enhanced and distributed
to anyone and for any purpose [8]. Part of the technology stack included the following:

e Backend - Python 3, PHP

e Databases - MySQL, PostgreSQL

e Frontend - JavaScript, Bootstrap, CSS

e Search - Apache Solr

e Data Visualisation and analytics - Chartio, Tableau, Carto, Google Analytics
e Software development methodology - Scrum, Kanban

e Documentation - Sphinx, Read the Docs, Google Docs

Most of these tools are used by the Design and Engineering department since this
department hosts the company’s software and web developers. The section below describes
the tools that | worked with in detail.

2.1 Python

Python is an open source high level, object-oriented programming language written in the C
language [9]. Python has mostly been used for scripting and for rapid web application
development and in recent times, data science. The company uses Python for database
access, scientific computing, using the Pandas library for data analysis and interacting with
the Google Analytics [10], Campaign Monitor [11] and Kissmetrics [12] application
programming interfaces (APIs)

17

2.2 MySQL

MySQL is a fully-featured open-source relational database management system (RDBMS)
that is developed, distributed and supported by Oracle Corporation [13]. Like other relational
systems, MySQL stores data in relations and uses the structured query language (SQL) for
database access. The company uses MySQL as its primary data store.

2.3 PostgreSQL

PostgreSQL is an open source, object-relational database management system (ORDBMS).
It is developed by the PostgreSQL Global Development Group. It is free and licensed under
the PostgreSQL License. Similar to other relational systems, it uses the structured query
language (SQL) for making queries [14]. PostgreSQL acts as a secondary storage for the
properties and tables in the company’s main database.

2.4 Apache Solr

Solr is a highly reliable, scalable fault-tolerant search engine providing distributed indexing,
replication and load-balanced querying, automated failover, and recovery [15]. Solr is used to
provide search optimization in high traffic websites with large text-centric data [16]. It allows
for near real-time indexing features and allows for full-text search capabilities [15]. At the
company Solr is used for common search engine use cases like basic keyword search and
for ranked retrieval of documents.

2.5 Chartio

Chartio [17] is a cloud-based analytics software solution. It comes with many features that
allow for great data analysis through the creation of charts and dashboards from data. Due
to its built-in support for SQL database systems, the company integrated it with its databases
and enabled us to build performance reports, present web analytics and build data pipelines.

2.6 Sphinx

Sphinx makes it easy to generate documentation for your projects [18]. It allows for the
documentation of software projects in different languages. The company uses Sphinx to
document information about data and database access for each department, internal
projects, programming best practices, and all solved tasks.

2.7 Scrum

Scrum is an agile software development methodology. A scrum setting enables a team to
develop new features or a new capability of a software within 2 to 4 weeks. We used scrum

18

to build some of the projects and also to ship some updates on the real estate platform in
weekly sprints held every week.

19

Chapter 3

Plan and Mission

This section details the work plan and mission of the internship.

3.1 Work Plan

The work plan for the internship acted as a blueprint of what was to be learned at the end of

it. The work plan was defined as follows:

Analysis of the company data - this was fundamental at it involved analysing and
understanding the data in use, how it is collected, the data types, it’s structure and
how it is stored.

Writing database queries on installations of MySQL, PostgreSQL, and Google

Bigquery - running cron jobs, writing of relevant queries for important data output.

Data wrangling, scraping, machine learning - collecting, cleaning, parsing and

training of data.

Producing visual data reports in Chartio, Carto, Tableau, Mapbox, and other open

source data visualization tools.

Writing Documentation - providing and updating documentation for every completed

task for interdepartmental use.

3.2 Monitoring Plan

20

Familiarisation with the data, understanding the internals of the Data department and

the installation of the necessary tools.
Execution of available tasks given by the team

Departmental meetings were held every Thursday where sprints were conducted and

where an individual performance of tasks was discussed.

3.3 Objectives

The following were the objectives of this internship:

Enable the trainee to understand data engineering and analysis fundamentals.
Enable the trainee to be able to perform data analysis to generate business insights.

Enable the trainee to acquire big data and database terms, optimization and best

practices for data analysis.

Expose the trainee to exploring data with concepts like machine learning and data

mining.

Expose the trainee to agile software development environments.

3.4 Tasks

This section lists the main tasks | was given. Due to the autonomy of the Data and

Engineering Departments, it was really flexible to work on a variety of projects as they were

open to all. Preference to a project, in this case, meant one that a person felt comfortable in.

Nevertheless, all tasks were supervised. These included:

21

Producing performance reports based on MySQL and PostgreSQL queries on
Chartio - The company has huge data sets and as such it was necessary to
understand the performance in order to avoid bottlenecks. These reports would go a
long way in helping us understand what and how to query and also making
necessary changes to the schema in the database.

Predicting house rental prices and house preferences using machine learning
algorithms - This task entailed using machine learning algorithms, in this case, the
random forest to predict house rental prices. The task also involved, among others,
cross-checking with other real estate websites and also data from property letting
websites like Airbnb.

Analysing if the language is an important factor when buyers are looking for property
on the website - The property platform was served in eight languages and more often
than not, the number of enquiries on a property was dictated by the language in
which the user accessed the site. This task involved analysing all the data from the
enquiries table in the database and aggregating where the users came from and from
where they sent the request. This also involved getting data from Google Analytics

Analysing buyer trends during the different seasons of the year using all the buyer
data - This task involved gathering all the data collected on the platform from 2004
until 2016 and analysing the buyer trends for every season. Having this information
would be fundamental as it would lead to the development and execution of different
marketing strategies for the 2017/2018 financial year.

Analysing user data from Campaign Monitor, Google Analytics and Kissmetrics
application programming interfaces (APIs). An Application Programming Interface
(API) is a set of clearly defined routines and methods that allows communication
between software components [19]. This task was involved with fetching data from
these tools to try and understand user behaviour, time spent on the website, browser

activity, website response times, user enquiries and newsletter performance.

Identifying and reporting on the relationship between house prices and the location of
a property in relation to distance from the sea - This task involved analysing if the
location of a house affects its price. Of primary focus was a house’s distance from the
sea.

Documenting new and updating existing documentation - Every task or project had to

be documented for use by other departments and for reference purposes.

3.5 Detailed Internship Progress

This section breaks down the tasks into their different subtasks.

June 2017 (27th - 30th)
This was the initial week of my internship and mainly involved understanding the work

culture and how things run at the company. This mostly involved:

Induction - introduction to the company, the different departments and what they do

and all staff members.

Induction Il - Familiarisation with the company’s working environment, the

technological stack in use, the data and other tools.

Setting up of my environment - installation of necessary applications and

workstations.

July 2017 (3rd - 28th)
Task: Analyse buyer trends during the different seasons of the year (2004 - 2016) using all

buyer data & Google Analytics. Publish reports in Chartio, discuss and document

22

observations. This task involved looking at the company's data from 2004 in order to analyse
buyer trends. This task mainly involved the following activities:

e Write SQL queries to get data on properties bought using each season (Winter,

Autumn, Summer, Spring).

e Document and report on the different patterns for each year and each season in

regard to page visits and properties bought.

e Integrate MySQL with Google Analytics to get season data through the Chartio
aggregate pipelines.

e Analyse the different trends for buyers with regard to the different seasons.

August 2017 (1st - 29th)
Task: Produce performance-based reports based on MySQL and PostgreSQL queries on
Chartio.

e Writing optimized queries using the archived_properties, properties, user and

enquiries tables using enquiry_id as an index.

e Comparing the performance of the queries using secondary indexes and increased
memory cache.

e Building Chartio aggregation pipelines to integrate the database tables with Google
Analytics to obtain page visitor data

e Publishing the performance reports on Chartio to be used by the engineering

department.

September 2017 (5th - 28th)
Task: Use machine learning algorithms to predict house prices and preferences using
Scikit-Learn and Python 3

e Exploring the data and identifying the features and the target variables

e Calculating statistics on the main features to be used. Removing outliers.
e Utilising Scikit-Learn[20] to shuffle and split data.

e Identifying common factors affecting the house price

e Comparing models used in other companies using big data in real estate commerce

on a large scale like Airbnb.

23

October 2017 (3rd - 27th)
Task: Identify and report on the relationship between house prices and the location of a
property in relation to distance from the sea.

e Identify how proximity to the sea affects house prices.

e |dentify properties within a considerable distance from the sea but with equal or

similar prices to those in the sea.
e Obtain and compare data results with the “Instituto Nacional Estadistica” of Spain.

e Identify models used by Airbnb and other rental or real estate or housing portals.

November 2017 (3rd - 24th)
Task: Analyse if the language is an important factor when buyers are looking for property on
the website.

e Writing SQL queries gathering all enquiries from Enquiries table in MySQL and

PostgreSQL databases noting the different languages used in each enquiry.
e Aggregating enquiry origin and enquiry destination.

e Identifying enquiry patterns in regard to the language in which the page was served

in.
e Comparing the results on a Sankey diagram.

December 2017 (4th - 22nd)
Task: Analyse user data from Campaign Monitor, Google Analytics and Kissmetrics APIs.
This task involved the following activities:

e Using Python 3, to collect data from the Kissmetrics and Campaign Monitor APIs.

Under the Campaign Monitor API, reporting on Campaigns, Lists, and Subscribers.
e Under the Kissmetrics API, reporting on Events, Reports, and Properties.

e Under Google Analytics API, using the Reporting API provided to identify user
behaviour on the different pages of the website, browser loading times and time
spent on the website.

e Documenting average duration spent on the different pages.

24

Chapter 4

Internship Assessment

Most of the tasks that were done by the data department mostly helped the other

departments like marketing and engineering departments to make informed decisions. They

were also used for the internal operations of the Data department. The routine Thursday

meetings were used to review and evaluate tasks done by each team member.

4.1 Technical Skills

During my 6 months at the Internship | was able to acquire the following technical skills:

25

Data wrangling and scraping using Python and the R programming language - |
learned how to pull and parse data from the web, documents, and Extensible Markup
Language (XML) markups.

Database query optimization and performance analysis - | learned the best practices
of writing database queries especially involving huge datasets and when faced with
infrastructural challenges. Moreover, | was able to learn the role of database engines
both in the storage and querying of data.

Machine learning algorithms - this was beneficial as it added to the knowledge | had
already acquired in my lessons by helping me apply what | learned to solve
real-world problems.

Programming with Representational State Transfer(REST) APIs with Python - APIs
are very vital in the development of web services. | was able to obtain data from
Campaign Monitor, Kissmetrics, Google Analytics, tools heavily used by the company
to obtain the necessary user information to be used in further analysis.

Writing documentation - documentation is a key principle an in any software process.
| learned how to generate data from documentation tools like Sphinx and also how to
document the building of a project from start to finish

Agile development practices - | learned how to work with agile methodologies in

software development, more specifically, scrum.

Data visualization using Chartio, Tableau, Plotly, Carto, and Mapbox - Visualisation is
key when explaining statistics and facts to non-tech consumers of data. | was able to

visualize complex data in an easy, intuitive way using these tools.

4.2 Professional Skills

In addition to the technical skills, | was able to develop in my personal and professional

capacity. Some of these skills include:

Problem-solving - | was able to own my role which helped me to resolve the
challenges that occurred when executing a project. Moreover, | am now able to
provide effective solutions to problems, analyse the root cause of a problem and also
assess performance metrics.

Integrity - working at Portal 47 enabled me to acknowledge my strengths and
weaknesses. | have also learned how to take charge of my own mistakes and adhere
to standards set.

Communication skills - it goes without saying that communication skills are very vital
in the workforce. | have grown tremendously by being able to communicate new
ideas and suggestions in a clear and confident way.

Agility - | have learned how to adapt to different circumstances and different
environments. | was also able to react and adapt quickly to different situations and to
be flexible when working with new tools.

Eagerness to learn new skills - | took it upon myself to learn something different from
each department. This involved learning a new tool and strategies.

4.3 Conclusion

Working at Portal 47 Ltd gave me a first-hand opportunity of practicing what | learned in
theory in the class by enabling me to tackle real-world problems. This opportunity has
definitely had a strong impact on my growth as an informatics engineer. | can confidently say
that | have grown in regards to my technical, professional and personal skills. Moreover, this
internship enabled me to form the basis of my research work which | discuss in the next
sections.

26

27

Part 2 - Research Work

Chapter 5

Methodology

According to Nicholas in [21], research methods are techniques used for doing research. He
goes on to state that these tools represent the tools of the trade, and provide you with ways
to collect, sort and analyse information so that you can come to some conclusions. Thus,
depending on the research or study to be conducted, the choice of the method to be used
depends on the researcher.

This chapter will introduce and explain the motivation for the research method chosen for
this research work. The chapter also details on the data collection, the cases to be analysed,
an analysis on how the data was processed and finally concludes with a summary.

5.1 Method

The aim of this research is to benchmark and compare the performance of relational
systems and NoSQL systems on unstructured data. Relational systems have been at the
helm of database technology. However, with recent changes in database technology,
emerging tech difficulties and a lot of unstructured data, these systems have come to hit a
snag. Unstructured data requires systems that are flexible and easy to scale. Hence our
research work will entail an experimental method for doing the benchmarking.

The method chosen for this study is the case study method. According to [22], since there
explanation of what a case study is, it is not easy to describe it. A case study can be
described as a thorough, methodical investigation of a single individual, group or some other
unit in which the researcher examines in-depth data relating to several variables [23].

Research in a case study calls for choosing a few examples of a theme or subject matter to
be studied and then exhaustively investigating the attributes or features of those examples.
Closely studying these examples or cases, and then comparing and contrasting them
enables a researcher to learn about notable features of the subject matter and how it
deviates under different situations. According to Yin in [24], a case study research is
especially well suited to investigating processes.

28

A case study approach was chosen because it provides a unique method for investigating a
single case which can then be replicated for other similar cases. According to [25], a case
study has its strength by obtaining relevant data argues that intensive study methods have
their strength in obtaining detailed and relevant data. This implies that this data or
information cannot be taken out of context, thus increasing the value of the study.

Another advantage of this method is that it allows for the discovery of more information not
planned prior to the start of the study. Due to this, case study becomes a suitable method for
creating hypotheses [25] which go a long way in helping to define future research. This also
implies that case studies play a role in advancing the knowledge base of a particular field
[26].

5.1 Data Collection

According to [76], case study research is not limited to a single source of data as in the use
of questionnaires or interviews for carrying out a survey. The following is a list of sources you
can use, according to [24][76]:

e Interviews - this involves having open conversations with the main participants or
survey-type questions.

e Direct observations - this involves observing the subject in a natural setting.

e Archival records - this could be any records for example census record and survey
records.

e Artifacts - tools or objects often observed during a direct observation of the object

e Participant observation - this involves the researcher serving as a participant in an
event and observing the actions

e These sources may be used in any combination as well as related sources
depending on what is available and relevant for your study.

Data from this research work came from my internship company and was the primary
source. This dataset was a replica of the main database used at the company, which
involves three tables with over 4 million records. This is a higher number of rows compared
to a previous study in [27] that compared the two systems with 25,000 rows and concluded
that MongoDB performed better.

5.2 Cases

Since most of the features in database benchmarking have already been used in previous
research studies, 4 core features least investigated when comparing the two database

29

systems were used in this study. Within the four cases selected, the goal was to understand
the performance of each system and how it differs with a change in different parameters.
The four cases revolved around Indexes, JOINS and aggregation functions, third-party driver
integration and scalability of a system.

5.3 Data Analysis

In [24], Yin encourages researchers to produce a high quality analysis of their work. To this
end, he came up with three principles. These were:

e Display that the analysis relied on all the data collected
e Mention the main significance of the study and last but not least,

e The researcher should use his or her prior experience or knowledge in the field to
further his or her analysis.

In addition to the above, data in this study was analysed using the observe, think, test and
revise (OTTR) method as described by [75]. According to [75], analysis should be a frequent
process whereby the initial observations made are reflected upon and shape future data
collection. Following this method, data was observed and preliminary hypotheses were
formulated. After that, consideration was made as to whether additional data was needed, in
order to confirm or refute the initial hypotheses. More tests under each case were then
conducted to gather more information. Finally, a review of all the observations and results
obtained was done.

Summary

This section detailed the research methodology used for this study, the justifications for the
method, and the processes taken to compare the two database systems. The next sections
discuss relational and NoSQL systems, their models and a comparison of the terminologies
used in each system, break down in detail the performance metrics that were used and the
case study itself which then culminate to the main comparison between the two systems.

30

Chapter 6

Related Work

Traditional relational systems have been at the helm of database technology since their
inception. However, with growing demands of data, these systems have experienced
numerous challenges. New systems have been developed to counter some of these
challenges and offer better solutions at a lower cost than the latter.

This chapter will discuss both relational and non-relational or NoSQL systems, their data
models and features. To conclude, a comparison between MySQL and MongoDB
terminology is provided.

This chapter is organized into 5 sections. The first section describes databases systems and
defines relational and NoSQL systems. The second section discusses about the data model
used by relational systems while the third section details about the data model used by
NoSQL systems. Section four gives an introduction of the Consistency, Availability, Partition
Tolerance (CAP) theorem while section 5 compares and gives examples of the terminology
and functions used by both systems.

6.1 Database Systems

A database can be defined as a collection of any data that is organized for easy access and
management. This data can be stored in tables, columns, rows or documents and can be
indexed for faster access [32].

A database management system (DBMS) is a set of programs which provide the user with
tools to add, delete, access and analyse the data stored in one location. Data can be
accessed using queries, reporting tools or using application programs written specifically for
the purpose of accessing the information. The DBMS also provides mechanisms for data
integrity, management of security and for user’s access to information.

The following subsections discuss relational and NoSQL systems giving examples of each
database system.

6.1.1 Relational Databases

A relational database is a collection of structured data stored in tables consisting of rows and
columns. The relational model was proposed by E.F. Codd in 1970 [33]. In the relational
model, data has to fit a specified schema, considering the various data types before it is

31

stored. A schema can be defined as the structure of a database that defines the objects in
the database. Figure 6a shows a generic representation of a relational model.

Relation variable
(Table name)

T \ Heading
p A 1« -

Value |

/) (.
‘ % Relation

* Body f (Table)

Attribute (Column) {unordered}

< |

Tuple (Row) {unordered}

Fig. 6a: Representation of a relational database model [34].

Rows in tables can be related or can form relationships. Primary keys can be used to identify
unique rows within a table. Likewise, rows spanning multiple tables can form relationships by
using foreign keys. This structural feature makes relational databases vertical scalable,
which implies that best performance takes place in a single machine. Vertical scalability
means expanding the resources of that single machine to address performance or storage
constraints.

These databases mostly use the structured query language (SQL) [35], which is a standard
language for managing and accessing databases. SQL consists of many types of statements
[30] that provides the scope for data querying, data manipulation (insert, update and delete),
data definition (schema creation and modification), and data access control.

Relational databases have been dominant since their inception and provide high-end
features that support a majority of today's business systems. Examples of relational
databases are MySQL, PostgreSQL & Microsoft SQL SERVER.

6.1.2 Non-Relational Databases

As the name suggests, non-relational databases don’t follow the relational model to store
their data. This means that data doesn’t need to fit a specific pattern for it to be stored.
These databases are distributed, open-source and offer horizontal scalability which is a
problem for relational databases [36]. They are sometimes called “NoSQL (Not only SQL)”
as they don’t use SQL as the main query language, or to emphasize that they may support
similar languages to SQL [37].

32

The term “NoSQL” surfaced around 1998 when Carlos Strozzi used it to name his lightweight
database management system, which although did not offer the SQL interface, was still
relational [38]. This was however distinct from the other databases developed when the term
was reintroduced around the year 2009 by Johan Oskarsson at an event discussing “open
source, distributed, non-relational databases” [39].

NoSQL databases were built in response to the demands presented by modern applications.
They are increasingly being used in big data and real-time web applications [40]. Simplicity
in horizontal scaling [41], lucidity of design and first-rate control over availability are some of
the motivation for this approach. Some operations are faster in these systems due to the fact
that they use different data structures compared to those used in relational systems.

6.1.2.1 Types of NoSQL Systems

There have been different ways to classify the different NoSQL systems, each with different
categories and subcategories. An extensive list of the different NoSQL stores can be found
in [42].

The following is a presentation of the different NoSQL systems.

6.1.2.1.1 Key-Value Stores

Key value stores use Data stored in databases with this model is stored and looked up using
keys [43] that uniquely identifies a record. Every item in the database is stored as a key with
its corresponding value (figure 6b). However, the value is entirely hidden to the system as
the data can only be queried by the key. Riak [44] and Redis [45] are some examples of
Key-Value stores.

Key Value
k1 ——| v1
k2 | v2
k3 ————>| v3
kN ———| VN

Fig. 6b: Implementation of a key-value store.

33

6.1.2.1.2 Document Data Stores

Document databases store data in documents (figure 6c¢). These documents normally are
objects in JavaScript Object Notation (JSON) or Extensible Markup Language (XML) format.
Each document is inherently an object, which contains one or more fields. They have
dynamic schemas meaning each document can contain different fields. Documents can be
grouped to form collections which are similar to a table in a relational database. This is
particularly helpful when it comes to modelling unstructured data. The most common
examples of document data stores are MongoDB [46] and CouchDB [47].

}

Document 1 Document 2 Document 3
{
I.I._idﬁl : |.|3'|!,
il._id!l : iI‘II!:I ilfullname" .
“name” : “John Doe”, “igr e {*firstname”:
“gogﬁ l.;i:m'm ‘ “fullname” : “Jo Doe”, "T;Jsjtname"'
“Gi? . "Far;;:-" “dob” : "April, 9, 2000’ Ken'))
“Stgtl';s,l: “Sin’gle”r ;isActiue" : True iLdDbH : H12‘|r1ID‘|r82H!
“isActive” : False “age” : "44",

“isActive” : False

}

Fig. 6¢c: Implementation of a document data store.

6.1.2.1.3 Wide Column Data Stores

Also known as column family stores, wide column data stores use a sparse, distributed
multidimensional sorted map to store data. Each record can vary in the number of columns
that are stored and data is retrieved by primary key per column family. Known examples of

wide column data stores are Cassandra [48] and HBase [49].

34

Peter 2013 75 o (name, Eliza, v1, 4)
Eliza:[4,5] (name, Eliza, v1, 5)
Peter | 2014 11 Peter: [1,2,3] (name, Peter, v1, 1)
(name, Peter, v1, 2)
Peter 3 (name, Peter, v1, 3)
(date, 2011, v1, 7)
Eliza 2014 70 2011 :[7, ...]
2012:[6, ...] (date, 2012, v1, 6)
Eliza 2014 1 2013:[1] or
. 2014:[2,4,5] (date, 2013, v1, 1)
2012 472 (date, 2014, v1, 2)
(date, 2014, v1, 4)
2011 11 1 :[5] (date, 2014, v1, 5)
3 :[3] (amount, 1, v1, 5)
11 :[2,7] (amount, 3, v1, 3)
70 :[4] (amount, 4,v1,2) *
75 :[1] (amount, 11, v1, 7)
472 :[6] (amount, 11, v2, 2)
(amount, ...)

Fig. 6d: Wide column database implementation.

6.1.2.1.4 Graph Data Stores

Graphs are a fundamental aspect of computer science. A graph is a set of items connected
by edges [50]. Thus, graph databases normally use graph structures with nodes, edges, and
properties to represent data. In this case, data is modelled in the form of a network of
relationships between specific elements. Common examples of this data store are Neo4j [51]
and Giraph [52].

:HAS_CEO

Employee « start_date: 2008-01-20 Company :LOCATED_IN R City

name: Amy Peters
date_of_birth: 1984-03-01
employee ID: 1

Fig. 6e: lllustration of a graph database implementation [53].

6.2 ACID Model

Atomicity, Consistency, Isolation, Durability (ACID) are properties of database transactions
that guarantee validity in the event of failure. The acronym ACID was coined by Theo Harder
and Andreas Reuter in 1983 [54], building on earlier work [55] by Jim Gray. They are a key
feature of relational databases. A database transaction is a sequence of operations

35

performed in a single unit of work [56] For a unit of work to be considered a transaction, it
must satisfy these ACID properties. These properties are defined as follows:

e Atomicity - states that a transaction should be atomic meaning that either all of its
modifications are performed or none is performed.

e Consistency - once a transaction is complete, data must be left in a consistent state.
To maintain data integrity, all rules must be applied to the transaction's modifications.

e |solation - a transaction ensures that concurrent executions are isolated and would
result in a system state that would be obtained as though the executions were
executed sequentially.

e Durability - after a transaction, any modifications of data should be persisted even in
the event of a failure. Changes made are permanently stored in the system.

ACID properties have provided transaction processing with a solid and stable foundation
from which to build for decades. Nevertheless, due to the dawn of the internet, the growth of
distributed data stores, the unprecedented increase in data variability and volume, the need
to document and store unstructured data, and the subsequent need for more flexibility in
terms of scaling, cost, processing, disaster recovery and design, this building foundation has
shifted [57]. ACID properties are still essential in transaction processing, but high throughput
web applications, non-relational data stores, big data, and data centre distribution called for
the invention of new alternatives.

6.3 BASE Model

One factor that enables good performance and horizontal scalability in NoSQL databases is
the fact that they have sacrificed the use of ACID. NoSQL databases use BASE [58]. BASE
stands for “Basically Available, Soft state, Eventual consistency”. Each property is defined
below.

e Basically Available - this principle aims to focus on the availability of data even in the
presence of multiple failures. This is mostly achieved using sharding and replication.
This means that non-relational systems will spread the data across many storage
systems instead of maintaining a single machine. This ensures that in the unlikely
event of a failure which would disrupt access to a segment of the data, it will not
necessarily result in a complete database outage.

e Soft state - this principle basically means that the state of a system could change
over time. This also applies in times where there has been no input since as per the
principle of “eventual consistency”, the system will still be receiving updates. As such,
the state of the system will always be “soft” [59].

36

e Eventual Consistency - this principles states that the system will ensure that the data
will eventually assume a consistent state. This is in contrary to relational systems
where the consistency requirement of ACID will prevent a transaction from executing
until the prior transaction is complete and the database is in a consistent state.

6.4 CAP Theorem

As we have seen in the sections above, both relational and NoSQL systems offer a different
type of consistency. Relational databases provide strong consistency. Strong consistency, in
this case, means ACID-compliant consistency, that is, the properties Atomicity, Consistency,
Isolation, and Durability which guarantee that data will be consistent at all times. NoSQL
systems, however, offer eventual consistency, which basically means that reads will reflect
the latest updates at some point in the future and not at the specific time when they
happened. Since some systems e.g., bank applications depend on consistency, eventual
consistency becomes a weakness. Thus, when choosing to adopt a NoSQL database, some
trade-offs have to be considered.

The trade-offs are explained by the CAP theorem. The CAP theorem, which stands for
Consistency, Availability and Partition Tolerance, also known as Brewer’s Theorem, was
introduced by Eric Brewer on his keynote, at the Symposium on Principles of Distributed
Computing in the year 2000 [60]. It is a concept that states that a distributed database
system can only have two of the three features at any given time [61][62][63]. A distributed
system can only guarantee two of the following:

e Consistency - states that the data should remain in a consistent state after each and
every operation.

e Availability - states that the system provides availability with no downtime. Every
request sent must also receive a response.

e Partition Tolerance - states that the system should continue to function even in the
event of a network partition.

Figure ©f illustrates the CAP theorem.

37

Availability
Each client can always
read and write

Total Redundancy
Consensus Protocols Eventual Consistency
MySQL CouchDB
Hypergraph Cassandra
Neod| Riak
Pick Two
Consistency Enforced Consistency Partition Tolerance
All clients always have the HBase System works well despite
same view of the data MongoDb physical network partitions
ACID, Transactions Redis Infinite Scale Out

Fig. 6f: The Cap Theorem [64].

According to the theorem, a network prone to partitioning cannot guarantee both consistency
and availability. Thus, Partition tolerance becomes a must select since an assumption that a
that a network will not fail cannot be made. This means that two options are available to
choose from, Availability and Consistency, which brings the possibilities to Consistency and
partition tolerance(CP) and availability and partition tolerance(AP).

Table 6a shows some of the differences between the ACID and BASE properties.

ACID (RDBMS) BASE (NoSQL)
Strong Consistency Weak Consistency
Isolation Last write Counts
Transaction Program managed
Robust database Simple database
Simple code (SQL) Complex code
Availability and Consistency Availability and Partition Tolerance
Scale-up (limited) Scale-out (unlimited)
Shared resources (Memory / disk / CPU) Parallelizable

Table 6a. ACID and BASE features

38

6.5 Comparison of Relational and NoSQL Systems

NoSQL systems have been seen as a better solution for big data applications due to their
scalability, cost, and flexibility. They differ from relational systems in four main areas:

e Data model - Relational systems need a defined schema before adding any data to it.
NoSQL systems are flexible and don’t need a predefined schema which allows for
easier updates to data.

e Structure - NoSQL systems are able to handle unstructured data, which currently
makes most of the data available as compared to Relational databases which handle
structured data due to the fact that they were developed when there was a need to
service such data.

e Scaling - Scaling of relational databases is a costly affair as it involves buying bigger
servers, increasing processor power or adding more memory. It is much easier and
cheaper to scale NoSQL systems as you would only require commodity servers.

e Development model - With the exception of MySQL and PostgreSQL, a majority of
the relational systems are closed source which means expanding the infrastructure
could turn out to be a costly affair due to licensing fees. On the contrary, NoSQL
databases are free and open source with a wide community of users.

For our research, we are going to compare MySQL with MongoDB.

6.5.1 MySQL

MySQL is a relational database which is currently owned by Oracle. MySQL has mostly
been used to store data in web applications. It provides support for all major operating
systems such as Linux, OS X, and Windows.

MySQL is a fully-featured RDBMS. Some of the features it offers include stored procedures,
triggers, views, indexes, cursors, query caching. among other features. MySQL offers
support for storage engines. These include InnoDB, MyISAM, CSV, Blackhole, Archive and
Merge.

6.5.2 MongoDB

MongoDB is a free, open-source document-oriented database. It is one of the largest used
NoSQL database systems. It stores data in flexible JSON (JavaScript Object Notation) like
documents, which means fields can vary from document to document and data structure can
be changed from time to time. MongoDB supports range queries, field, and regular
expression searches [65]. It also provides high availability with replica sets. Being a
distributed database at its core, it qualifies to be used as a file system thus providing load
balancing [66]. This is made possible through the grid file system [67] function. MongoDB
offers support for different programming languages such as Python, Java, C++, C#, and
JavaScript.

39

Table 6b shows a brief comparison of the standard features of the two database systems.

Feature MySQL MongoDB
Written in C++,C C++

Type RDBMS Document-store
Licence GPL V2 GNU AGPL V3.0
Schema Strict Dynamic
Scaling Vertical Horizontal

Table 6b - MySQL, MongoDB feature terminology

6.5.3 Terms and Concepts

This section describes the different terminology used and shows how querying differs in both
database systems.

Table 6¢ presents the MySQL terminology and concepts together with the corresponding
MongoDB terminology and concepts on the standard features.

MySQL terms MongoDB terms
Database Database
Table Collection
Index Index
Row Document
Column Field
Join Embedded Document, $lookup
Primary key set explicitly Primary key set implicitly
Aggregation (e.g. group by) Aggregation framework

Table 6¢. MySQL, MongoDB terminology

6.5.3.1 Executables

Table 6d shows the SQL executables and the corresponding MongoDB executables.

40

MongoDB MySQL
Database server mongod mysqld
Database Client mongo mysq|

Table 6d: showing MongoDB and MySQL executables.

6.5.3.2 Create and Alter

Table 6e displays functions for creating and altering objects in both database systems. In
these examples, we assume we are creating a table named people.

MySQL Schema Statements

MongoDB Schema Statements

CREATE TABLE people (
id MEDIUMINT NOT NULL
AUTO_INCREMENT,
user_id Varchar(30),
age Number, status char(1l),

PRIMARY KEY (id))

db.people.insertOne({
user_id: "abcl23", age: 55,

status: "A"})

ALTER TABLE people

ADD join_date DATETIME

db.people.updateMany({ },

{ $set: { join_date: new Date() } 1})

CREATE INDEX 1idx_user_1id_asc

ON people(user_-id)

db.people.createIndex({ user_id: 1,
age: -1 1})

DROP TABLE people

db.people.drop()

Table 6e. Create and Alter statements

6.5.3.3 Insert

Table 6f represents SQL statements used when inserting records into a table, and the

corresponding MongoDB statements.

MySQL Insert Statement

MongoDB insert schema

INSERT INTO people(user_id, age,

status)

db.people.insertOne(

{ user_id: "bcdool", age: 45,

41

VALUES ("bcd@o1l", 45, "A") status: "A" })

Table 6f. Insert Statements

6.5.3.4 Select

Table 6g presents examples of SQL statements related to reading records from tables and
the corresponding MongoDB statements.

MySQL Select statements MongoDB find statements

SELECT * FROM people db.people.find()

SELECT id, user_id, status db.people.find({ },

FROM people { user_id: 1, status: 1 })

Table 6g. Select statements

6.5.3.5 Update

Table 6h presents examples of SQL statements related to updating existing records in tables
and the corresponding MongoDB statements.

MySQL update statements MongoDB update statements
UPDATE people SET status = "C" db.people.updateMany(
WHERE age > 25 { age: { $gt: 25 } 1},

{ $set: { status: "C" } })

UPDATE people SET age = age + 3 db.people.updateMany(
WHERE status = "A" { status: "A" } ,

{ $inc: { age: 3} })

Table 6h. Update statements

6.5.3.6 Delete

Table 6i presents examples of SQL statements related to updating existing records in tables
and the corresponding MongoDB statements.

MySQL Delete Statements MongoDB delete statements
DELETE FROM people WHERE status = |db.people.deleteMany({ status:
HDII IIDH })

42

DELETE FROM people db.people.deleteMany ({})

Table 6i. Delete statements

6.5.3.7 Aggregation

Table 6j shows an overview of SQL aggregation terms and functions and the corresponding
MongoDB aggregation operators.

MySQL aggregation terms & functions MongoDB aggregation operators

WHERE $match

GROUP BY $group

HAVING $match

SELECT $project

ORDER BY $sort

LIMIT $limit

SUM $sum

COUNT $sum
$sortByCount

JOIN $lookup

Table 6j. Aggregation Terminology

Table 6k shows an example of a simple aggregation query using the COUNT () function in
MySQL and the equivalent $sum in MongoDB.

SQL Example MongoDB Example Description
SELECT COUNT(*) AS db.orders.aggregate([| Count all records from the
{ orders table
count FROM orders $group: {
_id: null,
count: { S$sum:
1}
}
}

1)

Table 6k. Aggregation example

Summary

This chapter gave an overview of database technologies. We introduced the concepts of
database systems and discussed relational and NoSQL systems. On relational systems, we
discussed their table structure and how they store data. We also discussed the ACID

43

properties, a key feature in these systems. We further discussed NoSQL systems, how they
store data and how they disrupted the database ecosystem. We also saw how contrary to
relational systems, they substitute consistency by offering eventual consistency using the
BASE properties. We detailed, using the CAP theorem, where database systems fall in
terms of consistency, availability and partition tolerance.

Last but not least, we introduced the databases to be used for our comparison, MySQL and
MongoDB. We went further and compared the terminology used by both systems. Of
particular interest were the query statements used on create, read, update and delete
operations. From the examples, we can see how the query statements differ. MySQL uses
SQL to query database objects while MongoDB uses JavaScript. The next section discusses
the performance metrics that were used for this study.

44

Chapter 7

Performance Evaluation Metrics

This study provides more details about the goal of this research work. It includes a
comparative study of relational and NoSQL database systems using the different metrics to
be investigated.

7.1 Index Performance

Indexing is a way to optimize database performance by minimizing disk access operations
required when a query is processed. A database index is a data structure that speeds up
fetching of data from a query. Indexing makes it easier to search through a table or a
collection. Indexing increases read performance but decreases write performance.

Both MySQL and MongoDB support indexes through the B-tree data structure. The storage
engines in use will be InnoDB for MySQL and wiredT1iger for MongoDB. Both of these
databases will automatically create indexes for primary and foreign keys in the database.
These indexes will not be sufficient for our benchmarking and thus we would need to create
our own.

7.2 JOINS and The Aggregation Framework

A join combines rows from two or more tables. Joins are a key feature in relational
databases. It is this feature that makes it difficult for them to scale out. MySQL supports
CROSS JOIN, INNER JOIN, and RIGHT JOIN. In MySQL, JOIN, CROSS JOIN, and INNER
JOIN are syntactic equivalents, meaning they can replace each other [68]. However, in
standard SQL, they are not equivalent. The joins can be described below:

e CROSS JOIN - matches each row from one database table to all rows of another.
e INNER JOIN - used to return rows from both tables that satisfy the given condition.

e RIGHT and LEFT JOIN - a LEFT JOIN returns all the rows from the table on the left
even if no matching rows have been found in the table on the right while a RIGHT
JOIN returns all the records from the table on the right even if no matching rows have

45

been found in the table on the left. Where no matches have been found in either
table, NULL is returned.

Being a NoSQL system, MongoDB does not support JOINS. As an alternative, MongoDB
provides the aggregation framework. The aggregation framework provides aggregation
operations that process data records and return computed results. Aggregation operations
group values from multiple documents together and can perform a variety of operations on
the grouped data to return a single result [69]. MongoDB provides three ways to perform
aggregation:

e the aggregation pipeline - A framework for data aggregation modelled on the concept
of data processing pipelines. In an aggregation pipeline, documents go through a
pipeline with multiple stages that transforms the documents, resulting in aggregated
results [69].

e the map-reduce function - a map-reduce is a data processing pattern for condensing
large volumes of data into useful aggregated results. Map-reduce operations use
custom JavaScript functions to associate, values to a key. If a key has multiple values
associated or mapped to it, the operation reduces the values for the key to a single
object [70].

e single purpose aggregation methods - MongoDB provides two methods,
db.collection.count() and db.collection.distinct() ,which aggregate
documents from a single function [69].

The $lookup function allows MongoDB to perform a left outer join to a collection to filter in
documents from the joined collection. Generally, the $1lookup function adds a new array
field whose elements will be the matching documents from the joined collection [69].

7.3 Application Integration

Both MySQL and MongoDB provide ways of interacting with the database on the application
layer. They both supported a variety of high-level programming languages like PHP, Python,
and Ruby. For this metric, we used Python version 3.7.0. Under application integration, we
tried to understand the read and write performance of the database system, through the
drivers provided by the language.

This metric is vital as it allows us to tell read and write performance of a high throughput
application. In light of current software development practices, application integration is
crucial in determining how fast a company can make rapid changes to an application, how
easy it is to make those changes and best ways of preventing downtime as the query runs.
This metric will apply two balanced workloads with a similar number of reads and writes.

7.4 Replication

Database replication can be described as the process of copying and maintaining database
objects in multiple databases to maintain consistency. Replication provides redundancy and

46

also increases data availability. Replication allows for fault tolerance against the loss of a
single server since data is in multiple copies in different servers [71]. In some cases,
replication can provide increased read capacity [71] as clients can send read operations to
different servers. Furthermore, maintaining additional data copies can be used for dedicated
purposes such as data recovery, backup, operational reporting or analytics purposes and
also to enable distributed processing of data.

In MySQL, replication is asynchronous by default, which means that the slaves (one or more
MySQL database servers) don’t have to be connected to the master (one MySQL database
server). MySQL also supports semi-synchronous replication which means that a commit
done on the master will have to get acknowledgment from a slave before returning to the
session that executed the transaction. After receiving the acknowledgment, the master can
return to the session and can then proceed to execute other transactions.

MongoDB supports asynchronous replication through replica sets. A replica set basically

consists of a primary and secondaries. All write operations are received by the primary. The
secondaries copy operations from the primary to maintain identical datasets.

47

Chapter 8

Case Study

This section describes the case in detalil. It details the application of the case study, the
environment set up, the metrics and finally concludes with the results.

8.1 Environment Set-up

This section details the environment set up.

8.1.1 Implementation Details

All the tests were done on a local machine. The details are as follows:
e Operating System - Mac OS High Sierra
e Memory - 8GB DDR3
e Hard disk drive - 512GB
e Processor - Intel i5, 2.7 GHz

8.1.2 Database Configurations

The following subsection provides a detailed description of the configuration of each
database.

8.1.2.1 MySQL

MySQL version 5.7.12 was used for this benchmarking. MySQL is readily available online on
the official MySQL website and can be downloaded for all operating systems. It is necessary
which engine is used as far as the performance of the database is concerned. For all the
experiments conducted, InnoDB storage engine was used. This storage was chosen
because of its support for ACID transactions, its stability when performing write-intensive
operations, its support for row-level locking and the ability to do full-text search. Pymysql
version 0.7.2 was used as the main Python driver for the application integration tests.

48

8.1.2.2 MongoDB

MongoDB 3.6.2 was used for this study. For MongoDB, wiredT-iger is the default storage
engine. A major benefit of this storage engine includes document level concurrency which
ensures that multiple clients can write to different documents of a collection at a go. It also
supports the compression of collections and indexes which minimizes storage use. Both of
these benefits were important for this study. Pymongo version 3.7.1 was used as the main
Python driver.

8.1.3 Benchmarking Tool

For the benchmarking, we used the Yahoo! Cloud Serving Benchmark (YCSB) [28]. YCSB is
an open source benchmarking framework designed by Yahoo to compare performance of
database systems. At its inception, it only had support for NoSQL systems but currently
supports relational systems too. YCSB provides six inbuilt workloads which provides different
scenarios for testing read-write operations and table scans. The workloads used are as
follows:

e Workload A - This workload consists of a 50/50 reads and writes mix respectively.
Thus, it is an update-heavy workload. The read update ratio is 50/50.

e Workload B - This workload consists of a 95/5 reads and writes mix respectively.
Thus, it is a read-mostly workload. The read update ratio is 95/5.

e Workload C - This is a read-only workload where the read-update ratio is 100/0
respectively.

e Workload D - This is a read latest operation. This implies that new records are
inserted (5%) and the recently inserted records which are the ones that are read
(95%). The read-update-insert ratio is 95/0/5.

e Workload E - This involves querying in short ranges of records, instead of individual
records. This workload has a scan-insert ratio of 95/5

e Workload F - This workload is a read-modify-write. What happens in this workload is
that a client reads a record, modifies it and writes back the changes.

8.2 Metrics

For the benchmarking process, this research work consisted of four main metrics as defined
in chapter 7. The metrics were set up as follows:

e Index performance - this metric investigated the performance of the systems where
we had indexes to speed up query lookup time. Two workloads were applied from the

benchmarking tool with a scenario of 1 and two threads. These workloads were

49

mostly read operations. Read-intensive queries were executed to understand which
system performs a search faster.

Aggregation Framework & JOINS - this metric investigated the aggregation functions,
and the performance of JOINS compared to the aggregation framework. MongoDB
does not support relations as it is not a relational database but nevertheless offers a
function that allows for joining collections of different documents, similar in function to
JOINS offered in MySQL. Two workloads, focussed on reads, were applied to this
metric and four equivalent functions were compared with each other.

Application Integration - Both of the database systems allow for third-party driver
integration. Different drivers for the different languages are all supported. This metric
investigated how both MySQL and MongoDB integrate with their respective Python 3
drivers. For MongoDB, the pymongo [30] driver was used while pymysq1[31] was
used for MySQL. Two balanced workloads with an equal number of reads and writes
were applied to this metric. It was necessary to include writes in this metric to
measure how long it takes to insert or update a record.

Replication - both MySQL and MongoDB support asynchronous replication. A
master-slave setup for MySQL was set up as well as the corresponding
primary-secondary setup for MongoDB. This metric involved 3 different workloads; a
balanced read-write operation, a read-mostly workload and an asynchronous
replication throughput test.

8.3 Methodology

This section details the application of the methodology used for this research work.

8.3.1 Data

The data used was data from the company. This dataset consisted of more than 4 million
rows. The data was stored in three database tables. The main tables in this dataset were:

50

Enquiries - This table had 3.3 million records and contained enquiries sent to
property agents via the platform up to December 2017. This table contained five
fields

Properties - this table had 438,000 records and contained property listing on the
platform. This table had 9 fields..

e Archived_properties - This table consisted of archived property listings on the
platform and contained more 4.7 million records. This table had nine fields.

The enquiries table mapped to the properties table via the property id field. A property could
have many enquiries an enquiry can have only one property. The company used two
property tables for performance reasons. When properties became inactive, they were
moved from the properties table to the archived properties table.

This data was imported into MongoDB using the mongoimport function and populated on to
the tables. For MySQL, the data was imported into the tables using the LOAD DATA
INFILE syntax.

8.3.2 Cases

There were four main cases in this study. These were:

e Index performance - this case investigated how fast the database systems performed

operations with different index parameters.

e Aggregation Framework & JOINS - this case investigated how fast each database

system performed operations with the different aggregation functions

e Application Integration - this case investigated how each database system performed

operations with a third party driver in the application layer.
e Scalability - This case investigated replication in both database systems and how fast

each of the system performs under a certain load and different parameters.

8.3.3 Results and Analysis

This section presents the results obtained together with an analysis.

8.3.3.1 Index Performance

For index performance we used Workload C and D. Workload C is focussed on reads while
Workload D is a read-update-insert operation workload.

51

Index Performance | 1 thread - Workload C - 100% read

= MySQL
== MongoDB

No. of Index

time/seconds

0.4 0.6 0.8 1

]

recordcount in millions

Fig 8.3.3.1(a): MySQL vs. MongoDB, workload C - 100 % read, 1 thread

Index Performance | 2 threads - Workload C - 100 % read

= MySQL

== MongoDB

time/sec

0.5 1 1.5 2

Recordcount (Millions)

Fig 8.3.3.1(b): MySQL vs. MongoDB, Workload C - 100% reads, 2 threads

52

Index Performance | 2 threads, Workload D - Read-Update-Insert

1 2 3 4

No. of indexes

MySQL
B MongoDB

Fig. 8.3.3.1(c): Index Performance, Workload D - read-update-insert, 2 threads

The first test of this metric was focussed on obtaining the fetch times on a workload
operation that was read-only. This was done on a single thread with the data being split in
different record counts starting with 400,000 for each index. From figure 8.3.3.1(a) we can
see that MongoDB performed better than MySQL in all instances. For 0.4 million records,
using one index, MongoDB took 1.54 seconds compared to 1.73 for MySQL. Increasing the
recordcount to 900,000 and adding another index increased the time to fetch a record by
almost 1.5 seconds to 3.23 seconds for MongoDB and 3.49 for MySQL. Important to note is
that the time to fetch a record increased as the recordcount increased. We also note that
MongoDB improved its performance as the recordcount increased. MySQL fetched
records slower as the recordcount increased. We deduce this from the difference in
seconds between the record counts. Between the 1.6 and 2 million recordcount, MySQL
executed the operation in 2.31 seconds compared with 1.96 for MongoDB.

Using the same workload but increasing the number of threads to two and maintaining the
same recordcount, improves the performance of both databases as shown in figure
8.3.3.1(b). This chart indicates that both systems perform well as the number of threads
increase. However, MongoDB still performed better than MySQL.

Figure 8.3.3.1(c) shows the performance of both systems with an increase in the number of
indexes. For this test, we used Workload D which is a read-update-insert operation
workload. This workload focuses on the latest inserts made on the database. From the chart
we observe that for each database, the execution time increased with an increase in the
number of indexes. MySQL performed better than MongoDB with 2 indexes but lost to

53

MongoDB as the indexes increased. The latter was 0.11 seconds faster with one index and
0.05 seconds faster with 2 indexes. Nevertheless, the difference in execution times was low.
From this figure, we can conclude that MySQL performs better than MongoDB with a certain
number of Indexes and that MongoDB performs better than MySQL as the number of
indexes increase.

Nevertheless, in both systems, there was too much overhead as the size of the dataset
increased as the number of indexes increased. A higher number of indexes on a table slows
down the execution times.

8.3.3.2 Aggregation Framework & JOINS

Aggregation | Workload C - 100 % Reads

MySQL
B MongoDB

JOIN / $lookup GROUP BY / SELECT / HAVING /
Sgroupby Sproject Smatch

Figure 8.3.3.2(a): Aggregation queries, read-only workload

Figure 8.3.3.2(a) displays the results of the first test of the aggregation metric on both
systems. This test was purely a read-only operation. From the results, MySQL outperformed
MongoDB in all the aggregation queries except from the JOIN / $lookup, where the
former took 0.61 seconds longer. MySQL was faster by 0.14, 0.25 and 0.05 seconds on the
GROUP BY / $groupby, SELECT / S$Sproject, HAVING / $Smatch queries respectively.
One reason MongoDB performed faster on the $1lookup function is because it does not
need to do a collection scan due to the $Smatch stage of the aggregation pipeline. The
Smatch stage filters the results before the $1lookup stage is actually performed. This also
explains why MongoDB performed better on the HAVING / $match query where the
difference was smallest compared to the rest. The recordcount used for this test was 1.5
million records.

54

Aggregation | Workload B - Read / Write (ratio-95/5)

JOIN / $lookup GROUP BY / SELECT/ HAVING /
Sgroupby $project $match

B mysaL
B MongoDB

query
Figure 8.3.3.2(b): Aggregation queries, Workload B

Figure 8.3.3.2(b) illustrates similar results to what was observed in figure 8.3.3.2(a) where
MySQL performed better in the GROUP BY / $groupby and SELECT / $project queries.
Comparably, MongoDB was 0.44 seconds faster on the JOIN / $1lookup and 0.17 seconds
faster on the HAVING / $match query. Important to note is the variation in the time taken
compared to the previous diagram. This is due to the workload used. This test used
workload B, which is a read mostly operation which means that it included writes in the ratio
of 95:5. Similar to the previous test, the recordcount used was 1.5 million records.

55

8.3.3.3 Application Integration

Application Integration | Workload A - read-write (ratio 50:50)

= MySQL

MongcDB

time in seconds

0.5 1 1.5 2

recordcount in millions

Figure 8.3.3.3(a): Application Integration | Workload A - read-write (50:50)

App. Integration | Workload F - read/read-modify-update (50:50)

- MySQL

MongoDB

time in seconds

/ :

0.5 1 1.5 2

recordcount in millions

Figure 8.3.3.3(b): Application Integration | workload F - read/read-modify-update (50:50)

Figure 8.3.3.3(a) displays the results of both databases on a workload that has equal
read-write ratio. We can observe that MySQL was 0.073 seconds faster on a recordcount

56

of 500000 documents than MongoDB. When compared to figure 8.3.3.1(b) where a
read-only workload was applied, MongoDB was faster. This behaviour is due to the fact that
MySQL performs better on writes. However, as the recordcount increases, MongoDB
edges slightly faster than MySQL. This is evident as the recordcount hit the 1 million mark,
where MySQL was 0.204 seconds slower. Another interesting fact is the small gap of
performance between the two, compared to the workloads that were mostly read-only. For
instance, MongoDB was only 0.649 seconds faster than MySQL on a balanced workload,
compared to the read only workload in figure 8.3.3.1(b) where it was 0.858 seconds faster.

Figure 8.3.3.3(b) presents an almost similar trend. MySQL was fastest on the first two
instances of the recordcount. The workload applied in this load was a read-modify-write
operation. MySQL was 0.22 seconds faster with a recordcount of 500,000 and 0.149
seconds faster with a recordcount of 1,000,000. However, this performance degrades as
the recordcount increases. Performance in MongoDB continues to improve as the data
increases. MongoDB was 0.30 seconds faster at the 1.5 million mark and 0.44 seconds
faster at the 2 million mark. It is also important to note the low gap of performance between
the two on this particular workload. Although MySQL loses out eventually, it is able to reduce
the performance gap due to its ability to process writes faster, thanks to the
high-performance capabilities of its InnoDB storage engine.

8.3.3.4 Replication

Asynchronous Single-thread Replication

MySQL(Master)
B MongoDB(Master)
B MysQL(Slave)

B MongoDB(Slave)

Figure 8.3.3.4(a): Asynchronous single-thread replication

57

Replication

B mysaL
B MongoDB

Load 95/5 read/write 50/50 read/write

Workload

Figure 8.3.3.4(b): Replication with different workloads

Figure 8.3.3.4(a) displays the results of the asynchronous replication test of both systems,
each of them running on a single thread. For this test we used Workload C which is a
read-only operation. From the figure we can conclude that both of the Masters perform more
operations than the slaves. The MySQL master was able to process 4388 operations in a
second, while the MongoDB master processed 4473 operations, 85 more than the former.
The slaves processed very few operations due to the size of the dataset thus causing a lag.
The MongoDB slave was able to process 313 operations while the MySQL slave was able to
process 218 operations which was 95 operations less than the former.

Figure 8.3.3.4(b) shows the second test which compares the two systems using workload A
that is 95% reads and 5% updates. From the results we can see that MongoDB has a higher
throughput than MySQL. It processed 18,757 more operations than MySQL which processed
276,126 operations. Moreover, this represents a slight decrease in improvement than was
observed in the load test because the write operations only accounted for 5% of all the
operations run. This result indicates that MongoDB, using its wiredT1iger storage engine
provides better concurrency control than InnoDB does for MySQL.

On the balanced workload, consisting of an equal number of reads and writes, MongoDB
processed 24,985 more operations than MySQL which processed 189,800 operations. This
test had the least number of operations processed on both systems due to an increase in the
number of writes.

58

Chapter 9

Conclusion and Future Work

This chapter summarises the research work and details about possible future work.

9.1 Conclusion

This study benchmarked the performance of relational and NoSQL database systems. The
goal was to understand how each database system performs using the different features that
were tested. Our findings indicate that MongoDB performs better than MySQL on read
operations and on a higher load than MySQL. On the other hand, MySQL performs much
better on writes, but up to a certain load. As the load increases, write and read performance
decreases. MongoDB outperformed MySQL on index performance, application integration
and replication. Although MySQL performed better on the aggregation framework, it was only
up to a certain recordcount. As the data increased, performance decreased.

From this we can conclude that the choice of a database depends on the needs of an
application. It would be important to factor in the advantages and disadvantages of each
system and how each system performs best under certain features that would affect
performance of an application. From this work we can argue that applications that need high
scalability and or have high performance throughput would be deployed on MongoDB while
those that would need integrity and strong consistency of data, would best be deployed on
MySQL. At any one point, a sacrifice would have to be made as we saw earlier on the CAP
theorem. In all, optimization for any system selected would be key to the best performance of
each system.

9.2 Future Work

New features are increasingly being added to database systems. As of the conducting of this
study, the latest release of MongoDB, version 4.0, supports ACID transactions [66]. This
feature would make for a good comparison between the two systems on how each
processes the transactions.

For future tests, adding a new database system would help us increase the scope of this
study. There has been a new wave of database systems known as NewSQL. According to

59

[67] and [68], NewSQL database systems are modern relational systems that aim to provide
the scalability performance of NoSQL systems while still maintaining ACID transactions. It
would be interesting to compare the performance of the three systems with similar or
different metrics.

Storage engines play a key role in how data is stored and how queries are executed. A lot of
the features that come with storage engines were not used in this study as they were far
beyond the scope. As future work, a comparison can be done between the two storage
engines, InnoDB and wiredT1iger, investigating how both indexes implement hash
indexes, and row level and document level locking for MySQL and MongoDB respectively.

60

References

[11 Ming-Li Emily, Hui N. Chua (2018). “SQL & NoSQL Database Comparison: from
Performance Perspective in Supporting Semi-Structured Data”. Future of Information and
Communications Conference (FICC).

[2] O. Runu, Lonela Halcu (2013). “Converting unstructured and semi-structured data into
knowledge”. Roedunet International Conference.

[3] Atzeni, P., Bugiotti, F., Cabibbo, L., and Torlone, R. (2016). “Data modelling in the NoSQL
world”. Computer Standards and Interfaces.

[4] MongoDB White Paper, June 2016. “How a Database Can Make Your Organization
Faster, Beftter, Leaner”.

[5] MongoDB White Paper. “MongoDB Architecture Guide”.
https://www.mongodb.com/mongodb-architecture

[6] Leavitt, Neal (2010). "Will NoSQL Databases Live Up to Their Promise?". IEEE
Computer.

[7]1 Kyero website. Real estate platform. https://www.kyero.com/

[8] St. Laurent, Andrew M. (2008). “Understanding Open Source and Free Software
Licensing”. O'Reilly Media. p. 4.

[9] The Python programming language.

https://www.python.org/

[10] Google Analytics APi.

https://developers.google.com/analytics/

[11] Campaign Monitor APi.
https://www.campaignmonitor.com/api/
[12] Kissmetrics APi

https://developers.kissmetrics.com/reference

[13] "Sun Microsystems Announces Completion of MySQL Acquisition; Paves Way for
Secure, Open Source Platform to, Power the Network Economy"”. Sun Microsystems. 26
February 2008. Retrieved 17 September 2012.

[14] PostgreSQL 9.3.0 Documentation. “What is PostgreSQL?". PostgreSQL Global
Development Group. Retrieved 2013-09-20.
https://www.postgresql.org/docs/current/static/intro-whatis.html

[15] Apache Solr. http://lucene.apache.org/solr/

[16] Trey Grainger, Timothy Potter. Solr in Action. First Edition, 2014.

[17]Chartio Documentation. https://chartio.com/

61

https://www.kyero.com/
https://developers.google.com/analytics/
https://www.campaignmonitor.com/api/
https://developers.kissmetrics.com/reference
http://lucene.apache.org/solr/

[18] Sphinx Documentation. http://www.sphinx-doc.org/en/master/

[19] What is an API. https://en.wikipedia.org/wiki/Application_programming_interface
[20] Scikit-Learn. http://scikit-learn.org/stable/
[21] Nicholas W. “Research Methods: The Basics: 2nd Edition”. 2010

[22] Gustafsson J. “Single case studies vs. multiple case studies: a comparative study”

(Thesis). Halmstad, Sweden: Halmstad University, 2017

[23] Woods NF, Calanzaro M. “Nursing research: theory and practice”. St Louis: Mosby,
1980.

[24] Robert Yin, “Case Study Research: Design and Methods”, 2nd ed. (Thousand Oaks,
Calif.: Sage Publications, 1994).

[25] Jacobsen, D. I. (2002). “Vad hur och varfér: Om metodval i féretagsekonomi och andra
samhdllsvetenskapliga &mnen”. Lund: Studentlitteratur.

[26] Merriam, S. B. (2009). “Qualitative research: A guide to design and implementation”.
San

Francisco, California: Jossey-Bass.

[27] Damodaran D, et al. 2016. “Performance Evaluation of Mysql And MongoDB”.
Databases International Journal on Cybernetics & Informatics (IJCI) Vol. 5, No. 2.

[28] Cooper, B. F., Silberstein, A., Tam, E., Ramakrishnan, R., and Sears, R. “Benchmarking
Cloud Serving Systems with YCSB”. In Proceedings of the 1st ACM Symposium on Cloud
Computing, SoCC 2010, Indianapolis, Indiana, USA, June 10-11, 2010 (2010), pp. 143— 154.
[29] DB Engines. https://db-engines.com/en/ranking

[30] Pymongo Documentation. https://api.mongodb.com/python/current/

[31] Pymysqgl Documentation. https://pymysal.readthedocs.io/en/latest/

[32] Database. https://searchsqlserver.techtarget.com/definition/database

[33] Haerder, T.; Reuter, A. (1983). "Principles of transaction-oriented database recovery".
ACM Computing Surveys. 15 (4): 287. https://doi.org/10.1145%2F289.291
[34] Relational model. https://karthidb.wordpress.com/

[35] "Structured Query Language (SQL)". Msdn.microsoft.com.
[36] Leavitt, Neal (2010). "Will NoSQL Databases Live Up to Their Promise?"(PDF). IEEE

Computer.

[37] Fowler, Martin. "Nosql Definition". https://martinfowler.com/bliki/NosglDefinition.html
[38] Lith, Adam; Mattson, Jakob (2010). "Investigating storage solutions for large data: A
comparison of well performing and scalable data storage solutions for real time extraction
and batch insertion of data" (PDF). Goéteborg: Department of Computer Science and

Engineering, Chalmers University of Technology. p. 70.

62

http://www.sphinx-doc.org/en/master/
https://en.wikipedia.org/wiki/Application_programming_interface
http://scikit-learn.org/stable/
https://db-engines.com/en/ranking
https://api.mongodb.com/python/current/
https://pymysql.readthedocs.io/en/latest/
https://searchsqlserver.techtarget.com/definition/database
https://doi.org/10.1145%2F289.291
https://karthidb.wordpress.com/
http://msdn.microsoft.com/

[39] “NoSQL 2009". Blog.sym-link.com. 12 May 2009.
[40] "RDBMS dominate the database market, but NoSQL systems are catching up".

DB-Engines.com. 21 Nov 2013. http://db-engines.com/en/blog_post/23

[41] Leavitt, Neal (2010). "Will NoSQL Databases Live Up to Their Promise?". |IEEE
Computer Society.

[42] S. Edlich. “Nosql databases”. http://nosqgl-database.org/, July 2012.

[43] Venkat Gudivada, Dhana Rao and Vijay Raghavan: "NoSQL Systems for Big Data
Management’, June 2014, Conference: 2014 IEEE World Congress on Services, At

Anchorage, Alaska.
[44] Riak, a key-value database. URL: http://basho.com/products/#riak
[45] Redis, official website. URL: https://redis.io

[46] Official MongoDB website, URL.: https://www.mongodb.com
[47] CouchDB, official website URL.: http://couchdb.apache.org

[48] Apache Cassandra, URL: http://cassandra.apache.org

[49] Apache HBase, URL: https://hbase.apache.org

[50] What are graphs?: https://xlinux.nist.gov/dads/HTML/graph.html
[51] Official website of Neo4j, URL: https://neo4j.com

[52] Apache Giraph official website, URL: http://giraph.apache.org

[53] Neo4j.com. https://neo4j.com/developer/graph-database/

[54]Haerder, T.; Reuter, A. (1983). "Principles of transaction-oriented database recovery".
ACM Computing Surveys. 15 (4): 287. https://doi.org/10.1145%2F289.291
[55] Gray, Jim (September 1981). "The Transaction Concept: Virtues and Limitations".

Proceedings of the 7th International Conference on Very Large Databases.
[56] Microsoft Documentation. “What is a transaction”.

https://docs.microsoft.com/en-us/sql/t-sal/language-elements/transactions-transact-sal ?view

=sql-server-2017

[57]" The question of database transaction processing: an acid, base, nosql primer’. Charles
Roe. 2013, Dataversity.

[58] Pritchett, D. BASE: “An ACID Alternative”. ACM Queue 6, 3 (2008), 48-55.

[59] Acid vs. Base.

http://www.dataversity.net/acid-vs-base-the-shifting-ph-of-database-transaction-processing/

[60] Brewer, E. A. “Towards Robust Distributed Systems” (abstract). In Proceedings of the
Nineteenth Annual ACM Symposium on Principles of Distributed Computing, July 16-19,
2000, Portland, Oregon, USA. (2000), p. 7.

63

http://blog.sym-link.com/
http://db-engines.com/en/blog_post/23
http://nosql-database.org/
http://basho.com/products/#riak
http://basho.com/products/#riak
https://redis.io/
https://redis.io/
https://www.mongodb.com/
https://www.mongodb.com/
http://couchdb.apache.org/
http://couchdb.apache.org/
http://cassandra.apache.org/
http://cassandra.apache.org/
https://hbase.apache.org/
https://hbase.apache.org/
https://xlinux.nist.gov/dads/HTML/graph.html
https://neo4j.com/
https://neo4j.com/
http://giraph.apache.org/
http://giraph.apache.org/
https://neo4j.com/developer/graph-database/
https://doi.org/10.1145%2F289.291
https://docs.microsoft.com/en-us/sql/t-sql/language-elements/transactions-transact-sql?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/t-sql/language-elements/transactions-transact-sql?view=sql-server-2017
http://www.dataversity.net/acid-vs-base-the-shifting-ph-of-database-transaction-processing/

[61] Seth Gilbert and Nancy Lynch, "Brewer's conjecture and the feasibility of consistent,
available, partition-tolerant web services", ACM SIGACT News, Volume 33 Issue 2 (2002),
pg. 51-59

[62] "Brewer's CAP Theorem", julianbrowne.com, Retrieved 02-Mar-2010

[63] "Brewers CAP theorem on distributed systems", royans.net
[64] The CAP theorem.

https://www.researchgate.net/publication/221462089 Social-data storage-systems/figures?|

o=1
[65] Davis Kerby. "Why MongoDB is the way to go". DZone.

https://dzone.com/articles/why-mongodb-is-worth-choosing-find-reasons

[66] "Turning MongoDB Replica Set to a Sharded Cluster". Severalnines.
https://severalnines.com/blog/turning-mongodb-replica-set-sharded-cluster
[67]"GridFS & MongoDB: Pros & Cons". Compose.
https://www.compose.com/articles/gridfs-and-mongodb-pros-and-cons/
[68] MySQL JOINS. https://dev.mysqgl.com/doc/refman/8.0/en/join.html

[69] MongoDB Aggregation Pipeline.

https://docs.mongodb.com/manual/aggregation/#aggregation-pipeline

[70] MongoDB Map-Reduce. https://docs.mongodb.com/manual/core/map-reduce/

[71] MongoDB Replication Documentation. https://docs.mongodb.com/manual/replication/

[72] MongoDB Transactions. https://www.mongodb.com/transactions

[73] Aslett, Matthew (2011). "How Will The Database Incumbents Respond To NoSQL And
NewSQL?" (PDF). 451 Group (published 2011-04-04). Retrieved 2012-07-06

[74] Pavlo, Andrew; et al. (2016). "What's Really New with NewSQL?" (PDF). SIGMOD
Record.

[75] Texas State Auditor's Office. “Data Analysis, Methodology Manual, rev. 5/95”. Texas
State.

[76] Stake, R. (1995). “The art of case research”. Thousand Oaks, CA:Sage Publications

64

http://julianbrowne.com/
http://royans.net/
https://www.researchgate.net/publication/221462089_Social-data_storage-systems/figures?lo=1
https://www.researchgate.net/publication/221462089_Social-data_storage-systems/figures?lo=1
https://dzone.com/articles/why-mongodb-is-worth-choosing-find-reasons
https://severalnines.com/blog/turning-mongodb-replica-set-sharded-cluster
https://www.compose.com/articles/gridfs-and-mongodb-pros-and-cons/
https://dev.mysql.com/doc/refman/8.0/en/join.html
https://docs.mongodb.com/manual/aggregation/#aggregation-pipeline
https://docs.mongodb.com/manual/core/map-reduce/
https://docs.mongodb.com/manual/replication/
https://www.mongodb.com/transactions

Annex

Benchmarking Results

Index Performance
Workload C - 1 thread - 100% Read

Recordcount No. of Index | MySQL MongoDB
400,000 1 1.733 1.54
900,000 2 3.491 3.237
1,400,000 3 5.37 4.87
2,000,000 4 7.68 6.83

Workload C - 2 threads - 100% Read

RecordCount | MySQL MongoDB
400,000 1.445 1.34
900,000 3.01 2.87
1,400,000 4.36 4.1
2,000,000 6.106 5.81

Workload D - 2 threads - Read-Update-Insert

No. of Indexes | MySQL MongoDB
1 0.83 0.94
2 0.97 1.02
3 1.47 1.35
4 214 2.07

Aggregation Framework
Workload C - 100 % reads

Aggregation Function

MySQL (MongoDB

65

JOIN / $lookup 8.65 7.84
GROUP BY / $groupby [8.22 [8.36
SELECT / $project 7.98 8.23
HAVING / $match 8.42 8.47

Workload B - read / write (95:5)

Aggregation Function

MySQL [MongoDB

JOIN / $lookup 8.23 7.79
GROUP BY / $groupby 7.08 7.46
SELECT / $project 7.33 7.8

HAVING / $match 8.19 8.02

Application Integration
Workload A - read/update (50:50)

Recordcount MySQL MongoDB
500000 1.89 1.963
1000000 3.721 3.517
1500000 5.62 5.301
2000000 7.92 7.271

Workload F - read/read-modify-update (50:50)

Recordcount MySQL MongoDB

500000 2.47 2.69

1000000 3.981 4.13

1500000 5.98 5.677

2000000 8.37 7.930

Replication

Asynchronous single-threaded Replication (Figure 8.3.3.4(a))

MySQL(Master) | MongoDB(Master) MySQL(Slave) MongoDB(Slave)
4388 4473 283 313

66

Replication | Load, Workload A, Workload B (Figure 8.3.3.4(b))

Workload MySQL MongoDB
Load 189,800 212,345
95/5 read/write 276,126 294,883
50/50 read/write 142,347 167,332
Configuration

MongoDB.

To deploy MongoDB replication:

e Create the data directories for each replica set member using the following
command:

mkdir -p /PATH/TO/MONGODB/test-0 /PATH/TO/MONGODB/test-1
/PATH/TO/MONGODB/test-2

e Start the mongod instances on different shell windows of a terminal window with
the following command:

mongod —--replSet test —--port 27017 --bind_ip localhost,
--dbpath /srv/mongodb/rs0-0 --smallfiles --oplogSize 128

mongod —--replSet test --port 27018 --bind_ip localhost,
--dbpath /srv/mongodb/rs0-0 --smallfiles --oplogSize 128

mongod —--replSet test —--port 27019 --bind_ip localhost,
--dbpath /srv/mongodb/rs0-0 --smallfiles --oplogSize 128

These commands starts each instance of the replica set called test. The ——smallfiles
and --oplogSize settings are used to reduce the disk space consumed by each mongod
instance.

e Connect to one of your instances through the mongo shell, specifying the port:
mongo ——-port 27017

e Use rs.initiate() toinitiate the replica set. This can be done on the mongo shell
by creating a configuration object as follows:

testConf = { _id: "rs0", members: [{ _id: 0, host:
"localhost:27017" }, { _id: 1, host: "localhost:27018" 1},
{ _id: 2, host: "localhost:27019" }] }

67

rs.initiate(testConf)
e To display the configuration type:

rs.display()

MySQL
To set up MySQL replication:

e Edit the mysql configuration file (Mac OS X):

sudo nano /usr/local/mysql/my.cnf
Bind-address = 127.0.0.1

e Edit the file as follows:

bind-address = 127.0.0.1

server-id =1

log_bin = Jusr/local/mysql/mysql-bin.log
binlog_do_db = test

Save the file and exit.
e Restart MySQL and open up the MySQL shell (Mac OS X):
sudo /usr/local/mysql/support-files/mysql.server restart

mysql -u root -p
e Grant privileges to slave and lock database to prevent further changes:

GRANT REPLICATION SLAVE ON *.x TO 'slave_user'@'%' IDENTIFIED BY
'password’;

FLUSH PRIVILEGES;

FLUSH TABLES WITH READ LOCK;

e Export the recently created database and unlock it:

mysqldump -u root -p —--opt test > test.sql
UNLOCK TABLES; QUIT;

e Configure the slave.

CREATE DATABASE test;
EXIT;
mysql -u root -p test < /path/to/test.sql

68

Edit the configuration file for the slave as the master but add the following:

sudo nano /usr/local/my.cnf

server-id =2

relay-log /usr/local/mysql/mysql-relay-bin. log
log_bin = Jusr/local/mysql/mysql-bin.log
Binlog_do_db = test

Restart MySQL and activate the slave:

sudo /usr/local/mysql/support-files/mysql.server restart

mysql -u root -p

CHANGE MASTER TO MASTER_HOST='root', MASTER_USER='slave_user',
MASTER_PASSWORD="password', MASTER_LOG_FILE="'mysql-bin.000001"',
MASTER_LOG_P0OS=107;

START SLAVE;

YCSB

To configure YCSB on your machine you need to have Java installed.

To run a workload in MongoDB:

Configure the database

java -cp
PATH/TO/YCSB/mongodb/src/main/java/com/yahoo/ycsb/db/MongoDbC1li
ent.java

Configure the properties on a file with .dat extension
Load and then run the workload with required properties

$./bin/ycsb load mongodb -s -P workloads/workloada -P large.dat -s >
load.dat

$./bin/ycsb run mongodb -s -P workloads/workloada -P large.dat -s >
load.dat

To run a workload in MySQL.:

69

Configure the database

java -cp
PATH/TO/YCSB/jdbc-binding/lib/jdbc-binding-0.4.0.jar:mysqgl-conn
ector-java-5.1.37-bin.jar com.yahoo.ycsb.db.JdbcDBCreateTable
-P db.properties -n test

e Configure the connection properties on a file. This will include the connection string,
database username and password and all other properties you might want for the
database.

Add the JDBC driver to your systems path.
Load and then run the workload

bin/ycsb load jdbc -P workloads/workloada -P
db.properties -cp mysqgl-connector-java.jar

bin/ycsb run jdbc -P workloads/workloada -P db.properties
-cp mysql-connector-java.jar

Pymysql Connection String

Must be initialized with shebang.

#!/usr/bin/env python3
import pymysql

#connect to db
conn = pymysql.connect(host="'1localhost', port=3306, user='root',
passwd=""', db="'test', cursorclass=pymysql.cursors.DictCursor)

try:
with conn.cursor as cursor:
#query
Sql = “query”
cursor.execute(sql)
conn.commit()

finally:

conn.close()

Pymongo Connection String

Must be initialized with shebang.
#!/usr/bin/env python3

import pymongo

from pymongo import MongoClient

client = MongoClient(‘mongodb://localhost:27017/)

connect to database

70

db = client.test

connect to collection
collection = db[‘collection’]

71

