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Abstract: Accurately estimating air–water gas exchanges requires considering other factors besides
wind speed. These are particularly useful for coastal ocean applications, where the sea-state varies
at fine spatial and temporal resolutions. We upgrade FuGas 2.5 with improved formulations of the
gas transfer velocity parametrized based on friction velocity, kinetic energy dissipation, roughness
length, air-flow conditions, drift current and wave field. We then test the algorithm with field survey
data collected in the Baltic Sea during spring–summer of 2014 and 2015. Collapsing turbulence
was observed when gravity waves were the roughness elements on the sea-surface, travelling at a
speed identical to the wind. In such cases, the turbulence driven transfer velocities (from surface
renewal and micro-scale wave breaking) could be reduced from ≈20 cm·h−1 to ≤ 5 cm·h−1. However,
when peak gravity waves were too flat, they were presumably replaced by capillary-gravity waves
as roughness elements. Then, a substantial increase in the turbulence and roughness length was
observed, despite the low and moderate winds, leading to transfer velocities up to twice as large as
those predicted by empirical u10-based formulations.

Keywords: atmosphere–ocean; gas exchange; friction velocity; roughness length; turbulent kinetic
energy dissipation; wave age

1. Introduction

The dynamics of atmosphere–ocean gas exchanges are fundamental to the Earth’s climate, because
the ocean acts as both sink and source of greenhouse gases and dimethyl sulfide (DMS) to the
atmosphere. It is generally assumed that the open ocean uptakes CO2 from the atmosphere, despite
the observed seasonal, inter-annual and regional variability [1–3]. On the other hand, the balances and
fluxes of CO2, CH4, N2O and DMS across the coastal oceans’ surface are heterogenic, due to processes
such as upwelling, plankton productivity, and continental loads of organic matter and nutrients,
from both natural and anthropogenic sources. Consequently, the coastal ocean can be a source of
CO2 [1–10], CH4 [2,9,11,12], N2O [2,9,13–15] and DMS [16] to the atmosphere, at least on a seasonal
basis. The uncertainty about the atmosphere–coastal ocean exchange of CO2 led scientists to question
the overall CO2 budget of the global ocean [3,17].

The atmosphere–ocean gas flux depends on the imbalance of its concentrations in liquid and gas
phases, and on the transfer velocity across the air–water interface. Turbulence is the key factor governing
the transfer velocity, while wind is attributed to be one of the main drivers of turbulence [18–31].
The wind is most often low or moderate over the world’s oceans [18,24,32,33], and particularly in
tropical regions [34], resulting in large gas exchange between atmosphere and ocean [18,24,33]. Hence,
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accurate estimates of gas transfer velocities under low and moderate winds are fundamental for
improving global air chemistry models [35]. Both regional and global models estimate the transfer
velocity from quadratic or cubic dependencies on the wind velocity 10 m above the sea surface (u10),
the most widely used formulation given by Wanninkhof [18]. However, the scientific community
became increasingly aware that the accurate estimation of the atmosphere–ocean gas transfer velocities
and fluxes requires standard universal formulations. Consequently, many studies emerged, assessing
near-surface turbulence [22,23,26–31], focusing on alternative factors like the effect of bubbles from
breaking waves [33,36–39], and even proposing that the sea-surface roughness, resulting from the
wave field, is an overall better proxy for the turbulence mediating the transfer velocity [22,39–44].

Overall, the literature suggests that the transfer velocities of gases and transfer coefficients of heat,
moisture and momentum may depend on the bubble formation by breaking gravity waves (i: the
kbubble term) and the turbulent surface renewal (ii + iii: the kwind term) [21,24,25,33,36–39]. The latter
has two drivers, namely the small eddies set by wind stress (ii) and the turbulence generated by
breaking gravity waves (iii). The effects of breaking gravity waves on the transfer velocity (i.e., i + iii)
dominates under high winds, whereas the effects of small eddies (ii) dominate under low and moderate
winds. Because these small eddies are set by wind drag, they have been considered proportional to the
friction velocity. However, their occurrence and magnitude depend on whether micro-scale (or short
wind-) waves break, depending on the relative velocities of surface wind and water. The relation is
slightly more intricate as, depending on the relative directions and velocities of wind and gravity waves,
either gravity waves or capillary-gravity waves act as the roughness elements on the sea-surface. These
roughness elements have a direct effect on the wind stress and momentum transfer to the sea-surface,
and, consequently, on the turbulence mediating the transfer velocity. On the air-side, the roughness
elements affect the roughness length and friction velocity [25–27,35].

This work focuses on the turbulence-driven gas transfer velocity. Integrating all the related
knowledge is a complex task, particularly when studying the coastal ocean, where the relevant factors
have been demonstrated to vary at shorter spatial and temporal scales. Illustrating this challenge,
the relative proportion between the transfer velocity due to turbulent surface renewal (kwind hereafter)
and to wave breaking (kbubble hereafter) under similar wind velocities depends significantly on the
age of gravity waves under aerodynamic rough air-flow [22]. Wave age is commonly given by the
ratio between the peak wave phase velocity (cp) and 10-m wind speed (u10), or friction velocity (u*).
Representing wave age by cp/u10 [23,45] facilitates the identification of swell, as in fully developed
wind-seas both velocities should be approximate. The difference between wind and wave directions
was also demonstrated as a determinant factor. Hence the failure of traditional models for the gas
transfer velocities and drag coefficients under cross and counter swell [46–51]. Lange et al. [52] stated
the need to estimate the wind velocity relative to the velocity of the surface water. Soloviev et al. [22]
advanced the frequency-direction spectrum of surface waves as a future research direction. Zavarsky
and Marandino [49] corrected the wind velocity by its direction relative to waves to estimate the
transfer velocity. Terray et al. [53] provided a comprehensive formulation where the effective wave
velocity depends on the frequency-direction spectrum of the waves. Pan et al. [51] estimated a
wind-stress component specific to counter-swell. The most complex algorithms for atmosphere–ocean
interactions consider the relative velocities of wind and gravity waves to determine which part of the
wave spectrum—from millimeter scale capillary waves to large gravity breaking waves and swell—act
as roughness elements at the sea-surface [54–56]. Further, evidence emerged on limitations to the
turbulence-mediated transfer velocity under high winds [49,57–61]. Low wind speeds at ~5 ms−1 lead
to the smoothest sea surfaces as per the surface tension relation, but the sea becomes rougher under
lower wind speeds. Consequently, below ~ 5 ms−1, the air-flow gets rougher and the wind stress
coefficient larger [35,62–65].

Several numerical schemes have been developed aggregating many of the drivers of gas transfer
velocity. The COARE is probably the most widely used [63,64,66–70], competing with alternatives
such as the MESSy-Airsea [71] and the FluxEngine [43,44,55,72]. Built upon the original scheme
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by Johnson [73], we developed the FuGas (Flux of Gases) numerical scheme [74–76] with over 150
available formulations, some competing, others complementary, allowing the users to tune their model
from a wide range of driving factors and degrees of complexity. This work reports on a FuGas update
(version 2.5) with formulations that, either directly or indirectly, account for the effects of the wind,
wave field and air-flow type on the gas transfer velocity. The development of the most comprehensive
physically-based alternatives followed Goddard’s [21] statement that “wind is only an external forcing
of the aqueous boundary; although it influences surface waves and near-surface turbulence, it does not
influence gas exchange directly”. Hence, in a FuGas exclusive, the transfer velocity is only dependent
on u*, while the relative air and water motions are considered in the estimation of surface velocity
(us) and roughness length (z0), and then applied to aerodynamically rough-flow and smooth-flow
formulations to estimate u*. Alternative and complementary formulations were tested and compared
using field observations described in the following section.

2. Field Surveys

‘Observed’ CO2 transfer velocities (kw) were inferred from kw = F/(kHcp·∆ppm). F is the CO2

vertical fluxes measured by Eddy–Covariance (E-C) methods. ∆ppm is the difference between
atmospheric and oceanic CO2 measured concentrations. The parameter kHcp is the Henry’s constant,
providing the CO2 solubility in its cwater/ρair form (mol·L−1

·atm−1), and estimated from the measured
surface water temperature and salinity [73–76]. Simultaneously, we measured the atmospheric and
oceanic variables related with turbulence and commonly used in formulations estimating gas transfer
velocities. The surveys took place in the Baltic Sea during May 2014 and May to September 2015,
with data sampled at the atmospheric tower at Östergarnsholm (57◦27′ N, 18◦59′ E), and with the
Submersible Autonomous Moored Instrument (SAMI–CO2) 1 km away and the Directional Waverider
(DWR) 3.5 km away, both south-eastward from the tower [7,12,45,77–79]. The vertical CO2 fluxes
measured by E-C were averaged over 30 min bins, and subject to the Webb–Pearman–Leuning (WPL)
correction [80]. The DWR measured temperatures at 0.5 m depth, taken as representative of the
sea-surface warm layer while not accounting for its cool skin effect. Only the fluxes for which the
wind direction set the SAMI–CO2 and DWR in the footprint of the atmospheric tower (80◦ < wind
direction < 160◦) were used for CO2 transfer velocity estimates. For the u* estimates, we used only
the wind data without flow distortion from land or from our own atmospheric tower (80◦ < wind
direction < 220◦). For an extensive description of the data processing, quality control and selection of
data from open sea sectors, we refer to Nilsson et al. [78] and Rutgersson et al. [79]. Furthermore, time
sequences with abrupt changes in wind properties were discarded, assuming that the homogeneity of
conditions had been severely violated.

3. Modelling with the FuGas

The FuGas framework [74–76] was developed for the estimation of the air–water fluxes of virtually
any gas in the atmosphere, currently having 110 alternative or complementary formulations. The details
about its application are provided in its software tutorial (see Section 5: Code and Data Availability).
The estimation of the transfer velocity from atmospheric and oceanic variables [Equation (1)] takes
into consideration the chemical enhancement by the hydration reaction under low wind speeds (bt),
the turbulence generated by wind drag and wave breaking (kwind), as well as by currents (kcurrent),
and the air entrapment in bubbles from breaking waves (kbubble). The first three of these forcing
functions are weighted by the observed water viscosity, as given by the Schmidt number (Scw),
and scaled to the reference Schmidt number for CO2 in freshwater (Scw = 600) or for CO2 in seawater
(Scw = 660) at 20 ◦C, depending on the original formulations being used [21,24,38,49,81].

kw = (bT + kwind + kcurrent) · (660/Scw)
0.5 + kbubble (1)
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Historically, the transfer velocity has been demonstrated to scale with the turbulent kinetic energy
dissipation at the sea-surface (ε), the wind drag being its main driver [22–24,27,28,30,31,39,53,82].
Emulating this process, the kwind is often estimated from simple empirical formulations, considering the
wind speed at 10 m heights (u10), usually under atmospherically neutral conditions [18,81,83–91] and
disregarding the remaining factors. Some more elaborate formulations rely on the speed of the wind
effectively exerting drag over the sea-surface, i.e., u* [20,31,92–94]. In the FuGas most comprehensive
physically-based formulation, when kwind is estimated directly from u*, the effects of the wave-state
and atmospheric stability become implicit. This is demonstrated in the proceeding sections. Despite
the predominant use of wind-based formulations, both kwind and ε have been proposed to correlate
with the sea-surface roughness better than with the wind [20,22,23,29,40–44,49,57,95].

3.1. Air-Flow Regime

The u* can be estimated from several principles of fluid mechanics applied to the surface boundary
layer and air–water interface. These require a preliminary definition of the air-flow regime over
the sea-surface. Rough air-flow (or turbulent flow) is characterized by the air moving with strong
lateral mixing between adjacent layers. The occurrence of eddies and swirls enhances exchanges
perpendicular to the flow direction, i.e., vertically. The roughness length (z0) and u* scale with this
turbulence (hence z0 and u* are positively correlated); z0 being the theoretical height at which u*

becomes zero (see Section 3.4 for a more detailed explanation on z0). In smooth air-flow (or laminar
flow) the air moves along parallel layers, with the least lateral mixing between adjacent layers. Due to
the lack of flow separation, z0 is expected to increase with decreasing u* [35,55–58,96]. The air-flow
regime is usually estimated from the roughness Reynolds number (Rr = z0·u*/νa), a dimensionless
quantity measuring the ratio of inertial forces (z0·u* in m2

·s−1) to viscous forces (υa also in m2
·s−1).

Exclusively turbulent rough flow has been proposed above Rr = 1 [63], Rr = 2 [96], Rr = 2.3 [52,65,97–99],
Rr = 2.33 [100], Rr = 2.5 [101], or Rr = 3 [102]. Below this threshold is a transient region between
rough and smooth air flows [52,58]. Smooth air-flow has been proposed to occur below Rr = 0.1 [63],
Rr = 0.11 [103], Rr = 0.135 [65] or Rr = 0.5 [100]. Its predominance over the sea-surface increases the
shorter the fetch [52], and thus transient and smooth air flow conditions may be particularly important
at the coastal ocean.

3.2. Friction Velocity

The friction velocity (u*) at the air–water interface is the fluctuating component of the velocity of
turbulent wind. Reworking the traditional formulation for wind stress τ = u*

2ρ, the u* is a function of
the shear stress (τ) exerted by air dragging over the sea-surface and of the fluid’s density (ρ). Due to
momentum conservation, the shear stress must be equal at both sides of the interface, the result being
that u*a × ρa

0.5 = u*w × ρw
0.5, where subscripts a and w stand for the air and water sides, respectively.

Therefore, u*w = u*a(ρa/ρw)0.5 [20,21,24,30,53,93]. Henceforth, u* refers to u*a. In this section are
presented formulations for the estimation of u*, valid for any air-flow regime or exclusive to a specific
air-flow regime.

3.2.1. Friction Velocities under Rough Air-Flow

The FuGas allows u* to be estimated from the uw and vw wind components measured by the
EC method. One frequent option is Equation (2a) [26,52,66,67,95,100,104,105]. The u’, v’ and w’ are
the longitudinal, lateral and vertical wind fluctuations, with the overbars corresponding to the bin
averaged second order crossed central moments. This formulation is implemented in the COARE
2.5. Because it may lead to biased estimates of individual u* measurements [64], Equation (2b) has
been used instead [20,28,39,45,46,51,106,107] and implemented in the COARE 3.0 [64]. Because the
estimates of u* from E-C measurements at different heights may show subtle differences [46,52,103,106],
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the u* measured at height z is converted to the u*s expected at the sea-surface by u*s = u*−0.0007z [52].
From then on, the former u* is replaced by the u*s value.

u∗ =
(
u′w′2 + v′w′2

)0.25
(2a)

u∗ = (−u′w′)0.5 (2b)

The Baltic Sea experiment provided a total of 1304 valid {uw,vw} observations, which, when
applied to these equations, generally yielded resembling values of u* (Figure 1a,b). In only a few
situations, mainly under low winds, did both formulations provide conspicuously different estimates.
In only rare occasions, Equation (2a) yielded complex numbers with negligible imaginary components.
For comparison among formulations, these u* were used together with the u10n to obtain the observed
drag coefficients (CD = u*

2/u10
2). The CD, often increasing with the lowest wind speeds (ranging

from 1 m·s−1 to 3 m·s−1) (Figure 1c), matched previous observations done worldwide [35,46,62–65].
This dynamic has been advanced as a consequence of capillary-gravity waves replacing peak gravity
waves as roughness elements on the sea-surface [35,62], and/or the occurrence of cross or counter
swell [46,50,51,54], and led to u* peaking at u10n ≈ 2 m·s−1.
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Figure 1. Estimated u* from E-C data [Equation (2a,b)], from wind speed at 10 m heights under
atmospherically neutral conditions (u10n) and using drag coefficient (CD) empirical formulations
[Equation (3a–e)], or from the wave age [Equation (4a,b)]. Figure panels are: (a,d) estimated u* and
its relation with wind observed at height z, (b) comparison between u* estimated by Equation (2a,b),
(c) estimated drag coefficients.

Alternatively, the FuGas allows the u* to be estimated from the Drag Coefficient. In this case, the u*

is estimated from u10, the definition of drag coefficient (also frequently mentioned in the literature as
‘wind stress coefficient’) reversed to u* = u10 × CD

0.5, and one among the several empirical formulations
for the estimation of CD from u10, namely Equation (3a) [108], Equation (3b) [92], Equation (3c) [109],
Equation (3d) [46], or Equation (3e) [110]. In the case of Equation (3b), its application clearly departed
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from the observations as well as all other formulations (Figure 1a,c), and thus should be rejected.
Mackay and Yeun [92] developed this CD parameterization simultaneously with a formulation that
also widely overestimated transfer velocities (debated in Section 3.6). The CD and u* forecasted by the
remaining formulations, although reasonably close to each other, (i) tended to slightly overestimate
relative to the bulk of the observations, and (ii) were unable to account for the large CD and u*

episodically occurring under low winds.

CD = (6.1 + 0.63 · u10) × 10−4 (3a)

CD = 4u10 × 10−4 (3b)

CD = 1.3× 10−3 (3c)

CD = (0.95 + 0.07 · u10) × 10−3 (3d)

CD =
(
0.87 + 0.0752 · u10 − 0.000661 · u2

10

)
× 10−3 (3e)

The FuGas also allows u* to be estimated from the wave field following the formulations developed
by Gao et al. [111] for the coastal ocean [Equation (4a)] or offshore conditions [Equation (4b)]. These
formulations use the wind measured at 10 m under atmospherically neutral conditions (u10n), and the
celerity of peak gravity waves (cp). Both formulations predict u* reasonably close to that predicted by
the former CD-based formulations (Figure 1d).

u∗ = 0.028 · u1.333
10n · c

−0.333
p (4a)

u∗ = 0.0362 · u1.333
10n · c

−0.333
p (4b)

3.2.2. Friction Velocities Estimated from the WLLP (under Rough Air-Flow)

In a FuGas exclusive [73–75], u* was estimated from the wind measured at height z (uz) by solving
the Wind Log-Linear Profile (WLLP) backwards [Equation (5)]. This solution congregates the effects
of wind speed, wave state and atmospheric stability, and thus is central to the most comprehensive
physically-based numerical scheme provided in FuGas. The WLLP is the air-side complementary
of the Velocity Defect Law for the aqueous boundary layer [26,27], the boundary condition being
that at height z = 0 the uz−us = 0. Thus, theoretically, the collinear surface velocity us should not
be neglected [63,106]. These laws report to turbulent flow. In the WLLP’s case, that is the rough
air-flow regime.

u∗ =
(uz − us)κ

ln(z) − ln(z0) +ψm
(5)

The estimation of us from the sea-state is presented in Section 3.3. The sea-state effect over the
aerodynamic roughness length (z0) is presented in Section 3.4. The atmospheric stability function (ψm)
was presented in previous FuGas applications [73–75], but new parameterizations derived from data
specific to this Baltic Sea site [45] were added to FuGas 2.5. The von Kármán constant (κ) is 0.4, although
0.41 is also frequently used. As the WLLP must be iteratively solved for convergence [63,64,74,75],
a preliminary guess for u* was required. This could be taken from one of the former solutions: E-C
data, CD-based formulations or wave-based formulations. Only afterwards could the definite u* be
estimated from Equation (5).

3.2.3. Friction Velocities upon Smooth and Transient Air-Flow Regimes

Given that under smooth-flow, u* and z0 are negatively correlated, the u* may be estimated as
u* = Rr·νa/z0. This is the principle also applied to the z0 estimation under smooth-flow [52,63–65,112],
being usually applied the same Rr of the smooth-flow threshold (see Section 3.1). Under transient-flow,
u* is a compromise between rough-flow and smooth-flow formulations. Because the u* estimation
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under smooth-flow requires other properties (such as z0) that need be estimated ahead, it will be
addressed later in Section 3.5.

3.3. Surface Velocity

The wind at 0 heights (u0 ≈ 0) over the sea-surface has a movement relative to the moving surface
water [26,27,52,62,63,106,113–116]. The surface water velocity (us) was shown to affect the wind stress
over the sea-surface, even in the open ocean, most often reducing it, and with an impact on the transfer
velocities [27,114–116]. Hence, FuGas provides four options for its estimation:

(i) Disregarding the velocity of the sea-surface, in which case us = 0.
(ii) Using the collinear component of the water current; this being most suited for estuaries and

tidal lagoon systems. In this case us = w × cosθ, where w is the current speed and θ is the angle
between the wind and current directions.

(iii) Using the collinear component of the sea-surface drift currents induced by waves, estimated
adapting Stokes transport law [117]. In this case us = 4π2

·fp·Hs
2/Lp·cosθ. Note that this is the

average horizontal velocity, i.e., disregarding both the vertical movement and the back-and-forth
horizontal movement of particles on the sea-surface as waves pass by.

(iv) Estimating the surface drift currents adapting Wu’s [62,114] algorithm us = Vn + Vv, where
(Vn) are the wind and (Vv) the wave forcings. The wind-induced drift current is estimated by
Vn = 22·uc, where uc is the drift current component of u* estimated from Equation (6a). CD is the
u10-based drag coefficient and Cv the wave drag coefficient [Equation (6b)]. The wave-induced
drift current, dependent on the wave age, was reworked to Equation (6c).

uc = max
(√

CD −Cv, 0
)
· u10

√
ρa

ρw
(6a)

Cv = 2.634× 10−4
· g−0.1505

(u10

Hs

)0.3011
(6b)

Vv = 0.0251
(
Lp · fp

)0.1
· u0.9

10 (6c)

During the Baltic Sea experiment the surface water velocity was always very low, and only on
rare occasions the estimates from available formulations slightly exceeded 10% of the wind velocity
(Figure 2a). This is in accordance with the bulk of the observations reported in previous works.
According to Wu’s formulation, the wind-induced drift currents are a fundamental component of us

(Figure 2b). Nevertheless, us has little relevance for the estimation of u* from Equation (5), and is
particularly irrelevant under low winds (Figure 2c).
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height under atmospherically neutral conditions (u10n). (b) The wind- and wave-induced drift currents
estimated from Wu [62,114] are related with the wave age (cp/u10), where cp is the celerity of peak
waves. (c) The resulting u* is compared with the estimated neglecting the us.

3.4. Roughness Length

Both the Law of the Wall (LOW) and the Velocity Defect Law assume that in contact with the
surface there is a sub-layer with laminar flow. Within this sublayer, stress is predominately carried
by viscous transfer and, although there may be an effective wind velocity (i.e., uz > 0 with z ≈ 0),
the turbulent velocity tends to be zero (i.e., u* = 0). The depth of this sub-layer corresponds to the
roughness length z0, and may tend to be infinitesimal depending on air-flow regime and roughness
elements over the sea-surface. Upon rough-flow the roughness elements protrude the laminar flow
sub-layer, i.e., z0 is smaller than the height of the roughness elements, causing the air-flow to separate
from the sea-surface. In this case, z0 increases with increasing u*. Upon transient-flow the roughness
elements have approximately the same height as in the laminar flow sub-layer. Upon smooth-flow
the roughness elements stay within the laminar flow sub-layer, i.e., z0 is larger than the height of the
roughness elements, causing the air-flow to not separate from the sea-surface. In this case, z0 increases
with decreasing u*. Either peak gravity waves or shorter waves, even on the capillary-gravity range,
can be the roughness elements on the sea-surface. Wu [100,113] proposed that the roughness elements
are the waves travelling sufficiently slower than the wind for wakes to generate in their front, and the
flow to separate.

3.4.1. Roughness Length under Rough Air-Flow

Under rough (turbulent) air-flow, the roughness length (z0) scales with turbulence, and thus with u*.
The bulk of the empirical formulations assume that the roughness length depends exclusively on gravity
waves as the roughness elements on the sea-surface. The simplest of them, by Charnock [118], proposes
a z0 (units in m) dependency on u* [Equation (7) and Figure 3]. Here, g is the gravitational acceleration
constant, and Charnock’s coefficient is 0.01 < αCh < 0.02 over water surfaces [52,53,64,103,112].

z0 =
αCh · u2

∗

g
(7)
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Figure 3. Roughness length (z0) predicted by empirical formulations. Additional parameters used
in the plot are u*, kinematic viscosity of air (υa) and roughness Reynolds number (Rr = z0·u*/νa).
Wu (1994) label represents Wu [35] formulation for z0 under rough air-flow. Wu (1980) label represents
Wu [100] formulation for z0 under any air-flow regime.

Because Charnock’s [118] formulation could not reflect the influence of the wave field, several
authors proposed updating this classical formulation with a αCh dependency on the wave age (cp/u*),
as given by Equation (8) [97–99,107,119–121]. The wave age is given by the celerity of peak waves (cp)
relative to u*. Usually, 1 < cp/u* < 1000. The larger the ratio, the older the waves. Different ACh and
BCh constants were proposed by the respective authors. Their values usually mean z0 increasing with
younger waves [98,99,107,119–121] [Figure 3/‘Johnson et al. (1998)’]. Only the coefficients proposed by
Toba et al. [97] opposed it, yielding a z0 increasing with older waves [Figure 3/‘Toba et al. (1990)’].

zCh = ACh

( cp

u∗

)BCh
(8)

Representing wave age by cp/u10 instead facilitates the identification of swell, as in fully developed
(mature) wind-seas both velocities should be approximate [97]. Swell corresponds to older waves
travelling faster than the wind, and in this case aged > 1, obviously aside from waves traveling
in other directions. Gao et al. [111] developed a z0 parameterization relying exclusively on this
wave age, with a calibration for the coastal ocean [Equation (9a)] and another for offshore conditions
[Equation (9b)]. Both formulations showed a z0 generally scaling with u*. Nevertheless, matching the
smooth flow theory, under the lowest u* and z0, typical of smooth air-flows, the inverse scaling took
place, i.e., z0 increased with decreasing u* and Rr (Figure 3). The off-shore formulation fit particularly
well the Baltic Sea data: under the lowest u* it predicted z0 matching exactly that expected for smooth
air-flows. The larger z0 variability under similar u*, but given different wave ages, demonstrated an
enhanced ability of this formulation to adapt to local conditions.

z0 = 10 · e−
κ

0.028 (
cp

u10
)

0.333

(9a)
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z0 = 10 · e−
κ

0.0362 (
cp

u10
)

0.333

(9b)

Anctil and Donelan [106] added extra factors to the z0 dependency on wave age. First, they found
that the dimensionless roughness length scaled with the inverse wave age. Solved for z0, it leads to
Equation (10a). This formulation also showed a z0 generally scaling with u*, but inverting the scaling
under conditions corresponding to smooth air-flows (Figure 3). This formulation also fit well the Baltic
Sea data sampled under the lowest u*, predicting z0 matching the expected for smooth air-flows. This
formulation also showed an enhanced ability to adapt to local conditions, demonstrated by the larger
variability of z0 estimated under similar u*, but given different wave ages. Anctil and Donelan [106]
found that the dimensionless roughness length scaled equally well with the mean squared slope of the
wave field (θS, but also named <S2> [20,27]). Solved for z0, it leads to Equation (10b). Finally, they
merged both factors in a multiple regression, which, solved for z0, leads to Equation (10c). Our data
did not include measurements of θS necessary for the implementation of Equation (10b,c).

z0 = 0.925× 10−4
·Hs

(
u10

cp

)3.22

(10a)

z0 = 0.6375× 103
·Hs · θ

6.76
S (10b)

z0 = 0.565 ·Hs

(
u10

cp

)1.28

· θ3.83
S (10c)

Taylor and Yelland [110] (following Hsu [122]) proposed a z0 dependency on the wave slope
as estimated from the peak wave length (Lp) and significant wave height (Hs) [Equation (11a)],
and calibrated by Aw = 1200 and Bw = 4.5. This formulation also showed a z0 generally scaling with
u*, but inverting the scaling under conditions corresponding to smooth air-flows (Figure 3); it also fit
well the Baltic Sea data sampled under the lowest u*, predicting z0 matching that expected for smooth
air-flows. This formulation also showed an enhanced ability to adapt to local conditions, demonstrated
by the larger variability of z0 estimated under similar u*, but given different wave ages. Taylor
and Yelland [110] (following Donelan [103] and Anctil and Donelan [106]) presented an alternative
formulation for a z0 dependency on, simultaneously, the wave age and slope [Equation (11b)]. However,
this formulation was subsidiary, with its authors not attributing a value for Cw. Preliminary tests
showed that the Bw and Cw terms could easily become antagonistic. We tested the calibration Aw = 1200,
Bw = 1.5 and Cw = 3.5. This calibration lost the good fit to the transient-smooth air-flow conditions,
bringing back the behavior more characteristic of the Charnock-based formulations (Figure 3).

z0 = Aw ·Hs

(
Hs

Lp

)Bw

(11a)

z0 = Aw ·Hs

(
Hs

Lp

)Bw(u∗
cp

)Cw

(11b)

Pan et al. [123] went back to the z0 dependency on the inverse wave age and size, proposing a
new three-parameter formulation where the dimensionless roughness length scales with the u*-based
inverse wave age, i.e., z0/Hs u*/cp. We reformulated it into Equation (12a). In a secondary formulation,
they also revived the αCh u*/cp. We reformulated it into Equation (12b), which is basically Equation (8)
with new coefficients. These formulations brought back the behavior more characteristic of the
Charnock-based formulations (Figure 3).

z0 =
Hs

1.3431

(
u∗
cp

)2.82

(12a)
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αCh =

(
u∗
cp

)1.4

×
1

1.0618
(12b)

Hwang [124] proposed that the vertical scales of properties of the air–water interface, like the drag
coefficient or z0, should depend on the (horizontal) wave length. Consequently, both the drag coefficient
and z0 increase non-linearly with wave age for very young waves, while decreasing non-linearly
with wave age for very old waves. Hwang [124] tuned his formulation for deep water conditions.
We adapted it for any water depth [Equation (13)]. In this case, ω* is the inverse wave age. This
formulation uses the same parameters (wave age and length) as COARE [64] z0 formulation adapted
from Oost et al. [125].

z0 =
Lp

2
exp

(
−κ

(
0.0122w0.0704

∗

)−0.5
)

(13)

The Baltic Sea data only comprehended the range of older waves, for which Hwang [122] predicted
that z0 decreases with wave age. Our data did not comprehend the extremely young waves for which
Hwang [122] proposed a z0 increasing with wave age. For waves with different Lp to be similarly
old, the faster travelling, longer waves occurred under higher winds, and attained higher heights.
Therefore, although here was used Lp, other metrics such as Hs or the peak wave frequency (fp)
worked similarly. Due to this similitude, within the range of older waves, our adaptation of the
formulation by Hwang [122] behaved reasonably similarly to our adaptation of the formulation by
Pan et al. [123] (Figure 3), and thus this formulation also showed a behavior more characteristic of the
Charnock-based formulations.

3.4.2. Roughness Length under Smooth Air-Flows

Contrary to the rough-flow regime, upon smooth-flow, the roughness length (z0) increases with
decreasing u*, due to the lack of flow separation [35,62–65,112]. The most usual parametrization is
z0 = Rr × νa/u*, with the Rr value given by the smooth-flow threshold, namely Rr = 0.11 [52,64,103,112]
or Rr = 0.135 [65] (Figure 3). An alternative formulation with unconstrained Rr was advanced by
Wu [35,62]. It proposes that at u10 ≈ 5 m·s−1 actually occurs the smoothest air-flows over the sea-surface,
below which the sea-surface gets rougher with decreasing winds, because capillary waves (whose
restoring force is the surface tension σ) replace the mild gravity waves (whose restoring force is the
acceleration constant g) as roughness elements. This shift leads to both drag and z0 increasing with
decreasing u*. However, once the shift is done, the drag increase can be so intense as to turn the
air-flow rough again, even upon light breezes (Figure 3). Wu’s algorithm [Equation (14a)] has the
water surface tension (σ) governing the wind–wave interactions. The surface tension (N·m−1) of pure
water (σ0) was estimated from Equation (14b), accounting for the water temperature (Tw in K) and
considering a critical water temperature Tc = 647.1K [126]. Rectification for salt water surface tension
(σw) was done by Equation (14c), using the surface salinity (S in ppt) [127].

z0 = 0.18
σw

ρwu2
∗

(14a)

σ0 = 235.8× 10−3
[Tc − Tw

Tc

]1.256[
1− 0.625

(Tc − Tw

Tc

)]
(14b)

σw = σ0
(
1 + 3.766× 10−4S + 2.347× 10−6S(Tw − 273.15)

)
(14c)

3.4.3. Definite Estimation of Roughness Length

Theory says that under typical smooth flows, z0 should be exclusively set by the smooth-flow
term, under typical rough flows z0 should be exclusively set by the rough-flow term, and only under
the transient regime should it be a function of both. Yet COARE [64] always adds both terms. Since
when one term is maximized the other is minimized—tending to infinitesimal—always adding them
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yielded results almost identical to using exclusively the term adequate for each regime (Figure 4a–c).
Besides, it is computationally simpler and more efficient. Choosing the maximum between each
term also yielded almost identical results. Another option was averaging between both terms. Using
the arithmetic mean yielded slightly different results (Figure 4d–f). The fundamental difference was
that z0 was estimated slightly smaller. However, using the geometric mean yielded widely different
results as the rough-flow infinitesimal terms became preponderant. Consequently, with low u* the
definite z0 also becomes infinitesimal (Figure 4g–i), contradicting general theory on laminar flows.
Geometric means never yielding infinitesimal z0 could only be obtained if the rough-flow term also
never yield infinitesimal z0, which was only satisfied by the formulations by Actil and Donelan [106]
[Equation (10a)], Taylor and Yelland [110] [Equation (11b)] and Gao et al. [111] [Equation (9a)]. Using
an analogous to the double resistance estimator (i.e., 1/z0 = 1/zrough + 1/zsmooth) yielded results similar
to those when using the geometric mean. The smooth-flow term can be estimated from a fixed-Rr

formulation or from the formulation by Wu [35,62]. Either application yielded widely different results
(Figure 3). Since z0 cannot be directly measured, it was impossible to determine which numerical
scheme provided the best estimates.J. Mar. Sci. Eng. 2020, 8, x FOR PEER REVIEW 13 of 26 
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Figure 4. Definite estimation of roughness length (z0) congregating the smooth and rough air-flow
regimes. Congregation of zsmooth and zrough was additive (a–c), their arithmetic mean (d–f) or their
geometric mean (g–i). Roughness length under rough air-flow (zrough) was estimated from the
formulations by Johnson et al. [98] [Equations (7) and (8)], Pan et al. [123] [Equation (12a)] or Taylor
and Yelland [110] [Equation (11a)]. Roughness length under smooth air-flow (zsmooth) was estimated
from the formulation by Wu [35,62] [Equation (14)] (upper trajectories with larger Rr) or formulations
relying on a fixed Rr (bottom trajectories closer to the Rr = 0.135 threshold). In bottom-right panel is
only shown the geometric mean between Taylor & Yelland [110] and Wu [35,62]. Roughness Reynold
number estimated from Rr = z0 × u*/υa.

Alternatively, Wu [100] also advanced a general formulation for z0 under any air-flow regime by
combining the formulations related with rough and smooth air-flows [Equation (15)]. The υw is the
kinematic viscosity of water and β is a constant. Wu proposed αCh = 0.0185 and 2 < β< 2.5. These β
values implied that gravity waves dominate the determination of z0. Oddly, the smooth-flow component
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of Equation (15) was inversed relative to the previous smooth-flow formulations. The resulting z0 was
far off the predicted values given by other algorithms (Figure 3), and followed a narrow logarithmic
trend that was basically dependent on u*, while the kinematic viscosity and surface tension of water
were irrelevant.

z0 =
αCh · u2

∗

g

(
νw · u∗
σ

)β−2
(15)

Our analysis suggests that, although larger gravity waves are determinant of z0 for
coastal ocean, other factors are equally important, namely the waves on the capillary-gravity
range [20,28,30,31,35,62,94,128] and the smooth air-flow [35,62–65,112].

3.5. Converging Friction Velocities

One of the purposes of FuGas is to be applied to atmospheric and oceanic L4 data with large spatial
and temporal coverage. In such cases, since direct observations are not available, u* must alternatively
be estimated from empirical formulations. The FuGas user may opt for one simple parameterization,
or its comprehensive iterative estimation involving the wind log-linear profile: first, a preliminary u* is
estimated, and then z0 and u* must be solved for convergence. In both COARE [63,64] and previous
FuGas algorithms [74–76], convergence was generally attained after three iterations. Although the
new FuGas schemes could be substantially more complex, convergence was still attained within three
iterations, at most, and often with only one or two. Once convergence was achieved, we compared
the forecasted u* with the u* estimated from direct observation obtained through the EC method. Yet,
there was no guarantee that the EC-based u* reflected the true u*, particularly under the low winds,
when turbulence is reduced and EC method is prone to failure, as previously demonstrated for this
Baltic Sea station [7].

The estimation of the preliminary u* from a CD-based formulation was an important step.
Following the Smith [108] formulation in Equation (3a) leads to the best fits (Root Mean Square
Deviation RMSD ≈ 0.0348 m·s−1). The worst estimation was from the formulation by Mackay and
Yeun [92] given in Equation (3b) (RMSD ≈ 0.155 m·s−1). The z0 estimation was also determinant.
Its smooth-flow term was better estimated from a fixed-Rr formulation (RMSD ≈ 0.0343 m·s−1) than
from Wu’s [35,62] smooth-flow formulation given in Equation (14) (RMSD ≈ 0.0376 m·s−1) (Figure 5).
The z0’s rough-flow term was best estimated from the Pan et al. [123] formulation in Equation (12) or
the Gao et al. [111] formulation for the coastal ocean in Equation (9a) (RMSD ≈ 0.0343 m·s−1), and was
worst estimated from the Toba et al. [97] formulation in Equations (7) and (8), or Gao et al. [111]
formulation for the open ocean in Equation (9b) (RMSD ≈ 0.0355 m·s−1) (Figure 5). The rough-flow and
smooth-flow terms need to be merged under transient air-flows. The tests were not conclusive about
which z0 integration method should be preferred. Yet, estimating their geometric average generally
provided the best fits (RMSD ≈ 0.0343 m·s−1). On the opposite extreme, integrating z0 rough-flow and
smooth-flow terms in Equation (15) [Wu 100] led to largely overestimated u* (RMSD ≈ 0.141 m·s−1).
The choice of critical Rr for smooth-flow or rough-flow thresholds was of little relevance, and so was
the choice of surface velocity from drift currents.
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Figure 5. Definite estimation of u* iterating for convergence together with roughness length (z0).
Colored marks represent the roughness length under rough air-flow estimated following, Charnock [118]
[Chk55, Equation (7)], Gao et al. [111] formulations for the coastal ocean [G09Co, Equation (9a)] or
off-shore [G09Of, Equation (9b)], Pan et al. [123] [PanZC, Equation (12b)] or Toba et al. [97] [Tob90,
Equations (7) and (8]). Roughness length under smooth air-flow was estimated following Wu [35,62]
[Equation (14)] or formulations relying on a fixed Rr. Smooth and rough air-flow terms under transient
air-flow regimes were added, arithmetically averaged or geometrically averaged.

When the numerical scheme was fine-tuned, the empirical estimation of u* was generally close
to its estimation from direct observation obtained through the EC method (Figure 5), although often
slightly overestimated. Most of this overestimation occurred under lower wind speeds, when the
air-flow should be transient or smooth, and the EC-based estimations may be biased. Melville [129]
proposed that the shift from rough to transient air-flows occurs at u* from 0.15 to 0.3 m·s−1. Wu [35]
proposed this threshold at u10 ≈ 5 m·s−1, which in our data corresponded to u* predominantly between
0.05 and 0.2 m·s−1, and median at ≈ 0.13 m·s−1. Below this transient region, the empirically estimated u*

was larger than that estimated from direct observation (Figure 5). The lack of precision of EC methods
under such low winds was already debated. The present observations match previous observations
and models where, under low winds, the u* decreases less sharply associated with decreasing wind
velocity [58], while drag and transfer coefficients increase [35,62–65,98]. To justify such an effect,
Wu [35] proposed that the sea surface is aerodynamically rough even under light winds, on the account
of capillary-gravity waves replacing gravity waves as roughness elements on the sea-surface.

3.6. The kwind Term

The experiment provided a total of 163 observations with valid transfer velocities, of which
only 94 included the wave properties necessary for simulations using the most advanced algorithms
available in the FuGas. Still, starting with the simplest, i.e., the empirical u10-based formulations,
the formulations by Jacobs et al. [83] and Wanninkhof and McGillis [84] estimated respectively the
largest and the lowest transfer velocities under the observed wind range (Figure 6a). The formulation
by Wanninkhof [18] is the standard in Earth-System Models, and roughly represents the average
behavior of u10-based formulations. Their application should use the wind speed at a 10 m height
under atmospherically neutral conditions (u10n). If that is not the case during field experiment,
the equivalent u10n must be estimated from the data. These standard transformations, although
derived from the wind log-linear profile, neglect the surface velocity, and that z0 is variable. However,
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the FuGas numerical scheme allows accounting for them. Wanninkhof’s [18] formulation applied to
this u10n yields RMSD = 9.42 cm·h−1 (Figure 6a). All u10-based formulations largely misfit the observed
transfer velocities under the lowest winds and swell. This had already been demonstrated for the
Östergarnsholm setup [7]. Several explanations have been advanced for the swell interference in the
transfer velocities. The older and larger waves have been demonstrated as having a direct interaction
with the atmosphere, and as interfering in the properties of the shorter wind-waves that often regulate
the turbulence and air-flow over the sea-surface [77–79]. The interference of swell was demonstrated
to be stronger with lower winds, steeper waves and/or when opposing the wind direction [50,51,54],
which was precisely our case. Disregarding the wave-state has already been shown to introduce
systematic bias to the calibration of bulk flux formulations for the transfer of heat and moisture from
direct observation obtained through EC method, particularly under near-collapsed turbulence [48].
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Figure 6. Estimation of kwind term. (a) The transfer velocity standardized for CO2 in fresh-water at
20 ◦C (k600) estimated from (EC data) direct observation obtained through EC method for 2014 and
2015, and relation with (u10n) wind speed (cp/u10n) and wave age. Waves aged cp/u10n > 1 correspond
to overdeveloped sea. The EC transfer velocities were compared with (a) those estimated from the
u10-based formulations by Jacobs et al. [83] (Jac99), Wanninkhof [18] (Wan92) and Wanninkhof and
McGillis [84] (WMG99), and (b–f) with comprehensive physically-based algorithms (u*-based) by
Esters et al. [30]. [Equations (17) and (18)]. (a,b) k600 estimated from Esters et al. [30] algorithm and its
relation with u*. (d–f) validation of k600 estimated from from Esters et al. [30] algorithm against k600

estimated from direct observation obtained through EC method.

Turbulence-driven transfer velocities should be more accurately inferred from the wind effectively
exerting drag on the sea-surface, i.e., u*. The most frequently used u*-based formulation was developed
by Jähne et al. [94] [Equation (16a)] from wave tank experiments. In this formulation the transfer
velocities were attributed to surface renewal by micro-scale wave breaking. Hence, this formulation is
adequate for comprehensive physically-based algorithm splitting the kwind and kbubble components of
transfer velocity [37–39], being usually conjugated with the kbubble formulation by Woolf [38]. This
specific ensemble yields RMSD = 9.33 cm·h−1. Mackay and Yeun [92] performed wave tank experiments
to measure the transfer velocities of 11 organic solutes with solubilities ranging from extremely low to
extremely high. Their formulation [Equation (16b)], representing the average behavior of these organic
molecules, yields extreme transfer velocities about 10 times higher than everything else ever reported.
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Zhao et al. [40] used data from the open ocean, coastal ocean and lakes, with wind speeds ranging
from 1 m·s−1 to 34 m·s−1. They calibrated a generalist formulation [Equation (16c)] with the effect of
wave breaking implicit, and thus unsuited for comprehensive physically-based algorithms. Under the
stronger winds, this formulation estimated too low transfer velocities, resulting in RMSD = 12.5 cm·h−1.
Landwehr et al. [31] developed two formulations with similar structures but calibrated to different
data sets [Equation (16d,e)]. Their negative intercepts led to kwind estimates lower than those by
the previous formulations, and to the estimation of kwind = 0 for u10 = 2.5 m·s−1 and u10 = 2 m·s−1,
respectively. This opposes the general acceptance of effective transfer velocities even under zero winds.
Thus, despite RMSD of 8.7 cm·h−1 and 8.24 cm·h−1, respectively, they are unsuited for application at the
coastal ocean featuring frequent low winds. Other formulations use Equation (16f) to relate the transfer
velocity to the water-side friction velocity (u*w) [20,93,94]. In this case, the βs and ns parameters reflect
the effects of capillary-gravity waves, surface tension and surfactants. Scw is the Schmidt number of
water, dependent on temperature and salinity. We could not test these formulations due to the lack of
data on shorter waves. All these equations yield kwind in units of m·s−1.

kwind = 1.57 · 10−4
· u∗ (16a)

kwind = 34.1 · 10−4
· u∗ (16b)

kwind = 61.79 · u1.22
∗ (16c)

kwind = 104.8 · u∗ − 7.3 (16d)

kwind = 101.6 · u∗ − 5.7 (16e)

kwind = β−1
s · Scw

−ns · u∗w (16f)

Evidence points to kwind scaling preferably with the turbulent kinetic energy dissipation rate
ε [19,22–24,27,28,30,31,39,53,82] than with u*. The major difficulty with this approach is to determine
the vertical profile of ε and its integration depth. In their recent algorithm, Esters et al. [30] start from
Equation (17a), where A is a scaling constant and υw the kinematic viscosity of water. Following
the Law of the Wall, ε at the surface (εs) was given by Equation (17b) [21,27,30,39,53]. However,
this formulation only accounts for shear-induced turbulence, and not for turbulence from wave
breaking. The integration depth z corresponds to the thickness of the viscous sub-layer, being
inversely proportional to the wind speed [Equation (17c)]. Esters et al. [30] observed an off-set (here
named δ) ≈ 0.394 between model forecasts and their observations. Equation (17a–c) were integrated
into Equation (17d). However, its incorporation in FuGas 2.5 conjugated with Equation (1) required a
constant with the value 660.

kwind = A(εs · νw)
0.25 (17a)

εs = δ
u3
∗w
κz

(17b)

z = 11
νw

u∗w
(17c)

kwind = A · u∗w
(
δ

11κ

)0.25
· 660−n (17d)

A can either be a proportionality constant or scale allometrically with ε as A = βεγ, β and γ being
fixed coefficients. Esters et al. [30] propose specific A for CO2 and DMS, and list the coefficients for
their alternative calibrations. Beware the typo in Esters et al. [30] publication, with β erroneously
having negative signs. The CO2 coefficients are also provided in FuGas, whereas for other gases
these must be updated from the literature. This formulation calibrated with n = 1/2, constant A,
z0 estimated from the wave field, and conjugated with the kbubble formulation by Woolf [38], showed a
mild variability in the gas transfer velocities forecasted under similar wind speeds, since they now
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depended on ε instead (Figure 6). However, they did not differ much from the previous formulations,
and still largely misfitted the observed transfer velocities (Figure 6). The best fit was provided when
A = 0.25 and δ = 1, yielding RMSD = 7.62 cm·h−1. Given the large variability in the observed transfer
velocities, the uncertainty about their accuracy, and their systematic bias under swell, no solution can
be considered overall better. The model implementation where A scaled with ε did not improve the fit,
yielding RMSD = 10.28 cm·h−1 (Figure 6).

The kwind effect on transfer velocity is regulated by the Schimdt number, i.e., the ratio between the
kinematic viscosity of water and the molecular diffusivity of the trace gas in water [see Equation (1)]. Its
exponent n was demonstrated to scale with the wave field, being usually considered 2/3 for a smooth
solid wall model to 1/2 for a free wavy surface [20,21,30,49,93,94]. Esters et al. [30] also provide the
possibility of n depending on u*w instead of the wave field [Equation (18)]. However, when included
in FuGas 2.5, this represents an implicit dependency of n from the wave field.

n = −0.22 · log10(u∗w) + 0.13 (18)

Applied to the Baltic Sea data, the variable n exponent was generally 0.58 < n < 0.71 with just four
exceptions going beyond to a maximum of 0.86. This update did not improve the model fit to our data
(Figure 6), yielding a RMSD = 13.9 cm·h−1. This was not surprising, since the Esters et al. [30] LOW
formulation is only valid in situations in which no waves are present, so that the prevailing turbulence
is purely shear induced. It was conjugated with the kbubble formulation by Woolf [38], which considers
only the whitecap fraction relation with bubble-mediated gas transfer, and not with turbulence induced
by breaking waves, as some other kbubble formulations do. Therefore, this ensemble neglects the gas
transfer mediated by turbulence from wave breaking.

Terray et al. [53] estimated the depth profile of ε accounting for breaking waves and for a transition
layer dependent on the wave size. From it, Esters et al. [30] developed an alternative formulation
that we adapted [Equation (19a)]. In this case, ċ is the effective wave velocity, related with the energy
flux from wind to waves, and given by Equation (19b) after reworking the original model. However,
the original fit by Terray et al. [83], based exclusively on young waves, applied to old waves, led
to negative ċ/cp and consequently negative ċ, both being illogical. This happened in most of the
observations in our survey. We re-fit Terray’s data to a Weibull curve (Figure 7a) and reworked to
estimate ċ [Equation (19c)]. Under low and moderate winds, the waves were generally old (u*/cp < 0.05)
and the kwind was particularly sensitive to the x-axis displacement of the Weibull (= 18) and to its
increment rate (= 2) determining the shape of this side of the function. Under higher winds the waves
were younger (u*/cp > 0.05) and the kwind became also sensitive to the asymptotic y (= 0.5).

kwind = A
(
δ

u2
∗w

.
cνw

Hs

)0.25

.660−n (19a)

 ∀
u∗
cp
≤ 0.075 :

.
c = 10.276 ∗ u∗ − 0.258cp

∀
u∗
cp
≥ 0.075 :

.
c = 0.5cp

(19b)

.
c = 0.5cp

(
1− e

−(18 u∗
cp )

2
)

(19c)
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Figure 7. Estimation of kwind term adapting the algorithm by Esters et al. [30] based on the formulation
by Terray et al. [53] for the ε depth profile [Equation (19)]. (a) Terray et al. [53] function and FuGas
re-fit; (b) and (c) Esters et al. [30] calibration; (d) Esters et al. [30] validation against EC-derived transfer
velocities. (T96 data) Terray et al. [53] data, (T96 fit) Terray et al. [53] fit, and (FuGas fit) FuGas re-fit of
effective wave velocity. (EC data) transfer velocities estimated from the Eddy-Covariance fluxes.

This formulation showed an improved ability to adapt the transfer velocity forecasts to the
local conditions (Figure 7a,b). However, different calibrations adapted better to different groups
of observations, and no specific calibration could adjust better to the whole set of observations.
Consequently, the new transfer velocity fits to the transfer velocities estimated from direct observation
obtained through the EC method were not better than the fits provided by the previous algorithms
(Figure 7d, RMSD = 8.4 cm·h−1).

4. Conclusions

Transfer velocities obtained through the EC method are inherently subject to large uncertainty,
making model calibration, validation and comparisons among formulations difficult. Nevertheless,
our simulations showed that comprehensive physical-based algorithms are more sensitive, and better
adaptable to local conditions, than simpler u10-based empirical formulations (Figure 8a). The more
comprehensive algorithms in FuGas 2.5 included factors besides the wind speed that have been proved
fundamental drivers of transfer velocities, such as sea-surface roughness and atmospheric stability.
In the coastal ocean, and particularly under low winds, these factors lead to gas transfer velocity
estimates systematically larger than the estimates by empirical u10-based formulations. Nevertheless,
many other factors are still to be added, and those included can still be improved. One such
important update is the effect of shorter (capillary) waves, when these act as roughness elements on
the sea-surface [130–132], leading the air-flow to separate. Other potentially important updates are the
saturation of the turbulent transfer velocities [49,57–61] and its dependency on the relative air and
water motions [49]. Empirical u10-based formulations can see their predictive ability improved if using
the wind speed under atmospherically neutral conditions (u10n) (Figure 8b). In fact, after wind speed,
atmospheric stability is probably the most important factor governing gas transfer velocity across the
atmosphere–ocean interface.
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