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Resumo 
 
A dispersão de organismos é um processo essencial que promove o fluxo genético e  

contraria a diferenciação das populações. A falta de barreiras aparentes no ambiente marinho 

significa que os organismls podem alcançar a panmixia em escalas espaciais muito menores do 

que as que se verificam no meio terrestre. Até recentemente, a genética de populações apoiava-

se num conjunto relativamente pequeno de marcadores genéticos para fazer inferências sobre a 

conectividade de populações em grandes escalas espaciais. No entanto, recentes avanços nas 

técnicas moleculares produziram um conjunto de novos métodos de sequenciação de DNA, 

comumente referidos como Sequenciação de Nova Geração (NGS), que permitem a obtenção de 

milhares de marcadores do genoma, aumentando potencialmente a resolução dos dados. 

RADseq é um tipo de técnica NGS que emprega enzimas de restrição para cortar o genoma nos 

locais de restrição, produzindo milhares polimorfismos de nucleotídeo único (SNP, single-

nucleotide polymorphism). 

 

Buccinum undatum é um neogastropode amplamente distribuído em ambos os lados do 

Atlântico Norte, desde o Canadá até ao Golfo da Biscaia podendo atingir profundidades de 1000 

m. Esta espécie é o maior gastrópode marinho comestível do Atlântico Norte, com um 

comprimento máximo de concha de 150 mm. Alimenta-se principalmente de bivalves e de 

pequenss crustáceos.  B. undatum constitui uma pescaria relevante no Reino Unido desde 1922, 

só em 2017 foram desembarcadas 20.800 toneladas, correspondendo à sexta maior pesca de 

marisco no valor de 22,7 milhões de libras. Apesar de sua importância comercial, apenas três 

estudos se concentraram no fluxo genético e estrutura populacional de B. undatum. Todos esses 

estudos concordaram que o B. undatum pode ser geneticamente diferenciado ao longo de 

dezenas de quilómetros e que as populações são mais divergentes em baías e enseadas do que 

aquelas mais afastadas da costa. Esses estudos sugeriram um modelo de stepping-stone para 

uma grande população semi-contínua.  

 

No total, 195 indivíduos foram coletados em 13 locais de amostragem do Mar do Norte, Canal 

da Mancha e Mar da Irlanda de Dezembro de 2018 a Fevereiro de 2019. Destes 191 indivíduos 

foram escolhidos para prosseguir com a preparação da biblioteca de DNA de dupla digestão 

(DdRAD) usando ApeKI e BamHI-HF. A sequenciação foi realizada no Illumina HiSeq X Ten. 

No total, obtiveram-se 1.427.813.991 reads. O controle de qualidade e a desmultiplexação 

foram realizados com o software STACKS e os parâmetros: m = 3, n = 3 e M = 3. 4. Do total de 

reads, 19% não tinham código de barras, 0.08% foram removidos devido à baixa qualidade, 
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4.4% não possuíam local de corte RAD, resultando em 1.303.931.081 reads. Depois da 

remoção dos indivíduos com menos de 20x de cobertura, permaneceram 141 indivíduos, o que 

corresponde a 6 a 15 indivíduos por local amostrado, representando 92.8% de todas as reads 

retidas (1.210.090.726). A cobertura obtida variou de 21.41x a 71.52x (média = 48.2x, S.D. = 

13.2x). Os SNPS retidos correspondem ao que estavam simultaneamente presentes em 70% dos 

locais de amostragem, em 80% dos indivíduos, tinham uma frequência alélica menor maior que 

5% e não excederam uma heterozigosidade máxima de 50%. Removeram-se ainda todos os 

SNPS que não estavam em Hardy Weinberg Equilibrium (HWE) e estavem em disequilibrio de 

ligação (linkage disequilibrium). No final da filtragem foram retidos 885 SNPs. Foram 

detectados 4 loci outliers sob seleção positiva putativa. No final foram utilizados para análise 

dois conjuntos de dados; (i) somente loci neutros, correspondendo a 881 loci e (ii) loci outlier - 

quatro loci outlier identificados como estando sob selecção positiva.  

Os resultados baseados somente nos loci neutros (i) encontraram evidências de três grupos 

genéticos distintos com frequências genéticas semelhantes nos locais de amostragem. A 

comparação entre pares de locais foi significativa em 22% dos pares, que decresceu para 12% 

após correção para múltiplos testes. A subestrutura detectada foi de amplitude menor do que 

noutros estudos. No entanto, isso pode ser resultado do esforço de escala na  amostragem, pois o 

presente estudo é de relativamente pequena escala geográfica. Os valores de Fst variaram de 

0.0052 a 0.0133, indicando que subestrutura significativa estava presente em todo o âmbito 

geográfico do estudo. Detectou-se uma significativa tendência de isolamento por distância nos 

locais de amostragem do Mar do Norte (r = 0.51, p = 0.001) e uma correlação significativa entre 

a distância genética e geográfica ao usar todos os locais de amostragem (r = 0,54, p = 0,002). 

Com base na análise de agrupamentos bayesianos, detectam-se três agrupamentos genéticos 

distintos, um dos quais numa frequência um pouco maior nos locais de amostragem do Canal da 

Mancha e outro em frequências mais altas no Mar do Norte. O grupo restante tem uma mistura 

em proporções quase iguais em todos os locais de amostragem. Estes resultados concordam 

com estudos anteriores de que B. undatum consiste numa grande população isolada com 

subestrutura significativa. No entanto, a divergência populacional geral é suprimida pelo alto 

fluxo genético e um grande tamanho efetivo da população. Foi relatado anteriormente que B. 

undatum é mais diferenciado em baías e enseadas. No entanto, este estudo não encontrou 

nenhuma evidência nesse sentido, embora apenas um único local de amostragem se localizasse 

numa uma baía. Será necessário um esforço de amostragem mais intenso nas baías e enseadas 

para testar a robustez dessa tendência.  
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Os loci outliers não revelaram nenhuma estrutura populacional e, em vez disso, apoiam a 

existência de uma única população. Outliers sumetidos a blast do National Center for 

Biotechnology Information não revelaram qualquer correspondência significativa com genes 

anotados de outras espécies. Assim, na ausência de um genoma de B. undatum anotado ou 

dados ambientais à escala geográfica da amostragem, não é possível explicar os fatores 

subjacentes à selecção positiva detectada.  

 

Este estudo contribui para a crescente literatura que usa RADseq para delinear a estrutura 

populacional de escala geográfica fina. Buccinum undatum tem baixo potencial de dispersão e 

os valores de Fst no presente estudo são muito inferiores ao que seria esperado. Submetemos a 

explicação possível que um grande tamanho populacional efectivo e uma população semi-

contínua suprimem a divergência genómica desta espécie. 

 

Palavras-chave: búzios, molusco, ddRAD, alto fluxo genético, genómica populacional 
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Abstract 
 
Population genomics is important for understanding the degree of genetic connectivity and 

effective dispersal over geographic distances. Connectivity, or the constraint of it, influences 

both local and regional biodiversity and thus is of primary interest to both evolutionary and 

ecological studies. In recent years, previous assumptions regarding dispersal capabilities, and 

their function as a primary driver of expected genetic structure of populations have been 

challenged by Next-Generation Sequencing techniques. This study investigated the 

population connectivity of Buccinum undatum with Single Nucleotide Polymorphisms 

(SNPs) derived from double-digest Restriction associated DNA sequencing. In total, 191 

individuals were sequenced from the Southern North Sea, English Channel, and Irish Sea, a 

geographic scope of 1165 km. After strict quality control and filtering, 885 biallelic SNPs and 

141 individuals were retained. Outlier detection revealed 4 loci under putatively positive 

selection. Two datasets were analysed; a neutral loci dataset which contained 881 SNPS, and 

an outlier loci dataset that contained the 4 SNPs identified as outliers. Results from the 

neutral dataset advocated for a single large population with no overall structure but 

significant sub-structure. However, sub-structure was much less frequent than previously 

reported for the species. Individuals sampled within a bay were not more genetically 

differentiated than those outside of bay, a previously reported trait of B. undatum. There was 

significant isolation by distance observed across the majority of the geographic range. Outlier 

analysis did not reveal any hidden population structure, nor any isolation by distance. 

Overall, results presented within fundamentally agreed with previous studies that B. undatum 

consists of a single population, that is semi-continuous in nature, with sub-structure present. 

However, high gene flow and a large effective population size supressed overall population 

divergence. 

 

 
 
 

Keywords: ddRAD, Mollusc, Population genomics, Population structure, Whelk 
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1. Chapter 1: Introduction 
 
 

Population connectivity in the marine environment 
 

Dispersal is a key process that affects population growth, gene flow, and overall population 

persistence. For this reason, it is an important parameter to consider when discussing the 

evolution of species in natural systems. Dispersal drives population connectivity of a species 

over geographic scales, a process which influences local and regional biodiversity (Chust et al. 

2016). Marine invertebrates display a large diversity of reproductive strategies. These strategies 

can be defined based on number of sexual reproductive events in a year and lifespan, sexual 

expression (gonochoric or hermaphroditic), or mode of reproduction (broadcast spawning of 

gametes or larvae, brooding, direct deposition of eggs) (Wangensteen et al. 2017). This large 

diversity of reproductive strategies has two extremes; entirely benthic and direct development 

of young in eggs, or entirely planktotrophic/pelagic (Riginos and Liggins 2013). Reproduction 

in marine organisms is complicated, and organisms commonly have a combination of benthic 

and pelagic stages in their life. e.g. Seagrasses sexually reproduce to produce seeds that do not 

disperse long distances; however, blades can detach due to high turbidity and disperse. 

Dispersal can be investigated by its effects on gene flow and the population structuring for 

which it is responsible. It is widely presumed that species that have a life history including the 

direct development of larvae without a larval planktonic stage, have more restrictive dispersal 

potential than those with a pelagic stage (Scheltema 1986).  

In benthic species, dispersal often occurs at the earliest stage of an organism’s life history, 

either as a larva or as gamete (Cowen and Sponaugle 2009). Factors that influence effective 

dispersal at this stage are biophysical, e.g. temperature and salinity tolerances (Cowen and 

Sponaugle 2009). In species that have a planktonic larval stage, the planktonic larval duration 

(PLD), in the absence of oceanic barriers, has been shown to have a direct influence on the gene 

flow of species over large spatial scales (Pascual et al. 2017). The longer larvae stay in the 

plankton, the further they can be transported along the ocean currents. However, challenges to 

these assumptions have been made in recent years with the advent of interdisciplinary genetics 

and ecological modelling research, called ‘seascape genetics’ (or now ‘seascape genomics’). In 

the case where planktonic larvae develop into nekton, or other processes that alter our 

understanding of larva behaviour in the plankton, models can uncover unexpected dispersal 

trajectories (Leis 2010). By studying both the oceanographic currents present in the study 

region and the behaviour of the larvae it is possible to more accurately detect the dispersal 
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limits and potential of marine species.  

Species that do not have a planktonic larval stage generally exhibit high levels of population 

structure. For example, the population structure of four littorinid gastropods with differing life-

history strategies were examined (Kyle and Boulding 2000). The gastropods were all intertidal 

and the sampling effort occurred over the same geographic scope. In that study, Littorina 

subrotundata, a direct developer, exhibited higher levels of population structure than both 

Littorina plena and Littorina scutulata, both of which go through a planktonic larval stage.  

Finally, mixed development is an example of a life history strategy where there is a 

combination of direct development and a subsequent larval stage (Pechenik 1979). Larvae 

develop initially encapsulated in egg masses, before being released into the water column. This 

type of life history strategy is common amongst gastropods and polychaetes. Constructing an 

egg mass is metabolically costly, and thus must confer a distinct advantage. Larvae that spent a 

week in an egg mass before being released into the plankton had a 10% reduction in mortality 

when compared to larvae directly released to the plankton (Pechenik 1979). Pechenik (1979) 

hypothesised that egg capsules were involved in homeostasis of juveniles, preventing mortality 

from extreme changes in environmental conditions. Futher support for this concept indicated 

that encapsulation reduced mortality associated with large salinity changes by slowing the speed 

of osmotic transfer between the embryo and the environment (Pechenik 1982) and protected 

juveniles from ultraviolet radiation, desiccation, and the osmotic stress (Rawlings 1999).  

Traditionally dispersal of larvae and juveniles has been through natural means; by water 

currents, rafting on natural/hitchhiking on other organisms. However, there is evidence of 

anthropogenic influence evidence of connectivity, primarily discussed in terms of non-native or 

invasive species. The vectors of introduction are numerous, but the shipping industry is the 

largest vector followed by the aquaculture trade (Molnar et al. 2008). These anthropogenic 

vectors can cause the establishment of new populations.  
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Neutral and adaptive genetic selection 
 

 

Traditionally, population genetics used neutral markers, such as microsatellites that are in 

Hardy-Weinberg Equilibrium (HWE). The principal of HWE is that allele frequencies remain 

constant in a population over multiple generations in the absence of evolutionary forces. 

Populations that are in HWE must pass some basic assumptions. The first, that organisms are 

diploid. Secondly, that random mating must occur. This assumption can be broken in systems 

where breeding is based on either male of female preference (sexual selection) or where there 

is a hierarchical structure (a harem system). Inbreeding also violates non-random mating and 

will lead to an excess of homozygotes. Next, it is assumed allele frequencies must be equal 

between sexes, no sex-biased genes, and that populations are infinitely large and closed. 

Finally, the population must be free from other evolutionary processes. This assumes that 

natural selection is absent from the population. Natural selection can lead to the fixation of 

alleles that are associated with a trait that leads to a change in allele frequencies in the 

population. If a population can fulfil all the assumptions of HWE, it can be considered a truly 

neutral population, where allele frequencies between populations can be explained by 

isolation over time. 

 

Many population genetics studies focus on mitochondrial DNA (mtDNA) or nuclear DNA 

(nDNA) in HWE. These neutral markers made it possible to delineate dispersal processes 

present in the environment that were independent of the selective drivers and evolutionary 

pressures experienced by organisms in their environment. Thus, neutral markers made it 

possible to observe the empirical allele frequencies with frequencies expected if that 

population was in HWE. HWE was the basis for statically testing of populations to determine 

if the frequency of genotypes present is in the expected proportions. For example, population 

stratification, or significant population structure, may be a cause of a deviation from HWE. 

 

Natural selection is a term used to describe a process where an individual is more likely to 

survive and therefore reproduce, due to the presence of a gene or trait that provides an 

advantage to the organism. Thus natural selection may lead to the increased frequency of a 

gene over time through inheritance through descent. In populations that experience different 

environmental stressors, the genes that are associated with increased fitness may be different 
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in one location than those in other locations. This can lead to genomic variation within the 

species. This type of variation is adaptive, or selective, selection. These are non-random 

processes that can affect genomic variation. Furthermore, these processes may lead to a 

change in an allele frequency based on its phenotypic effect. This change may be beneficial 

(positive selection) or disfavoured (purifying selection). In general, most mutations are 

disfavoured if they occur in protein-coding regions as a single mutation may alter the protein. 

Finally, balancing selection occurs where alleles that favour a heterozygote are advantage. 

 

Adaptive selection may exist even in the presence of high gene flow. Genes with alleles that 

are crucial to fitness in one population may be transported into another population wherein 

they provide a distinct disadvantage. These genes may undergo a swift purifying selection. If 

population analysis was based solely on adaptive genes, the functional connectivity of the 

species would be masked. However, the same rhetoric applies to exclusively analysing 

neutral markers, the effective emigration rate may be lower due to the reduced survival of 

individuals with these genes. Neutral markers could show low differentiation due to the 

limited effects of genetic drift in large effective populations and not due to high dispersal 

capabilities. In such situations, adaptive divergence may occur which may not be reflected at 

all loci. This warrants further investigation into local adaption of species where traditionally 

high gene flow was thought to occur. It should also be considered in fine-scale distribution 

studies of species with low dispersal capabilities. 

 

Next Generation Sequencing and population genomics. 
 
Next-Generation Sequencing (NGS), also referred to as high-throughput sequencing is a suite 

of modern sequencing techniques that have revolutionised genomics. NGS allows cheaper 

sequencing of DNA and RNA (von Bubnoff 2008). A popular example of NGS technology is 

Illumina sequencing. Illumina sequencing produces short-read sequences usually between 

100-150 bp. NGS produces large amounts of short reads, between 100-150 bp, creating 

sequencings that have many overlapping regions. These overlaps are intrinsic to Illumina 

sequencing and can help reduce biases in sequencing error when assembling genomes due to 

the reduced error of having a single nucleotide sequenced many times (the depth). In tandem 

to the advances made in sequencing capabilities, there have been major improvements to the 

software used and computational power required allowing for more rigorous and complex 

analyses than were previously available.
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NGS can utilise a greater number of genetic markers from across the genome when compared 

to Sanger methods. RADseq (Restriction-site Associated DNA Sequencing) is a genomic 

technique that uses enzymes to periodically cut along the genome corresponding to an 

enzyme-specific restriction site. These fragments may contain variable regions referred to as 

single nucleotide polymorphisms (SNPs). 

 

The use of RADseq in population genomics was first described in Davey and Blaxter (2010), 

a natural progression from the seminal study of Baird et al. (2008), a study on the use of 

RADseq to genotype individuals by discovering SNPs. RADseq and other NGS methods are 

quickly replacing traditional Sanger methods and markers. This is due to the higher number 

of comparative markers, often one or two orders of magnitude higher than traditional 

markers. This has revolutionised the field of population genomics, providing higher 

resolution insight into the gene flow between populations, that was previously masked due to 

a reduced number of genetic markers available; for example, 12-13 microsatellite markers 

replaced with 1000s of SNPs. For example, Emerson et al. (2010) used SNPs generated from 

RADseq to investigate the gene flow in the pitcher plant mosquito (Wyeomyia smithii). 

Previously, mtDNA had advocated for a single phylogeographic break. However, by using 

RADseq four distinct clusters were identified using SNPs. This higher insight was only 

possible by the large number of variable regions RADseq uses (thousands of SNPs), and thus 

resolves population structure at levels that microsatellites and mtDNA could not achieve. 

 

The use of RADseq for delineating mollusc population 

structure 

 

Microsatellite molecular makers have been difficult to develop in molluscs for reasons that 

are not fully understood, although some research indications that it is the presence of large 

numbers of transposable elements in their genome (McInerney et al. 2011). These 

transposable elements may play an important role in the reduction of inter-specific genome 

variation and prevention of microsatellite development. Next-generation sequencing (NGS) 

overcomes this issue. 
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RADseq has been used to delineate fine-scale population structure in molluscs. For example, 

Vendrami et al. (2017) conducted RADseq on the King Scallop (Pectin Maximus) around 

Northern Ireland. That study used double digest RADseq (ddRAD), a technical variant of 

RADseq, that uses two enzymes to simultaneously reduce the random shearing associated 

with RADseq (Peterson et al. 2012). Using this method 10,539 loci each containing a single 

biallelic SNP were retained. That study also compared their results with population structure 

inferred from 13 microsatellites. The microsatellite analysis identified weak population 

differentiation through pairwise Fst estimates. The microsatellite data advocated for the 

presence of a purely panmictic population in both Structure (Pritchard et al. 2000), a 

Bayesian clustering method, and by Principal Component Analysis (PCA). However, 

population structure analysis using SNPs found evidence of two distinct clusters. One cluster 

from Mulroy Bay, the other cluster contained eight other locations from the Northern Ireland 

and into the Irish Sea. 

 

Another study used RADseq to reveal fine-scale population structure in Atlantic Deep 
 

Scallop (Placopecten magellanicus) on the coast of Newfoundland (Van Wyngaarden et al. 
 

2017). That study analysed 245 individuals, from 12 locations using 7163 SNPs. They found 

evidence for two distinct clusters of populations; those North of Nova Scotia and those South 

of it. 

 

The above studies demonstrated the applications of RADseq for the delineation of population 

structure over short geographic distances and additionally addressed the complications 

induced by microsatellite markers in molluscs. However, while NGS produced thousands of 

genetic markers, populations with large effective sizes or very high migration rates over small 

spatial scales may produce what appeared to be a panmictic population when neutral markers 

were exclusively used (Gagnaire et al. 2015). 

 

Identifying potential loci under selection 
 

As previously discussed, NGS can produce thousands of genetic markers. With a suite of 

markers potentially two to three orders of magnitude higher than traditional genetics it is 

possible to identify a panel of SNPs that fail to display HWE allele frequencies. Traditionally, 

these loci would have been removed from the population analysis. However, just analysing the 

neutral markers in the genome can mask the true population structure present by not 7  
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accounting for evolutionary forces such as adaption which can give rise to genomic variation. 

This variation may provide insight into the local forces that could potentially be causing 

populations to diverge even in the presence of high gene flow. To combat this problem, 

methods have been developed to use genetic markers that are outside of HWE and thus under 

the influence of selection. These loci are considered “outlier loci”.  

Presently, there are a few methods to determine if loci are under selective forces. These 

methods are collectively referred to as genome scans as they rely on having a large panel of 

genetic markers that span the genome. One genome-scan method, and perhaps the most popular 

is to examine the locus-specific population Fst (Foll and Gaggiotti 2008). Fst is a fixation index 

which looks at the allele frequencies within a sample and compares that to the fixation of the 

allele across the whole sampling effort. The principle is that loci that are candidates for 

selection will have a higher or lower value of Fst than the Fst of neutral loci (Beaumont and 

Balding 2004). If the Fst is greater than the mean, this locus may be a candidate for adaptive 

selection. Those that fall below the mean may be experiencing purifying selection due to the 

decreased frequency at which they occur (Beaumont and Balding 2004).  

Narum and Hess (2011) reviewed the most commonly applied software for the detection of 

outlier loci. One of the primary problems identified was the occurrence of false discoveries. 

False discoveries are, as suggested, an occurrence where the result is unreliable due to Type I 

(false positives) or Type II (false negatives) errors. In Narum and Hess (2011) BayeScan (Foll 

and Gaggiotti 2008) was identified to produce the fewest Type I and Type II false discoveries. 

In BayeScan, the user can specify a false discovery rate (FDR) to control the level of false 

positives. Commonly, FDR is set between 1-10%. The lower the FDR, the more conservative 

the identification of potential outliers. BayeScan uses a Bayesian approach to detect Fst outliers. 

It applies two components to its analysis, a population-specific Fst coefficient (beta), and a 

locus-specific Fst coefficient (alpha) shared by all populations. The software then implements a 

logistic regression and rejects a model of neutrality if the locus-specific component explains the 

observed variation. Thus, this method provides two models to explain the diversity at each 

locus. Subsequently, for each locus, BayeScan calculates a posterior probability, which is a 

statistical probability that with the currently available information, the hypothesis under 

examination is true. Due to the multiple testing implemented in BayeScan, a multiple testing 

correction is applied as q-values. The given q-values can then be compared to the FDR, where 

the user should select potential outliers with a q-value lower than the FDR.  

In model organisms, the loci under selection can be mapped and attributed to a region of the 



8  

genome. The mapped areas can provide insight into the underlying cause of the selection at the 

candidate loci. However, in non-model organisms without an annotated reference genome, loci 

putatively under selection may be identified but cannot be mapped to a region of the genome. 

Therefore, our understanding of the driving force of selection or the phenotype expressed in 

response to it is limited.  

 

Buccinum undatum: a species summary 
 
Ecology and reproduction 

 
Buccinum undatum (Linnaeus 1798) (Figure 1) is a neogastropod that is widely distributed 

across the North Atlantic. In the Northeast Atlantic, its range extends from the Bay of Biscay 

to Iceland and it inhabits similar latitudes from Greenland to Canada. Buccinum undatum is 

the largest edible marine gastropod in the North Atlantic, with a maximum reported shell 

height of 150 mm (Nasution and Roberts 2004). It feeds primarily on molluscs, such as 

bivalves and barnacles, as well as small crustacea, but is also reported as a scavenger 

(Nielsen 1974; Taylor and Taylor 1977). It is a subtidal gastropod with a disputed maximum 

depth. Thomas and Himmelman (1988) indicated that 200 m is the maximum depth this 

species lives at, however Valentinsson et al. (1999) have reported, at least in Swedish waters, 

600 m and, finally, Nielsen (1974) determines its depth as greater than 1000 m. Furthermore, 

Warén and Bouchet (2001) describe B. undatum found between 500 -1000 m as having 

specialised pigmented eyes that indicate it is not an occasional visitor to deep-water habitats. 

At the very least, B. undatum has a large depth range at which it lives, which extends from 

the subtidal to the deep-sea. 

 

Buccinum undatum are sexually dimorphic. Females have higher shells and aperture length, a 

larger shell weight, and heavier tissue weight (Kenchington and Glass 1998). Buccinum 

undatum individuals reach sexual maturity at ~7 cm, with males achieving maturity at 

slightly smaller sizes than females (Martel et al. 1986). However, this is thought to vary 

widely by population (Haig et al. 2015). 

 

The breeding season of B. undatum exhibits regional differences. In European waters, 

reproduction occurs October to February (Kideys et al. 1993) and in The Gulf of St 
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Lawrence, between Newfoundland and mainland Canada, it is reported to be from July to 

October (Martel et al. 1986). Buccinum undatum has a low fecundity, a direct-development 

reproductive strategy, no planktotrophic stage, and a sedentary lifestyle. Fertilisation is 

internal and female B. undatum deposits eggs in large masses on hard substrates (Figure 1) 

such as rocks and shells. These masses contain both embryonic eggs and nurse capsules. The 

larvae developed inside the embryonic eggs and consume the nurse capsules. These eggs 

hatch 3 to 8 months after being deposited (Valentinsson 2002). 

 

 
 
 

 
 

 

Figure 1.1 (A) Buccinum undatum (Image credit: M. Rauschert, 1981. Available at: 

http://www.marinespecies.org/aphia.php?p=image&tid=138878&pic=10327) (B) a Buccinumm undatumm 

egg mass. (Image credit: Paul Newland. Available at 

(https://www.marlin.ac.uk/assets/images/marlin/species/web/o_bucund8.jpg) 

 

The early ontogeny of B. undatum in UK waters was investigated by Smith et al. (2013) 

where it was found that development was still successful at up to 18 ºC. The rate of 

development increased with increased temperature, however, the number of successful 

developments per egg mass decreased. This observed level of reduced reproductive success 

suggests that B. undatum may have reduced populations in shallow waters under future global 

warming scenarios. Furthermore, increased water temperatures may result in a range shift in 

the species as the UK populations are winter spawners and egg masses are laid when water is 

at its coolest (6 to 10 ºC). Increased sea temperatures have been proven to cause females to 

forgo reproduction (Smith et al. 2013). Thatje et al. (2019) provides anecdotal evidence that 

in warmer years a smaller number of egg capsules of B. undatum were collected. That study 

speculated that at the southern limit of B. undatum’s range, increased temperatures may have 

a significant effect on reproductive output. 

http://www.marinespecies.org/aphia.php?p=image&amp;tid=138878&amp;pic=10327)
http://www.marinespecies.org/aphia.php?p=image&amp;tid=138878&amp;pic=10327)
http://www.marlin.ac.uk/assets/images/marlin/species/web/o_bucund8.jpg)
http://www.marlin.ac.uk/assets/images/marlin/species/web/o_bucund8.jpg)
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Fisheries of Buccinum undatum 
 
In 1922, B. undatum first appeared in the UK sea fisheries annual statistics. In that year 33096 

cwt. (1676 t) were landed in England and Wales. In, 2013 the total recorded landings for the 

UK were 13,700 tonnes valued at £9.1 m (9.6% the value of all shellfish fisheries) (Marine 

Management Organisation 2014). By 2016, 22,600 tonnes were being landed and the value of 

the fishery to the economy jumped to £22.9 m (7.2% of total shellfish fisheries) (Marine 

Management Organisation 2016). The most recent landing information for whelks is 2017, 

where 20,800 tonnes were landed in the UK. The valuation of whelks to the UK fisheries sector 

in 2017 was £22.7 m (6.6% of the income of shellfish fisheries) (Marine Management 

Organisation 2017).  

Buccinum undatum is a non-quota species in the EU and so there are few restrictions regarding 

the total allowable catch. For this reason, it is seen as a displacement fishery as fishermen move 

away from more tightly regulated stocks (McIntyre et al. 2015) The lack of appropriate 

management for the whelk fishery has led to concerns about its sustainability (Nicholson and 

Evans 1997; McIntyre et al. 2015; Shrives et al. 2015). In 1997, there was already discussion 

about the overfishing of B. undatum, especially in Southeast England (Nicholson and Evans 

1997). However formal stock assessments are not currently undertaken for B. undatum. In Fahy 

et al. (2005), it was concluded that the fisheries off Ireland suffered a major collapse in 2004. 

This collapse was thought to have occurred after two successive years of increased recruitment 

was followed by increased fishing effort. This highlighted the need for better management of B. 

undatum across the British Isles.  

The minimum landing size (MLS) is the smallest size at which the government deems it safe to 

remove an individual from a stock without serious negative consequences such as stock 

collapse. The European Union designated MLS for B. undatum is at 45 mm shell height. Lawler 

(2014) reported on the large variation in MLS over a regional scale in the United Kingdom. For 

example, in Wales, the MLS is 55 mm, 70 mm in the Isle of Wight, and in the Shetland Islands, 

it is 75 mm. They also reported, is the large spatial variation in size at maturity between sites 

(44.8 mm in the Solent to 76.2 mm in the southern North Sea (Lawler 2014)). This large spatial 

variation in key life-history parameters demonstrates the need to manage whelks on a regional 

or local level.  

There is evidence that B. undatum has the potential to form distinct populations over small 

spatial scales (Weetman et al. 2006; Mariani et al. 2012; Pálsson et al. 2014) (Refer to Section 
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4.3) Inshore Fisheries and Conservation Authorities (IFCAs) manage the exploitation of stocks 

within the 6nm from the Territorial Sea baselines. Within this 6 nm perimeter of England there 

exist ten IFCAs who each regionally manage the exploitation of inshore fisheries. Regarding 

whelks, this has led to regional differences in how MLS is enforced by the IFCAs. This regional 

approach is more aligned with scientific evidence and advice due to spatial variability in key 

life-history parameters (see above). IFCAs also have the authority to manage the number of 

baited pots per person/per vessel being set in the respective districts to ensure sustainable catch.  

 

Population structure and connectivity of B. undatum 
 
The life-history characteristics exhibited by B. undatum, direct development of larvae and a 

sedentary lifestyle, imply that the level of population structure should be evident, even at small 

spatial scales. These life-history strategies commonly make species vulnerable to overfishing 

and once impacted, recolonisation and recovery would be slow (McIntyre et al. 2015). Only 

three studies have focused on the gene flow and population structure of B. undatum. All used 

the same five microsatellites created for the species by Weetman et al. (2005).  

Weetman et al. (2006) examined the population structure of B undatum at both the macro and 

microgeographic scales; this study encompassed much of B. undatum’s range including 

northern France, England, Scotland, Iceland, and Canada. By using a multidimensional scaling 

(MDS) and cluster analysis this study elucidated macrogeographic trends. Four distinct clusters 

were observed; The Icelandic, the Canadian, the Swedish, and the rest (containing samples from 

the European continental shelf). The Icelandic and Canadian were distinct clusters due to their 

isolation by distance. The Canadian and Icelandic samples contained markedly lower genetic 

diversity, usually indicative of a bottleneck. However, a definitive conclusion was impossible 

due to the low number of loci tested which provided low genomic resolution. The Swedish 

population was thought to be differentiated due to its low population density and its separation 

from the rest of the locations by the deep waters of the Norwegian trench and the Skaggerek. 

Individuals from the Solent – the strait separating mainland England from the Isle of White – 

formed a distinct genetic cluster. However, this was only supported by major shifts in the 

frequency of two alleles at one locus. Thus, the removal of this locus from the analysis 

collapsed the Solent group and it assimilated into the Shelf group This may be more reflective 

of selection acting on the whelks in this location. There were low global Fst values (0.011 ± 

0.003 to 0.024 ± 0.007) which indicated low levels of differentiation. However, there was 

significant Isolation by Distance (IBD) along the British North Sea. The pairwise significant 

values ranged in geographic distance from 70-650 km. This would suggest that limited dispersal 
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capabilities are more important to elucidating genetic structure rather than historical 

connectivity. Also, the low Fst value may be a result of rare long-distance or dispersal in a 

semi-continuous population.  

On a microgeographic scale, Weetman et al. (2006) sampled multiple sites within three areas 

along the west coast of the UK. Areas had a pairwise geographic distance between 200-620 km 

while the pairwise distances between sites was 7-40 km. Statistical analysis suggested that 

genetic variation was more heavily partitioned between sampling sites rather than areas and thus 

that small-scale processes were more important to the overall genetic structure. Within each 

area, the most inshore site had the lowest genetic diversity and the highest level of 

differentiation, with asymmetrical migration into more offshore populations evident. Weetman 

et al. (2006) hypothesises that this may be a density-dependent reaction and that whelk 

population densities are greatest inshore, and this promotes emigration to areas with lower 

densities to reduce competition.  

Pálsson et al. (2014) conducted a study on B. undatum from Britain to Iceland, and in 

Greenland, using the same microsatellite markers as above and mitochondrial DNA (mtDNA) 

genes, CO1 and 16S. In Iceland, there was significant genetic variation over the tens of 

kilometres using pairwise microsatellite differences. This was supported by the mtDNA 

differences which showed that there was also significant pairwise Fst values over small spatial 

scales. Pálsson et al. (2014) discussed the two sampling locations – Faroe Islands and British 

Channel (Isle of Wight) – as representative of Britain, although the sampling was far less than 

the more extensive study conducted by Weetman et al. (2006). MDS plots based on genetic 

distance using microsatellites showed that the British channel and Faroe Island clustered 

together. This agrees with Weetman et al. (2006) with low levels of Fst on the British North Sea 

coat. However, Pálsson et al. (2014) does not acknowledge that this may be an artefact of a 

semi-continuous population and there is in fact significant isolation by distance along the 

British North Sea Coast as previously reported by Weetman et al. (2006). 13  

Pálsson et al. (2014) also found that genetic differentiation was greatest in nearshore inlets and 

genetic diversity was highest in deeper waters further offshore. This was in agreement with the 

findings of Weetman et al. (2006) on asymmetric migration from inshore to offshore 

populations. However, Pálsson et al. (2014), indicated that the direction of migration in that 

study was unknown. Pálsson et al. (2014) indicated limited evidence for a genetic bottleneck in 

southern England. Instead, that study inferred a stable population during the Last Glacial 

Maximum (LGM) as seen from the nucleotide mismatch analysis, the high nucleotide diversity, 
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and low haplotype diversity observed in the British Channel using mtDNA. Further evidence 

for a stable population during the LGM was that Britain had the highest microsatellite variation 

in the study. Although this may have been a result of genetic admixture. The British Channel 

only opened after the LGM and may have been colonised from multiple populations. 

Alternatively, there may have been a glacial refugia present. Hurd’s Deep is a deep trench 

located in the west British Channel. Studies on the red algae Palmaria palmata have revealed 

that there is genetic evidence suggesting the presence of a glacial refugia in the area (Provan et 

al. 2005). This glacial refugia may have been inhabited by B. undatum, reflected by the high 

genetic diversity seen in the British Channel for B. undatum This species has a eurybathic 

distribution (subtidal to greater than 1000 m), and historically evolved in the deep sea (Smith et 

al. 2013), which may have allowed for a persistent population in deeper waters in the refugia. 

Evidence of this adaption can also see in the specialised pigmented eyes in B. undatum sampled 

in deeper waters (Warén and Bouchet 2001). These historical adaptions may have allowed 

populations to remain stable. This large level of genetic diversity at Hurd’s Deep has also been 

reported for Raja clavata (Thornback rays) (Chevolot et al. 2006). However, that study could 

not definitively attribute this to a refugia at Hurd’s Deep. Hurd’s Deep, therefore, could 

represent a major cryptic glacial refugia and should, therefore, be of increased interest to 

population genomic studies and phylogeographic studies in the future.  

The inference of a stable population during the LGM was not in agreement with Weetman et al. 

(2006), who suggested that the British North Sea Coast would be under recent population 

expansion trends after a recent bottleneck. This is a common trend of marine invertebrate to 

expand after an Ice Age (Vermeij 2005). However, Weetman et al. (2006) did not explicitly 

provide data for his assumption that B. undatum followed the same pattern – only mtDNA 

would have given an evolutionary history deep enough for that inference. Weetman et al. 

(2006) inferred that population bottlenecks present B. undatum may have been 

anthropogenically induced and not a response to historic climatic conditions. Potential causes 

for this bottleneck included overfishing (see above) and Tributyltin (TBT) poisoning. TBT is a 

bioaccumulating toxin that was a popular biocide in the 1960s and caused imposex in 

gastropods. Imposex causes female gastropods to develop male sex organs. Nicholson and 

Evans (1997) quantitatively measured imposex in B. undatum in Europe. In this study, the 

Solent was the most heavily impacted region of 26 European sampling points. The Solent was 

also one of the regions Weetman et al. (2006) found evidence for a bottleneck.  

However, there is evidence to contradict this theory of anthropogenically induced bottlenecks; 
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Hallers-Tjabbes et al. (1994) investigated levels of imposex in B. undatum due to TBT in the 

British North Sea and found high levels of imposex where Weetman et al. (2006) had not 

reported evidence of a bottleneck. This may have been due to the poor level of genomic 

resolution present in that study. As previously mentioned only five microsatellites were used 

thus any inference made about the presence of a bottleneck were to be interpreted cautiously.  

Mariani et al. (2012) focused on the population connectivity of B. undatum populations on the 

east coast of Ireland in the Irish Sea. The molecular markers used were the same microsatellites 

created by Weetman et al. (2005). Mariani et al. (2012) found larger levels of population 

structure when compared to (Weetman et al. 2006) due to the presence of known oceanographic 

breaks. There were three large geographic discontinuities identified which were associated with 

population breaks, where populations on either side had significant population structure despite 

their close geographic proximity. These breaks were caused by oceanographic features present 

in the Irish Sea, e.g. the front between the Irish Sea and the Celtic Sea is a known break. This 

ocean front results in high velocities of 30 cm s-1 running parallel to the isopycnal contours 

separating the two seas (Simpson 1976) providing a strong barrier to dispersal. Overall, Mariani 

et al. (2012) stated that differentiation in the Irish sea was due to an Isolation by Distance (IBD) 

model. This was consistent with the findings of Weetman et al. (2006) and Pálsson et al. 

(2014). Mariani et al. (2012) found sampling locations that are geographically near to each 

other exhibit non-significant levels of population structure. Thus, the IBD model indicated that 

there were low levels of demographic connectivity and, moreover, there was a stepping-stone 

model of gene flow. This had been reported by Weetman et al. (2006) in the form of a semi-

continuous population. Mariani et al. (2012) had a sampling location in an inlet that was 

significantly differentiated from its nearest sampling point despite it only being 30 km away. 

This finding was supported by both Weetman et al. (2006) and Pálsson et al. (2014). All three 

studies found increased levels of population isolation from samples that originated in an inlet 

rather than the ocean shelf. Perhaps there are barriers to dispersal present within these inlets and 

that dispersal is only capable through asymmetric migration as adults to populations further 

offshore.  

Mariani et al. (2012) found no evidence of genetic bottlenecks in B. undatum in the Irish sea. 

Power and Keegan (2001) investigated TBT poisoning in a range of gastropods including B. 

undatum in the Irish Sea. Buccinum undatum accumulated TBT in their tissue at higher rates 

than the other gastropods, yet the conclusions of the study were that B. undatum was not 

significantly impacted by TBT compared to other gastropods. There was no correlation between 
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the levels of TBT and the reported incidences of imposex in that study. While the levels of TBT 

varied between locations, the authors of that study used a sampling location ten kilometres 

offshore beside a port in Ireland heavy historical marine traffic, as an area heavily affected by 

TBT. This region is also within the B. undatum fisheries district in Ireland. This result 

contradicted the hypothesis proposed by Weetman et al. (2006) that TBT had affected the 

effective population size and led to the reported bottlenecks in that study.  

All of these studies focused on the use of the same microsatellite’s markers – although Pálsson 

et al. (2014) used additional mtDNA to elucidate phylogeographic processes. All the currently 

published studies agreed that B. undatum can be genetically differentiated over tens of 

kilometres and that inshore populations are more divergent than populations further offshore. 

These studies suggested a stepping-stone model of gene flow, which perhaps does not include 

the inshore populations explaining this differentiation. Evidence for population bottlenecks has 

been put forward by both Weetman et al. (2006) and Mariani et al. (2012) for the UK. 

However, Pálsson et al. (2014) disagrees with that assumption, and instead postulates that 

southern England populations have persisted during the LGM due to the high haplotype 

diversity in Britian. Evidence for a glacial refugia in the English Channel at Hurd’s Deep has 

been put forward in Provan et al. (2005), and potentially Chevolot et al. (2006). While TBT has 

been put forward as a cause of a modern genetic bottleneck, findings between studies about the 

location of bottlenecks, and the correlation between TBT and the rate of imposex incident has 

been inconsistent
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Aims and objectives 
 
The overall aim of this study was to evaluate the population connectivity of B. undatum in the 

Southern North Sea and English Channel using genetic markers (SNPs) generated from 

ddRAD. This data will be the first to use NGS on B. undatum. This current study will provide 

further insight into the regional population structure of the species, building on the work of 

Weetman et al. (2006), Mariani et al. (2012), and Pálsson et al. (2014). 

 

The objectives were: 
 

 

• To investigate the population structure of B. undatum in the southern North Sea, English 
 

Channel and Irish Sea; 
 

• To compare population structure derived from using SNPs with previously published 

studies on B. undatum that used microsatellites; and 

• To investigate the presence of adaptive selection on the genome and to determine its 

contribution to population structure. 
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Abstract 
 
Population genomics is important for understanding the degree of genetic connectivity and 

effective dispersal over geographic distances. Connectivity, or the constraint of it, influences 

both local and regional biodiversity and thus is of primary interest to both evolutionary and 

ecological studies. In recent years, previous assumptions regarding dispersal capabilities, and 

their function as a primary driver of expected genetic structure of populations have been 

challenged by Next-Generation Sequencing techniques. This study investigated the 

population connectivity of Buccinum undatum with Single Nucleotide Polymorphisms 

(SNPs) derived from double-digest Restriction associated DNA sequencing. In total, 191 

individuals were sequenced from the Southern North Sea, English Channel, and Irish Sea, a 

geographic scope of 1165 km. After strict quality control and filtering, 885 biallelic SNPs and 

141 individuals were retained. Outlier detection revealed 4 loci under putatively positive 

selection. Two datasets were analysed; a neutral loci dataset which contained 881 SNPS, and 

an outlier loci dataset that contained the 4 SNPs identified as outliers. Results from the 

neutral dataset advocated for a single large population with no overall structure but 

significant sub-structure. However, sub-structure was much less frequent than previously 

reported for the species. Individuals sampled within a bay were not more genetically 

differentiated than those outside of bay, a previously reported trait of B. undatum. There was 

significant isolation by distance observed across the majority of the geographic range. Outlier 

analysis did not reveal any hidden population structure, nor any isolation by distance. 

Overall, results presented within fundamentally agreed with previous studies that B. undatum 
 

consists of a single population, that is semi-continuous in nature, with sub-structure present. 

mailto:declanmorrissey4@gmail.com
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However, high gene flow and a large effective population size supressed overall population 

divergence. 

 

Keywords: ddRAD, Mollusc, Population genomics, Population structure, Whelk 
 

Introduction 
 
Dispersal is a key process that affects population growth, gene flow, and overall population 

persistence. For this reason, it is an important parameter to consider when discussing the 

evolution of species in natural systems. However, dispersal is difficult to quantify directly in 

the marine environment as many marine species disperse as larvae (Cowen and Sponaugle 

2009). The small size of these larvae makes direct observation or mark and recapture 

experiments both difficult and expensive. For this reason, genetics has been used to measure 

dispersal due to its effect on gene flow and population structure. Genetic approaches have 

refuted the traditional view that the majority of marine species have panmictic populations 

over large spatial scales due to the lack of obvious barriers to dispersal (Hauser and Carvalho 

2008). Furthermore, old tropes of associating species with long pelagic larval stages with 

limited population structure have been challenged (Selkoe and Toonen 2011, and references 

within) and while some species do exhibit spatial structure based on reproductive life-history 

strategies (e.g. Kyle and Boulding 2000), a species by species approach is needed. 

 

Buccinum undatum (Linnaeus 1798) is a neogastropod widely distributed across the North 
 

Atlantic. It feeds primarily on molluscs and small crustacea (Nielsen 1974; Taylor and Taylor 
 

1977). It is subtidal with a maximum depth range greater than 1000 m Nielsen (1974). The 

breeding season of B. undatum exhibits regional differences. In European waters, 

reproduction occurs from October to February. Buccinum undatum has a low fecundity, a 

direct-development reproductive strategy, no planktotrophic stage, and a sedentary lifestyle. 

 

Buccinum undatum is a non-quota species in the EU and so there are few restrictions 

regarding the total allowable catch. For this reason, it is seen as a displacement fishery as 

fishermen move away from more tightly regulated stocks (McIntyre et al. 2015) The lack of 

appropriate management for the whelk fishery has led to concerns about its sustainability 

(Nicholson and Evans 1997; McIntyre et al. 2015; Shrives et al. 2015). In 1997 there were 

concerns that there was overfishing of B. undatum, especially in Southeast England 

(Nicholson and Evans 1997). However formal stock assessments are not currently undertaken 
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for B. undatum. Whelks are the currently the sixth largest in the UK and in 2017 20,800 t 

were landed valued at £22.7 m (6.6% of the income of shellfish fisheries) (Marine 

Management Organisation 2017). 

 

Despite its commercial importance, only three studies have focused on the gene flow and 

population structure of B. undatum (Weetman et al. 2006; Mariani et al. 2012; Pálsson et al. 

2014). All used the same five microsatellites created for the species by Weetman et al. 
 

(2005). All those studies agreed that B. undatum can be genetically differentiated over tens of 

kilometres and that populations are more divergent in bays and inlets than those further 

offshore. These studies suggested a stepping-stone model of gene flow, which perhaps does 

not include the inshore populations explaining this differentiation 

 

RADseq and its technical variants have revolutionised population studies by providing a 

cheap and quick way to produce a much larger level of genetic markers (Davey and Blaxter 

2010). These methods do not require species-specific primers to be developed, nor do they 

require a reference genome, and instead, use restriction enzymes to cut across the genome to 

discover single nucleotide polymorphisms (SNPs) (Baird et al. 2008). While individually 

microsatellites provide more insight into population structure, the large number of SNPs, 

usually hundreds to thousands, generated by RADSeq provides more genomic resolution than 

the small number of microsatellites commonly used in population genetics genetic studies 

(Liu et al. 2005). RADseq has found fine-population structure using SNPs where previously 

microsatellites did not find any (Benestan et al. 2015; Szulkin et al. 2016; Vendrami et al. 

2017). 

 
The aim of this study was to use double digest restriction-site associated DNA (ddRAD) 

(Peterson et al. 2012) sequencing to generate single biallelic SNPs to investigate the 

population structure of B. undatum in the Southern North Sea, English Channel, and Irish Sea 

and compare the results with previous studies that employed microsatellites. 

 

Methods 
 
A total of 195 individuals were collected from 13 sampling locations across the Southern 

North Sea, English Channel, and Irish Sea between December 2018 and February 2019 

(Table 2.1, Figure 2.1) Subsamples of tissue were taken from the foot and stored in either 

100% ethanol at -20 °C or frozen at -20 °C.
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Table 2.1.Sampling information, ID, sea, coordinates (decimal degrees), depth, and number of individuals 

sequenced and retained. KEIFCA is the Kent and Essex Inshore Fisheries and Conservation Authority. 

 
 

Location 
 

 

ID 
 

Sea 
 

Longitude 
 

Latitude 
Depth 

(m) 

n 

sequenced 

n 

retained* 

Norfolk 

(Outside the bay) 

 

NOA 
 

North Sea 0.501 53.026 
 

-4 
 

15 
 

15 

Norfolk 

(Inside the bay) 

 

NOB 
 

North Sea 0.321 52.971 
 

-14 
 

15 
 

11 

 Suffolk SUF North Sea 1.833 52.225 -26 15 12 
 

KEIFCA Outside Zone 1 
 

K10 
 

North Sea 1.361 51.709 
 

-13 
 

15 
 

6 

KEIFCA 

Inside Zone 1 

 

K1N 
 

North Sea 

 

1.063 
 

51.563 
 

-7 
 

15 
 

9 

KEIFCA 

Inside Zone 2 

 

K2N 
 

North Sea 1.210 51.415 
 

-3 
 

15 
 

12 

KEIFCA 

Outside Zone 2 

 

K2O 
 

North Sea 1.655 51.353 
 

-28 
 

14 
 

12 

KEIFCA 

Inside Zone 3 

 

K3N 
 

North Sea 1.415 51.242 
 

-10 
 

15 
 

11 

KEIFCA 

Inside Zone 4 

 

K4N 
 

English Channel 1.057 50.926 
 

-32 
 

15 
 

13 

Weymouth Bay WEY English Channel -2.317 50.606 -15 13 13 
 

Lyme Regis 
 

LYM 
 

English Channel -2.540 50.573 
 

-21 
 

15 
 

10 
 

Jersey Island 
 

JER 
 

English Channel -2.280 49.024 
 

-17 
 

15 
 

9 

South East of Ireland▲
 

 

IRE 
 

Irish Sea -5.985 52.956 
 

-6 
 

14 
 

8 

* Individuals were retained in the population’s analysis using STACKS if the coverage of the individual was 
greater than 20x. 
▲The exact coordinates and depth are unknown. These were obtained within ICES VIIa inside the Irish 

territorial sea. Given location is adjacent the port where the whelks were landed, and depth was taken from that 

point. 
 

ddRAD library preparation and sequencing 
 

Total genomic DNA (gDNA) was extracted using (i) a modified CTAB and proteinase-K 
 

digest followed by phenol-chloroform purification and ethanol precipitation (Herrera et al. 
 

2015) from tissue stored in 100% ethanol and (ii) using the Omega Biotek E.N.Z.A Mollusc 

extraction kit as per the manufacturer’s instructions. A total of 191 gDNA samples were selected from a 

combination of both methods to proceed to amplicon library preparation. The 
 

ddRAD libraries were constructed using 800 ng of gDNA from each individual and following 

the double digest RADseq protocol (Peterson et al. 2012) using the restriction enzymes 

ApeKI and BamHI-HF. A more detailed protocol is available in the supplementary material. 
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The libraries were sequenced using four lanes of Illumina HiSeq X ten, (paired-end, 2 x150 

bp) with the addition of 10% PHIX to each library. 

 

De novo assembly and data filtering 
 
Raw reads were processed using STACKS v 2.4 (Catchen et al. 2011, 2013). Reads were 

demultiplexed and quality filtered using the “process_radtags.pl” pipeline in STACKS. Any individual 

read with a Phred score below 33, ambiguous barcodes, or an unrecognised cut site 
 

were removed. Loci were assembled de novo, as there was no reference genome available for 

B. undatum. De novo assembly was done using the “de_novo_map.pl”. The three main de 

novo parameters M and m were tested using the “r80 method”  (Paris et al. 2017). The m 

parameter is the minimum number of reads required to make a putative allele and is 

implemented in the ustacks component. M is the number of mismatches allowed between 

putative alleles to form a putative locus in ustacks. Finally, n is the number of mismatches 

allowed between putative loci during construction of the catalogue in cstacks. This was fixed 

at n=M following the guidelines in Paris et al. (2017) for a single species study. After testing, 

the optimum parameters were m=3 M=3 n=3. 

The “populations” script was run to filter loci that were present in 70% sampling sites (p = 9) 

in at least 80% of individuals (r = 0.8). Alleles with minor frequencies less than 5% were 

removed (min_maf = 0.05) and maximum heterozygosity was set to 50% (max_obs_het = 

0.5) to remove potential homologs. Only individuals with coverage greater than 20x were 
 

used in the population script to ensure accurate genotyping. Only one SNP was used per locus 

(write_random_snp) to minimise the effects of linkage disequilibrium. SNPs were filtered in 

PLINK v 1.9 (Purcell et al. 2007) to remove SNPs that were not called in 90% of genotypes 

(geno 0.1). PLINK was used to identify loci out of HWE to a significance of p < 0.05 (hardy 

0.05) and to identify loci in linkage disequilibrium (LD) using a sliding window of 50 loci 

and step size of 5 loci with a correlation cut off greater than 10% (indep-pairwise 50 5 0.1). 

 

File conversions were either done directly in STACKS v 2., PLINK v. 1.9, or indirectly using 
 

PGDSpider v. 2.1.1.5 (Lischer and Excoffier 2012). 
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Figure 2.1. Sampling locations. Red line is the boundaries of the Inshore Fisheries and Conservation Authority 

Zones. Abbreviations: (NOA) Norfolk (Outside the bay), (NOB) Norfolk (Inside the bay), (SUF) Suffolk, (K1O) 

KEIFCA Outside Zone 1, (K1N) KEIFCA Inside Zone 1, (K2N) KEIFCA Inside Zone 2, (K2O)KEIFCA Outside 

Zone 2, (K3N) KEIFCA Inside Zone 3,(K4N) KEIFCA Inside Zone 4,(WEY) Weymouth Bay, (LYM) Lyme Regis, 

(JER) Jersey Island, (IRE) South East of Ireland. 

 

Detection of outlier Loci 
 
Outlier loci were detected using a genome-scan method implemented with BayeScan v 2.1 

(Foll and Gaggiotti 2008) which uses a Bayesian method to estimate the posterior probability 

of selection acting on each locus by using a reversible-jump Monte Carlo Markov Chain 

process. BayeScan allows Fst coefficients to differ between populations which accommodates 

the different demographic history that may be present. A False Discovery Rate (FDR) (Storey 

2003) of 0.1 was used. An FDR is the number false significant hypothesis that are expected 

when conducting multiple hypothesis testing. Prior odds of 10 were used in BayeScan, 

implying that the neutral model for each locus was 10 times more likely than the selective 

model. Twenty pilot runs were run with 10,000 iterations each, followed by a burnin of 

50,000 followed by another 50,000 iterations. Identified outlier loci were blasted (blastn, 

Altschul et al. (1997)) through the National Center for Biotechnology Information (NCBI) 

nucleotide collection (nr/nt) to delineate the adaptive significance of the outliers based on 

similarity to existing gene and gene functions. 
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Figure 2.2 Workflow of the creation of the two datasets used. Abbreviations: (HWE) Hardy Weinberg 

Equilibrium (LD) Linkage Disequilibrium. SNPs outside of Hardy Weinberg Equilibrium and in Linkage 

Disequilibrium were removed. 

 

Genetic analysis 
 
A Bayesian clustering method implemented in Structure v 2.3.4 (Pritchard, Stephens, & 

Donnelly, 2000) was used to identify the presence of distinct genetic clusters (K). An 

admixture model with correlated allele frequencies without prior information on population 

membership was employed. A burnin of 500,000 and 500,000 further iterations was used. 

Structure Harvester Web v 0.6.94 (Earl 2012) was used to determine the optimal K based on 

ΔK, using the Evanno method (Evanno et al. 2005). Distruct plots were made using 

CLUMPAK (Kopelman et al. 2015). Principal Component Analysis (PCA) and Discriminant 

Analysis of Principal Components (DAPC) were carried out in R v 3.6 (R Core Team 2019) 

using the package adegenet v 2.1.1 (Jombart 2008). PCA loadings for each outlier were 

calculated in adegenet. The number of Principal Components used for the DAPC were 

validated using the Xvaldapc function which returns the number of principal components 

with the lowest mean square error. Pairwise Fst (Weir and Clark Cockerham 1984), 

population specific Fis (Weir and Clark Cockerham 1984), He and Ho, were calculated in 

ARLEQUIN v 3.5 (Excoffier and Lischer 2010). Isolation by Distance (IBD) tests were 
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carried out in ARLEQUIN v 3.5 using Linearized Fst and shortest distance by sea and 

significance was tested using a Mantel test (Mantel and Valand 1970) with 1000 

permutations. A distance by sea matrix was created using the R package marmap (Pante and 

Simon-Bouhet 2013). Analysis of Molecular Variance (AMOVA) were calculated in 

ARLEQUIN v 3.5 to determine global Fst from the variance components with 1000 

permutations to test for significance. 

 

Results: 
 
In total, 1,427,813,991 paired-end reads were generated across 191 samples. 4.19% had no 

barcode, 0.08% were removed due to low quality, 4.4% had no RAD cut site, retaining 

1,303,931,081 paired-end reads. After removing individuals with less than 20x coverage 141 

individuals remained with 6 to 15 individuals per site (Table 2.1) accounting for 

1,210,090,726 (92.8% of all retained reads). Coverage varied from 21.41x to 71.52x (mean = 
 

48.2x, S.D. = 13.2x) A total of 5,325 polymorphic loci and 141 individuals were retained 

after filtering in the populations script of STACKS of which 1,251 polymorphic loci were 

retained after removing loci with a call rate lower than 90% were removed. 181 and 185 loci 

were removed due to being identified as being in LD and outside of HWE respectively. 

Outlier analysis revealed four loci (0.45% of all loci) were identified as under putative 

positive selection. In total, 885 biallelic loci were retained. 

 

To gain a better insight into the population structure present, the dataset was divided into two 

datasets (i) 881 loci in HWE excluding outliers identified by BayeScan, hereafter referred to 

as neutral loci, and (ii) four outlier loci identified as being under putative positive selection, 

hereafter referred to as outlier loci. 
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Figure 2.3. Heatmap of pairwise comparisons of Fst between sampling sites. Above the diagonal: Neutral loci. 

Below the Diagonal: Outlier loci. Asterisk denotes significance after Bonferroni correction. Refer to Table 1 for 

sampling location abbreviations. Abbreviations: (NOA) Norfolk (Outside the bay), (NOB) Norfolk (Inside the 

bay), (SUF) Suffolk, (K1O) KEIFCA Outside Zone 1, (K1N) KEIFCA Inside Zone 1, (K2N) KEIFCA Inside Zone 

2, (K2O )KEIFCA Outside Zone 2, (K3N) KEIFCA Inside Zone 3,(K4N) KEIFCA Inside Zone 4,(WEY) 

Weymouth Bay, (LYM) Lyme Regis, (JER) Jersey Island, (IRE) South East of Ireland. 

 

Neutral loci 
 
Seventeen significant pairwise Fst comparisons between sampling locations, nine of which 

were significant after Bonferroni correction, were found (Figure 2.3, Table S2). Pairwise Fst 

ranged from 0.0052 (K2O vs K4N) to 0.0133 (K2N vs WEY). No significant sampling- 

location specific inbreeding (Fis) was observed (Table S4). There was no observed trend of 

IBD (r = -0.25, p = 0.882) when all sampling locations were considered. IBD trends were 

investigated further; by analysing the North Sea sampling locations exclusively (r = 0.51, p = 

0.001) and solely analysing the English Channel-Irish Sea sampling locations (r = 0.26, p = 
 

0.338). There was a strong and significant associated between genetic and geographic 

distance when using all sampling locations bar IRE, JER, and LYM (r = 0.54, p = 0.002). 

Based on the Bayesian cluster analysis (in Structure v 2.3.4) three distinct genetic clusters 

were present (ΔK = 2868.83), one of which was found at a slightly larger frequency in the 

English Channel sampling locations (Figure 2.4), and another at higher frequencies in the 
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North Sea. The remaining cluster was admixed at near equal proportions across all sampling 

sites. DAPC clustering found no evidence for genetic structure (Figure S1), and the PCA 

revealed large levels of admixture between sampling sites (Figure 2.4). Global Fst was - 

0.1453 and was not significant. Heterozygosity was moderate overall ranging between 
 

0.2542±0.1517 at NOA to 0.2928±0.1704 at IRE (Figure 2.5, Table S4). 

 

 
 

Figure 2.4.(A1) Principal Component Analysis using neutral loci (A2) Principal Component Analysis using 

outlier loci (B1) Distruct plot using neutral data where optimal K=3 (B2) Distruct plot using outlier data where 

optimal K=7. Abbreviations: (NOA) Norfolk (Outside the bay), (NOB) Norfolk (Inside the bay), (SUF) Suffolk, 

(K1O) KEIFCA Outside Zone 1, (K1N) KEIFCA Inside Zone 1, (K2N) KEIFCA Inside Zone 2, (K2O)KEIFCA 

Outside Zone 2, (K3N) KEIFCA Inside Zone 3,(K4N) KEIFCA Inside Zone 4,(WEY) Weymouth Bay, (LYM) 

Lyme Regis, (JER) Jersey Island, (IRE) South East of Ireland. 

 

Outlier loci 
 
Among the 13 sampling locations, 41 significant pairwise Fst comparisons between sampling 

locations were identified – 19 of which were significant after Bonferroni corrections was 

applied (Figure 2.3, Table S2). Pairwise Fst values ranged from 0.1144 (NOA vs LYM) to 
 

0.5280 (K2N vs JER). There was no IDB present (r = 0.03, b = < 0.001, p = 0.366) when all 

sampling locations were considered. No IBD was observed when solely the North Sea 

sampling locations were analysed (r = 0.05, p = 0.312) or only the English Channel-Irish Sea 

sampling locations were analysed (r = -0.25, p = 0.617). Furthermore, unlike the neutral loci 

there was no IBD observed when IRE, JER, and LYM were omitted (r = 0.28, p = 0.111). No 

sampling-location specific inbreeding (Fis) was observed (Table S4). Seven distinct clusters 

were identified by Structure (ΔK = 5.44), however, all were admixed at near equal 

proportions across all sampling locations (Figure 2.4) However, DAPC found four genetic 
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clusters (Figure S1). These genetic clusters were not equally admixed but instead contained 

three admixed clusters and one distinct cluster. This distinct cluster contained individuals 

from NOA, NOB, SUF, K1O, K1N, K2N, K2O, and K3N, all of which were located in the 

North Sea (Table S3). Loadings of the four outlier loci indicated that the allele frequencies of 

a single SNP (1362698_271) contributed most to the variability of the principal components 

(Figure S2). There was variability in allele frequencies at this SNP until in the North Sea, 

until K4N. From here, the allele frequency of that SNP decreased, and one allele dominated 

WEY, LYM, JER, and IRE (Figure S2). The PCA displayed large levels of admixture 

between sampling locations (Figure 2.4). Global Fst was 0.1132 and was significant. 

Observed heterozygosity was moderate to very high and varied between sites ranging from 
 

0.2523±0.1102 at K2N to 0.5279±0.0393 at LYM (Table S4). No significant alignments were 

identified in the NCBI nucleotide collection (Table S5) 

 

 

 
Figure 2.5. Sampling location specific He (maximum He for single bi-allelic SNPs is 0.5) and Ho using (A) neutral 

loci and (B) outlier loci. Abbreviations: (NOA) Norfolk (Outside the bay), (NOB) Norfolk (Inside the bay), (SUF) 

Suffolk, (K1O) KEIFCA Outside Zone 1, (K1N) KEIFCA Inside Zone 1, (K2N) KEIFCA Inside Zone 

2, (K2O)KEIFCA Outside Zone 2, (K3N) KEIFCA Inside Zone 3,(K4N) KEIFCA Inside Zone 4,(WEY) 

Weymouth Bay, (LYM) Lyme Regis, (JER) Jersey Island, (IRE) South East of Ireland. 

 

Discussion: 
 
This present study generated genomic datasets for B. undatum in the Southern North Sea, 

English Channel and Irish Sea using bi-allelic SNPs derived from ddRAD. It represents the 

first study to investigate fine-scale population structure of the species using NGS. The results 

of this study agreed with previous studies that B. undatum consists of a large semi-continuous 

population over the Irish Sea, English Channel, and Southern North Sea. There was a strong 

and significant correlation between genetic and geographic distance when the North Sea 

sampling locations were analysed separately and when all sampling locations bar IRE, JER, 
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and LYM, were analysed using neutral loci. No IBD observed in the English Channel-Irish 

Sea using neutral loci. No IBD was observed using outlier loci regardless of the exclusion of 

any sampling sites, or when analysing North Sea sampling locations or English Channel-Irish 

Sea samples independently. Outlier loci analyses did not reveal any locally adapted 

populations. 

 

Genetic connectivity using neutral loci 
 
The global Fst reported in the present study was -0.1453 and was not significant. This 

negligible value contradicts other studies that reported small but significant genetic 

differentiation along the British North Sea (global Fst = 0.010, Weetman et al. 2006) and Irish 

Sea (global Fst = 0.019, Mariani et al. 2012). The low global Fst, and admixed genetic clusters 

in this present study indicated that throughout the range there was one large population, 

however, the frequencies of the different clusters differed slightly between regions. Only 

11.54% of pairwise Fst comparisons were significant (21.79% before Bonferroni correction), 

much lower than the 68.53% (98 out of 143, just UK samples removing the Solent as it is 

defined within that study as a distinct genetic cluster) reported in Weetman et al. (2006). This 

reduction may be due to the increased genomic resolution provided by using 881 SNPs over 5 

microsatellites. However, it may be due to the spatial resolution in this current study 

compared to Weetman et al. (2006). That study included sampling locations further north in 

England, and into Scotland and included sampling locations in Wales and the English and 

Scottish side of the Irish Sea. A wider geographic scope is needed to directly compare this 

present study with Weetman et al. (2006) more accurately. The presence of significant 

pairwise differences in this present study may indicate that there was significant sub-structure 

within the population, but that gene flow via migration or semi-continuity appeared to be 

enough to prevent the population from becoming structured. 

 

Significant IBD was observed along the Southern North Sea and English Channel as far as 
 

WEY (r = 0.54, p = 0.002). This trend of IBD has been previously reported (Weetman et al. 
 

2006, Mariani et al. 2012) and was characteristic of the species. Furthermore, when all 

sampling locations were used IBD was not significant (r = -0.25, p = 0.882). This was similar 

to Weetman et al. (2006) where on a larger scale (Scotland, England, Sweeden, and France) 

there was no IBD observed. 

 

Buccinum undatum has been reported to be more differentiated inside bays and inlets 

compared to more open sampling locations (Weetman et al. 2006; Mariani et al. 2012). 



33  

However, this current study did not provide evidence for this. This present study sampled 

both within a bay in Norfolk (NOB) and outside the same bay (NOA). The distance between 

these sampling sites was 14 km. While there was a significant pairwise Fst between both of 

these sampling sites, all comparisons with NOB accounted for 33% of significant pairwise 

differences, and comparisons involving NOA accounted for a further 33%. A possible 

explanation is NOB was sampled close to the mouth of the bay. This proximity to the mouth 

may mean that it would be better connected than individuals located more inshore. Hence, 

more thorough sampling within bays and inlets, and further within these locations, would be 

required to explore this trend. 

 

Analysis of outlier loci 
 
Bayesian clustering analysis revealed seven genetic clusters, equally admixed across all 

sampling locations and that there was overall a single large population. A larger number of 

pairwise Fst comparisons were observed using the outlier loci, 24.36% - 52.56% before 

Bonferroni correction was applied. Eight (38.09%) of significant pairwise Fst comparisons 

involved JER. JER was the most southerly sampling location in this study and had the largest 

pairwise comparison (JER vs K2N, Fst = 0.5279). The underlying cause of the elevated levels 

of genetic differentiation at JER is unknown, but it is the most southerly sampling location in 

this study and may represent a change in the environmental pressures at that latitude. 

However, no oceanographic data was analysed in this present study to test for correlation 

between environmental variables. Furthermore, results from blasting outlier consensus loci 

through the NCBI nucleotide collection did not reveal any significant matches with annotated 

genes that would provide insight into gene function. DAPC analysis revealed four genetic 

clusters, one of which was distinct from the other three. This distinct cluster contained some 

individuals (21.28%) located at all sampling locations within the North Sea. This may imply 

that local environmental pressures in the North Sea differ from those in the English Channel- 

Irish Sea leading to a distinct population to live sympatrically with the other. The loadings for 

the DAPC revealed that allele variations in one SNP contributed the most to the variation 

observed in the DAPC. This SNP had a single allele which dominated the English Channel- 

Irish Sea, and the frequencies between the two alleles became more variable in the North Sea. 

The increased frequency of significant pairwise Fst comparison between sampling locations 

and the DAPC loadings may indicate that selective divergence may occur on a local scale. 
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Large population size supresses genetic drift 
 
The low level of genetic differentiation over the entire study area using the neutral loci could 

be the result of a large effective population size which was suppressing the effects of genetic 

drift. Genetic drift is the random loss of alleles over time. In a population of infinite size 

where random mating occurred, the frequency of alleles would remain stationary over time. 

Genetic drift leads to the fixation of alleles where populations are small or have mating 

systems that deviate from random. The low pairwise Fst values, combined with the similar 

frequencies of genetic clusters observed across the Southern North Sea, English Channel and 

Irish sea using the neutral loci indicate that there has not been a major fixation of alleles. 

Effective population size for B. undatum in the Irish Sea was previously calculated by 

Mariani et al. (2012). That study found that at most sampling locations in the Irish Sea, 

estimates of effective population size were infinite. Evidence for a large effective population 

size in the UK exists, as B. undatum have been reported as a fishery since 1922 and since 

then has grown to be the sixth-largest shellfish fishery in the UK (Marine Management 

Organisation 2017). For example, in the last 10 years, over 10,000 tonnes of B. undatum have 

been landed in the UK every year (Marine Management Organisation 2014, 2017). 

 

Application of Next-Generation Sequencing and Genome-Scan outlier detection in 

population genomics 
 

 
 

This study is the first to use RADSeq derived genetic markers for B. undatum. Previously, 

only microsatellites and mtDNA were used to infer population connectivity. Microsatellite 

markers have been difficult to develop in molluscs for reasons that are not fully understood, 

although some research indicated that it is the presence of large numbers of transposable 

elements in their genome (McInerney et al. 2011). These transposable elements may play an 

important part in reducing inter-specific genome variation and prevent microsatellite 

development (McInerney et al. 2011). Thus, RADseq represents a major technical 

breakthrough in molluscan population studies as it allows loci from non-model organisms, 

such as B. undatum, to be aligned without a reference genome (Davey and Blaxter 2010). 

RADseq can create thousands of genetic markers allowing for higher resolution population 

inferences. While no previous study exists using RADseq on B. undatum, other molluscan 

species have been examined using such Pectan maximus (Vendrami et al. 2017), Pectan 

magellanicus (Van Wyngaarden et al. 2017). 
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Vendrami et al. (2017) conducted a study on Pectan maximus across the Northern Ireland 

coast using both 15 microsatellites and 10, 539 SNPs. That study conclusively found that 

analyses involving SNPs revealed a distinct population within Mulroy Bay that was 

previously unidentified using microsatellites. While individual microsatellites are more 

informative that SNPs, the vast amount of SNPs allows for more robust inferences than a 

limited set of microsatellites (Liu et al. 2005). Thus, the population inference presented in the 

current study is more informative than previous studies. 

 

RADseq and its technical variants use restriction enzymes to cut along the genome i.e. there 
 

is genome-wide representation of SNPs. With a suite of genetic markers across the genome, it 

is possible to identify a panel of SNPs that show abnormally large or small Fst compared to 

the mean. However, just analysing the neutral markers in the genome can mask the true 

population structure present by not accounting for evolutionary forces such as adaption which 

can give rise to genomic variation. Outlier analysis has revealed population structure that was 

masked by neutral loci e.g. European hake (Milano et al. 2014). This is because adaptive 

selection can cause heterogeneous genomic divergence even in the presence of high gene 

flow by only acting on specific loci and those linked to them (Nosil et al. 2009). 
 
 

Conclusions 
 
Analysis of the neutral loci indicated advocated for the presence of a large semi-continuous 

population with sub-structure present. Global Fst estimates were very low, and not significant. 

Furthermore, multiple significant pairwise Fst comparisons were found. However significant 

comparisons only accounted for 11.54|% of all comparison which suggested that sub- 

structure was small and that gene flow between sampling locations prevented overall 

significant population structure from forming. A strong and significant association was found 

between geographic and genetic distance when North Sea sampling locations were analysed 

and when analysing all sampling locations bar IRE, JER and LYM. Buccinum undatum may 

have a large effective population size that means genetic drift has not occurred in the 

geographic range of this study. Contrary to previous studies, this study found no evidence for 

individuals sampled within bays and inlets to be more differentiated than those sampled 

outside of them. However, this study only sampled inside one bay, and that was near the 

mouth which may have not been far enough into the bay to see an observable trend. 

 

By using outlier detection methods implemented in BayeScan, 4 SNPs were identified as 

being potentially under selection (0.45% of total SNPs used). Much higher global Fst were 
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found using outlier loci than neutral loci. These values were an order of magnitude higher and 

represented much greater genetic differentiation than reported in previous studies that used 

microsatellite markers and by using the neutral loci in this present study. Bayesian clustering 

methods determined the presence of a single admixed population, while DAPC clustering 

advocated for the presence of a distinct population in the North Sea, which was admixed with 

individuals from another population. Furthermore, blasting the outlier loci through NCBIs 

nucleotide collection did not produce any significant matches to previously annotated genes 

that may have provided insight into gene function. Without a reference genome or 

oceanographic data, the underlying causes of selection cannot be addressed. 
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Supplementary material 
 

Methods 
 
Genomic DNA extraction and library preparation methods 

 
15 individuals were sampled from 13 sampling locations across England and Ireland. All samples 

were subsampled and stored in 100% ethanol at -20 °C and tissue was subsampled and stored at -

20 °C. Genomic DNA was extracted from the ethanol preserved specimens using the CTAB 

phenol-chloroform method, and frozen tissue was extracted using the Omega Biotek E.N.Z.A 

Mollusc extraction kit as per the manufacturer’s instructions.  

191 individuals were selected from a combination of these methods to proceed to the library 

preparation. The ddRAD libraries were constructed using 800 ng of gDNA from each individual. 

gDNA was digested initially using BamHI-HF incubated at 37 °C for 4 hours. A second digestion 

using ApeKI was incubated at 75 °C for 4 hours.  

The 191 individuals were then separated into two libraries, and each library was ligated with a 

combination of 96 barcodes. These barcodes were ligated in a 40 μl reaction volume containing 

6.3 μl (100 ng) of gDNA, 0.3 μl of T4 ligase, 4 μl of 10x T4 ligase buffer, 23.4 μl of DNase free 

water, 3 μl (60 ng) of the respective Ape adaptor, and 3 μl of the respective Bam adaptor. The 

reaction was incubated at 21 °C for 12 hours and the T4 ligase was heat activated at 65 °C for 10 

minutes.  

After ligation the samples were pooled into the respective libraries. Each library was separated 

into 8 1.5ml Eppendorf tubes. In each tube the libraries were purified by adding equal volumes of 

Machery Nagel beads (480 μl) and allowed to stand on the magnetic stand for 10 minutes. The 

supernatant was removed, and the precipitate was washed with 80% EtOH three times and left to 

dry. 60 μl of 5mM Tris/HCl (pH 8.5) was added and the solution was incubated for a further 5 

minutes. The tubes were allowed to stand on the magnetic stand for minutes. The elution buffers 

of each library were repooled (8x60 μl). Next each library was redistributed into 2 tubes and equal 

volumes of Machery Nagel beads were added (240 μl). The beads were mixed and incubated at 

room temperature for 5 minutes. The tubes were left to stand on a magnetic stand for a further 5 

minutes. The supernatant was removed, and the precipitate was washed three times with 80% 

EtOH and allowed to dry. An aliquot of 30 μl of 5mM Tris-HCl (pH 8.5) buffer was added to each 

tube and incubated at room 41  
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temperature for 5 minutes. The solution was then allowed to stand on the magnetic stand for 5 

minutes. The elution buffers from each library were repooled.  

Each library was size selected using the Pippin Prep (Cassette marker L, 2% agarose) under 

“broad” settings with a target fragment length of 400 bp and a range of 360-440 bp. After size 

selection the following PCR method was used to amplify the libraries 72 °C for 3 mins; 11 cycles 

of 98 °C for 10 seconds, 65 °C for 30 seconds, and 72 °C for 45 seconds; followed by a final run 

of 72 °C for 5 minutes. The amplified libraries were purified using Nagel Machery magnetic beads 

and 60 μl of 5mM Tris-HCl (pH8.5) buffer. The library was quantified using a Qubit fluorometer 

and were compared against a reference library to ensure correct fragment lengths.  

 

Figures and tables 
 

Table S1. Minimum distance by sea distance matrix between sampling sites. Distances are in kilometres. 

Abbreviations: (NOA) Norfolk (Outside the bay), (NOB) Norfolk (Inside the bay), (SUF) Suffolk, (K1O) KEIFCA 

Outside Zone 1, (K1N) KEIFCA Inside Zone 1, (K2N) KEIFCA Inside Zone 2, (K2O)KEIFCA Outside 

Zone 2, (K3N) KEIFCA Inside Zone 3,(K4N) KEIFCA Inside Zone 4,(WEY) Weymouth Bay, (LYM) Lyme Regis, 

(JER) Jersey Island, (IRE) South East of Ireland. 

 
 NOA NOB SUF K1O K1N K2N K2O K3N K4N WEY LYM JER IRE 

NOA 0             
NOB 14 0            
SUF 151 164 0           
K1O 212 225 67 0          
K1N 236 249 92 27 0         
K2N 245 258 100 33 18 0        
K2O 247 260 98 44 49 34 0       
K3N 263 276 114 53 50 35 21 0      
K4N 308 321 159 98 95 80 65 45 0     
WEY 558 571 409 349 346 330 315 295 252 0    
LYM 575 588 426 365 362 347 332 312 269 18 0   
JER 649 661 499 439 436 421 406 386 343 176 175 0  

  IRE  1152  1165  1003  943  940  924  909  890  847  597  579  612  0   



 

 

K4N 0.0618 0.0210 0.0155 0.1668 0.0854 
 

WEY 0.1771 0.1017 0.1270 0.2154 0.0996 
 

LYM 0.1144 0.0032 0.1258 0.3624 0.1762 

 
JER 0.2528 0.2128 0.2942 0.4856 0.4225 

 
IRE 0.0358 -0.0338 -0.0190 0.1465 0.0567 

 

0.2109 
 

0.3201 
 

0.4378 

 
0.5279 

 
0.2871 

 

0.0212 -0.0120 -0.0017 -0.1082 -0.0048 -0.0298 
 

0.1551 0.0884 0.0142 -0.1133 -0.0065 -0.0321 
 

0.1413 0.1011 -0.1378 -0.1639 -0.1248 -0.1596 

 

0.2990 0.2704 
 

0.1766 0.2796 -0.1233 -0.0316 
 

0.0208 -0.0789 -0.1565 -0.1453 -1.0398 -0.1033 

 4
2
 

 
 
 

 
Table S2. Pairwise Fst comparisons. Above the diagonal is the neutral loci. Below the diagonal is the outlier loci. Significant comparisons (p < 
0.05) are in bold. Significant comparisons after Bonferroni correction are highlighted in grey. Abbreviations: (NOA) Norfolk (Outside the bay), 

(NOB) Norfolk (Inside the bay), (SUF) Suffolk, (K1O) KEIFCA Outside Zone 1, (K1N) KEIFCA Inside Zone 1, (K2N) KEIFCA Inside Zone 2, 

(K2O)KEIFCA Outside Zone 2, (K3N) KEIFCA Inside Zone 3,(K4N) KEIFCA Inside Zone 4,(WEY) Weymouth Bay, (LYM) Lyme Regis, (JER) 

Jersey Island, (IRE) South East of Ireland. 
 
 
 

NOA NOB SUF K1O K1N K2N K2O K3N K4N WEY LYM JER IRE 
 

NOA 
 

0.0057 
 

0.0014 -0.0002 -0.0026 0.0077 
 

0.0083 
 

0.0027 
 

0.0063 0.0105 
 

-0.1130 0.0052 -0.0350 
 

-0.1105 0.0012 -0.0337 
 

NOB -0.0321 -0.0009 0.0011 -0.0031 
 

0.0090 
 

0.0066 -0.0010 0.0054 
 

0.0088 

 

SUF 

K1O 

K1N 

K2N 

K2O 

K3N 

 

0.0261 
 
0.1737 
 
0.1474 
 
0.1206 
 
-0.0139 
 
0.0294 

 

0.0210 
 
0.1466 
 
0.1085 
 
0.1332 
 
-0.0253 
 
0.0133 

 

 
 
0.0829 
 
0.0431 
 
0.0643 
 
-0.0055 
 
-0.0435 

 

-0.0020 
 
 

 
-0.0399 
 
0.0351 
 
0.2314 
 
0.0948 

 

-0.0059 
 
-0.0125 
 
 

 
0.0802 
 
0.1437 
 
0.0331 

 

0.0025 
 
-0.0050 
 
-0.0037 
 
 

 
0.1643 
 
0.0948 

 

0.0030 
 
-0.0067 
 
-0.0069 
 
0.0048 
 
 

 
-0.0075 

 

0.0013 
 
-0.0051 
 
-0.0058 
 
0.0005 
 
-0.0024 

 

-0.0001 
 
-0.0021 
 
-0.0037 
 
0.0109 
 
0.0055 
 
0.0010 

 

0.0009 
 
0.0046 
 
-0.0016 
 
0.0133 
 
0.0044 
 
0.0036 

 

-0.1067 
 
-0.1133 
 
-0.1293 
 
-0.0980 
 
-0.1180 
 
-0.1149 

 

-0.0042 
 
-0.0044 
 
-0.0088 
 
0.0055 
 
-0.0019 
 
-0.0077 

 

-0.0300 
 
-0.0366 
 
-0.0398 
 
-0.0335 
 
-0.0274 
 
-0.0333 
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Figure S1. (A1) Bayesian Inference Criterion used to determine the optimal number of clusters using neutral 

loci. Optimal number of clusters was 1. (B1) Bayesian Inference Criterion used to determine the optimal number 

of clusters using outlier loci. Optimal number of clusters was 4. (B2) DAPC plot using outlier loci and (B3) 

Structure-like bar plot based on DAPC analysis of outlier loci. Abbreviations: (NOA) Norfolk (Outside the bay), 

(NOB) Norfolk (Inside the bay), (SUF) Suffolk, (K1O) KEIFCA Outside Zone 1, (K1N) KEIFCA Inside Zone 1, 

(K2N) KEIFCA Inside Zone 2, (K2O)KEIFCA Outside Zone 2, (K3N) KEIFCA Inside Zone 3,(K4N) KEIFCA 

Inside Zone 4,(WEY) Weymouth Bay, (LYM) Lyme Regis, (JER) Jersey Island, (IRE) South East of Ireland. 
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Figure S2 (A) Loadings plot indicating the contribution of each outlier SNP to the variability in the PCA of the 

outlier loci. (B) Change in allele frequencies of outlier SNPs between sampling locations. Circle and square 

represent a different allele in the biallelic loci. Abbreviations: (NOA) Norfolk (Outside the bay), (NOB) Norfolk 

(Inside the bay), (SUF) Suffolk, (K1O) KEIFCA Outside Zone 1, (K1N) KEIFCA Inside Zone 1, (K2N) KEIFCA 

Inside Zone 2, (K2O)KEIFCA Outside Zone 2, (K3N) KEIFCA Inside Zone 3,(K4N) KEIFCA Inside Zone 

4,(WEY) Weymouth Bay, (LYM) Lyme Regis, (JER) Jersey Island, (IRE) South East of Ireland. 
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Table S3. Number of individuals from sampling locations assigned to clusters during DAPC analysis. 

Abbreviations: (NOA) Norfolk (Outside the bay), (NOB) Norfolk (Inside the bay), (SUF) Suffolk, (K1O) KEIFCA 

Outside Zone 1, (K1N) KEIFCA Inside Zone 1, (K2N) KEIFCA Inside Zone 2, (K2O)KEIFCA Outside 

Zone 2, (K3N) KEIFCA Inside Zone 3,(K4N) KEIFCA Inside Zone 4,(WEY) Weymouth Bay, (LYM) Lyme Regis, 

(JER) Jersey Island, (IRE) South East of Ireland. 

 
 Cluster 1 Cluster 2 Cluster 3 Cluster 4 
NOA 1 0 6 8 
NOB 0 2 2 7 
SUF 3 1 4 4 

K1O 2 1 3 0 

K1N 5 2 2 0 

K2N 4 0 7 1 

K2O 4 0 3 5 

K3N 5 1 3 2 

K4N 5 3 0 5 

WEY 2 5 0 6 

LYM 1 0 0 9 
JER 0 2 0 7 

  IRE  2  5  0  1   
 

 
 
 
 

Table S4. He (± SD) (Maximum He for bi-allelic SNPs is 0.5), Ho (± SD), and Fis per population. Significant Fis 

(p<0.05) are in bold. Abbreviations: (NOA) Norfolk (Outside the bay), (NOB) Norfolk (Inside the bay), (SUF) 

Suffolk, (K1O) KEIFCA Outside Zone 1, (K1N) KEIFCA Inside Zone 1, (K2N) KEIFCA Inside Zone 2, 

(K2O)KEIFCA Outside Zone 2, (K3N) KEIFCA Inside Zone 3,(K4N) KEIFCA Inside Zone 4,(WEY) Weymouth 

Bay, (LYM) Lyme Regis, (JER) Jersey Island, (IRE) South East of Ireland. 

 
  Neutral loci   Outlier loci  

Ho HE Fis Ho He Fis 

NOA 0.2542±0.1517 0.2589±0.1411 -0.0137 0.4413±0.3617 0.3663±0.1643 -0.2372 

NOB 0.2716±0.1636 0.2726±0.1378 -0.0238 0.3409±0.2611 0.3084±0.1680 -0.1111 

SUF 0.2571±0.1529 0.2631±0.1363 -0.0267 0.2917±0.1443 0.2518±0.1152 -0.1667 

K1O 0.3220±0.1883 0.3231±0.1352 -0.0157 0.3222±0.1347 0.3519±0.1834 -0.0870 

K1N 0.2728±0.1609 0.2787±0.1360 0.0027 0.3056±0.2291 0.2533±0.1659 -0.2222 

K2N 0.2616±0.1566 0.2692±0.1389 0.0022 0.2538±0.2304 0.2900±0.2816 0.1200 

K2O 0.2616±0.1533 0.2686±0.1391 -0.0100 0.3056±0.1735 0.2889±0.1682 -0.1702 

K3N 0.2710±0.1620 0.2724±0.1392 -0.0300 0.2523±0.1102 0.2566±0.1156 0.0090 

K4N 0.2590±0.1556 0.2627±0.1385 -0.0129 0.3542±0.1964 0.3037±0.1647 -0.2000 

WEY 0.2577±0.1539 0.2628±0.1408 -0.0090 0.3611±0.1273 0.3998±0.1501 0.0189 

LYM 0.2616±0.1587 0.2718±0.1387 -0.0499 0.5278±0.0393 0.5016±0.0023 -0.2656 

JER 0.2877±0.1638 0.2907±0.1383 -0.0232 0.4259±0.1786 0.3780±0.1510 -0.2055 

IRE 0.2928±0.1704 0.3012±0.1409 -0.0350 0.4167±0.2602 0.3833±0.2241 -0.0938 
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Table S5. Results of nucleotide BLAST search for the four outlier loci identified by BayeScan. No significant 

alignments were found (Searched 14-09-2019). 

 

Locus Sequence Cover e-value identify 
 

1091485 
PREDICTED: Pomacea canaliculata zinc finger protein GLI2- 

like (LOC112556014), mRNA. Accession XM_025224617.1 

 

21% 
 

6x10-08
 

 

84.13% 

 

16027 
PREDICTED: Rhinatrema bivittatum dynein axonemal heavy 

chain 6 (DNAH6), mRNA. Accession: XM_029602297.1 

 

13% 
 

0.200 
 

87.18% 

 

41214 
Salarias fasciatus genome assembly, chromosome: 3. 

Accession: LR597438.1 

 

97% 1x10-35
 

 

73.41% 

 

1362698 
Salarias fasciatus genome assembly, chromosome: 14. 

Accession: LR597449.1   

 

13%   
 

0.056   
 

91.43%   

 


