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Abstract 8 

Carob pod, fig and almond liqueurs are a good source of income in different 9 

Mediterranean regions. This manuscript aimed to characterize the mineral content of 10 

these traditional beverages and evaluate the influence of the raw material on the mineral 11 

composition. A total of 25 fruit liqueurs from sixteen producers were analyzed. A 12 

simple open-vessel sample mineralization by wet  digestion using the mixture 13 

HNO3/H2O2 (1:1) was selected before spectrometric analysis. Nine essential elements 14 

(Cu, Ca, Mg, Na, K, Fe, Zn, Mn and P) and two non-essentials (Cd and Pb) were 15 

quantified by MP-AES. Carob liqueurs presented the broader profile of minerals. It was 16 

the only fruit liqueur that presented Fe in 72.7 % of samples, and P and Mn in 18.2 %,  17 

and also showed low amounts of the non-essential element, Pb, in two of the eleven 18 

samples analyzed. Conversely, almond liqueurs presented the lowest mineral content 19 

with only 5 elements detected. Fruit liqueurs analyzed presented great variability in the 20 

mineral content even within the same type of liqueur due to the different manufacturing 21 

processes. Despite this variability, application of principal component analysis (PCA) to 22 

essential mineral concentrations (K, Na, Ca, Mg, Mn, Fe and Zn) resulted in satisfactory 23 

classification (PC1 and PC2 account for 78.54 % of the total variance) of Portuguese 24 

liqueurs in terms of the type of liqueur studied. 25 

Keywords Essential mineral elements · Toxic metals · Liqueurs · MP-AES  26 
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Introduction 27 

Carob, fig and bitter almond liqueurs are among the traditional liqueurs from Portugal. 28 

These liqueurs are produced mainly by maceration of different parts of plants, such as 29 

leaves (fig tree), fruits (figs, carob pods or almonds) or natural flavouring essences 30 

(bitter almond oil) in fig or strawberry tree fruit distillates or ethanol of agricultural 31 

origin as is defined in annex II of Regulation (EC) No 110/2008 (1).  32 

The mineral composition of these beverages is important because of the implications in 33 

the organoleptic characteristics of the liqueurs, and the nutritional/toxicological 34 

implications on human health (2, 3). Trace elements, such as Cu, Fe, Mn, and Zn, 35 

influence the organoleptic properties of liqueurs (4). Cu and Fe can produce turbidity or 36 

changes in colour due to the formation of compounds and because they act as catalysts 37 

in the oxidation processes involved in aging (5, 6), and Ca and Mg can form compounds 38 

that precipitate and help the clouding of the finished product.  39 

From a nutritional point of view, around 25 minerals (essential elements) play an 40 

important role in proper mechanism in human body and hence their deficiency in the 41 

diet leads to many diseases: rickets, anaemia, etc (7). Generally, a recommended intake 42 

to keep these elements at healthy levels is necessary. However, some of these essential 43 

elements can also have toxic effects as is the case of Fe and Zn (with minimal safety 44 

concern) with a permitted daily exposure (PDE) of 13000 µg/day and Mn and Cu (with 45 

low safety concern) with a PDE of 2500 µg/day, established by the European Medicines 46 

Agency (8). Other elements, such as Pb and Cd, are cumulative and toxic for human 47 

health, whose chronic exposure may even cause death (9).  48 

In general, the constituents of liqueurs come mainly from the fruits and other inorganic 49 

and organic materials used in their elaboration (4, 10), but can also be added during the 50 

different steps of the preparation process (3, 11). Minerals present in fruits depend in 51 
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turn on factors such as the cultural practices (e.g. the fertilizer addition) and the 52 

environmental conditions (e.g. exposure to exhaustion gases, industry wastes and waste 53 

waters polluted), which normally affect the content of essential and non-essential 54 

minerals, respectively (12, 13). 55 

In order to determine the mineral composition in liqueurs, mineralization is a 56 

preliminary step necessary to reduce interferences caused by the presence of organic 57 

matrix, and so avoid an increment in optical background. This step involves the 58 

conversion of the metals associated with the material into a form that can be properly 59 

determined6. For this purpose, there are two basic techniques: wet mineralization and 60 

dry process, also known as calcination. Wet mineralization uses different acids (HNO3, 61 

HCl, H2SO4, H3PO4, HClO4, and HF), oxidants (H2O2), or mixtures thereof to enhance 62 

the digestion of the samples due to the reactive ability of the mixture in oxidizing 63 

organic matter. The election of conditions and reagents (the strength, purity and safety 64 

of the acid, its oxidizing power, boiling point and the salts solubility) will depend on the 65 

sample nature and devices used, open or close vessels (14). In turn, calcination uses 66 

small amounts of reagents and presents high yields and simple instrumental 67 

requirements.  68 

Microwave plasma atomic emission spectrometry (MP-AES) is an easy to use technique 69 

with high performance, high speed and not requiring hazardous (eliminating flammable 70 

and oxidizing gases) and expensive gases (using nitrogen plasma instead the argon 71 

plasma used in other techniques), which makes the determination of minerals 72 

advantageous in comparison with other spectroscopic and spectrometric techniques. 73 

These characteristics make MP-AES improve safety, analytical performance, and 74 

reduces operating costs, therefore it has been introduced recently in the mineral 75 
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characterization of different foods, such as wine (15), cheese (16), bread (17), and 76 

plants, such as herbal medicines (18), and sunflower (19).  77 

Despite the long tradition of the Portuguese carob, fig and almond liqueurs, they have 78 

not been studied to date. This study constitutes the first chemical characterization of 79 

these liqueurs in terms of mineral constituents. It may be of great importance in order to 80 

evaluate the relation between their mineral composition and the type of fruit employed 81 

in their production. In addition, this work shows the performance of MP-AES for the 82 

quantification of the essential elements Cu, Ca, Mg, Na, K, Fe, Zn, Mn and P, and non-83 

essential elements Cd, Pb, in liqueurs, after a simple wet digestion in open vessels to 84 

eliminate possible interferences due to their organic matrix.  85 

Materials and methods 86 

Reagents and liqueur samples 87 

All reagents used were of analytical grade: HNO3 (65%) (Fisher Scientific, Pittsburgh, 88 

PA), HClO4 (60%) (Riedel-de Häen, Seelze, Germany), H2O2 (30%) (Merck Suprapur, 89 

Darmstadt, Germany), Vanadium (V) oxide (98%) (Sigma-Aldrich, United Kingdom). 90 

Working standards of the metals Al, Cu, Cd, Pb, Zn, and Mn (stock solution of 50 91 

ppm), Ca, Mg, Na, K, and Fe (stock solution of 100 ppm) and P (stock solution of 10 92 

ppm) were prepared by diluting concentrated stock solutions (Agilent Technologies, 93 

Santa Clara, CA) with 5% of nitric acid/Milli-Q water. The ultra-pure water was 94 

employed to dilute the samples and standards, and this water was obtained by filtering 95 

tap water through a Milli-Q purifier (Millipore Waters, Milford, MA, USA). 96 

A set of 25 commercial liqueurs samples from the principal Portuguese producing 97 

regions were evaluated: eleven carob and six fig liqueurs from Algarve region (south of 98 

Portugal) and eight almond liqueurs from Algarve and Douro Littoral regions (south 99 
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and north of Portugal, respectively) (Fig. 1). Most of the samples were kindly provided 100 

directly by the producers and a small part was purchased at local markets. 101 

Sample pretreatment: liqueur mineralization  102 

A previous step of optimization was carried out with the sample that is probably the 103 

most difficult to digest, due to its cream based (fat) and small visible pieces of fruit 104 

(carob pod flour) undissolved, a carob cream liqueur. The elements under study in the 105 

optimization step were the two major elements Na and K, with importance in the 106 

regulation of blood pressure in human body (20) and the trace element Fe, related to 107 

deterioration in sensory quality of liqueurs (5).  108 

The optimization study shown in Table 1 was carried out using open-vessels, with dry 109 

and wet digestion procedures. All the “a” experiments of methods 1, 3 and 4, followed 110 

the guidelines found in the literature. The other (b-e) are modifications performed in the 111 

reaction volume and/or in the temperature ramps to improve results of the previous “a” 112 

experiments. Initially, low temperatures were applied to degrade the organic matter 113 

present in the matrix, and then the temperature was raised to proceed to the 114 

decomposition of inorganics, which are difficult to dissolve (24). These modifications 115 

were necessary since the procedures described in the literature did not lead to a 116 

complete mineralization of the samples, as indicated by the elemental analysis results 117 

and by the light yellow colour of the digested liquid (25). 118 

Wet mineralization in open vessels  119 

Glass digestion vessels were previously cleaned in 10% (v/v) nitric acid solution to 120 

avoid cross-contamination. Digestions were carried out in triplicate with uncovered 121 

glass tubes using a digital dry bath (Accublock Digital Dry Bath, Labnet International, 122 

New Jersey, USA), at the temperatures and times indicated in Table 1. The methods 123 
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tested mixed HNO3 with other acids such as HClO4 (method 1 and 2) and HCl (method 124 

3), and the strong oxidant H2O2 (method 4). Once the digestion was finished, each 125 

sample was removed from the dry bath, cooled to room temperature until next day and 126 

then diluted up to 25 mL with Milli-Q water.  127 

Dry mineralization in a muffle furnace  128 

Digestion was carried out in pots as indicated in method 5 (Table 1). Initially, the 129 

sample was subjected to low temperatures (80 and 105 ºC) in an oven with assisted air 130 

circulation to evaporate and remove all residual water before ashing. Then, the 131 

temperature was increased to 450 ºC on a muffle furnace (Thermolyne, 132 

Type 1500 Furnace; Sybron Corp., Dubuque, IA) to proceed with the mineralization 133 

until the sample acquires whitish colour of ashes. The ashes were dissolved in 10 mL of 134 

HNO3 acid and diluted with Milli-Q water up to 50 mL. 135 

The optimal digestion conditions, chosen from a comparative analysis of mineral 136 

measures obtained in the different tested methods, were applied for the analysis of the 137 

mineral composition of all carob, fig and almond liqueurs studied. 138 

Analytical performance of the method 139 

The limits of detection (LOD) and quantification (LOQ) of the method, showed in 140 

Table 2, were obtained based on the parameters of the analytical curves using standards 141 

with acid matrix in 5% HNO3. Both limits were calculated according to the following 142 

mathematical equations (1 and 2): 143 

m

S
LOD

xy /3
=   (1) 144 

m

S
LOQ

xy /10
=  (2) 145 
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where Sy/x=the estimation of the standard deviation of the regression line, and m= slope 146 

of the calibration curve. 147 

The linear regression analysis for each element was performed by the external standard 148 

calibration. The validating parameters of each calibration curve, slope (a), intercept (b) 149 

and correlation coefficient (r2) are described in Table 2. 150 

Finally, the calculation of the recovery was performed to test trueness of the developed 151 

method and thus determine whether analyte detection is affected by the influence of the 152 

matrix on digestion procedure. The recovery assays were performed in triplicate using a 153 

spiked liqueur sample by adding two different quantities of standard (0.5 mg/L and 1 154 

mg/L for phosphorous and 2 mg/L and 2.5 mg/L for the other elements) to known 155 

amount of sample (see Table 3). Recovery was calculated as follows: a known amount 156 

of an analyte, using pure 5% HNO3 standard, was spiked into a liqueur sample and this 157 

value was subtracted from one of unspiked liqueur sample. Subtraction was divided by 158 

the spiked sample and multiplied per 100. 159 

MP-AES: mineral analysis of liqueurs 160 

The mineral composition of liqueurs was measured by microwave plasma atomic 161 

emission spectrometry (Agilent 4200 MP-AES, Santa Clara, CA) using multi-element 162 

analysis. The operational conditions of MP-AES method were firstly optimized by 163 

evaluation of MP-AES quantitative operational mode for multi-element analysis. Each 164 

element was monitored at a specific wavelength to ensure interference-free detection. 165 

Optimum instrumental conditions for MP-AES measurements are summarized in Table 166 

2. The instrument viewing position was optimized using the standard of maximum 167 

concentration.  168 

A 6-point calibration curve was carried out for each element in matrix-matched 169 

calibration solutions (5% HNO3) to account for matrix interferences. All the details 170 
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about calibration curve can be seen in Table 2. After appropriate dilution of samples in 171 

5% HNO3, they were analyzed in triplicate and the concentrations calculated using the 172 

external standard calibration method.  173 

Data analysis 174 

Descriptive statistical analysis (mean and standard deviation), principal components 175 

analysis (PCA), and one-way analysis of variance (ANOVA), were evaluated. 176 

Separation of the means was performed by the Fisher's least significant difference at P = 177 

0.05 when ANOVA showed significant differences (P < 0.05). ANOVA were analyzed 178 

using Statistix 9 (Analytical Software, Tallahassee, FL, USA). Principal components 179 

analysis (PCA) was used in data reduction to identify a small number of factors that 180 

explain most of the variance observed in a much larger number of manifest variables 181 

(26). Specifically, it was used to evaluate the relationship between the mineral 182 

composition and samples, and was performed using the commercial software XLstat-183 

Pro (Addinsoft) for windows.  184 

Results and discussion 185 

Optimization of the sample digestion procedure 186 

The different digestion methods tested with a cream carob liqueur sample are shown in 187 

Table 1. The general trend of the results shows that the methods reaching higher 188 

temperatures and being kept at this temperature for longer periods (1e, 1d, 2d, 3d, 3e, 189 

and 4c, 4d), revealed higher concentrations of the elements analyzed, especially in terms 190 

of Fe concentration. This suggests that longer periods at higher temperatures allowed 191 

the complete digestion of the samples.  192 

In general, no significant differences were observed among the methods when 193 

employing the same operating conditions (times and temperatures). This can be 194 
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observed for Fe concentrations in experiments 1c, 2c, 1e, 3d, 4e, and 2d, 4d; for K in 195 

experiments 1d, 2d, 3c, 4d and 1e, 3d, 4e; and for Na in experiments 1e and 4e (Table 196 

1). In the case of Fe concentrations, the major difference lies in maintaining the sample 197 

at elevated temperature for longer. Probably, shorter periods are not enough to eliminate 198 

the compounds able to complex Fe (6). The concentrations of Na and K remain 199 

practically unchanged in all methods. 200 

Among all the methods studied, 3 and 4 were those that revealed the best results, with 201 

higher concentrations of Fe, K and Na, indicating more complete digestions of carob 202 

liqueur. Moreover, the results obtained agree with published data based on the digestion 203 

of alcoholic drinks, such as liqueurs, anisettes, cognacs, whiskies, gins, rums and wines 204 

using the mixture HNO3/H2O2 (method 4) ([Fe] ≅ <0.01 mg / L to 7.16 mg / L; [K] 205 

≅0.13 mg / L to 1014 mg / L and [Na] ≅ trace to 215.3 mg / L) (11, 23, 27, 28) and 206 

regarding the digestion of milk samples using the HNO3/HCl mixture (method 3) ([K] ≅ 207 

1687 mg / Kg to 27253 mg / Kg and [Na] ≅ 407 mg / Kg to 4784 mg / Kg) (22). In face 208 

of the good performance in digesting the cream carob liqueur and since it requires 209 

smaller amounts of acid (higher concentrations may reduce the MP-AES tube lifetime 210 

by acid attack), method 4 was selected to be used in the subsequent tests. 211 

Calibration and analytical method performance 212 

To check the method performance, the limits of detection and quantification (LOD and 213 

LOQ, respectively), and the linearity range using standards with acid matrix in 5% 214 

HNO3, and spike-and-recovery using a spiked liqueur sample, were studied.  215 

Under the optimized MP-AES conditions, LOD and LOQ were calculated using the 216 

equations described in the section 2.3. Table 2 shows the low values of LOD and LOQ 217 

for all the minerals studied. Linear regression analysis for each element was performed 218 
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by the external standard calibration. The validating parameters of each calibration 219 

curve, slope (a), intercept (b) and correlation coefficient (r2) are described in Table 2. 220 

Good linearity was observed between intensities and concentrations over the range 221 

tested (r2:0.9990-0.9999) for all the analyzed elements.  222 

Finally, the calculation of the recovery was performed to test trueness of the developed 223 

method and thus determine whether analyte detection is affected by the influence of the 224 

matrix on digestion procedure. Table 3 reports the recovery data that were obtained with 225 

values between 97.93-120.00 %. Considering the results of the recovery test, the 226 

method is deemed to be accurate. Only the value of P (120%) was at the limit, so in 227 

future measurements of this element the use of the internal standard method or method 228 

of standard additions is recommended. 229 

Mineral content in liqueurs: essential elements 230 

Results of the mineral composition of the studied liqueurs (carob, fig and almond 231 

liqueurs) are presented in Table 4. There is a high variability in concentrations within 232 

each type of liqueur, as demonstrated by the high standard deviations. This is may be 233 

due to different manufacturing processes and also to the raw materials (mainly, fruits 234 

and water) used to elaborate the liqueurs. The influence of these factors can be verified 235 

since some producers were cooperative in sharing their elaboration process. Carob 236 

liqueurs 1, 2 and 8 presented the major differences (Table 4). Producer of sample 1 237 

(with high quantities for all elements studied) uses high temperatures (infusion) during 238 

the extraction process, the sample 8 (with high quantities of some macroelements) is the 239 

only cream-based liqueur, and finally, sample 2 (with the lowest quantity of studied 240 

elements) used alcohol of agricultural origin and maceration at room temperature for the 241 

liqueur elaboration. Taking this into consideration, the sample 2 and 12 of fig liqueur 242 

(respectively, with the lowest and the highest content in macroelements), and samples 1 243 
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and 12 of almond liqueur (with K concentrations 3 to 5 and 40 to 61 times highest, 244 

respectively) may also indicate the same influence.  245 

Macroelements  246 

In general, the amounts of Na, K, Mg and Ca are related with the water used in the 247 

dilutions to elaborate the product (3, 29), but in some cases the concentrations of these 248 

elements can increase due to the raw materials with which the alcoholic base is in 249 

contact, the fruits (3, 4, 10).  250 

The liqueurs used in this work can be distributed in three groups according to the 251 

regions where they are produced: western Algarve (samples 1, 2, 5, 6, 11, 12), eastern 252 

Algarve (samples 3, 4, 7, 8, 9, 10) and North of Portugal (samples 13, 14, 15, 16) (Fig. 253 

1). The public data for the quality of the water along the year 2015 in the Municipalities 254 

where the liqueurs are produced (Monchique and Silves in the western side of Algarve; 255 

Loulé, Olhão and Tavira in the eastern Algarve, and Rio Tinto and Anadia in the north 256 

of Portugal) reveals in all cases the same type of water concerning the macroelements 257 

with concentrations between 17-48 mg/L for Ca, 5-25 mg/L for Mg and between 8-27 258 

mg/L for Na (30-32). However, it is likely that some producers use bottled soft water 259 

with lower contents of these elements, because it is advantageous in the production of 260 

liqueurs to have the guarantee that the finished product is not clouded.  261 

Assuming the maximum quantity of macroelements found in tap water as zero (48 mg/L 262 

for Ca, 25 mg/L for Mg and 27 mg/L for Na), it can be concluded that this factor does 263 

not justify the major differences found in the liqueurs (Table 4). Thus, it seems that the 264 

materials (carob, fig or almond) and the methods of production have greater influence 265 

on the concentrations of these elements in the liqueurs. Moreover, when the liqueurs of 266 

each type are organized in order of increasing concentration for each of the studied 267 
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macroelements, it is not visible any stratification related with the geographical locations 268 

of the producers.  269 

K concentration is found in highest concentration in all samples of carob liqueurs, with 270 

intermediate values in fig liqueurs (66.7% of the samples) and lowest in almond 271 

liqueurs [only in one sample (12.5%)], with mean values of 799.44 mg/L, 425.01 mg/L 272 

and 54.53 mg/L (eliminating sample 12, the mean value drops to 9.94 mg/L), 273 

respectively (Table 4). High quantities of potassium have been reported for other fruit 274 

liqueurs, 600 mg/L in raspberry liqueurs, and 505 mg/L in cherry liqueurs (10).  275 

Regarding Na, the highest concentration was observed in carob liqueurs (173.27 mg/L), 276 

mainly in samples 1, 4, 5, 6 and 12, followed by fig liqueurs (79.35 mg/L), and then 277 

almond liqueurs (45.28 mg/L) (Table 4). The exception was in liqueurs 2 and 3, from 278 

the same producer, which showed similar concentrations. These concentrations are in 279 

the range of results previously reported, as raspberry liqueurs with a concentration of 94 280 

mg/L and 88 mg/L in apple liqueurs (10). 281 

The dietary values of K/Na ratio found in populations intake that eat natural foods are 282 

between 3 and 10 (20). Our study revealed that range of K/Na in samples 4, 5, 6, 7 and 283 

9 of carob liqueurs, in samples 4, 5 and 12 of fig liqueur, and only in sample 12 of 284 

almond liqueur. Similar ratios were found also in other fruit beverages, such as juices 285 

(black mulberry and grape juices) and liqueurs (peach, plum, cherry, strawberry, 286 

raspberry and black currant liqueurs) (10, 33, 34).  287 

Ca concentration in liqueurs from the producers 2, 6 and 12 showed similar quantities, 288 

while the values in samples from producers 1, 4 and 5 followed the trend almond < fig < 289 

carob, except producer 3 that has the opposite trend. In general, the highest 290 

concentrations of Ca were observed in carob liqueurs (112.41 mg/L), close to the double 291 

of fig (46.13 mg/L) and almond (50.96 mg/L) liqueurs. If we eliminate sample 8, a 292 
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liqueur containing cream (rich in Ca), the mean value drops to 89.73 mg/L, still a very 293 

high value. Interestingly, the concentration of Ca in sample 8 (339.17 mg/L) is about the 294 

double of the value reported by Iwegbue et al. (35) for a cream liqueur (162.86 mg/L). 295 

Mg was the macroelement present in minor amounts and was only detected in seven of 296 

the eleven carob liqueurs studied and one of the six fig liqueurs. The mean 297 

concentration found in carob liqueurs (16.76 mg/L) was similar to concentrations found 298 

in other fruit liqueurs: peach (14.16 mg/L), apple (12.85 mg/L), plum (17 mg/L), 299 

banana (11 mg/L), rose hip (18 mg/L), and black currant liqueur (22 mg/L)(10, 33, 36).  300 

According to the previous discussion, these high concentrations of macroelements 301 

present in carob and fig liqueurs can be explained by the contribution of the fruits used 302 

in the preparation. The results are consistent with works found on the study of minerals 303 

in carob flour and figs, where K is one of the most abundant elements (67.00 % and 304 

68.48 % respectively), followed by Ca (22.46 % in carobs and 20.48 % in figs), Mg 305 

(1.51 % in carobs and 5.44 % in figs) and Na (0.84 % in carobs, and 5.46 % in figs) (37, 306 

38). In general, this trend was found in carob and fig liqueurs for K (72.03 % and 76.38 307 

%, respectively), Ca (10.13 % and 8.29 %, respectively) and Mg (4.09 % and 0.51%, 308 

respectively). In both type of liqueurs, Na (15.61 % in carob and 14.26 % in fig 309 

liqueurs) presented highest values. The different proportion of Na, mainly in the case of 310 

carob liqueurs, can be due to the addition of acidity regulators such as sodium citrate or 311 

sodium bicarbonate (4). Since the concentrations of macroelements in almonds are 312 

usually high (39), the low concentrations of these elements in the almond liqueurs 313 

analyzed can be explained by the replacement of fruits by natural flavouring essences 314 

(Table 4).  315 
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The last macroelement analyzed is phosphorus. Although this element was observed in 316 

high concentrations in carob pod (38), and fig (40), P was only present in two samples 317 

of carob liqueurs in small concentrations (3.82 ± 0.09 and 16.19 ± 0.61 µg/L). 318 

Trace elements 319 

Cu was quantified in all carob (2.39 mg/L) and fig (2.85 mg/L) liqueurs. Similar 320 

concentrations were detected on raspberry liqueurs (1.28 mg/L) and cherry liqueurs 321 

(2.68 mg/L) (10). This element was nearly undetectable in samples of almond liqueurs 322 

(only present in samples 1 and 12). The Cu content, discarding samples (1, 2, 8, 12-16) 323 

with different production methods, reveals a trend that seems to separate the liqueurs by 324 

production region: liqueurs produced in western Algarve (samples 5, 6 and 11) have 325 

lower concentrations of Cu (< 1.7 mg/L) than those produced in eastern Algarve 326 

(samples 3, 4, 7, 9 and 10) (> 2.3 mg/L). The fact that this element is characteristic of 327 

the distillation system employed (3), and knowing that the water supplied to these 328 

regions has concentrations always bellow 0.30 mg/L (30), or even lower when the 329 

producers used bottled water, makes us think that the greatest contribution found 330 

between regions may be influenced predominantly by the system used. 331 

Usually the traditional stills constructed almost totally with copper provide more of this 332 

element (5 ppm) to the produced spirit compared to the new units (with values < 1 ppm) 333 

(Soufleros, Mygdalia, & Natskoulis, 2005), which only use copper in some parts of the 334 

circuit whilst the rest is made of stainless steel (41). Accordingly, carob liqueurs 3, 4, 7, 335 

9 and 10; fig liqueurs 2, 3, 4 and 12 and almond liqueur 12, were probably elaborated 336 

with spirits obtained in traditional stills due to the high copper concentrations (1.93 337 

mg/L – 7.60 mg/L) (Table 4), whilst samples of carob liqueurs 1, 2 and 8; fig liqueur 1 338 

and almond liqueur 1, with values below 1 mg/L, probably employed spirits/alcohol 339 

elaborated from industrial systems. Finally, in an intermediate position are the carob 340 
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liqueurs number 5, 6 and 11 with values between 1.27 - 1.66 mg / L and the fig liqueur 341 

number 5 with a value of 0.90 mg / L of copper. Despite having these low values we 342 

know that they used a traditional system with improvements (good initial cleaning of 343 

the equipment, some parts of the equipment are made of stainless still, and/or by 344 

reducing its concentration by methods as the use of activated carbon) to obtain a high 345 

quality spirit.  346 

Fe is an element present in figs (0.05%) (37) and carob pods (0.11%) (38) but only was 347 

detected and quantified in carob liqueurs (1.62 mg/L). The processing of carob or the 348 

different steps in the liqueur elaboration probably makes it more accessible during the 349 

extraction step to the alcoholic base used.  350 

The trend of the concentration of this element found in the samples in relation to the 351 

processing region is as follows: liqueurs from western Algarve have higher 352 

concentrations of Fe (> 3.3 mg/L), except sample 11 (1.52 mg/L), than those from 353 

eastern Algarve (< 2.6 mg/L). As in the case of copper, the concentrations of Fe present 354 

in the tap water from the same regions (year 2015) were always bellow 0.025 mg/L 355 

(30), indicating again that the tap water cannot be the main source of this mineral. 356 

Comparing the presence of this element in carob liqueurs with other liqueurs from 357 

literature, similar concentrations were found in samples of cream (1.31 mg/L) and peach 358 

liqueurs (1.50 mg/L) and higher values in plum (2.16 mg/L), cherry (2.43 mg/L) and 359 

black currant liqueurs (2.79 mg/L) (10, 23, 33).  360 

In this study, Mn concentration was only detected and quantified in two carob liqueurs. 361 

This is probably due to this element being present in low concentrations in figs (0.03%) 362 

and carob pods (0.08%) (37, 38). In general, concentrations of manganese found in 363 

liqueurs are low (< 1mg/L). Nevertheless, raspberry (2.55 mg/L) and black currant (2.22 364 

mg/L) liqueurs presented slightly higher concentrations (10).  365 
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As it is shown in Table 4, Zn is present in all carob liqueurs (concentrations ranging 366 

from 0.39 to 2.89 mg/L), but just in two of fig (0.61 and 0.81 mg/L) and one of almond 367 

(1.24 mg/L). The concentrations in carob liqueurs have lower values (< 0.75 mg/L) in 368 

samples from western Algarve, except sample 5 (2.72 mg/L), than those from eastern 369 

Algarve (> 1.0 mg/L). According to the literature, this mineral showed lower mean 370 

values, ≤ 1 mg / L, in other fruit liqueurs (10, 23, 33). 371 

Finally, we can conclude that different contents of such elements for liqueurs produced 372 

in the western or in the eastern side of Algarve suggest the possibility of some 373 

differences in the process of production in these two regions. The presence of trace 374 

elements at high concentrations in liqueurs is usually associated with incorrect 375 

manufacturing processes (42). Therefore, the concentrations found in the samples 376 

corroborate good processing practices in the studied regions. 377 

Mineral content in liqueurs: non-essential elements 378 

Heavy metals  379 

In general, there was no trace of Cd and Pb in the analyzed samples, which highlights 380 

the good manufacturing practices of most of the traditional liqueurs producers. Only 381 

samples 4 and 7 of carob liqueur presented lead in low concentrations. This presence 382 

could derive from the reparations performed in distillation equipment or from polluted 383 

water employed in the dilution step (3).  384 

Principal component analysis 385 

Principal component analysis (PCA) was applied using the correlation matrix with the 386 

well correlated variables. Consequently, the model was simplified taken into account a 387 

more restricted number of variables. Among the set of variables that contributed to 388 

obtain the PCA analysis with the two first components are the 7 essential elements (K, 389 
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Na, Ca, Mg, Fe, Zn and Mn) that were the most representatives of the whole system, 390 

and 25 samples (11 of carob, 8 of almond and 6 of fig liqueur). PCA showed that the 391 

first two principal components extracted explain 78.54 % of the total variance [F1 392 

(56.67%) and F2 (21.87%)].  393 

Figure 2 shows the biplot scores from the first two principal components. The samples 394 

were differentiated according to the mineral composition as can be deduced from the 395 

high percentage of the total variance of the observations. Three main groups of samples 396 

are observed corresponding to each of the types of liqueurs studied. Fig and almond 397 

liqueurs are on the left side of the chart and these samples were not defined by any of 398 

the studied elements. On the other hand, samples of carob liqueurs were characterized 399 

by all the elements shown in the PCA and in general cover the entire right side of the 400 

graph. Specifically, samples 1, 6 and 9 of carob liqueurs and sample 3 of fig liqueur 401 

were correlated by Na and Ca content, while carob samples, 2, 3, 6, 7, 8, 11 and 4 were 402 

characterized by the presence of the trace elements Fe, Zn, and Mn, and the 403 

macronutrients K and Mg. Finally, the elements showed in the graph had great 404 

importance in the results of the samples, being Mg (20.10%), Mn (20.09%), K (20.00%) 405 

and Zn (16.08%) the elements with most influence in F1 and Na (56.43%) and Ca 406 

(26.96%) in F2. 407 

Conclusions 408 

The digestion pretreatment and MP-AES method proposed in this work to quantify 409 

different essential and non-essential minerals in liqueur matrices was optimized. For the 410 

digestion of liqueurs, the use of any of the reagents studied would be optimal because 411 

with the same operational conditions, the results showed no significant differences. 412 

HNO3/H2O2 mixture was chosen because it showed a slight better sample digestion 413 

according to the elements of study, with a lower quantity of digesting acid. MP-AES 414 
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demonstrated to be a good technique for the multielement analysis of these samples, 415 

since the method presented good linearities and recoveries, and low LOD and LOQ for 416 

the elements analyzed. 417 

The results obtained in this work indicate that the fruits employed in the elaboration of 418 

each liqueur markedly influence the final mineral content of these beverages and permit 419 

a differentiation among them, as showed in the PCA. Differences in the liqueurs 420 

production methods may contribute to the great variability in minerals, even within the 421 

same type of liqueur.  422 

Among the Portuguese liqueurs studied, carob liqueurs are those presenting the highest 423 

values for all the minerals analyzed whereas those of almond showed the lowest 424 

contents. The mineral content compared to other fruit liqueurs reported in the literature, 425 

showed the highest macroelement profile of carob liqueurs and similar quantities of 426 

trace elements.  427 

The lack of detection of non-essential elements in 98% of the studied liqueurs and the 428 

concentrations of essential elements in allowable ranges indicate the generalization of 429 

good manufacturing practices of these drinks. Thus, a moderate consumption of these 430 

liqueurs can contribute positively to human requirements of essential elements. 431 
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Table 1 Optimization of sample digestion carried out with a carob liqueur: wet (method 1, 2, 3 and 4) and dry (method 5) digestion conditions and Fe, K and Na average 
concentrations 

  Digestion conditions Digestion results (mg/L) 

  Sample 

(mL) 

Reagents Time/Temperature (min/ºC)    

Method† HNO3(mL) HNO3:HClO4 (1:4) (mL) HCl (mL) H2O2 (mL) V2O5 (µg) Step 1 Step 2 Step 3 Step 4 Fe K Na 

1 

a* 1 5 5 - - 10 20/60 45/90 - - 6.10gh 670.50e 1177.38def 

b 0.5 2.5 2.5 - - 5 20/room 30/80 30/100 30/110 3.43i 749.33abc 1096.13gh 

c 0.5 2.5 2.5 - - 5 20/room 30/80 30/100 120/110 11.61e 697.20de 1218.13cdef 

d 0.5 2.5 2.5 - - 5 20/room 30/80 30/100 240/110 23.71c 725.83bcd 1240.83cde 

e 0.5 2.5 2.5 - - 5 20/room 30/80 30/100 270/110 25.02bc 767.20ab 1276.20bc 

2 

a 1 - 10 - - - 20/60 45/90 - - 7.53fg 700.5de 1286.38bc 

b 0.5 - 5 - - - 20/room 30/80 30/100 30/110 4.19hi 767.33ab 1069.00h 

c 0.5 - 5 - - - 20/room 30/80 30/100 120/110 11.75e 722.53cd 1161.60fg 

d 0.5 - 5 - - - 20/room 30/80 30/100 240/110 26.39b 693.50bcd 1171.75ef 

3 

a** 0.5 4 - 1 - - 20/room 30/80 30/100 30/110 8.44f 777.07a 954.67i 

b 0.5 4 - 1 - - 20/room 30/80 30/100 120/110 18.52d 702.27de 1248.67bcd 

c 0.5 4 - 1 - - 20/room 30/80 30/100 240/110 29.61a 730.00bcd 1247.17cde 

d 0.5 4 - 1 - - 20/room 30/80 30/100 270/110 26.94b 777.40a 1321.40ab 

4 

a*** 10 1 - - 1 10 20/60 45/90 - - - - - 

b 0.5 2.5 - - 2.5 5 20/room 30/80 30/100 30/110 4.42hi 791.00a 1032.50h 

c 0.5 2.5 - - 2.5 5 20/room 30/80 30/100 120/110 13.74e 716.00cd 1226.40cdef 

d 0.5 2.5 - - 2.5 5 20/room 30/80 30/100 240/110 26.81b 730.67bcd 1215.67cdef 

e 0.5 2.5 - - 2.5 5 20/room 30/80 30/100 270/110 26.29b 790.80a 1277.60bc 

5 a 3 - - - - - 30/80 120/105 240/450 - 11.96e 757.75abc 1387.42a 
 

Values of digestion results are mean of 3 replications. Different letters in the same column indicate significant differences according to LSD test (P ≤ 0.05) 
†All the “a” experiments of methods 1, 3 and 4 followed the guidelines found in the literature. The others (b, c, d, etc.) are modifications made to improve results of the previous “a” experiments 

Literature: *Navarro-Alarcon et al. (21); **Tanabe et al. (22); ***Iwegbue et al. (23)  
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Table 2 MP-AES operating and method conditions (linearity and limits of detection (LOD) and quantification (LOQ)) 

Operating conditions*  Na K Ca Mg Cu Fe Zn Mn P Cd Pb 

Wavelength (nm)  588.995 766.491 393.366 383.829 324.754 371.993 213.857 403.076 213.618 226.502 368.346 

Nebulizer flow (L/min)  0.95 0.75 0.60 0.90 0.7 0.65 0.45 0.9 0.35 0.5 0.75 

Viewing position  10 10 0 0 20 -10 10 -10 20 0 0 

Method conditions  Na K Ca Mg Cu Fe Zn Mn P Cd Pb 

Calibration range (mg/L)  0.025-5 0.005-5 0.5-10 0.025-5 0.001-5 0.010-5 0.001-5 0.0025-5 0.0025-5 0.050-5 0.025-5 

Calibration curve 

y=ax+b 

a (slope) 196713 41.312 371030 2645.8 58.079 4.2475 10.445 21.102 202.01 1.1166 1.0404 

b (intercept) +1080,8 370.2 86958 -40.875 -274.9 -53.409 81.188 -258.79 5582.7 -8.5072 -17.418 

Correlation coefficient (r2)  0.9994 0.9992 0.9990 0.9999 0.9999 0.9997 0.9997 0.9998 0.9993 0.9997 0.9996 

Dilution sample range (v/v)  Up to 1/50 Up to 1/25 No dilution         

LOD (mg/L)  0.15 0.07 0.52 0.05 0. 05 0.10 0.10 0.08 0.14 0.11 0.13 

LOQ (mg/L)  0.49 0.22 1.74 0.17 0.17 0.33 0.32 0.25 0.46 0.38 0.42 

*Common MP-AES operating conditions to all samples: read time (s): 3; number of replicates: 5; sample uptake time (s): 70; stabilization time (s): 15; pump speed (rpm): 15; sample uptake fast pump: on; 

background correction: auto; rinse time: 40 
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Table 3 Recovery tests for minerals added to diluted carob liqueur sample (N:3) 

 

Essential elements: macroelements 

 Ca (393.366 nm) Mg (383.829 nm) Na (588.995 nm) K (766.491 nm)  P (213.618 nm) 

Added Found (mg/L) Recovery (%) Found (mg/L) Recovery (%) Found (mg/L) Recovery (%) Found (mg/L) Recovery (%) Added Found (mg/L) Recovery (%) 

- 1.00±0.19 - 0.74±0.03 - 1.01±0.08 - 7.54±0.08 - - 0.00±0.00 - 

+ 2 mg/L 3.13±0.01 105.57 2.83±0.01 103.53 3.30±0.07 109.65 9.43±0.05 98.86 + 0.5 mg/L 0.60±0.00 120.00 

+2.5 mg/L 3.66±0.04 101.39 3.32±0.01 102.15 3.77±0.08 106.09 9.92±0.04 98.94 +1 mg/L 1.18±0.01 117.53 

 

Essential elements: trace elements 

 Fe (371.993 nm) Cu (324.754 nm) Zn (213.857 nm) Mn (403.076 nm) 

Added Found (mg/L) Recovery (%) Found (mg/L) Recovery (%) Found (mg/L) Recovery (%) Found (mg/L) Recovery (%) 

- 0.06±0.01 - 0.02±0.00 - 0.07±0.01 - 0.03±0.00 - 

+ 2 mg/L 2.19±0.01 106.73 2.15±0.02 106.54 2.16±0.02 104.65 2.26±0.03 111.65 

+2.5 mg/L 2.76±0.0 108.15 2.71±0.02 107.60 2.69±0.03 104.51 2.87±0.04 113.69 

 

Non-essential elements: heavy metals 

 Cd (226.502 nm) Pb (368.346 nm) 

Added Found (mg/L) Recovery (%) Found (mg/L) Recovery (%) 

- 0.00±0.00 - 0.00±0.00 - 

+ 2 mg/L 1.96±0.02 97.93 2.22±0.02 110.97 

+2.5 mg/L 2.51±0.02 100.26 2.82±0.04 112.65 
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Table 4 Mineral composition (average concentrations in mg/L or µg/L*) and standard deviations in carob, fig and almond Portuguese liqueurs 

  Essential elements Non-essential elements 
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Values of results are mean of 3 replications. Different letters in the same column for each type of liqueur indicate significant differences according to LSD test (P ≤ 0.05) 

X± Sx =mean concentration of 3 replications and standard deviation; LOD: Limit of detection, LOQ: Limit of quantification. Different letter in the same column indicate significant differences according to 

LSD test (P ≤ 0.05); † the same numbers indicate the same producers 

  Macroelements Trace elements Heavy metals 

Type liqueur Producer† Na K Ca Mg P Cu Fe Zn Mn Cd Pb 

Carob 

1 146.83±2.93c 2458.69±44.58a 265.50±6.61b 89.67±5.69a 3.82±0.09b* 0.96±0.08g 2.87±0.29bc 2.89±0.12a 1.20±0.08a <LOD <LOD 

2 36.83±3.01e 86.00±2.78g 21.33±3.33g <LOD <LOD 0.85±0.16g <LOD 0.72±0.17d <LOD <LOD <LOD 

3 31.67±1.04e 738.25±45.69d 67.17±1.89e 15.00±0.50d <LOD 4.23±0.04b 0.49±0.15e 1.44±0.08b <LOQ <LOD <LOD 

4 187.67±4.62b 855.65±17.80c 141.33±3.33c <LOD <LOD 3.10±0.12c 2.52±0.13c 1.03±0.20c <LOD <LOD 2.09±0.35a 

5 50.00±8.05de 384.50±9.64f 46.50±2.00f 20.50±1.32c <LOD 1.27±0.07f 3.33±0.58b 2.72±0.11a 0.27±0.01b <LOD <LOD 

6 75.83±7.78d 352.83±5.35f 72.50±1.32e 4.41±2.31e <LOD 1.66±0.15e 3.89±0.76a 0.39±0.01e <LOD <LOD <LOD 

7 57.83±6.11de 495.50±8.72e 61.83±2.84e 3.91±1.08e <LOD 2.37±0.42d 1.84±0.84d 2.85±0.38a <LOQ <LOD 1.53±0.38b 

8 1165.31±73.62a 773.90±34.81d 339.17±25.27a <LOD 16.19±0.61a* 0.29±0.04h <LOD 1.65±0.21b <LOD <LOD <LOD 

9 86.67±2.02d 833.95±17.80c 89.00±3.28d 13.00±0.00d <LOD 7.60±0.41a 1.38±0.46d 1.07±0.08c <LOD <LOD <LOD 

10 37.67±3.33e 1313.56±65.18b 66.83±2.47e 37.83±3.55b <LOD 2.61±0.12d <LOD 1.54±0.11b <LOQ <LOD <LOD 

11 29.67±1.26e 501.00±11.65e 65.33±2.93e <LOD <LOD 1.31±0.06f 1.52±0.15d 0.53±0.04de <LOQ <LOD <LOD 

 �� 	±	���  173.27±332.90 799.44±639.39 112.41±99.68 16.76±26..89 1.94±4.87* 2.39±2.07 1.62±1.40 1.53±0.92 0.18±0.35 - 0.33±0.74 

Fig 

1 43.17±6.51bc 661.72±15.42b 31.50±2.29d <LOD <LOD 0.46±0.00e <LOD <LOQ <LOD <LOD <LOD 
2 36.67±4.01cd 7.93±0.23f 12.00±0.87f <LOD <LOD 5.55±0.30a <LOD <LOD <LOD <LOD <LOD 

3 30.67±6.79d 66.17±0.29e 117.50±3.28a <LOD <LOD 2.43±0.24b <LOD 0.81±0.15a <LOD <LOD <LOD 

4 47.50±2.50b 197.83±5.25d 42.17±2.75c <LOD <LOD 5.76±0.10a <LOD <LOD <LOD <LOD <LOD 

5 36.25±2.47cd 341.67±12.27c 24.25±3.89e <LOD <LOD 0.90±0.04d <LOD 0.61±0.07b <LOD <LOD <LOD 

12 281.83±6.66a 1274.72±17.08a 49.33±0.76b 17.00±1.80a <LOD 1.93±0.03c <LOD <LOD <LOD <LOD <LOD 

 �� 	±	���  79.35±99.37 425.01±477.35 46.13±37.36 2.83±6.94 - 2.85±2.28 - 0.30±0.35 - - - 

Almond 

1 31.25±0.35de 27.83±0.76b 42.50±6.36c <LOD <LOD 0.40±0.03b <LOD <LOD <LOD <LOD <LOD 

2 35.00±2.78cd 7.46±0.49c 34.67±4.37d <LOD <LOD <LOQ  <LOD <LOD <LOD <LOD <LOD 

6 39.00±0.50c 6.57±0.07c 77.00±5.29a <LOD <LOD <LOQ  <LOD <LOD <LOD <LOD <LOD 

12 55.25±3.18b 366.67±8.02a 50.00±9.90bc <LOD <LOD 3.46±0.11a <LOD 1.24±0.12a <LOD <LOD <LOD 

13 22.50±2.60f 5.91±1.46c 48.50±3.61bc <LOD <LOD <LOQ  <LOD <LOD <LOD <LOD <LOD 

14 29.50±3.91e 5.87±0.42c 54.50±4.24b <LOD <LOD <LOQ  <LOD <LOD <LOD <LOD <LOD 

15 121.50±2.18a 8.92±0.31c 22.25±1.06e <LOD <LOD <LOQ  <LOD <LOD <LOD <LOD <LOD 

16 28.25±1.77e 7.00±0.10c 78.25±4.60a <LOD <LOD <LOQ  <LOD <LOD <LOD <LOD <LOD 

 �� 	±	���  45.28±32.31 54.53±126.34 50.96±19.29 - - 0.56±1.18 - 0.16±0.44 - - - 
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Figure 1 Geographical location of different carob, fig and almond liqueurs studied in 

this work 

 

Figure 2 Principal Component Analysis (PCA) score plot for commercial carob, fig and 

almond liqueurs based on mineral composition of the digested samples 
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