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ABSTRACT 

 
Anthropogenic activites such as those producing environmental changes have promoted the 

proliferation and establishment of non-indigenous species (NIS) in estuaries worldwide and 

the Guadiana estuary (Southern-Iberian Peninsula) is no exception. The extensive human 

development in this estuary, including river flow regulation, favoured the colonization by 

several NIS such as the black sea jellyfish Blackfordia virginica and more recently the blue 

crab Callinectes sapidus. The seasonal occurrence of B. virginica blooms have become a 

reason of concern due to reports of considerable economic and ecological impacts to fisheries 

and to the local food webs. However due to jellyfish properties, they represent an opportunity 

as an alternative food source for humans, while contributing to control their biomass in 

invaded ecosystems.  Therefore, the objective of this work was to evaluate the nutritional 

profile of this jellyfish, testing the hypothethis that B. virginica represents an alternative and 

healthy food source if it follows the same composition of other known edible jellyfish.  

However, they may also represent a threat to the ecosystem if consumed by other NIS. Thus, 

the second objective of this work was to  evaluate the contribution of B. virginica to the diet 

of opportunistic consumers in the middle Guadiana estuary, testing the hypothethis that 

generalist predators such as the NIS blue crab Callinectes sapidus and the indigenous green 

crab Carcinus maenas will benefit from B. virginica seasonal blooms by consuming this 

jellyfish.  For the evaluation of the nutritional profile the determination of the total lipids 

(modified protocol of the Bligh & Dyer method), crude protein, (elementar analysis of 

nitrogen), ash content (incineration), fatty acids methyl esters, (gas chromatography-mass 

spectrometer; GC-MS), aminoacids (high pressure liquid chromatography; HPLC reverse 

phase), and minerals (microwave plasma – atomic emission spectrometry; MP-AES) were 

made.  To investigate the contribution of B. virginica to the diet of the selected consumers, the 

presence of this jellyfish was investigated in the stomach contents of both crab species, 

through molecular analysis (DNA-PCR). Afterwards, its contribution to these consumers' 

biomass was determined using carbon (
13

C:
13

C/
12

C) and nitrogen (
15

N:
15

N/
14

N) stable 

isotope analysis. Results suggest that B. virginica dry biomass is mainly composed by 

essential minerals, and proteins rather than lipids. Blackfordia virginica composition 

resembled other edible jellyfish. Nonetheless the presence of cadmium, which is a toxic 

element, was high (3 mg/Kg) which meand they have a great potential to be used as food for 

humans if cadmium levels decrease. In addition, molecular analysis revealed the presence of 

B. virginica only in blue crab gut contents, although the Bayesian stable isotope mixing model 

did not show any relevant contribution to their biomass. Therefore the use of B. virginica for 

human consumption can represent an opportunity to decrease the abundance of this species in 
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the ecosystem through commercial exploitation, while representing a threat if other NIS, 

mainly the blue crab, can take advantage of this species by consuming it. 

Keywords: Exotic jellyfish; blue crab, Guadiana estuary;, nutrional composition; stable 

isotopes 
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RESUMO 

Nos últimos anos as atividades antropogénicas têm promovido o aparecimento e 

colonização de espécies não indígenas em estuários distribuídos por todo o mundo e o estuário 

do Guadiana (Sul de Portugal) não é exceção. O estuário do Guadiana tem sofrido ao longo 

dos tempos diversos impactos antropogénicos, incluindo, a construção da barragem do 

Alqueva em 2002 que promoveu a regulação do caudal do rio. Com a regulação do caudal, a 

salinidade da água tornou-se mais alta e mais estável, principalmente na zona do meio estuário 

que antes da construção da barragem era caracterizada por grandes variações de salinidade. 

Assim, as condições de salinidade mais altas e estáveis, juntamente com o facto desta zona ser 

caracterizada por ter uma baixa abundância e diversidade de espécies indígenas promoveram 

o aparecimento e suporte de espécies marinhas não indígenas como a medusa do mar negro 

Blackfordia virginica e mais recentemente o caranguejo azul Callinectes sapidus. A B. 

virginica tornou-se a espécie não indígena com uma maior distribuição no estuário e os seus 

blooms sazonais tornaram-se um motivo de preocupação devido aos seus consideráveis 

impactos tanto a nível económico como ecológico. Por exemplo, após o aparecimento desta 

espécie, foi observado uma diminuição na abundância de todos os organismos zooplantónicos 

incluindo de larvas e ovos de peixes. No entanto, devido às propriedades das medusas, como o 

alto teor em proteínas e minerais e o baixo teor lípidos, estas podem representar uma 

oportunidade como fonte de alimento para a população humana e assim contribuir para o 

controle dos seus blooms nos ecossistemas. De facto, com o aumento da população humana e 

consequente redução dos “stocks” de peixe, as fontes de alimento alternativas e saudáveis 

nunca foram tão importantes, e as medusas poderão ser uma delas. Por outro lado, e apesar de 

frequentemente se pensar que as medusas não são consumidas por organismos aquáticos 

devido ao seu elevado teor em água, estudos recentes demonstraram que as mesmas são 

muitas vezes uma fonte de alimento importante na dieta de organismos aquáticos incluindo de 

caranguejos e espécies indígenas de peixes, muitos deles comerciais. Assim, os objetivos 

deste trabalho são (1) estudar o perfil nutricional da B.virginica, tendo como hipótese que é 

uma fonte alternativa e saudável de alimento para a população humana se seguir o mesmo 

perfil nutritional de outras espécies de medusas usadas atualmente na colinária e (2) avaliar a 

sua contribuição como fonte de alimento para consumidores oportunistas na zona do meio 

estuário do Guadiana, testando a hipótese que predadores generalistas como caranguejo azul 

não indígena, e o caranguejo verde indígena Carcinus maenas irão beneficiar dos sasonais 

blooms da B. virginica, consumindo esta medusa. O valor nutricional da B.virginica foi 

analisado através de métodos disponíveis para determinar os lípidos totais (protocolo 

modificado do método de Bligh & Dyer), a proteína em bruto (analises elementares de 

azoto), o teor de cinzas (por incineração), os ácidos gordos metils esteres (por GC-MS), os 
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aminoácidos (fase reversa de HPLC) e finalmente os minerais (MP-AES). Neste estudo a 

atividade antioxidante também foi avaliada através de quatro métodos diferentes (ABTS, 

DPPH, ICA, CCA). Os nossos resultados sugeriram que a biomassa seca da B. virginica é 

composta por proteínas e minerais e aminóacidos essenciais, apresentando um perfil 

nutricional semelhante a medusas que são consideradas comestíveis. No entanto, a preseça de 

cádmio, que é um elemento tóxico, foi encontrado em altas concentrações na biomassa da B. 

virginica (3mg/Kg) e assim esta espécie poderá ter um grande potencial para ser utilizada na 

alimentação humana se os níveis de cádmio diminuírem. Para avaliar a contribuição da B. 

virginica na dieta dos consumidores selecionados, foi utilizada uma combinação de técnicas 

de análise molecular nos conteúdos estomacais dos caranguejos (DNA-PCR) com análises de 

isótopos estáveis (SIA) de carbono (
13

C:
13

C/
12

C) e azoto (
15

N:
15

N/
14

N). Os nossos 

resultados revelaram a presença da B. virginica nos conteúdos estomacais do caranguejo azul, 

no entanto com uma baixa contribuição, segundo os resultados do modelo de mistura 

Bayesiana de isótopos estáveis. Esta baixa contribuição poderá ter sido resultado de um 

grande período de “turnover” dos tecidos musculares dos caranguejos, ou seja, poderá não ter 

havido tempo para a B. virginica se incorporar nos tecidos. Estes resultados podem então 

sugerir que a B. virginica poderá estar a facilitar uma segunda invasão por estar a contribuir 

como fonte de alimento para o caranguejo azul. Assim, o uso da B.virginica na alimentação 

humana poderá representar uma oportunidade para diminuir a abundancia desta espécie no 

ecossistema uma vez que poderá estar a facilitar diretamente o sucesso de invasão do 

caranguejo azul. 

 
Palavras-chave: Medusa exótica; caranguejo azul, Estuário do Guadiana, composição 

nutricional, isotopos estáveis 
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1. INTRODUCTION 
 

Estuaries are among the most productive ecosystems on the planet, supporting high 

abundances of several species with ecological and socio-economic interest (Kokum et 

al. 2002). Yet, they are among the most endangered ecosystems due to a variety of 

direct and indirect anthropogenic disturbances such as pollution, marine and coastal 

construction, maritime transport, overfishing, climate change, and the introduction of 

non-indigenous species (NIS; Halpern et al. 2008). Non-indigenous species have been 

increasing in number in estuaries, especially in the brackish areas, as a consequence of 

intense shipping and opening of new transport routes (Paavola et al. 2005). Indeed, NIS 

have a higher potential to survive under extreme conditions during transportations and 

can adapt well to the new conditions found in the invaded areas (Theoharides and Dukes 

2007). More specifically, NIS are more opportunistic species with higher ability to 

adapt to new habitats than indigenous species (Theoharides and Dukes 2007). 

Explanations to why brackish areas are normally prone to introductions of NIS include: 

(1) most ports worldwide are located at the river mouths, areas where the discharge of 

ballast water often contains euryhaline species; (2) the wide salinity gradients in 

brackish waters provide a greater range of opportunities for NIS to establish in the 

estuary; and (3) the low species richness in brackish waters provides less competition 

for establishing (Paavola et al. 2005). Biological invasions are considered one of the 

most important direct drivers of biodiversity loss due to both direct biotic interactions 

with the indigenous community, such as predation and competition (e.g., O'Neill et al. 

2015; Bohn et al. 2007) and indirect changes in habitat conditions such as turbidity and 

habitat structure (e.g., Crooks 2002; Gallardo et al. 2016). Thus, new trophic links can 

be created affecting the demography and abundance of indigenous species (David et al. 

2017). It is expected that invasive species trigger distinct changes depending on their 

position in the food web (Pace et al. 1999). Direct predation usually occurs when 

invasive species occupy higher trophic levels, being the predominant mechanism by 

which invaders can dramatically decrease populations of indigenous species, exerting a 

top-down control in the food web (Bruno et al. 2005). The top-down impacts of an 

invasive predator may propagate both negative and positive changes in the abundance 

and biomass of lower trophic levels in what is often called a cascade effect (White et al. 

2006). For example, the invasion of the carnivorous ctenophore comb jelly 

Mneomiopsis leidyi (Agassiz, 1865) in the Black and Caspian Sea caused dramatic 
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reductions in zooplankton abundance mainly in ichthyoplankton and zooplanktivorous 

fish populations  (Katsanevakis et al. 2014). This resulted in an increase in the 

abundance of phytoplankton and bacterioplankton populations, triggering increases in 

the abundance of zooflagellate populations and causing an overall decline in water 

quality (Katsanevakis et al. 2014). 

When NIS and indigenous species share the same resources or the same space, 

competition can occur. For example, the non-indigenous sessile invertebrates such as 

the barnacles Amphibalanus improvises (Darwin, 1854) and Austrominius modestus 

(Darwin, 1854) and the freshwater hydroid Cordylophora caspia (Pallas, 1771) have 

been reported to dominate benthic communities in European waters, outcompeting other 

indigenous sessile species for space, which resulted in an ecological displacement 

(Kochmann et al. 2008). Also, some invasive fish species such as the Nile tilapia 

Oreochromis niloticus (Linnaeus, 1758) in the northern Gulf of Mexico coastal areas 

had a strong impact on indigenous fish such as the redspotted sunfish Lepomis miniatus 

(Jordan,1877) by competitive exclusion from their preferred habitat (Martin et al. 2010). 

Therefore, the effects of NIS typically tend to be negative on the diversity and 

abundance of species that occupy the same trophic niche due to competition for food or 

space (Thomsen et al. 2014). However, in some cases, they can produce positive 

impacts on the diversity of species at higher trophic levels. The relative trophic position 

states that NIS may often impact different trophic levels around them and such impacts 

can be negative or positive (Thomsen et al. 2014). For example, in the Amstel River 

(West Holand) the NIS C. caspia can negatively impact indigenous Bryozoans by 

competing for space, while it represents an important food source for local gastropods 

and amphipods (Roos et al. 1979). The non-indigenous crayfish Procambarus clarkii 

(Girard, 1852) in the Minho River (Northwest Portugal) competes with other 

invertebrates and vertebrates for food and space, however it is an important food source 

for higher trophic levels, such as mammals, birds, and fishes (Tablado et al. 2010; Sousa 

et al. 2013). Also, NIS can act as ecosystem engineers, i.e., affecting other biota via 

alterations to the abiotic environment by creating, destroying or modifying their habitats 

(Crooks 2002). For example, they can change water transparency, nutrients and organic 

matter concentration, and can also provide habitat formation (Gallardo et al. 2016) as 

for example, the non-indigenous zebra mussels Dreissena polymorpha (Pallas, 1771) in 

the Great Lakes. This species, despite exerting a bottom-up control in the local food 

webs by filtering plankton from the water column, can increase the water transparency 
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and create dense shell beds which harbour relatively high densities of other small 

invertebrates (Ricciardi et al. 1997). Thus, NIS are often an important new resource 

benefitting the higher trophic levels in the recipient ecosystems, but this positive effect 

may be opposed or reversed not only by the decline in the abundance and diversity of 

indigenous species, but also if the higher trophic levels that are benefiting with the NIS 

occurrence include other NIS (Simberloff and Von Holle 1999; Grosholz 2005; Green et 

al. 2011; David et al. 2017, O'Loughlin and Green, 2017). More specifically, successful 

primary invaders may sometimes facilitate directly or indirectly the invasion success of 

secondary invaders by altering attributes of the recipient communities and propagule 

pressure (i.e., a composite measure – quality, quantity, and frequency - of the number of 

invading organisms (Groom et al. 2006; Green et al. 2011)). Indeed, examples of 

facilitation of one invader by another are very common (Green et al. 2011). For 

example, the invasion of the blueback herring Alosa aestivalis (Mitchill, 1814), in Lake 

Ontario, may have been facilitated by the prior establishment of abundant prey such as 

zebra mussel larvae and the cladoceran Eubosmina coregoni (Baird, 1857) (Molloy et 

al. 1997; MacNeill 1998). Also, in the St. Lawrence River, the european faucet snail, 

Bithynia tentaculata (Frauenfeld, 1862), has tripled its abundance in association with 

the growth of dense invasive mussel populations, whose shells support rich microflora 

and provide the small snail with increased grazing area (Ricciardi et al. 1997) and 

refuge from large predators (Stewart et al. 1994). Therefore, interactions among NIS 

can facilitate secondary invasions and accelerate the overall rate of invasion (Simberloff 

and Von Holle 1999). Non-indigenous species can also show a high site-related 

variability in trophic position, thus impacting species communities at multiple trophic 

levels. For example, the crayfish Cambarus bartonii (Fabricius, 1798) in Powder Creek 

(Eastern New Zealand) is known to affect intermediate consumers and their basal 

resources because they are omnivorous (Usio, 2000). More specifically, crayfish, 

decrease the quality of the leaf material due to their shredding activites, which becomes 

unlikely to be attractive to other invertebrates mainly to collector-gatherers (Oligochaeta 

and Oribatei) and predatory chironomids (Tanypodinae). In addition crayfish also 

predates on this invertebrates (Usio, 2000). 

https://en.wikipedia.org/wiki/Samuel_L._Mitchill
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1.1. Non-indigenous species in the Guadiana estuary 

 
Aquatic invasions have been reported in estuaries worldwide, including in the Guadiana 

estuary (South Portugal, Southwestest Iberian Peninsula; Fig.1.1). The construction of the 

Alqueva dam promoted a decrease in the mean annual river discharge causing profound 

changes in its geological, physical, chemical, and biological conditions (Morais 2007, 

2008), specifically on the downstream estuarine habitats and adjacent coastal ecosystems 

(Muha et al. 2013). The decrease in the river flow and the considerable shipping traffic in 

the Gulf of Cadiz contributed to the increase in the number of NIS in this estuary, mainly 

in its brackish portion (salinity values varying between 0.5 and 25 PSU; Chícharo et al. 

2006a) which corresponds to the middle estuary (Foz de Odeleite to Porto Cinturão, 

Fig.1.1; Chícharo et al. 2006a; Montagna et al. 2013). Before the dam´s construction, the 

middle Guadiana estuary was characterized by a reduced number of species mainly due to 

marked salinity variations along the year at the estuarine turbidity maximum (ETM; 

Chícharo et al. 2001; Garel et al. 2009; Morais et al. 2009a). The few species present were 

mainly suspension and deposit-feeders that helped to minimize the water quality 

degradation (Chícharo et al. 2006a). After the dam’s construction, freshwater inflow 

became the most important factor determining abiotic and biotic variability in the 

Guadiana estuary (Morais et al. 2008). The ETM shifted more than 10 km upstream to 

Guerreiros do Rio as a consequence of changes in salinity (salinity became more stable) 

and temperature gradients, and nutrient stoichiometry, (Chícharo et al. 2006a; Morais 

2007). The flow regulation decreased the distribution and abundance of indigenous 

ichthyoplankton species such as european achovy Engraulis encrasicolus (Linnaeus, 1758) 

and european pilchard Sardina pilchardus (Walbaum, 1792), due to physical obstructions 

and destruction of spawning and nursery areas (Moura et al. 2003; Chícharo et al. 2006b). 

Thus, the number of indigenous species decreased, leaving this habitat empty for NIS to 

colonize and dominate the food web in this area (Chícharo et al. 2006b; Montana et al. 

2013; Morais et al. 2018). 
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Figure 1.1 (A) Geographical context of the Guadiana estuary in Europe, northern 

African coast and Iberian Peninsula (B) Geographical context of the Guadiana estuary in 

Portugal; (C) represents the three different areas of the estuary:  the upper estuary, the 

middle estuary and the lower estuary (Maps retrieved from D-Maps). 

 

 
 

 

 

 

 

 

 

 

 

 

Currently more than 10 NIS have been identified in this estuary, which include the 

calanoid copepod Acartia tonsa (Dana, 1849; Crustacea: Copepoda; Mattos, 2016), the 

asian clam Corbicula fluminea (Müller, 1774; Mollusca: Bivalvia; Morais et al. 2009b); the 

oriental shrimp Palaemon macrodactylus (Rathbun, 1902; Crustacea: Decapoda; Chícharo 

et al. 2009), the freshwater hydroid C. caspia  (Seyer et al. 2017), the black Sea jellyfish 

Blackfordia virginica (Mayer, 1910; Cnidaria: Hydrozoa; Chícharo et al. 2009), the 

weakfish Cynoscion regalis (Bloch and Schneider, 1801; Pisces: Sciaenidae; Morais and 

Teodósio 2016), and more recently the blue crab Callinectes sapidus (Rathbun, 1896; 

Morais et  al. 2018). These species have the potential to cause several ecological impacts, 

which will vary according to their position in the food web and functional traits (Chícharo 

et al. 2009; Gallardo et al. 2016; Morais and Teodósio, 2016; Seyer et al. 2017). 

The first trophic level in the middle estuary is composed by phytoplankton and marine 

plants, such as Spartina spp. Typically, phytoplankton abundance is higher during spring 

and summer months being dominated by chlorophytes (mainly Dictyosphaerium  

reniforme, Crucigenia tetrapedia, Scenedesmus acutus), unidentified Cryptophyceae, 

diatoms (Cyclotella sp., Melosira sp., Leptocylindrus minimus), and cyanobacteria (mainly 

https://en.wikipedia.org/wiki/Mary_J._Rathbun
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Microcystis spp.; Chícharo et al. 2006b), and their productivity varies according to 

freshwater discharges (Chícharo et al. 2006b; Mattos, 2016). An increase in the freshwater 

discharge increases phytoplankton diversity due to reduction in the competition for 

nutrients (Chícharo et al. 2006a). This favours an increase in the primary consumers 

abundance and diversity (Chícharo et al. 2006a; Muha et al. 2012; Mattos, 2016). The most 

abundant primary consumers include several copepod species such as Acartia clausii 

(Giesbrecht, 1889), Calanipeda aquaedulcis (Kritschagin, 1873), the invasive A. tonsa, and 

the cladocerans Bosmina longirostris (O.F. Müller, 1785; Chícharo et al. 2006b). The 

highest abundances of primary consumers are usually observed during spring/summer and 

autumn (Chícharo et al. 2006b; Mattos, 2016; Cruz et al. 2017). The limited distribution of 

A. clausii has been attributed to the introduction of A. tonsa which is an euryhaline, 

eurythermic, and eutrophic species with a high level of success as an invader (Mattos, 

2016; Cruz et al. 2017). Along with some zooplankton species, filter- and deposit feeders 

also consume phytoplankton including the invasive asian clam (Boltovskoy et al. 1995; 

Dias et al. 2014). The asian clam is one of the 100 worst invasive species in Europe 

(DAISIE, 2019) and was first reported in the middle Guadiana estuary in 2000 (Chícharo et 

al. 2000; Pérez-Bote et al. 2008). Now it has spread to areas downstream of the Alqueva 

dam (Morais et al. 2009b) with the potential to compete with adult and juvenile indigenous 

bivalves for food and space (Pérez-Bote et al. 2008). 

Secondary consumers (i.e., feeding on zooplankton and other primary consumers) in the 

middle estuary include planktivorous fishes such as european anchovy, european pilchard, 

and salema Sarpa salpa (Linnaeus, 1758; Chícharo et al. 2006b). Despite the decrease on 

these species’ survival after the Alqueva dam construction (Chícharo et al. 2006b), fish 

display substantial seasonal variations in abundance, being more abundante during spring 

and summer months, when the zooplanktonic productivity is usually high along the 

Portuguese coast and adjacent estuaries (Chícharo et al. 2006b; Faria et al. 2006). 

Therefore, they act as key species, preventing zooplankton community from achieving the 

situation of high dominance and favouring an increase on zooplankton diversity (Chícharo 

et al. 2006b). Although summer months have the highest ichthyoplankton abundances, 

sharp decreases between months may be explained by the increase in jellyfish abundance. 

The NIS P. macrodactylus and the indigenous delta prawn Palaemon longirostris (Milne-

Edwards, 1837; caridean shrimps) along with other crustaceans such as amphipods, 

isopods, and barnacles also consume zooplankton (Chícharo et al. 2009). 
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Palaemon macrodactylus appears to be a very successful invader, able to colonise a wide 

geographical range with a varied range of temperature and salinity (Ashelby et al. 2004; 

González-Ortegón et al. 2006; Beguer et al. 2007). Thus, it has been found in several 

Europeans waters, including in Spain (Cuesta et al. 2004), England (Ashelby et al. 2004), 

and Portugal (Guadiana estuary; Chícharo et al. 2009). Like other carideans,   P. 

macrodactylus is a carnivorous species, feeding mainly on animal fragments (Chícharo et 

al. 2009). Because both caridean shrimps (P. macrodactylus and P. longirostris) have 

similar diets, a dietary overlap between the NIS P. macrodactylus and indigenous 

populations of P. longirostris appears to occur in the Guadiana estuary (Ashelby et al. 

2004; Chícharo et al. 2009). Furthermore, in this estuary P. macrodactylus may compete 

for food and habitat with the indigenous fish larvae such as early stages of european 

anchovy, european pilchard, common goby Pomatoschistus sp., (Kroyer, 1838), common 

sole Solea sp. (Quensel, 1806), common two-banded seabream Diplodus vulgaris 

(Geoffroy, 1817), and with the greater pipefish Syngnathus sp. (Linnaeus, 1758; Gonçalves 

et al. 2017). The non-indigenous hydrozoans C. caspia and B. virginica also feed on 

zooplankton (Chícharo et al. 2009; Morais et al. 2017a). Cordylophora caspia is native 

from the Ponto-Caspian region where it inhabits brackish and freshwater environments 

because it tolerates salinities from 0 to 40 PSU (Seyer et al. 2017). It was first observed in 

the middle area of Guadiana estuary in June 2015 where it could have been introduced by 

shipping activities (Seyer et al. 2017). Predation by marine or brackish invertebrates might 

have prevented C. caspia from colonizing the lower estuary, being an important food 

source for gastropods and amphipods (Roos et al. 1979; Seyer et al. 2017). Cordylophora 

caspia is included in Europe’s 100 worst invasive species (DAISIE 2019), because it 

facilitates the settlement of invasive dreissenid mussels by providing additional surface 

area for their settlement and competes for food with larvae and juveniles of benthivorous 

fish (Pucherelli et al. 2016; Seyer et al. 2017). The ecological impacts in the Guadiana 

estuary are yet to be determined but the competition for settlement space may be relevant 

with other sessile invertebrates, like mussels, oysters, and bryozoans. However, the 

potential for competition for food with planktivorous fish species and larval phases is 

probably minimal since the population standing stock is low owing to the small amount of 

settlement habitat available despite the species broad distribution along the estuary (Seyer 

et al. 2017). 
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The non-indigenous weakfish and the blue crab along with the indigenous jellyfish (e.g. 

moon jellyfish Aurelia aurita (Linnaeus 1758), Maeotias marginata (Modeer 1791) and 

Catostylus tagi (Haeckel, 1869; Muha et al. 2016)), fish (e.g., meagre Argyrosomus regius; 

Asso, 1801; Perciforme: Sciaenidae)), and crabs (e.g., european green crab Carcinus 

maenas; Linnaeus, 1758) are expected to occupy high trophic positions in the in the middle 

Guadiana estuary food web. The weakfish is native to the east coast of North America and 

recently was detected by fishermen in several regions of the Iberian Peninsula where they 

could have been introduced by ballast waters (Morais and Teodósio 2016). They were 

captured in the Sado estuary (July 2014), Gulf of Cadiz (November 2015) and latter in the 

Guadiana estuary (June 2016; Morais and Teodósio 2016). It was hypothesized that 

individuals of established populations from Sado and Gulf of Cádiz dispersed and 

colonized other estuaries and regions, such as the Guadiana estuary (Morais et al. 2017b). 

This species uses both coastal areas and estuarine ecosystems as spawning, nursery (from 

spring until late summer and early autumn), and feeding areas, preying mainly on bivalves, 

amphipods, isopods and other small invertebrates, and also on fish species such as 

European anchovy (Morais and Teodósio 2016; Bloch et al. 2017; Morais et al. 2017b). 

Meagre is an indigenous species from the Guadiana estuary with a high economic 

importance at least since the 18
th

 century (Prista 2013; Morais and Teodósio 2016). Both 

weakfish and meagre share several ecological characteristics, including feeding upon 

similar types of prey (e.g., fish, penaeid and mysid shrimps, crabs, amphipods, clams, and 

annelids), using estuaries as nurseries during the same period, and seeking protection in 

holes and deep channels (Morais and Teodósio 2016). Thus, there is a high potential for 

competition between these species. 

The blue crab is a euryhaline and eurythermal species (Beqiraj, 2010) and its native range 

includes the western North Atlantic Ocean from Nova Scotia to Argentina. However, 

during the beginning of the 20
th

 century, its range has expanded to Africa, Asia, and 

Europe probably due to the increase in global temperatures (Manfrin et al. 2016; Morais et 

al. 2018). It was first observed in the middle Guadiana estuary on June 2017 (Morais et al. 

2018). This species preys on clams, annelids (polychaetas), oysters, mussels, smaller 

crustaceans, freshly dead fish, plant and animal detritus, and can also prey on smaller and 

soft-shelled blue crabs and on indigenous crabs (Manfrin et al 2016; Mancinelli et al. 2017; 

Morais et al. 2018). Because it is a generalist predator, it has the potential to impact the 

diversity and structure of the local benthic communities. In the Guadiana estuary, the blue 
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Figure 1.2 Blackfordia virginica jellyfish (Chícharo et al. 2009) 

crab distribution range overlaps with the distribution range of the European green crab 

which is present both in the lower and middle estuary (Morais et al. 2018). The 

competition between the blue crab and the green crab is modulated by temperature- 

dependent interactions (Rogers et al. 2018). At low temperatures, green crabs prey upon 

blue crabs, while at higher temperatures similar size blue and green crabs have similar 

competition capabilities but larger blue crabs can prey on green crabs (Rogers et al. 

2018). Then, a significant increase of the blue crab may have severe consequences for 

the autochthonous ecological communities (Manfrin et al 2016; Morais et al. 2018). 

 
1.2. The colonization of the Guadiana estuary by the jellyfish Blackfordia 

virginica 

The B. virginica is one of the most widespread NIS in the Guadiana estuary (Fig. 

1.2.; Muha et al. 2013). Normaly this species has higher abundances in the brackish 

zone, where there is a highly productive ETM zone (Chícharo et al. 2006a). Such 

productivity provides suitable conditions for medusa being their preferable habitat 

(Chícharo et al. 2009; Muha et al. 2013). However, lower densities of B. virginica 

species were noticed in other areas of the estuary due to their capacity to tolerate high 

salinity variations (Chícharo et al. 2009). The density of B. virginica also varies along 

the years: in wet years they have not been observed which suggests that freshwater 

pulses control the density of jellyfish populations (Marques et al. 2017). 

 

 

 

 

 

 

 

The ability of B. virginica to occur in blooms, like other cnidarians, is due to the fact 

they can reproduce both asexually and sexually (Fig. 1.3; Kimber et al. 2014; Purcel et 

al. 2007). Sexual reproduction occurs during the medusa stage with sexually mature 

adults releasing eggs and sperm daily into the water column (Baumsteiger et al. 2017). 

After fertilization and a period of growth, the eggs hatch and settle on a hard substract 

as planular larvae (Kimber et al. 2014). The planular larvae then form small benthic 

7 mm 
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Figure 1.3 Hydrozoan life cycle (Aerne et al. 1996). 

polyps (0.5 mm), which reproduce asexually by budding to achieve a stacked colony of 

same-sex medusa (Kimber et al. 2014; Baumsteiger et al. 2017). These polyps release 

larval medusa, when environmental conditions are favourable, normally during spring 

and summer (Kimber et al. 2014; Baumsteiger et al. 2017). These newly released 

medusae are small (1 mm in diameter), but will eventually grow to ca. 14 mm and reach 

sexual maturity (Figs. 1.2 and 1.3; Kimber et al. 2014). 

 

  

 

The B. virginica was first described by Mayer during autumn 1904 in Virginia USA, but 

later Theil (1935) found that this species was a common member of the hydromedusa 

community of the Black Sea suggesting that it is actually native from the Black Sea 

region (Theil, 1935). Established B. virginica populations can be found worldwide 

tolerating a wide range of temperature (16.5 to 23ºC) and salinity values (2 to 35 PSU). 

In Portugal they were first observed in the Mira estuary (Moore, 1987) and latter in the 

Guadiana estuary (June 2001; Muha et al. 2012) with abundances of 0.22 ind.m3 and a 

maximum density of 31.5 ind. m3 recorded in July 2008 (Chícharo et al. 2009), 

precisely in the middle area of the estuary, where they could have been introduced in 

either the medusa or the polyp stages (or both), probably by nautical activities (Chícharo 

et al. 2009; Freire et al. 2014). Although B. virginica has been reported over a wide 

geographic area, it is mainly restricted to scattered records within estuarine areas of 

temperate and tropical regions (Moore, 1987; Kimber, 2014). 
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This distribution pattern could be the result of repeated introductions, with medusae 

having limited dispersive capacity. Also, the asexual form of this hydromedusae life 

cycle is a reduced polyp stage with a short benthic life, which makes its records rare. 

Dormant stages may play an important role in the dispersal of the species, nonetheless 

they are unknown (Bardi and Marques 2009). 

In the Guadiana estuary the abundance of B. virginica started to increase in years 

after the Alqueva dam construction due to the river discharge regulation (Chícharo et al. 

2009; Muha et al. 2013; Amorim et al. 2017). According to Amorim et al. (2017), years 

with high freshwater discharge during winter and spring are correlated with lower 

jellyfish densities during the following summers in the Guadiana estuary. When salinity 

is lower, the polyps decrease their feeding behaviour maybe due to physiological 

reaction or osmotic stress, but also due to a degeneration of tentacles as observed in 

other studies (Holst and Jarms 2010). This affects the survival, ecophysiological 

performances (i.e., feeding rate and swimming ability), and budding of early life stages 

(Amorim et al. 2017). When the salinity increases, strobilation will also increase 

(Amorim et al. 2017). Low water temperature values favour strobilation but decrease 

ephyra and medusa growth (Amorim et al. 2017). Thus, a reduction in the river 

discharge, after the Alqueva dam construction, resulted in an overall increase in the 

salinity conditions in the estuary which likely favoured the establishment of this NIS, 

especially during the summer months when the water temperature is higher (Muha et al. 

2013). Therefore, blooms formation largely depends on the successful development of 

the early life stages, with temperature and salinity playing a fundamental role in the 

performance and survival of polyps, ephyra, and medusa stages.  

The B. virginica is only present from early summer to latter autumn in the Guadiana 

estuary, at least the medusa stage (Muha et al. 2013). During the spring and summer 

months light intensity is higher in this estuary which promotes an increase in the 

abundance of B. virginica prey such as barnacle nauplii, copepods and their eggs 

(Moyle and May 2011). Also during this period, water transparency is higher which 

reduces the contact damage between sediments and detritus and their fragil polyps 

(Baumsteiger et al. 2017), leading to an increase in polyps productivity (Moyle et al. 

2011). 

Although zooplankton is the preferential prey of B. virginica (Morais et al. 2017a), 

this species is a generalist predator feeding on invertebrates, fish eggs and larvae 

(Chícharo et al. 2009; Freire et al. 2014; Kimber, 2014; Morais et al. 2017a). 
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Surprisingly, detritus are also assimilated by this jellyfish being hypothesized that 

terrestrial-derived organic matter might support good physiological condition of B. 

virginica during periods of low metazooplankton abundance, through a detritus-based 

microbial food web (Morais et al. 2017a). 

Across the world, several negative effects have been documented when B. virginica 

occurs in high densities (i.e., 650 to 1700 ind.m-3; Chícharo et al. 2009; Freire et al. 

2014; Kimber 2014; Morais et al. 2017a; Jaspers et al. 2018). For example, in northeast 

Brazil, large concentrations of these medusae were found in nurseries for mullets at the 

fish culture base of Itamaraca. The abundances were so high that the water inflow to 

these nurseries was not possible due to the gelatinous masses (Freire et al. 2014). In 

addition, in the Kiel Canal, high densities of this species were observed and resulted in a 

decreased on gobbid fish larvae (Jaspers et al. 2018). 

In the Guadiana estuary, B. virginica represents a high risk to local zooplankton 

standing stocks, reducing the density of all zooplaktonic organisms, including eggs and 

fish larvae (Chícharo et al. 2009). Although there have been no conclusive studies on 

the impacts of B. virginica in this ecosystem, there have been many inferences on their 

potential impacts based on their ecological characteristics (Wintzer et al. 2013; Kimber, 

2014). For example, a further spreading and abundance increase of this specie may not 

only result in food competition with local planktonic feeders, including indigenous 

pelagic fish such as the european pilchard, the european anchovy, the common sole, the 

grater pipefish, the common goby, and the two-banded seabream, but additionally cause 

direct predation on fish early life stages. Thus, it can cause not only economic losses 

(Chícharo et al 2009; Baumsteiger et al. 2017; Jaspers et al. 2018) but also changes in 

the food web structure and dynamics (Moyle et al. 2011; Carman et al. 2017). 

Therefore, in estuaries where B. virginica is most commonly found, it is expected a 

profound impact as often estuaries act as nurseries for juvenile fish (Kimber et al. 2014). 

 

1.3. Blackfordia virginica as a potential source of nutritional and bioactive 

elements 

Despite the potential negative impacts in the ecosystem, jellyfish may be regarded as 

a new source of food and bioactive chemical compounds due to their usually high 

abundances and high regenerative and reproduction potential (Piraino et al. 2015). 

Innovative and sustainable food sources with high nutritional value have never been 

more important than nowadays, due to the exhaustion of several fish stocks, which 
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undermines food security by reducing the supply of a vital source of dietary protein 

(Brunner et al. 2008; Chang et al. 2015; Piraino et al. 2015). 

Jellyfish have been consumed for more than 1000 years and recently became a 

commercial fishery (Piraino et al. 2015). The processed (dried) jellyfish was first 

introduced in China for human consumption and recognized as one of Asia’s top food 

with a unique taste (Piraino et al. 2015). In recent decades, consumption of jellyfish has 

increased, especially in Asia, resulting in the growth of commercial jellyfish fisheries 

and in the development of a multi-million-dollar mariculture industry (Piraino et al. 

2015). However, while jellyfish were exclusively exploited in the Eastern Asia in the 

past, nowadays due to worldwide migrations from China, jellyfish based products are 

increasingly spreading to India, Mexico, Australia, Turkey, and United States (Armani 

et al. 2014; Graham. et al. 2014). 

The Food and Agriculture Organization of the United Nations (FAO) proposed that 

in order to reduce jellyfish populations they could be used as medicine or food, since 

their biomass could be a valuable source of bioactive compounds and essential nutrients 

unavailable or poorly present in products from terrestrial plants and animals (Arnani et 

al. 2014; Piraino et al. 2015). There are more than 200 species of Scyphozoa, about 50 

species of Staurozoa, 20 species of Cubozoa, and 1000-1500 species of Hydrozoa that 

produce medusa, including B. virginica (Marques et al. 2004). According to some 

studies, several species of the scyphozoan jellyfish (25 to 30 species; Table 1.1) are 

appreciated in South- East Asia and Europe (Armani et al. 2014) not only for their 

texture and taste, but also because they ensure a low caloric diet, being low in fat and 

cholesterol (Yuferova et al. 2015, Zhu et al. 2015). Indeed, over 95% of jellyfish body 

weight is water, whereas the dry weight (DW) is in the range of about 3-5% of fresh 

weight (FW¸Piraino et al. 2015). Carbon is typically lower than 15% of DW where in 

non-gelatinous groups it accounts for up to 30-60% (Piraino et al. 2015; Chan et al. 

2015). The organic content (%) is mainly represented by protein (5 - 30% of DW), 

while lipids (2 - 10% of DW) and carbohydrates (0.5 - 1.7% of DW) are minor 

components of the jellyfish tissues (Lucas et al. 2008; Piraino et al. 2015). However, 

jellyfish composition varies with species, season, and capture location (Xu, 2010). For 

example the proximate composition of coronate jellyfish Atolla wyvillei (Haeckel, 1880) 

from the Southern Ocean in % of FW is 0.83% protein, 0.21% lipid and 0.08% 

carbohydrates (Lucas 2008). In addition the large edible jellyfish, Stomolophus nomurai 

(Kishinouye, 1992) in Japan contains about 0.40% proteins, 0.02% lipids and 0.58% 

https://en.wikipedia.org/wiki/Ernst_Haeckel
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carbohydrates (Huang 1988). 

 

Table 1.1 Known edible jellyfish from Asia and Europe. 

 

 

Research has shown that jellyfish proteins exhibit skin photo-protection from 

ultraviolet (UV) radiation, immunomodulatory, antihypertensive, anti-tumoral, 

antimicrobial, and antioxidant properties (Arnani et al. 2014; Piraino et al. 2015). For 

example, collagen is a fibrous and structural protein widely present in the animal tissues 

as a prevailing component of extracellular matrices in connective tissues and essential to 

muscle tissue, cartilage and bone (Hsieh and Rudloe, 1994). This is the main structural 

protein in the jellyfish dry mass (Alves and Reis, 2017). This protein is formed by three 

polypeptide α chains, arranged as a triple helix enfolded around each other. Each one is 

Edible jellyfish species Comon name Reference 

Scyphozoa: Rhizostomatidae   

Rhopilema esculentum (Kishinouye, 1891) Red jellyfish Zhuang et al. 2009 

Rhopilema hispidum (Vanhöffen, 1888) Sand jellyfish Khong et al. 2016 

Rhizostoma sp. Barrel jellyfish  

Rhizostoma pulmo (Macri, 1778) - Leone et al. 2015 

Rhizostoma luteum (Quoy and Gaimard, 1827) - Prieto et al. 2018 

Acromitus hardenbergi (Stiasny, 1934) River jellyfish Khong et al. 2016 

Crambione mastigophora (Maas, 1903) Prigi jellyfish KitamuraandOmori 2010 

Crambionella sp. Cilacap jellyfish KitamuraandOmori 2010 

Crambionella orsini (Rao, 1931) Ball jellyfish KitamuraandOmori 2010 

Catostylus mosaicus (Quoy and Gaimard, 1824) Jelly blubber  

Catostylus tagi (Haeckel, 1869) - Morais et al. 2009 

Labonemoides sp. White jellyfsh KitamuraandOmori 2010 

Lobonemoides gracilis (Light, 1914) - KitamuraandOmori 2010 

Lobonemoides robustus (Stiasny, 1920) - KitamuraandOmori 2010 

Lomonema smithi (Mayer, 1910) - KitamuraandOmori 2010 

Stomolophus nomurai (Kishinouye 1922) Nomura's jellyfish Huang, 1988 

Stomolophus meleagris (Agassiz, 1860) Cannonball jellyfish Kitamura and Omori 2010 

Catylorhiza tuberculata (Macrì, 1778) Fried-egg jellyfish Leone et al. 2015 

Scyphozoa: Semaeostomeae   

Aurelia sp. Moon jellyfish  

Aurelia aurita (Linnaeus, 1758) - Wakabayashi et al. 2015 

Aurelia coerulea (von Lendenfeld, 1884) - Leone et al. 2015 

Chrysaora pacifica (Goette, 1886) Japanese sea nettle Wakabayashi et al. 2015 

Pelagia noctiluca (Forskal) Purple jellyfish Costa et al. 2019 

Scyphozoa: Coronatae   

Periphylla periphylla (Péron and Lesueur, 1810) Helmet jellyfish Lucas et al. 2008 
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composed of a set of amino acids with a repeated motif of Gly-X-Y, where X and Y are, 

predominantly, proline and hydroxyproline (Alves and Reis 2017). The abundance of 

these hydrophobic amino acids favours higher affinity to oil and better emulsifying. As 

a result, collagen provides natural antioxidant peptides and exerts high antioxidant 

effects (Zhuang et al. 2009). Therefore, these gelatinous organisms can be an important 

source of natural compounds with antioxidant activity (Loganayaki et al. 2011). In fact, 

natural antioxidants can protect the human body from free radicals including hydroxyl 

radical, hydrogen peroxide, singlet oxygen, and nitric oxide, which are generated in 

living organisms and that can result in oxidative stress, contributing to a number of 

health disorders, such as cellular injury and DNA degradation (Loganayaki et al. 2011; 

Yu et al. 2006). Therefore, molecules and/or products with antioxidant properties are of 

high interest for the prevention of oxidative-stress related diseases. For example, 

collagen from the red jellyfish Rhopilema esculentum (Kishinouye, 1891) can protect 

mice skin from the UV radiation damages alleviating the UV-inducing abnormal 

changes of antioxidant indicators (Piraino et al. 2015; Alves and Reis 2017). 

To the best of our knowledge there is no information about the nutritional 

composition of B. virginica biomass, or its biological properties. However, if this 

species as a similar composition as other edible jellyfish, which includes low fat content 

(essential omega-3 and omega-6 unsaturated fatty acids) and rich in proteins (e.g., 

collagen; Morais et al. 2009c) its biomass could be exploited for food and medical 

purposes acting also as a potential strategy to control its populations in invaded 

ecosystems. 

 

1.4. Blackfordia virginica as a food source for aquatic consumers 

Jellyfish have been considered as "trophic dead ends" in the aquatic food webs, 

which means that they are not susceptible to high levels of predation due to their low 

nutritional value (Marques et al. 2016; Hays et al. 2018). However, some authors 

suggested that a large number of pelagic predators may opportunistically consume 

gelatinous zooplankton (Avian and Rottini Sandrini, 1988; Harbison, 1993). For 

example, evidence from cameras deployed on the seabed suggests that dead jellyfish 

represent a significant component in the diet of commercially exploited lobster 

Nephrops norvegicus in Norwegian fjords (Sweetman et al. 2014; Dunlop et al. 2017). 

In addition, several benthic fish species in the Northwest Atlantic such as the hagfish 

Myxini sp. (Linnaeus, 1758) and grenadier Coryphaenoides leptolepis showed high 
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levels of jellyfish consumption suggesting that jellyfish blooms provide an important 

food source for the benthic communities (Smith et al. 2016). Furthermore, jellyfish-crab 

interactions have been reported and some include predation or partial predation by crabs 

on the jellyfish (Carman et al. 2017). This includes the spider crab Libinia dubia (H. 

Milne Edwards, 1834) in the Mississipi Sound (USA) feeding on the sea nettle 

Chrysoara quinqecirrha (Desor, 1848; Cnidaria e Scyphozoa; Phillips et al. 1969), on 

the cannonball jellyfish Stomolophus meleagris (Agassiz, 186) in Onslow Bay (USA) 

(Shanks and Graham, 1988; Tunberg and Reed, 2004) or on the moon jellyfish Aurelia 

aurita (Linnaeus, 1758) in Chesapeake Bay (Jachowski, 1963). Also, in a study in the 

island of Martha's Vineyard in Massachusetts (USA) was observed that the 

hydromedusae Gonionemus sp. was often consumed by the indigenous spider crab and 

by the indigenous blue crab (Carman et al. 2017). 

Predators from higher trophic levels such as turtles, fish, and penguins also consume 

jellyfish. For example, the moon fish Lampris sp. (Retzius, 1799) and butterfish 

Peprilus triacanthus (Peck, 1804) prey exclusively on gelatinous zooplankton, 

especially during periods of massive proliferation, being a non-negligible source of 

energy for fishes when an alternative prey is not available (Arai 2005; Doyle et al. 

2007). Likewise, different penguin species from polar to temperate habitats were 

observed to predate on the jellyfish (Thiebot et al. 2017). For example adélie penguins 

Pygoscelis adeliae (Hombron and Jacquinot, 1841) were observed to predate on the 

jellyfish Diplulmaris antarctica (Maas, 1908), yellow-eyed penguins Megadyptes 

antipodes (Hombron and Jacquinot, 1841) were observed to predate on the jellyfish 

Aequorea forskalea (Péron and Lesueur, 1810), magellanic penguins Spheniscus 

magellanicus (Forster, 1781) were observed to predate on the South American sea nettle 

Chrysaora plocamia (Lesson, 1830) and little penguins Eudyptula minor (Forster, 1781) 

were observed to predate on the crystal jelly Aequorea sp. (Péron and Lesueur, 1810) 

and on the jellyfish Cyanea sp. (Péron and Lesueur, 1810; Thiebot et al. 2017). 

Therefore, gelatinous plankton can be a food source for many organisms throughout 

the aquatic food webs (Brodeur et al. 2016; Carman et al. 2017; Hays et al. 2018). 

However, the organisms that benefit with the presence of this non-indigeneous jellyfish 

may include several other NIS which could facilitate their colonization and 

establishment in a new ecosystem (Simberloff and Von Holle 1999; Marques et al. 

2016). For example, in the Black sea the invasive ctenophore Beroe ovate (Bruguière, 

1789) is known to predate on the invasive M. leidyi (Shiganova. et al. 2014). 

https://en.wikipedia.org/wiki/Jean_Guillaume_Brugui%C3%A8re
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Figure 1.4 Conceptual diagram of the food web in the middle Guadiana estuary based on 
previous studies on the organisms feeding behavior, where narrow arrows represent predation 
and the dotted around the detritus fluxe on the food web once every organism consume detritus 
and constribute to that fluxe when die. Numbers represent the different trophic levels and the 
intensification in the colour represents higher trophic levels, where blue corresponds to 
indigenous species and red to non-indigenous species. The red arrows represent the possibility 
of Blackfordia virginica as a food source for Carcinus maenas and for Callinectes sapidus. 

 

In the Guadiana estuary, B. virginica is present in high abundances during summer 

months in years with low flow, typically withhigh salinity values and low nutrients’ 

concentrations and low turbidity which are favourable conditions for B. virginica 

populations (Muha et al. 2017). When they are present, not only exert a high pressure on  

zooplankton and fish eggs and larvae, but also on detritus, that seems to be the most 

important source for jellyfish biomass increase. Therefore, during this period there is a 

high jellyfish production and a low abundance of both zooplankton and icthyoplankton, 

once that part of the ecossystem biomass is captured by jellyfish groups rather than by 

indigenous species (Muha et al. 2017). Nothing is know about potential predators for B. 

virginica in the Guadiana estuary, but we hypothesize that higher trophic levels, 

including benthic and generalistic feeders, may benefit from food resource pulses 

originated from the bloom events of B. virginica, which includes several NIS such as 

blue crab and indigenous species such as the green crab (Fig.1.4) thus, representing a 

potential threat and/or opportunity to the ecosystem. 
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2. OBJECTIVES 

 
 

Jellyfish blooms are increasing worldwide and are often known for their negative 

economic and ecological impacts to fisheries and to the local food webs. However, they 

may represent an opportunity as an alternative food source and/or as a source of 

antioxidant products for humans, while contributing to control their biomass in the invaded 

ecosystems. On the other hand, they may also constitute an important source of food for 

aquatic consumers, especially to those that feed opportunistically. This is particularly 

important if those consumers are non-indigeneous species because this can facilitate their 

colonization and establishment in a new ecosystem. 

Thus, the main objective of this study was to evaluate the potential of B. virginica to be 

used as a food source or as an alternative source of antioxidant products for humans and 

also as a food source for estuarine opportunistic consumers in the Guadiana estuary. 

Because edible jellyfish present high protein and essential mineral content (Costa et al. 

2019), we hypothesize that B. virginica has a great potential to be an alternative healthy 

human food source. Also, because they form seasonal blooms (31.5 ind. m
3
; Chícharo et al. 

2009), we expect they will be consumed by opportunistic consumers such as crabs, which 

are generalistic consumers (Seitz et al. 2011). 

To evaluate the potential of B. virginica as a food source for human consumption a 

preliminary evaluation of its nutritional composition was made, and included the 

determination of the crude protein, ash, amino acids, fatty acids methyl esters, and mineral 

contents. To evaluate the in vitro antioxidant properties of this species different methods 

were used according to Yu et al. (2006). To determine the role of B. virginica as a food 

source for opportunistic consumers in the Guadiana estuary, molecular analyses (DNA- 

PCR based analysis) were combined with carbon (δ
13

C: 
13

C/
12

C) and nitrogen (δ
15

N: 

15
N/

14
N) stable isotope analysis. The consumers selected were the non-indigeneous blue 

crab C. sapidus and also the indigenous green crab C. maenas. These species were chosen 

because they have a similar distribution, they are both abundant in this area of the estuary, 

and are considered opportunistic and generalistic species (Baeta et al. 2006; Rogers et al. 

2018; Morais et al. 2018). 
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3. MATERIALS AND METHODS 

3.1. Study area 

The Guadiana River is located in South of Portugal (South-West Europe; Fig. 3.1) 

and its catchment basin is the fourth largest in the Iberian Peninsula, with 67.500 km
2
 

(Chícharo et al. 2006a). Its estuary is approximately 80 km long, with the lower 50 km 

delimiting the border between Portugal and Spain, and occupies a total area of 22 km
2
 

(Bettencourt et al. 2003). This estuary is mesotidal with mean tidal amplitudes ranging 

from 1.3 to 2.6 m (with a maximum of 3.4; Garel et al. 2009). The mean depth of the 

estuary is 6.5 m and the maximum depth is ca. 18m (Garel et al. 2009). The Guadiana 

basin has Mediterranean climatic characteristics, with hot and dry summers (24ºC near 

the sea) and relatively rigorous winters (11ºC near the sea; Chícharo et al. 2006a; Garel, 

2017). Data for rainfall and river discharges for the Guadiana river basin show a strong 

link with North Atlantic Oscillation (NAO) index patterns (Garel, 2017). A negative 

NAO index (dry conditions in the northern latitudes) usually results in more rainfall (in 

the southern latitudes of Europe), and subsequent flooding in the river basin during 

winter months (Garel, 2017). This estuary is listed as Wetland of International 

Importance and is included in the Natura 2000 Network, being an area of high 

ecological importance (Garel, 2017). 

Figure 3.1 Sampling sites at Guerreiros do Rio and Almada de Ouro (adapted from 

D. Maps) 
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3.2. Field sampling 

 
Sampling was conducted in June 2019 at the middle section of the Guadiana estuary, 

from Guerreiros do Rio (37° 23' 51.081" N/ 7° 26' 47.782" W ) to Almada d’Ouro (37° 

18'49.654" N/7° 26' 39.517" W; Fig.3.1). 

Samples of B. virginica and other zooplankton groups were collected by a horizontal 

tows with a conical plankton net (200 μm mesh size, area=0.13m
2
), equipped with 

Hydro- Bios flow meter, during 10 minutes. Blackfordia virginica samples were pooled 

into three sub-samples: one was frozen and latter freeze dried for the evaluation of the 

nutritional profile, another was frozen for DNA-PCR analysis, and for stable isotope 

analysis one sub-sample was preserved in 70% ethanol. The other zooplankton 

organisms were preserved in 70% ethanol for stable isotope analysis. 

To investigate if B. virginica could represent a food source for opportunistic and 

generalistic consumers in the middle section of the Guadiana estuary, 12 individuals 

from the blue crab and five individuals from the green crab, were collected along with 

their potential sources, which were selected based on the available information from 

stomach content analysis (Table 3.1). The potential sources collected included terrestrial 

plants (Eucalyptus and Salix sp.) and its detritus, macroalgae (Ulva sp., and 

Rhizoclonium riparium), filter feeders (copepod A. tonsa and mysids), amphipods 

(Cerapus sp., and Gammarus sp.), annelids (Autolytus sp., and oligochaetes), isopods 

(Shaeroma quadridentatum), bivalve molluscs (Oysters), hydroid (C. caspia), caridean 

shrimps (P. longirostris and P. macrodactylus) and fish (Solea solea). 

Detritus, terrestrial plants, and macroalgae were hand collected; mysids, annelids, 

ampipods and isopods were collected with a dredge; C. caspia and oysters were 

collected on the floating structures present on river platform by knife; fish, crabs, and 

caridean shrimps were obtained from commercial fishing operating in the area. All the 

organisms were kept one ice during transportation and then kept frozen at -20ºC until 

processing. 
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3.3. Laboratory analysis 

 
3.3.1. Determination of the nutritional profile 

 

The determination of the proximate composition and antioxidant activity of B. 

virginica was made following the standard procedures at the XtremeBio laboratory 

(CCMAR, Algarve University, Campus de Gambelas, Faro, Portugal). 

The determination of amino acids content of B. virginica was made following the 

standard procedures at AQUAGROUP (CCMAR, Algarve University, Campus de 

Gambelas, Faro, Portugal). 

The determination of FAMEs and minerals was made at CCMAR, Algarve 

University, Campus de Gambelas, Faro, Portugal. 

 

3.3.1.1. Proximate composition 
 

For the determination of the moisture content of the jellyfish biomass, fresh samples 

(three replicates, n=3) were weighed and dried in an oven at 60ºC until constant weigth 

(12h). After that period, samples were weighed and moisture was calculated as the 

difference between fresh and dry weigth. 

Ash was determined by incineration of jellyfish biomass (aprox. 0.5 g, n=3) in a 

muffle furnace at 525°C for 5h (AOAC, 1990). The ash content was calculated as the 

difference between the final and initial weight of the jellyfish biomass. 

Table 3.1 Food items identified in the stomachs of Callinectes sapidus and Carcinus maenas. 

Specie Common name Diet References 

Callinectes sapidus Blue crab M, Nc, Dc, A, C, V Marlin and Tagatz 1968; 

Seitz et al. 2011 

Carcinus maenas Green crab M, NC, Dc, C, A, V Baeta et al. 2006 

The diet column reports the preys contributing at least in 5% in weight or volume to the total 

stomach contents (F: Teleostei); Nc: non-decapoda crustaceans (amphipods, mysids, barnacles), 

Dc: Decapoda crustaceans, C: cannibalism, M: molluscs (clams, mussels, snails), A: annelids, 

V: vegetation (plant matter and detritus) . Data from the North Atlantic. 
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The crude protein content was determined by the elemental analysis of nitrogen (N), 

in a combustion analyzer (n=3). The N value was then multiplied by the conversion 

factor specific for aquatic invertebrates (6.25) to determine the crude protein. 

The total fat was determined gravimetrically by a modified protocol of the Bligh & 

Dyer method involving the homogenization of the dried biomass (n=3) in a mixture of 

chloroform, methanol and water (2:2:1) using an ultra sound bath (IKA-Werke GmbH, 

Staufen, Germany), as described in Pereira et al. (2013). Carbohydrates were calculated 

by difference, i.e., equation 1: [100% - (moisture content + crude protein + ash content 

+ total fat)]. Results are expressed as g per 100g of dry weight biomass (DW). 

Whenever needed, results were also expressed as g per 100g of wet weigth biomass 

(WW). Metabolizable energy (ME) was calculated using the specific factor for fish 

(FAO, 2002) according to the following equation 2: ME (Kcal) = 4.27× (g protein) + 

4.11 × (g carbohydrate) + 9.02 × (g lipid). ME was expressed as kcal/100g of WW.  

 

3.3.1.2. Amino acids content 
 

To determinate the total amino acids contents a high pressure liquid chromatography 

(HPLC) with a reverse phase analytic system for amino acid (Waters ACQUITY UPLC 

H- Class System) was used using norvaline as an intern standard. The principle of this 

method is that solute hydrophobicity, i.e. B. virginica dry biomass (30 mg; n=2) was 

hydrolyzed in HCL 6M for 48 hours in vessels with a hydrogen atmosphere in order to 

disrupt the proteins. In order to increase thermal stability and improve chromatographic 

properties of compounds of interest, samples were derivatizated with Waters AccQ 

Fluor Reagent (6-aminoquinolyl- N-hydroxysuccinimidyl carbamate) according to 

AcccQTag method (Waters, Milford, USA). The mobile phase (polar) was applied to 

the column where the most hydrophobic compounds interacted with the column best. 

Therefore, the least hydrophobic eluted first and the most hydrophobic eluted last. 

To quantify the amino acids concentration, a set of standards containing amino acids 

(Waters) were prepared, and calibration curves were generated for each amino acid 

using the Empwer software (Waters). Results are expressed as mg/100g DW and as 

percentage of total amino acid content. 

 

3.3.1.3. Preparation and determination of fatty acid methyl esters (FAMEs) 
 

Lipids and free fatty acids (FA) were converted to the corresponding FAME, by a 
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direct transesterification method using acetyl chloride/methanol, followed by extraction 

of the lipidic phase into hexane (Lepage and Roy, 1984). Briefly, 200 mg of dried 

biomass (n=3) were mixed with 1.5 ml of the derivatization solution (methanol/acetyl 

chloride, 20:1, v/v), and homogenized in an ultrasound-water bath for 15 min., at room 

temperature (RT, aprox.20ºC). Then, 1 ml of hexane was added and the samples were 

heated for one hour at 100°C. After cooling in an ice bath for 15 min., 1 ml of distilled 

water was added and the organic phase was removed and dried with anhydrous sodium 

sulfate. The extracts were then diluted in hexane to give an estimated fatty acid 

concentration of 0.1 g/ml and 1 ml of sample was filtered (0.2 nm) and transferred into 

Gas Chromatography (GC) vials for the determination of FAMEs profile (Pereira et al. 

2012). 

The FAME profile was analyzed on an Agilent Gas Chromatography with mass 

spectrometry detection (GC-MS; Agilent Technologies 6890 Network GC System, 5973 

Inert Mass Selective Detector, CCMAR, Portugal) equipped with an Bruker SCION TQ 

gas chromatograph fitted with a fused silica capillary column ZB-5MS (30 m × 0.25 

mm internal diameter, 0.25 µm film thickness, Agilent Tech) using nitrogen as the 

carrier gas (1 ml/min). 

The GC-MS is a combination of two different analytical techniques. Gas 

chromatography is a type of chromatography in which the mobile phase is a carrier gas 

and the stationary phase is a capillary column in this case with fused silica. Sample is 

swept through the column by a stream of gas, such as nitrogen. Components in the 

sample are separated from each other base on volatility because some take longer to 

pass through the column than others. Mass spectrometry is the detector for GC. As the 

sample exits the end of the GC column it is fragmented by ionization and the fragments 

are sorted by mass to form a fragmentation patern. The fragment pattern for a given 

component of sample is unique and thus is an identifying characteristic of that 

component (Hussain and Maqbool 2014). 

Therefore, vials were then injected on-column auto injector at 300ºC, and the 

temperature profile of the GC oven was 60°C (1 min), 30°C min
−1

 to 120°C, 4°C min
−1

 

to 250°C, and 20°C min
−1

 to 300°C (4 min; Costa et al. 2019).  

For the identification and quantification of FAME, the total ion mode was used. 

Identification of FAME were performed by comparing the retention times of biodiesel 

samples with an external standard (Supelco® 37 Component FAME Mix ; Sigma-

Aldrich, Sintra, Portugal), and further confirmed by comparison of the MS spectra. For 
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quantification purposes, separate calibration curves were generated for each FAME in this 

standard. Assays were done in triplicate and between each three replicates was calculated 

the average, standard deviation and coefficient of variation. Values were expressed in 

terms of percentage of total FAME identified in the sample and also as concentration of 

μg/100g of DW.  

3.3.1.4. Minerals content 

Minerals were analysed by Agilent’s Microwave Plasma (MP) - Atomic Emission 

Spectrometer (AES; MP- AES; CCMAR, Portugal). For MP, approximately 500 mg 

(n=3) of lyophilized jellyfish biomass were digested with 6ml of HNO3 for 30 minutes 

and put in a closed-vessel microwave digestion system Ethos 1 equipped with PTFE 

vessels. 

The purpose of any AES technique is to identify elements and quantify their 

concentrations. The principle of this emission technique (e.g., flame emission) is that the 

intensity of each emitted line is directly proportional to the concentration of a particular 

element. It envolves some steps such as sample introduction into the high temperature 

source, atom formation, excitation, emission, measurement of the emitted light intensity 

of a particular element of interest at a specified wavelength, and computation of the 

concentration by comparing it with that of a known concentration (Balaram et al 2014). 

The mineralization was carried out by setting the following temperature program: 0- 

200ºC in 2 min (step 1), 200ºC held for 3 min (step 2) and 200-220ºC in 5 min (step 3) 

with a constant microwave power of 1000W (Costa et al 2019). Because the samples 

were not completely digested, maybe due to high amount of sample (it should be 250mg 

or less), 1.5 ml of peroxide was add to each replicated. Due to the expected very high salt 

concentrations, each digested pool was diluted by ultrapure water with a dilution factor of 

1000. Samples were analysed in three replicates along with blacks to check for any loss 

or contamination. Magnesium (Mg), sodium (Na), potassium (K), calcium (Ca), iron (Fe), 

manganese (Mn) and zinc (Zn) were analysed by flame AES with an air-acetylene flame. 

Cadmium (Cd), chromium (Cr), nickel (Ni) and lead (Pb) were analysed with 

electrothermal atomisation (GBC graphite furnace 3000) using an auto-sampler (PAL 

3000) and wavelengths are shown in Table 3.2. 
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Table 3.2 Minerals wavelength (nm) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

For quantitative proposes the external calibration procedure was carried out with the 

help of multielemental standard solutions with concentration ranging between 0.1-50 

ppm. For method validation, a linear least-square regression analysis of the calibration 

graphs was performed to check for the linearity between the instrumental response and 

the nominal concentration of each elemental standard. Values were expressed as g/100g 

DW (Ca, Mg, Na and K) or μg/100g DW (Fe, Mn, Zn, Cr, Pb, Ni and Cd). 

 
3.3.2. Determination of the in vitro antioxidant properties 

3.3.2.1. Preparation of the extracts 

The extraction was made according to Yu et al. (2006), with some modifications. 

The dried biomass (100 mg) was mixed with cold distilled water (5 ml), and extracted in 

an ultrasonic water bath (eight times, 30 s each time, samples kept on ice between 

extractions). Samples were centrifuged (13 000 rpm, 20 min., 4ºC), and the supernatants 

were recovered, mixed, frozen, and freeze-dried for two days. Obtained dried extracts 

were weighed, dissolved in ice cold water at a concentration of 25 mg/ml and stored 

at -20 ºC, until necessary. For the assays, working concentrations of 10, 5 and 1 mg/ml 

Element Wavelength nm 

Fe 259.94 

Ca 317.93 

K 766.49 

Mg 383.83 

Na 588.99 

Zn 213.86 

Cd 214.45 

Ni 231.09 

Cu 324.75 

As 234.98 

Pb 368.35 

Cr 425.43 

Mn 403.08 
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were prepared in cold water and stored at the indicated conditions. 

 

3.3.2.2. Radical scavenging activity (RSA) on the DPPH and ABTS free radicals 

 

The antioxidant activity is the ability to inhibit the process of oxidation. 

Consequently, all test systems used a stable free radical, in this case the 1,1-diphenyl-2-

picrylhydrazyl (DPPH) and 2,2 -azino-bis(3-ethylbenzothiazoline-6-sulfonic acid 

(ABTS), providing information on the radical scavenging activity (RSA; Shalaby et al. 

2012). The ABTS assay measures the relative ability of an antioxidant to scavenge the 

ABTS generated in aqueous phase. The radical ABTS
•+

 is generated by reacting a strong 

oxidizing agent with the ABTS. Reduction of blue-green ABTS
•+

 colored solution by 

hydrogen-donating antioxidant is measured by the suppression of its characteristic long 

wave absorption spectrum (650 nm). DPPH is a stable free radical with an absorption 

band at 515 nm. It loses this absorption when reduced by an antioxidant (Williams et al. 

1995; Shalaby et al. 2015). 

The RSA on the DPPH radical and ABTS radicals were evaluated according to 

Brand- Williams et al. 1995 adapted to microplates (Moreno et al. 2006), as described 

in Rodrigues et al. (2015). Samples were tested at different concentrations (1, 5, 10 and 

25 mg/ml) and each concentration had 6 replicates. For the DPPH method, 22 μl of each 

concentration were mixed with 200 μl of DPPH solution (120 μM in ethanol). The plate 

was incubated in the dark for 30 min and the absorbance was read at 517 nm on a 

microplate reader (EZ Read 400, Biochrom). For the ABTS method, 10 μl of each 

sample concentration was mixed with 190 μl of ABTS. The plate was incubated in the 

dark for 6 min. and the absorbance at 650nm was read on the above mentioned 

microplate reader. BHT was used as the positive control at 1 mg/ml, and water was used 

as the negative control. 

For RSA using ABTS and DPPH results are expressed as percentage of antioxidant 

activity, calculated in relation to the negative control, according to the Eq. 3: 

Equation 3 RSA(%) = [(Control absorbance – Real sample absorbance )] / [Control 

absorbance] × 100 
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3.3.2.3.  Metal chelating activity on copper (CCA) and iron (ICA) 

 
Materials with chelating activity can inhibit the oxidative damage due to reactions 

catalyzed by the transition metals such as iron and copper (Megías et al. 2009). More 

specifically, hydroxyl radical can be formed from superoxide anion and hydrogen 

peroxide in the presence of these transition metal ions and chelating metal ions may 

inhibit the formation of hydroxyl radical what is often call Fenton reaction (Kàramak et 

al. 2009; Zhuang et al. 2009). For example, ferrozine can quantitatively form complexes 

with Fe
2+

 resulting in a red colour. In the presence of chelating agents, the formation of 

complexes is prevented because there is less Fe
2+

 in the solution bound with ferrozine. 

Consequently, there is less formation of complexes and thus the colour decreases. 

Therefore, measurement of the rate of colour reduction estimates the chelating activity 

of the coexisting chelator. 

Metal chelating activity on iron was determined by measuring the formation of the 

Fe
2+

 - ferrozine complex according to Megías et al. (2009), with some modifications. 

Briefly, samples (30 µL at 1, 5, 10 and 25 mg/ml) were mixed in 96-well microplates 

with 200 µl of distilled water and 30 µl of an iron (II) chloride solution (0.1 mg/ml in 

water), and incubated for 30 min at room temperature (RT).. Then, 12.5 µl of ferrozine 

solution (40 mM in water) was added, and change in colour was measured in a 

microplate reader at 562 nm (Biochrom EZ Read 400). CCA was determined according 

to Megías et al. (2009) and according to Rodrigues et al. (2015). Briefly, samples (30 µl 

at 1, 5, 10 and 25mg/ml) were mixed with 200 µl of 50 mM Na acetate buffer (pH 6), 6 

µl of 4 mM PV in the same buffer and 100 µl of copper (II) sulfate pentahydrate in 96-

well microplates. The change in colour was measured at 632 nm using a microplate 

reader (Biochrom EZ Read 400). 

Results were expressed as percentage of antioxidant activity and were calculated 

using the same Eq. 3 but in relation to a negative control that uses the synthetic metal 

chelator ethylenediamine tetraacetic acid (EDTA; 1 mg/ml). 
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(A) (B) 

Figure 3.2 (A) Blue crab (Callinectes sapidus) and (B) Green crab (Carcinus maenas) 

 

 

3.3.3. Blackfordia virginica as a potential food source for crabs  

 

3.3.3.1. Molecular analysis 

 
Because it is difficult to identify soft bodied organisms as jellyfish in the stomach 

contents of consumers (Lin et al. 2014), a DNA-PCR based analysis was conducted to 

the stomach contents of the green crab and the blue crab in order to verify if crabs were 

eating B. virginica. Thus, the growing availability of molecular genetic methods and 

data has fostered the use of DNA-PCR based techniques for the identification of prey 

items from stomach using the presence/absence of diagnostic PCR products on agarose 

gels (Gorokhova et al. 2006) and sequencing the PCR fragments corresponding to the 

potential prey items. Compared to other methodologies, DNA-based prey assays can be 

developed faster, allow simultaneous screening for multiple prey items and offer a 

greater taxonomic prey resolution, although DNA prey detectability may span shorter 

periods of time (Hernandez et al. 2018). Crabs were identified to the species level [blue 

crab (Fig.3.2a) and green crab (Fig.3.2b)] enumerated, and sexed after examination of 

the shape of the abdomen. For each specimen the carapace maximum width (CW) was 

measured as the distance (in mm) between the two outermost lateral spine tips. Blue 

crabs specimens with a CW < 94 mm were classified as juveniles (Mancinelli et al. 

2013), while green crabs with CW < 40 mm were classified as juveniles (Klein Breteler, 

1976). 

 

 

 

 
 

  

30 mm 
30 mm 
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Figure 3.3 Stomach from the blue crab for DNA-PCR analysis 

Genomic DNA was extracted from 25mg (WW) of B. virginica and 25mg (WW) 

from each sample of crabs gut contents (12 blue crabs and five green crabs, Fig.3.3) 

using a Qiagen K– QIAmp DNA mini kit. Briefly, the 25mg of stomach content of each 

individual was collected into a 1.5ml microcentrifuge tube and 180 ul of the Buffer 

ATL (for cell lysis) was added. Then, 20 µl proteinase K was added in each tube, mixed 

with vortex and incubated at 56ºC for 3h until the tissue was completely lysed. After 3h, 

tubes were centrifugated in order to remove drops from the inside of the lid, 200 µl of 

Buffer AL (for cell lysis) was added to each tube which was mixed by vortexing for 15s 

and incubated at 70ºC for 10min. Then, 200 µl of absolute etanol was added to each 

sample that was vortexed for 15s and centrifuged. This mixture was applied to the 

QIAmp Mini spin column without wetting the rim which was centrifuged at 8000 rpm 

for 1 min. The QIAmp Mini spin columns were placed into a clean 2 ml collection tube 

and the tube containing the filtrate was discarded. Then, 500 µl of Buffer AW1 (for 

DNA purification) was added to the QIAmp Mini spin column and centrifuged at 8000 

rpm for 1 min. The columns were placed in clean 2 ml collection tubes and the 

collection tube containing the filtrate was discarded again. Then, 500 µl of Buffer AW2 

(for DNA purification) was added to the spin column and centrifuged at full spead (14 

000 rpm) for 3 min. Finally, the QIAmp Mini spin columns were placed in clean 1.5 ml 

microcentrifuge tube, the collection tube containing the filtrate were discarded. Then, 

200 µl of Buffer AE (for DNA elution) was added to the spin column, which were 

incubated at RT for 1 min and centrifugated at 8000 rpm for 1 min. 
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After DNA extraction with the QIAamp® DNA Mini Kit (Qiagen), amplification of 

the three markers (ITS, 16S and COI; Table 3.3) was done by polymerase chain reaction 

(PCR)   using   an   Applied   Biosystems   2720   Thermal    Cycler. Blackfordia    

virginica specific primers were mixed with ultrapure water and vortexed to make the 

stock solution in order to prepare the PCR that was performed in a catalytic reaction. All 

PCR amplifications were performed in a total volume of 25 μL containing 10 

nanograms (ng) of extracted DNA, 0.2 μM of forward and reverse primer, 1U Taq 

polymerase (DreamTaq DNA Polymerase, Thermo Fisher Scientific), 0.4 mM of 

Magnesium chloride (MgCl2).The same cycling  protocol  was  used  for  ITSF,   16s 

and  COI: 95°C  for  7  minutes  followed    by 40 cycles of 95°C for 30 seconds, 55°C 

for 30 seconds and 72°C for 1 minute, followed by an extension of 72°C for 5 minutes, 

and a 10°C holding temperature. 

In order to verify the quality of the products of PCR amplification, an aliquot of 15 

μl per sample was loaded on agarose gel 1.5%.  Gel was visualized under UV light, 

photographed on a Geldoc XR+ system (Bio-Rad) and the amplification of the target 

DNA was possible to observe as bands with the same molecular weigth as B. virginica 

genomic DNA. 

It was made a new PCR amplification of 18 DNA extractions for both primers 16S 

and COI that was visualized on the gel in order to verify if both primers in fact 

amplified for B. virginica. Products that were positively amplified were directly 

sequenced. The DNA sequencing was done at CCMAR's Sequencing Platform, with an 

Applied Biosystems 3130xl Genetic Analyzer, BigDye®Terminatorv3.1 chemistry and 

POP7 polymer. 

 

Table 3.3 List of primers used to identify DNA from Blackfordia virginica in blue crab 

Callinectes sapidus and in the green crab Carcinus maenas stomach contents (Harrison 

et al. 2013). 

 

Primer name Loci Sequence Citation  

jlITS1F ITS1 5' 0GGTTTCCGTAGGTGAACCTGCGGAAGGATC0 3' Dawson and Jacobs, 2001  

jlITS1R ITS1 5'0CGCACGAGCCGAGTGATCCACCTTAGAAG0 3' Dawson and Jacobs, 2001  

16s.Cunningham.F.1mod 16S 5' 0ACGGAATGAACTCAAATCATGTAAG0 3' Bridge et al. 1995  

16s.Cunningham.R.2 16S 5' 0TCGACTGTTTACCAAAAACATA0 3' Bridge et al. 1996  

dgLCOI490 COI 5' 0GGTCAACAAATCATAAAGAYATYGG0 3' Folmer et al. 1994  

dgHCO2198 COI 5' 0TAAACTTCAGGGTGACCAAARAAYCA0 3' Folmer et al. 1995  
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Figure 3.4 Dry muscle after being ground to a fine powder with a measuring scoop. 

 
3.3.3.2   Stable isotope analysis 

 

To quantify the relative importance of B. virginica to the selected consumers 

biomass, carbon (δ
13

C: 
13

C/
12

C) and nitrogen (δ
15

N: 
15

N/
14

N) stable isotope analysis was 

conducted. For consumers, the δ
13

C and δ
15

N composition of tissues is a time-integrated 

signal of the food sources that were incorporated into a consumer’s structural 

components and energy reserves (Peterson and Fry 1987). Thus, the stable isotope ratios 

of a consumer reflects its diet, demonstrating an average trophic fractionation (i.e., the 

difference between the consumer and its diet) of +0.4‰ δ
13

C and +3.2‰ δ
15

N per 

trophic level (Vander Zanden and Rasmussen 2001), although with some variability 

around these means (Caut et al. 2009).  

Macroalgae, terrestrial plants and its detritus, were cleaned with ultra pure water to 

remove epiphytes, dried at 60 ºC for 48h, and ground to a fine powder with a mixer mill 

for stable isotope analysis. 

Crabs' muscle was removed from the claws. Then samples were dried at 60ºC in an 

oven for 72 h and homogenized with a lab scope (Fig. 3.4). 

 

 

In relation to fish species, the animals were measured (± 0.01 mm) and weighted (± 

0.1 g). After scales and fines were removed, muscle samples were taken from the left 

side of fish back to the dorsal fin. Muscle was dry (60ºC) for 72h Decapod crustaceans 

(caridean shrimps P. longirostris, P. macrodactylus) the muscle was removed and 

samples were dried (60ºC) for 48h. Small non-decapods crustaceans (i.e., caprellid 

amphipods, gammarid amphipods, isopods, barnacles, mysids) and annelids, pools of 
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the same taxa were made in order to obtain enough sample for SIA. Samples were dried 

(60ºC) for for 48h Cordylophora caspia samples were washed with ultra-pure water,  

and dried (60ºC) for 48h. All the above samples were ground to a fine powder using a 

laboratory scoop. 

Zooplankton samples, including B. virginica were sorted, identified and grouped by 

the lowest taxonomic level feasible. After that they were loaded directly into the tin 

capsules and dried (60ºC) for 48h. 

After being prepared, samples were kept in the desiccators to avoid humidity, until 

analysis. 

Stable isotope ratio analysis was performed at the Centro de Recursos em Isótopos 

Estáveis - Stable Isotopes and Instrumental Analysis Facility, at the Faculdade de 

Ciências, Universidade de Lisboa - Portugal. The δ
13

C and δ
15

N in the samples were 

determined by continuous flow isotope mass spectrometry (CF-IRMS) (Preston and 

Owens, 1983), on a Sercon Hydra 20-22 (Sercon, UK) stable isotope ratio mass 

spectrometer, coupled to a Euro EA (EuroVector, Italy) elemental analyser for online 

sample preparation by Dumas- combustion. Delta Calculation was performed according 

to Equation 4: = [(Rsample – Rstandard)/Rstandard]*1000, where R is the ratio between the 

heavier isotope and the lighter one. The δ
15

NAir values are referred to air and δ
13

CVPDB 

values are referred to PDB (Pee Dee Belemnite). The reference materials used were 

USGS-25, USGS-35, BCR-657 and IAEA- CH7 (Coleman and Meier-Augenstein, 

2014); the laboratory standard used was Wheat Flour Standard OAS/Isotope (Elemental 

Microanalysis, UK). Uncertainty of the isotope ratio analysis, calculated using values 

from 6 to 9 replicates of laboratory standard interspersed among samples in every batch 

of analysis, was ≤ 0.1‰. The major mass signals of N and C were used to calculate total 

N and C abundances, using Wheat Flour Standard OAS (Elemental Microanalysis, UK, 

with 1.47% N, 39.53% C, for plant material, and with 13.32% N, 46.5% C for animal 

material) as elemental composition reference materials. 

 

3.4. Data analysis 

3.4.1. Stable isotope analysis 

 

The relative contribution of B. virginica to the diet of the selected consumers was 

determined using the Bayesian isotope mixing model SIAR (Stable Isotope Analysis in 

R; R Development Core Team, 2018). The model allows each of the sources and the 
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trophic enrichment factor (TEF; or trophic fractionation) to be assigned as a normal 

distribution (Parnell et al. 2010). SIAR will produce a range of feasible solutions to the 

mixing problem to which are assigned credibility intervals (CIs; in this study, 95 % CI; 

Parnell et al. 2010). 

The potential sources for crabs were identified using graphical analysis, by 

comparing their δ
13

C and δ
15

N values to each potential source δ
13

C and δ
15

 values, after 

adjusting for one trophic level using the TEF estimates from Vander Zanden and 

Rasmussen (2001). However, because crabs are omnivorous (Baeta et al. 2006; Seitz et 

al. 2011), different TEF values were assigned according to the origin of the OM source 

(plant vs. animal); Vander Zanden and Rasmussen, 2001). 

Some animals were grouped by taxonomic level or functional feeding group: 

annelids (Autolytus sp., and oligochaetes), amphipods (Cerapus sp., and Gammarus 

sp.), isopods (Shaeroma quadridentatum), copepods (A. tonsa) and mysids were 

grouped as filter feeders (FF), oysters and C. fluminea were grouped as bivalves. 

Because it was not possible to collect C. fluminea in the Guadiana estuary, the δ
13

C and 

δ
15

N values used in this study are those obtained by Aramendía et al. (2019) for the 

Guadiana estuary. Terrestrial plants included samples from Eucalyptus and Salix sp. 

These groupings were done in order to avoid additional error in the dual stable isotope 

mixing model by adding multiple sources with similar stable isotope ratios. 

Consumers and animal prey δ
13

C values were corrected for lipid content because 

lipids are depleted in 
13

C when compared to protein and carbohydrates which usually 

results in an inverse relationship between C:N and δ
13

C in muscle tissues for aquatic 

animals (DeNiro and Epstein 1977). Consumers muscle tissue were corrected for lipid 

content using the mass balance correction for fish proposed by Hoffman and Sutton 

(2010; Eq 6). Zooplankton tissue were also corrected for lipid content using the mass 

balance correction model proposed for zooplankton by Smyntek et al. (2007; Eq.5) and 

δ
13

C and δ
15

N values were corrected for ethanol preservation (+0.4‰ δ
13

C, +0.6‰ 

δ
15

N; Feuchtmayer and Grey, 2003). 
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4. RESULTS 

4.1. Nutritional profile of Blackfordia virginica 

4.1.1. Proximate composition 

The proximate composition including the moisture content, the ash content, crude protein, 

total lipids, carbohydrates, and metabolizable energy of B. virginica is depicted in Table 

4.1, in relation to DW and WW. The full body of this jellyfish (1.25 ± 0.25cm diameter) is 

mainly composed by water (98.69%). The DW corresponds to 1.30 % and is mainly 

composed by carbohydrates, ash ,and proteins. The total lipids were almost non detectable, 

resulting in a low energetic value (Table 4.1)  

 

Table 4.1 Proximate composition, including moisture (%), nutrients (carbohydrates, ash, 

crude protein, total lipids; g/100 g of wet weight, (WW) and dry weight, (DW)) and 

energetic value (kcal/100 g of WW and DW) of the body wall of Blackforida virginica 

jellyfish. Values are expressed as mean ± standard error, n=3 
 

 

 

 

 

 

 

 

 

 

 

4.1.2. Amino acids (AA) composition 

 

The AA composition results are summarized on Table 4.2. The essential AA (EAA) 

histidine (His), isoleucine (Ile), leucine (Leu), lysine (Lys), methionine (Met), 

phenylalanine (Phe), threonine (Thr) and valine (Val) were identified in the dry samples, 

representing 29% of the total AA detected. Tryptophan (Try) was not detected in the 

jellyfish samples. Non-essential amino acids (NEAAs) represented 71% of the total amino 

acids. The most abundant amino acid in B. virginica was glutamic acid + glutamine (Glx), 

followed by glicine (Gly), alanine (Ala), aspartic acid + asparagine (Asx), proline (Pro) and 

tyrosine (Tyr; Table 4.2). Cysteine (Cys) was almost non detectable (Table 4.2). 

 

g/100g WW g/100g DW 

Moisture (%) 98.69 ± 0.06 - 

Ash 0.40 ± 0.02 30.57 ± 1.55 

Crude protein 0.10 ± 0.08 7.62 ± 0.62 

Total fat 0.00 ± 0.00 0.01 ± 0.00 

Carbohydrates 0.81 ± 0.18 62.30 ± 14.02 

ME (Kcal)  4.12 ± 0.73 288.68 ± 55.19 
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Table 4.2 Amino acid profile of Blackfordia virginica dry biomass. Data are expressed 

as mean of two replicates as mg/100g of dry weigth (DW) ± standard deviation (SD) 

and as percentage of total amino acids (n=2).  
 

Amino acids AA              B. virginica  

 mg/100g % 

Glutamic acid + Glutamine Glx 821 ± 8.40 16.84 

Glycine Gly 471 ± 10.20 9.66 

Alanine Ala 469 ± 4.80 9.63 

Aspartic acid + Asparagine Asx 432 ± 11.30 8.86 

Arginine Arg 353 ± 8.50 7.25 

Proline Pro 326 ± 6.00 6.70 

Tyrosine Tyr 300 ± 2.80 6.15 

Serine Ser 245 ± 4.30 5.04 

Taurine Tau 48.0 ± 0.10 0.98 

Cystine Cys 3.6 ± 0.10 0.07 

Total non-essential AA NEAA 3471.6 ± 0.56 71.18 

Lysine Lys 281 ± 3.00 5.77 

Leucine Leu 265 ± 11.60 5.43 

Valine Val 265 ± 11.60 5.43 

Threonine Thr 227 ± 7.00 4.67 

Isoleucine Ile 158 ± 1.20 3.24 

Phenylalanine Phe 129 ± 0.80 2.66 

Methionine Met 68 ± 2.10 1.40 

Histidine His 10.2 ± 0.10 0.21 

Total essential AA EAA 1405.6 ± 0.32 28.82 

EAA/NEAA 

EAA/TAA                                                                                             

  0.41 

0.30 

LYS/ARG   0.79 

 

 

4.1.3. FAMEs composition 

The GC-MS analyses allowed to determine 15 FAMEs in dried samples (n=3) from   B. 

virginica (Table 4.3). The GC-MS method showed good linearity for the calibration curve 

of all elements, with coefficients of correlation around 1. 

The notations followed conventional nomenclature (IUPAC-IUB): in the format X:Y (n- 

z), where X refers to the chain length (number of carbon atoms, including the carboxylic 

acid or alpha carbon), Y refers to the number of carbon-carbon double bonds and z refers 

to the position of the first carbon-carbon double bond in the molecule relative to the 

terminal methyl group (carbon number 1 in the n-z system, i.e., omega carbon) . 

Saturated (SFAs), monounsaturated (MUFAs), and polyunsaturated fatty acids (PUFAs) 

represented 77%, 21%, and 2.0% of total FA, respectively (Table 4.3). The predominant 
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fatty acids in B. virginica DW were methyl decanoate or capric acid (20%), methyl 

tetradecanoate or myristic acid (17%), methyl dodecanoate or lauric acid (14%), methyl 

palmitate or palmitic acid (14%) and methyl oleate or oleic acid (10%). 

 
Table 4.3 Fatty acid methyl esters determined in Blackfordia virginica dry biomass. Data 

is reported on a dry weigth (DW) basis, as average Gas Chromatography with mass 

spectrometry detection (GC-MS) peak area percent standard deviation (n = 3). Results are 

also expressed in μg/100g DW  standard deviation (n = 3) 

 

Common name Structure Fatty acid    μg/100g DW % 

Methyl decanoate C11H22O2 C11:0 1198.18 ± 2.53 19.98 ± 0.02 

Cyclohexasiloxane, dodecamethyl- C12H36O6Si6 C12:0 40.58 ± 5.54 0.68 ± 0.05 

Methyl dodecanoate C13H26O2 C13:0 899.33 ± 0.78 14.99 ± 0.01 

Methyl tetradecanoate C15H30O2 C15:0 998.51 ± 0.73 16.65 ± 0.01 

Methyl palmitate C17H34O2 C17:0 887.83 ± 0.76 14.80 ± 0.01 

Methyl heptadecanoate C18H36O2 C18:0 19.52 ± 0.38 0.32 ± 0.01 

Methyl stearate C19H38O2 C19:0 421.67 ± 12.30 7.03 ± 0.12 

Methyl arachidate C21H42O2 C21:0 99.82 ± 0.18 1.66 ± 0.00 

Tricosanoic acid C23H46O2 C23:0 50.50 ± 0.37 0.84 ± 0.01 

Saturated fatty acids SFAs  4616.21     76.98 

Methyl Cis-9-Tetradecenoate C15H28O2 C15:1 n-9 393.73 ± 10.15 6.56 ± 0.10 

Methyl Palmitoleate C17H32O2 C36:1 n-9 200.01 ± 0.00 3.34 ± 0.00 

Methyl oleate C19H36O2 C19:1 n-9 666.74 ± 0.02 11.12 ± 0.00 

Mono unsaturated fatty acids MUFAs  1260.46     21.02 

Methyl linolenate C19H32O2 C19:3 n-3 100.36 ± 0.21 1.67 ± 0.00 

Squalene C30H50 C30:6 n-2 19.46 ± 22.31 0.32 ± 0.22 

Polyunsaturated fatty acid PUFAs  119.82     1.99 

 
4.1.4. Mineral composition 

The contents of four major elements (Na, Mg, K and Ca), five essential trace elements 

(Fe, Cu, Zn, Mn and Se) and five potentially toxic elements (Cr, Ni, As, Cd and Pb) were 

evaluated by MP-AES in whole jellyfish, on a DW basis (Table 4.4). The MP-AES method 

showed good linearity for all the elements, with coefficients of correlation of 0.999. Major 

element signatures appeared to bioaccumulate in jellyfish body by the decreasing order Na 

followed by Mg, K and Ca. As a result, Na was detected in the highest levels  (728 

mg/100g DW), while Ca was the less abundant element (17.44 mg/100g DW) (Table 4.4). 

The essential trace elements were found in the decreasing order Fe followed by Zn, Mn, 

Cu and Se. Fe was characterized by a behaviour similar to major elements in therms of 

quantity (1208 μg/100g DW) and Se was not identified (Table 4.4). Nonessential/toxic 

https://pubchem.ncbi.nlm.nih.gov/#query%3DC19H36O2
https://pubchem.ncbi.nlm.nih.gov/#query%3DC19H32O2
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trace elements were reported in the decreasing order of Cd followed by Ni, Cr, As and Pb, 

where Pb was not identified (Table 4.4). 

 
Table 4.4 Elemental signatures of Blackfordia virginica dry biomass revealed by 

microwave plasma – atomic emission spectrometry (MP-AES). Contents of major 

elements (mg/100g) and trace elements (μg/100g) are expressed as mean ± SD (n = 3) 

on a dry weigth (DW) basis. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note: n.d.: non detected 

 

4.2. Protein extracts and antioxidant activity 

The in vitro antioxidant properties of the B. virginica’s extract enriched in proteins was 

assessed by four complementary mehods including their ability to scavenge the free 

radicals ABTS and DPPH and to chelate the transition metals iron and cooper and results 

are summarized in Table 4.5. 

The extract only exhibited moderate activity towards the ABTS radical (57.47%), at the 

highest concentration tested (25 mg/ml; Table 4.5). No activity was detected in the other 

assays (Table 4.5). 

Mineral Symbol B. virginica 
    

Essential major elements (mg/100g DW )    

Sodium Na 728.00 ± 5.35 

Magnesium Mg 76.19  ± 3.29 

Potassium K 56.93  ± 8.87 

Calcium Ca 17.44  ± 0.23 

Essential trace elements (μg/100g DW)    

Iron Fe 1208.00 ± 212.84 

Zink Zn 110.86  ± 16.39 

Manganese Mn 45.42  ± 4.33 

Copper Cu 26.34  ± 1.53 

Selenium Se n.d. 

Nonessential trace elements (μg/100g DW)    

Cadmium Cd 337.71 ± 9.16 

Nickel Ni 68.56  ± 6.55 

Chromium Cr 4.08 ± 0.58 

Arsenic As 2.31 ± 0.04 

Lead Pb n.d. 
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Table 4.5 Radical scavenging activity towards DPPH and ABTS radicals, and metal 

chelating activity towards iron (ICA) and copper (CCA) of an aqueous extract enriched in 

proteins for  Blackfordia virginica dry biomass.  

 

*=positive control, na= no activity. 

 
 

4.3. Blackfordia virginica as a potential food source for aquatic organisms 

 
4.3.1. Molecular analysis 

 
A total of 17 crab’s stomach contents (blue crab= 12; green crab= 5) were inspected 

for the presence of B. virginica using molecular analyses (Table 4.6). Blue crabs had a 

carapace maximum width (CW) between 69.2 mm and 150.7 mm and weigth between 

84.22 g and 169.47 g and green crabs had a carapace maximum width (CW) between 

58.7 mm and 70.5 mm and weigth between 45.53 g and 75.1 g (Table 4.6). 

Samples Concentration 

       (mg/ml)    

 Antioxidant activity (%)  

  DPPH ABTS ICA CCA 

Extract 1 na na na na 

 5 na 26.84  2.70 na na 

 10 na 34.64  3.50 na na 

 25 na 57.47  3.13 na na 

EDTA* 
BHT* 

 

39.78  2.64 

84.8 

95.9  0.30 
4  4.88 91.67  2.44 
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Table 4.6 Species, individual (n) , carapace maximum width (CW, mm), weight (g), 

and sex of crabs Callinectes sapidus and Carcinus maenas, collected in middle 

Guadiana estuary for molecular gut content analysis. 
 

 
 

 
The DNA samples from B. virginica were positively amplified for the primer pairs 

ITS1 and 16S and therefore they were suitable as positive controls for B. virginica 

presence in crabs' gut contents (Fig.4.1 (A)). 

Among the gut contents of the 17 crabs analyzed, only 8 were positively amplified, 

where five corresponded to ITS1 for the blue crab, two corresponded to ITS1 for the 

green crab, and one corresponded to 16S for the green crab (Fig.4.1 (A)). 

 

 

 

 

 

 

 

 

Species n CW (mm) Weigth (g) Sex 

 1 150.70 169.47 M 

 2 69.20* 134.53 F 

 3 82.70* 85.74 F 

 4 125.80 121.72 M 

 5 120.00 79.68 F 

Callinectes sapidus 6 114.80 75.26 F 

    (Blue crab, n=12) 7 81.20* 84.22 M 

 8 102.80 84.61 M 

 9 123.10 89.17 F 

 10 116.80 85.92 M 

 11 120.50 97.48 M 

 12 143.30 102.83 F 

 1 65.00 64.08 M 

 2 70.50 75.10 M 

Carcinus maenas 3 58.70 45.53 M 

  (Green crab, n=5) 4 60.00 48.25 M 

 5 59.80 47.82 M 

M and F, Male and Female; * juvenile   
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Figure 4.1 (A) Results of PCR amplification (in agarose gel, observed under UV light) with primers 

pairs ITS1 (yellow), 16S (blue) and COI (green) of DNA samples from Blackforida virginica (Bv) and 

from the gut contents of 12 Callinectes sapidus (1-12 BC) and of five Carcinus maenas (1-5 GC). C- is 

the negative control. Arrows represent crabs that were positively amplified; (B) Results of PCR 

amplification (in agarose gel, observed under UV light ) with pairs 16S (blue) and COI (green) of DNA 

samples from B. virginica (Bv) and the gut contents of 12 C. sapidus (1-12 BC) and of five C. maenas 

(1-5 GC). C- is the negative control. Arrows represent crabs that were positively amplified. 
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4.3.2. Stable isotope analysis 

 

All the individuals stomach which DNA samples were positively amplified for               

B. virginica were sequenced, but only three blue crabs showed results for sequenciation. 

One blue crab (BC12 ITS1) showed positive results for fish (Brevoortia tyrannu) with 

85.21% of identity (Table S.1) and two blue crabs (BC7 ITS1 and BC10 ITS1) showed 

positive results for B. virginica DNA with 100% of identity (Table S.1), meaning that 

the DNA fragments that were positively amplified from both blue crabs stomach had 

similar nucleotides sequences to B. virginica. 

The PCR amplification with both B. virginica primers 16S and COI was successful 

for one green crab stomach (GC2; Fig.4.2 (B)). Sequenciation results shows that only 

16S primer worked, with 94.5% identity for Carcinus maenas (Table S.1). 

 

 

 
 

The average (± SD) δ
13

C values of the blue crab ( -24.9 ± 0.6‰) were lower than 

those from the green crab ( -21.6 ± 0.6‰; Table S2), suggesting that the green crab 

assimilated 
13

C-enriched sources such as isopods, while the blue crab relied on more 

13
C- depleted sources such as amphipods, annelids, or filter feeding organisms (Fig. 

4.2). The δ
15

N values were similar between species (C. sapidus= 15.7 ± 0.2‰; C. 

maenas= 15.3 ± 0.5‰) suggesting these species occupy the same trophic level in this 

ecosystem (Fig. 4.2). Blackfordia virginica does not seems to be a relevant source for 

crab’s biomass because they were too 
15

N-enriched (δ
15

N= 15.7 ± 0.4‰) when 

compared to the δ
15

N values of crabs, (δ
15

N C.sapidus = 15.7 ± 0.6‰; δ
15

N C.maenas = 15.3 ± 

0.5‰). 
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Figure 4.2 Stable isotope ratios of Callinectes sapidus and Carcinus maenas and average     

(± SD) stable isotope ratios of their potential food sources collected in the Guadiana estuary 

in June 2019, which included Juncus sp. (J), detritus (D), terrestrial plants (TP), amphipods 

(An), annelids (An), isopodes (Is), bivalves (B), R. riparium (Rr), Cordylophora caspia (Cc), 

filter  feeders (FF), Ulva sp. (U), Blackfordia virginica (Bv) , Palaemon spp. (P), Solea solea 

(Ss). Consumers values are not adjusted for trophic level fractionation. 

(B 

 
 

The dual-stable isotope mixing model (95% CI) indicates that deposit feeders (annelids, 

amphipods, and isopods) were the main sources assimilated by the blue crab (9-58%), 

followed by Ulva sp. (7-46%), bivalves (1-40%), and filter feeders in the water column (0- 

36%; Fig. 4.3). The most important group of preys assimilated by the green crab were the 

amphipods (17-68%), followed by isopods (27-57%), and detritus (0-34%; Fig. 4.3). 
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Figure 4.3 Proportion of each food source to the blue crab (A) and to the green crab (B) 

collected in the middle Guadiana estuary. Closed squares indicate the most likely value 

(mode) and lines indicate the 95% Bayesian credibility intervals 

 

 
 

 

A- Blue crab  

 
B- Green crab 
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5. DISCUSSION 

 

This study reports for the first time the nutritional profile and in vitro antioxidant 

properties of the hydroid B. virginica, which is commonly found in the Guadiana 

estuary during spring and summer months.  Our results from nutritional analysis 

revealed that this jellyfish is rich in carbohydrates, minerals, and proteins. However, the 

high cadmium levels on its biomass may compromise the use of this jellyfish as a safety 

food source.  

This study also identifies, for the first time, crabs as potential predators of B. 

virginica jellyfish in the middle Guadiana estuary. Our molecular results showed that 

the non-indigenous B. virginica is being consumed by the non-indigenous blue crab. 

However, the results from stable isotope analysis were not conclusive regarding the 

importance of this jellyfish to crabs’ biomass. The nutritional profile, in vitro 

antioxidant properties, and B. virginica as a potential facilitator for the establishment of 

other non-indigeneous species in the middle Guadiana estuary, will be discussed below. 

 

5.1. Nutritional profile 
 

As found in most jellyfish species, the moisture content present in the fresh biomass 

of   B. virginica was high (98.7%). For example the moisture content of edible jellyfish, 

such as Aurelia coerulea, the fried-egg Catylorhiza tuberculata and the barrel jellyfish 

were found to be 97.2%, 91.69%, and 94.5% respectively (Leone et al. 2019) which are 

similar to the value reported in this work for B. virginica. According to Lucas (2008), 

the moisture content in jellyfish wet weight (WW) can range from 89.47% to 98.88% 

corresponding to 1.12 to 10.53% of dry weigth (DW i.e. without water), which is in 

accordance to the values obtained in this work. Although soft-bodied invertebrates 

commonly contain a high content of water, the moisture content of jellyfish is higher 

than those reported in volador, pota and octopus (78.54 - 82.62% WW; Capillas et al. 

2003), as well as in cuttlefish and squids (78.3- 81.2% WW; Zlatanos et al. 2006). 

Jellyfish DW is typically composed by nutrients (Costa et al. 2019), which are the 

substances that after ingestion, digestion, absorption, and assimilation become part of 

the cells and maintain cellular activities (Yuan et al. 2014). Those nutrients include 

proteins, lipids, ash, minerals, and carbohydrates (Yuan et al. 2014). Blackfordia 
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virginica had high levels of carbohydrates (0.8 % WW; 62.3 % DW), followed by ash 

(0.4% WW; 30.7% DW), crude protein (0.1% WW; 7.7% DW ) and total lipids (0.0% 

WW; 0.01% DW) which trend is similar, for example, to the large nomura’s jellyfish 

that is often caught in Japan (Huang, 1988), and as other potential edible jellyfish such 

as moon jellyfish and the Japanese sea nettle Chrysaora pacifica (Goette, 1886) in 

Tokyo Bay (Wakabayashi et al. 2015).  The high carbohydrates contents in B. virginica 

can be due to the presence of neutral sugars (e.g., glucose and galactose) in mesoglea 

that were not determined in this study. However, a study from Kimura et al. (1983) 

revealed that in jellyfish tissues, a trace amount of carbohydrates, in the form of sugar, 

is bound to protein as glycoproteins (Kimura et al. 1983). More specifically, glucose 

and galactose were joined to the polypeptide backbone of the collagen (Kimura et al. 

1983). Carbohydrates play an important role in nature because are the main energy 

source for animals (Abdullah et al. 2015). Furthermore, carbohydrates serve to prevent 

excessive protein breakdown, loss of minerals, and helps to metabolize fats and proteins 

(Winarno et al. 2008; Abdullah et al. 2015). 

The ash contents in B. virginica is higher than in C. tagi (18.85 g/100g DW; Morais 

et al. 2009c), but in agreement with published values for other jellyfish species, such as 

the river jellyfish Acromitus hardenbergi (Stiasny, 1934; 48.42  0.27 g/100g DW), the 

sand jellyfish Rhopilema hispidum (Vanhoffen, 1888; 57.15  0.51 g/100g DW), and 

the red jellyfish (33.22  0.53; Khong et al. 2016). Ash is a waste product of 

combustion of organic substances in an organic material and thus, it is a measure of the 

total amount of minerals (i.e., inorganic elements) present in a biomass. The high ash 

contents observed in jellyfish are most probably related to the saline environment in 

which they grow and also due to their ability to retain minerals (Barreira et al. 2017). 

The majority of the medusa body is composed by mesoglea, a very well hydrated 

extracellular matrix enveloped by two thin layers of tissue: ectodermal and endodermal 

(Wright and Purcell 1997). Jellyfish are osmoconformers, therefore the mesogleal 

extracellular fluid is in osmolar balance with the surrounding seawater (Mills andVogt 

1984, Wright and Purcell 1997), mainly in the bell (Mills, 1984). The bell of jellyfish 

works as a buffer, retaining and controlling their ionic composition and thus giving 

jellyfish the capacity to float (i.e., mechanism of bouyounce control; Robertson 1949 in 

Khong et al. 2016). As a result, jellyfish can be a valuable source of essential minerals 

(Costa et al. 2019). 



52 

MScMarine Biology. Mariana Cruz. University of Algarve2019. 
 

 

The screening of the major and trace minerals present in B. virginica provided 

further insights on the nutritional value of this species. Jellyfish bioaccumulates and 

transfers essential minerals and trace elements from lower trophic levels to higher 

trophic levels, having a key role in balancing any potential nutritional shortfall of the 

food chain (Munõz et al. 2015). The same applies to non-essential and potentially toxic 

elements, which could instead represent not only a threat for the aquatic ecosystems but 

also for human consumers (Templeman et al. 2010; Munõz et al. 2015). According to 

the results obtained during this study, B. virginica exhibits the same trend for the major 

elements as the purple jellyfish Pelagia noctiluca (Goette, 1886; Costa et al. 2019) and 

C. tagi from the Portuguese coast (Morais et al. 2009c), and as the moon jellyfish and 

the Japanese sea nettle from Tokyo Bay (Wakabayaski et al. 2015), showing 

highercontents in Na and lower contents in K when compared tothe other major 

elements. Although Na is an essential nutrient, its consumption in excess is linked to 

several human pathologies including hypertension and cardiovascular diseases 

(Kotchen et al. 2013). Therefore, the World Health Organization (WHO) recommends 

that the daily intake of sodium should not exced 2000 mg. Considering B. viriginica 

biomass, a consumption of 100g of dry tissue would represent an intake of 728 mg of 

Na. Thus, care must be taken so that the maximum allowed daily recommended by 

WHO is not exceeded. 

Comparing with other jellyfish species, B. virginica presented lower amounts of 

major elements. For example, Mg in the bell from C. tagi and from the purple jellyfish 

reached 328 mg/100 g DW and 692 mg/100 g DW, respectively, which are higher 

values when compared to those from B. virginica (76.16 mg/100g DW). The Ca 

contents were 1026 mg/100g for C. tagi, whereas for the purple jellyfish were 215 

mg/100g, which were also higher values when compared to B. virginica biomass 

(17.44 mg/100g DW; Prieto et al. 2018). 

Trace elements, such as Fe, Cu, Zn, Mn and Se, are essential for the metabolism of 

aquatic vertebrate and invertebrates as they constitute a variety of metalloproteins and 

antioxidant enzymes, and play a key role in cellular detoxification activity (Sunda et al. 

1998). However, these elements can become toxic at high concentrations, leading to 

damaging oxidative processes (Sunda et al. 1998). Blackfordia virginica had lower 

values of trace elements mainly Cu, Fe, and Mn (Cu: 26.34 μg/100g; Fe: 12086 

μg/100g and Mn: 45.43 μg/100g) when compared to those from the potential edible C. 

tagi (Cu: 564 μg/100g DW; Fe: 7064 μg/100g DW; Mn: 272 μg/100g DW; Morais et al. 
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2009c) but higher values of trace elements when compared for instance to those from 

the edible moon jellyfish and japanese sea nettle. For example the estimates for Cu, Fe 

and Mn contents in the moon jellyfish were 13.60 μg/100g DW, 59.96 μg/100g DW, 

and 15.96 μg/100g DW respectively, and the estimates for Cu, Fe, and Mn contents in 

the Japanese sea nettle were 21.00 μg/100g, 142.70 μg/100g ,and 11.66 μg/100g 

respectively (Leone et al. 2015). On the other hand for the purple jellyfish the Fe and 

Mn values reported (1465 μg/100g and 49.7 μg/100g, respectively) are similar to those 

found for B. virginica in this study (Costa et al. 2019). 

According to the results from this study, it can be hypothesized that B. virginica 

biomass could be considered as a source of natural food supplements not only for 

humans but also for aquatic organisms (Costa et al. 2019). For example, other jellyfish 

species such the moon jellyfish and the Japanese sea nettle have already been 

demonstrated to support the growth and survival of some species such as the fish gilt-

head bream Sparus aurata (Linnaeus, 1758) owing the metal profile (Wakabayashi et al. 

2015; Marques et al. 2016). 

Nonessential and potentially toxic elements such as Cr, As, Ni, Pb, and Cd, typically 

come from anthropogenic activities, and have a negative impact in the aquatic 

environment (Delgado et al. 2010). In general, considering the Commission Regulation 

(EU) N. 744/2012 setting the limits of heavy metals in animal feeds and the Commision 

Regulation (EC) N. 629/2008, amending the Regulation (EC) N. 1881/2006 fixing the 

maximum levels of heavy metals in food supplements, the mean concentration levels of 

toxic metals (Cr, Ni, As, Pb) in the investigated samples were bellow the registed values 

for As (10mg/Kg: 0.0231 mg/Kg for B.virginica) and Pb (5mg/Kg: non detected in B. 

virginica), while for Cd the values found in this study (3.3 mg/Kg) were three times 

higher than those recommended (1.0 mg/Kg). 

In the Guadiana estuary mine related processes, which have been developed in the 

Iberian Pyrite Belt, along with urban waters and industrial effluents increased metal 

trace and toxic elements such as Fe, Mn, Al, As, Cr, Ni, Pb, Zn, and Cd in the 

ecosystem (Delgado et al. 2010). Metal contamination was detected in water, sediments, 

and aquatic organisms (e.g., asian clam) owing to the impact of the acid mine drainage 

from the Minas of São Domingos located in the upper part of the estuary (Bebiano, 

2010 in Moura et al. 2010; Company et al. 2008). Indeed, mine waters are the principal 

source of metal pollution because the metals are transported into the river flow and then 

dissolved (e.g., Cd and Cu) or adsorbed to the suspended particulate matter (e.g., Fe, Pb, 
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Cu, and Zn). These metals levels are particularly high in Guadiana sediments since 

1999, mainly Cd which is the element with the highest increase in the whole estuary, 

with mean values as high as 1.94 ppm (Bebiano in Moura et al. 2010; Delgado et al. 

2010). Comparing values of Cd in the Guadiana basin (1.94 μg/g) and in B. virginica 

tissue (3.37 μg/g), it can be hypothethized that B. virginica bioaccumulated Cd from the 

water in the dissolved form, which may vary according to the season. Indeed, studies 

from Duysak et al. (2013) and Munõz et al. (2015) reported that different species of 

jellyfish can bioacumulate toxic metals, in varying degrees according to the species, 

reflecting a time-integrated measure of their levels in the water and therefore, jellyfish 

can be useful bioindicators of coastal environments. Further studies envolving the 

assessment of the chemical composition of B. virginica along the seasons/years are 

needed to investigate their use as biomonitors. 

The crude protein value obtained in this study (7.62 g/100g DW), is comparable with 

those reported in previous studies for other edible jellyfish species: moon jellyfish (3.49 

g/100 g DW) and Japanese sea nettle (7.53 g/100 g DW; Wakabayashi et al 2015), 

purple jellyfish (12.09 – 23.53 g/100 g DW) in the Mediterranean sea and the barrel 

jellyfish (10.00 g/100 g DW) from the coasts of the east Atlantic Ocean and Alboran 

Sea (Prieto et al. 2018). In addition, Gorbatenko et al. (2009) investigated the 

composition of large jellyfish on the West Kamchatka shelf and found a protein content 

range from 7.1 to 14.6 g/100 g DW. The peculiar protein fraction can be due to the 

dominant structural collagen that is distributed throughout the mesoglea (about 60%) 

and is used to retain a large amount of water, thus making such marine invertebrates 

potential suitable for food/feed purposes (Leone et al. 2015). 

Amino acids (AA) are used for example in the synthesis of protein, regulation of 

hormone secretion, gene expression, and cell signalling (Wu 2009). Amino acids are 

traditionally classified as as nutritionally essential (i.e., indispensable; EAA) or non- 

essential (i.e., dispensable; NEAA) for animals and humans (Wu et al. 2012). 

Nutritionally, essential AA are defined as either those AA whose carbon skeletons 

cannot be synthesized de novo in animal cells or those that normally are insufficiently 

synthesized de novo by the animal organism relative to its needs for maintenance, 

growth, development, and health and therefore must be provided in the diet to meet 

physiological requirements (Wu et al. 2012). In contrast, NEAA are those AA which 

can be synthesized de novo in adequate amounts by the animal organism to meet the 
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requirements for maintenance, growth, development, and health and therefore, do not 

need to be provided in the diet (Wu et al. 2012). 

Blackfordia virginica contained all the EAA with exception of tryptophan, since 

generally this AA is destroyed during the hydrolysis process with hydrochloric acid 

(Molmir-Perl and Khalifa 1993). Such results are in accordance with previously studies 

for edible jellyfish such as for the dry biomass of C.tagi (Morais et al. 2009c), for 

protein samples of the barrel jellyfish (Leone et al. 2015), for collagen peptides derived 

from the fried-egg jellyfish umbrella (Zhuang et al. 2010) and for gonads (Yu et al. 

2014) and total proteins profiles from the purple jellyfish (Krishnan et al. 2013). 

The percentage of EAAs in B. viriginica out of the total AAs (28.82%) was lower 

than those recorded for the edibles fried-egg jellyfish (51.0%) and barrel jellyfish 

(50.6%), but comparable with those described for the edible moon jellyfish (31.4%: 

Leone et al. 2015), and with those recorded in other high value Asiatic and European 

seafood, as for example with seacocumber (31.02%) and with the bivalve abalone 

(32.94%; Usydus et al. 2009). When looking for amino acids amount (mg/100g DW), 

the EEAs contents in the dry biomass of B. virginica (1405.60 mg/100 g DW) were 

higher than those recorded for the above mentioned species with exception for the moon 

jellyfish that presented comparable values (1402 mg/100g DW; Leone et al. 2015).   

The most abundant amino acid found in the B. virginica was Glutamic acid + 

Glutamine (Glx) followed by Glycine (Gly), Alanine (Ala) , Aspartic acid + Asparagine  

(Asx), Proline (Pro), Tyrosine (Tyr) and Lysine (Lys). Glutamic acid is the crucial AA 

entering into a variety of transamination metabolic reactions to produce other NEAA 

(McClelland and Montoya 2002, Chikaraishi et al. 2009, Hannides et al. 2009), and the 

abundance of Gly is of particular importance, since there is evidence that the intake of 

food rich in this AA can contribute for the reduction of total cholesterol levels in serum 

(Ikeda et al. 1993). Furthermore, Gly is the fixed constituent of collagen-typical 

repeating triplets with a repeating X-Y-Gly sequence, where X and Y can be any amino 

acid, although Pro and Hydroxyproline (Hyp) residues are the most common triplet in 

collagen (Gomez-Guillen et al. 2010). Indeed Cheng et al. (2017) found that Gly was 

the most abundant amino acid in the red jellyfish collagen (Cheng et al. 2017), where 

the single AAs profile (Gly followed by Ala, Glx, Arg, Pro, Asx, and Lys) was similar 

to the profile found in B. virginica dry biomass suggesting that this jellyfish can be a 

potential source of collagen. The single AAs profile in B. virginica is also comparable 

to those present in the dry biomass of the purple jellyfish (Gly followed by Glx, Asx, 
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Arg, Lys, Pro), the barrel jellyfish (Glx followed by Gly, Asx, Lys; Kogovsek et al. 

2014) and C.tagi (Glx followed by Asx, Gly, Pro, Lys; Morais et al. 2009c), suggesting 

that the main protein in jellyfish dry biomass corresponds to collagen (Leone et al. 

2015). The ratio values between total EEA and total amino acids (0.3) and between 

EEA and NEAA (0.7) means that B. virginica proteins are of good quality according 

with FAO. In addition, B. virginica has a low lysine/arginine ration (0.8%), lower than 

the ones described for example for the moon jellyfish, fried-egg jellyfish and for the 

barrel jellyfish (Leone et al. 2015). Low lysine/arginine ratios are usually linked to 

hypocholesterolemic effects, thus suggesting that B. virginica could be useful for people 

with hyperlipidemia disorders (Bordbar et al. 2011). 

The total lipids in B. virginica (0.01 g/100g DW) were almost not detected. Indeed, 

they were present in low quantities than those reported for the moon jellyfish from 

Japan (0.43 g/100g DW; Wakabayashi et al. 2015) and for the barrel jellyfish from 

Spain (0.94 g/100g DW; Prieto et al. 2018), resulting in low energetic value (288.68 

kcal/100 g DW), lower than those reported for several fish species (Norwegian Food 

Safety Authority 2014). According to Joseph (1979), jellyfish contain no visible lipid 

deposits, except in relatively well-developed gonads during the reproductive cycle, 

which can explain the low lipids content in B. virginica once they were collected at the 

beginning of their annual bloom. However, they can be also structural elements of 

jellyfish cell membranes (Zhu et al. 2015). Overall, B. virginica has an adequate 

protein/lipid ratio (23:1), which is of particular interest from a nutritional point of view, 

since proteins are valuable nitrogen and amino acid sources for the human body.  

As for FAMEs profile of B. virginica, our results are in accordance with some 

studies reported for other potential edible jellyfish species, such as the purple jellyfish 

(Costa et al. 2019). Saturated fatty acids have all or predominantly single bondes in their 

chains, and accounted for two third of the total FA (55% - 75%), followed by MUFAs 

that have one double bound in the fatty chain with all of the remainder carbon atoms 

being singled bonded, and PUFAs that have more than one double bound. However, 

most jellyfish studies reported a different trend, with PUFAs being present in higher 

amounts as for example the moon jellyfish , the fried-egg jellyfish and the barrel 

jellyfish (Leone et al. 2015; Prieto et al. 2018). That could be to the fact that these 

species are known to have microalgal symbionts which are an important and significant 

source of essential ω-3 fatty acids (Leone et al. 2015). 
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The composition of the 15 fatty acids identified in B. virginica is similar to those 

found in the purple jellyfish (Costa et al. 2019), in the moon jellyfish, in the fried-egg 

jellyfish and in the barrel jellyfish (Leone et al. 2015), however with different trends. 

While in B. virginica, the saturated fatty acids consisted mostly of capric and myristic 

acid followed by lauric and palmitic acid, the above mentioned species contained 

mostly palmitic and stearic acids followed by lauric and arachidic acids. Indeed, 

palmitic, stearic, myristic, and lauric acids arethe most common FA in animal tissues. 

Palmitic and stearic acids are universally found in natural fats. Lauric acid is 

specifically abundant in copra and palmist oils (Legrand, 2010) and is recognized for 

its antiviral and antibacterial properties (German and Dillard, 2010). Myristic acid and 

short-chain FA (including capric acid) represent each about 10% of FA in milk fat 

where capric acid has antiviral activity agains HIV (German and Dillard, 2010). Among 

MUFA, oleic acid was the prevalent FA not only in B. virginica but also in the 

moon jellyfish, in the fried-egg jellyfish and in the barrel jellyfish, however myristoleic 

acid was only detected in B. virginica (Leone et al. 2015; Wakabayaski et al. 2015). 

Oleic acid (18:1(n-9) is the precursor of all (n-3) and (n-6) PUFA, and is essential to 

heterotrophic organisms (Legrand, 2010). It is the most common MUFA in human cells, 

and is incorporated into cell membrane phospholipids, where it is important for proper 

membrane fluidity, being the major energy source for cells (Lopes et al. 2010). In 

relation to PUFAs ω-3 FA, linolenic acid was the major component together with 

squalene in B. virginica samples. In the three jellyfish reported above, the linoleic acid 

ω-6 was the major component, together with the ω-3 eicosatetraenoic acid, 

docosahexaenoic acid and the eicosapentaenoic and arachidonic acids (Leone et al. 

2015; Wakabayaski et al. 2015). The ω-3 types of FA are involved in a number of 

biological processes (e.g., growth, development, tissue and cell homeostasis) and have a 

variety of health benefits including hypo-triglyceridemic, anti-inflammatory, 

antihypertensive, anticancer, antioxidant, antidepressive, antiaging, and antiarthritis 

effects (Leone et al. 2015). Differences in FA composition between jellyfish species 

might be related to specific requirements both to physiological adaptation to different 

habitats and to evolutionary constrains (Dalsgaard et al. 2003). 

 

5.2. In vitro antioxidant properties 

Oxidative stress is considered a main environmental risk factor for the development 

of several forms of pathologies, as for example neurological and skin disorders, 
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diabetes, and obesity (Shaw et al. 2014; Conti et al. 2016). In this regard, one approach 

to prevent age related diseases is the use of antioxidants that protect the organism from 

excessive ROS production, such as the superoxide or hydroxyl radicals (Conti et al. 

2016). To the best of our aknowledge this is the first preliminary report on the B. 

virginica antioxidant activity. 

In this work, an aqueous extract was prepared from the dried biomass from B. 

virginica and evaluated for in vitro antioxidant properties, by four methods. Given the 

different response of antioxidants to different radicals or oxidant sources, a single assay 

is generally not enough to assess the antioxidant activity of target samples (Custódio et 

al. 2012). The extraction method was based on Yu et al. (2006), which allowed the 

extraction of bioactive proteins from the red jellyfish (Yu et al. 2006). In this work, the 

extract presented a moderate activity on the ABTS method (57% at the concentration of 

25 mg/ml), but was innefective in the other assays. This can be because ABTS radical 

scavenging method it is one of the more effective in aquose solution (Leone et al. 2019). 

Values from B. virginica can not be compared with those ones for the red jellyfish (Yu 

et al. 2006), because B. virginica samples required higher amount of extract 

concentrations to reach those values. For example proteins from the red jellyfish had a 

scavenging effect on hydroxyl radical of 10.6% with a concentration of 13μg/ml, 

reaching 69% at a concentration of 65.1 μg/ml.  

Overall, because in the present study results for antioxidant activity were not 

relevant, the chemical analysis of the extract was not made, but further studies are 

needed. Indeed, increasing scientific evidence demonstrates that peptides with 

antioxidant properties can be obtained from marine vertebrates and invertebrates 

proteins, hydrolysed proteins, and seafood by-products, with peptides exhibiting higher 

antioxidant activities than proteins (Domenico et al. 2019). 

Owing to the preliminary composition data of B. virginica herein discussed may be a 

valuable starting point of acknowledging its nutritional properties for food. It has been 

widely discussed the relevant value of some jellyfish species for both aquatic organisms 

and human consumption. 

But before getting into any pratical application of B. virginica, other in vitro studies 

will be necessary for developing the most suitable procedures for biomass processing. 

Then, if the applications turned out to be realistically feasible, further research will be 

required to investigate in vivo toxicity and effectiveness for food supplements. 
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5.3. Blackfordia virginica as a potential food source for aquatic animals 
 

The relevance of B. virginica as food for opportunistic aquatic consumers in the 

middle Guadiana estuary was investigated in this study combining molecular techniques 

(i.e., DNA-PCR approach) with stable isotope analysis (SIA). The use of molecular 

techniques allowed to identify the presence or absence of B. virginica in the gut 

contents of wild crabs. When assessing dietary composition based on gut content 

analysis, soft bodied organisms are usually difficult to identify, especially jellyfish, 

because they are digested very rapidly and preservative methods may destroy or shrink 

gelatinous material (Arai, 2005). Therefore, development of PCR-based techniques 

allows the identification of prey remains even those partially digested (Symondson, 

2002). Comparing the two methods, SIA allow identifying the most important preys that 

were assimilated by the organisms’s tissues that maybe are not evident based on the 

DNA- PCR approach. However, DNA-PCR approach provides more specific trophic 

(predator-prey) interaction information that wouldn’t be possible from SIA alone 

(Carreon et al. 2010). In this study PCR-based techniques allowed detecting the DNA of 

the B. virginica in two blue crabs’ stomach contents. Blackfordia virginica was used as 

positive control, and was only positivelly amplified by the specific primers ITS1. The 

consistent negative amplification of both B. virginica and crabs samples for primers 16S 

and COI, with the exception of one green crab (GC2), suggests a deficient 

methodological procedure. Harrison et al. (2013) reported that the primers that were 

used in this study are able to amplify the genomic DNA of B. virginica. Therefore, an 

optimization on the PCR reaction would be necessary to enable the amplification using 

the 16S and COI fragments. 

Nonetheless, during this study, it was possible to confirm that at least the non-

indigenous blue crab preys on B. virginica. Because the sampling occurred at the 

beggining of the jellyfish annual bloom (sampling occurred in June 2019, and the bloom 

started in May 2019) it is possible that if sampling had occurred later in the summer or 

early autumn, the proportion of crabs with B. virginica in their stomachs would 

increase. Most likely due to the sampling design, combined with the low number of 

individuals analyzed, the quantification analysis of the prey assimilated by these crab 

species, using stable isotopes, showed no importance of B. virginica to their biomass. In 

fact, the most important preys contributing to these species' biomass were deposit 



60 

MScMarine Biology. Mariana Cruz. University of Algarve2019. 
 

 

feeders such as amphipods, annelids, and isopods. 

A critical assumption to the SIAR mixing model is that both sources and consumers 

are sampled on temporal scales that reflect the relative incorporation rates of the 

elements and the turnover rates of tissues (Layman et al. 2012). Vedral (2012) estimated 

that the half-life muscle tissue turnover in the blue crab was 83 days. Thus, in order to 

quantify the real importance of B. virginica to crabs' tissue biomass, crabs should have 

been sampled at least at the end of the jellyfish bloom period (autumn). Another critical 

assumption to conduct a proper stable isotope analysis is that the isotope fractionation 

values used reflect those from consumers' tissues (Layman et al. 2012). However, 

fractionation values can vary with the type of diet (plants vs animals), species, or life 

cycle stage (Vander Zanden and Rasmussen 2001; Caut et al. 2009). In fact, laboratory 

experiments with juvenile blue crabs indicated that fractionation can vary according to 

the type of diet, being higher in plant-derived diets when compared to animal- derived 

diets (Fantle et al. 1999).  

Notwithstanding, this study provided evidences that jellyfish are not ‘dead ends’ in 

the Guadiana estuary food web, as they are predated at least by the blue crab. Blue crab 

is an opportunistic and generalistic feeder exhibiting a high trophic flexibility (trophic 

level varying between 2.8-4.3) in both native and invaded ecosystems (Mancinelli et al. 

2017) and dietary flexibility has been acknowledged as key aspect for the success of 

invasive species (Dias et al. 2014; Mancinelly et al. 2017). Previous studies reported 

that the blue crab prey frequently on bivalves, amphipods, polychaetas, crustaceans, 

detritus, and plant matter (Seitz et al 2011; Lipius et al. 2016), but commonly adapts its 

diet to the food resources available in its environment (Mancinelli et al. 2017). During 

early summer to latter autumn, B. virginica becomes one of the most widely spread 

species reaching high densities in the middle estuary (31.5 ind. m
3
; Chícharo et al. 2009; 

Muha et al. 2013), which coincides with the area inhabited by the blue crab (Morais et 

al. 2018). Therefore, it is expected that the availability of B. virginica medusa during 

bloom periods in the water column, and their vertical movements, will benefit these 

benthic and generalistics predators. In addition, Blackforida virginica individuals have 

low size, usually exist in high numbers and have slow mobility, and thus can be easily 

preyed (Heeger et al. 1992). 

Although fish were not targeted during this study, they may also benefit from this 

occasional resource. Studies conducted on the Thau lagoon (NW Mediterranean) found 

that the gilthead seabream, the european eel Anguilla Anguilla (Linnaeus, 1758), the 
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golden mullet Liza aurata (Risso, 1810), and the salema can feed on species from the 

genus Aurelia (Marques et al. 2016; 2019). Despite their high water content, medusae 

may provide enough energy to sustain the standard metabolism of fish. Indeed, Marques 

et al. (2019) suggested that even though a large amount of jellyfish consumption is 

needed to meet their energy requirements, the rapid digestion and gut clearance rates 

allow the fish to increase its ingestion rates with medusae being a non-negible food 

source for these commercially important fish species (Marques et al. 2019). 

Therefore, although it was not possible to quantify the importance of B. virginica to 

crabs' biomass, it was possible to confirm that it is consumed at least by the blue crab. 

The number of studies showing that successful primary invaders can facilitate directly 

or indirectly the invasion success of secondary invaders are increasingly common (e.g., 

Green et al. 2011). In this case the non-indigenous B.virginica may act as a facilitator 

for the establishment and invasive behavior of the blue crab in the Guadiana estuary by 

contributing as prey to its the diet. In Massachusetts (USA), Carman et al. (2017) 

reported, for the first time, the consumption of the toxic clinging jellyfish Gonionemus 

sp. (Cnidaria, Hydrozoa) by indigenous spider crabs and occasionally by the blue crab 

(Carman et al. 2017). They suggested that jellyfish has the potential to favour indirectly 

the invasive green crab populations by inducing mortality in a native competitor, in this 

case the native spider crab (Carman et al. 2017). 

However, because only few individuals of both blue crab and green crab were 

analyzed in this study and because crabs may alter their diet along their development 

(Lipcius et al. 2007; Seitz et al. 2011), additional studies are needed, involving more 

crabs from different ontogenetic stages, but also including other indigenous generalist 

consumers such as fish, to confirm the actual importance of B. virginica as a source of 

food to the consumers in the middle portion of the Guadiana estuary. Its potential as 

food not only for the blue crab but also for other NIS poses a serious threat to the 

conservation of the Guadiana estuary. This ecosystem is already colonized by several 

NIS, and due to other human-induced modifications, such as those related with the 

Alqueva dam's construction, several brackish habitats,once occupied by indigeneous 

species, are now available for NIS 

Therefore, if further studies confirm that B. virginica might be sustaining other NIS 

rather than indigenous species, one way to control its blooms during summer months 

might be using this jellyfish as a human food source if cadmium levels decrease. 

However, there are important aspects to consider when exploring NIS as a resource 
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(Morais et al. 2018). For example fishing pressure must efficiently reduce the NIS 

population size and growth without affecting other native species (Morais et al. 2018); 

public must be made aware of the putative negative impacts of NIS and that 

introductions into non-invaded areas are not permited (Morais et al. 2018) and the 

fishery of an invasive species can never be managed to make it sustainable, which 

disables local communities from obtaining a long-term financial revenue (Morais et al. 

2018). 

 

5.4. Future perspectives  

Further studies envolving the determination of collagen and the total protein in the 

aquose extract of B. virginica dry biomass are need. If the aquose extract is rich in 

proteins then enzymathic hydrolysis of B. virginica proteins can be made and retested 

for antioxidant activities. Indeed, Zhuang et al. (2009) reported that jellyfish peptides 

exibit higher antioxidant activity than proteins, such as those from the red jellyfish. In 

addition, Domenico et al. (2019) reported that enzymatic hydrolysis of jellyfish proteins 

is the most efficient method to produce homogenous bioactive peptides. 

Furthermore, in order to have the real contribution of B. virginica to the diet of both 

green crabs and blue crabs, further studies are needed envolving a higher number of 

individuals, including individuals indifferent life- cycle stages, and crab’s sampling 

must reflect their tissues turnover, i.e., crabs must be sampled after B. virginica annual 

blooms in order to analyse its potential assimilation. Furthermore, in order to understand 

the role of B. virginica in the middle Guadiana estuary food web, studies including other 

potential predators as well as species sharing the same trophic niche, are mandatory. 
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5. CONCLUSION 

 
Blackfordia virginica showed a nutritional profile similar to those found in edible 

jellyfish, such as in the moon jellyfish from Japan and C. tagi from Portuguese coast, 

however with higher concentrations of cadmium. Thus, B. virginica showed a high 

potential to be used as food for human but only if cadmium levels decrease :  

 The moisture, carbohydrates, ash, and proteins levels are high and presented 

adequated amounts of most of the essential amino acids, coupled with low 

lysine to arginine ratios; 

 The total lipis were almost non detectable, resulting in low energetic values, 

where the fatty acid profiles were characterized by high levels of saturated 

fatty acids mainly C11:0; 

 It also presented high content of metals, mainly the essential Na, the essential 

trace metal Fe, and Zn. However it also presented high contents of the toxic 

metal Cd. This compound is efficiently retained in the human body, 

accumulating, being primarily toxic to the kidney.  

Furthermore, this study showed that B. virginica is preyed by the non-indigeneous 

blue crab Callinectes sapidus, which may represent an additional threat to the 

ecosystem. Due to the fact they form blooms during the summer and autumn, they may 

constitute a highly abundant seasonal resource favouring the establishment of this and 

other generalist non-indigeneous species at the middle portion of the Guadiana estuary. 

However, they also may constitute a highly abundant food source for other generalist 

indigenous consumerss.  Thus, further studies are needed to quantify the importance of 

jellyfish to the blue crab diet and also their role in the estuarine food web. 

In conclusion, this study shows some evidences that B. virginica may represent a 

threat to the aquatic ecosystems by favouring the non-indigenous blue crab, while 

simultaneously  may provide an opportunity for managment through commercial 

exploitation as food for humans. 
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7. Supplementary material 

 

 
Table 0.1 Sequentions results that work out for positive amplifications, with max score, 

total score, query cover, E value, percentage of identification and accession number. 
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 Sequencion results of the first PCR amplification; 
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amplification for primers 16S and COI 
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Samples score  Score Cover E value % Identity  number 
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Table S.2 Values of δ
13

C and δ
15

N from C.sapidus and C.maenas and 

their potential preys in the Guadiana estuary. Samples were grouped by 

species and results are expressed as mean  SD 
 

 

Group δ
15

N Mean ± SD δ
13

C Mean ± SD 

Predators   

C.sapidus 15.67±0.62 -24.860.62 

C.maenas 15.27±0.58 -21.590.58 

Preys   

 
Filter feeders 

 
14.16±0.54 

 
-25.820.57 

Bivalvia 13.64±0.90 -25.701.78 

Annelida 12.99±0.07 -24.801.32 

Amphipods 11.64±0.54 -24.510.40 

Isopods 12,90±0,46 -19,671.12 

B.virginica 15,70±0,42 -23,900.09 

Paaemon sp. 15,87±0,08 -24,560.34 

S.solea 16,64±0,68 -24,300.85 

Detritus 6.20±2.90 -26.40±0.10 

Terrestrial plants 7.5±2.23 -27.80±1.95 

 


