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Abstract  

 

Is the concealed human ovulation a myth? The author of this work tries to answer the above 

question by using a medium-size database of facial images specially created and tagged. 

Analyzing possible facial modifications during the mensal period is a formal tool to assess the 

veracity about the concealed ovulation. In normal view, the human ovulation remains 

concealed. In other words, there is no visible external sign of the mensal period in humans. 

These external signs are very much visible in many animals such as baboons, dogs or elephants. 

Some are visual (baboons) and others are biochemical (dogs). Insects use pheromones and other 

animals can use sounds to inform the partners of their fertility period.  

 

The objective is not just to study the visual female ovulation signs but also to understand 

and explain automatic image processing methods which could be used to extract precise 

landmarks from the facial pictures. This could later be applied to the studies about the fluctuant 

asymmetry. The field of fluctuant asymmetry is a growing field in evolutionary biology but 

cannot be easily developed because of the necessary time to manually extract the landmarks.  

In this work we have tried to see if any perceptible sign is present in human face during the 

ovulation and how we can detect formal changes, if any, in face appearance during the mensal 

period.  

 

We have taken photography from 50 girls for 32 days. Each day we took many photos of 

each girl. At the end we chose a set of 30 photos per girl representing the whole mensal cycle. 

From these photos 600 were chosen to be manually tagged for verification issues. The photos 

were organized in a rating software to allow human raters to watch and choose the two best 

looking pictures for each girl. These results were then checked to highlight the relation between 

chosen photos and ovulation period in the cycle. Results were indicating that in fact there are 

some clues in the face of human which could eventually give a hint about their ovulation.  

 

Later, different automatic landmark detection methods were applied to the pictures to 

highlight possible modifications in the face during the period. Although the precision of the 

tested methods, are far from being perfect, the comparison of these measurements to the state 

of art indexes of beauty shows a slight modification of the face towards a prettier face during 

the ovulation.  



 

IV 

 

The automatic methods tested were Active Appearance Model (AAM), the neural deep 

learning and the regression trees. It was observed that for this kind of applications the best 

method was the regression trees.  

 

Future work has to be conducted to firmly confirm these data, number of human raters 

should be augmented, and a proper learning data base should be developed to allow a learning 

process specific to this problematic. We also think that low level image processing will be 

necessary to achieve the final precision which could reveal more details of possible changes in 

human faces.  

  

Keywords:  Image processing, Facial landmark extraction, Learning based methods, 

Human ovulation, Fluctuant asymmetry. 
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Resumo  

 

A ovulação no ser humano é, em geral, considerada “oculta”, ou seja, sem sinais exteriores. 

Mas a ovulação ou o período mensal é uma mudança hormonal extremamente importante que 

se repete em cada ciclo. Acreditar que esta mudança hormonal não tem nenhum sinal visível 

parece simplista. Estes sinais externos são muito visíveis em animais, como babuínos, cães ou 

elefantes. Alguns são visuais (babuínos) e outros são bioquímicos (cães). Insetos usam 

feromonas e outros animais podem usar sons para informar os parceiros do seu período de 

fertilidade. O ser humano tem vindo a esconder ou pelo menos camuflar sinais desses durante 

a evolução. As razoes para esconder ou camuflar a ovulação no ser humano não são claros e 

não serão discutidos nesta dissertação.   

 

Na primeira parte deste trabalho, a autora deste trabalho, depois de criar um base de dados 

de tamanho médio de imagens faciais e anotar as fotografias vai verificar se sinais de ovulação 

podem ser detetados por outros pessoas. Ou seja, se modificações que ‘as priori’ são invisíveis 

podem ser percebidas de maneira inconsciente pelo observador. Na segunda parte, a autora vai 

analisar as eventuais modificações faciais durante o período, de uma maneira formal, utilizando 

medidas faciais. Métodos automáticos de analise de imagem aplicados permitem obter os dados 

necessários. 

  

Uma base de dados de imagens para efetuar este trabalho foi criado de raiz, uma vez que 

nenhuma base de dados existia na literatura. 50 raparigas aceitaram de participar na criação do 

base de dados. Durante 32 dias e diariamente, cada rapariga foi fotografada. Em cada sessão foi 

tirada várias fotos. As fotos foram depois apuradas para deixar só 30 fotos ao máximo, para 

cada rapariga. 600 fotos foram depois escolhidas para serem manualmente anotadas. Essas 600 

fotos anotadas, definam a base de dados de verificação. Assim as medidas obtidas 

automaticamente podem ser verificadas comparando com a base de 600 fotos anotadas. 

  

O objetivo deste trabalho não é apenas estudar os sinais visuais da ovulação feminina, mas 

também testar e explicar métodos de processamento automático de imagens que poderiam ser 

usados para extrair pontos de interesse, das imagens faciais. A automatização de extração dos 

pontos de interesse poderia mais tarde ser aplicado aos estudos sobre a assimetria flutuante. O 

campo da assimetria flutuante é um campo crescente na biologia evolucionária, mas não pode 
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ser desenvolvido facilmente. O tempo necessário para extrair referencias e pontos de interesse 

é proibitivo. Por além disso, estudos de assimetria flutuante, muitas vezes, baseado numa só 

fotografia pode vier a ser invalido, se modificações faciais temporárias existirem. Modificações 

temporárias, tipo durante o período mensal, revela que estudos fenotípicos baseados numa só 

fotografia não pode constituir uma base viável para estabelecer ligas genótipo-fenótipo. 

 

 Para tentar ver se algum sinal percetível está presente no rosto humano durante a ovulação, 

as fotos foram organizadas num software de presentação para permitir o observador humano 

escolher duas fotos (as mais atraentes) de cada rapariga. Estes resultados foram então analisados 

para destacar a relação entre as fotos escolhidas e o período de ovulação no ciclo mensal. Os 

resultados sugeriam que, de facto, existem algumas indicações no rosto que poderiam 

eventualmente dar informações sobre o período de ovulação.  Os observadores escolheram 

como mais atraente de cada rapariga, aquelas que tinham sido tiradas nos dias imediatos antes 

ou depois da ovulação. Ou seja, foi claramente estabelecido que a mesma rapariga parecia mais 

atraente durante os dias próximos da data da ovulação.  O software também permite recolher 

dados sobre o observador para analise posterior de comportamento dos observadores perante as 

fotografias. Os dados dos observadores podem dar indicações sobre as razoes da ovulação 

escondida que foi desenvolvida durante a evolução.    

  

A seguir, diferentes métodos automáticos de deteção de pontos de interesse foram aplicados 

às imagens para detetar o tipo de modificações no rosto durante o período. A precisão dos 

métodos testados, apesar de não ser perfeita, permite observar algumas relações entre as 

modificações e os índices de atratividade.  

 

Os métodos automáticos testados foram Active Appearance Model (AAM), Convolutional 

Neural Networks (CNN) e árvores de regressão (Dlib-Rt). AAM e CNN foram implementados 

em Python utilizando o modulo Keras library. Dlib-Rt foi implementado em C++ utilizando 

OpenCv. Os métodos utilizados, estão todos baseados em aprendizagem e sacrificam a precisão. 

Comparando os resultados dos métodos automáticos com os resultados manualmente obtidos, 

indicaram que os métodos baseados em aprendizagem podem não ter a precisão necessária para 

estudos em simetria flutuante ou para estudos de modificação faciais finas. Apesar de falta de 

precisão, observou-se que, para este tipo de aplicação, o melhor método (entre os testados) foi 

as árvores de regressão. 
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Os dados e medidas obtidas, constituíram uma base de dados com a data de período, 

medidas faciais, dados sociais e dados de atratividade que poderem ser utilizados para trabalhos 

posteriores.  

 

O trabalho futuro tem de ser conduzido para confirmar firmemente estes dados, o número 

de avaliadores humanos deve ser aumentado, e uma base de dados de aprendizagem adequada 

deve ser desenvolvida para permitir a definição de um processo de aprendizagem específico 

para esta problemática. Também foi observado que o processamento de imagens de baixo nível 

será necessário para alcançar a precisão final que poderia revelar detalhes finos de mudanças 

em rostos humanos. Transcrever os dados e medidas para o índice de atratividade e aplicar 

métodos de data-mining pode revelar exatamente quais são as modificações implicadas durante 

o período mensal. A autora também prevê a utilização de uma câmara fotográfica tipo true-

depth permite obter os dados de profundidade e volumo que podem afinar os estudos. Os dados 

de pigmentação da pele e textura da mesma também devem ser considerados para obter e 

observar todos tipos de modificação facial durante o período mensal. 

 

Os dados também devem separar raparigas com métodos químicos de contraceção, uma 

vez que estes métodos podem interferir com os níveis hormonais e introduzir erros de 

apreciação.  

 

Por fim o mesmo estudo poderia ser efetuado nos homens, uma vez que homens não sofrem 

de mudanças hormonais, a aparição de qualquer modificação facial repetível pode indicar 

existência de fatos camuflados.  

 

Termos chave: Processamento de imagem, Extração do marco facial, Métodos baseados 

na aprendizagem, Ovulação humana, Assimetria flutuante. 
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 Introduction 

 

 Motivation  

 

A living organism develops and creates a particular form following its genetic program. 

The type of the genetic program is of course different in each individual, not only between 

species but also within the species. This particular program is called the genotype. During the 

development of the fetus, the pre-programmed genetic path manages the form that the 

individual will have in its final form and this form is called the phenotype.  

 

Following this definition and the reality, one can suppose that each phenotype represents a 

special genotype and therefore by analyzing only the forms of individual, genetic information 

and some clues about the genotype can be retrieved.  

 

Going a bit deeper in this issue and following the evolutionary biology about the fetus and pre-

puberty development, this genotype needs to defend the organism development against all 

environmental stress and to execute the program the best possible. For example, development 

of a pair of organs which normally have to be symmetrical and be distributed identically on 

either side of the body should be exactly the same. These organs such as eyes, ears, hands, legs, 

etc. appear in a symmetrical position. The capacity of the genotype to create this symmetry in 

the final form of the individuals is believed by biologists to be a sign of quality.  In other word, 

a better symmetry means a better genotype. It is therefore normal that a lot of work and studies 

concentrate on understanding the links between this symmetry in the phenotype and the 

genotype. Possible links between facial asymmetry and predisposition to some genetic 

alterations or diseases is an important issue of such studies. A very large interval of research is 

possible. Such as sexual attraction passing by genetic illness, or mental disorder possible links 

with visual facial clues, etc.  

 

Nevertheless, a bottleneck of this field of study is the time necessary for the researcher to 

pinpoint the landmarks on a face and to calculate manually the possible ratios and symmetry on 

each single picture. This time-consuming process of manual calculation and analysis have not 

yet allowed large scale studies in this domain and all possible studies done so far remain on a 

small number of cases (mostly less than 100). It is therefore obvious that an automatic tool for 
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extraction of facial landmarks and precise processing of visual clues is an absolute necessity to 

solve the main bottleneck in this field of study. If this tool is developed, then a full-scale analysis 

becomes possible and most of the theories in this field can either be confirmed or rejected in a 

robust manner.  

 

Now what this facial asymmetry has to do with the topic of this work? Well, the problem 

of manual analysis is only one aspect that prohibits the verification of different theories on this 

field. Another point of discussion between some communities lays on the fact that most 

evolutionary biologists consider that the final form of an individual is achieved after the puberty 

and this form does not change in a short period of time. Therefore, most of the studies over the 

face asymmetry are done by working only over one picture of the individual. The proponents 

of this work, nevertheless, think that this is not the case. Studying one picture of an individual 

taken in a particular moment can introduce a lot of bias into the final study of the facial signs 

and their links to other abnormalities.  

 

 Objective 

 

As everyone knows, on some days people look better and, on some days, they look worse. 

Taking one picture of this individual for analyzing its genotype where we all know that the 

study is based over very little differences seems a bit unexplainable. This single picture is not 

really the best way to study possible life term links between phenotype and genotype. To 

demonstrate and prove that individual faces can show minor differences even in short term, the 

proponents of this study have searched a special case of physiological changes in human body 

in short terms that may affect the facial form.   

 

The best and straight forward case in human of a deep physiological change in a short 

period of time is the mensal cycle in women. This fix periodical physiological change modifies 

deeply the biochemical composition in the body by modification of different levels of 

hormones. The fact of the periodicity of these phenomena is also a positive point because it 

allows the total repeatability of the study whenever necessary. If a facial modification during 

the mensal period is proved and formally calculated, then it is clear that most studies over links 

between facial symmetry and genotype abnormalities are to be repeated as they are only based 

on single photography.  
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This in the beginning was the main motivation of this study. Nevertheless, when the study 

was initiated, and the idea clarified a much bigger domain is to be explored. This fact has now 

made this study a full possible multidisciplinary research subject which can have repercussions 

in basic beliefs over human behavior and well-established issues such as concealed ovulation. 

If it is proved that external signs of ovulation do exist in each mensal cycle, and then many 

other questions will be open such as are they for all? Who detects best? Is it in every cycle or 

only in some? 

 

 Methodology  

 

To be able to manage this study in a statically correct manner we need of course to solve 

the manual analysis bottleneck and develop an automatic manner of measuring facial 

landmarks. The extraction of the measurements automatically will allow a swift path towards 

large scale study and eliminate all bias. The objective of the proposed work is to be divided into 

two main streams:  

 

• To develop a simple program to allow the ratters to choose in a short time best pictures 

of each woman during the mensal cycle. This will allow us to access the existence of possible 

visual points which could appear during the hormonal modification in the body.  

 

• To use image processing techniques, mainly active appearance models to understand 

exactly what these changes are in an automatic manner. The mathematical model of the faces 

can then be studied to explain why in this short period of time the same individual looks more 

attractive.  

 

In the following parts of this report a background over fluctuant asymmetry and concealed 

ovulation as well as facial automatic analysis will be exposed.  

 

 

 Background  

 

  Fluctuant Asymmetry overview 
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Fluctuating asymmetry is a particular form of biological asymmetry, characterized by small 

random deviations from perfect symmetry. The fundamental basis for the study of fluctuating 

asymmetry is an a priori expectation that symmetry is the ideal state of bilaterally paired traits. 

 

Fluctuating asymmetry measures deviations from the ideal state of symmetry and is 

therefore thought to reflect the level of genetic and environmental stress experienced by 

individuals or populations during development. It has attracted a great deal of attention because 

bilaterally symmetrical traits are extremely common in nature and because the measurement of 

fluctuating asymmetry appears to represent a relatively simple method of assessing biologically 

important stress at the individual and population levels.   

 

Asymmetry of an individual is measured as the right minus the left value of the bilaterally 

paired trait. By studying the distribution of these asymmetries at the population level, we can 

distinguish between three types of biological asymmetry: fluctuating asymmetry, directional 

asymmetry, and symmetry. Fluctuating asymmetry is characterized by small random deviations 

from perfect bilateral symmetry. These small random deviations result in a normal or 

leptokurtic distribution of asymmetry around a mean of zero. Directional asymmetry is 

characterized by a symmetry distribution that is not centered around zero but is biased 

significantly, towards larger traits either on the left or the right side. 

 

Anti-symmetry is characterized by being centered around a mean of zero; however, 

symmetric individuals are rarer than those seen in fluctuating asymmetry distributions, such 

that the distribution is platykurtic or, in the extreme, bimodal. Directional symmetry and 

antisymmetric are developmentally controlled and therefore likely to have adaptive 

significance. Fluctuating asymmetry, on the other hand, is not likely to be adaptive as symmetry 

is expected to be the ideal state [1][2] although subtracting the measurement of the right side of 

a trait from that of the left side forms the basis of the analysis, accurately quantifying fluctuating 

asymmetry is not simple.  

 

The measurement of fluctuating asymmetry is complicated by the fact that its magnitude 

and distribution are the same as the magnitude and distribution of measurement error. 

Therefore, in order to establish that real differences in symmetry rather than just measurement 

error are being reported, it is imperative to establish that the measures of fluctuating asymmetry 
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explain a statistically significant proportion of the observed total variance between the sides. 

To achieve this, it is necessary to make repeated measures of the left and right sides of the trait. 

The repeated measures need to be made on the same subjects in ignorance of the initial measure, 

with the same equipment and under the same laboratory or field circumstances as those of the 

main data. Furthermore, to eliminate observer bias, ideally all measurements should be made 

in ignorance of the measurement recorded for the side’s pair.   

 

For analysis of a potential fluctuating asymmetry data set, certain criteria must be met: the 

measurements must represent actual deviations from symmetry and not measurement error, and 

the distribution of fluctuating asymmetry must conform to that expected for it, rather than for 

directional asymmetry or anti symmetry. Various procedures have been recommended for this 

stage of the analysis, the most widely used being a mixed model analysis of variance (ANOVA), 

which will determine whether fluctuating asymmetry is significantly different from 

measurement error, and whether the asymmetry distribution has a mean of zero [1]. The mixed 

model ANOVA does not reveal significant departures in the fluctuating asymmetry distribution 

towards platy kurtosis, characteristic of anti-symmetry, and therefore the asymmetry 

distribution should also be described statistically in terms of its kurtosis and assessed visually.  

 

Fluctuating Asymmetry trait, data analysis should proceed by testing first for the relation 

between trait size and fluctuating asymmetry. If there is a relationship, this needs to be 

accounted for, and methods exist for controlling for size dependence [1]. Data can be analyzed 

between groups, treatments or populations by using methods for comparing trait variances. 

Relationships between individual fluctuating asymmetry and continuous variables such as 

fitness measures need to be conducted on absolute fluctuating asymmetry values, sometimes 

called ‘unsigned fluctuating asymmetry’. Caution should be exercised when analyzing unsigned 

fluctuating asymmetry, as it has a half-normal distribution, which violates the assumptions of 

most parametric statistics. A more accurate assessment of developmental stability can be 

obtained by pooling the fluctuating asymmetry measures of several traits per individual. 

However, as different traits may have different selection pressures on their symmetry, the traits 

that are being pooled need to be chosen carefully. It is a common observation that there is at 

best a very weak relationship between fluctuating asymmetries measured from two different 

traits for the same individuals.   
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  Concealed ovulation 

 

Concealed ovulation or hidden estrus in a species is the lack of any perceptible change in 

an adult female (for instance, a change in appearance or scent) when she is "in heat" and near 

ovulation. Some examples of such changes are swelling and redness of the genitalia in baboons 

and bonobos Pan paniscus, and pheromone release in the feline family. In contrast, the females 

of humans and a few other species [3] have few external signs of fecundity, making it difficult 

for the male to consciously deduce, by means of external signs only, whether or not a female is 

near ovulation.  

 

While women can be taught to recognize their own level of fertility (fertility awareness), 

whether men can detect fertility in women is highly debated. Several small studies have found 

that fertile women (compared to women in infertile portions of the menstrual cycle or using 

hormonal contraception) appear more attractive to men [4][5]. It has also been suggested that a 

woman's voice may become more attractive to men during this time [6]. Two small studies of 

monogamous human couples found that women-initiated sex significantly more frequently 

when fertile, but male-initiated sex occurred at a constant rate, without regard to the woman's 

phase of menstrual cycle [7]. It may be that a woman's awareness of men's courtship signals [8] 

increases during her highly fertile phase due to an enhanced olfactory awareness of chemicals 

specifically found in men's body odor [9][10] Analyses of data provided by the post-1998 U.S. 

Demographic and Health Surveys found no variation in the occurrence of coitus in the 

menstrual phases (except during menstruation itself) [11]. This is contrary to other studies, 

which have found female sexual desire and extra-pair copulations ("EPC's") to increase during 

the mid-follicular to ovulatory phases (that is, the highly fertile phase) [12]. These findings of 

differences in woman-initiated versus man-initiated sex are likely caused by the woman’s 

subconscious awareness of her ovulation cycle (because of hormone changes causing her to feel 

increased sexual desire), contrasting with the man’s inability to detect ovulation because of its 

being “hidden”.  

 

In 2008, researchers announced the discovery in human semen of hormones usually found 

in ovulating women. They theorized that follicle stimulating hormone, luteinizing hormone, 

and estradiol may encourage ovulation in women exposed to semen. These hormones are not 

found in the semen of chimpanzees, suggesting this phenomenon may be a human male 
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counterstrategy to concealed ovulation in human females. Other researchers are skeptical that 

the low levels of hormones found in semen could have any effect on ovulation [13]. One group 

of authors has theorized that concealed ovulation and menstruation were key factors in the 

development of symbolic culture in early human society [14][15].  

 

 

Figure 2.1: Image pairs of two women as examples of stimuli used: (a) is from Prague; and (b) is from 

Newcastle. One image in each pair was taken during the follicular phase (i) and one in the luteal phase (ii) of the 

cycle (in both cases, days 12 and 19, respectively 

  

 Human differs from other mammalians in their sexual behavior [1]. One of the most 

intriguing fact in this behavior is the concealed ovulation (The ovulation without any external 

visible signs). Many theories over the how and why of human move out from an advertised 

oestrus cycle to a concealed menstruation cycle has been developed [2] and for years it was 

conventionally accepted that the oestrus was either lost or completely concealed. Nevertheless, 

the idea of a completely hidden and sign-less period of fertility sounds contradictory to normal 

rules of reproductively and mate selection. Some recent studies using fine-tuned phenotype 

measurements have revealed that some signs appear at the fertile point of the cycle to make the 

female more attractive to male. Studies over body scent, voice frequency. Soft tissue symmetry, 

body ratio, creativity and fluidity in speech and facial attractiveness were assessed and studied 

as possible modifications that alerts a male over the fecundity of the female. Some other studies 
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over the number of tips gained by lap dancers in different period of their mensal cycle shows 

that the dancers earned much more during the oestrus or just before ovulation.  

 

As one can see through these studies that hearing, smell and sight could all be used to 

receive fertility signs, but the human society defines attractiveness solely by means of sight. 

Therefore, if signs of oestrus do exist between human, they should mostly be present in visual 

cues. In this paper we focus on facial attractiveness during the cycle. The previous study on the 

subject have revealed possible signs but in a very limited proportion, Roberts & al used only 2 

photos of women one in follicular phase and one in lethal phase to distinguish between possible 

visual cues. The results obtained by Roberts & al were just a bit over the random of 0.5 

expected. The authors recognize also that their study could only suggest a fluctuant facial 

attractiveness during the mensal cycle. 

 

 Facial analysis and Landmark extraction  

 

A facial biometric system is a computer application for automatically identifying or 

checking a person from a numeric image or from a video frame from a video source. One 

approach to do so, is comparing selected facial features from the image and a facial database. 

It is typically used in security systems and can be compared to other biometrics such as 

fingerprint or iris recognition systems. Some facial recognition algorithms identify facial 

features by extracting landmarks, or features, from an image of the subject's face. For example, 

an algorithm may analyze the relative position, size, and/or shape of the eyes, nose, cheekbones, 

and jaw. These features are then used to search for other images with matching features.   

 

Other algorithms after normalizing a data base of images keep only the data necessary for 

the process of recognition and save them. A probe image is then compared with the face data. 

One of the earliest successful systems [18] is based on template matching techniques applied to 

a set of salient facial features, providing a sort of compressed face representation. Recognition 

algorithms can be divided into two main approaches, geometric, which look at distinguishing 

features, or photometric, which is a statistical approach that transforms an image into values 

and compares the values with templates. Popular recognition algorithms include Principal 

Component Analysis using eigenfaces, Linear Discriminate Analysis, Elastic Bunch Graph 

Matching using the Fisher-face algorithm, the Hidden Markov model, the Multilinear Subspace 



 

9  

  

Learning using tensor representation, and the neuronal motivated dynamic link matching.   

 

We will be referring often in this document to the landmarks. A landmark is a recognizable 

natural or man-made feature that stands out from its near environment and is often visible from 

long distances. Facial landmarks are defined as key-points on the face with   subsequent impact 

on the target task, like animation, face recognition, gaze detection, face tracking, expression 

recognition, gesture understanding etc. Facial landmarks are a prominent feature that can play 

a discriminative role or can serve as anchor points on a face graph. Facial landmarks such as 

the nose tip, eyes corners, chin, mouth corners, nostril corners, eyebrow arcs, ear lobes, are the 

common choices. For ease of analysis most landmark detection algorithm prefers an entire 

facial semantic region, such as the whole region of a mouth, the region of the nose, eyes, 

eyebrows, cheek or chin. The facial landmarks are classified in two groups, primary and 

secondary, or fiducial and ancillary. This distinction is based on reliability of image features 

detection techniques. For example, the corners of the mouth, of the eyes, the nose tips and 

eyebrows can be detected relatively easily by using low level image features, e.g. SIFT, HOG. 

The directly detected landmarks are referred as fiducial. The fiducial group of landmarks play 

a more prominent role in facial identity and face tracking. The search for secondary landmarks 

is guided by primary landmarks. The secondary landmarks are chin, cheek contours, eyebrow 

and lips midpoints, non-extremity points, nostrils. It takes more prominent role in facial 

expression [19].  

 

Despite the conceptual simplicity of facial landmarks detection, in computer vision there 

are some challenges. The emerging applications like surveillance system, gesture recognition 

requires that landmark localization algorithms should run in real time parallel with the 

computational power of an embedded system, such as intelligent cameras. Such type of 

application requires a more robust algorithms against a confounding factor such as illumination 

effects, expression and out of plane pose. There are four main challenges in localizing facial 

landmarks [19]:  

 

• Variability: Landmark appearances differ due to extrinsic factors such as partial 

occlusion, pose, illumination, camera resolution and expression, also due to intrinsic 

factors such as face variability between individuals. Facial landmarks can 

sometimes be only partially observed due to hand movements or self-occlusion due 
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to extensive head rotations or occlusions of hair. Also, facial landmark detections 

are difficult because of illumination artifacts and facial expressions. A facial 

landmark localization algorithm that delivers the target points in a time in an 

efficient manner and works well across all intrinsic variations of faces has not yet 

been feasible.   

 

• Accuracy and number of landmarks require: Based on the intended application the 

number of landmarks and its accuracy varies. For example, in face recognition or 

in face detection tasks, primary landmarks like two mouth corner, four eyes corner 

and nose tips may be adequate. On the other hand, higher level tasks face animation 

or facial expression understanding require greater number of landmarks e.g. from 

20-30 to 60 - 80 with higher accuracy. Fiducial landmarks are needed to be 

determined with more accuracy because they often guide the search of secondary 

landmarks.   

 

• Lack of globally accepted and error free dataset: Most of the dataset provides 

annotations with different markups and accuracy of their fiducial point is 

questionable. The accuracy of landmark localization algorithm is largely depending 

on the data set used for training. Each algorithm uses different dataset to train and 

evaluate the performance, so it is difficult to compare algorithms.   

 

• Acquisition conditions: Acquisition conditions, such as resolution, background 

clutter, and illumination can affect the landmark localization performance. The 

landmark localizers trained in one database have usually inferior performance when 

tested on another database. It is to mention that these challenges, are general case 

study challenges. In the particular case in scope of the present work we will not be 

dealing with variability or acquisition conditions because they were fixed in lab 

conditions and the external factors were kept as equal as possible between images. 

Nevertheless, we were not able to keep the exact lighting or contrast conditions.  

  

  Expression analysis  

 

A facial expression is a visible manifestation of the affective state, cognitive activity, 
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intention, personality, and psychopathology of a person [20], it plays a communicative role in 

interpersonal relations. Facial expressions, and other gestures, convey non-verbal 

communication cues in face-to-face interactions. These cues may also complement speech by 

helping the listener to elicit the intended meaning of spoken words. As cited in [21], Mehrabian 

reported that facial expressions have a considerable effect on a listening interlocutor, the facial 

expression of a speaker accounts for about 55 percent of the effect, 38 percent of the latter is 

conveyed by voice intonation and 7 percent by the spoken words.  

 

As a consequence of the information that they carry, facial expressions can play an 

important role wherever humans interact with machines. Automatic recognition of facial 

expressions may act as a component of natural human- machine interfaces [22] (some variants 

of which are called perceptual interfaces [23] or conversational [24] interfaces). Such interfaces 

would enable the automated provision of services that require a good appreciation of the 

emotional state of the service user, as would be the case in transactions that involve negotiation, 

for example. Some robots can also benefit from the ability to recognize expressions [25].  

 

Automated analysis of facial expressions for behavioral science or medicine is another 

possible application domain [26][27]. From the viewpoint of automatic recognition, a facial 

expression can be considered to consist of deformations [28] of facial components and their 

spatial relations, or changes in the pigmentation of the face. Research into automatic recognition 

of facial expressions addresses the problems surrounding the representation and categorization 

of static or dynamic characteristics of these deformations or face pigmentation. Further details 

on the problem space for facial expression analysis are given in [29]. We will continue with a 

survey of some of the recent landmark localization techniques [19]  

 

 

 Literature survey of localization techniques  

 

 Component based Deformable Mode  

 

Component based deformable model presented for generalized face alignment at 2007 [30], 

they used a novel bi-stage statistical framework to account for both local and global shape 

characteristics. It uses separate Gaussian models for shape components instead of using 
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statistical analysis on the entire shape which preserve more detailed local shape deformations. 

Each model of components used the Markov Network for search strategy. They used Gaussian 

Process Latent Variable Model to give control of full range shape variations, hence it makes 

out better description of the nonlinear interrelationships over shape components. This approach 

allows the system to preserve the full range of low frequency shape variations, and also the high 

frequency local deformations caused by exaggerated expression.  

  

 

Figure 3.1: Output of component based deformable model – (Database: YALE FACE DATABASE B, Key 

point detected: 79 Image / video: Images only) 

 

 Cascade Deformable Shape model  

 

Xiang, et al, [31] presents a two-stage cascaded deformable shape model to effectively and 

efficiently localize facial landmarks with large head pose variations. For face detection, they 

proposed a group sparse learning method to automatically select the most salient facial 

landmarks. 3D face shape model detects pose free facial landmark initialization. The 

deformation executes in two stages, the first step uses mean-shift local search with constrained 

local model to rapidly approach the global optimum. Second step uses component-wise active 

contours to discriminatively refine the subtle shape variation. It improves performance over 

CLM and multi-ASM in face landmark detection and tracking. 
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Figure 3.2: Output of cascade deformable shape model – (Database: MultiPIE, AR, LFPW,LFW and AFW 

,Talking Face Video, Key point detected: 65, Image / video: Images and video both) 

 

 

 Constrained Local Neural Field model (CLNF)  

 

Baltrusaitis and et al, [32] presented the Constrained Local Neural Field model for facial    

landmark detection. This model uses probabilistic patch expert (landmark detector) that learn 

non-linear and spatial relationships between the input pixels and the probability of a landmark 

being aligned and Non-uniform Regularized Landmark Mean-Shift (NRLM) optimization 

technique, which takes the account the reliabilities of each patch expert leading to better 

accuracy.  

 

 

Figure 3.3:Output of constrained local neural field model – (Database: LFPW and Helen, Key point detected: 

65, Image / video: Images only) 

  

 Deep Convolutional Network Cascade  

 

Yi Sun [33] presented three level deep convolutional networks cascade model. The output 

of multiple networks at each level is fused to give robust and accurate estimation. At first level, 

convolutional networks extracts high level features over whole face region. It has two 

advantages first, the texture context information over the entire face is utilized to locate key 

point. Second, the network is trained to predict all the key-points simultaneously, geometric 
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constraints among key-points are encoded. Therefore, method avoids local minimum caused by 

ambiguity and data corruption. In next two level the initially predicted key-points are finely-

tune to achieve high accuracy. This method is not good for locating facial landmarks in large 

number.  

 

 

Figure 3.4: Output of deep convolutional network cascade – (Database: LFW,LFPW and BioID Key point  

 

 Coarse-to-fine Convolutional Network Cascade  

 

Zhou, et al [34] presented four level convolutional network cascades, which tackles the 

problem in coarse-to-fine manner. Each network level refines a subset of facial landmarks 

generated in previous network levels and predicts explicit geometric constraints like the 

position and rotation angles of specific facial component to rectify inputs of the current network 

level. The first level estimate bounding boxes for inner points and contour points separately. 

Second level predicts an initial estimation of the positions for the inner points which are refined 

in third level for each component. The last layer improves the predication of mouth and eyes 

by taking rotated image patch as new input. Two levels of separate networks are used for 

contour points. This method is good for locating facial landmarks in huge numbers (above 50).  

 

 

Figure 3.5: Output of coarse-to-fine convolutional network cascade model – (Database: 300-W (300 faces in 

wild) Key point detected: 68 Image / video: Images Only)  
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 Explicit Shape Regression  

 

Xudong Cao [35] presented very efficient and highly accurate Explicit Shape Regression 

approach. This model directly learns a vectoral regression function to infer the whole facial 

shape and explicitly minimize localization error in training data. The inherent shape encoded 

into the regressor in learning framework applied from coarse to fine to during testing. This 

approach uses two level boosted regression, a correlation-based feature and shape-indexed 

features selection method hence regression is more effective. It shows highly accurate and 

efficient results. Regression process is extremely fast in test 15 MS for 87 landmarks shape. 

  

 

Figure 3.6: Output of explicit shape regression model – (Database: BioID, LFPW and LFW87 Key point 

detected: 5,29 or 87 Image / video: Images Only) 

 

 Constrained local models (CLM)   

 

This model [36] is developed on Active Appearance Model (AAM). CLM differs from 

AAM because it is not a generative model for the whole face, instead it produces landmark 

templates iteratively and use a shape constrained search technique. The position vectors of the 

landmark’s templates are estimated using Bayesian formulation. The posterior distribution in 

Bayesian formula incorporates both the image information via template matching scores and 

the statistical shape information. Therefore, positions of new landmarks are predicted in the 

joint shape model and the light of the image, and then templates are updated by sampling from 

the training images.  
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Figure 3.7: Output of constrain local model – (Database: BioID and XM2VTS, Key point detected: 22 Image 

/ video: Images Only) 

  

 Parameterized Kernel Principal Component Analysis (PKPCA)  

 

Torre, et al [37] presented the parameterized kernel principle component analysis (PKPCA) 

model by extending KPCA to incorporate geometric transformation into formulation and 

applying gradient descent algorithm for fast alignment. This model differs from PCA because 

it can model non-linear structure in data in variant to rigid or non-rigid deformations. It does 

not require manually labeled training data.  

 

 

Figure 3.8: Output of PKPCA model – (Database: CMU Multi-PIE, Key point detected: 46, Image / video: 

Images Only) 

 

 Multiple Kernel Learning  

 

Rapp, et al, in [38] presented multiple kernel, it uses two patches on the face. One covers 

the eye region and the other covering the mouth region. In testing, pixels of a respective regions 

should be part of a target landmark, using the multi-resolution windows (progressively smaller 

nested windows) texture data is extracted that captures information from global to local view 

range. Every resolution level, information is passed into a different kernel and the convex 

combination of these kernels, instead of concatenating pyramidal information. For each 
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resolution level there is dedicated kernel which forms a multi-kernel SVM. The multi-kernel 

SVM is trained using center-surround architecture and the surround windows forming the 

negative examples. After the discovery of landmark points, without having any spatial 

relationship among them initially. To reach the plausible shapes, point distribution models are 

invoked. The point distribution models are particularly focusing to the mouth and to the eye-

eyebrow pairs. The shape alternatives are evaluated using Gaussian mixture models (GMMs), 

so that the point combinations that possess the highest sum of SVM scores and that fit best to 

the learned models are selected. 

  

 

Figure 3.9:  Output of multiple kernel learning – (Database: Cohn-Kanade and Pose, Illumination and 

Expression (PIE), Key point detected: 17, Image / video: Images only) 

  

   Semi - Supervised learning  

 

Tong, et al [39] address to the often imperfect and tedious task of manual landmark labeling, 

and to overcome this suggest a scheme to partly automate land-marking. In their method, a 

small percentage (e.g., 3%) of faces needs to be hand labeled, while most the faces are 

automatically marked. This is done by propagating the few exemplars landmarking information 

to the whole set. On the minimization of the pair wise pixel differences resulting in two error 

terms, the learning is based. The penalty in one term makes the warping of each un-marked 

image toward all other un-marked images, irrespective of the content they become more alike. 

While penalty in the other term controls the warping of un-marked images toward marked 

images. The warping function itself can be a piecewise affine warp to model a nonrigid 

transformation or a global affine warp for the whole face.  
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Figure 3.10: Output of semi supervised learning – (Database: Notre Dame, Caltech 101and FERE, Key point 

detected: 33, Image / video: Images only) 

 

   Bayesian Approach  

 

Belhumeur in [40] presented a fully Bayesian approach to find landmark positions from 

local evidences. An interesting aspect about their work is that the local detector outputs are 

collected from a cohort of exemplars (sample faces with annotated landmarks), which provide 

non-parametrically the global model information. The local detector consists of a sliding 

window whose size is proportional to IOD and which collects SIFT features. In the next stage, 

the global detector models the configurational information of the ensemble of primary points. 

The joint probability of the location on ‘n’ landmarks and the vector of their local detectors 

outputs is maximized. This method surpasses in accuracy the performance of the manual 

landmarking in most of the 29 landmarks considered.  

 

 

Figure 3.11: Output of Bayesian approach – (Database: BioID and LFPW, Key point detected: 29, Image / 

video: Images only) 

 

   Conditional Regression Forests  

 

Dantone in [41] proposed pose-dependent landmark localization scheme that is achieved 

by conditional random forests. Conditional regression forests learn several conditional 

probabilities over the parameter space, and deals with facial variations in appearance and shape, 

while regression forests try to learn the probability over the parameter space from all face 
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images in the training set. The head pose is quantized into five segments of i) right profile ii) 

right iii) front iv) left and v) left profile faces and specific random forests are trained. Both 

texture and 2D displacement vectors that are defined from the centroid of each patch to the 

remaining ones described the local properties of a patch. Texture is described by normalized 

gray values in order to cope with illumination changes in addition to Gabor filter responses. 

Training of conditional random forests is very similar to random forests, except that the 

probability of assigning a patch to a class is conditioned on the given head pose. This method 

locates landmarks in a query image at real-time speed.  

 

 

Figure 3.12:  Output of conditional regression forests – (Database: LFW, Key point detected: 10, Image / 

video: Images Only) 

  

   Multi View  

 

Zhanpeng Zhang, et al, in [42] presented a real time Multi-View facial landmark 

localization in RGB-D images. This system is able to estimate 3D head pose and 2D landmark 

localization. The model extracts random local binary patterns of different scales and estimate 

the facial parameters with hierarchical regression techniques. At first, 3D face positions and 

rotations are estimated via a random regression forest. Afterwards, 3D pose is refined by fusing 

the estimation from the RGB observation. The depth channel and RGB channel are used at 

different stages, the depth input is fed to the random forest for face detection and pose 

estimation at the beginning stage, the RGB input is fed to gradient boosted decision trees 

(GBDT) for head pose and hierarchical facial landmark location regression when the face is 

available. The pose estimation results from the depth and RGB inputs are weighted and 

combined to improve the precision. 
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Figure 3.13: Output of multi-view model – (Database: BIWI Kinect Head Pose, Key point detected: 13, Image 

/ video: Images only) 

  

   Combinatorial Search and Shape Regression  

 

Sukno in [43] have managed the combinatorial problem using RANSAC algorithm. First, 

they find out the reliable features using spin images as features and the missing are regressed 

using the multivariate Gaussian model encompassing all 3D landmark coordinates. The correct 

landmarks are sort out from the multitude of candidate points, all combinations of four points 

are used and RANSAC is used as the basis of the feature matching procedure. For the missing 

landmarks the median of the closest candidates is considered. The PCA instrumented shape 

fitting term for the detecting landmarks is has been used in the cost function consist of a part 

accounting for the reconstruction error, the other part accounts for the distance from the inferred 

landmarks to their closest candidates.  

 

 

Figure 3.14: Output of combinatorial search and shape regression – (Database: FastSCAN, Key point 

detected: 8, Image / video: Images and video both) 

 

   Tree-structured models  

 

Xiangxin Zhu, et al, in [44] address the three linked problems of face detection, face pose 
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estimation and facial landmarks localization. This algorithm is shape driven and local and 

global information are merged right from beginning. Since pose is part of estimation, the 

algorithm practically works as a multi-view algorithm. Multi-view implemented by considering 

several (30 to 60) local patches that are connected as a tree which collectively describe the 

landmark related region of the face.  

 

 

Figure 3.15: Output of tree structured model – (Database: CMU MultiPIE and AFW, Key point detected: 61, 

Image / video: Images only) 

 

   Supervised Descent Method 

 

Xuehan Xiong in [45] presented a Supervised Descent Method (SDM) for localizing facial 

landmarks. At first, it takes an image with manually labeled landmarks. Then it ran through 

training images to give initial configuration of landmarks. It uses SIFT function to extract initial 

landmarks. In training, SDM tries to minimize difference between manually labeled landmarks 

and initially located landmarks by SIFT (Δx). This method does not learn any shape or 

appearance model in advance from training data. The SDM learns a series of descent direction 

and re-scaling factors to produce a sequence of updates. SDM directly learns descent direction 

from training data by learning a linear regression between, (Δx) and difference of SIFT value 

of manually and extracted landmarks (ΔΦ). In testing, based on descent direction and re-scaling 

factors learn in training SDM estimates landmarks. SDM learns descent direction without 

computing Jacobian nor Hessian matrix, which are computationally expensive. SDM is fast and 

accurate. 

 

Figure 3.16: Output of Supervised Descent Method – (Database: LFPW and LFW-A&C, RU-FACS, Key point 

detected: 49, Image / video: Images and video both) 



 

22  

  

 Methods and procedures 

 

 Introduction 

 

As the idea was to test and gather data over a mensal period and that there is no such 

database available, we had to start first by gathering the necessary data. The data needed to be 

collected over a whole period, and each day, the women who participated in the experience had 

to come to the lab to take a picture in particular setting.  

 

Once the data was collected, we needed first to prove that there is a perceptible change in 

the visual aspects of the face. A simple analysis of the results could give a hint that a change 

occurs during the period and therefore, fluctuant asymmetry studies could not take place over 

a simple photo of one day. Then we needed to landmark all faces manually to create a ground 

truth data base for comparison with automatic methods. This process was very time consuming 

because all and every single picture had to be marked manually and then reviewed for a second 

time for correction. Finally, different automatic landmark extraction methods had to be 

implemented and tested over our own database.  

 

 Data collection 

 

50 women were photographed for 32 days, about 10 photos each day. From this set of 

pictures, we have chosen one best photo for each day and for each woman. Then they are 

normalized as much as possible for light and contrast.   

 

All women were chosen from Portuguese nationality. They were all aged between 20 and 

35 and they were all university students. All data about their sexual orientation, partners and 

contraceptive methods was collected for further analysis. The data base is not yet publicly 

available as the study is ongoing and legal permissions are not yet obtained.  

  

 Human rating  

 

Once the data was collected, we needed first to prove that there is a perceptible change in 

the visual aspects of the face. Therefore, human raters had to rate the pictures of the same 
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woman over her mensal period. To do this, we developed a simple application that provides a 

list of photos of each girl ordered in a form page. The rating app is developed using C# and 

Mysql. This is a window form application programmed by C# and one form per girl. Each form 

includes 15 check boxes, which is connected to the database in Mysql, a timer and conditional 

next bottom and skip bottom. The app runs as an EXE file and outputs results in an excel file. 

 

The main goal is to allow the ratters to choose in a short time best pictures of each woman 

during the mensal cycle. This will allow us to assess the existence of possible visual points 

which could appear during the hormonal modification in the body. As the data base is not yet 

publicly available and legal permissions are not yet obtained, we developed a desktop windows 

application witch only works with local IP.  

 

At the first page of the application we classified raters by 4 factors. Raters can introduce 

themselves by gender, age, education and marital status. Having 2 categories of males and 

females’ raters allows us to make our database ready for comparing our results to other sexual 

attractiveness researches. Although most of our raters are university students or professors, 

regarding the fact that most of studies on attractiveness are based on age-controlled groups, we 

put 11 groups of ages between 15 and 75. In future work we will be able to find how much 

maturity affects the human opinion about attractiveness. Also, the last option is considered to 

determine if rater choices are influenced by marital status. The extraction of different classes of 

the ratters and the results they have obtained can also be a valuable data for future psychological 

work over who is really the receiver of the possible signs.   

 

Each page includes 12 to 15 photos of one girl and each girl has 2 pages. All selected photos 

of each girl are placed in 2 pages randomly and each photo appears only one time. Therefore, 

the rater has a chance to see all photos of each girl taken over one month.   

 

All photos are normalized as much as possible for light and contrast. But there is no 

preprocessing applied to change the skin color. All photos are face cropped to be in the same 

size and same head pose, to make the rater concentrate only on face attractions. Also, the app 

pages are very simple, neutral color and mostly filled by face photos, to avoid distractions.  

 

In order to gather well-organized results, the rater can choose 2 photos in each page not 
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more and not less, and it is not possible for the rater to go to the next page without choosing but 

he can skip the app and save his rating. All photos on each page are connected to the original 

one in the data base containing the photo dates. Therefore, when the checkbox of a photo is 

marked by the rater in the platform, the photo and photo date get one ’plus’ in database. At the 

end we have a list of data for each girl which contains photo name and photo dates. This list is 

ordered by number of times the photo was chosen.   

 

Another feature of the app is a limited time for choosing. The rater has only 30 seconds on 

each page, to decide which photos are the most attractive ones. The idea behind the limited time 

is the fact that human brain makes up its mind up to ten seconds before actually realizing it 

[16].  

 

Before starting the app, all raters are told that the goal is choosing the best photo of each 

girl in terms of attractiveness without considering any specific parameter, which means their 

first opinion is the best. That’s why at first glance, the rater’s brain would know what he is 

looking for. Therefor In the first few milliseconds of seeing each page, the rater realizes the 

best photo. But as long as the difference between photos in each page is very low, we gave 30 

seconds to rostromedially prefrontal cortex of rater’s brain go a bit deeper and evaluate the 

decision with all judgment parameters available in the brain [17]. 

 

 

Figure 4.1: rating application, first page, rater information 
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Figure 4.2: rating application, the example of girl’s photos page 

 

 Implementations 

 

After some verification of existing methods and the available results, we decided to 

implement and test 3 methods. The methods were chosen by the following criteria:  

 

• Available and verifiable literature and previous results  

• General towards specialized  

• Estimated Precision   

 

We, therefore, chose to test 3 methods:  

 

• Active appearance Model -AAM 

• Convolutional Neural Networks -CNN   

• Regression Trees from Dlib library –Dlib  

  

 Active appearance models  

 

Facial landmark point extraction is a key step in facial image representation and analysis. 

The Active Appearance Model (AAM) proposed by Cootes et al [46] is a powerful object 

description method that is commonly used for facial landmark points extraction AAM fitting is 
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a non-linear optimization problem. Different optimization approaches have been proposed to 

find the best model parameters that result in minimum error between the synthesized 

appearance models obtained from the AAM and the input image. In general, due to variation of 

camera view angle, resolution and focal distance, facial images have different scaling, rotation, 

and translations. In order to remove global shape variations, all shapes are normalized, and the 

modeling is only concerned with local shape deformation. Therefore, it is necessary to combine 

a global shape transformation with the normalized AAM. The global shape transformation is 

often a 2D similarity transformation. Finding optimal parameters of the global transformation 

improves the accuracy of fitting in representing novel facial images with different shape and 

pose variations. Traditionally, the stochastic gradient descent algorithm or iteratively 

incremental additive techniques are used to update the AAM parameters to fit onto novel 

images. The fitting problem can also be viewed as finding a model instance similar to the given 

facial image and therefore it can be considered as an image alignment problem.  

 

 

Figure 4.3: AMM fit on a given face 

  

AAM consists of a shape component and an appearance component obtained from a set of 

annotated landmark points in training images. Let’s assume we are given a training facial image 

set with annotated shapes defined as: S = (X1, Y1, X2, Y2, ..., Xv, Yv)T . The training images 

are first normalized and aligned using iterative Procrustes analysis. This step removes variations 

due to a chosen global shape normalization transformation so that the resulting model can 

efficiently consider local and non-rigid shape deformation. We then can combine the resulting 

AAM with a global transformation. Afterwards, Principal Component Analysis  

(PCA) is applied to the set of normalized training shapes and a shape model is defined as:                                
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(1) 

 

 

where the base shape S0 is the mean shape and the vectors Si are n eigenvectors 

corresponding to the n largest eigenvalues. Then, all the training images are normalized by 

warping them into the base shape S0, using piecewise affine warp, and the appearance model is 

defined as:  

(2)  

 

 

where A0 is the mean appearance and the vectors Ai are the m eigenvectors corresponding 

to the m largest eigenvalues. The goal of fitting is to find a model instance that can efficiently 

describe the object (e.g. face) in a given image. Thus, it can be considered as an image alignment 

problem. In other words, we want to find the model instance M(W(x; p)) = A(x) as similar as 

the image I(x). In general, facial images have different scaling, rotation, and translations. 

Therefore, it is necessary to combine a global shape transformation with the normalized AAM. 

If we consider the global shape transformation as N(x; q), we want to minimize the error 

between the template and I (N(W(x; p) ; q)). Considering global shape transformation, the 

objective of the fitting process is to find p and q in order to minimize the error image as:  

(3)  

𝐸(𝑥) = ∑ [𝐴0(𝑋) − 𝐼(𝑁(𝑊(𝑥; 𝑝); 𝑞))]2   
                                                                                           𝑥∈𝑠0 

 

Which is a non-linear least square problem. We can have different definitions for the global 

transformation N(x; q). In [47], a set of 2D similarity transformations as a subset of piecewise 

affine warps is defined. This representation of N(x; q) is similar to W(x; p) and therefore similar 

analysis on the shape parameters p can be applied to q. If we assume that the  

  

two sets of shape vectors Si and Si* are orthogonal to each other, we can add the four 2D 

similarity vectors Si* to the beginning of AAM shape vectors Si [47] and model any given 

shape as:    In practice, Si and Si*are not quite orthogonal to each other.  
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This can either be ignored when the size of Si is small or the complete set of Si and Si*can 

be orthonormal zed preferably.  

 

    In [48], Baker et al. relate AAM to the Lucas-Kanade algorithm. They proposed the 

Inverse Compositional Algorithm (ICA), in which they find shape variation on the template and 

compose the inverse of that with the current shape. Therefore, many computationally expensive 

tasks are recomputed. In [47], appearance variation is considered in the fitting by finding shape 

parameters in a linear subspace where the appearance variation is ignored and then “projected 

out” to the full space with respect to the appearance eigenvectors. The method is more generic 

compared with the ICA, but the fitting is not accurate when applied to subjects that are not 

similar to subjects in the training set. The “projecting out” approach is called PO in the rest of 

this paper. In [49] Simultaneously Inverse Compositional (SIC) method is introduced, which is 

more generic. In this method the fitting procedure minimizes the error between [𝐴0(𝑥) +

∑ (𝜆𝑖 + Δ𝜆𝑖)𝐴𝑖
𝑚
𝑖=1   and I(N(W(x;p) ; q)), where Ai are m appearance eigenvectors correspond 

to the m largest appearance eigenvalues, and (λi +Δλi) are parameters of appearance that are 

found simultaneously with respect to the Δp. As the appearance parameters are optimized in 

each iteration, both steepest descent and the Hessian matrix (H) should be calculated in each 

iteration, and therefore the method is slower. In [49] the PO is compared with the SIC, and the 

SIC is reported more accurate in modeling unseen subjects.  

 

 Convolutional neural networks and deep learning  

 

 Architecture Overview   

 

Recall: Regular Neural Nets: Neural Networks receive an input (a single vector) and 

transform it through a series of hidden layers. Each hidden layer is made up of a set of neurons, 

where each neuron is fully connected to all neurons in the previous layer, and where neurons in 

a single layer function completely independently and do not share any connections. The last 

fully connected layer is called the “output layer” and in classification settings it represents the 

class scores.  

 

Regular Neural Nets don’t scale well to full images. In CIFAR-10 dataset, images are only 

of size 32x32x3 (32 wide, 32 high, 3 color channels), so a single fully connected neuron in a 
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first hidden layer of a regular Neural Network would have 32*32*3 = 3072 weights. This 

amount still seems manageable, but clearly this fully connected structure does not scale to larger 

images. For example, an image of more respectable size, e.g. 200x200x3, would lead to neurons 

that have 200*200*3 = 120,000 weights. Moreover, we would almost certainly want to have 

several such neurons, so the parameters would add up quickly! Clearly, this full connectivity is 

wasteful, and the huge number of parameters would quickly lead to overfitting.  

 

3D volumes of neurons: Convolutional Neural Networks take advantage of the fact that 

the input consists of images and they constrain the architecture in a more sensible way. In 

particular, unlike a regular Neural Network, the layers of a ConvNet have neurons arranged in 

3 dimensions: width, height, depth. (Note that the word depth here refers to the third dimension 

of an activation volume, not to the depth of a full Neural Network, which can refer to the total 

number of layers in a network.) For example, the input images in CIFAR-10 are an input volume 

of activations, and the volume has dimensions 32x32x3 (width, height, depth respectively). As 

we will soon see, the neurons in a layer will only be connected to a small region of the layer 

before it, instead of all of the neurons in a fully connected manner. Moreover, the final output 

layer would for CIFAR-10 have dimensions 1x1x10, because by the end of the ConvNet 

architecture we will reduce the full image into a single vector of class scores, arranged along 

the depth dimension. Here is a visualization:  

 

 

Figure 4.4: A regular 3-layer Neural Network 
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Figure 4.5: A ConvNet arranges its neurons in three dimensions (width, height, depth), as visualized in one 

of the layers. Every layer of a ConvNet transforms the 3D input volume to a 3D output volume of neuron 

activations. In this example, the red input layer holds the image, so its width and height would be the dimensions 

of the image, and the depth would be 3 (Red, Green, Blue channels) 

 

Parameter Sharing. Parameter sharing scheme is used in Convolutional Layers to control 

the number of parameters. Using the real-world example above, we see that there are 55*55*96 

= 290,400 neurons in the first Conv Layer, and each has 11*11*3 = 363 weights and 1 bias. 

Together, this adds up to 290400 * 364 = 105,705,600 parameters on the first layer of the 

ConvNet alone. Clearly, this number is very high.  

 

It turns out that we can dramatically reduce the number of parameters by making one 

reasonable assumption: That if one feature is useful to compute at some spatial position (x,y), 

then it should also be useful to compute at a different position (x2,y2). In other words, denoting 

a single 2-dimensional slice of depth as a depth slice (e.g. a volume of size [55x55x96] has 96 

depth slices, each of size [55x55]), we are going to constrain the neurons in each depth slice to 

use the same weights and bias. With this parameter sharing scheme, the first Conv Layer in our 

example would now have only 96 unique set of weights (one for each depth slice), for a total 

of 96*11*11*3 = 34,848 unique weights, or 34,944 parameters (+96 biases). Alternatively, all 

55*55 neurons in each depth slice will now be using the same parameters. In practice during 

backpropagation, every neuron in the volume will compute the gradient for its weights, but 

these gradients will be added up across each depth slice and only update a single set of weights 

per slice.  

 

Notice that if all neurons in a single depth slice are using the same weight vector, then the 

forward pass of the CONV layer can in each depth slice be computed as a convolution of the 

neuron’s weights with the input volume (Hence the name: Convolutional Layer). This is why it 

is common to refer to the sets of weights as a filter (or a kernel), that is convolved with the 

input.  
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Figure 4.6: Example filters learned by Krizhevsky et al. Each of the 96 filters shown here is of size [11x11x3], 

and each one is shared by the 55*55 neurons in one depth slice. Notice that the parameter sharing assumption is 

relatively reasonable: If detecting a horizontal edge is important at some location in the image, it should intuitively 

be useful at some other location as well due to the translationally invariant structure of images. There is therefore 

no need to relearn to detect a horizontal edge at every one of the 55*55 distinct locations in the Conv layer output 

volume. 

 

 Learning process  

 

The learning process used is the backpropagation of error and the gradient descent. Gradient 

descent is based on the observation that if the multi-variable function F( x ) is differentiable and   

defined in a neighborhood of a point  a, then F( x ) decreases fastest if one goes from a in the 

direction of the negative gradient of F at a , -∇F(a)   

 

  

  

Figure 4.7: Illustration of gradient descent on a series of level sets 
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The algorithm is iterative, we start from a first guess and then iterate on each pass by 

moving into the opposite direction of the gradient by using 

  

 b = a –γ (a)  (4)  

 

Where b is step x+1 if a id the step x. This iteration can be seen in the following figure:  

 

 

Figure 4.8: the iteration of CNN algorithm 
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The structure of the CNN used and implemented in this work:   

 

Figure 4.9: CNN structure 

  

As we can see there are 136 outputs on this network where 68 are the x coordinates and 68 

others are the y coordinates of the landmarks.  

 

To activate the convolutional layers, we use the Leaky RElu process and the loss is 

calculated as the total root mean squared error (RMSE), an elective measure of the deviations 

in distances between the 68 real and predicted facial point coordinates.   

(5)  
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 Data preparation  

 

A set of datasets is used for training the CNN which contains about 5000 images. We also 

applied following data augmentation techniques to expand the size of our training data:  

  

4.4.2.3.1 Horizontal Reflection (Mirror) 

  

The first technic used for expanding data size is mirroring the image. We reflected the 

image horizontally. Therefore, we have the similar key point labels in a different orientation.  

 

 

Figure 4.10: mirroring images 

  

4.4.2.3.2 Rotation  

 

The second method we used is randomly rotating images by the range of 10 to -10 degrees.  

 

 

Figure 4.11: rotating images 
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4.4.2.3.3 Contrast Reduction (jittering)  

 

The last data augmentation that we used is decreasing the contrast by applying the below 

formula:  

(6)  

𝐶𝑅(𝑋) = (𝛿 ∗ 𝑋) + (1 − δ) ∗ 𝑚𝑒𝑎𝑛(𝑋) 

 

The idea is that pixel values are shifted slightly towards delta, which is the images mean 

pixel value.   

 

 

Figure 4.12: Jittering image 

    

All input images were reduced to 96X96 by maintaining the image's aspect ratio and 

cropped from face. Our training set images was transformed into around 12000 input images 

by applying data augmentation techniques  

  

 Training  

 

Hyperparameters have been tuned properly before training the network. Our hyper 

parameters are as follows:  

 

Learning rate, batch size, leaky ReLU and regularization parameters. In order to tune hyper 

parameters, we use the Grid search approach. We trained a model for each combination of hyper 

parameters values and score on the validation data. Following figures are some of plotted losses 

across epochs that we obtained.   
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Figure 4.13: epoch graphs 

  

At the end the model is defined by following hyper parameter values:    

 

Learning rate: 0.01  

Regularization parameter: 1e-5  

LeakyRelU parameter: 0.1  

Batch size: 128  

Here is the error function plot:  

 

 

Figure 4.14: error function plot 
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These are the selected filters from first layer of CNN  

 

 

Figure 4.15: CNN first layer filters 

  

  

 Regression trees using the Dlib library   

 

The detection is based on OpenCV and dlib (http://dlib.net/) library. The pre-trained 

landmark detection model is used to detect facial landmarks. Two landmark detection models 

are tested, and results will be provided:  

 

• 68 facial landmarks points. 

• 194 facial landmarks points. 

 

The detection is based on OpenCV and dlib (http://dlib.net/) library. The pre-trained 

landmark detection model is used to detect facial landmarks. Two landmark detection models 

are tested, and results will be provided: a) 68 facial landmarks and b) 194 facial landmarks.  

 

This dlib’s face key-point detection implementation is based upon “One millisecond face 

alignment with an ensemble of regression trees. One millisecond face alignment [50] with an 

ensemble of regression trees: In this method an ensemble of regression trees can be used to 

estimate the face’s landmark positions directly from a sparse subset of intensities, achieving 
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super-real-time performance with high quality predictions. An ensemble of regression trees is 

learnt based on gradient boosting optimizing the sum of square error loss and naturally handling 

the missing or partially labelled data [43]  

 

The algorithm works as follows. Let xi∈ ℝ be the x,y-coordinates of the ith facial landmark 

in an image I. Then the vector S= (x1T, x2T,….,xpT) denotes the coordinates of the p facial 

landmarks in I.  

 

 

Figure 4.16:Dlib landmark vector 

 

We refer vector S as shape and Š(t) denotes current estimate of S. In each stage, each 

regressor rt(.,.) in the cascade predicts an update vector from the image and previous estimate, 

which can be denotes as follows.   

(6)  

𝑆 ̂(𝑡+1) = 𝑆̂(𝑡) + 𝑟𝑡(𝐼, 𝑆 ̂(𝑡)) 

 

 

Figure 4.17: Dlib successive iterations 

  

The critical point of the cascade is that the regressor rt makes its predictions based on 

features, such as pixel intensity values, computed from I and indexed relative to the Current 

shape estimate Sˆ(t). This introduces some form of geometric invariance into the process and as 
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the cascade proceeds one can be more certain that a precise semantic location on the face is 

being indexed. Later we describe how this indexing is performed.  

 

Note that the range of outputs expanded by the ensemble is ensured to lie in a linear 

subspace of training data if the initial estimate Sˆ(0) belongs to this space. We therefore do not 

need to enforce additional constraints on the predictions which greatly simplifies our method. 

The initial shape can simply be chosen as the mean shape of the training data centered and 

scaled according to the bounding box output of a generic face detector. To train each rt we use 

the gradient tree boosting algorithm with a sum of square error loss as described in [51]. The 

details of this process are given in the original paper.  

  

The below algorithm demonstrates the learning rt in the cascade. [52] [41]  

 

Have training data {(𝐼𝜋𝑖, Ŝ𝑖
(𝑡)
, ∆𝑆𝑖

(𝑡)
)} and learning rate (shrinking factor) 0 < 𝜈 < 1  

1. Initialize   

 

 

2. For 𝑘 = 1, … , 𝐾:  

(a) Set for 𝑖 = 1, … , 𝑁 

 

 

 

(b) Fit a regression tree to the targets 𝑟𝑖𝑘 giving a weak regression function 𝑔𝑘 (𝐼, 𝑆 ̂(𝑡))  

  

(c) Update  

𝑓𝑘 (𝐼, 𝑆 ̂(𝑡)) = 𝑓𝑘−1 (𝐼, 𝑆 ̂(𝑡)) + 𝜈 𝑔𝑘 (𝐼, 𝑆 ̂(𝑡)) 

 

3. Output 𝑟𝑘 (𝐼, 𝑆̂(𝑡)) = 𝑓𝑘 (𝐼, 𝑆 ̂(𝑡))  
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Figure 4.18: Some results in Helen dataset. 

  

 Ground truth Hand marking of the data set  

 

All photos of the data set were manually tagged, and main facial landmarks were extracted. 

The manual process was repeated twice to eliminate human mistakes as much as possible. More 

than 600 photos were manually tagged and stored as a precision data base for facial landmarks. 

The process is extremely time consuming but allows a proper study over the precise positions 

of facial traits needed in this study.  
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The chosen landmarks are those that were judged most significant for this study. The 

obtained database is not yet publicly available due to legal reasons and lack of publication 

permission from the participants.  

  

 

Figure 4.19: manual landmarking example image 

  

Table 1 shows the extracted coordinate of manual tagging for only eye corners, iris tangent 

line and lips. We separated these coordinates for all methods in following chapters, to establish 

the comparison method.   
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Girl no.  41  Manual    

Date of 

Photo  
rate  

number  

Left eye  Right eye  
 

Lip  

Left corner  
Right corner  

Left corner  Right corner  Left corner  Right corner  

14-Nov  27  577  763  735  777  943  778  1103  762  698  1181  992  1177  

16-Nov  45  574  751  733  762  947  765  1102  753  684  1163  996  1165  

21-Nov  9  566  760  731  777  943  775  1109  756  685  1183  998  1176  

28-Nov  27  568  771  724  786  932  785  1093  769  683  1182  977  1179  

17-Nov  54  562  775  722  791  931  789  1095  764  684  1193  995  1180  

22-Nov  36  570  741  732  754  941  760  1103  744  684  1160  988  1160  

23-Nov  18  568  756  729  772  941  775  1103  759  683  1181  982  1183  

29-Nov  9  565  755  730  769  945  768  1112  754  688  1181  994  1176  

8-Nov  9  562  739  727  753  944  756  1108  741  678  1166  1006  1158  

10-Nov  18  563  750  728  764  938  762  1108  745  682  1173  993  1170  

5-Dec  27  565  768  727  788  942  792  1105  775  671  1200  987  1203  

2-Dec  27  572  729  734  745  948  749  1114  734  687  1159  989  1160  

6-Dec  27  567  724  728  742  948  749  1112  740  667  1160  980  1168  

7-Dec  36  574  771  730  785  942  789  1108  778  678  1193  979  1196  

12-Dec  9  576  765  736  779  949  784  1110  768  689  1187  987  1192  

9-Dec  0  561  733  719  747  931  749  1093  738  680  1159  975  1154  

14-Dec  0  570  726  730  753  937  758  1100  737  683  1153  978  1149  

15-Dec  0  573  731  737  750  951  753  1120  735  692  1161  996  1157  

Table 4-1: manual tagging coordinates 

  

 

 Results and discussion 

 

 Rating results  

 

In this section the results are presented in different categories. The first and the most 

astonishing results are from the human rating process of photos of the same girl during the 

mensal period.  

 

We divided the mensal period into 3 parts with day distances from the ovulation day. For 

example, if the ovulation date was 15 of November and the period time was 28 days, then the 

division was from day 1 to 5 and day 23 to 28 in one group, day 5 to 9 and 18 to 23 in second 

group and day 9 to 14 and 14 to 18 in the third group.  
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As the following charts show, a huge majority of rating people chose the attractive photo 

in the period 9 to 18. This means that majority of people find that photos in the range of 4 days 

before and after the ovulation time are the most attractive.  

 

The following charts show the results for 9 samples and the last charts shows the results for 

the total dataset.  

 

 

date  Rating no  category    

  

estimated date of ovulation: 6 November  

 

21-Nov  45  0-5  

7-Nov  81  0-5  

22-Nov  18  0-5  

20-Oct  36  0-5  

23-Nov  27  0-5  

8-Nov  9  0-5  

3-Nov  18  0-5  

2-Nov  90  0-5  

18-Oct  18  0-5  

17-Oct  63  0-5  

31-Oct  72  5-9  

28-Nov  27  5-9  

14-Nov  54  5-9  

15-Nov  9  5-9  

27-Oct  18  9-14  

16-Nov  18  9-14  

26-Oct  9  9-14  

25-Oct  54  9-14  

24-Oct  27  9-14  

9-Oct  18  9-14  

5-Dec  27  9-14  

Table 5-1: Rating results extracted from the rating App for a set of images of one girl 
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date  Rating no  category  estimated date of ovulation: 7 November  

 

22-Nov  18  0-5  

9-Nov  27  0-5  

10-Nov  90  0-5  

20-Oct  45  0-5  

19-Oct  9  0-5  

3-Nov  9  0-5  

18-Oct  36  0-5  

29-Nov  27  5-9  

14-Nov  18  5-9  

16-Nov  18  5-9  

17-Nov  63  9-14  

26-Oct  18  9-14  

25-Oct  18  9-14  

Table 5-2: Rating results extracted from the rating App for a set of images of one girl 

 

date  Rating no  category  estimated date of ovulation: 5 November  

 

7-Nov  144  0-5  

3-Nov  108  0-5  

21-Nov  36  0-5  

8-Nov  54  0-5  

19-Oct  9  0-5  

9-Nov  36  0-5  

23-Nov  27  0-5  

18-Oct  18  0-5  

17-Oct  27  0-5  

31-Oct  27  0-5  

24-Nov  27  0-5  

10-Nov  18  0-5  

28-Nov  36  5-9  

27-Oct  27  5-9  

14-Nov  9  5-9  

26-Oct  54  9-14  

15-Nov  18  9-14  

16-Nov  54  9-14  

24-Oct  36  9-14  

Table 5-3: Rating results extracted from the rating App for a set of images of one girl 
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date  Rating no  category  estimated date of ovulation: 14 August 

 

 

Girl number 21  
 

 

11-Aug  36  0-5  

18-Aug  63  0-5  

10-Aug  18  0-5  

19-Aug  81  0-5  

9-Aug  45  0-5  

8-Aug  18  5-9  

22-Aug  18  5-9  

5-Aug  54  5-9  

23-Aug  9  5-9  

24-Aug  18  9-14  

4-Aug  9  9-14  

25-Aug  36  9-14  

26-Aug  9  9-14  

Table 5-4: Rating results extracted from the rating App for a set of images of one girl 

 

date  Rating no  category    

  

estimated date of ovulation: 15 November  

 

15-Nov  81  0-5  

18-Oct  27  0-5  

14-Nov  135  0-5  

16-Nov  18  0-5  

17-Oct  9  0-5  

31-Oct  9  0-5  

17-Nov  27  0-5  

10-Nov  54  0-5  

27-Oct  27  0-5  

21-Nov  36  5-9  

26-Oct  36  5-9  

9-Nov  27  5-9  

8-Nov  45  5-9  

25-Oct  27  5-9  

22-Nov  9  5-9  

24-Oct  54  5-9  

7-Nov  9  5-9  

23-Nov  9  5-9  

24-Nov  9  5-9  

21-Oct  45  9-14  

3-Nov  18  9-14  

28-Nov  9  9-14  

Table 5-5: Rating results extracted from the rating App for a set of images of one girl 
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date  Rating no  category  estimated date of ovulation: 1 December  

 

17-Nov  27  0-5  

16-Nov  45  0-5  

2-Dec  9  0-5  

29-Nov  27  0-5  

14-Nov  54  0-5  

28-Nov  36  0-5  

5-Dec  18  0-5  

6-Dec  9  0-5  

7-Dec  9  5-9  

10-Nov  18  5-9  

23-Nov  27  5-9  

22-Nov  27  5-9  

8-Nov  27  5-9  

21-Nov  36  9-14  

12-Dec  9  9-14  

Table 5-6: Rating results extracted from the rating App for a set of images of one girl 

 

date  Rating no  category  estimated date of ovulation: 9 June  

 

6-Jun  99  0-5  

26-May  90  0-5  

9-Jun  72  0-5  

24-Jun  54  0-5  

8-Jun  27  0-5  

25-May  18  0-5  

7-Jun  9  0-5  

27-Jun  63  0-5  

13-Jun  27  0-5  

14-Jun  36  0-5  

15-Jun  54  5-9  

2-Jun  27  5-9  

17-Jun  45  5-9  

31-May  18  5-9  

30-May  27  9-14  

20-Jun  45  9-14  

21-Jun  18  9-14  

27-May  81  9-14  

22-Jun  36  9-14  

Table 5-7: Rating results extracted from the rating App for a set of images of one girl 
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date  Rating no  category  estimated date of ovulation: 8 December  

 

25-Oct  36  0-5  

9-Dec  36  0-5  

9-Nov  18  0-5  

8-Nov  27  0-5  

24-Oct  27  0-5  

7-Nov  18  0-5  

21-Nov  63  0-5  

28-Nov  63  0-5  

29-Nov  27  0-5  

3-Nov  54  5-9  

17-Nov  72  5-9  

16-Nov  54  5-9  

31-Oct  54  5-9  

15-Nov  18  5-9  

14-Nov  27  9-14  

5-Dec  18  9-14  

7-Dec  36  9-14  

27-Oct  9  9-14  

26-Oct  27  9-14  

10-Nov  18  9-14  

Table 5-8: Rating results extracted from the rating App for a set of images of one girl 
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date  Rating no  category  estimated date of ovulation: 17 November  

 

17-Nov  144  0-5  

2-Nov  18  0-5  

16-Nov  9  0-5  

15-Nov  27  0-5  

31-Oct  18  0-5  

14-Nov  81  0-5  

5-Dec  9  0-5  

21-Nov  9  0-5  

7-Dec  9  0-5  

27-Oct  9  5-9  

9-Dec  18  5-9  

10-Nov  9  5-9  

9-Nov  54  5-9  

25-Oct  18  5-9  

24-Oct  180  5-9  

8-Nov  18  5-9  

12-Dec  54  9-14  

28-Nov  18  9-14  

29-Nov  36  9-14  

Table 5-9: Rating results extracted from the rating App for a set of images of one girl 

 

 

Table 5-10: Rating chart extracted from the rating App for all set of images of all girls 
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As it can be seen from the above distribution of the results, there is a clear distinction 

between the 3 different intervals that we used. This result has a very high impact as it is the first 

medium scale study showing that human ovulation is not completely concealed.   

 

The impact of this first phase of the study is of importance to any evolutionary biologist or 

people working with fluctuant asymmetry. No previous study proved the existence of visual 

clues of human ovulation and a change in visual landmarks.   

 

The studies of fluctuant asymmetry should also now be taken with more attention as we 

proved that human facial clues could have very quick changes and therefore introduce dynamic 

bias into the final conclusion of asymmetry studies.   

  

 Automatic landmark extraction results  

 

We implemented and tested the 3 methods explained earlier in this chapter, a comparison 

method for the results is explained later in this section and the table is given. But before entering 

the details, a simple visual inspection of the results shows that the CNN has some strange and 

out-layered results that make it less trustable when it comes to fully automatic use. There is also 

a detail about the CNN method that is mostly forgotten, the network can work with very low-

resolution pictures and get good results within a suboptimal interval. When it comes to precision 

around the landmarks, the low-resolution picture is not of much use. The CNN used can get a 

94*94 input. Compared to the original picture quality, this 94*94 resolution has more than a 

five-to-one loss which makes it anyway the weakest of the methods when it comes to precision.  

 

Figure 5.1 to 5.7 show the results of implemented methods on a set of 5 photos of 4 different 

girls. But the coordinate tables are only for one girl in all dates. The implementation code for 

the 3 methods can be found by contacting the supervisors of this work. The AAM and CNN 

were implemented in Python 3, using Keras library, and the Regression tree was implemented 

in C++ using the Dlib library.  
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 The AAM results  

 

 

Figure 5.1: example of the AAM output 

 

 

Figure 5.2: one example of the AAM output 
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Girl no.  41  AMM    

Date of 

Photo  
rate  

number  

Left eye  Right eye   Lip  

Left corner  Right corner  Left corner  Right corner  Left corner  Right corner  

14-Nov  27  570  767  730  775  946  774  1109  764  690  1183  993  1181  

16-Nov  45  568  756  725  761  953  760  1110  755  684  1169  997  1168  

21-Nov  9  563  761  719  774  957  771  1114  755  684  1186  1000  1180  

28-Nov  27  566  777  720  784  939  783  1100  772  677  1184  984  1181  

17-Nov  54  556  778  712  789  944  782  1100  762  684  1197  995  1183  

22-Nov  36  567  747  724  755  952  754  1108  746  684  1162  988  1161  

23-Nov  18  565  758  726  772  948  772  1109  760  681  1183  986  1186  

29-Nov  9  563  762  724  769  953  768  1116  760  685  1184  997  1180  

8-Nov  9  559  748  721  753  950  749  1111  739  677  1164  1004  1156  

10-Nov  18  556  757  720  761  948  757  1113  746  680  1172  999  1167  

5-Dec  27  561  771  719  787  950  789  1112  777  677  1204  986  1206  

2-Dec  27  568  731  727  745  959  745  1119  735  683  1162  996  1159  

6-Dec  27  563  727  723  742  954  748  1114  740  670  1163  981  1169  

7-Dec  36  571  777  730  787  947  789  1111  784  677  1196  983  1199  

12-Dec  9  572  768  731  780  952  781  1116  772  689  1193  988  1194  

9-Dec  0  559  740  712  747  941  747  1096  742  672  1162  979  1162  

14-Dec  0  567  731  721  749  948  752  1105  738  676  1157  980  1152  

15-Dec  0  569  737  728  747  963  747  1124  738  684  1167  1002  1163  

Table 5-11: AAM extracted coordinates 

 

 The CNN results  

 

 

Table 5-12: example of CNN output 
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Girl no.  41  CNN    

Date of 

Photo  
rate  

number  

Left eye  Right eye   Lip  

Left corner  Right corner  Left corner  Right corner  Left corner  Right corner  

14-Nov  27  593  748  756  794  961  792  1121  783  696  1192  996  1188  

16-Nov  45  591  743  751  780  968  778  1122  774  690  1178  1000  1175  

21-Nov  9  586  737  745  793  972  789  1126  774  690  1195  1003  1187  

28-Nov  27  589  738  746  803  954  801  1112  791  683  1193  987  1188  

17-Nov  54  579  730  738  808  959  800  1112  781  690  1206  998  1190  

22-Nov  36  590  742  750  774  967  772  1120  765  690  1171  991  1168  

23-Nov  18  588  744  752  791  963  790  1121  779  687  1192  989  1193  

29-Nov  9  586  742  750  788  968  786  1128  779  691  1193  1000  1187  

8-Nov  9  582  739  747  772  965  767  1123  758  683  1173  1007  1163  

10-Nov  18  579  738  746  780  963  775  1125  765  686  1181  1002  1174  

5-Dec  27  584  737  745  806  965  807  1124  796  683  1213  989  1213  

2-Dec  27  591  745  753  764  974  763  1131  754  689  1171  999  1166  

6-Dec  27  586  741  749  761  969  766  1126  759  676  1172  984  1176  

7-Dec  36  594  748  756  806  962  807  1123  803  683  1205  986  1206  

12-Dec  9  595  749  757  799  967  799  1128  791  695  1202  991  1201  

9-Dec  0  582  730  738  766  956  765  1108  761  678  1171  982  1169  

14-Dec  0  590  739  747  768  963  770  1117  757  682  1166  983  1159  

15-Dec  0  592  746  754  766  978  765  1136  757  690  1176  1005  1170  

Table 5-13: CNN extracted coordinates 

 

  

 

Figure 5.3: one example of the CNN output 
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 The Dlib results  

 

 

Figure 5.4: example of Dlib output with 68 points 

 

 

Figure 5.5: one example of the dlib 68 points output 
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Girl no.  41  Dlib 68   

Date of 

Photo  
rate  

number  

Left eye  Right eye   Lip  

Left corner  Right corner  Left corner  Right corner  Left corner  Right corner  

14-Nov  27  575  765  732  776  945  776  1105  764  694  1183  992  1180  

16-Nov  45  571  756  730  761  949  762  1107  755  684  1165  997  1164  

21-Nov  9  564  761  728  775  947  773  1110  755  684  1184  1000  1179  

28-Nov  27  566  773  721  784  935  784  1097  769  680  1184  980  1180  

17-Nov  54  560  778  719  789  930  784  1101  762  684  1196  995  1182  

22-Nov  36  567  742  728  755  947  759  1106  746  684  1159  988  1161  

23-Nov  18  566  757  727  772  944  773  1105  760  681  1182  985  1184  

29-Nov  9  564  760  727  769  949  768  1115  759  686  1180  994  1179  

8-Nov  9  561  742  723  753  947  753  1110  740  677  1164  1005  1156  

10-Nov  18  560  752  726  762  941  759  1110  746  680  1172  995  1169  

5-Dec  27  563  769  724  787  945  790  1108  777  674  1202  986  1205  

2-Dec  27  571  729  732  745  951  747  1115  735  686  1160  991  1159  

6-Dec  27  566  726  724  742  950  748  1112  740  669  1163  980  1169  

7-Dec  36  573  774  730  785  944  789  1110  780  677  1195  981  1198  

12-Dec  9  574  767  735  780  951  782  1112  771  689  1190  988  1192  

9-Dec  0  561  735  715  747  937  747  1095  741  672  1159  976  1159  

14-Dec  0  567  728  727  750  941  757  1104  738  680  1156  980  1151  

15-Dec  0  572  733  735  748  957  750  1123  738  690  1165  1001  1161  

Table 5-14: Dlib- 68 points extracted coordinates 

 

 

Figure 5.6: example of Dlib output with 194 points 
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Figure 5.7: one example of the dlib 194 points output 

 

Girl no.  41   Dlib 194    

Date of 

Photo  
rate  

number  

Left eye  Right eye   Lip 

Left corner  Right corner  Left corner  Right corner  Left corner  Right corner  

14-Nov  27  578  764  733  778  946  777  1103  762  696  1180  993  1180  

16-Nov  45  570  759  730  762  948  762  1108  755  683  1162  996  1165  

21-Nov  9  568  759  726  775  947  770  1108  758  684  1185  998  1180  

28-Nov  27  567  773  718  784  937  786  1095  772  680  1184  983  1180  

17-Nov  54  561  778  719  789  928  784  1100  762  684  1196  997  1182  

22-Nov  36  569  740  730  750  949  760  1102  742  684  1160  989  1159  

23-Nov  18  569  750  724  769  945  770  1100  764  681  1181  986  1184  

29-Nov  9  564  760  730  769  947  768  1113  759  682  1180  994  1179  

8-Nov  9  560  742  724  754  946  752  1111  746  675  1163  1004  1157  

10-Nov  18  563  750  727  762  941  758  1109  746  681  1172  996  1170  

5-Dec  27  563  769  724  787  944  790  1106  777  674  1199  983  1197  

2-Dec  27  575  729  730  745  951  747  1114  735  686  1160  991  1159  

6-Dec  27  566  720  723  740  953  747  1110  742  670  1163  980  1169  

7-Dec  36  570  777  730  785  946  789  1112  780  677  1195  979  1192  

12-Dec  9  576  765  736  784  952  786  1116  776  686  1192  986  1196  

9-Dec  0  559  736  715  743  935  742  1090  741  670  1159  976  1159  

14-Dec  0  564  726  725  752  947  756  1104  738  680  1157  981  1152  

15-Dec  0  570  730  736  747  956  752  1124  735  693  1160  1006  1160  

Table 5-15: Dlib- 194 points extracted coordinates 
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 Comparing the results between methods 

 

Presenting the error from the automatic extraction methods is not an easy task when it 

comes to semantic notion of what is modified. To establish a normalized system in the face 

image and allow the comparison between the ground truth and the automatic results, we draw 

an imaginary vertical symmetry axis. This axis is obtained by the manual tagging process by 

adding considering a line between the two iris’s midpoint and midpoint of upper lip  

 

 

Figure 5.8: The symmetry axis. A line between the iris midpoint and midpoint of upper lip 

  

Then we use an error calculation system by summing the distance differences in pixel unit, 

from the landmarks to the symmetry axis. The units are normalized with the resolution of the 

pictures. This system gives a general and item-based notion of error in each part of the face.  

 

This means that for example if the Dlib error for the left eye is 10%, it means that compared 

to manual measurements it has a bias of 10% towards the symmetry axis of the face.  
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Methods Left eye Right eye Lips Nose Max 

bias 

DLIB  5.5%  5.6%  4%  9%  5%  

AAM  8.4%  8.8%  4%  8%  8%  

CNN  9.3%  9.1%  4.1%  8%  8%  

Pix lvl  1%  <1%  NA  NA  NA  

Figure 5.9: Error rate compare to manual marks 

  

The results show that the Dlib regression trees provide a better fit over orthogonal pictures 

with fix gestures, but also demonstrates that for high precision landmark extraction none of the 

existing supervised learning methods can provide a reliable precision.  

 

The methods based on learning in general struggle in the optimization process and can 

never converge to a 100% precision or a general optimal solution. But the studies about 

attractiveness or fluctuant asymmetry need strong and robust results with millimetric precision. 

For these studies none of the detection methods based on iteration optimization can be used.  

 

It is clear that the suboptimal solutions, which are very efficient for many applications, are 

not robust enough to provide reliable solutions for biological related studies. The author 

believes that the solution is definitely, using low level image processing for the detection of 

precise position of few important landmarks rather than using learning methods with many 

points. In the team we have already a developed a low-level eye corner detection, the method 

should be expanded for lip points, nose limiting points and eyebrows.   

 

As mentioned above the Regression trees present a possible choice for huge data sets as the 

introduced errors are around 5 percent in absolute measures. Nevertheless, the induced changes 

by physiological modifications are not very large and this small error can still present a huge 

bias in the final results.  



 

58  

  

 

Figure 5.10: Girl no: 41, date: 23 November, a) original image, b) Dlib 68 point, C)Dlib 194 point, 

d)manual tagging, e) CNN, f) AAM 

  

 Alternative approach to analysis of results  

 

Once we had all the results, we tried to see if there is any possible link that we could 

establish between the 2D landmarks that we had extracted and the results of the human rating. 

The idea was to check if we could establish a fix pattern about the landmarks and the beauty or 

attractiveness.  

 

We used the self-organizing maps of Kohonen to map the landmarks of pictures of each 

girl during the mensal period. If any relation exists between the landmarks and the actual date 

of ovulation, we should get clusters of similar landmarks into one group and those clusters 

should fit the pictures chosen by the human raters. The facts unfortunately are not so simple. 

The attractiveness, even on a simple 2D picture is more sophisticated, as shown in [52] the 

index of attractiveness is much more complicated than only some landmarks and 2d 

measurements. Moreover, the projection on a 2D plan also reduces the available information.  

 

As shown in the following self-organized maps, the direct relation between the mensal 

period and the distances of landmarks toward a symmetry axes are not clear. Nevertheless, the 

highest rated pictures mostly stay in the same clusters. Although other pictures are also in those 

clusters. 
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Figure 5.11: KOHONEN clustering plot 

  

We can, analyze the above results in different ways. But the most probable information is 

that the distances of the landmarks to the symmetry axis may not be the only parameter or the 

sufficient parameter to cluster the pictures correctly. But they are part of the many other 

parameters involved in the visual clues which enables human to distinguish between pictures 

in terms of attractivity.  

 

Here is the input data of kohonen algorithm:  
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NO 44 Left eye Right eye Lip nose up nose middle nosepiece nostril 
nose 

base 
Group 
 Index Date of 

Photo 
Left  

corner 
Right 

corner 
Left  

corner 
Right 

corner 
Left  

corner 
Right 

corner left right left right left right left right 

17-Nov 0.781 0.216 0.522 1.103 0.373 0.726 0.179 0.245 0.241 0.300 0.315 0.364 0.148 0.170 0.040 4 

21-Nov 0.800 0.212 0.545 1.138 0.392 0.725 0.199 0.229 0.250 0.282 0.306 0.333 0.140 0.185 0.021 5 

28-Nov 0.814 0.231 0.545 1.144 0.353 0.744 0.184 0.207 0.259 0.278 0.311 0.357 0.144 0.185 0.024 5 

31-Oct 0.876 0.315 0.311 0.872 0.442 0.485 0.185 0.232 0.264 0.279 0.304 0.366 0.145 0.188 0.025 3 

3-Nov 0.878 0.315 0.309 0.879 0.439 0.479 0.190 0.221 0.250 0.285 0.320 0.364 0.135 0.191 0.028 3 

16-Nov 0.880 0.315 0.311 0.883 0.456 0.445 0.182 0.224 0.255 0.268 0.314 0.353 0.140 0.167 0.026 3 

25-Oct 0.883 0.324 0.311 0.387 0.456 0.506 0.203 0.211 0.268 0.287 0.318 0.350 0.150 0.191 0.028 2 

7-Dec 0.879 0.313 0.313 0.884 0.455 0.495 0.202 0.235 0.262 0.289 0.311 0.352 0.156 0.188 0.020 2 

9-Dec 0.881 0.320 0.322 0.879 0.455 0.462 0.178 0.218 0.237 0.291 0.300 0.339 0.138 0.169 0.026 3 

14-Nov 0.883 0.320 0.318 0.881 0.456 0.457 0.182 0.229 0.245 0.272 0.311 0.353 0.146 0.179 0.024 3 

29-Nov 0.889 0.321 0.330 0.886 0.479 0.470 0.178 0.208 0.253 0.266 0.326 0.343 0.168 0.199 0.017 2 

8-Nov 0.868 0.307 0.320 0.873 0.470 0.452 0.173 0.249 0.236 0.271 0.302 0.358 0.144 0.189 0.040 3 

24-Oct 0.876 0.315 0.307 0.879 0.441 0.498 0.205 0.210 0.269 0.273 0.316 0.342 0.155 0.161 0.016 2 

26-Oct 0.869 0.316 0.311 0.874 0.452 0.476 0.220 0.234 0.284 0.286 0.320 0.346 0.151 0.182 0.019 2 

7-Nov 0.872 0.309 0.318 0.871 0.475 0.429 0.186 0.236 0.256 0.283 0.309 0.353 0.146 0.164 0.023 3 

9-Nov 0.872 0.314 0.321 0.861 0.453 0.459 0.181 0.247 0.245 0.296 0.298 0.352 0.150 0.186 0.022 3 

10-Nov 0.873 0.315 0.318 0.879 0.440 0.489 0.204 0.227 0.257 0.282 0.311 0.363 0.139 0.176 0.024 3 

15-Nov 0.868 0.311 0.320 0.873 0.452 0.456 0.173 0.235 0.246 0.282 0.312 0.351 0.137 0.186 0.033 3 

5-Dec 0.976 0.379 0.304 0.913 0.486 0.533 0.236 0.200 0.278 0.279 0.360 0.354 0.168 0.187 0.009 2 

27-Oct 0.863 0.323 0.312 0.873 0.450 0.469 0.207 0.221 0.269 0.271 0.316 0.357 0.160 0.183 0.018 2 

12-Dec 0.879 0.328 0.309 0.886 0.445 0.454 0.169 0.182 0.243 0.270 0.320 0.350 0.151 0.172 0.013 1 

Table 5-16: input table of KOHONEN algorithm. (Distance ratio of coordinate to symmetry line) 

  

 

Figure 5.12: some more KOHONEN output example 
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 Conclusions 

 

The study carried out has potentially important impacts on different issues. This study has 

showed that visual clues, even very slight modifications can be perceived and interpreted by 

human as a sign of biological or metabolic modification. If we consider the changes in the nasal 

area during the time span of a mensal period, then we can see that the studying a face only over 

one photo obtained in one day cannot be a real tool for any serious asymmetry studies. If the 

asymmetry is around 5 % for example and that we get a bias of 3% from first day of ovulation 

to the 14th day, then obviously the induced error is far too high to allow any correct conclusion. 

But, for example, one particular case of nose area modification shows high sensitivity to 

physiologic modifications.   

 

We have not presented all the conclusions and data in this thesis due to ongoing and pending 

ethical authorizations and data privacy issue. These data will be published as soon as the 

necessary legal issues are solved. The sociological reasons of why the human ovulation is 

following a semi-concealed process is to be investigated properly, but we had some strange 

results that could give us some clues.  

 

One of these results (to be confirmed) was that the normal partner of the woman could not 

choose the correct period of the ovulation on the pictures, but others could do that better. 

Another possible but difficult to prove observation was that women who use contraceptive pills 

show less visual modification. This result is naturally understandable because the hormonal 

variation is reduced under effect of the contraceptive pills.  

 

 

 

 

 

 

 

 

 

 



 

62  

  

 References  

  

1. Palmer, A. R. Fluctuating asymmetry analyses: a primer. Springer, Dordrecht. 1994. 335–364. 

http://doi.org/10.1007/978-94-0110830-0_26  

2. Valen,  L. Van. A Study of Fluctuating  Asymmetry. Evolution Vol. 16, No. 2. 1962. 125–142. 

http://doi.org/10.2307/2406192  

3. Andelman, S. J. Evolution of Concealed Ovulation in Vervet Monkeys (Cercopithecus 

aethiops). The American Naturalist 1987, 129, 785–799. http://doi.org/10.1086/284675  

4. Roberts, S. C., Havlicek, J., Flegr, J., Hruskova, M., Little, A. C., Jones, B. C., Perrett, D. I. & 

Petrie, M. Female facial attractiveness increases during the fertile phase of the menstrual cycle. 

Proceedings of the Royal Society of London. Series B: Biological Sciences. 2004. 271, 

http://doi.org/10.1098/rsbl.2004.0174  

5. Miller, G., Tybur, J. M. & Jordan, B. D. Ovulatory cycle effects on tip earnings by lap dancers:  

economic evidence for human estrus. Evolution and Human Behavior. 2007. 28, 375–381. 

http://doi.org/10.1016/J.EVOLHUMBEHAV.2007.06.002  

6. Pipitone, R. N. & Gallup, G. G. Women’s voice attractiveness varies across the menstrual cycle. 

Evolution and Human Behavior. 2008. 29, 268–274.  

http://doi.org/10.1016/J.EVOLHUMBEHAV.2008.02.001  

7. Bullivant, S. B., Sellergren, S. A., Stern, K., Spencer, N. A., Jacob, S., Mennella, J. A. & 

McClintock, M. K. Women’s sexual experience during the menstrual cycle: Identification of the sexual 

phase by noninvasive measurement of luteinizing hormone. Journal of Sex Research. 2004. 41, 82–93. 

http://doi.org/10.1080/00224490409552216  

8. Renninger, L. A., Wade, T. J. & Grammer, K. Getting that female glance: Patterns and 

consequences of male nonverbal behavior in courtship contexts. Evolution and Human Behavior. 2004. 

25, 416–431. http://doi.org/10.1016/J.EVOLHUMBEHAV.2004.08.006  

9. Thornhill, R. & Gangestad, S. W. The Scent of Symmetry: A Human Sex Pheromone that 

Signals Fitness? Evolution and Human Behavior. 1999. 20, 175–201. http://doi.org/10.1016/S1090-

5138(99)00005-7  

10. Brooksbank, B. W. L., Brown, R. & Gustafsson, J.-A. The detection of 5α-androst-16-en-3α-ol 

in human male axillary sweat. Experientia. 1974. 30, 864–865. http://doi.org/10.1007/BF01938327  

11. Brewis, A. & Meyer, M. Demographic Evidence That Human Ovulation Is Undetectable (At 

Least in Pair Bonds). Current Anthropology. 2005. 46, 465–471. http://doi.org/10.1086/430016  

12. ovulatory_shifts_JSR_2004.pdf.  

13. The secret life of semen. 2006, New Scientist. 

https://www.newscientist.com/article/mg19125633500-the-secret-life-of-semen/  

14. Watts, I. Chris Knight. 1991. Blood Relations: Menstruation and the Origins of Culture. Papers 

from the Institute of Archaeology. 1992. 3, 84. http://doi.org/10.5334/pia.26  

15. Knight, C., Power, C. & Watts, I. The Human Symbolic Revolution: A Darwinian Account.  

Cambridge Archaeological Journal. 1995. 5, 75–114. http://doi.org/10.1017/S0959774300001190  

16. Soon, C. S., Brass, M., Heinze, H.-J. & Haynes, J.-D. Unconscious determinants of free 

decisions in the human brain. Nature Neuroscience. 2008. 11, 543–545. http://doi.org/10.1038/nn.2112  

17. Cooper, J. C., Dunne, S., Furey, T. & O’Doherty, J. P. Dorsomedial prefrontal cortex mediates 

rapid evaluations predicting the outcome of romantic interactions. The Journal of neuroscience: the 

official journal of the Society for Neuroscience. 2012. 32, 15647–56.  

http://doi.org/10.1523/JNEUROSCI.2558-12.2012  

18. Advances in Computing and Communications, Part III. 2011. 

https://dl.acm.org/citation.cfm?id=2096004  

19. Rathod, D., Vinay, A. A. du texte, Shylaja, S. S. & Natarajan, S. Facial Landmark Localization  

- A Literature Survey. 2014. https://www.semanticscholar.org/paper/Facial LandmarkLocalization-A-

Literature-Survey-Rathod-Vinay/6a7e464464f70afea78552c8386f4d2763ea1d9c. doi:ND 

20. Jianhua Tao, Tieniu Tan, Rosalind W. Picard3. Affective Computing and Intelligent Interaction. 

Springer, Berlin Heidelberg. 2005. 3784, http://doi.org/10.1007/11573548  

21. Pantie, M. & Rothkrantz, L. J. M. Automatic analysis of facial expressions: the state of the art. 



 

63  

  

IEEE Transactions on Pattern Analysis and Machine Intelligence. 2000. 22, 1424–1445.  

http://doi.org/10.1109/34.895976  

22. van Dam, A. Beyond WIMP. IEEE Computer Graphics and Applications. 2000. 20, 50–51. 

http://doi.org/10.1109/38.814559  

23. Pentland, A. Looking at people: sensing for ubiquitous and wearable computing. IEEE 

Transactions on Pattern Analysis and Machine Intelligence. 2000. 22, 107–119. 

http://doi.org/10.1109/34.824823  

24. Zue, V. W. & Glass, J. R. Conversational interfaces: advances and challenges. Proceedings of 

the IEEE. 2000. 88, 1166–1180. http://doi.org/10.1109/5.880078  

25. Bruce, V. What the human face tells the human mind: some challenges for the robot-human 

interface. Proceedings IEEE International Workshop on Robot and Human Communication.1992. 44-

51. http://doi.org/10.1109/ROMAN.1992.253910  

26. Donato, G., Bartlett, M. S., Hager, J. C., Ekman, P. & Sejnowski, T. J. Classifying facial actions. 

IEEE Transactions on Pattern Analysis and Machine Intelligence. 1999. 21, 974–989. 

http://doi.org/10.1109/34.799905  

27. Essa, I. A. & Pentland, A. P. Coding, analysis, interpretation, and recognition of facial 

expressions. IEEE Transactions on Pattern Analysis and Machine Intelligence. 1997. 19, 757– 763. 

http://doi.org/10.1109/34.598232  

28. Claude, F. B., Chibelushi, C., Facial Expression Recognition: A Brief Tutorial Overview, 

Online Compendium of Computer Vision. 2003. doi:ND 

29. Kanade, T., Cohn, J. F. & Yingli Tian. Comprehensive database for facial expression analysis. 

2002. Proceedings Fourth IEEE International Conference on Automatic Face and Gesture  

Recognition (Cat. No. PR00580). 46–53. http://doi.org/10.1109/AFGR.2000.840611  

30. Huang, Y., Liu, Q. & Metaxas, D. A Component Based Deformable Model for Generalized Face 

Alignment. 2007. IEEE 11th International Conference on Computer Vision (IEEE, 2007). 1–8. 

http://doi.org/10.1109/ICCV.2007.4409017  

31. Yu, X., Huang, J., Zhang, S., Yan, W. & Metaxas, D. N. Pose-Free Facial Landmark Fitting via 

Optimized Part Mixtures and Cascaded Deformable Shape Model. 2013.  IEEE International 

Conference on Computer Vision (IEEE, 2013). 1944–1951. http://doi.org/10.1109/ICCV.2013.244  

32. Baltrusaitis, T., Robinson, P. & Morency, L.-P. Constrained Local Neural Fields for Robust 

Facial Landmark Detection in the Wild. 2013. IEEE International Conference on Computer Vision 

Workshops (IEEE, 2013). 354–361. http://doi.org/10.1109/ICCVW.2013.54  

33. Sun, Y., Wang, X. & Tang, X. Deep Convolutional Network Cascade for Facial Point Detection. 

2013. IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2013). 3476–3483. 

http://doi.org/10.1109/CVPR.2013.446  

34. Zhou, E., Fan, H., Cao, Z., Jiang, Y. & Yin, Q. Extensive Facial Landmark Localization with 

Coarse-to-Fine Convolutional Network Cascade. 2013. IEEE International Conference on Computer 

Vision Workshops (IEEE, 2013). 386–391. http://doi.org/10.1109/ICCVW.2013.58  

35. Xudong Cao, Yichen Wei, Fang Wen & Jian Sun. Face alignment by Explicit Shape Regression. 

2012. IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2012). 2887–2894. 

http://doi.org/10.1109/CVPR.2012.6248015  

36. Cristinacce, D. & Cootes, T. Automatic feature localisation with constrained local models. 

Pattern Recognition. 2008. 41, 3054–3067. http://doi.org/10.1016/J.PATCOG.2008.01.024  

37. De la Torre, F. & Minh Hoai Nguyen. Parameterized Kernel Principal Component Analysis:  

Theory and applications to supervised and unsupervised image alignment. 2008. IEEE Conference on 

Computer Vision and Pattern Recognition (IEEE, 2008). 1–8. 

http://doi.org/10.1109/CVPR.2008.4587523  

38. Rapp, V., Senechal, T., Bailly, K. & Prevost, L. Multiple kernel learning SVM and statistical 

validation for facial landmark detection. 2011. Face and Gesture (IEEE, 2011). 265–271.  

http://doi.org/10.1109/FG.2011.5771409  

39. Tong, Y., Liu, X., Wheeler, F. W. & Tu, P. H. Semi-supervised facial landmark annotation.  

Computer Vision and Image Understanding. 2012.116, 922–935. 

http://doi.org/10.1016/J.CVIU.2012.03.008  

40. Belhumeur, P. N., Jacobs, D. W., Kriegman, D. J. & Kumar, N. Localizing Parts of Faces Using 



 

64  

  

a Consensus of Exemplars. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2013. 35, 

2930–2940. http://doi.org/10.1109/TPAMI.2013.23  

41. Dantone, M., Gall, J., Fanelli, G. & Van Gool, L. Real-time facial feature detection using 

conditional regression forests. 2012. IEEE Conference on Computer Vision and Pattern Recognition 

(IEEE, 2012). 2578–2585. http://doi.org/10.1109/CVPR.2012.6247976  

42. Zhanpeng Zhang, Wei Zhang, Jianzhuang Liu & Xiaoou Tang. Multiview Facial Landmark  

Localization in RGB-D Images via Hierarchical Regression with Binary Patterns. IEEE Transactions 

on Circuits and Systems for Video Technology. 2014. 24, 1475–1485. 

http://doi.org/10.1109/TCSVT.2014.2308639  

43. Sukno, F. M., Waddington, J. L. & Whelan, P. F. Springer, Berlin, Heidelberg. 2012. 32– 

41. http://doi.org/10.1007/978-3-642-33863-2_4  

44. Xiangxin Zhu & Ramanan, D. Face detection, pose estimation, and landmark localization in the 

wild. 2012. IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2012). 2879–2886. 

http://doi.org/10.1109/CVPR.2012.6248014  

45. Xiong, X. & De la Torre, F. Supervised Descent Method and Its Applications to Face Alignment. 

2013. IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2013). 532–539. 

http://doi.org/10.1109/CVPR.2013.75  

46. Cootes, T. F., Edwards, G. J. & Taylor, C. J. Springer, Berlin, Heidelberg. 1998. 484–498. 

http://doi.org/10.1007/BFb0054760  

47. Matthews, I. & Baker, S. Active Appearance Models Revisited. International Journal of 

Computer Vision. 2004. 60, 135–164. http://doi.org/10.1023/B:VISI.0000029666.37597.d3  

48. Baker, S. & Matthews, I. Lucas-Kanade 20 Years On: A Unifying Framework. International  

Journal of Computer Vision. 2004. 56, 221–255. http://doi.org/10.1023/B:VISI.0000011205.11775.fd  

49. Gross, R., Matthews, I. & Baker, S. Generic vs. person specific active appearance models.  

Image  and Vision Computing. 2005. 23, 1080–1093. http://doi.org/10.1016/j.imavis.2005.07.009  

50. Kazemi, V. & Sullivan, J. One millisecond face alignment with an ensemble of regression trees. 

2014. IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2014). 1867–1874. 

http://doi.org/10.1109/CVPR.2014.241  

51. Hastie, T., Tibshirani, R. & Friedman, J. H. Jerome H. The elements of statistical learning: data 

mining, inference, and prediction. 2009. springer series in statistics, New York City, USA. doi:ND 

52. Eisenthal, Y., Dror, G. & Ruppin, E. Facial Attractiveness: Beauty and the Machine. Neural 

Computation. 2006, 18, 119–142. http://doi.org/10.1162/089976606774841602  

 

 


