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The role of cognitive factors in triggering the stress response is well
established in humans and mammals (aka cognitive appraisal theory) but
very seldom studied in other vertebrate taxa. Predictability is a key factor
of the cognitive evaluation of stimuli. In this study, we tested the effects of
stressor predictability on behavioral, physiological and neuromolecular
responses in the European sea bass (Dicentrarchus labrax). Groups of four
fish were exposed to a predictable (signalled) or unpredictable (unsignalled)
stressor. Stressor predictability elicited a lower behavioural response and
reduced cortisol levels. Using the expression of immediate early genes
(c-fos, egr-1, bdnf and npas4) as markers of neuronal activity, we monitored
the activity of three sea bass brain regions known to be implicated in stressor
appraisal: the dorsomedian telencephalon, Dm (putative homologue of the
pallial amygdala); and the dorsal (Dld) and ventral (Dlv) subareas of the
dorsolateral telencephalon (putative homologue of the hippocampus). The
activity of both the Dm and Dlv significantly responded to stressor predict-
ability, suggesting an evolutionarily conserved role of these two brain
regions in information processing related to stressor appraisal. These results
indicate that stressor predictability plays a key role in the activation of the
stress response in a teleost fish, hence highlighting the role of cognitive
processes in fish stress.
1. Introduction
The literature on stress biology has long established the role of cognitive factors
on triggering the stress response, defined as a response of the organism to
regain homeostasis when exposed to a homeostasis threatening stimulus or
event (aka stressor) [1]. Since the 1970s, it became clear that the cognitive
appraisal of stimuli is a key mechanism in the activation of the stress response
[2,3]. According to this perspective, it is not the intrinsic physical characteristics
of the stimulus that trigger a response but rather the evaluation of what that
stimulus or event means to that organism at that moment in time, which
depends on stored information in memory about relations between stimuli
(i.e. stimulus–stimulus learning or classical conditioning) and about relations
between responses and stimuli (i.e. stimulus-response learning or instrumental
conditioning) [4]. Therefore, the same stimulus may elicit or not a stress
response depending on how it is appraised by the individual. An ‘alarm’
response would occur when expectancies, based on perceived contingencies
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between stimuli (i.e. stimulus expectancies) and between
stimulus and response (i.e. response expectancies), are not
met (i.e. when there is a discrepancy between expected situ-
ation and perceived situation). Hence, stimulus predictability,
which refers to high levels of perceived probability of occur-
rence of the expected event, and stimulus controllability,
which refers to high levels of perceived probability for
response outcomes, play a major role on the appraisal of
stimuli as aversive or not [5]. Interestingly, the role of cogni-
tive variables in the activation of a stress response was first
investigated in laboratory animals, in particular in rodents
(e.g. [6]), and then extended to humans (e.g. [7]).

In recent decades, the role of cognitive variables in the
activation of stress responses as well as in triggering
responses to appetitive events has been framed under a
theory of cognitive appraisal. According to this theory, indi-
viduals continuously monitor the environment using a set
of stimulus evaluation checks (e.g. intrinsic valence, novelty,
prediction error and capacity for control) in order to evaluate
the valence (positive/ negative) and salience (high/ low) of
detected stimuli (primary appraisal), and also assess the
available organismal resources to deal with them (secondary
appraisal) [8–10]. While the appraisal concept has already
been applied to the study of stress and emotional behaviour
in animals, mainly in mammals (see [8] for a recent review),
in fish, the whole concept of psychological stress has been
rarely addressed [5,11–16]. However, empirical evidence for
the occurrence of each of the stimulus evaluation checks
involved in primary appraisal has been described in fish.
The appraisal of the intrinsic valence of stimuli can be
demonstrated by learned approach/avoidance behaviours,
and these have been described in different fish species
[17,18]. The use of the three cues that signal stimulus novelty
have also been documented in fish: the effects of predictabil-
ity in modulating the behavioural and physiological response
to both aversive and appetitive stimuli have been described
in the Mozambique tilapia (Oreochromis mossambicus) [12];
familiarity with conspecifics has been shown to modulate
both exploratory behaviour and the response to a territorial
intrusion, also in tilapia [19,20]; and the effect of controllabil-
ity can be illustrated by rainbow trout (Oncorhynchus mykiss)
that have the chance to actively avoid being defeated by a
larger conspecific in a conditioning paradigm exhibiting a
lower cortisol response to the conditioned stimulus, than
those that cannot escape social defeat [21]. Finally, prediction
error has recently been documented both in rainbow trout
and in Atlantic salmon (Salmo salar) using a reward omission
paradigm [15,16,22]. However, this evidence has so far not
been explicitly presented as supporting the occurrence of cog-
nitive appraisal in fish and the proximate (i.e. neural/
physiological) bases of these cognitive appraisal processes
have not been investigated yet in fish. Given the expected
universality of stimulus evaluation checks across animals, it
is now timely to characterize their occurrence across species
and to implement comparative studies on the underlying
neural mechanisms. Teleost fish offer an excellent opportu-
nity for such comparative approach, given the divergent
evolutionary path between ray-finned fish and tetrapods
[23], and the homologies that have already been established
between teleost and mammalian brain regions, that include
some of the areas known to be involved in cognitive appraisal
in mammals (i.e. amygdala and hippocampus [24–26]). Thus,
the study of cognitive appraisal in fish will allow testing if the
same cognitive appraisal processes are present in evolutiona-
rily divergent vertebrate taxa and if they share homologue
neural mechanisms.

In this study, we tested the effect of predictability of a
stressor on the behavioural and physiological stress response
of European sea bass (Dicentrarchus labrax). Sea bass was used
as a model in this study given its wide use in European aqua-
culture, which makes the results presented here not only of
importance for the basic biology of fish stress but also to
have translational value for the improvement of welfare of
farmed fish. We have also characterized the pattern of neur-
onal activation (using the expression of immediate early
genes (IEGs) as markers of neuronal activation) of two
brain regions that are homologous to mammalian brain
regions known to be involved in cognitive appraisal in mam-
mals, namely the dorsomedial telencephalon (Dm, putative
teleost homologue of the mammalian amygdala) and the dor-
solateral telencephalon (Dl, putative teleost homologue of the
mammalian hippocampus), in order to test if brain regions
involved in cognitive appraisal are evolutionarily conserved.
Given that predictability is a key stimulus evaluation check-in
cognitive appraisal theory, its occurrence in fish will also be
proof for the occurrence of cognitive appraisal in fish.
2. Material and methods
(a) Experimental fish and maintenance
A batch of sea bass with an initial body weight of 0.5 ± 0.3 g
(mean± s.d.) hatched at the experimental research station of
IFREMER in Palavas-les-Flots (France) were transported to
Ramalhete Research Station (CCMAR, Faro, Portugal). Fish
were reared in 500 l tanks in an open water circuit with constant
aeration through air stones (temperature of 21 ± 5°C, salinity of
35 ± 1‰, dissolved oxygen above 75% and a 12 L : 12D photo-
period) during ten months before the experiments. Fish were
initially fed at 10% of body weight with commercial diets (Aqua-
gold, Aquasoja, Sorgal SA, Portugal), and later food amount was
readjusted until 3% of body weight in accordance with their
growth. A total of 72 fish with a body weight of 44.58 ± 6.36 g
(mean± s.d.) at the start of the experiments were used.

(b) Experimental design and conditioning procedures
The effects of predictability on the fish stress response were
tested in groups of four individuals randomly chosen from the
reared tank. The experiment occurred between May and June
of 2013 (T(°C) = 21.89 ± 1.77, DO(%) = 86± 6 and pH=8.13 ±
0.15). Eighteen experimental glass aquaria (70 × 40 × 30 cm)
were used under the same housing conditions as described
above, except for the fact that no airflow was supplied since
the water flow rate of 2.5 l min−1 was sufficient to guarantee
oxygen saturation. A net, with the same dimension as the lateral
wall, was settled in one side of each aquarium at the beginning
of the experiment to be used as a confinement net. All aquaria
walls were covered with opaque plastic to avert visual
contact between the animals and the experimenters. The fish
were fed at 3% Bw−1 daily, divided by two meals at 08.00 h
and 18.00 h. Water quality was analysed for nitrites (less than
0.1 mg l−1) and ammonia (less than 0.1 mg l−1) every three
days. Temperature, oxygen saturation and pH were daily
checked before the cleaning routines performed 1 h after the
second meal.

One month before the experiments, 72 fish were tagged
under anaesthesia with a 1 cm floy tag (Floy Tag Manufacturing,
Seattle, USA) and with a multicolour pearl attached behind the
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Figure 1. Overview of the protocol and experimental conditions used to test
predictability as an appraisal modulator of aversive events in sea bass, Dicen-
trarchus labrax. (a) Schematic of the experimental tank. 1. Visual cue CS,
settled at the time of conditioning. 2. Confinement area, correspondingly
to 15% of the aquarium volume. 3. Confinement net US, settled at the
beginning of the trial. (b) Description of the procedures used to test predict-
ability: CTR, control; PRD, predictability; UnPRD, unpredictability. (Online
version in colour.)
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dorsal fin. Three experimental conditions were tested: control
(CTR), predictability (PRD) and unpredictability (UnPRD). The
experiment lasted 14 days, in which six groups of 4 fish each
were used in each experimental condition (control conditions,
CTR; predictable conditions, PRD; unpredictable conditions,
UnPRD; n=24 fish per treatment). After the acclimation period
of 12 days, the experimental period occurred in the following 2
days and involved four training sessions in the first day (at
10.00 h, 12.00 h, 14.00 h and 16.00 h), and three training sessions
(at 10.00 h, 12.00 h and 14.00 h) and one test session (at 16.00 h)
on the second day (see figure 1 for an overview of experimental
procedures). To create the predictable and unpredictable treat-
ments, two different training procedures were used. In the
predictable treatment, a delay conditioning protocol was used
for fish to learn to associate a visual cue (CS), which consisted
of a yellow and black stripped card with the same size as the lat-
eral wall of the aquaria (40 × 30 cm), with a stressor (US:
confinement promoted by a rigid net of the same size). The net
was settled on the opposite side from the CS, and the US
obtained by moving the net towards the CS until the fish were
restrained in 15% of the aquarium volume. During the pro-
cedure, the CS remained in view for 1 min before the
occurrence of US, and overlapped 1 min with it (see figure 1
for the schematic of the experimental tank and conditioning pro-
cedures)’. In the unpredictable treatment, fish were presented
with the same visual sign but temporally dissociated from the
stressor (i.e. 30 min before or after in a random way). In the con-
trol groups, fish were only subjected to the CS without US
presentation. The number of conditioning trials used was
based on preliminary tests that indicated that 5–6 trials were
enough for aversive conditioning in this species. In the test ses-
sion, fish from both experimental treatments (PRD and
UnPRD) were exposed to the visual cue together with the stres-
sor, and fish from control were subjected only to the CS to
discard the effect of the CS on fish responses during the test
session.

(c) Behavioural observations
Fish behaviour was video recorded right before the first training
session and during the test session using video cameras
(TVCCD-623-COL, Monacor, Denmark) and webcams (HD
C310 Logitech) positioned 1 m above the tank. Videos were sub-
sequently analysed using multi-event recorder software
(Observer XT® from Noldus, Netherlands). The response to the
visual cue was assessed using the following behavioural
measurements: (1) time spent in freezing behaviour (i.e. time
fish spent immobile, with or without fin movements, either on
the bottom or in the water column); (2) escape behaviour,
that is increase of fish swimming speed and movements
towards the bottom of the tanks or towards the tank walls, or
moving the body against the tank walls); (3) shoal cohesion,
quantified through a proximity metric, defined as the distance
variation between individuals within the shoal structure, and
measured in an arbitrary scale (1 = low, mean distance greater
than 15 cm apart; 2 =medium, 5 cm<mean distance > 15 cm
apart; 3 = high, mean distance < 5 cm apart); and (4) exploratory
behaviour, measured according to Galhardo et al. [12], following
the formula:

A
tmaximum

,

where A is the arithmetic mean of the time fish spent in
each one of three previously delimited areas of the tank (confine-
ment net area; centre of the tank; and visual cue area),
and tmaximum is the maximum time found for any of the
areas tested. When this ratio is close to 1 it indicates high explora-
tory behaviour, and when it is close to 0 it indicates low
exploratory behaviour.

(d) Blood sampling and plasma cortisol analysis
For each treatment, 30 min after the test session, fish were rapidly
caught at the same time through a soft net with the same width
as the experimental tank to reduce net chasing bias; they were
euthanized with an overdose of 2-phenoxyethanol (1‰, Sigma-
Aldrich) and blood was immediately collected from the caudal
vein and centrifuged at RT for 25 min at 2000g. Plasma was
stored at −80°C until further processing. Plasma cortisol levels
were measured using a commercial ELISA kit (RE52061, IBL
Hamburg, Germany), with a sensitivity of 2.5 ng ml−1 and
intra- and inter-assay coefficients of variation (CV) were 2.9%
and 3.5%, respectively.

(e) Brain microdissection and gene expression analysis
Eight individuals from each experimental treatment were ran-
domly selected for the assessment of IEGs mRNA expression
in brain regions of interest (see below). Fish were sacrificed
and the skull with the brain inside was immediately imbedded
in Tissue-Tek and kept at −80°C until further processing. Brain
telencephalon was sliced through 150 µm thick cryostat (Leica,
CM 3050S) coronal sections, from which the medial part of the
dorsal telencephalon (Dm), the dorsal division of the lateral tele-
ncephalon (Dld) and the ventral division of the lateral
telencephalon (Dlv) (see electronic supplementary material,
figure S1) were microdissected with modified 25 G steel needles
using a micropunching technique previously established in the
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laboratory [27]. These regions of interest in the brain were ident-
ified and classified following the available brain atlas for sea bass
[28]. Total tissue was collected directly into lysis buffer from
Qiagen Lipid Tissue Mini Kit (no. 74804; Valencia, CA) and
total RNA extracted from the samples, with some adjustments
to the manufacturer’s instructions (see electronic supplementary
material for detailed procedures). RNA from each sample was
then reverse transcribed to cDNA (BioRad iScript cDNA Syn-
thesis Kit; Valencia, CA) accordingly to manufacturer’s
instructions and used as a template for quantitative polymerase
chain reactions (qPCR) of egr-1, c-fos, bdnf and npas4, using the
geometric mean of the expression of two previously established
housekeeping genes, eef1a and 18S (see electronic supplementary
material, table S1 for primer sequences and for qPCR conditions).
The abundance of the internal control genes was stable across
experimental treatments. All reactions were run in duplicate
and controls without DNA templates were run to verify the
absence of cDNA contamination. Fluorescence cycle thresholds
(CTs) were automatically measured and relative expression of
the target genes were calculated using the 2−ΔCt method [29]. Pri-
mers efficiency was calculated for each qRT-PCR reaction using
Light Cycler 480 II inner software.
192922
( f ) Statistical analysis
Parametric assumptions of normality and homoscedasticity of
the data were confirmed by analysis of the residuals. Homogen-
eity of variances was checked by Levene’s test. Log, log (X+ 1) or
arcsine transformations were used to match parametric assump-
tions when required (time in freezing (arc-sin transformed),
escape behaviour and exploratory behaviour (log(X+ 1) trans-
formed), Shoal cohesion, plasma cortisol concentration and
IEGs mRNA expression (log-transformed)). LMM analyses
were used to assess the effect of predictability (i.e. PRD versus
CTR; PRD versus UnPRD; CTR versus UnPRD) on the behav-
ioural variables before any stimulation. The same analysis was
performed for a test session on the behavioural variables, on cor-
tisol levels and on IEGs mRNA expression (egr-1, c-fos, bdnf and
npas4) in each brain region (Dm, Dld and Dlv). Given that we
have used more than one individual from the same experimental
tank in each treatment, pseudo replication concerns could be
raised. We accounted for sampling dependence by adding a
random effect for the ‘tank’ factor in each LMM. In general, we
did not find an effect of the ‘tank’ variable on the measured
responses. All LMM were estimated using the restricted maxi-
mum-likelihood method. A priori planned comparisons with
p-values adjusted following the Benjamini and Hochberg’s
method were used to test for specific differences between exper-
imental conditions, namely: PRD versus CTR; PRD versus
UnPRD; CTR versus UnPRD. Pearson test was used to assess
correlations among variables. Descriptive statistics are expressed
as mean± s.e.m. The LMM and planned comparisons were per-
formed using R (R Development Core Team) and GraphPad
Prism v. 6.0 for windows was used for chart building and figures
layout.
3. Results
(a) Effects of stressor predictability on fish behaviour
Analyses of fish behaviour during the 2 min preceding
the first training session (i.e. before any stimulation or
manipulation of the fish) showed no significant differences
between the experimental treatments PRD, UnPRD and
CTR (time freezing: F(2,54) = 0.36, p= 0.69; escape events:
F(2,54) = 0.44, p=0.64; exploratory behaviour: F(2,54) = 0.31, p=
0.73). In the same way, shoal cohesion before training also
did not show differences between experimental conditions
(F(2,54) = 0.01, p= 0.98).

The behaviour displayed by fish during exposure to the
visual cue in the test session was markedly different between
experimental treatments (figure 2; electronic supplementary
material, table S2). Fish in the predictable treatment spent
less time in freezing, and showed less escape attempts and
more exploratory behaviour than fish in the unpredictable
treatment (figure 2a–c; electronic supplementary material,
table S2). Moreover, in this experiment, time in freezing
and escape attempts were positively correlated (Rp = 0.721,
n=72, p<0.001) and exploratory behaviour and time in freez-
ing were negatively correlated (Rp =−0.299, n=48, p= 0.011).
Finally, shoal cohesion was higher in the unpredictable treat-
ment over predictable and control conditions (figure 2d;
electronic supplementary material, table S2). Moreover,
there was a negative correlation between shoal cohesion
and exploratory behaviour (Rp =−0.427, n= 72, p<0.001).

(b) Effects of stressor predictability on fish physiology
Fish exposed to unpredictable stressors had higher cortisol
levels than fish exposed to predictable stressors and to the
levels found for the control group (electronic supplementary
material, table S2; figure 3). Cortisol was positively correlated
with time in freezing, shoal cohesion and frequency of escape
events (Rp = 0.355, n=68, p=0.003; Rp = 0.371, n=68, p=0.002
and Rp = 0.327, n=68, p=0.006, respectively), whereas a
negative correlation was found with exploratory behaviour
(Rp =−0.656, n= 68, p=0.001).

(c) Effects of stressor predictability on brain activation
Stressor predictability induced significant changes in the
expression levels of IEGs, with an upregulation of egr-1 at
Dm associated with stressor unpredictability and a decrease
of npas4 at Dlv associated with stressor predictability
(figure 4). Moreover, both predictable and unpredictable
stress-induced an upregulation of egr-1 in Dld and a down-
regulation of c-fos in Dlv (figure 4). Bdnf expression did
not respond to any of the stress treatments (electronic
supplementary material, table S2).

(d) Correlations between predictability-driven
behavioural, physiological and brain activation
measures

A positive correlation was found between time in freezing
and escape behaviour (Rp = 0.853, n=24, p<0.001), and a
negative correlation was found between exploratory behav-
iour and both shoal cohesion (Rp =−0.593, n= 24, p= 0.002)
and cortisol (Rp =−0.581, n=24, p=0.003). Regarding neur-
onal plasticity, a negative correlation between cortisol and
both c-fos and bdnf in the Dlv was also found (Rp =−0.487,
n=20, p= 0.029; Rp =−0.473, n=22, p= 0.026, respectively).
4. Discussion
In this study, we have shown that stressor predictability
modulates the stress response measured at the behavioural,
physiological and neural levels. Fish exposed to the
unpredictable stressor showed higher freezing and more
escape behaviours, higher shoal cohesion, less exploratory
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behaviour, higher physiological reactivity and more acti-
vation of the Dm as indicated by the expression of egr1.
Therefore, an unpredictable stressor seems to trigger a
higher stress response both in terms of the activation of the
hypothalamic–pituitary–interrenal axis (HPI) and of the acti-
vation of a brain region putatively involved in the appraisal
of the stressor, such as the Dm (fish homologue of the tetra-
pod pallial amygdala). Thus, predictability seems to reduce
the behavioural response to stress.
The effects of stressor predictability have been extensively
studied both in humans and in animals, and consistently the
results have shown that prediction reduces the stress effects
of aversive experiences [30,31]. For example, in the rat,
which was the original model in which stressor predictability
has been studied, it reduces the behavioural responses to
stress, as well as detrimental consequences of stress such as
pain reactivity, immunosuppression, gastric ulceration and
colonic motility (e.g. [6,32–36]). Similar results have been
found subsequently in other mammalian species (e.g. sheep
[37]; dogs [38]; horses [39]; pigs [40]). However, fewer studies
have addressed such effects in non-mammalian vertebrates
(e.g. birds [41]), and among fish, the few studies available
have produced contrasting results. While in this study, in con-
formity with previous studies in Mozambique tilapia,
Gilthead sea bream or in rainbow trout (e.g. [5,12,16]), stres-
sor predictability buffers the stress response, in Atlantic
salmon no effect has been found (e.g. [13]). Given the fact
that the two contrasting results occur within the same
family (Salmonidae), these differences do not seem reflect a
phylogenetic difference but rather a species-specific effect.
Interestingly, classic studies in this field have shown that
when rats are given a choice between a signalled and an
unsignalled foot shock they prefer the former [42,43], despite
the fact that signalled shocks are perceived as more intense
than unsignalled ones [44]. Thus, it looks like during primary
appraisal different stimulus evaluation checks are not equally
weighted, as in this case, appraisal of stimulus predictability
seems to have overridden the perception of stimulus
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intensity. It is, therefore, important to extend the study
of stressor predictability, and of cognitive appraisal in
general, to other vertebrate species in order to assess
how evolutionarily conserved these stimulus evaluation
mechanisms are.

The amygdala together with the prefrontal cortex and the
mesoaccumbens dopamine system have been implicated in
the cognitive modulation of the stress response in mammals
[45–48]. Given the lack of a neocortex and the absence of mid-
brain dopaminergic neurons (Dahlström-Füxe’s A10 nucleus,
homologous to the mammalian mesolimbic ventral tegmental
area) in fish (e.g. [49–51]), in this study, we have focused on
the putative fish homologues of the mammalian amygdala
(Dm) and hippocampus (Dl).

In mammals, the amygdala plays a central role in
emotional processes since it receives multi-modal sensory
information, as well as inputs from the frontal cortex and
the hippocampus, hence allowing it to assess the valence/sal-
ience of environmental stimuli in relation to expectations and
to information in memory; and projects to the hypothalamus,
striatum, hippocampus and cortex, thus coordinating
physiological, cognitive and behavioural responses [52,53].
Similarly, in fish, the Dm also receives multimodal sensory
inputs (e.g. olfactory, mechanosensory, auditory, electrosen-
sory [54–58]), and has reciprocal connections with the
hypothalamus [56,59–61]. Moreover, experimental lesions of
Dm also impair emotional learning in fish, thus suggesting
also a functional similarity between the teleost Dm and the
mammalian amygdala [62]. Hence, the teleost Dm has been
considered a putative homologue of the mammalian pallial
amygdala [26,63]. The higher activation of Dm found in
this study suggests a conserved role of this area in the cogni-
tive appraisal of stressors. Our results further support the role
of the Dm in emotional processes in fish, in particular, the
processing of aversive stimulus salience.

In mammals, the role of the hippocampus has been linked
to the storage of repeated experiences, in particular, spatial
memory [64]. In teleost fish, Dl has been established as a
homologue of the mammalian hippocampus, with exper-
imental lesions in this area leading deficits in spatial
learning, but not emotional or cue learning [62,65]. However,
more precise analysis of the available evidence, based on
extensive connections with septal nuclei and the preoptic
area, the distribution patterns of histochemical and molecular
markers and the patterns of neurogenesis and interneuron
migration, suggests that this homology should be restricted
to its ventral subdivision (Dlv) [66–68]. On the other hand,
the dorsal subdivision of Dl (Dld) seems to be specialized
in the processing of visual information via a tectal loop and
in the multimodal integration of visual information with
other sensory modalities, given its afferents to other sensory
organs [66,68]. Our results suggest that Dlv is also involved
in stimulus appraisal, possibly due to its role in (reduced)
memory storage of the predictable stimulus. Interestingly,
the expression of npas4, an IEG involved in contextual learn-
ing [69], is significantly decreased in the predictable stressor
treatment, suggesting a role for contextual learning of pre-
dictable stressors. Recently, it has been shown that npas4
plays a critical role in experience-dependent regulation of
structural and functional plasticity at mossy fibres–CA3
synapses in the mammalian hippocampus, during contextual
memory formation [70].

It is interesting to note that both stressors (i.e. either pre-
dictable or unpredictable) elicited in parallel an increase in
the expression of egr-1 in the Dld and a decrease in expression
of c-fos in Dlv. Although both c-fos and egr-1 are transiently
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expressed in response to neuronal activity, hence being
widely used in the field as markers of neuronal activity,
c-fos has usually a more ubiquitous expression with egr-1
being regionally more restricted (e.g. [71]), and each of
these genes plays different roles in neural plasticity. C-fos
is involved in the regulation of transcription, and may
mediate long-term effects of growth factors and membrane-
depolarizing signals on neural activity [72]. Egr-1 belongs
to a family of transcriptional regulators (i.e. egr-1, egr-2 and
egr-3) involved in memory and learning [73]. Evidence from
mutant mice suggests that egr-1 is specifically required for
long-term memory consolidation (e.g. [74–76]). The increase
of activity in Dld (as reported by the upregulation of egr-1)
in response to both stressor treatments can be associated
with sustained higher arousal when repeatedly exposed to
stressors, given the role of this area in the processing and inte-
gration of sensory stimuli. The decrease in activity in the
Dlv (as reported by the downregulation of c-fos) suggests a
reduced hippocampal-like memory storage during stress
exposure, which is apparently further reduced in the predict-
able stressor treatment, as indicated by the reduction in npas4
expression in the Dlv in the predictable stressor treatment
discussed above.

Given the established role of bdnf in stress-induced neural
plasticity [77], the lack of effects of stressor exposure on bdnf
expression may be seen as surprising. However, in rodents,
there are conflicting results regarding the effect of acute
restraint as a stressor on bdnf expression, with some studies
reporting increases and others decreases in expression, with
variation also regarding brain regions [77]. Moreover, in
rodents, the increase in bdnf expression has been detected in
the hippocampus 1 h after stressor exposure [78]. Thus, our
sampling time point may have failed to capture a putative
bdnf response to our stressor treatments.

Finally, it should be mentioned that the loss of predictabil-
ity (predictable followed by unpredictable conditions) has
also been reported to act as a stressor by itself, being even
more detrimental than unpredictable regimes [79,80]. In
fish, a recent work has demonstrated that Atlantic salmon,
increase aggressive behaviour after reward omission [15].
Thus, predictability not only of aversive but also of appetitive
stimuli (e.g. feeding regimes) seem to play a major role in
stress management and should be considered in the handling
of farmed fish as a way to stress reduction (see [79] for a
review on the impact of predictability of animal welfare). In
line with this, controllability, another key component of
stimuli appraisal, is recognized to increase coping ability by
combining the individual’s affective state and the environ-
mental conditions for the appraisal process [81,82]. In fish,
it was demonstrated that an aversive event is less stressful
when the animal exerts control over it, likely reducing nega-
tive emotional responses and permitting adjusting their
coping responses to the environmental conditions [83].

In summary, in this study, we have shown that stressor
predictability modulates the stress response at multiple
levels (behavioural, physiological and neuronal) in sea bass,
which supports the occurrence of cognitive appraisal of
environmental stimuli in fish and highlights the need to
consider psychological stress in the handling of farmed fish.
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