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INTRODUCTION 
 
Cardiovascular disease (CVD) and chronic kidney 
disease (CKD), also known as chronic or non-
communicable diseases, are leading causes of disability 
and death all over the world. While CVD is the major 
cause of morbidity and mortality in the developing 
world, representing a tremendous social and economic 
burden, it is also the most common death cause in the 
CKD population. CKD is an important public health 
problem that is characterized by poor health outcomes 
and very high health care costs. Since the prevalence of 
CKD and CVD is higher in older people  and life expec- 

 

tation is increasing, managing effective diagnosis and 
treatment for these highly prevalent diseases is crucial 
to impact the health of aging population. 
 
CKD is defined as a group of abnormalities that can 
affect the kidneys structure or function and are present 
for more than 3 months with health implications [1]. 
CKD affects approximately 14% of the adult population 
in the United States, where it aligns closely with the 
prevalence of diabetes and hypertension [2]. Details 
from the ERA-EDTA registry annual report for 2015 
show that 70 million Europeans have partially lost their 
kidney function and are at high risk of becoming 
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ABSTRACT 
 
Chronic kidney disease (CKD) is one of the most powerful predictors of premature cardiovascular disease (CVD), 
with heightened susceptibility to vascular intimal and medial calcification associated with a high cardiovascular 
mortality. Abnormal mineral metabolism of calcium (Ca) and phosphate (P) and underlying (dys)regulated 
hormonal control in CKD-mineral and bone disorder (MBD) is often accompanied by bone loss and increased 
vascular calcification (VC). While VC is known to be a multifactorial process and a major risk factor for CVD, the 
view of primary triggers and molecular mechanisms complexity has been shifting with novel scientific 
knowledge over the last years. In this review we highlight the importance of calcium-phosphate (CaP) mineral 
crystals in VC with an integrated view over the complexity of CKD, while discuss past and recent literature 
aiming to highlight novel horizons on this major health burden. Exacerbated VC in CKD patients might result 
from several interconnected mechanisms involving abnormal mineral metabolism, dysregulation of 
endogenous calcification inhibitors and inflammatory pathways, which function in a feedback loop driving 
disease progression and cardiovascular outcomes. We propose that novel approaches targeting simultaneously 
VC and inflammation might represent valuable new prognostic tools and targets for therapeutics and 
management of cardiovascular risk in the CKD population. 
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dependent on renal replacement therapies (dialysis or 
transplantation) [3]. Additionally, Global Burden of 
Disease 2015 study estimated that 5–10 million people 
die annually from kidney disease and high-income 
countries typically spend more than 2–3% of their 
annual health care budget on the treatment of end-stage 
kidney disease [4]. Low kidney function is linked to 
poor health outcomes, with clinical manifestations in a 
wide variety of other organ systems, including 
endocrine, nervous, gastrointestinal, musculoskeletal, 
and hematologic, and associated to a much higher risk 
of cardiovascular disease. The risk of cardiovascular 
disease exponentially increases as kidney function 
declines, being the major contributor to the high 
incidence of cardiovascular complications and death in 
this population [5, 6, 7]. This is partially due to vascular 
calcification (VC) and accelerated atherosclerosis, as a 
result of the mineral and bone disorder (MBD) that 
often accompanies low kidney function and complicates 
CKD. CKD-MBD involves changes in mineral ion 
homeostasis, bone quality and turnover, and 
extraskeletal calcification [8, 9]. 
 
Epidemiologically, CKD, diabetes mellitus, and 
atherosclerosis are the clinical conditions that most 
contribute towards development of VC of medial and 
intimal layers of the vessel wall. In patients with CKD, 
VC is associated with significant morbidity and 
mortality and is one of the strongest predictors of 
cardiovascular risk [10, 11]. The prevalence of VC 
increases as glomerular filtration rate (GFR) declines 
and calcification processes occur years earlier in CKD 
patients than in the general population [12]. The impact 
of VC on cardiovascular outcome relates to the location 
of mineral deposition. Intimal calcification reflects 
atherosclerotic plaque burden and may influence plaque 
rupture, being a strong predictor of cardiovascular 
events and mortality. On the other hand, medial 
calcification induces stiffening of the vessel, increased 
pulse pressure, left ventricular hypertrophy, and can 
result in heart failure. In dialysis patients, medial 
calcification is closely associated with the duration of 
hemodialysis and calcium–phosphate disorders [13]. 
Both forms of calcification are prominent and can occur 
simultaneously, contributing to the increased cardio-
vascular mortality in CKD [14]. In addition, the risk 
associated with progression and severity of athero-
matous plaques has been shown to be prevalent in CKD 
patients, considered to develop accelerated athero-
sclerosis [15].   
 
Although many aspects concerning the pathogenesis of 
VC are still unclear, it is currently accepted that it is an 
active and multifactorial process, which must be highly 
controlled and constantly inhibited. Several pathological 
features are widely described to be associated with VC. 

The proliferation, differentiation and apoptosis of 
vascular smooth muscle cells (VSMCs), oxidative 
stress, endothelial dysfunction, increased extracellular 
matrix (ECM) remodeling, release of calcifying 
extracellular vesicles (EVs), loss of mineralization 
inhibitors, and chronic inflammation, are well known 
contributors to its development [16]. In CKD patients, 
VC is exacerbated as a result of several interconnected 
mechanisms involving abnormal mineral metabolism, 
dysregulation of endogenous calcification inhibitors and 
inflammatory pathways.  
 
In this review we will integrate the knowledge on the 
formation of calcium-phosphate (CaP) mineral crystals 
with dysregulated mineral metabolism, the importance 
of mineralization inhibitors on mineral formation and 
maturation, and their effect on VC and inflammation, 
associated with cardiovascular outcomes in CKD. 
Simultaneously, we discuss the immediate and long- 
term effects of widely used therapeutic strategies 
associated with the control of dysregulated mineral 
metabolism, such as dietary restrictions and phosphate 
binders (PBs), in light of their effect on VC. Clearly, 
VC and inflammation not only play a key role in CKD 
pathophysiology and cardiovascular disease but are also 
involved in a complex bidirectional crosstalk ultimately 
leading to disease progression. A deeper knowledge on 
the molecular mechanisms and the discovery of new 
modulating agents targeting both inflammation and 
calcification, will pave the way to the discovery of new 
biomarkers and therapeutic strategies for cardio-
vascular-associated diseases. 
 
The importance of calcium (Ca) and phosphate (P) 
minerals in CKD: balance and regulation  
 
P and Ca are absolutely essential for life but its balance 
and regulation are tightly controlled because both 
positive and negative balances have detrimental clinical 
implications. In patients with CKD, a negative balance 
of Ca and P favors bone mineral loss and osteoporosis, 
increased risk for bone fragility and fractures. On the 
other hand, a positive balance favors soft tissue cal-
cification, consequent cardiovascular events, and 
interrelates with high morbidity and mortality.  
 
Ca and P homeostasis 
 
Ca and P are absorbed from the diet in the intestine, 
stored in the skeleton, and reabsorbed and excreted by 
the kidneys (extensively reviewed elsewhere [17-19]). 
In healthy adults, normal daily intake of Ca and P is 
considered in the range of 800–1000 mg and 700-2000 
mg, respectively. The majority of Ca and P stores in the 
body are in the bone (approximately 99% and 85%, 
respectively), while the remaining is present in the 



www.aging-us.com 3 AGING 

extracellular and intracellular spaces, including the 
circulating fractions (approximately 0.1%). In 
adulthood, normal total serum Ca is approximately 8.5–
10 mg/dL and includes the ionized and complexed 
fractions, as well as the protein-bound fraction. Normal 
serum P levels are considered between 2.5–4.5 mg/dL. 
Among the many factors that can influence Ca and P 
homeostasis, high dietary Ca and P intake are related 
with increased serum Ca and P, which are associated 
with poor clinical outcomes including increased CVD 
risk [20-23].  
 
In normal physiology, Ca and P homeostasis are 
regulated through hormonal control of a four-tissue axis 
involving intestine, bone, kidney, and parathyroid 
gland, that tightly control serum ionized Ca and P levels 
within a narrow range.  
 
The two primary hormones involved in calcium balance 
are parathyroid hormone (PTH) and 1,25 vitamin D  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(1,25D) (Figure 1). PTH secretion is stimulated by 
hypocalcemia and suppressed by hypercalcemia. Low 
levels of serum ionized Ca are sensed by the calcium-
sensing receptors (CaSR) on the parathyroid gland, 
which stimulates PTH synthesis and secretion. In order 
to raise serum Ca to normal levels, PTH exerts effects at 
multiple levels such as: (i) stimulating bone osteoclast 
activity to increase Ca efflux from bone; (ii) increasing 
Ca reabsorption in the kidney; (iii) stimulating 1,25D 
production, which increases intestinal Ca absorption 
and Ca efflux from bone. Hypercalcemia suppresses 
PTH secretion and stimulates CaSR activity to enhance 
renal Ca excretion.   
 
The primary regulator of P homeostasis is the kidney 
which adjusts the excretion to the dietary load of P. The 
main hormones implicated in regulation of serum P are 
fibroblast growth factor 23 (FGF-23) with its cofactor 
Klotho, PTH, and 1,25D (Figure 1). FGF-23 is pri-
marily a phosphaturic hormone, produced by osteoblasts 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Overview of calcium (Ca) and phosphate (P) homeostatic regulation. Red lines represent the main mechanisms of Ca 
regulation in a situation of hypocalcemia. Decreased Ca levels in serum increase 1,25D and PTH. Increased levels of 1,25D increase Ca 
absorption at the intestine and stimulate mineral exchange in bone increasing Ca efflux. Increased PTH stimulate mineral exchange in 
bone increasing Ca efflux, and increase Ca reabsorption in the kidney. Indirectly, high levels of PTH stimulate 1,25D with consequent 
increase in Ca absorption. Overall, the concerted action of PTH and 1,25D lead to increased serum Ca levels until the normal range by 
increasing Ca reabsorption at the intestine, increasing Ca from mineral exchange in bone, and increasing Ca reabsorption in the kidneys. 
Blue lines represent the main mechanisms of P regulation in a situation of hyperphosphatemia. High levels of serum P increase FGF-23 
production in bone, which exerts several effects to promote a decrease in serum P. FGF-23 decreases P reabsorption and increases P 
excretion in the kidneys, and indirectly decreases P absorption at the intestine and P efflux from bone mineral exchange, through the 
inhibition of 1,25D and PTH.  
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and osteocytes under physiological conditions, and 
secreted from bone in response to increased serum P 
and 1,25D. FGF23 exerts several effects to promote a 
decrease in serum P such as (i) inhibiting P reabsorption 
in the kidney by suppression of type II sodium 
phosphate cotransporters; (ii) decreasing P absorption 
by inhibiting 1,25D production; (iii) suppressing PTH 
and expression of the CaSR and vitamin-D receptor in 
the parathyroid gland. In addition, FGF-23 increases Ca 
reabsorption in the kidneys, probably to compensate for 
low Ca absorption due to induced 1,25D deficiency. 
PTH increases phosphate excretion by stimulating FGF-
23 production and reducing type II sodium phosphate 
cotransporters.   
 
Special attention and concerns have been raised in 
recent years in relation to the possible excess of P intake 
in the general population, and its correlation with 
disturbances in bone and mineral metabolism, 
compromising bone health [24]. In addition to a high 
protein diet, the increased consumption of processed 
food and the use of food additives containing high 
levels of inorganic phosphates, have been linked to 
acute spikes or transient increases in serum P. This 
might be partially explained by the high rate of 
absorption efficiency, particularly of inorganic P 
present in food additives, and the circadian fluctuation 
in serum P. In fact, short term high P diets have been 
shown to significantly increase circulating levels of 
FGF-23 and bone related markers in human and mice, 
while decrease bone mineral density in mice [25]. 
Increased FGF-23 levels in individuals with normal 
renal function have been related with renal P wasting 
and impaired bone mineralization [26].  Excessive 
intake of P has been linked to increased levels of serum 
P, which in turn is suggested to be the main stimulus for 
phosphorus homeostasis disruption. Consequently, in 
both healthy and renal disease individuals (detailed 
below), current dietary habits might contribute to 
current worldwide burdens of osteoporosis and renal 
dysfunction.    
 
Dysregulation of mineral metabolism in CKD: the 
mineralization paradox behind CKD-MBD  
 
In the CKD context, the ability to filter and excrete P is 
progressively compromised as kidney function declines, 
leading to a progressive dysregulation of the intricate 
set of feedback loops that tightly regulate Ca and P 
homeostasis. Hyperphosphatemia is usually defined as 
serum P >=5.0 mg/dL, and hypercalcemia as serum Ca 
>=10 mg/dL [27, 28]. However, P accumulation has 
been suggested to occur since early stages of CKD, 
prior to the development of hyperphosphatemia. This 
situation is prevented by the adaptive and compensatory 
mechanisms that increase P excretion through the 

increased phosphaturic action mediated by FGF-
23/klotho axis and PTH. In fact, increased serum P, 
although still within the normal range, has been 
correlated with adverse cardiovascular and renal 
outcomes and overall survival in early stage CKD 
patients [29-34]. In stages 2–5 CKD patients, the 
reported thresholds of serum P shown to predict adverse 
outcomes ranged between 3.5 and 4.6 mg/dL. FGF-23 
levels increase since stage 2 and continue to rise as 
CKD progresses. In addition, a gradual increase in 
serum P can be observed since the beginning of stage 3. 
When GFR is below 30 mL/min/1.73 m2, the adaptive 
mechanisms are unable to sustain serum P in the normal 
range due to an imbalance between P intake and renal 
excretion capacity. As kidney function declines, FGF-
23 and then PTH levels increases in CKD, exerting 
opposing effects on vitamin D metabolism. Although 
PTH stimulates 1,25D production, increasing FGF-23 
creates a state of 1,25D deficiency that decreases serum 
Ca and further increases PTH. In CKD stage 5, FGF-23 
levels are normally several hundred folds above the 
normal range [30, 35]. Since hypocalcemia stimulates 
PTH production and decreased levels of 1,25D results 
in failure to inhibit PTH synthesis, an excessive rise in 
PTH release often accompanied by parathyroid 
hyperplasia, is common in CKD patients and referred as 
secondary hyperparathyroidism (SHPT) [36]. As kidney 
function declines, phosphate retention occurs, and 
hyperphosphatemia has been consistently associated 
with CKD progression and cardiovascular outcomes. 
However, a state of hypocalcemia is often associated 
with these patients, despite it is quite uncommon in 
CKD stage 3 and early stage 4, and more often observed 
in stage 5 [34, 37]. One important issue is that the levels 
of ionized serum Ca might not reflect Ca balance in the 
organism [19]. Since only 0.1% of total body Ca is 
present in circulation, the determination of Ca balance 
or total body Ca content, or adequacy of Ca load, cannot 
be infer by serum Ca levels. Indeed, the constant 
stimulation of Ca and P efflux from bone, the increased 
Ca reabsorption and the decreased urinary Ca excretion 
capacity might originate a positive calcium balance. At 
physiological pH, free Ca is able to bind to excessive P 
and facilitate P removal, although the resulting calcium-
phosphate mineral (CaP) does not precipitate directly 
from solution into hydroxyapatite that can be deposited 
within soft tissues. Instead, it passes through a series of 
phases including the transition from an initial unstable 
amorphous calcium phosphate (ACP-1) into a more 
stable and less soluble form of amorphous calcium 
phosphate phase (ACP-2).  
 
Of note, the concept of calcium-phosphate product, 
often referred as CaxP, widely used in the literature, is 
obtained by simply multiplying serum Ca and P levels 
and does not entirely reflect the aggregation of Ca and P 
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in soft tissues, here referred as CaP. This emphasizes 
the significant difference between Ca homeostasis and 
balance. While compensatory mechanisms are crucial to 
counteract hyperphosphatemia in short-term, these 
adaptive responses may increase the risk of undesirable 
and detrimental effects resulting from a positive 
calcium balance. Ultimately, this will lead to a process 
of soft tissue calcification, increasing the cardiovascular 
risk. These adaptive mechanisms are effective in 
maintaining serum P and Ca within the normal range 
until late stages of CKD. This situation constitutes a 
major risk for CKD patients since the accumulation of 
P, Ca and CaP progresses since early stages of disease 
development. Often, at the time of diagnosis, bone loss 
might be significant and soft tissue calcification already 
established. This process is often referred as the 
mineralization paradox in CKD (Figure 2). Clinical 
studies have shown that the development of VC is 
correlated with a decrease in bone mineral density, the 
incidence of bone fractures and mortality in CKD 
patients [38, 39]. Current Kidney Disease Improving 
Global Outcomes guidelines defined that CKD-MBD 
should be used to describe the broader clinical 
syndrome encompassing mineral, bone, and calcific 
cardiovascular abnormalities that develop as a 
complication of CKD [8].  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Controlling hyperphosphaemia in CKD patients: the 
true challenge in vascular calcification management?  
 
Large epidemiological trials support the fact that 
elevated serum P concentrations are associated with all-
cause and cardiovascular mortality, especially in 
patients on dialysis, but also in predialysis patients and 
even in the normal population. Higher serum P is 
associated with more extensive coronary artery calcium 
and coronary occlusion in CKD patients, death and 
CVD events in CKD patients and in the general 
population [30, 40-42]. In this context is conceivable to 
assume that controlling serum P levels may translate in 
less calcification and adverse CVD outcomes, and this 
has been the therapeutic strategy hallmark in CKD 
patients over the years. Therapeutic measures to control 
serum P levels in CKD are mainly focused on dietary 
restrictions to decrease P load, and supplementation 
with phosphate binders to reduce intestinal P absorp-
tion. 
 
Collateral effect of dietary restrictions in CKD 
patients: vitamin K deficiency 
 
CKD progression towards a chronic renal insufficiency 
has been therapeutically approached by dietary inter- 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 2. Schematic representation of the mineralization paradox in CKD. As kidney functional declines, P 
retention occurs and FGF-23 highly increases, with consequent decrease in 1,25D levels. Dysregulated levels of 1,25D 
lead to increased levels of PTH and decreased levels of serum Ca. Low levels of serum Ca maintained by low 1,25D, 
constantly stimulate PTH production, often resulting in secondary hyperparathyroidism (SHPT) and bone resorption 
leading to decreased bone mineralization. However, increased Ca efflux from bone, and increased Ca reabsorption and 
decreased excretion in the kidneys originate a positive Ca balance, correlated with increased vascular calcification. 
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ventions, aiming to decrease the loading of P, sodium, 
potassium and reduce uremic toxin retention. Dietary 
restrictions are often adapted according to CKD 
developmental stages. Healthy dietary approaches, like 
Dietary Approaches to Stop Hypertension and the 
Mediterranean protective diet, rich in antioxidant 
species, may be beneficial for CKD prevention and 
early disease stages [43]. With CKD progression, the 
regulation of protein intake becomes more restricted 
and often includes the use of low to very low-protein 
regimes. In that case, supplementation with essential 
amino acids and keto-acids is important to assure an 
adequate essential amino acid supply [44, 45]. In end-
stage renal disease nearly all patients are prescribed 
with dietary P restrictions to control hyperphosphatemia 
[46]. Current Kidney Disease Improving Global 
Outcomes guidelines recommend limiting dietary P 
intake as a first-line therapy for treatment of hyper-
phosphatemia and secondary hyperparathyroidism [14]. 
Although these dietary approaches are set to control 
protein, sodium, potassium and P intake, several studies 
correlate CKD-related pathologies such as MBD, 
cardiovascular diseases, anemia and inflammation, with 
a deficit of micronutrient contents associated with these 
recommended diets and contributing to morbidity and 
mortality in this population [47, 48]. In fact, while 
prescribed P dietary restrictions are often associated 
with decreased serum P levels, the overall improved 
survival among hemodialysis patients has been 
questioned, and important concerns related with its 
association with increased mortality, have been raised 
[46]. To achieve the lower dietary load of potassium 
and P, CKD dietary plans are poor in vegetables, fruit, 
milk derivatives, yogurt, cheese, limiting the source of 
several micronutrients relevant for cardiovascular 
health, such as vitamin K. Vitamin K is a family of fat-
soluble molecules consisting on the natural available 
forms phylloquinone (vitamin K1) and menaquinones 
(vitamin K2) and the synthetic form, menadione 
(vitamin K3) [49].  
 
Vitamin K1 is found mainly in green leafy vegetables, 
but also in some fruits, like avocado, kiwi and grape, as 
well as in olive and soybean oils. Vitamin K2 is mainly 
synthesized by intestinal bacteria (with the exception of 
menaquinone 4 (MK-4) that is directly converted from 
vitamin K1 [50]), and it can be mostly found in 
fermented soy beans (well known as natto), followed by 
dairy products. Other sources of vitamin K2 are chicken 
meat, egg yolks, beef and salmon. In the western diet, 
vitamin K1 is about ten times more available then 
vitamin K2, although only 10% of the ingested vitamin 
K1 is absorbed [51, 52]. This data is not available for 
vitamin K2 not only because K1 predominates in diet, 
but also because K1 is the form routinely measured in 
blood [53]. Although menaquinones in plasma are 

mostly undetectable, MK-7 is often detected in serum of 
people eating natto in a regular base, which could be 
explained by its longer plasma half-life [54]. Vitamin K 
status is dependent on the dietetic intake, but also on 
intestinal bacterial synthesis, highlighting the impor-
tance of the CKD dietary plan in the intestinal 
microbiota health. The recommended adequate intake of 
vitamin K is restricted to vitamin K1 quantification, and 
has been proposed as 1 µg of phylloquinone/kg body 
weight per day, according to the Panel on Dietetic 
Products, Nutrition and Allergies of the European Food 
Safety Authority and The Institute of Medicine of the 
United States [55].  
 
Vitamin K is an essential cofactor for the post-
translational modification of vitamin K-dependent 
proteins (VKDPs), where specific glutamic acid (Glu) 
residues are modified to γ-carboxyglutamic acid (Gla) 
residues, by the γ-glutamyl carboxylase enzyme [49]. 
Insufficient γ-carboxylation of VKDPs with a known 
role as regulators of soft tissue mineralization, has been 
widely linked to increased VC and cardiovascular 
diseases [56-58]. In fact, vitamin K status has been 
evaluated through the quantification of circulating 
vitamin K1 and K2, and/or indirectly through the 
quantification of uncarboxylated forms of several 
VKDPs, such as matrix Gla protein (MGP), osteocalcin 
and PIVKA-II (protein induced by vitamin K absence or 
antagonism–II). Using these methods, several studies 
over the last two decades are unanimous in showing 
sub-clinical levels of vitamin K in CKD patients and its 
association with VC and CVD outcomes, with higher 
impact in hemodialysis patients [59-65] (further detailed 
below). 
 
Phosphate binders (PB) to control serum phosphate 
levels: high promise and low effectiveness  
 
While many different classes of phosphate binders 
(PBs) are available and shown to be able to reduce 
serum P levels, a considerable uncertainty about the 
benefits and harms of specific PBs still remains [66]. In 
fact, inconsistent data is found in the literature, with 
some studies pointing for a decreased risk of all-cause 
mortality in patients treated with some PBs, particularly 
sevelamer, when compared to calcium-based phosphate 
binders (CBPBs) [67, 68]. However, recent meta-
analysis in adults with CKD, including dialysis and 
non-dialysis patients, revealed disappointing results for 
several PBs in terms of clinical outcomes, including 
cardiovascular death, myocardial infarction, stroke, 
fracture or coronary artery calcification [69, 70]. 
Overall, there was no evidence of any PB lowering 
mortality or CVD events compared to placebo. 
Importantly, CBPBs such as calcium carbonate or 
calcium acetate, have been the first choice in therapeutic 
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use, with a dual goal of fighting hyperphosphatemia and 
raising serum Ca levels to suppress PTH. However, 
there is increasing evidence that the use of CBPBs 
contributes to positive Ca balance and hypercalcemia 
promoting the progression of VC. Indeed, this is not 
unexpected since by binding P and decreasing serum P, 
Ca in CBPBs will also promote the synthesis of 
calcium-phosphate mineral, CaP. Also, although most P 
binding occurs in the gastrointestinal tract, some Ca is 
absorbed contributing to increase serum Ca levels and 
the formation of CaP in circulation. Several studies 
have shown that, when compared with non-CBPBs such 
as sevelamer and lanthanum carbonate, the use of 
CBPBs contributes to progressive coronary artery and 
aorta calcification [71-75]. Based on these evidences 
that CBPBs produce a positive calcium balance, 
recommendations from the Kidney Disease Outcomes 
Quality Initiative Guidelines (KDIGO) indicate that 
doses should not exceed 1500 mg/day of elemental 
calcium [76].  
 
Role of phosphate, calcium and calcium-phosphate 
mineral in vascular calcification: Who is the real 
culprit? 
 
The notion that controlling hyperphosphatemia has 
limited results in terms of ameliorating VC, challenges 
the concept that P, per se, is the real culprit of VC in 
CKD patients. The biological rationale for the 
association between abnormal P homeostasis and CKD 
is based on the role of P as a primary stimulus for the 
transformation of VSMCs from the contractile to an 
osteochondrogenic phenotype, with calcifying capacity 
[77]. Also, increased apoptosis, generation of reactive 
oxygen species and impaired production of nitric oxide 
are linked to hyperphosphatemia, contributing to 
endothelial dysfunction [78]. However, some studies 
have shown that exogenous P alone is insufficient to 
induce VSMCs mineralization, others have reported 
increased mineralization in cultures under increased Ca 
levels and normal P conditions [79, 80]. Several reports 
also describe a synergistic action of both Ca and P in 
accelerated and increased mineralization in vitro [80, 
81]. Explanations to conciliate these in vitro data are 
based on the formation of CaP crystals in culture 
conditions, which have been shown to induce cell 
differentiation and vascular mineralization [82, 83]. 
Treatments with pyrophosphate or analogues, inhibit 
hydroxyapatite and nanocrystals formation and com-
pletely abrogate VC [80, 82]. Clinical studies have in 
fact shown that the simultaneous control of Ca, P and 
PTH is crucial to decrease the mortality risk and cardio-
vascular hospitalization in dialysis patients [84, 85].  
 
While many studies have demonstrated the cell toxicity 
of CaP crystals, it became very clear that highly 

complex mechanisms exist to control the formation, 
maturation and pathogenicity of these mineral 
nucleation sites. This is in line with the currently 
accepted notion that VC is an active, naturally 
occurring, and tightly regulated multifactorial process, 
that must be actively inhibited (extensively reviewed 
elsewhere [16, 86, 87]). In fact, CaP nanocrystals are 
constituents of calciprotein particles (CPPs), minera-
lization-competent extracellular vesicles (EVs), and 
mineralized material deposited in the ECM of blood 
vessels. Furthermore, CaP crystals have been shown not 
only to induce VSMCs osteochondrogenic differen-
tiation, but to promote pro-inflammatory reactions 
which increased pro-calcific responses, in a cycle were 
increased mineralization triggers inflammation and 
vice-versa. It is currently accepted that VC and inflam-
mation not only play a key role in CKD patho-
physiology and cardiovascular disease, but are also 
involved in a complex bidirectional crosstalk ultimately 
leading to disease progression. This clearly elevates the 
concept that CaP crystals inhibition is of vital 
importance in an overall context of VC management 
and cardiovascular clinical outcomes. 
 
Inhibition of calcium-phosphate mineral: the gold 
standard to manage vascular calcification in CKD?  
 
The contribution of impaired bone metabolism and the 
precise mechanism responsible for VC in CKD have not 
been fully elucidated. Nevertheless, it is currently 
accepted that this is an active multifactorial process in 
which CaP mineral, mostly in the form of 
hydroxyapatite, is deposited in the ECM of the vascular 
tree, resembling bone formation. Under physiological 
conditions, local and systemic inhibitors of mineral 
formation act to prevent widespread tissue calcification 
by influencing VSMCs osteochondrogenic differen-
tiation, formation of calcifying competent EVs, 
maturation of calciprotein particles (CPPs) and ECM 
crystal growth. Despite the numerous molecules already 
identified with a calcification inhibitory function, here 
we will highlight the role of matrix gla protein (MGP), 
fetuin-A (or alpha 2-Heremans-Schmid glycoprotein, 
AHSG), and Gla-rich protein (GRP), also known as 
upper zone of growth plate and cartilage matrix 
associated protein (UCMA) [88, 89]. In fact, recent 
evidences point to an interconnected action of these 
proteins in several calcifying driver events. In addition, 
insufficient vitamin K levels in CKD patients are 
correlated with decreased functionality of MGP and 
GRP. Although the mechanisms underlying MGP, GRP 
and fetuin-A calcification inhibitory function might 
have distinct molecular pathways, they are all involved 
in the inhibition of CaP mineral growth. Also, they can 
be associated with VSMCs-released EVs and CPPs, and 
VSMCs osteochondrogenic differentiation. 
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Role of calcification inhibitors and vitamin K in 
vascular calcification  
 
MGP and GRP are vitamin K-dependent protein 
(VKDP) synthetized by VSMCs in vascular tissues. 
Fetuin-A is a liver-derived blood cysteine protease 
inhibitor uptake from circulation by VSMCs. MGP 
and fetuin-A are longstanding recognized vascular cal-
cification inhibitors [90, 91]. GRP was more recently 
shown to function both as a calcification inhibitor and 
an anti-inflammatory agent in the cardiovascular and 
articular systems [92-94]. Functional in vivo and in 
vitro models have established the importance of these 
inhibitors in vascular calcification, with a pre-
ponderant role at tissue and systemic levels. Knockout 
mice for MGP (MGP-/-) result in massive vascular 
calcification affecting the main arteries and death 
within 8 weeks of birth [95]. Restoration of MGP 
expression in VSMCs from MGP-/- rescued the 
arterial calcification phenotype [96]. Fetuin-A 
deficient mice combined with a calcification-sensitive 
mouse strain or a mineral and vitamin D rich diet, 
results in progressive and lethal calcification of soft 
tissues, including kidneys, skin, heart and vasculature 
[97]. The role of GRP as inferred by animal models is 
still being explored. Similarly to fetuin-A, GRP 
knockout mice (GRP-/-) without additional 
challenging conditions such as aging or disease, 
present a normal phenotype in terms of skeletal 
development [98]. However, after destabilization of 
the medial meniscus, GRP-/- mice develop a severe 
osteoarthritis phenotype clearly indicating a chondro-
protective effect for GRP [99]. Also, VSMCs from 
GRP-/- mice exposed to calcifying conditions show 
increased mineralization and expression of osteo-
chondrogenic markers [100]. In addition, using a 
human ex vivo model of VC, γ-carboxylated GRP was 
shown to inhibit calcification and osteochondrogenic 
differentiation [92]. These studies confirm a 
preponderant role for GRP as an inhibitor of VC. This 
is also in line with functional studies in zebrafish 
suggesting an essential role of GRP in skeletal 
development and calcification [101]. It should be noted 
that the use of animal models has several shortcomings 
in direct translation to the human situation. In the case 
of GRP, several differences in terms of protein and 
gene expression patterns and different isoforms in 
mice and human, might imply different functional 
mechanisms [88, 102, 103]. Of note, despite the 
impressive phenotype of MGP-/- mice, loss-of-
function mutations in the human MGP gene, known as 
the Keutel syndrome, results in non-lethal abnormal 
soft tissue calcifications [104], suggesting that 
additional or compensatory mechanisms of 
pathological mineralization inhibition might exist in 
human. 

Most of the inhibitory function, common to these three 
proteins, has been attributed to a direct interaction with 
the mineral phase and the prevention of crystal 
maturation and precipitation.  Fetuin-A binds small 
clusters of Ca and P in blood, forming soluble protein 
mineral particles, CPPs [also known as fetuin-mineral 
complex (FMC)], preventing mineral growth, 
aggregation and precipitation [91]. MGP and GRP 
directly interact with calcium crystals inhibiting their 
growth and maturation through its calcium-binding Gla 
residues [105-108]. This is the reason why the activity 
of VKDPs is well known to depend on their γ-
carboxylation status, and non- or undercarboxylated 
protein forms are often regarded as non-functional, 
accumulating at sites of pathological calcification. Of 
note, while human MGP contains 5 possible Gla 
residues, human GRP contains 15 putative Gla residues, 
implying different calcium-binding properties [109, 
110]. While the association between MGP carbo-
xylation and vascular calcification has been extensively 
studied [58, 90, 111], undercarboxylation of GRP was 
more recently associated with several calcification-
related diseases, as calcific aortic valve disease [92], 
osteoarthritis [93, 102] and certain cancers [107]. 
Importantly, in vitro studies have shown that only γ-
carboxylated GRP display anti-mineralization capacity 
[92, 93]. This is in line with the widely demonstrated 
role of vitamin K in cardiovascular calcification, which 
has been consistently associated to its function as co-
factor for γ-carboxylation reaction of VKDPs. Low 
concentrations of vitamin K in CKD patients have been 
associated with (i) dietary restrictions; (ii) storage 
exhaustion due to a high demand on VKDP activity 
involved in the regulation of VC related processes; (iii) 
the use of anticoagulant therapy with vitamin K 
antagonists such as warfarin; (iv) the use of phosphate 
binders that can also bind vitamin K inducing vitamin 
K-deficiency [112-116]. The overall poor vitamin K 
status has been widely correlated with the un-
carboxylation of target calcification inhibitors such as 
MGP, and consequent increased VC and poor cardio-
vascular prognostic. In this line, supplementation with 
vitamin K has been proposed as a complementary 
nutrient to improve vascular health in the general 
population and in CKD patients. In the population-
based Rotterdam study, vitamin K2 intake was found 
inversely related to all-cause mortality and severe aortic 
calcification [117]. Also, vitamin K treatment was 
shown to inhibit warfarin-induced VC [118-120]. In 
CKD stage 3-5 and in hemodialysis patients, vitamin 
K2 intake has been shown to dose-dependently reduce 
circulating levels of uncarboxylated MGP [121, 122]. 
Novel clinical trials are underway to evaluate the effect 
of vitamin K1 administration in hemodialysis patients in 
relation to the progress of coronary and aortal 
calcification (VitaVasK and iPACKHD).  
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Calcium-phosphate mineral in extracellular vesicles 
and calciprotein particles 
 
The earliest phase of VC has been shown to occur via 
the secretion of calcifying-competent EVs, which 
nucleate calcium phosphate crystals with consequent 
propagation of calcification in the ECM [123, 124]. 
While in calcified arteries mineral-containing EVs 
localize in close proximity to elastin and collagen fibrils 
[125, 126], in healthy arteries EVs released by VSMCs 
are devoid of mineral. It has been suggested that under 
normal conditions, VSMCs-derived EVs do not calcify 
due to their loading with mineralization inhibitors. 
Calcifying EVs released from VSMCs with increased 
calcium loading are known to have decreased levels of 
MGP, fetuin-A and GRP, resulting in a deficient 
inhibition capacity of CaP crystals nucleation and 
growth [125, 92]. More recently, decreased levels of 
GRP and fetuin-A in circulating EVs isolated from 
CKD stage 5 patients were associated with increased 
calcification of VSMCs [108]. Furthermore, removal of 
EVs from healthy serum clearly promoted VC, 
suggesting that these circulating nanoparticles 
containing higher levels of GRP and Fetuin-A constitute 
a powerful anti-mineralization system that is able to 
regulate mineral formation both at systemic and tissue 
levels [108]. 
 
In fact, VC at tissue level is highly influenced by 
systemic factors. Serum is supersaturated with Ca and 
P, and the discovery of CPPs in circulation- 
predominantly composed of fetuin-A, minerals and 
calcium-regulatory proteins, initially reported in rats 
[127, 128] and further identified in CKD patients [129], 
highlighted a mechanism by which extraskeletal 
mineralization is prevented. These entities are con-
sidered mineral chaperones with a role in the 
stabilization, transport and recycling of insoluble CaP 
mineral in blood, preventing growth, aggregation and 
precipitation of the mineral crystal. In addition to 
fetuin-A, which has been extensively shown to have a 
preponderant role in CPPs formation [130, 131], MGP 
and GRP are also constitutive components of CPPs 
[108, 132]. Several in vitro studies have shown that 
CPP formation is biphasic and two types of CPPs, 
termed primary or CPP-I, and secondary or CPP-II, can 
be identified with different size, composition and 
morphology [130, 132]. CPP-I start with the formation 
of calciprotein monomers, constituted by aggregated 
small clusters of fetuin-A-bound mineral ions, 
consisting on spherical nanoparticles containing amor-
phous calcium phosphate. These CPP-I nanoparticles 
can undergo transformation into CPP-II which have a 
more densely needle-like shape and contain crystalline 
mineral. It has been suggested that in healthy 
individuals CPP-I may form spontaneously in all 

tissues, transported in the blood and removed by class A 
scavenger receptor–mediated pathways, or locally used 
by osteoblasts during bone formation [133]. In cases of 
chronic dysregulation of mineral metabolism such as in 
CKD, increased transformation and accumulation of 
CPP-II have been linked to toxicity with consequent 
increase in vascular calcification and inflammation. 
Several tests have been developed to indirectly 
determine CPP levels in serum, either through the 
fetuin-A reduction ratio or through the serum 
calcification propensity (T50) [129, 134]. Also, the 
measurement of CPP in blood has been proposed as a 
prognostic marker in CKD as predictive of mortality 
[135]. CPPs can be detected since early stages of CKD 
when baseline serum phosphate is still within the 
normal range, and increasing with worsening renal 
function [129, 135, 136]. Moreover, correlations 
between circulating CPP levels and coronary artery 
calcification scores, aortic pulse wave velocity, aortic 
stiffness and serum markers for inflammation have been 
described [129, 135-137]. In patients with end-stage 
renal disease, the reduction of PTH also results in a 
reduction in serum CPP [129]. Possible explanations for 
the relation between CPP levels and VC have been 
suggested. These are focused either on the decreased 
levels of free circulating fetuin-A due to increased CPP 
levels, that otherwise would prevent VC at the vascular 
wall, or on the toxicity of CPPs. In fact, several lines of 
evidence point for a pathogenic role of CPP-II 
containing a more crystalline and insoluble hydro-
xyapatite-like mineral phase, where circulating 
mineralization inhibitors play a crucial role to block 
mineral nucleation, growth and maturation. Synthetic 
CPP-II, and not CPP-I, have been shown to induce 
VSMCs calcification, and serum derived CPPs have a 
higher protective effect compared to synthetic CPPs in 
macrophage activation [138-140]. Recently, CPP 
particles from healthy individuals were shown to 
resemble CPP-I, while those from CKD patients had 
CPP-II-like features with increased mineral maturation 
and decreased levels of fetuin-A and GRP [108]. These 
CKD-derived CPP-II particles are uptake by VSMCs 
and promote calcification by inducing osteochon-
drogenic differentiation and inflammation processes. 
Importantly, incubation of CKD-CPPs with γ-carbo-
xylated GRP rescued the calcification, osteogenic 
differentiation and inflammatory status induced in 
VSMCs [108]. 
 
A common anti-mineralization system acting locally 
and systemically? 
 
Overall, fetuin-A, GRP and MGP are all present in EVs, 
in CPPs and in the calcified ECM of blood vessels, 
sharing functional mechanisms and undoubtedly 
associated with the inhibition of VC. Furthermore, 
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several evidences suggest that these three proteins are 
constituents of a powerful anti-mineralization system 
with synergistic effects to regulate the dynamics of 
mineral formation, both at systemic and tissue levels, to 
prevent ectopic mineral deposition. Co-immuno-
precipitation assays have demonstrated the presence of 
a protein complex containing GRP, fetuin-A, and MGP 
at sites of aortic valve calcification, but also in non-
calcified aortas and in EVs isolated from VSMCs 
cultured in control conditions, indicating a constitutive 
physiological function [92, 108]. In vitro assays have 
shown that mineral crystal formation and maturation is 
dependent on the simultaneous presence of γ-
carboxylated GRP, fetuin-A and MGP [108]. It is also 
noteworthy the similarities on the inhibitory mechanism 
of VSMCs osteochondrogenic differentiation. Fetuin-A, 
MGP, and more recently GRP, were shown to inhibit 
osteochondrogenic differentiation of VSMCs via bone 
morphogenetic proteins (BMP)-dependent signaling, 
with direct binding to the potent osteogenic 
differentiation factor BMP2 [100, 141-144]. However, 
it remains to be clarified whether fetuin-A, GRP and 
MGP act as a single protein complex on BMP2 
inhibition. Collectively, these data support the theory 
that the role of mineralization inhibitors to block 
mineral nucleation is crucial to inhibit VC, possibly 
through a common mechanism acting at systemic and 
tissue levels. Disturbances on the levels or 
functionality of these proteins are associated with 
increased VC. Fetuin-A deficiency has been 
consistently associated with increased arterial 
calcification scores and higher mortality rates, and in 
CKD, low circulating fetuin-A levels are associated 
with progressive aortic stiffening and calcification 
[145-148]. The inactive form of MGP, dephospho-
rylated and uncarboxylated (dp-ucMGP), has been 
correlated with CKD severity and positively associated 
with VC [121, 149-151]. A recent observational study 
showed that total GRP serum levels correlate with the 
deterioration of renal function, and was an independent 
risk factor of VC in diabetic patients with low to 
moderate CKD [152].  
 
The crosstalk between vascular calcification and 
inflammation: a plausible explanation for the 
burden of CVD in CKD 
 
In addition to the complexity of mechanisms involved 
on VC initiation and progression, it is currently 
accepted that it cannot be regarded as an isolated patho-
logical process, with several studies providing 
compelling evidence that VC is highly interconnected 
with inflammation. In fact, it has been suggested that 
pathological calcification and chronic inflammation are 
involved in a positive feed-back loop driving disease 
progression [153-155].  

In CKD, persistent microinflammation has been 
recognized as an important pathophysiological 
component, contributing for cardiovascular disease and 
mortality. Increased C-reactive protein (CRP), which is 
a predictor of cardiovascular risk factors and death in 
the general population, has been long associated with 
increased vascular calcification and mortality in 
hemodialysis patients [156-159]. Inverse correlations 
between GFR and levels of proinflammatory cytokines, 
such as IL-1β, IL-6 and TNF-α, clearly demonstrate the 
role of inflammation on CKD development [160]. In a 
cohort of hemodialysis patients, a pattern of high 
proinflammatory cytokines IL-1β, IL-6, and TNF-α, in 
combination with low anti-inflammatory parameters 
including IL-2, IL-4, IL-5, IL-12, were associated with 
decreased survival [161]. In fact, several of these 
inflammation-related biomolecules have been proposed 
as biomarkers for cardiovascular mortality in CKD, 
although differing in their predictive value [162, 163]. 
The high levels of inflammatory molecules in CKD 
might be explained, at least in part, with increased 
production at tissue level such as at the vascular wall. In 
atherosclerotic lesions, the accumulation of macro-
phages within the vascular wall has been consistently 
co-localized with calcium deposits and associated with 
various phases of calcification [164, 165]. More 
pronounced macrophage infiltration and higher CRP 
were described in coronary artery lesions of CKD [166]. 
Early stages of CKD are already associated with up-
regulation of proinflammatory and pro-osteogenic 
molecules in the vascular wall and calcification of the 
aortic media [167]. In fact, several lines of evidence 
indicate that inflammation triggers and precedes 
osteogenic conversion of VSMCs and the release of 
calcifying EVs, promoting the calcification process. It is 
likely that the effect of inflammation on VC occurs at 
multiple and interconnected levels. It has been proposed 
that inflammation might regulate VC, at least in part, 
through activation of an endoplasmic reticulum stress 
pathway, which in turn may increase inorganic 
phosphate uptake, leading to increased VSMCs 
osteogenic differentiation and increased mineral 
deposition [168]. Activated macrophages at sites of 
tissue damage also produce high levels of matrix 
metalloproteinases, cysteine endoproteases and cyto-
kines, which will enhance elastin and collagen 
degradation. These processes leading to remodelling 
and structural changes of the ECM, will contribute to 
create a nidus for CaP crystal growth [169-171]. Also, 
macrophages have been shown to regulate VC through 
the release of osteogenic factors capable of inducing 
VSMCs osteogenic differentiation [172, 173]. Among 
the many soluble factors released by activated 
macrophages and known to be elevated in CKD, 
TNFα and also IL-1β are reported to enhance VSMCs 
osteogenic activity by increasing BMP2 production 
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[173]. In a scenario of reduced MGP and GRP levels (or 
functionality) to inhibit BMP2 osteogenic signaling, 
VSMCs osteogenic differentiation is potentiated, and 
further aggravated through the release of calcifying 
competent EVs lacking MGP and GRP inhibitors. Also 
interesting is the possible direct role of macrophages on 
vascular calcification, through the release of calcifying 
EVs containing hydroxyapatite nucleation sites, and 
capable of mineralization [174]. These macrophage- 
released EVs are loaded with mineralization related 
factors, and have an increased Ca content and alkaline 
phosphatase activity. Interestingly, GRP was shown to 
be present, at protein and mRNA levels, in EVs released 
by THP-1 differentiated macrophages [94]. Although 
additional studies are required to understand the role of 
GRP in macrophage-derived EVs with calcifying 
capacity, it is licit to speculate that GRP might also be 
involved on the inhibition of mineral nucleation. In fact, 
GRP was shown to be synthetized and γ-carboxylated in 
the majority of human immune system cells, including 
monocytes and macrophages [94], and the anti-
inflammatory properties of GRP have been highlighted. 
Treatments with exogenous GRP or GRP over-
expression were both shown to be able to decrease the 
pro-inflammatory response of THP-1 monocytes/ 
macrophages and of articular cells, by down-regulating 
pro-inflammatory molecules such as TNFα, IL-1β and 
nuclear factor kappa B [93, 94]. A similar down-
regulation of mediators of inflammation and inflamma- 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

tory cytokines was observed when basic calcium 
phosphate (BCP) crystals were coated with GRP, 
clearly indicating GRP as a crosstalk agent between 
inflammatory and calcifying processes [93, 94]. In fact, 
while macrophages are key players signaling ECM 
degradation, calcification and cells differentiation, a 
multitude of CaP crystals have been shown to promote 
pro-inflammatory responses, which again will affect 
VC, in a calcification-inflammation pathological feed-
ing cycle (Figure 3). Micro-calcifications have been 
proposed to be involved in macrophage recruitment in 
early stages of atherosclerosis development [164], and 
BCP crystals stimulate macrophages to produce pro-
inflammatory cytokines affecting VSMCs differen-
tiation [94, 175, 176]. BCP crystals were shown to 
directly interact with macrophages, inducing an 
increased production of TNFα, IL-1β and IL-8, which 
in turn stimulate the activation of endothelial cells and 
recruitment of mononuclear cells [175], amplifying the 
immune response. Coating of BCP particles with fetuin-
A and GRP, resembling CPPs, was shown to decrease 
pro-inflammatory responses when compared to naked 
crystals [93, 94, 140], and synthetic secondary CPP 
particles were shown to induce an up-regulation of 
TNFα accompanied by increased calcification [138, 
139]. More recently, a link between inflammation and 
calcification in CKD was highlighted. CPPs isolated 
from CKD stage 5 patients, containing reduced levels of 
GRP and fetuin-A, were shown to be highly osteogenic  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 3. The vascular calcification-inflammation cycle. Calcium-phosphate (CaP) mineral is present in secondary 
calciprotein particles (CPP-II), in calcifying extracellular vesicles (cEVs) and in the extracellular matrix (ECM) of blood 
vessels. All these forms of CaP mineral are able to induce pro-inflammatory responses in immune and VSMs cells, and the 
osteogenic differentiation of VSMCs. In turn, macrophage pro-inflammatory responses contribute to increased vascular 
calcification through the release of cEVs and inducing osteogenic differentiation of VSMCs, while osteogenic VSMCs drive 
ECM calcification through the release of cEVs and increase in macrophage pro-inflammatory responses, in a vicious cycle.   
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driven factors, with the capacity to increase VSMCs 
calcification by promoting osteogenic differentiation 
and inflammation [108]. Importantly, the dual capacity 
of GRP to act as an anti-inflammatory agent and an 
inhibitor of vascular calcification, was clearly demons-
trated when the calcification/osteogenic differentiation 
and inflammatory status induced in VSMCs was 
rescued by supplementation of those CKD5-CPPs with 
GRP [108]. While the role of fetuin-A in inflammation 
has also been demonstrated, functioning as an acute 
phase reactant protein (reviewed in [91, 177]), the 
research data on the role of MGP in inflammation is still 
quite incipient. Only a few studies have reported a 
possible association between increased levels of MGP 
and reduced inflammation, by inhibiting BMP-induced 
inflammatory pathway [178, 179]. More recently, 
results from a mouse experimental colitis model shown 
that MGP was implicated on the suppression of T cells 
proliferation and cytokine production in Crohn’s disease 
[180].  Also, the association between circulating levels 
of MGP and inflammatory markers is still quite limited 
and inconsistent [181-183]. While an inverse 
association between dp-ucMGP (reflecting vitamin K 
status) and inflammatory markers is shown in some 
observational studies [184], long term vitamin K2 
supplementation do not show a correlation [185].  In 
fact, the association between vitamin K levels, either K1 
or K2, and inflammation is still debatable [186, 187].  
 
In this context, it is also noteworthy the proposed 
function of vitamin K as an anti-inflammatory agent, as 
mediated by a direct vitamin K effect rather than 
through VKDPs functionalization [188-190]. In this 
regard it is interesting to note that the anti-inflammatory 
function of GRP seems to be independent of its γ-carbo-
xylation status [93, 94]. Considering the conflicting 
results and the reduced number of available randomized 
studies addressing causality between vitamin K status 
and inflammation [191-193], additional studies are 
required to establish the direct role of vitamin K in 
inflammation, particularly concerning the inflammation/ 
vascular calcification cycle in CKD-CVD outcomes.  
 
Remarkably, this inflammation/vascular calcification 
crosstalk described in CKD pathology, share many 
similarities with the aging process in the general 
population, including the inflammaging and VSMCs 
senescence [194, 195]. Inflammaging is a recently 
adopted term do define a state of low grade chronic 
inflammatory condition, associated with a significant 
risk factor for morbidity and mortality in the elderly 
(reviewed in [196]). Cellular senescence, in general, has 
been proposed as a potential mechanism of aging and 
age-related diseases, which can be triggered by a 
number of mechanisms and leading to an altered 
secretome, termed the senescence-associated secretory 

phenotype (SASP) (reviewed in [195, 197]). In the 
particular case of VSMCs, senescence has been shown 
to enhance vascular calcification and inflammation, 
with pro-calcific and pro-inflammatory SASPs [195, 
198, 199]. These SASPs share substantial similarities 
with the osteochondrogenic phenotype of VSMCs under 
uremic conditions, including the overexpression of 
bone-related, inflammation and extracellular matrix 
degradation markers. Also, microvesicles isolated from 
elderly people and from senescent endothelial cells, 
characterized by high levels of calcification-related 
proteins and increased calcium content, were shown to 
promote calcification of VSMCs [200]. In fact, VSMCs 
senescence and associated SASP have been suggested 
to contribute for chronic vascular inflammation and 
calcification, loss of arterial function, and the develop-
ment of age-related diseases [195-197]. Thus, it has 
been suggested that altered vascular health under CKD 
settings might represent an example of premature aging 
[194, 195]. In this context, it could be conceivable that 
new knowledge about molecular mechanisms, such as 
the crosstalk between VC and inflammation, in CKD, 
might shed new horizons on the aging process, and 
vice-versa. It is clear that several biomolecules, include-
ing mineralization inhibitors such as GRP, act in a 
highly complex and coordinated network between 
inflammation and calcification processes, and that a 
deeper knowledge of this complex crosstalk is crucial to 
the development of new therapies and biomarkers that 
will benefit the populations at high risk for cardio-
vascular diseases. 
 
Conclusion and perspectives 
 
Cardiovascular diseases continue to be the leading 
cause of death in all CKD stages, despite all research 
efforts to improve our knowledge on the molecular 
mechanisms and processes involved on its development 
and progression. Traditional risk factors are widely 
accepted as insufficient to predict and prevent CVD 
events in CKD, and great attention is now focused on 
the benefits of additional nontraditional risk factors, 
such as VC and inflammation, which are considered 
potentially valuable prognostic tools and targets for 
therapeutics and management of cardiovascular risk. 
Over the years, and accompanying the advances on 
basic science, several therapeutic approaches have been 
proposed as the holy grail for cardiovascular diseases in 
CKD. Some of these have focused on the control of P 
through diet and/or phosphate binders, others have 
hyperparathyroidism as the main therapeutic target, 
either through increase serum Ca with CPBDs or with 
activated vitamin D (calcitrol). Also, secondary 
prevention interventions aiming to reduce the risk of 
cardiovascular events in CKD, have been focused on 
controlling hypertension and dyslipidemia. 
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Angiotensin-converting enzyme inhibitors (ACEis) and 
angiotensin receptor blockers (ARBs) have been used as 
a first therapeutic line in hypertension due to its well-
known renoprotective effect, and still comprise the 
standard of care for nephropathy treatment. Statins, well 
known inhibitors of cholesterol endogenous production, 
are currently used as lipid controlling therapies in 
patients with mild to moderate CKD. Unfortunately, 
several drawbacks have been identified in all these 
therapeutic approaches proposed to manage 
cardiovascular diseases in CKD, with very limited 
effective results. In addition to what was already 
discussed, treatment with moderate- to high-dose 
calcitriol might led to hypercalcemia and hyper-
phosphatemia [201-203], while treatment with multiple 
antihypertensive agents fail to reach target blood 
pressure in some CKD patients [204]. Also, lipids 
control has not been as successful approach as 
predicted, with failure to reduce the cardiovascular 
morbidity and mortality in the end stage renal disease 
population [205, 206].  
 
We propose that incorporating multiple non-traditional 
risk factors, targeting simultaneously different processes 
involved in CVD development and progression such as 
vascular calcification and inflammation, would pave the 
way to i) develop new biomarkers to identify patients 
with increased cardiovascular risk, ii) improve 
traditional multivariate risk assessment, and iii) 
establish new effective and safe therapies. While the 
complexity between vascular calcification and inflam-
mation poses huge scientific challenges to decipher 
crosstalk signals and interconnected molecular path-
ways, it comprises exciting expectations for the 
development of new biomarkers, effective early 
therapeutic and preventive intervention measures, to 
manage cardiovascular diseases in CKD. 
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