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Abstract: Among the many anthropogenic chemicals that end up in the aquatic ecosystem,
heavy metals, in particular cadmium, are hazardous compounds that have been shown to affect
developmental, reproductive, hepatic, hematological, and immunological functions in teleost fish.
There is also evidence that cadmium disturbs bone formation and skeletal development, but data is
scarce. In this work, zebrafish was used to further characterize the anti-osteogenic/osteotoxic effects
of cadmium and gain insights into underlying mechanisms. Upon exposure to cadmium, a reduction
of the opercular bone growth was observed in 6-days post-fertilization (dpf) larvae and an increase in
the incidence of skeletal deformities was evidenced in 20-dpf post-larvae. The extent and stiffness
of newly formed bone was also affected in adult zebrafish exposed to cadmium while regenerating
their caudal fin. A pathway reporter assay revealed a possible role of the MTF-1 and cAMP/PKA
signaling pathways in mechanisms of cadmium osteotoxicity, while the expression of genes involved
in osteoblast differentiation and matrix production was strongly reduced in cadmium-exposed
post-larvae. This work not only confirmed cadmium anti-osteogenic activity and identified targeted
pathways and genes, but it also suggested that cadmium may affect biomechanical properties of bone.

Keywords: osteotoxicity; zebrafish Danio rerio; operculum growth; skeletal deformities; caudal fin
regeneration; signaling pathways; gene expression

1. Introduction

Most of the pollutants produced by industrial, agricultural, commercial, and domestic waste
end up into oceans, rivers, lakes, and wetlands, threatening the development and survival of aquatic
organisms. Among the pollutants encountered in the aquatic environment, heavy metals are considered
one of the most hazardous compounds because of their toxic and non-biodegradable properties [1]. The
levels of many of these heavy metals have been found to have gradually increased in the water column
and sediments during the last decade, and they have become a major concern for environmental and
human health but also for the integrity and function of ecosystems [2]. While several heavy metals
participate in critical biological processes, e.g., iron and copper in oxygen and electron transport, zinc
in organic compounds hydroxylation, and nickel in cell growth, others, such as cadmium, mercury,
and lead, play no significant biological roles in vertebrates and can trigger highly toxic events at low
doses [3].
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Cadmium is released into the aquatic environment from the Earth’s crust through weathering,
erosion of parent rocks, and volcanic activity, but is also a by-product of anthropogenic activities such
as mining. It is also used in several industrial processes as an anticorrosive agent, a stabilizer in PVC
products, a color pigment, and a component of nickel–cadmium batteries [4]. The contamination of
food and drinking water is usually the primary source of human exposure to cadmium, although
cigarette smoke can also contribute in a significant manner to the total body burden [5]. Many studies
have clearly demonstrated the adverse effects of cadmium, in particular its contribution to cancer
development [6], renal failure [7,8], and bone damage [9,10]. In fish, cadmium is absorbed directly
from contaminated water through the gills and skin, or indirectly from contaminated food through
the digestive tract [11]. Once absorbed, cadmium accumulates mainly in the kidney, liver, and gills,
affecting developmental, reproductive, hepatic, hematological, and immunological functions [12–16].
Of particular interest for this work, the quality of fish bone was showed to be affected by cadmium
through the disruption of calcium absorption, which results in hypocalcemia and fragile bone [13,17],
but also through the replacement of calcium ions in bone mineral (i.e., hydroxyapatite), which results
in bone that is more resistant to dissolution and abnormally remodeled [18,19]. Since the cadmium
present in the aquatic environment can enter food webs involving aquatic animals important for
human diets (e.g., mollusks, fish, and crustaceans) it represents a threat to human health. In this regard,
cases of cadmium poisoning have already been reported in humans and were associated with an
osteoporosis-like phenotype; a striking example is the itai-itai disease [20]. Several recent studies have
further evidenced the potential of cadmium to impair bone formation, mineralization, and remodeling.
In mammalian systems, cadmium exposure was shown to stimulate mesenchymal cell differentiation
into adipocytes [21], while promoting osteoblast apoptosis [22] and osteoclastogenesis [21,23]. In rats,
the consumption of 1 mg/L of cadmium chloride (CdCl2) in drinking water for 24 months affected
bone remodeling by decreasing alkaline phosphatase activity and increasing serum levels of C-terminal
cross-linking telopeptide of type I collagen [24]. In humans, cadmium poisoning was associated with
an osteoporosis-like phenotype and an increased risk of fractures [20,25]. Among signaling pathways
involved in the transduction of cadmium-induced osteotoxicity in mammals, the MAPK/ERK pathway
has been associated with osteoblast inhibition [26,27], while both canonical and non-canonical
Wnt/β-catenin pathways have been implicated in altered bone homeostasis [22]. The formation of
reactive oxygen species (ROS) upon exposure to cadmium may also interfere with parathyroid hormone
(PTH) or kidney enzymes involved in vitamin D activation, thus decreasing calcium absorption in the
digestive tract [28].

In fish, several studies have connected cadmium exposure to the occurrence of skeletal deformities
(see review by Sfakianakis et al. [29]) but data on the mechanisms underlying cadmium osteotoxicity
is scarce. Due to numerous technical advantages related to its fast external development, small size,
and robustness, but also the availability of tools to assess chemical toxicity and bone formation,
zebrafish has become a suitable organism for ecotoxicological studies and an appropriate model for
aquatic animals and vertebrates in general. Understanding the impact of this heavy metal on zebrafish
skeleton and bone formation would certainly allow us to gain valuable insights into mechanisms
of cadmium osteotoxicity with applications in human health but also to support the establishment
of guidelines for environmental risk assessment and management policies. The characterization of
cadmium osteotoxicity in zebrafish would also stimulate the use of fish as sentinels for the presence
of osteotoxicants in the aquatic environment. This study aims at evaluating the effect of cadmium
chloride on zebrafish skeletal development and at gaining insights into the molecular mechanism of
action at the base of its osteotoxic activity.
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2. Results

2.1. Operculum Growth is Impaired in 6-dpf Larvae Exposed to Cadmium

To assess the effect of cadmium on bone formation, 3-days post-fertilization (dpf) zebrafish larvae
were exposed for 3 days to 1, 2.5, 5, 10, 25, and 125 µg/L of cadmium chloride, stained with alizarin red
S and imaged for morphometric analysis. The area of the operculum (a fast growing intramembranous
bone during early larval development) was determined in cadmium-exposed and control larvae
and normalized with the area of the head. As expected, calcitriol (positive control) increased the
operculum area by 30.38 ± 5.80%, establishing the fitness of the egg batches used in this assay. Larvae
exposed to the highest concentrations of cadmium chloride (25 and 125 µg/L) did not survive the
first day of treatment. No mortality was observed at concentrations equal to or below 10 µg/L and
while operculum growth was not affected by the lowest concentrations of cadmium chloride (1 and
2.5 µg/L), it was reduced at 5 and 10 µg/L by 32.09 ± 5.11% and 48.38 ± 6.61%, respectively (Figure 1),
evidencing the anti-osteogenic/osteotoxic effect of cadmium.
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Figure 1. Effect of cadmium on the operculum growth during zebrafish development. (A) Fluorescence
pictures of the operculum of 6-days post-fertilization (dpf) larvae exposed for 3 days to 10 pg/mL of
calcitriol, 5 and 10 µg/L of cadmium chloride, or respective vehicles, and stained with alizarin red S
(AR-S). Background was removed using image processing software to highlight operculum structure.
(B) Area of the operculum determined through morphometric analysis of AR-S stained larvae and
corrected by the area of the head. Ethanol and water were used as vehicles for calcitriol and cadmium
chloride, respectively. Asterisks indicate values statistically different from vehicle values (one-way
ANOVA followed by Dunnett’s multiple comparison test for water and cadmium; Student’s t test for
ethanol and calcitriol (**** p < 0.0001)). Values are presented as percentages over controls and are the
mean ± standard deviation (n ≥ 11).

2.2. Larvae Exposed to Cadmium Exhibit More Skeletal Deformities

Around 90% of the 6-dpf larvae exposed for 3 days to 10 µg/L of cadmium chloride exhibited
some bending of the trunk that could be related to a curved notochord that may later translate into a
deformed vertebral column (Figure 2A). To further study cadmium skeletogenic effect, zebrafish were
exposed for 20 days beginning on day 0 dpf to 0.008, 0.04, 0.2, 1, and 5 µg/L of cadmium chloride,
double stained with alcian blue and alizarin red S, then evaluated for the presence of deformities in
cartilaginous and calcified structures of the axial and appendicular skeleton. The survival and growth
of zebrafish post-larvae exposed to cadmium for 20 days was not affected by any of the concentrations
tested (see Table 1 for total length values). Hatching time was, however, slightly delayed for embryos
exposed to the highest concentrations of cadmium. Out of a total of 60 eggs, 9, 8, and 11 unhatched
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eggs were observed at 72 h for cadmium concentrations of 5, 1, and 0.2 µg/L, respectively, while all
eggs were hatched by this time in the control group and for lower concentrations (results not shown).
Exposure to cadmium significantly increased the number of deformed fish at all of the concentrations
used (84.0, 96.0, 78.3, 83.3, and 77.3% for highest to lowest concentration versus 56% in unexposed
fish; Table 1). The number of deformities per fish was also increased upon exposure to cadmium,
with many individuals having 2 or more than 3 deformities. A significant increase in the frequency
of deformities was observed at 5 µg/L, in particular in structures related to fins and rays but also
in vertebral bodies and arches (Table 2). At lower concentrations of cadmium—i.e., 1, 0.2, 0.04, and
0.008 µg/L—deformities were more frequently observed in the cephalic area, abdominal vertebrae, and
arches, and to a lesser extent in the caudal fin complex (hypurals, parahypurals, urostyle, epural, and
fin rays). Deformities observed in the cephalic area mostly affected the branchial arches throughout
the concentrations tested. A representative set of photographs are presented in Figure 2B, where
malformations were observed in vertebrae and arches at the two highest concentrations tested (1 and
5 µg/L).
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Figure 2. Effects of cadmium on skeletal structures during zebrafish development. (A) Bright-field
pictures showing vertebral column curvatures in 6-dpf zebrafish larvae exposed for 3 days to 10 µg/L
of cadmium chloride. Lateral (top row) and dorsal (bottom row) views of control (left panel) and
cadmium-exposed (middle and right panels) fish. Bar is 1 mm. (B) Bright-field pictures illustrating
the malformations observed in 20-dpf zebrafish post-larvae exposed for 20 days to 1 or 5 µg/L of
cadmium chloride. Larvae were double stained with alcian blue and alizarin red S. Black arrowheads
indicate deformed skeletal structures. Left panel, abdominal and caudal vertebrae compression
(platyspondyly); Middle panel, malformation of the caudal vertebrae including neural and hemal
arches; Right panel, malformation of the last neural and penultimate hemal arches. Bar is 0.5 mm. (C)
Impaired bone regeneration in adult zebrafish exposed for 5 days to cadmium chloride determined
from the morphometric analysis of fluorescence pictures of alizarin red S stained caudal fin (left panel).
Asterisks indicate values statistically different from vehicle values (one-way ANOVA followed by
Dunnett’s multiple comparison; ** p < 0.01). Values are presented as percentages and are the mean ±
standard deviation (n ≥ 3). Newly formed rays were bended at the highest cadmium concentration
(31.6 µg/L; middle panel). White arrowheads indicate bended lepidotrichia (right panel). Bar is 1 mm.
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Table 1. Total length, number of deformed fish per conditions and of deformities per deformed fish
upon exposure of zebrafish larvae to cadmium. n, number of fish observed; N, number of fish without
deformities; D, number of fish with one or more deformities; %N, percentage of non-deformed fish;
%D, percentage of deformed fish; * indicates values statistically different from the control (chi-squared
test, 1 degree of freedom, p < 0.05).

Total Length (mm) n N D %N %D
No. Deformities

n mean ± SD 0 1 2 ≥3

Control 52 7.64 ± 1.30 25 11 14 44.0 56.0 11 12 2 0
5 µg/L 44 7.70 ± 1.30 25 4 21 16.0 84.0 * 4 9 8 4
1 µg/L 49 7.50 ± 1.43 25 1 24 4.0 96.0 * 1 7 12 5

0.2 µg/L 48 7.45 ± 1.28 23 5 18 21.7 78.3 * 5 6 8 4
0.04 µg/L 51 7.39 ± 1.24 24 4 20 16.7 83.3 * 4 12 7 1
0.008 µg/L 51 7.55 ± 1.17 22 5 17 22.7 77.3 * 5 12 4 1

Table 2. Skeletal structures affected upon exposure of zebrafish larvae to cadmium. N, number of
occurrences of malformation in the specific structure; %D, percentage of deformed fish in the total
population (n); * indicates values statistically different from the control (chi-squared test, 1 degree of
freedom, p < 0.05).

Control
(n = 25)

5 µg/L
(n = 25)

1 µg/L
(n = 25)

0.2 µg/L
(n = 23)

0.04 µg/L
(n = 24)

0.008 µg/L
(n = 22)

Structures N %D N %D N %D N %D N %D N %D

Cephalic area 1 4.0 8 32.0 * 14 56.0 * 6 26.1 * 12 50.0 * 4 18.2 *
Abdominal
vertebrae 6 24.0 * 2 8.0 * 2 8.7 * 1 4.2 * 1 4.5 *

Caudal vertebrae 2 8.0 4 16.0 5 20.0 * 2 8.7 1 4.2 3 13.6
Caudal fin vertebrae 1 4.0 2 8.0

Vertebral arches 14 56.0 21 84.0 * 33 132.0 * 23 100.0 * 17 70.8 * 15 68.2
Scoliosis 1 4.0 *

Notochord 1 4.0 4.0 * 2 8.7
Pectoral fin + rays 1

Anal fin + rays 1 4.0 * 1 4.3 *
Caudal fin + rays 2 8.0 * 1 4.2 *

Epural 1 4.0 * 1 4.5 *
Urostyle 1 4.0 * 1 4.5 *

Parahypural +
hypurals 1–5 2 8.0 * 1 4.0 * 1 4.2 *

Total N (N/n) 19 (0.76) 49 (1.96) 56 (2.24) 36 (1.57) 33 (1.38) 25 (1.14)

2.3. De Novo Bone Formation is Impaired During Caudal Fin Regeneration

The effect of cadmium on bone regeneration was then evaluated in young adult zebrafish
regenerating their caudal fin and exposed for 5 days to 0.03, 0.3, 3.16, and 31.6 µg/L of cadmium
chloride. At 5 days post-amputation, the whole caudal fin was stained with alizarin red S and fin
regeneration and de novo bone formation were assessed. Fish exposed to the highest concentration
of cadmium chloride (31.6 µg/L) exhibited a severe impairment of fin regeneration and new bone
formation and in many cases the bending of the extremity of newly formed lepidotrichia (middle and
right panels of Figure 2C), suggesting a reduction of bone stiffness and possibly the degradation of
bone biomechanical properties. The effect of cadmium on bone formation was also visible at lower
concentrations (0.3 and 3.16 µg/L) although to a different extent, i.e., rays were not bended, but the
area of newly formed bone was reduced (left panel of Figure 2C).

2.4. Molecular Pathways and Genes Targeted by Cadmium

To get insights into the molecular mechanisms underlying cadmium anti-osteogenic effects, a
CIGNAL cell-based reporter assay was used to monitor the activity of 45 signaling pathways involved
in processes central to cell biology (see manufacturer website for details). Since cellular hosts of fish
origin were found not to be suitable for this analysis (mineralogenic fish cells are hard-to-transfect
cellular hosts [30]) and because pathway responsive elements are designed according to mammalian
sequences, mouse ATDC5 (chondroprogenitor cells), and MC3T3-E1 (osteoblast precursor cells) lines
were used to host the reporter constructs. While the activity of various signaling pathways was detected
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in both cell lines (21 pathways activated in MC3T3-E1 and ATDC5; see Figure S1 in Supplementary
Materials), only 6 pathways showed an activity higher than a 2-fold change over the control. Among
those, the activity of the metal response element (MRE)-binding transcription factor 1 (MTF-1) and the
cAMP/PKA signaling pathway (CRE) were significantly increased by cadmium in both mineralogenic
cell lines (Figure 3), suggesting that they may have a significant role in mechanisms of cadmium
osteotoxicity. To further investigate these mechanisms, the expression of several marker genes
involved in osteochondroprogenitor cell differentiation (bmp2b) and extracellular matrix formation and
mineralization (col10a1, oc1, oc2, alpl, spp1, and sparc) was determined by qPCR in 20-dpf post-larvae
exposed to 1 µg/L of cadmium chloride (Figure 4). With the exception of oc2, gene expression was
reduced upon cadmium exposure (from 1.9 times for bmp2b up to 5.6 times for spp1), evidencing the
negative effect of cadmium on bone cell differentiation and matrix formation and mineralization.
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Figure 3. Activity of signaling pathways altered upon exposure of mineralogenic cell lines MC3T3-E1
and ATDC5 to cadmium chloride. Signaling activities were inferred from firefly and Renilla luciferase
activities measured in cells reverse-transfected by reporter constructs of the CIGNAL 45-pathway array
and exposed to water (vehicle) or 1 µM of cadmium chloride. Results are presented as fold changes of
luciferase values in treated versus control cells. Asterisks indicate values statistically different according
to one-way ANOVA followed by Dunnett’s multiple comparison test (** p < 0.01; **** p < 0.0001); Values
are presented as the mean ± standard deviation (n = 3).
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Figure 4. Gene expression in zebrafish post-larvae exposed for 20 days to 1 µg/L of cadmium chloride.
spp1, osteopontin; oc1, osteocalcin 1; sparc, osteonectin; alpl, alkaline phosphatase liver/bone/kidney;
col10a1, collagen type X alpha 1 chain; bmp2b, bone morphogenetic protein 2b; oc2, osteocalcin 2. Values
are presented as fold change over control (expression in larvae exposed to vehicle; set to 1 for all genes)
and are the mean of 3 technical replicates performed in pools of more than 25 post-larvae.

3. Discussion

There are many studies reporting cadmium toxicity in fish, but few of them evaluated endpoints
related to the skeletal system, in particular bone formation, in zebrafish. Data presented in
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this article—i.e., the reduced growth of the opercular bone, the increased incidence of skeletal
deformities, the impaired stiffness of regenerated bone, and the differential expression of bone
marker genes—provide clear evidence of an anti-osteogenic or osteotoxic effect of cadmium at doses
that can be found in the aquatic environment [31,32]. A decreased operculum growth rate was
recently evidenced in zebrafish larvae exposed to cobalt chloride [33] and 3-methylcholanthrene [30]
through mechanisms still poorly understood but possibly related to an impairment of osteoblast (bone
forming cells) maturation and function. In this regard, cadmium was found to inhibit extracellular
matrix mineralization in osteoblast MC3T3-E1 cell cultures [34] but also to decrease the expression
marker genes central to osteoblast maturation and function (this study). Our observation that most
of the 6-dpf larvae exposed to 10 µg/L of cadmium are also bended, and that the incidence of
skeletal deformities is much higher in larvae exposed for longer periods to lower concentrations,
suggest that cadmium also affects zebrafish skeletal development. It is worth mentioning that the
incidence of deformities observed in the control group (56%) is within the normal range (45–65%) for
wild-type zebrafish [35–37]. The presence of spinal deformities has already been reported in zebrafish
larvae exposed to cadmium [38] but also in larvae of European carp Cyprinus carpio [39], Australian
crimson spotted rainbow fish Melanotaenia fluviatilis [40], red seabream Pagrus major [41], Japanese
medaka Oryzias latipes [42], Soldatov’s catfish Silurus soldatovi [43], and in juvenile mosquitofish
Gambusia affinis [44]. More specifically, cases of lordosis, kyphosis, or scoliosis were reported in
mosquitofish and medaka exposed to cadmium [42,44]. While these data clearly evidence the
skeletotoxic effect of cadmium in fish, underlying mechanisms remain poorly understood, although
some have hypothesized that spinal curvature could be secondary to muscle disorganization and
neuromuscular damage by cadmium [45,46]. Among the other fish bone structures that have been
used to evidence cadmium osteotoxicity, scales are of particular interest because they represent a
simplified bone unit. Upon exposure to cadmium, scales of European carp became deformed and the
ridges at the basal edge disappeared [47,48]. A reduced osteoblast and osteoclast activity that resulted
in impaired calcium homeostasis was also observed in scales of goldfish exposed to cadmium [49],
further supporting our hypothesis that osteoblast function is impaired in zebrafish larvae exposed
to cadmium.

The bending of the newly formed rays that we observed in adult zebrafish exposed to cadmium
suggests a reduction of bone stiffness and the impairment of bone mechanical properties. Comparable
phenotypes were observed in humans exposed to cadmium throughout the world [5], although the
most striking example is probably the itai-itai disease [20]. In this case, the population of a Japanese
village was exposed for many years to cadmium through the poisoning, by mining activities, of
the river used to water the rice plantations or for fishing. Individuals presented skeletal disorders
(osteomalacia and osteoporosis) and altered bone stiffness [50]. The long term exposure of rats to
cadmium also resulted in decreased bone mineralization and mechanical strength [24,25,51]. Although
this should be further studied, the similarity between bone stiffness phenotypes in humans and fish
exposed to cadmium suggests the suitability of the regenerating caudal fin system to study mechanisms
of cadmium osteotoxicity, in particular those altering bone biomechanical properties. We did not
observe bone fractures in zebrafish exposed to cadmium, but this could be related to the rather short
exposure of the developing larvae and regenerating young adults. Whether altered stiffness of newly
formed bone in cadmium-exposed zebrafish is related to an accumulation of this heavy metal in bone,
as seen in osteoporotic patients [52], to an alteration of the collagen matrix in bone [53–55] or to any of
the mechanisms listed below remains to be tested.

As mentioned before, the mechanisms underlying cadmium osteotoxic effects in zebrafish, and
more generally in teleost fish, remain to be determined. They may involve one (or several) of
the numerous mechanisms that have already been proposed in other systems, i.e., cadmium can
directly or indirectly affect bone/skeleton quality by (1) displacing calcium/zinc from active sites and
interfering with enzyme function [56], (2) replacing the calcium bound to osteocalcin and changing
peptide conformation [57], (3) blocking calcium uptake [58], thus interfering with calcium metabolism



Fishes 2019, 4, 11 8 of 15

and inducing hypocalcemia, (4) substituting calcium in the bone lattice [59], thus impairing bone
remodeling or causing functional changes, (5) producing reactive oxygen species (ROS) and triggering
oxidative stress [60], (6) modifying the levels of expression of bone marker genes [26,61] or the
methylation pattern of DNA [62,63], (7) by reducing thyroid hormone levels [64] and inhibiting
estrogen receptors [65], thus disrupting endocrine function related to bone formation and remodeling,
(8) by inducing apoptosis of ionocytes [66], or (9) it may also be secondary to kidney damage as
proposed by [20]. We observed the activation of the MTF-1 pathway upon the exposure to cadmium
of two cell lines capable of in vitro mineralization. While this signaling pathway has already been
associated with cadmium toxicity [67,68] and with the regulation of bone development [69], this is
probably the first evidence of a role in cadmium toxicity in a bone context. MTF-1 has been proposed
to function as an intracellular sensor for zinc, a trace metal important for the regulation of numerous
intracellular pathways but also for bone metabolism and growth [69]. Although this should be further
demonstrated, we propose that the activation of the MTF-1 pathway by cadmium in bone cells may
interfere with zinc regulation of bone signaling pathways (e.g., TGF-β, Wnt, Hedgehog, and MAPK)
and marker genes, thus altering cell function and bone metabolism. Similarly, we observed the
activation of the cAMP/CRE pathway upon the exposure of MC3T3-E1 and ATDC5 cells to cadmium.
This signaling pathway has been associated with cadmium toxicity in several biological processes (e.g.,
human steroidogenesis [70]) and cytotoxicity in vitro (e.g., human liver carcinoma cells [71]), but also
with the regulation of bone development [72] and expression of bone marker genes, such as the bone
morphogenetic protein 2 [73], osteocalcin [74], insulin-like growth factor-I [75], and osteonectin [76].
Again, this is probably the first evidence of the role of the cAMP/CRE pathway in cadmium toxicity in
a bone context. In this regard, mRNA levels of several of the aforementioned genes were reduced upon
the exposure of zebrafish larvae to cadmium. These genes are central to osteoblast maturation and
function and a decrease in their expression upon the exposure of zebrafish larvae to cadmium is in total
agreement with the reduced growth of the opercular bone and is also relevant to the bone/skeleton
phenotype observed at later developmental stages. Another heavy metal—lead—also has the ability to
impair osteoblast differentiation and function [77], and to inhibit the production of bone-related protein
such as osteocalcin, collagen, and osteopontin [78,79]. Expression of osteocalcin 1, collagen 10, and
osteopontin/spp1—three proteins critical to the structure and function of the bone extracellular matrix
in fish—was decreased upon zebrafish exposure to cadmium, and we propose that this reduction is
probably associated with impaired osteoblast function as seen for lead. Supporting this hypothesis,
organ cultures from chick embryos exposed to cadmium revealed low collagen accumulation and
the degeneration of osteoblasts [80,81]. It is worth mentioning that the absence of effects on fish
development seen through the measurement of fish total length would indicate that cadmium does
not impact development and that changes in gene expression observed in exposed larvae are most
likely related to an effect on bone metabolism.

Cadmium also affected the hatching time of zebrafish larvae (rather than the hatching rate),
confirming the data reported by [38] in zebrafish but also in other species, e.g., Australian crimson
spotted rainbow fish [40] and red seabream [41]. Whether this alteration will later affect skeleton and
bone development and participate in cadmium osteotoxicity remains to be determined.

In conclusion, we provide evidence of the anti-osteogenic/osteotoxic effect of cadmium in
zebrafish, i.e., a reduced growth of the opercular bone, a higher incidence of skeletal deformities,
and an impaired stiffness of regenerated bone, but also of an effect on the time of hatching that
coincides with effects already reported in other species. Differential activity of signaling pathways and
differential expression of bone marker genes provided us with new insight into the mechanisms of
action of cadmium toxicity in a bone context. The zebrafish proved to be a suitable system to study
cadmium osteotoxicity, and the availability of a large number of transgenic and mutant zebrafish
lines will certainly allow us to gain insights into cadmium mechanisms of action. Finally, cadmium
osteotoxicity seen in zebrafish may not only result in decreased welfare but may also impact swimming
and reproductive performance and the ability to escape predation or to feed. It is therefore of critical
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importance to better understand the etiology of cadmium toxicity and, in general, of heavy metals
with anti-osteogenic activities.

4. Materials and Methods

4.1. Ethics Statement

Experimental procedures involving zebrafish followed the EU Directive 2010/63/EU and National
Decreto-Lei 113/2013 legislation for animal experimentation and welfare. Zebrafish housing, handling,
and experimentation were accredited by the Direção-Geral de Alimentação e Veterinária (DGAV), the
Portuguese National Authority for Animal Health (approval no. 0421/2015 from 1 April 2015).

4.2. Chemical Solutions

A stock solution of cadmium chloride (CdCl2; Sigma-Aldrich) was prepared in distilled water at
10 mg/mL and diluted to selected concentrations in zebrafish embryo medium (EM; [82]) or zebrafish
system water.

4.3. Zebrafish Rearing and Breeding

Broodstock of adult zebrafish (AB strain, see The Zebrafish Information Network (ZFIN) for
more information) were maintained in a water recirculating system (ZebTEC, Tecniplast) under the
following conditions: temperature 28 ± 0.1 ◦C, pH 7.5 ± 0.1, conductivity 700 ± 50 µS, NH3 and
NO2– lower than 0.1 mg/L, NO3– at 5 mg/L, and a 10:14 h dark:light photoperiod. Conductivity and
pH were stabilized in fish water by adding Instant Ocean salt mixture and sodium bicarbonate to
reverse osmosis treated water. Fertilized eggs were obtained from the crossing of sexually mature
zebrafish following an in-house breeding program using a 5:3 female:male ratio (different groups
of breeders were used). Viable fertilized eggs were placed into a 1-L container with static water
conditions. The water temperature, pH, conductivity, and photoperiod were as described above (other
parameters were not assessed). Methylene blue (0.0002% w/v) was added to prevent fungal growth.
Non-fertilized, asymmetrical, vesicle-containing, or damaged eggs were discarded. From 5 to 10 days
post-fertilization (dpf), larvae were fed twice a day with freshly hatched Artemia nauplii (AF480 strain,
INVE Aquaculture). From 10 dpf onward, zebrafish were fed once a day with dry food (ZEBRAFEED,
Sparos Lda).

4.4. Assessment of Operculum Growth

At 3 dpf, hatched larvae were transferred to 6 well-plates (15 larvae per well in 10 mL of fish system
water) and exposed to either cadmium chloride, calcitriol (1α,25-dihydroxyvitamin D3; Sigma-Aldrich)
or vehicles (distilled water or 0.1% ethanol, respectively). Treatment was renewed (70% of the total
volume) daily until 6 dpf, then larvae were euthanized with a lethal dose of 2-phenoxyethanol
(1000 ppm; Sigma-Aldrich), stained for 15 min at room temperature with 0.01 % alizarin red S (AR-S,
pH 7.4), and washed twice with distilled water for 5 min. Larvae were imaged using a Leica MZ7.5
fluorescence stereomicroscope equipped with a green filter (λex = 530–560 nm and λem = 580 nm) and
a black-and-white F-View II Olympus camera. Fluorescence TIF images (exposure time of 1 s, gamma
of 1.00, RGB format and resolution of 1376 × 1035 pixels) were analyzed using ImageJ 1.49v software.
Color channels were split and red channel (8-bit) images were used for morphometric analyses.
Brightness and contrast were optimized to enhance the visibility of the cranial bones. Operculum
growth was assessed through morphometric analysis of fluorescence images according to [33].

4.5. Assessment of Skeletal Deformities

Fertilized eggs (60 per condition) were placed in 0.5-L semi-opaque plastic cups containing
approximately 350 mL of EM supplemented with cadmium chloride or distilled water (vehicle).
Developing zebrafish were maintained until 20 dpf at 28 ◦C under a 10:14 h dark:light photoperiod.
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EM was renewed daily and dead eggs/embryos were counted and removed. At 20 dpf, larvae were
euthanized (see above) and total length was determined. Larvae were then fixed at 4 ◦C for 24 h in 4%
paraformaldehyde (PFA; Sigma-Aldrich), prepared in phosphate-buffered saline (PBS at pH 7.4), and
double stained with alcian blue 8GX and alizarin red S following a protocol adapted from [83]. Larvae
were imaged using a Leica MZ6 stereomicroscope equipped with a Canon G12 PowerShot camera and
the occurrence of skeletal deformities was assessed from bright-field images.

4.6. Assessment of Caudal Fin Regeneration

Young adult zebrafish (3–5 months old) were anesthetized with 0.16 g/L of tricaine
methanesulfonate (MS-222, Sigma-Aldrich; [82]) and placed on the stage of a Leica MZ6
stereomicroscope. The caudal fin was carefully deployed and flattened, then amputated using a
sterile scalpel in a single downward movement according to [84]. Fish were allowed to recover in
fish system water, then placed in 1-L semi-opaque plastic cups (5 fish per cup) supplemented with
cadmium chloride or distilled water (vehicle). Treatment was renewed (80% of the total volume) every
2 days until 5 days post-amputation (dpa), then fish were euthanized (see above), and the caudal
peduncle was excized. Peduncles were washed once with PBS, fixed in 4% PFA for 24 h at 4 ◦C,
washed 3 times with PBS, then stained for 1 h with 0.1% AR-S in 0.2% KOH. Fins were imaged using a
Leica MZ7.5 fluorescence stereomicroscope equipped with a green light filter (λex = 530–560 nm and
λem = 580 nm) and a black-and-white F-View II Olympus camera.

4.7. Activity of Signal Pathways

Since fish skeletal cell lines are hard-to-transfect cellular hosts [30,85,86] and no commercial
reporter arrays are available for fish, mineralogenic cell lines ATDC5 (mouse chondroprogenitor cells)
and MC3T3-E1 (mouse osteoblast precursor cells) were used to host the reporter constructs of the
Cignal 45-pathway reporter array (QIAGEN). Sub-confluent cultures of ATDC5 and MC3T3-E1 (see
the European Collection of Cell Cultures (ECACC) for culture conditions) were reverse-transfected
with reporter constructs according to manufacturer protocol. Briefly, each well of the Cignal 96-well
plate containing the 45 reporter constructs received sequentially 50 µL of Opti-MEM (Thermo Fisher
Scientific), 0.6 µL of Attractene transfection reagent (QIAGEN) diluted in 50 µL of Opti-MEM, and
50 µL of cell suspension (8 × 105 cells per mL of Opti-MEM supplemented with 10% of FBS and 1%
of non-essential amino acid mixture (NEAA) from Thermo Fisher Scientific). Cells were incubated
for 20 h at 37 ◦C under a humidified 5% CO2 atmosphere, then exposed to 183.32 µg/L (1 µM) of
cadmium chloride or distilled water (vehicle) for 20 h in Opti-MEM supplemented with 0.5% FBS,
1% NEAA, and 100 U/mL of penicillin/streptomycin (Thermo Fisher Scientific). Firefly and Renilla
luciferase activities were determined in cell extracts using the Dual-Luciferase Reporter Assay system
(Promega) and a BioTek Synergy 4 multiplate reader.

4.8. RNA Extraction and Gene Expression by qPCR

Total RNA was isolated from 20-dpf post-larvae following a protocol adapted from Chomczynski
and Sacchi [87] and purified using the High Pure RNA Isolation kit (Roche) according to manufacturer
protocol. RNA quantity and integrity were evaluated using an Experion RNA HighSens chip and
electrophoresis system (Bio-Rad). Total RNA (1 µg) was reverse transcribed into cDNA for 1 h at 37 ◦C
using 200 U/µL of M-MLV reverse transcriptase (Invitrogen), 40 U/µL of RNaseOUT (Invitrogen),
and 50 nM of the oligo-d(T) universal primer (5’-ACGCGTCGACCTCGAGATCGATG(T)13-3’) in a
total volume of 20 µL. The relative quantity (RQ) of each transcript was determined by quantitative
real-time PCR (qPCR) using the StepOnePlus Real-Time PCR system (Applied Biosystems). qPCR
reactions—performed in triplicate—contained 1x SsoFast EvaGreen Supermix (Bio-Rad), 0.2 µM of
each gene-specific primer (listed in Table 3), and a 1:10 dilution of the template cDNA. After an initial
denaturation step at 95 ◦C for 1 min, qPCR reactions were subjected to 50 cycles of amplification, as
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follows: 95 ◦C for 5 s and 68 ◦C for 15 s. Transcript levels were determined using the ∆∆Ct method [88]
and normalized using the elongation factor 1 alpha (ef1a) housekeeping gene.

Table 3. Primers used to assess levels of gene expression by qPCR.

Gene Name (acronym) Accession No. Sequence (5’– 3’)

elongation factor 1 alpha (ef1a) NM_131263
Fw-AGCCCCTCCTGGCTTTCACCC
Rv-TGGGACGAAGGCAACACTGGC

osteonectin (sparc) AY239014
Fw-CTTCTTCCTGTTCTGCCTCGCTGG
Rv-TCTCAGCAATAACATCCTCCACGACCT

osteopontin (spp1) AY651247
Fw-GAACCTACACAGACCACGCCAACAG
Rv-GGTAGCCCAAACTGTCTCCCCG

tissue non-specific alkaline phosphatase (alpl) NM_201007
Fw-TTCCTCTGCGGTGTCAAAGCCAA
Rv-AAGCAGCACTCGGGGTGGCAT

collagen, type X, alpha 1 (col10a1) NM_001083827
Fw-AGAAGGTGATGAAGGCCCCGCAGTAC
Rv-CACCATCTTGTCCTGCAGGTCCAGGT

bone morphogenetic protein 2b (bmp2b) NM_131360
Fw GAGGAACTTAGGAGACGACGGGAACGC
Rv TCTCGGGAATGAGTCCAACGGCAC

osteocalcin 1 (oc1) *
Fw-GAAGCGAACATGAAGAGTCTGACAGTCC
Rv-GGAATCATCGCCGCCTATAAA

osteocalcin 2 (oc2) **
Fw-CCAACTCCGCATCAGACTCCGCATCA
Rv-ATGTGCTGCTGAAGCGGAGTGTTGCT

* consensus sequence reconstructed from AY078413 and EH442597; ** consensus sequence reconstructed from gene
and EST sequences.

4.9. Statistical Analysis

Each data set was first evaluated for normality using the Shapiro–Wilk normality test (p < 0.05).
Statistical differences were determined through one-way ANOVA followed by Dunnett’s multiple
comparison test (p < 0.05) or through unpaired t-tests with Welch’s correction (p < 0.05). Data for
skeletal deformities were presented as percentages of fish affected and compared using the Pearson’s
chi-squared test. Differences were considered significant for p < 0.05. Statistical analyses were
performed using Prism version 6.00 software (GraphPad Software, Inc).

Supplementary Materials: The following are available online at http://www.mdpi.com/2410-3888/4/1/11/s1,
Figure S1: Activity of signaling pathways altered upon exposure of mineralogenic cell lines MC3T3-E1 and ATDC5
to cadmium chloride.
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