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Abstract

Land plants evolved from freshwater charophyte algal ancestors during a single transition to the 

terrestrial environment. The six major lineages of land plants are divided into two groups, the 

bryophytes (liverworts, mosses, and hornworts) and the tracheophytes (lycophytes, ferns, and 

seed plants), but while the tracheophytes are thought to be monophyletic, the bryophytes have 

typically been considered as the direct ancestors of tracheophytes and therefore an artificial, non-

monophyletic, group. Here the molecular phylogenetic evidence for relationships is reviewed and 

evaluated especially in-light of large genome-level studies that have been completed in the last few

years. Consideration is given to how to evaluate competing hypotheses with respect to the 

underlying evolutionary assumptions of the models used to analyse the molecular data, and the 

degrees of support for particular hypotheses. It is concluded that currently the two most-favourable 

hypotheses are that the bryophytes are a monophyletic group, or that a lineage consisting of 

liverworts and mosses branched first among land plants with the hornworts the most-closely 

related lineage to tracheophytes. Although hitherto rarely considered, the possible monophyly of 

bryophytes has important implications for the morphological reconstruction of the last common 

ancestor of all land plants. Indeed, it might suggest that the ancestor of land plants was 

vascularised and had alternating generations that were more isomorphic than is found in extant 

taxa. The evolution of the bryophytes might then have proceeded through elaboration of the 

gametophyte and reduction of the sporophyte, while the opposite being true of the tracheophyte 

lineage.



 

Introduction

The origin and diversification of terrestrial plants is one of the most important events in Earth 

history, but it has also proven to be one of the most challenging for phylogenetic systematics to 

reconstruct. Similarities between reproductive features of land plants, such as the possession of 

motile male gametes, and comparable cellular structures and pigmentation between land plants 

and algae, led as early as the late 19th century to the widely-held belief that land plants were likely 

derived from a single green algal ancestor (Kenrick and Crane 1997). Similarly, the tracheophytes, 

namely the seed plants, ferns, and lycophytes, a group with a conspicuous and dominant 

sporophyte generation that has a vascular system to transport water and metabolites through the 

plant body, were also recognised very early as a natural evolutionary group (figure by Haeckel 

1876 depicted in Kenrick and Crane 1997). In today’s terms, such a group is described as 

monophyletic and consists of all the descendants of a common ancestor. However, the monophly 

of a group comprising the other three major lineages of land plants, namely the gametophyte-

dominant bryophytes comprising the hornworts, mosses, and liverworts, has never been accorded 

much credibility. From a historical perspective this may be a reflection of the observation that 

bryophytes share with freshwater algae a similar haploid-dominant alternation of generations, 

which enforces the view that the “lower” bryophytes are more primitive than the “higher”, and 

implicitly more evolutionarily advanced, tracheophytes (Bower 1890). Although such an 

evolutionarily simplistic view of constantly increasing complexity is now widely discredited – 

besides which bryophytes are themselves complex and not in any way simplistic despite their small

stature – the bryophytes are still most often regarded as the direct ancestors of tracheophytes, 

although the exact timings of the bryophyte diversification events is a matter of great contention.

The streptophyte green plants as a group include the terrestrial plants that develop via an 

embryo (embryophytes) and the freshwater algae (charophytes) from which they are descended 

(Palmer et al. 2004). Indeed, recognition that the embryophytes evolved from charophyte algae 



settled a long-standing debate concerning the evolution of alternating generations in land plant life-

cycles (for a recent review see Haig 2008). Charophyte algae have haplontic life-cycles with 

zygotic meiosis, suggesting that the diploid multicellular sporophyte generation of the 

embryophytes had evolved from interpolation of mitotic divisions after zygote formation: an 

observation that accords with the “antithetic theory” and contrasts with the “homologous theory” 

whereby the embryophyte ancestor had isomorphic, free-living, generations (Bennici 2008). 

However, recent molecular phylogenetic analyses (Turmel et al. 2006; Karol et al. 2010; Wodniak 

et al. 2011, Timme et al. 2012; Civáň et al. 2014, Wickett et al. 2014) have determined that the 

aflagellate, conjugating charophytes (Zygnematales) that are most often found as single cells, 

cellular colonies, or filaments, are the most-closely related group to embryophytes. This result is 

perhaps surprising given that the more-distantly related stonewort charophytes (Charales) are 

morphologically more complex, with a multicellular branching structure reminiscent of land plants 

and a suite of cellular characters similar to embryophytes (Karol et al. 2001; McCourt et al. 2004). 

This finding probably reflects a loss of many of these characters in Zygnematales as a 

consequence of their evolving conjugation as a means of reproduction (Timme et al. 2012). 

It is now well-established that there was a single evolutionary transition to embryophyte land 

plants from an aquatic charophyte algal ancestor (e.g. Karol et al. 2001), however, the 

relationships among the major groups of embryophytes have proven difficult to determine. 

Embryophyte diversity is divided into two major groups, the bryophytes and the tracheophytes 

(also called vascular plants), each of which has three major divisions which represent 

monophyletic lineages, namely, the Bryophyta (mosses), Marchantiophyta (liverworts), and 

Anthocerotophyta (hornworts), and the Lycopodiophyta (lycophytes), Moniliformopses (ferns), and 

Spermatophyta (seed plants), respectively (Figure 1). The tracheophytes all have a diploid-

dominant life-cycle with a vascularised sporophyte and typically form a statistically well-supported 

monophyletic group (they share a single common ancestor that is unique to them) in phylogenies. 

By contrast, the three bryophyte groups have haploid-dominant life-cycles where the unbranched, 

determinate sporophyte remains attached to, and is nourished by, the gametophyte. Despite these 

similarities in life-cycle, the three bryophyte lineages have most often been considered 



“independently evolving” lineages that likely do not form a monophyletic group (Crandall-Stotler 

1980).

An ancestral nature of bryophytes was supported by the earliest formal phylogenetic analyses 

of land plants conducted by Parenti (1980), who established that bryophytes were paraphyletic 

(that is,  a group with a common ancestor but not all the descendants of that ancestor) based on 

morphological characters, with mosses and liverworts grouped together, but with hornworts most 

closely related to the vascular plants. By contrast, in a similar morphological cladistic analysis by 

Mishler and Churchill (1986), the liverworts alone were resolved as the earliest-branching lineage, 

with mosses most closely related to the tracheophytes, and the hornworts branching 

intermediately. These pioneering analyses in many ways confirmed previous assessments of land 

plant evolution based on less formal methods and cemented the idea of the bryophyte plant form 

as being ancestral to the more “advanced” vascular plants of the tracheophytes. Indeed, the 

seemingly elegant progression of increasing complexity in plant form, through single-celled algae 

to mulicellular thallose algae, to bryophytes, and then tracheophytes, is still commonly believed to 

be correct, although the exact details have changed. 

Newer hypotheses may necessitate a re-think as to the earliest divisions among land plants 

and what form the ancestral land plants took. The novel, if slightly controversial at the time, 

morphological insight of Mishler and Churchill was that the conducting tissue (leptoids and 

hydriods) of mosses was homologous to the vascular tissue found in the tracheophytes (Mishler 

and Churchill 1986), and although this homology has since been challenged (Ligrone et al. 2000; 

Renzaglia et al. 2007), developmental genetics has also identify these tissues as homologous (Xu 

et al. 2014). Indeed, analyses of morphological and developmental characters have consistently 

supported a non-monophyletic bryophytes from which vascular plants are derived (Mishler and 

Churchill 1986; Bremer et al. 1987; Mishler et al. 1994; Garbary and Renzaglia 1998; Renzaglia et 

al. 2000), as have analyses that have included fossil plant taxa (Kenrick and Crane 1991; Kenrick 

and Crane 1987) and those employing supra-sequence genomic-level characters (Kelch et al. 

2004; Mishler and Kelch 2004; Civáň et al. 2014). The only exceptions to this have been the 

analyses of ultrastructural traits of male gametogenesis which tend to resolve a monophyletic 



bryophyte clade (monophyletic group), with mosses more closely related to liverworts than 

hornworts (Garbary et al. 1993; Renzaglia et al. 2000).

Molecular phylogenetics

The relative value of using morphological or molecular characters for the reconstruction of 

phylogeny have been debated vigorously, with little resolution or conclusion (Hillis 1987; Baker et 

al. 1998). While each data type has merits and demerits, it is undeniable that in a time where 

genomic DNA sequence data are so easily obtained, the focus of phylogenetic tree reconstruction 

has shifted almost wholly to the molecular realm. Nevertheless, ultimately a molecular phylogenetic

tree in itself is of little value except for its ability to classify and predict change in an evolutionary 

framework, and its use to develop hypotheses of organismal trait evolution.

As with morphological analyses, the majority of molecular phylogenetic analyses of land plants

have supported the non-monophyly of the bryophytes, although molecular-based trees have 

tended to place the liverworts alone as the earliest-diverging taxon (e.g. Lewis et al. 1997), a 

hypothesis that has come to be the most widely accepted. Despite this trend, almost all possible 

combinations of relationships among the three bryophyte groups and tracheophytes have been 

published in molecular phylogenetic trees (Table 1), including ones where the bryophytes are a 

monophyletic group (e.g. Nishiyama et al. 2004). The difficulty in determining the relationships 

among the six embryophyte groups is likely due in part to their rapid lineage diversification, 

perhaps as a response to niche adaptation, soon after terrestrial colonisation, leaving little time for 

accumulation of distinguishing characters (synapomorphies) to arise in early-diverging lineages 

(Karol et al. 2001; Liu et al. 2014). Such phylogenetic uncertainty is especially problematic as 

evolutionary analyses of the key genetic and morphological innovations underpinning land 

colonisation are important to our understanding the ecology of environments and early biotically-

driven terrestrial environmental changes.

 Despite the ambiguity among phylogenetic analyses of land plants, it is commonly assumed 

that bryophytes are paraphyletic and the liverworts are the earliest-diverging taxon (e.g. Bowman 

et al. 2007; Clarke et al. 2011). However, with the increased availability of data due to advances in 



sequencing technology, as well as advances in phylogenetic modeling and gene tree evolutionary 

theory, bryophyte relationships have again come under close scrutiny and recent analyses have 

yet again challenged the widely-held belief of the ancestral nature of bryophytes in land plant 

history. How then to make sense of conflicting data sets, and even conflicting analyses of the same

data? The arguments are often complex and nuanced, as no one aspect of evolutionary analyses 

is likely to be sufficient and alone necessary to guarantee that the result converges on the true 

phylogeny. Here I outline some considerations when assessing modern phylogenetic techniques 

and the results of those analyses.

Evaluating competing phylogenetic reconstructions

It is tempting to view phylogenetic reconstruction as fraught with difficulty and controversy, given 

the high-profile debates that exist on the origin of eukaryotes, animals, flowering plants, and of 

course many other relationships in the tree of Life. But such a view tends to overlook the 

remarkable advances that have been made: after all, if the phylogenetic evidence is consistent and

points toward a certain relationship, it is eventually accepted as theory no matter how previously 

controversial such a hypothesis might have been. Indeed, the vast majority of phylogenetic 

relationships appear non-controversial even in land plant evolution: a) land plants are monophyletic

and derived from charophyte algae, b) each of the six major land plant groups (mosses, liverworts, 

hornworts, lycophytes, ferns, and seed plants) are monophyletic, and c) vascular plants are 

monophyletic, etc. Nevertheless, despite much research, the relationships among land plant 

groups had proven difficult to reconstruct with any consistency or confidence. Indeed, the origin of 

land plants has become a pivotal question in phylogenetic systematics, prompting the use of new 

models and theory (Cox et al., 2014; Wickett et al., 2014) and helping drive the adoption of new 

methods (Sayyari and Mirarab, 2016).

How then to navigate a sea of competing, and often well supported, analyses? The concept of 

support for a phylogenetic hypothesis is important but should be seen only in the context of the 

particular data set being analysed and the assumptions implicit in the model. Here bootstrap 

support of >80%, or Bayesian posterior probabilities >0.95, are interpreted as being strong and 



statistically significant support. The apparent, though sometimes weak, conflict between ML 

bootstrap and Bayesian analyses under similar models can be attributed to their different statistical

frameworks: while bootstrap analyses measure the long-term probability of obtaining a similar 

result given additional data of the same kind, Bayesian analyses directly assess the probability of 

the model given the data (Shoemaker et al. 1999). When different methods and different data 

converge on a single species tree, we can have good confidence in having reconstructed the real 

phylogenetic history of the species. More specifically, analyses conducted using different genes 

and genomes (organellar and nuclear data) and different analytical methods (distance methods, 

maximum parsimony, likelihood and Bayesian methods) would ideally converge to the same, 

correct, species tree. However, some relationships are especially difficult to reconstruct, typically 

because lineage diversification occurred in a relatively short time-span, leaving few changes in 

support of relationships. In addition, gene (or contiguous non-recombining sequence) trees that 

conflict with the species tree due to population level processes (e.g. incomplete lineage sorting, 

hybridisation, introgression) can result in well-supported but incorrect phylogenies (Degnan and 

Rosenberg 2006 and 2009). Indeed, when faced with competing phylogenetic hypotheses, it may 

seem tempting to accept the result that is found most frequently as being correct, and ignore 

contradictory results as mere aberrations. But this type of consensus summarising of multiple 

analyses is often flawed: when a particular relationship is difficult to reconstruct, it can be easier to 

find an incorrect tree than it is the true species phylogeny. Indeed, in my view multiple congruent 

analyses do not out-weigh the importance of one “better” analysis that results in a different tree. 

The problem is determining which are the most appropriate analyses, and which are inadequate, in

the context of some given data.

Until relatively recently, it has been assumed (often due to computational expediency) that the 

correct tree is most often than not an emergent property of concatenating large, so-called 

phylogenomic, amounts of data that negate statistical sampling (stochastic) errors (e.g. Rokas et 

al. 2003; Jeffroy et al. 2006). Indeed, older phylogenetic divergences that occur rapidly in time, that

is, deep and short internal branches of the phylogeny, are often very problematic to reconstruct 

because they retain so few defining substitutions in extant descendants (Whitfield and Lockhart 

2007). In such cases these relationships are often accurately resolved by employing larger 



amounts of data. However, the expectation of a positive correlation between increased 

phylogenetic accuracy and larger data sets is not always met, as longer sequences can also 

amplify non-historical signals (biases) in the data that can result in systematic errors in tree 

reconstruction if inadequately accounted for by the substitution model (e.g. Phillips et al. 2004; 

Rodríguez-Ezpeleta et al. 2007). In the context of maximum parsimony (which implements an 

implicit model of change – Swofford et al. 1996), these biases lead to inaccurate phylogenies due 

to homoplasy (convergent similarity) being undetected, and erroneously reconstructed as 

ancestrally shared characters (synapomorphies) supporting the close relationship of taxa that are 

in reality more distantly related. For instance, biases in the rate of substitution among lineages can 

lead to the accumulation of sufficient amounts of homoplasy in fast evolving lineages to reach 

substitutional “saturation”, which overwhelms the historical signal and causes the lineages to be 

joined by convergent similarity – the often cited phenomenon of “long-branch attraction” 

(Felsenstein 1978). Although in this case including additional taxa can increase phylogenetic 

accuracy when they segment long branches in the tree (Baurain et al. 2007; Hedtke et al. 2006), 

the additional taxa will not be beneficial if biases remain that are not adequately accounted for by 

the model (Poe and Swofford 1999; Heath et al. 2008). Better sampled trees are therefore not 

necessarily more accurate than sparsely sampled trees when biases exist, and in fact, additional 

taxa may introduce, or strengthen, biases not present in the original data (Kim, 1996; Rokas and 

Carroll 2005; Gatesy et al. 2007). Moreover, adding more data may even be detrimental if its 

inclusion precludes the use of more realistic models due to increased computational burden. 

Importantly, with the advent of next-generation sequencing, data is often no longer the limiting-

factor and the emphasis in phylogenetics has shifted to constructing better-fitting and more realistic

models (Baurain et al. 2007). But this means that although there may be sufficient data available 

for a specified phylogenetic question, there is still a computational balance to be struck between 

numbers of taxa, the amount of data, and model complexity that often leads to conflicting results 

and controversy surrounding difficult-to-determine relationships.

To obtain an accurate phylogenetic result, the evolutionary processes that require modeling 

can occur at the level of the gene (or smaller non-recombining sequence unit), the locus, and the 



phylogenetic tree. At the level of the sequence data, variation in instantaneous substitution rates 

among nucleotides (or amino-acids) and their frequency (base composition) - which together 

specify the substitution rates - can vary across the data and across the tree (i.e. site- and time-

heterogeneous processes). Variation in the absolute rate of substitution at sites in the data is 

commonly modeled by a mixture of rates drawn from a discrete gamma-distribution (Yang 1994), 

while variation across the branches of the tree is reflected in differing branch lengths. Among sites, 

variation among types of substitution processes is typically modeled by applying different 

substitution matrices to different data partitions, be they genes or some other division of the data 

(e.g. codon position), or by modeling variation in just the base (or amino acid) composition using a 

non-parametric (where the number of parameters of the model is a priori undetermined) model (i.e.

CAT model: Lartillot and Philippe 2004). By contrast, substitution variation across the tree can be 

modeled by having instantaneous substitution rates (i.e. NDRH model: Foster et al. 2009) or the 

base composition (i.e. NDCH/NDCH2 model: Foster 2004; nhPhyML: Boussau and Gouy 2006) 

vary among branches. The older the phylogeny, the more likely it is to have evolved lineage-

specific substitution processes, and hence these tree-heterogeneous substitution models are often 

a better fit to empirical data above the species-level than homogeneous substitution models. 

In addition to modeling sequence substitutions, there has in recent years been an increased 

effort to accommodate processes acting above the level of the sequence in the phylogenetic model

hierarchy that can also lead to systematic error (Lartillot 2015). Among loci, population-level 

variation in the number, fixation, and sorting of alleles can lead to incongruence among species 

trees and gene (or more specifically locus) trees due to retention and differential sorting of alleles 

through multiple speciation events, a process referred to as incomplete lineage sorting (ILS). 

Reconciliation of gene trees and species trees under the assumption of ILS can be achieved by 

modeling the probability of gene coalescences that are proportional to the effective population size 

of the branch and its length: large ancestral population sizes and shallow divergences are 

expected to result in greater species tree-locus tree discordance (Degnan and Rosenberg 2006 

and 2009). Although fully hierarchical multi-species coalescent models that estimate both the 

species tree and gene trees simultaneously are available (e.g. *BEAST: Heled and Drummond 

2010), their use is severely limited by their computational complexity, and more often than not, so-



called “short-cut” methods that start with pre-computed gene trees are used as a convenience. 

Several implementations of short-cut multi-species coalescent models are available (e.g. MP-EST: 

Liu et al. 2010; ASTRAL: Mirarab et al. 2014), however, despite their being computationally 

tractable, simulations have shown that inaccurately computed gene trees are more problematic for 

these methods than is ILS for concatenation methods (Gatesy and Springer 2014; Patel et al. 

2013). Indeed, the statistical consistency of these methods can only be assured in the absence of 

gene tree estimation error, or if error is present, then only if the tree conforms to a molecular clock 

(Roch and Warnow 2015), which is very unlikely in phylogenies above the species level. 

Nevertheless, such assurances are moot, as the length of non-recombining sequence data needed

to accurately estimate gene trees is sufficiently long that such sequences are typically an 

unrealistic expectation of empirical data (Gatesy and Springer 2014; Roch and Warnow 2015). 

Moreover, for ancient phylogenies where even short internal branches may span such 

considerable time-scales that the expectation of ILS is greatly diminished due to allele fixation 

during that period, consequently the use of short-cut multi-species coalescent models for 

reconstructing ancient phylogenies has been strongly criticised (Gatesy and Springer 2014). 

Assuming the absence of confounding deep gene coalescences, gene trees can differ from 

species trees due to gene duplication, differential loss in subsequent lineages, and lateral gene 

transfer (Szöllősi et al.2014). “Duplication-loss“ (DL) models accounting for these processes are 

now available but, again, they are computationally expensive in their fully hierarchical 

implementations that assess both gene tree and species trees simultaneously (Szöllősi et al. 

2014). The fundamental difference between ILS and DL models is that gene tree-species tree 

discordance due to ILS occurs using completely orthologous gene sequences, while DL models 

account for the same conflict among orthologous and parologous genes.

As a consequence of these varying degrees of model complexity, evaluating competing 

phylogenetic hypotheses can be challenging. Putting aside the need for adequate sampling of both

taxa and data, the goodness-of-fit of a set of candidate models for a particular data set can be 

assessed by computing a hierarchical likelihood ratio test (Posada and Crandall 1998) or by 

calculating Bayes factors in a Bayesian statistical setting (Nylander et al. 2004). However, there 

are currently no available models that are able to account for all known processes affecting 



phylogenetic reconstruction – both data- and time-heterogeneous processes. At present, for a 

specific phylogenetic question we are often presented with an array of competing hypotheses 

based on different data and implementing a variety of different models. Thus analyses must be 

viewed in light of the data and model that they use, and the substitution and tree-evolutionary 

processes that are known to be present in the data and that are accounted for, and those that are 

not. For instance, if an analysis uses a site-homogeneous composition model and yet the data 

have not been shown to be composition homogeneous, then the extent to which the reconstruction

is affected by potentially heterogeneous compositions is unknown, and weakens the credibility of 

the analysis. Likewise, concatenation methods that assume orthology among sequences ignore, 

due to their presumed absence, the tree-evolutionary processes of gene duplication and loss, and 

lateral gene transfer (and perhaps ILS, depending on the tree depth) and would naturally be less 

credible than models that accounted for these processes if the sequences were not orthologous. 

We might not reject a concatenated gene analysis that does not demonstrate that the genes are 

congruent, but we should be wary of assuming congruence if the analyses do not demonstrate as 

much, and our confidence in the analysis should be duly adjusted. In practice then, to gauge the 

value of a phylogenetic hypothesis we need to be able to evaluate the extent to which the model 

fits the data at hand – be it DNA, amino-acids, or some partition of such data - both with regards to 

known properties of that data, and to those properties which remain unassessed.

Current phylogenetic hypotheses of land plants

Table 1 is a list of formal phylogenetic studies that use explicit cladistic or molecular evolutionary 

models. Included are only studies with trees published in the main article that fully resolve 

relationships (the lineage or taxon has only one sister-group and is not placed at a polytomy) 

among the three bryophyte groups with respect to the tracheophytes, and where each group was 

monophyletic or consisted of a single taxon. Consequently, many analyses where only two 

bryophyte groups are included, even if their relationships are well supported, or where the three 

bryophyte lineages remain only partially unresolved (e.g. Malek et al. 1996), were not considered. 

However, studies are included even if relationships were not statistically supported, as high 



statistical support is often not possible with a restricted number of morphological characters, and 

even high support can still be obtained for the wrong tree if systematic biases are present in 

molecular analyses. In Table 1 competing topologies are given names that typically describe the 

branching of bryophyte groups, using the common used terminology of “basal” groups. It should be

noted that the term “basal” has no topologically or evolutionary meaningful usage and typically 

identifies the “smallest earliest-branching group sister to the rest of the clade” - liverworts in a 

“liverworts-basal” tree are no more “basal” to the rest of the land plants, than are the rest of the 

land plants “basal” to liverworts – it is just conventional usage, and it is used here for convenience.

Table 1 contains 44 unique studies, some which presented more than one main hypothesis. 

Perhaps the most striking aspect of the table is the number of different hypotheses generated. For 

five taxa - in this case, an algal outgroup, the three bryophytes groups, and the tracheophyte 

lineage - there are 15 possible unrooted topologies: of those a remarkable nine different 

hypotheses of land plant relationships have been published in studies. The first molecular study, 

based on 5S rDNA sequences (Hori et al. 1985), was published five years after the first 

morphology study (Parenti 1980). During the next decade and a half, an additional four studies of 

general morphology (Bremer 1985; Mishler and Churchill 1986; Bremer et al. 1987; Kenrick and 

Crane 1987), and four studies of male sperm ultrastructure (Garbary et al. 1993; Mishler et al. 

1994; Garbary and Renzaglia 1998; Renzaglia et al. 2000) were published. Since the year 2000 no

further morphological studies have been undertaken, although structural features of the plastid 

genome have been used (Kelch et al. 2004; see also Mishler and Kelch 2009; Civáň et al. 2014). 

Morphological characters support either a “liverworts-basal” topology (Parenti 1980; Bremer 1985; 

Mishler and Churchill 1986; Mishler et al. 1994) or a  “hornworts-basal” topology (Bremer et al. 

1987; Mishler et al. 1994; Renzaglia et al. 2000). By contrast, studies of sperm ultrastructural 

characters almost always resolve “monophyletic bryophytes” (Garbary et al. 1993; Mishler et al. 

1994; Garbary and Renzaglia 1998; Renzaglia et al. 2000), with a single exception in a study 

where “hornworts-basal” was resolved (Garbary and Renzaglia 1998). The analysis of plastid 

structural characters resolved a “liverworts-basal” topology (Kelch et al. 2004).



Molecular studies of land plants are far more numerous that those of morphology; 44 as 

compared to 10 studies. Inevitably it is difficult to summarise an already selective set of studies 

and find commonalities when so many variables influence phylogenetic reconstruction, e.g. taxon 

sampling, sequence data characteristics, model complexity, and methods. However some general 

trends are apparent even if exceptions can be found to all: 1) plastid amino-acids tend to support a 

monophyletic bryophytes (Nishiyama et al. 2004; Rodríguez-Ezpeleta et al. 2006; Lemieux et al. 

2007; Cox et al. 2014; Civáň et al. 2014; Wickett et al. 2014; Puttick et al. 2018; Gitzendanner et 

al. 2018), 2) plastid nucleotides tend to support paraphyletic bryophytes, especially “liverwort, 

moss, hornwort” (Lewis et al. 1997; Delwiche et al. 2002; Nishiyama et al. 2004; Wolf et al. 2005; 

Smith et al. 2009; Gao et al. 2010; Chang and Graham 2011; Fiz-Palacios et al. 2011; Magallón et 

al. 2013; Kim et al. 2014; Ruhfel et al. 2014; Zhong et al. 2014), or 3) plastid nucleotides support 

“moss plus liverwort-basal” with hornworts sister to tracheophytes (Nishiyama et al. 2004; Turmel 

et al. 2006; Lemieux et al. 2007; Qiu et al. 2006; Gao et al. 2010; Karol et al. 2010), and 4) the 

results of nuclear rDNA studies depend on the molecule, with 5S rDNA supporting “monophyletic 

bryophytes” embedded in a paraphyletic tracheophytes (Hori et al. 1985; Steele et al. 1991; 

Quandt et al. 2004), and 18S (and or 26S) supporting “hornworts-basal, moss plus liverworts” 

(Hedderson et al. 1996, 1998) or “liverworts-basal, moss plus hornwort” (Waters et al. 1992; 

Mishler et al. 1994). Few analyses of nuclear and mitochondrial data sets have been conducted, 

but neither data type gives entirely consistent results (e.g. Duff and Nickrent 1999; Wickett et al. 

1014; Liu et al. 2014). Combining various data sources has also led to inconsistent results, for 

instance analyses of nuclear, mitochondrial, and plastid nucleotides and nuclear rDNA (Nickrent et 

al. 2000) resulted in “hornworts-basal, moss plus liverworts” while combined plastid and 

mitochondrial nucleotides, and nuclear, plastid and mitochondrial rDNA resulted in “liverworts, 

moss, hornwort” (Qiu et al. 2006).

Typically, more recent studies have contained better taxon selections, larger quantities of 

sequence data, and employed more complex models or methods, but not always. Since 2010, ten 

plastid (49 loci - Karol et al. 2010, reanalysed by Cox et al. 2014; 79 loci - Gao et al. 2010; 83 loci -

Civáň et al. 2014; 78 loci - Ruhfel et al. 2014; 72 loci - Zhong et al. 2014; 35 loci - Kim et al. 2014; 

79 and 88 loci - Lemieux et al. 2014, 2016; 78 loci - Gitzendanner et al. 2018), two mitochondrial 



(40 loci - Turmel et al. 2013; 41 loci - Liu et al. 2014), and two nuclear studies (674 loci - Wickett et

al. 2014, reanalysed by Puttick et al. 2018) have been published with data sets containing more 

than 20 loci (which here are arbitrarily considered to be “genome-level” studies). Five studies of 

plastid nucleotide data have resulted in topologies that favour either “liverwort, moss, hornwort” 

and “liverwort plus moss-basal” (Gao et al. 2010; Karol et al. 2010; Ruhfel et al. 2014; Zhong et al. 

2014; Kim et al. 2014). However, Cox et al. (2014) demonstrated that the support for non-

monophyletic bryophytes in the study of Karol et al. (2010) (and in the study of plastid nucleotides 

in Qiu et al. 2006) was a result of a systematic bias in composition among lineages due to 

synonymous substitutions, and moreover, the authors suggested that this bias is potentially a 

common problem in any analysis of protein-coding nucleotides where synonymous substitutions 

occur at rates orders of magnitude greater than those of non-synonymous substitutions. 

Consequently, the authors argued that the analyses of amino acids that resulted in “monophyletic 

bryophytes” should be preferred (see also Civáň et al. 2014). Not all genomic-level analyses of 

plastid proteins, however, support “monophyletic bryophytes”; two analyses resolve “liverwort plus 

moss-basal” (Ruhfel et al. 2014; Lemieux et al. 2016), and one “moss, liverwort, hornwort” 

(Lemieux et al. 2014). Strong statistical support for non-monophyly of bryophytes was lacking (i.e. 

54%) in the study of Ruhfel et al. (2014), but in the two other studies strong support was obtained 

for the sister-group relationship of hornworts and tracheophytes (89% bootstrap support under a 

GTR+ΓΓ4 model and 1.0 posterior probability under a CATGTR+ΓΓ4 (there was no support for 

mosses-basal) - Lemieux et al. 2014; 1.0 posterior probability under a CATGTR+ΓΓ4 model - 

Lemieux et al. 2016). By contrast, analyses of similar data resulted in “monophyletic bryophytes” 

(1.0 posterior probability, under both gcpREV+ΓΓ4  and  gcpREV+ΓI+ΓΓ4+ΓNDCH - Cox et al. (2014) 

(gcpREV is an empirical matrix specifically for green plants; Cox and Foster 2013)), and 

CAT+ΓgcpREV+ΓΓ4  (0.89 posterior probability - Civáň et al. 2014). Besides differences in taxon 

complements, the main difference between these analyses is the use of an empirical substitution 

matrix (gcpREV) versus estimation of the rates directly from the data (GTR) – in theory, the latter 

fits the data better as the substitution rates are estimated directly from the data at hand. So 

although there is good reason to believe the support from plastid nucleotide data for a “hornworts 

plus tracheophytes” clade is due solely to synonymous substitutions that accumulate composition 



biases leading to systematic error, one of the current best-fitting amino-acid model (CAT) results in 

support for hornworts sister to tracheophytes over a “monophyletic bryophytes” tree. What remains

to be tested is whether modeling among-site composition bias (i.e. CAT model) and modeling 

among-lineage composition bias (i.e. NDCH model) simultaneously reconstructs the bryophytes as

paraphyletic or monophyletic.

Despite this impasse, the plastid analyses of Cox et al. (2014) and Lemieux et al. (2014 and 

2016) contained only limited numbers of bryophytes - five, three, and four respectively, due to 

computational limitations. Additional taxa could help to reduce branch lengths and aid resolution 

among the groups. Indeed, it has been argued that analyses with large taxon complements are a 

indispensable test for accurate phylogenetic reconstruction when using sparsely sampled but data-

dense analyses from genome-level studies (Qiu et al. 2006). However, such a proposition would 

only be useful if the results of studies with large taxon complements were the final arbiter of 

conflicting phylogenetic hypotheses: an argument I would strongly reject. For instance, the 

phylogenetic analyses of Qiu et al. (2006) were explicitly aimed at resolving land plant 

relationships, and in one data set contained 193 taxa for five loci (two plastid protein-coding genes,

two plastid rRNA genes, one mitochondrial rRNA gene, and one nuclear rRNA gene). The resulting

topology strongly supported the “liverworts-basal” hypothesis (Fig. 1, Qiu et al. 2006). However, the

same result can be obtained, albeit with slightly lower support values, from the same data with 

similar methods but using only 27 taxa (14 land plants; six bryophytes, eight tracheophytes) when 

taxa are chosen to sample both lineages from the first divergence in each of the three bryophyte 

lineages (Fig S.21 Cox et al. 2014). Consequently it is not large taxon numbers per se that are 

necessary but “judicious” sampling that is relevant to the question, and especially sampling either 

side of the first divergence of study clades, to reduce branches between major clades to a 

minimum. Indeed, if your question is land plant relationships, then including large numbers of taxa 

in the major clades may not be the optimal sampling strategy if model complexity is necessarily 

limited by computing times and superfluous taxa introduce additional biases. 

While nuclear ribosomal gene data has a long tradition of usage in land plant phylogenetics 

(Hori et al. 1985; Steele et al. 1991; Waters et al. 1992; Hedderson et al. 1996 and 1998; 

Nishiyama and Kato 1999; Nickrent et al. 2000), until recently the use of nuclear protein-coding 



genes has been limited to a single study of a Class III HD–Zip gene (Floyd et al. 2006) which 

support the as-then novel “moss, hornwort, liverwort” phylogeny. However, nuclear protein-coding 

genes came to the fore when Wickett et al. (2014) published analyses of 852 nuclear genes for 

103 land plants: a pioneering study far exceeding the numbers of genes available from plastids. 

Nevertheless, despite the extensive data set, analyses of the data provided conflicting hypotheses.

The many data treatments and analyses provided varying results and levels of support, but the 

authors chose to highlight two results: firstly, ML analyses of first and second codon position 

nucleotides, which supported “hornworts-basal”, and secondly, short-cut coalescent analyses of 

amino-acid gene trees which supported “monophyletic bryophytes”. In general, as with plastid data,

analyses of nucleotides supported a non-monophyletic bryophytes whereas amino-acid data 

supported bryophyte monophyly, although again there were many exceptions. However, strong 

support for the hornworts-basal topology when using 1st and 2nd codon position nucleotides can be 

attributed solely to synonymous substitutions (at ARG, LEU, and SER codons) at these sites 

(Sousa and Cox, unpublished) as was similarly observed in plastid data (Cox et al. 2014). 

Reanalysis of these data by Puttick et al. (2018), using a better-fitting site-heterogeneous 

composition model (CAT) and branch-heterogeneous composition model (NDCH2; Foster 2004), 

also supported “monophyletic bryophytes”, but other less well-supported analyses found some 

support for either “hornwort-basal” or “liverwort plus moss-basal” (Puttick et al. 2018). The strength 

of support for the liverwort plus moss clade in their analyses, as well as congruence with many 

other analyses that recover the same clade, led the authors to formally name the clade 

“Setaphyta”: the name recognises that both mosses and liverworts have a sporophytic seta 

(although developmentally different) which is absent in hornworts.

Analyses of mitochondrial protein-coding genes are similarly limited to two recent studies. 

CAT-model analyses by Turmel et al. (2013) of the nucleotide positions (identified after removal of 

the fastest-evolving 20% of sites) of 40 mitochondrial gene resulted in a “liverwort, moss, hornwort”

tree, however while support for hornworts sister to tracheophytes was strong, the support for 

liverworts-basal, as opposed to liverworts plus mosses, was considerably weaker. In analyses by 

Liu et al. (2014), strong support for “mosses-basal” from nucleotide analyses of 41 protein-coding 

genes was again shown to be due to among-lineage composition bias, a similar observation to 



those of Cox et al. (2014) for plastid nucleotides. However, strong support was obtained for 

hornworts as the sister group to tracheophytes, although the absence of ferns, one of the major 

lineages of tracheophytes, and the zygnematales, the closest outgroup, from the analyses may 

have been detrimental to the accuracy of the results.

Conclusions

In my view there are currently two supported hypotheses of land plant relationships: firstly 

“monophyletic bryophytes”, and secondly “liverworts plus mosses-basal”, with hornworts sister to 

tracheophytes (Fig. 1). Both of these hypotheses assume that mosses and liverworts are sister 

taxa, a hypothesis which is strongly supported by most recent genome-level phylogenetic analyses

and validates their recognition as a formal group, the Setaphyta. These two hypotheses are 

favoured because of two suppositions drawn from the arguments laid out in the preceding 

discussion: 1) that analyses of slower evolving amino-acids are to be preferred over those of 

nucleotides, which due to their rate of change accumulate larger amounts of homoplasy at the 

deep phylogenetic level of land plant diversification (~450-480MYA), and 2) better-fitting models, 

especially those that account for composition heterogeneity either among lineages or among sites, 

tend to support (or at least not conflict with) these hypotheses over those that favour either one of 

the bryophyte groups alone as the earliest-diverging lineage. For analyses of both plastid and 

nuclear protein-coding gene nucleotide sequences, it can be shown that conflict with amino-acid 

translations of the same data is a result of biases introduced by synonymous substitutions. 

Moreover, phylogenies of non-synonymous substitutions tend to be congruent (or not conflicting) 

with amino-acid trees, and indeed, analyses of both plastid and nuclear gene proteins support the 

monophyly of bryophytes using some composition heterogeneous models (NDCH and CAT). The 

important exception here is, however, the CAT+ΓGTR plastid protein analysis, which supports 

“liverwort plus moss-basal”. Mitochondrial protein data also strongly support a similar topology; but 

these data are limited by the smaller number of genes and currently are the most poorly sampled 

taxonomically (lacking major plant lineages). It is important to note that both organellar genomes, 

the plastid and mitochondrion, are thought only rarely to undergo recombination and are therefore 



likely single linkage groups and representative of single gene trees, although they are not often 

conceptually treated as such. With this in mind, although there is conflicting evidence, especially 

between the mitochondrial data and the nuclear plus plastid data, the results from the 

mitochondrial analyses are less convincing, and therefore the monophyly of bryophytes should be 

considered the better supported hypothesis at this time.

Land plant phylogeny is crucial to our understanding the development of plant form and life 

history, as well determining the place of plants in the paleo-environment. It seems evident, given 

the analytically short branches separating clades in phylogenies, and consequently the difficulty in 

reconstructing relationships, that the four major lineages, liverworts, mosses, hornworts, and 

tracheophytes, evolved over a relatively short evolutionary time-span, with lineages accumulating 

few diagnostic changes. It seems plausible that once the charophyte algal ancestor of land plants 

had evolved the necessary form and physiology to survive out of water, for instance tolerance to 

UV and the mechanisms to maintain cell turgor pressure, a panorama of ecological niches became

available for exploitation, which ultimately drove a relatively rapid diversification of new lineages. 

The paucity of bryophyte macro-fossils before the Silurian-Devonian boundary (~420MYA) when 

tracheophytes are first recorded has vexed botanists, because of the obvious implication of 

phylogenies that indicate tracheophytes are derived from bryophytes. Indeed this absence has 

been attributed to the poor preservation attributes of bryophytes, a group that do not unequivocally 

appear in the fossil record until much later (liverworts 393MYA; mosses 100MYA; hornworts 

34MYA – Clarke et al. 2011); although some Cambrian (~510MYA) trilete spores, and 

“cryptospores” first occurring in the mid-Ordivician (~470MYA), are described as bryophyte-like 

(though they are equally tracheophyte-like as well), thereby filling the void left by the absence of 

evidence of bryophyte meso-fossils. Modern phylogenetics does, however, pose an alternative 

explanation: if bryophytes are monophyletic (or in fact even if they are paraphyletic, with liverworts 

and mosses-basal) they may have evolved much later than assumed and diversified alongside the 

early tracheophytes. Moreover, the possible monophyly of bryophytes has important implications 

for the morphological reconstruction of the last common ancestor of all land plants, and by 

extension the gestalt body-plan needed to recognise early stem-lineage land plants in the fossil 

record. For instance, if, as now seem likely, the water conducting vessels of bryophytes (leptoids 



and hydriods) are developmentally homologous to xylem and phloem (Xu et al. 2014), and given 

that there is now very strong evidence mosses and liverworts are sister-groups, it seems likely that 

all embryophytes are descended from a vascularised most-recent common ancestor of land plants,

unless hornworts, which lack specialised conducting vessels, are the earliest diverging lineage (a 

hypothesis that is not well supported). This would imply that the vascular system in mosses, and 

liverworts such as Pallavicinia and Jensenia (Crandall-Stotler pers. comm.; Ligrone et al. 2002), 

are likely reduced to-a-degree from that of the most-recent common land plant ancestor, and if 

bryophytes are monophyletic that hornworts have likely lost vascularity entirely through reduction. 

This in turn, raises the intriguing possibility that plant fossil assemblages such as the Rhynie Chert 

(~407MYA) are indicative of stem-group land plants from which both bryophytes and tracheophytes

could have evolved, perhaps from taxa that had isomorphic generations and from which 

bryophytes evolved by elaboration of the gametophyte, and tracheophytes via elaboration of the 

sporophyte, generation. Of course, bryophyte monophyly does not preclude the original 

explanation that assemblages such as the Rhynie Chert are purely stem-tracheophytes (Kenrick 

2017) and that bryophytes have an older history obscured by lack of fossil preservation or our 

ability to distinguish early bryophytes, but currently the best-supported phylogenetic hypotheses of 

land plants are not incompatible with a range of novel interpretations of the fossil record.
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Table 1. Phylogenetic studies of land plant relationships. Analyses are only included if all three

bryophyte groups are represented, each is monophyletic if comprising multiple taxa, and all three 

bryophyte groups are fully resolved among themselves but not necessarily statistically supported. 

(Modified from Puttick et al. 2018)

 Embryophyte sister-group10 Data Reference

“bryophyte

monophyly”1

Charales Nuclear rDNA11 Hori et al. 1985

Charales Nuclear rDNA11 Steele et al. 1991

Coleochaetales/Charales Sperm ultrastructure Garbary et al. 1993

Coleochaetales Sperm ultrastructure Mishler et al. 1994

Charales Sperm ultrastructure Renzaglia et al. 2000

charophytes/chlorophytes Chloroplast amino acids Nishiyama et al. 2004

Chlorophyta/Coleochaetales Chloroplast nucleotides11 Quandt et al. 2004

Coleochaetales Chloroplast nucleotides12 Goremykin and Hellwig 2005

Coleochaetales Chloroplast amino acids11 Rodríguez-Ezpeleta et al. 2007

Zygnematales Chloroplast amino acids and nucleotides11 Turmel et al. 2006

Zygnematales Chloroplast amino acids Lemieux et al. 2007

Zygnematales Chloroplast amino acids Cox et al. 2014

Zygnematales Chloroplast amino acids Civáň et al. 2014

Zygnematales Nuclear amino acids Wickett et al. 2014

Zygnematales Chloroplast amino acids Gitzendanner et al. 2018

Zygnematales Nuclear amino acids Puttick et al. 2018

“hornworts-basal,

moss plus liverworts”2

Coleochaetales Nuclear rDNA Hedderson et al. 1996

Coleochatales/Klebsormidiales Nuclear rDNA Hedderson et al. 1998

Coleochaetales Sperm ultrastructure Garbary and Renzaglia 1998

chlorophytes Mitochondrial rDNA Duff and Nickrent 1999

Chlorophyta/Coleochaetales Nuclear and chloroplast nucleotides12 Nishiyama and Kato 1999

Charales/Zygnematales Nuclear, mitochondrial, chloroplast

nucleotides and nuclear rDNA12

Nickrent et al. 2000

Coleochaetales Morphology, nuclear and mitochondrial

nucleotides

Renzaglia et al. 2000

Zygnematales Nuclear nucleotides12 Wickett et al. 2014

Zygnematales Nuclear amino acids Puttick et al. 2018

“hornwort, liverwort,

moss”3

Charales Morphology Bremer et al. 1987

Coleochaetales Morphology and nuclear rDNA Mishler et al. 1994

“liverwort plus moss-

basal”4

Coleochaetales Chloroplast nucleotides13 Nishiyama et al. 2004

Zygnematales Chloroplast nucleotides Turmel et al. 2006

Zygnematales Chloroplast nucleotides Lemieux et al. 2007

Zygnematales Chloroplast nucleotides12 Qiu et al. 2006

Zygnematales Chloroplast nucleotides12 Gao et al. 2010

Zygnematales Chloroplast nucleotides Karol et al. 2010

Zygnematales Chloroplast amino acids Ruhfel et al. 2014

Zygnematales Chloroplast amino acids Lemieux et al. 2016

Zygnematales Nuclear amino acids Puttick et al. 2018

“liverwort, moss,

hornwort”5

“Charophceae” Morphology Parenti 1980

Coleochaetes/Charales Chloroplast nucleotides Lewis et al. 1997

Charales Chloroplast nucleotides Delwiche et al. 2002

Coleochaetales Chloroplast genome structure Kelch et al. 2004

Coleochaetales Chloroplast nucleotides12 Nishiyama et al. 2004

Coleochaetales Chloroplast nucleotides Wolf et al. 2005

Charales/Coleochaetales Mitochondrial nucleotides Groth-Malonek et al. 2005

Charales or Zygnematales Chloroplast nucleotide and rDNA, and

mitochondrial and nuclear rDNA

Qiu et al. 2006



Charales Chloroplast and mitochondrial nucleotides,

and nuclear, chloroplast, and mitochondrial

rDNA

Qiu et al. 2007

Charales Chloroplast nucleotides Smith et al. 2009

Zygnematales Chloroplast nucleotides Gao et al. 2010

Zygnematales Chloroplast nucleotides Chang and Graham 2011

chlorophytes/charophytes Chloroplast nucleotides and nuclear rDNA Fiz-Palacios et al. 2011

Coleochaetales Chloroplast nucleotides Magallón et al. 2013

Charales or Zygnematales Mitochondrial nucleotides Turmel et al. 2013

Charales/Coleochaetales Chloroplast nucleotides Kim et al. 2014

Charales Mitochondrial nucleotides and amino acids Liu et al. 2014

Zygnematales Chloroplast nucleotides Ruhfel et al. 2014

Zygnematales Chloroplast nucleotides Zhong et al. 2014

“liverwort, hornwort,

moss”6

“charophytes” Morphology Mishler and Churchill 1986

Charales/Coleochaetales Morphology Bremer 1985

Coleochaetales Morphology Bremer et al. 1987

Coleochaetales Morphology and chloroplast and nuclear

rDNA

Mishler et al. 1994

Charales/Coleochaetales Morphology Kenrick and Crane 1997

Charales Chloroplast and mitochondrial nucleotides,

nuclear rDNA

Karol et al. 2001

“liverwort-basal, moss

plus hornwort”7

Klebsormidiales/Coeleochaetales Nuclear rDNA Waters et al. 1992

Klebsormidiales Chloroplast and nuclear rDNA Mishler et al. 1994

chlorophytes Mitochondrial rDNA Duff and Nickrent 1999

“moss, liverwort,

hornwort”8

Charales Mitochondrial nucleotides Liu et al. 2014

Coleochaetales Chloroplast amino acids Lemieux et al. 2014

“moss, hornwort,

liverwort”9

Charales Nuclear amino acids Floyd et al. 2006

1 (algal outgroup, ((liverwort, moss, hornwort), tracheophytes))

2
  (algal outgroup, (hornwort, ((liverwort,  moss), tracheophytes))

3 (algal outgroup, (hornwort, (liverwort, (moss,  tracheophytes))))

4 (algal outgroup, ((liverwort, moss), (hornwort, tracheophytes)))

5 (algal outgroup, (liverwort, (moss, (hornwort, tracheophytes))))

6 (algal outgroup, (liverwort (hornwort (moss, tracheophytes))))

7 (algal outgroup, (liverwort ((moss, hornwort), tracheophytes)))

8 (algal outgroup, (moss, (liverwort,  (hornwort, tracheophytes))))

9 (algal outgroup, (moss, (hornwort, (liverwort, tracheophytes))))

10 either the designated outgroups or, if identified, the most closely related taxon to land plants

11 note that although bryophytes were monophyletic they were embedded in a paraphyletic 

tracheophyte clade



12 protein coding-genes 1st and 2nd codon positions only: Goremykin and Hellwig 2005; Nishiyama 

et al. 2004; Wickett et al. 2014; Nickrent et al. 2000; Gao et al. 2010

13 a) excluding the nucleotide sites coding leucine and third codon positions, and b) fourfold 

degenerate sites
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Figure 1. Unrooted phylogeny of land plants. The unrooted relationship among land plants are well 

supported by recent studies. Indicated on the phylogeny are the two most probable rooting 

positions of the charophyte algal outgroups as argued in these analyses: A) monophyletic 

bryophytes, B) paraphyletic bryophytes, with liverwort plus mosses-basal, and hornworts the sister-

group to tracheophytes.
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