Radiocarbon age offsets between two surface dwelling planktonic foraminifera species during abrupt climate events in the SW Iberian margin

4 Blanca Ausín¹, Negar Haghipour¹, Lukas Wacker¹, Antje H. L. Voelker^{2, 3}, David Hodell⁴,

- 5 Clayton Magill⁵, Nathan Looser¹, Stefano M. Bernasconi¹, Timothy I. Eglinton¹
- ⁶ ¹Geological Institute, ETH Zürich, Zurich 8092 Switzerland
- ⁷ ²Centre of Marine Sciences (CCMAR), Universidade do Algarve, Faro 8005-139 Portugal
- ⁸ ³Instituto Português do Mar e da Atmosfera, 1495-006 Lisboa, Portugal
- ⁹ ⁴Department of Earth Sciences, University of Cambridge, Cambridge CB2 3EQ United
- ⁵Lyell Centre, Heriot-Watt University, Edinburgh EH14 4AS United Kingdom
- 11 Kingdom
- 12 Corresponding author: Blanca Ausín (<u>blanca.ausin@erdw.ethz.ch</u>)
- 13

14 Key Points:

- Leaching of the outer shell is a powerful diagnostic for external subtle contamination and
 an effective tool to obtain more reliable radiocarbon dates.
- Co-occurring planktonic foraminifera species sampled across abrupt climatic events show
 radiocarbon age offsets of up to 1030 yr.
- Differential bioturbation coupled with species abundance changes is invoked to explain
 such temporal discrepancies.
- 21

Abstract 22

- This study identifies temporal biases in the radiocarbon ages of the planktonic foraminifera 23
- species *Globigerina bulloides* and *Globigerinoides ruber* (white) in a sediment core from the SW 24
- Iberian margin (so-called 'Shackleton site'). Leaching of the outer shell and measurement of the 25
- radiocarbon content of both the leachate and leached sample enabled us to identify surface 26
- contamination of the tests and its impact on their ¹⁴C ages. Incorporation of younger radiocarbon 27
- on the outer shell affected both species and had a larger impact down-core. Inter-species 28
- comparison of the ¹⁴C ages of the leached samples reveal systematic offsets with ¹⁴C ages for G. 29
- ruber being younger than G. bulloides ages during the last deglaciation and part of the Early and 30
- mid-Holocene. The greatest offsets (up to 1030 yr) were found during Heinrich Stadial 1 (HS1), 31 32
- the Younger Dryas (YD), and part of the Holocene. The potential factors differentially affecting 33 these two planktonic species were assessed by complementary ¹⁴C, oxygen and carbon isotopes,
- and species abundance determinations. The coupled effect of bioturbation with changes in the 34
- abundance of G. ruber is invoked to account for the large age offsets. Our results highlight that 35
- ¹⁴C ages of planktonic foraminifera might be largely compromised even in settings characterized 36
- by high sediment accumulation rates. Thus, a careful assessment of potential temporal biases 37
- must be performed prior to using ¹⁴C ages for paleoclimate investigations or radiocarbon 38
- calibrations (e.g. marine calibration curve Marine13 (Reimer et al., 2013)). 39

40 **1** Introduction

For decades, fossil planktonic foraminifera have been a valuable source of paleoceanographic 41

information, providing proxies for variations in ice-volume, sea level, salinity, temperature, and 42 nutrients (e.g. Pearson, 2012). Since the discovery of the radiocarbon (¹⁴C) dating technique in 43

the late forties (Libby et al., 1949), radiocarbon age determination of planktonic foraminifera has 44

become a cornerstone for paleoclimate investigations spanning the last 50,000 years. Most 45

- studies rely on this method to build chronostratigraphic frameworks for marine sediment 46
- sequences and constrain changes in thermohaline circulation by estimating radiocarbon 47
- ventilation ages. However, prior works have demonstrated that planktonic foraminifera ¹⁴C ages 48
- might not always be a reliable indicator of their depositional ages due to numerous causes, as 49
- summarized by Mekik (2014). For instance, contamination trough radiocarbon addition by 50
- secondary calcite precipitation or adhesion of atmospheric carbon, which can go unnoticed 51
- during visual sample inspection under an optical microscope, can lead to large deviations in ¹⁴C 52
- ages (Wacker et al., 2014; Wycech et al., 2016). Other possible causes of temporal biases include 53
- bioturbation along with differential dissolution and fragmentation (Barker et al., 2007, and 54
- 55 references therein), differential bioturbation coupled with species abundance gradients (e.g. Bard
- et al., 1987b), transport and deposition of reworked specimens (Broecker et al., 2006), and 56
- distinct calcifying habitats (Lindsay et al., 2015). All these might differentially affect 57
- foraminifera species and their influence on foraminifera ¹⁴C ages might be largely overlooked if, 58
- as in most paleo-investigations, only samples of one species are analyzed per sediment horizon. 59 Thus, a more thorough assessment of the potential temporal biases between co-occurring
- 60
- foraminifera species is required prior conducting investigations primarily based on climate 61 signals derived from foraminifera tests. Given age discrepancies might exceed the duration of 62
- abrupt climate events (> 1,000 yr) (Mekik, 2014), important questions arise in relation to the 63
- applicability of the latter approach in regions where marine sediments have a unique potential to 64
- unravel rapid climate and environmental changes. 65

In this regard, The so-called Shackleton sites, MD95-2042 and IODP Site U1385, on the SW

- 67 Portuguese margin constitute benchmark cores for paleocenographic studies. For instance, Bard
- et al. (2004) produced a down-core sequence of *G. bulloides* ¹⁴C ages in core MD95-2042, which
- 69 was incorporated into IntCal09/Marine09 (Reimer et al., 2009) and subsequent updates (Reimer
- et al., 2013). This location has also emerged as one of the few regions in the world where direct
- correlation of marine signals with both Greenland and Antarctic ice-core signals are feasible
 (Shackleton et al., 2000), detailed chronostratigraphies have been developed (e.g. Bard et al.,
- (Shackleton et al., 2000), detailed chronostratigraphies have been developed (e.g. Bard et al.,
 1987a; Shackleton et al., 2004), and where ventilation and reservoir ages have been studied
- (Skinner & Shackleton, 2004; Skinner et al., 2014), all these based on ¹⁴C ages of one species of
- 75 planktonic foraminifera per sediment horizon.

Despite the importance attached to this location and prior works posing severe pitfalls to the latter approach, assessment of potential temporal biases trough ¹⁴C determinations on paired species-specific samples has not yet been conducted. Consequently, potential temporal biases

- might have been disregarded in derived paleoclimate interpretations from this key study area. We aimed at identifying possible temporal biases in the 14 C ages of planktonic foraminifera species,
- aimed at identifying possible temporal biases in the ¹⁴C ages of planktonic foraminifera specie analyzed in samples from a sediment core retrieved close to the location of IODP Site U1385,
- analyzed in samples from a sediment core retrieved close to the location of IODP Site 01385, and assessing the potential causes for age deviations. To accomplish this, we investigated paired
- 14 C ages of two of the most commonly used planktonic foraminifera species: *Globigerina*
- bulloides and Globigerinoides ruber (white) and measured complementary oxygen (δ^{18} O) and
- 85 carbon (δ^{13} C) isotopes, and species abundance data to elucidate possible reasons why
- ⁸⁶ radiocarbon ages may diverge for different foraminifera species from the same sample.

87 **2 Study area**

88 The SW Iberian margin (NE Atlantic Ocean) is a transitional region where the Portugal Current

- 89 (PC), a branch of the North Atlantic Current, flows southward year-round (Fig. 1a) (Brambilla et
- al., 2008; Pérez et al., 2001). From October to March, the Iberian Poleward Current (IPC), a
- branch from the Azores Current, flows poleward along the W Portuguese margin (Haynes &
- Barton, 1990). This shift in the near-shore surface circulation is linked to the seasonal changes in
- 93 the regional atmospheric circulation, which determine two well-differentiated oceanographic
- regimes. From March/April to September/October, prevailing northeasterly winds may induce
- 95 Ekman transport offshore and subsequent upwelling of sub-surface waters. During the rest of the
- 96 year, coastal downwelling occurs under prevailing southwesterly winds (Peliz et al., 2005).
 97 Unwelled sub surface (100, 500 m) waters consist in North Atlantic Central Water of either
- Upwelled sub-surface (100-500 m) waters consist in North Atlantic Central Water of either
 subtropical (NACWst; 100-250 m) or subpolar (NACWsp; 250-500 m) origin. The warmer and
- 98 subtropical (NACWst; 100-250 m) or subpolar (NACWsp; 250-500 m) origin. The warmer and 99 nutrient-poor NACWst overlies the colder, nutrient-richer NACWsp, which only upwells during
- strong upwelling events. Below the NACW, the denser Mediterranean Outflow Water (MOW)
- flows poleward between 500 and 1700 m. Below the intermediate waters, the Northeast Atlantic
- 102 Deep Water (NEADW) flows southward (van Aken, 2000), along with varying contributions of
- 103 the Upper Circumpolar Deep Water (UCDW), the Upper Labrador Sea Water (ULSW), and the
- 104 Antarctic Bottom Water (AABW) (Jenkins et al., 2015).

105 **3 Materials and Methods**

- 106 We analysed down-core sediment samples from kasten core SHAK06–5K (37°34'N, 10°09'W,
- 107 2,646 m), recovered by RSS James Cook during the cruise JC089 in 2013 in the vicinity of the
- 108 Shackleton Sites (*Hodell et al.*, 2014).

109 **3.1. Radiocarbon determinations**

The majority of the organic matter contained in the initial sediment was extracted with organic 110 solvents following Ohkouchi et al. (2005) to use the organic fraction in a follow-up investigation. 111 To assess the possible influence of this procedure on the foraminifera contained in the solvent-112 extracted residue, we also analysed five samples of G. bulloides tests selected from non-113 extracted sediments. Between 15-30 g of dry sediment were diluted in MiliQ® water and 114 sonicated for only 15 seconds for disaggregation while avoiding shell fragmentation. The 115 solution was then wet-sieved through 300 µm and 250 µm mesh sieves and thoroughly washed 116 using a high-pressure stream of MiliO[®] water. The resulting 250-300 µm size fraction was 117 immediately dried at 60°C overnight, prior to collecting 45-100 well-preserved shells of G. 118 bulloides or G. ruber from each sample. In some intervals, only 7-20 specimens of G. ruber were 119 available, limiting the amount of measured carbon (Tables S1 and S2). Radiocarbon 120 determinations $({}^{14}C/{}^{12}C)$ were performed with a gas ion source in a Mini Carbon Dating System 121 (MICADAS) at the Laboratory of Ion Beam Physics, ETH Zürich with an automated method for 122 acid digestion of carbonates whose sensitivity allows for less than 10 µg of total carbon to be 123 124 measured (*Wacker et al.*, 2013). The method is outlined as follows: vials (septa sealed 4.5 ml exetainers vials from Labco Limited, UK) containing the samples were purged for 10 min with a 125 flow of 60 ml/min He to remove atmospheric CO₂. Later, samples were briefly leached by 126 adding 100 µL of ultrapure HCl (0.02 M) with an automated syringe to remove possible surface 127 contaminants. The CO₂ released from the leachate, referred to as "leachate" was transported by 128 helium to a zeolite trap and automatically injected into the ion source to be measured for 129 130 radiocarbon. The remaining sample, containing 12 µg C and referred to as "leached sample" was subsequently acidified by adding 100 μ L of ultrapure H₃PO₄ (85%) that was heated to 60°C for 131 at least 1 h. The released CO_2 was loaded in a second trap and injected into the ion source to be 132 analyzed for radiocarbon (Wacker et al., 2014). Bard et al. (2015) showed that the F¹⁴C (fraction 133 modern according to Reimer et al. (2004)) of leachates from sequential leaching of discrete 134 samples converge towards a comparable value to that of the $F^{14}C$ of the leached sample (Bard et 135 al., 2015). Thus, we propose differences < 5 % between the two values as an indication of near-136 complete removal of surface contaminants. Five replicates of G. bulloides samples, referred to as 137 "untreated", were directly measured without leaching the outer shell to assess the necessity of 138 this method. This gas ion source AMS system has a background ${}^{14}C/{}^{12}C$ value of $F^{14}C 0.0020+$ -139 0.0010 (50000 BP), determined on marble (IAEA-C1). Radiocarbon determinations were 140 corrected for isotopic fractionation via ${}^{13}C/{}^{12}C$ isotopic ratios and are given in conventional 141 radiocarbon ages. Radiocarbon ages and errors were not rounded to avoid artificial increments of 142 age offsets and propagated errors. 143

144 **3.2. Age-depth model**

145 The age depth model for core SHAK06–5K is a depositional model (P_Sequence type) based on

146 41 ¹⁴C ages of monospecific samples of *G. bulloides* (Table 1) built with the calibration package

147 Oxcal (Bronk Ramsey, 2009). Conventional radiocarbon ages were calibrated to incorporate a

static marine reservoir effect using Marine13 curve (Reimer et al., 2013). The resulting age-

149 depth model spans the last 28,000 years.

150 **3.3. Scanning Electron Microscope (SEM) imagery**

151 Representative well-preserved specimens were selected from discrete intervals to assess surface

preservation and possible early diagenetic overgrowth. Samples were graphite coated and SEM
 images were generated using a JEOL JSM-6390LA digital SEM with a W filament.

154 **3.4. Oxygen and carbon stable isotope analyses**

155 Oxygen and carbon stable isotope analyses were determined every 2 cm when possible. In total,

156 164 samples of *G. bulloides* and 140 samples of *G. ruber* were considered. Between 6 and 12

specimens of each species were measured with a Gas Bench II connected to a Delta V Plus

isotope ratio mass spectrometer at the Stable Isotope Laboratory of Climate Geology, ETH

- ¹⁵⁹ Zurich (Breitenbach & Bernasconi, 2011). Calibration to the VPDB scale was accomplished
- using two in-house standards previously calibrated against the NBS-18 and NBS-19 international
- standards. The associated long-term standard deviation is < 0.07%.

162 **3.5. Species abundance**

163 Representative aliquots of the 250-300 µm size fraction, containing at least 300 planktonic

- 164 for a shells, were obtained with a splitter. The relative and absolute abundances of G.
- *bulloides* and *G. ruber* were analysed in 33 samples spaced every 10 cm. Absolute abundances
- were calculated using the dry weight of the initial sieved sample.

167 **4 Results**

168 Radiocarbon ages of. *G. bulloides* samples from both extracted and non-extracted sediments

show younger leachates (up to 2000 yr) compared to the corresponding leached samples (Fig. 2,

Table 2). The leached samples from both types of sediments agree very well within their 1- σ

171 error.

172 The 5 untreated samples are younger than the paired leached samples and older than the leachate

173 (Fig. 3a). Age discrepancies among these three types of material measurements increase down-174 core.

- Radiocarbon determinations generally reveal younger ages for the leachate in relation to the 175 corresponding leached samples for both species (Fig. 3a-b, Table 3). Leached samples display a 176 systematic aging down-core with few reversals of minimal magnitude. By contrast, ¹⁴C ages of 177 the leachate deviate from this trend, showing increasing variability down-core. While many of 178 the age offsets between leached samples and paired leachates within the top 90 cm fall into their 179 associated 1- σ uncertainty envelope, they show an apparent increase in magnitude down-core (up 180 to 1595-1660 yr for both species at 260 cm, and up to 4015 yr for G. bulloides at the bottom of 181 the core) (Fig. 3c, Table 3). Differences < 5 % between the F¹⁴C of leachates and corresponding 182 leached samples indicate near-complete removal of surface contaminants for all the samples 183 (Tables S1 and S2). Inter-species age differences of the leached sample reveal age offsets of up 184 to 1030 yr, and only three of them overlap within their associated $1-\sigma$ uncertainty (Fig. 3d, Table 185 186 3). G. bulloides ages are generally older than G. ruber ones, a pattern that is reversed for two samples of the last glacial maximum, and within the top 20 cm of the core. The largest offsets 187 coincide with the occurrence of three abrupt climate events: the Heinrich Stadial 1 (HS1), 188 Younger Dryas (YD), and part of the Holocene (approximately 9-6 kyr). Limited material 189 190 prevented some samples to be leached and were measured as untreated samples. Three of these G. ruber samples (280 cm, 270 cm, and a replicate of the latter) strongly deviate towards 191
- 192 younger ages.

193 **4.1. SEM imagery**

Overall, tests of both species exhibit good preservation with minor overgrowth (i.e., secondary

calcite) on the original base of the spines (Fig. S1). Such features are consistently observed in all
 samples, irrespective of their depth interval. Both, *G. bulloides* and *G. ruber* show variable

samples, irrespective of their depth interval. Both, *G. bulloides* and *G. ruber* show variable
 amounts of coccoliths glued on the outer wall. Nevertheless, this feature does not affect all the

samples nor all the specimens, and there is no relationship between the presence nor the amount

199 of coccoliths and sample depth.

4.2. Isotopic composition of *G. bulloides* and *G. ruber*

Carbon isotopes of *G. bulloides* range between -0.4 and -1.8 ‰, and show higher values during

the cold intervals associated to the HS2, HS1 and YD, and part of the Holocene (Fig. 4b). The δ^{13} C data of *G. ruber* vary between 1.4 and -0.4 ‰ and show relatively constant values for the

 δ^{13} C data of *G. ruber* vary between 1.4 and -0.4 ‰ and show relatively constant values for the first half of the record (340-170 cm) and an increasing trend towards more positive values

thorough the Holocene. Oxygen isotopes of *G. bulloides* range between 0.1-3.0 ‰ and record

short-term isotopic changes associated with HS2, HS1 and YD (Fig. 4c). The δ^{18} O data of G.

ruber range between -0.1 and 2.2 %. This record shows a smoother profile than that of G.

bulloides and lacks samples for part of HS1. Both isotopic curves are out-of-phase by at least 10

209 cm for most of the last deglaciation (70-140 cm). The oxygen isotopic difference between both

species ($\Delta \delta^{18}O_{b-r}$) ranges from -0.3 ‰ to 1.7 ‰ and shows highest values during the HS2, HS1,

211 and YD (Fig. 3c).

212 **4.3.** Variation in species abundances

Average absolute and relative abundances of G. bulloides are 6 specimens g^{-1} and 24%,

respectively, and show large increases during the cold intervals HS2, HS1, and the YD (up to 25 specimens g^{-1} and 72%) (Fig. 4e). *G. ruber* shows average absolute and relative abundances of 1

specimens g^{-1} and 72%) (Fig. 4e). G. *ruber* shows average absolute and relative abundances of 1 specimens g^{-1} and 4%. This species is almost absent during HS2, HS1 and YD, and increases to

up to 8 specimens g^{-1} and 13% during the late Holocene (top 30 cm).

218 **5 Discussion**

5.1. Contamination through secondary radiocarbon addition: the need for a leaching step

Age discrepancies between paired leached samples and leachates highlight the secondary addition of younger carbon and subsequent contamination on the outer shell (Fig. 3a and b, Table

3), as observed by previous authors when applying similar leaching steps (Bard et al., 2015).

S), as observed by previous authors when applying similar reaching steps (Bard et al., 2013). Such contamination was not introduced by using organic solvents for lipid extraction, as the

leachates were always younger than corresponding leached samples, regardless of whether

foraminifera come from solvent-extracted or non-extracted sediments (Fig. 2, Table 2). The

magnitude of such age discrepancy does not always agree for both methods, but this can be

explained by the varying and small amounts of C measured from the leachate (Table S1).

228 Moreover, comparison of ¹⁴C ages of leached samples from both types of sediments show

negligible differences (Fig. 2). These results are in line with previous findings of Ohkouchi et al.

(2005), who concluded that tests from solvent-extracted sediments can be reliably used for ${}^{14}C$

determinations. Additional influence of other sample preparation steps cannot be fully discarded.

For instance, soaking of foraminifera during wet sieving can activate their reactive surface and

233 enable adhesion of ambient carbon. However, we minimized the potential influence of this

- process by drying the samples in the oven right after sieving. Another possibility to consider is 234
- the influence of early diagenesis. Minor signs of secondary calcite precipitation are apparent by 235
- SEM imagery in all the tests (Fig. S1), regardless of sample depth and species. Diagenetic 236
- alteration of shells through ΣCO_2 exchange with pore waters with a younger ¹⁴C signature might 237
- explain the negligible impact of secondary calcite precipitation on samples from the top 60 cm 238
- and the more variable and larger effect observed down-core (Fig. 3c). These results highlights 239 the need of a leaching step to remove surface contaminants, especially for older samples, for
- 240
- which age biases can be greater than 1000 yr (Fig. 1a, Table 3). 241
- Regarding the untreated samples of G. ruber, two large deviations toward younger-than-expected 242
- ages are also evident at the bottom of the core (Fig. 3b). Within single depth horizons of a core 243
- retrieved from the Portuguese margin, Löwemark and Grootes (2004) found large intra-species 244
- age discrepancies (up to 2590 years) when comparing sediments affected and unaffected by trace 245
- fossils indicating bioturbating organisms (e.g., Zoophycos). Because ichnofossils occur 246
- throughout the sediments of IODP Site U1385 (Rodríguez-Tovar & Dorador, 2014; Rodríguez-247
- Tovar et al., 2015), they most certainly also affect the sediments of core SHAK06-5K. Their 248
- influence would imply that discrete samples from the same sediment horizon would consist of a 249
- mixture in different proportions of foraminifera tests from both bioturbated and non-bioturbated 250 material. The excellent agreement between the two replicates of G. ruber samples from depth
- 251 horizon 270 cm excludes bioturbation as the reason for such age deviations. Addition of younger
- 252 secondary calcite might also explain these age deviations, although lack of material prevented 253
- further assessment. 254

5.2. Inter-species radiocarbon age differences 255

- Assuming removal of the majority of external contamination by the leaching step (Table S1), 256
- secondary radiocarbon addition does not account for the ¹⁴C age differences between the leached 257
- samples of the two species (Fig. 3d), and mechanism(s) differentially affecting foraminifera 258 species must be sought to explain the systematic younger-than-G. bulloides 14 C ages for G.
- 259 ruber. Ideally, such mechanism(s) should also explain changes in the magnitude of the observed
- 260 age offsets with abrupt climate events. In the following, we discuss four possible mechanisms. 261

262 **5.2.1.** Contrasting calcifying habitats

- Differences in calcifying depth and season of the two species might have also played a role in 263
- ¹⁴C age discrepancies. Mollenhauer (1999) demonstrated that inter-species differences of 540 264
- years are possible in upwelling settings, where deep, less-ventilated, "older" waters are upwelled 265
- 266 to the surface. Currently in the study area, the average living depths (ALD) of G. ruber and G.
- *bulloides* are 58 ± 6 and 102 ± 21 m, respectively (Rebotim et al., 2017). While G. ruber is 267
- characteristic of winter hydrographic conditions, G. bulloides is more abundant during the 268 upwelling season (i.e., summer) (Salgueiro et al., 2008). Figure 5 shows the natural radiocarbon
- 269 content (Δ^{14} C) depth profile from a station corresponding to the water column overlying the 270
- depositional area of the study site, extracted from the Global Ocean Data Analysis Project 271
- (GLODAP) (Key et al., 2004). Corresponding natural Δ^{14} C values for ALD of G. ruber and G. 272
- *bulloides* are -59 % and ~ -65 %, respectively, equivalent to an age discrepancy of ~50 yr, 273
- 274 which is insufficient to explain age offsets between species. As seasonality also impacts on the
- 275 optimal conditions for G. ruber and G. bulloides proliferation, we calculated the winter and
- summer natural Δ^{14} C for the upper 500 m of the water column. We applied the linear relationship 276
- between natural Δ^{14} C and dissolved silicate for North Atlantic latitudes (equation (1)) proposed 277

- by Broecker et al. (1995), using summer and winter dissolved silicate estimates (García et al.,
- 279 2014) averaged at 100 and 60 m water depth, respectively, from the 2013 World Ocean Atlas

280 (WOA13).

281 Natural $\Delta^{14}C = -60 - \text{dissolved silicate in }\mu\text{mol/kg}$ (1)

Yet, the estimated seasonal difference in Δ^{14} C is minimal (-3.2 ‰) and negligible in relation to the large uncertainty derived from the silicate method (±15 ‰) (Rubin & Key, 2002).

284 However, it is still possible that the associated radiocarbon reservoirs (or at least one of them) varied in the past during HS1, YD, and part of the Holocene related to the large hydrographic 285 changes that occurred during abrupt climate events in the study area (Voelker & de Abreu, 286 2011). This argument was put forward by Löwemark and Grootes (2004) to explain the large age 287 discrepancy they found between G. bulloides and G. ruber during the YD on the Portuguese 288 margin. In this regard, the incursion of intermediate, extremely ¹⁴C-depleted waters 289 290 characterized by high nutrient content has been suggested to reach latitudes as far as 60°N in the Atlantic during the abrupt cold intervals HS1 and YD (Pahnke et al., 2008; Rickaby & 291 Elderfield, 2005; Thornalley et al., 2011). The authors pointed to Antarctic Intermediate Water 292 (AAIW), which would have extended northward as a consequence of Atlantic Meridional 293 Overturning Circulation (AMOC) weakening or collapse. Indeed, such drastic reductions of 294 AMOC during HS1 and YD prevented the formation of new North Atlantic Deep Water 295 (NADW) (McManus et al., 2004), which would have then been replaced by AAIW. However, 296 the hypothesis of markedly different radiocarbon reservoirs affecting each of the species is not 297 fully supported by other data. G. ruber δ^{13} C values give no clear indication of upwelling of 298 nutrient-rich waters occurring during HS2 or YD, and lack of G. ruber during HS1 prevents 299 further interpretation (Fig. 4b). More positive δ^{13} C values of G. bulloides rather suggest that 300 upwelling had decreased at those times. Although less negative δ^{13} C values could also be the 301 result of upwelling and subsequent nutrient consumption by primary producers, resulting in a 302 ¹³C-enrichment of surrounding waters, this scenario disagrees with previous studies. Estimates of 303 export production by (Salgueiro et al., 2010) and of primary productivity and upwelling 304 occurrence by (Incarbona et al., 2010) are best explained with the arrival of freshwater during 305 306 HS1 and YD resulting in water column stratification, decreased upwelling and a large drop in productivity. Moreover, assuming that the general ecological preferences of each species 307 remained constant during the last deglaciation, upwelling of AAIW would preferentially affect 308 G. bulloides. Yet, radiocarbon ages corresponding to the δ^{18} O excursions of G. bulloides 309 associated with HS2, HS1 and YD are in very good agreement with the established age ranges 310 for these abrupt climate events (Fig. S2), which underpins the notion that G. bulloides ¹⁴C ages 311 312 are not, at least severely, biased in relation to their depositional ages. Additionally, we believe this mechanism fails to explain temporal discrepancies during the Holocene. Even though a 313 relative increase of AAIW influence in higher northern latitudes can be recognized from 314 neodymium isotope ratios (Pahnke et al., 2008), there is no evidence of a large reduction of 315 AMOC at that time, which is believed to have been relatively strong during the Holocene 316 (Gherardi et al., 2005; Thornalley et al., 2011). Although we cannot completely refute that the 317 influence of water masses with distinct radiocarbon content (Δ^{14} C) contributed to the observed 318 age offsets during HS1 and YD, an additional mechanism is needed to explain the smoothed 319 δ^{18} O curve of G. ruber in relation to that of G. bulloides (Fig. 4c) a feature typical of bioturbated 320 sediment (Bard et al., 1987a). 321

322 **5.2.2.** The Barker effect

The Barker effect (first proposed by Andree et al. (1984), Peng & Broecker (1984), Broecker 323 324 et al. (1984), and Broecker et al. (2006) and coined by Broecker and Clark (2011), refers to the differential effect of partial dissolution and subsequent fragmentation of shells along with 325 326 bioturbation on the ¹⁴C ages of different species planktonic foraminifera (Barker et al., 2007; Broecker & Clark, 2011). Given that different species may dissolve at different rates, fragile and 327 dissolution-prone species (i.e., G. ruber) will fragment in the sediment mixed layer more easily 328 than more robust, dissolution-resistant species (i.e., G. bulloides) (Berger, 1968; 1970). This 329 translates into shorter residence times in the sediment for G. ruber relative to G. bulloides. 330 Consequently, the pool of non-fragmented shells of G. ruber at a given horizon will be biased 331 towards younger specimens, because specimens that reside in the bioturbated layer for longer 332 periods are more likely to be fragmented. As only well-preserved whole tests were picked for ¹⁴C 333 analyses, monospecific samples of G. ruber will be, on average, younger than G. bulloides. 334

335 This effect was invoked to account for age discrepancies among planktonic foraminifera species of up to several thousand years especially in cores characterized by low sediment 336 accumulation rates (< 3 cm/kyr) (Barker et al., 2007; Broecker et al., 2006; Broecker & Clark, 337 2011; Peng & Broecker, 1984). The latter is an important factor to be taken into account since 338 the lower the sedimentation rate, the longer the exposure time to the effect of bioturbation. High 339 sedimentation rates of core SHAK06–5K only decrease to a minimum of 6 cm/kyr for the 340 341 interval from 80 to 50 cm (Fig. 4a). However, the observed apparent increase in the inter-specific ¹⁴C age offset is not exclusive to this horizon and visual inspection of nannofossils confirmed 342 their excellent preservation thorough the Holocene. 343

Yet, highly productive settings may have favored acidification of underlying waters and pore 344 waters through CO₂ release by respiration. Despite being part of a major upwelling system, total 345 organic content in core SHAK06-5K and broader region (Baas et al., 1997; Magill et al., 2018) 346 ranges from only 0.2 to 0.7 % for the whole studied period, suggesting that substantial 347 dissolution by organic carbon oxidation is unlikely. Similarly, changes in the depth of the calcite 348 349 lysocline are also assumed to have had a negligible effect, because the water depth of the core (2578 m) is located well above that level. Influence of more corrosive water masses could have 350 promoted increased dissolution of G. ruber. However, incursion of southern sourced water-mass 351 was mostly limited to glacial periods (Skinner & Shackleton, 2004), characterized by relatively 352 high sedimentation rates. Therefore, we consider it is unlikely that the Barker effect had a major 353 influence in the observed ¹⁴C age discrepancies between foraminifera species. 354

5.2.3. Lateral and along-slope transport

Introduction of reworked specimens by advection and along-slope sedimentary processes could 356 also contribute to radiocarbon age discrepancies, a mechanism proposed in cores from the 357 Eastern Equatorial Pacific, the Mid-Atlantic Ridge, and the South China Sea (Broecker et al., 358 359 2006). Addition of reworked calcareous nannofossils by lateral transport has been observed in the study area (Incarbona et al., 2010) and in core SHAK06-5K (Magill et al., 2018), especially 360 during HS1. Simulated bottom velocities in the study area might locally exceed 10 cm/s, able to 361 transport dense, 250-300 µm sized grains of foraminifera when locally reaching >40 cm/s 362 (Hernández-Molina et al., 2011). To explain the observed older-than-G. ruber ages for G. 363 *bulloides* by any of these mechanisms, transport and deposition of large numbers of reworked 364 (old) G. bulloides would be necessary, along with preferential fragmentation of G. ruber during 365 transport. This might be a feasible scenario, albeit it would imply that samples of G. bulloides 366 are the ones affected by a temporal bias between biosynthesis and deposition. We thus discard 367

this hypothesis based on: (i) the good agreement of *G. bulloides* δ^{18} O excursions during short-

term climate changes and their associated established age ranges (Fig. S2) and (ii) the smoothed

 δ^{18} O curve of *G. ruber* that hardly resolves the major abrupt climate events occurred the last

deglaciation (Fig. 4c). Such results suggest that *G. ruber*, rather than *G. bulloides*, accounts for

the age offsets between the two species.

5.2.4. Differential bioturbation coupled with changes in species abundances

374 The joint effect of downward mixing of foraminifera due to bioturbation and changes in their abundance might promote ¹⁴C offsets between species (Andree et al., 1984; Bard et al., 1987a; 375 Broecker et al., 1999; Broecker et al., 1984; Peng & Broecker, 1984). Foraminifera will always 376 be mixed from a horizon of high abundance to low abundance. Given an increase (decrease) in 377 the abundance of a certain species in a sediment horizon, bioturbation is expected to down-mix 378 (up-mix) some of these "young" ("old") foraminifera. As a result, the horizon underneath (above 379 380 it) will be enriched in younger (older) specimens, leading to corresponding deviations in their expected ¹⁴C ages. The clear aging trend with depth gives no indication of homogenization by 381 bioturbation > 10 cm (Figs. 2a and b). However, the δ^{18} O record of G. ruber lags that of G. 382 bulloides by 10 cm during the HS1, last deglaciation, and YD (Fig. 4d). This shift is more 383 apparent when comparing samples at lower resolution (every 10 cm only) (Figure S3) and 384 suggests a mixed layer depth equivalent to ≤ 10 cm. Similar out-of-phase relationships between 385 species-specific isotopic records have previously been explained through this mechanism (Bard 386 et al., 1987a; Bard et al., 1987b; Hutson, 1980). Löwemark and Grootes (2004) also invoked it to 387 388 account for differences of 75-350 years between G. bulloides and G. ruber in a nearby core from the SW Portuguese margin. According to these authors, and given the large changes in the 389 abundance of G. bulloides relative to those of G. ruber (Fig. 4e), a larger impact on the ¹⁴C ages 390 of the former species would be expected. This hypothesis is difficult to reconcile with the 391 392 smoothed δ^{18} O curve of G. ruber. We would expect G. ruber to be the species more affected by differential bioturbation than G. bulloides. Indeed, and with the exception of the sample at 60 393 cm, each large increase in $\Delta \delta^{18}$ O is followed by a rise in G. ruber absolute abundance (Figs. 3c 394 and d) that, despite their moderate magnitude, also follow periods of extremely low abundance or 395 396 near absence. Our data is a faithful reproduction of previous mathematical simulations of Trauth (2013) and Bard et al. (1987a), who demonstrated the effects of bioturbation coupled with 397 abundance changes in the oxygen isotopic record of a "warm" species (i.e., G. ruber) during 398 deglaciation (see figure 4 in Bard et al., 1987a). Our results do not agree well with their model 399 for the "cold" species (i.e., G. bulloides) because they are permanently present, and 400 "authoctonous" specimens can make up for the radiocarbon addition from foraminifera 401 402 belonging to adjacent sediment horizons.

403 **6 Conclusions**

Radiocarbon dates of paired monospecific samples of *G. bulloides* and *G. ruber* (white) were determined in marine sediments retrieved from the SW Iberian Margin. ¹⁴C age differences of several thousands of years between paired leachates and leached samples indicate addition of younger radiocarbon in both species. This process is attributed to precipitation of younger secondary calcite by $\sum CO_2$ exchange with ¹⁴C-rich pore waters and/or ambient carbon adhesion during sample sieving, thus having a more variable and greater impact down-core. Leaching of the outer shell has proven to be a powerful diagnostic for external contamination, and more

411 importantly, a tool to obtain more reliable radiocarbon dates, especially when dealing with older

- samples (>10 kyr). Our findings underscore the need to properly leach foraminiferal samples
- 413 prior to radiocarbon dating.
- Inter-species age discrepancies of the leached samples ranged between 60 and 1030 years. *G*.
- 415 *ruber* yielded younger ages than paired *G. bulloides* in the same sample throughout most of the
- 416 record. Larger age discrepancies were found during HS1, YD, and part of the Holocene, and
- 417 were attributed to the effects of bioturbation coupled with species abundance changes. This
- 418 mechanism has a greater impact if the species in question has periods of absence (i.e., *G. ruber*)
- 419 rather than greater abundance changes (i.e., *G. bulloides*) because the population of rarer species
- is more affected by the addition of asynchronous foraminifera compared to a more abundant
 species. This process alone appears to provide a satisfactory explanation for the observed age
- 421 species. This process alone appears to provide a satisfactory explanation for the observed age 422 offsets, although additional influences such as past variations in the 14 C reservoirs of the
- 422 offsets, although additional influences such as past variations in the ${}^{14}Cr$ 423 respective calcifying habitats cannot be fully ruled out.
- 424 After a complete subjection of material ^{14}C and an answer line in these two second
- 424 After a careful evaluation of potential ${}^{14}C$ age anomalies in these two species, we conclude that, 425 unlike *G. ruber*, *G. bulloides* can be reliably used to develop foraminifera-based ${}^{14}C$ age
- 426 chronostratigraphies and to assess ocean ventilation ages in the study area.
- 427

428 Author contribution

- B.A. and T.I.E. planned this investigation. N.H. and L.W. assisted with radiocarbon analyses.
- 430 N.L. assisted with SEM imagery. B.A. prepared the samples, analyzed the results and wrote the
- 431 manuscript with contributions by all co-authors.
- 432

433 Acknowledgements and Data

- 434 We thank two anonymous reviewers for their valuable contribution to improve this manuscript.
- 435 We would like to thank M. Jaggi for her assistance during isotope analyses. This study was
- 436 supported by an ETH Zurich Postdoctoral Fellowship from the Swiss Federal Institute of
- Technology in Zurich (ETHZ) and the project 200021_175823 funded by Swiss National
- 438 Science Foundation, both granted to B.A. A.H.L.V. acknowledges financial support from the
- 439 Portuguese FCT through grants IF/01500/2014 and CCMAR (UID/Multi/04326/2013). The core
- for this study was collected during Cruise 089 aboard the RSS *James Cook* that was made
 possible with support from the UK Natural Environmental Research Council (NERC Grant
- 441 possible with support from the UK442 NE/J00653X/1).
- All original data used in this study, necessary to understand, evaluate and replicate this research
- is presented and available in tables within the main text and supporting information and it will be
- equally available in the public repository PANGAEA®.
- 446

447 **References**

Andree, M., Beer, J., Oeschger, H., Broecker, W., Mix, A., Ragano, N., . . . Wölfli, W. (1984).
 14C measurements on foraminifera of deep sea core V28-238 and their preliminary
 interpretation. *Nuclear Instruments and Methods in Physics Research Section B: Beam*

451	Interactions with Materials and Atoms, 5(2), 340-345. doi:https://doi.org/10.1016/0168-
452	583X(84)90539-1
453	Baas, J. H., Mienert, J., Abrantes, F., & Prins, M. A. (1997). Late Quaternary sedimentation on
454	the Portuguese continental margin: climate-related processes and products.
455	Palaeogeography, Palaeoclimatology, Palaeoecology, 130(1), 1-23.
456	doi: <u>https://doi.org/10.1016/S0031-0182(96)00135-6</u>
457	Bard, E., Arnold, M., Duprat, J., Moyes, J., & Duplessy, JC. (1987a). Reconstruction of the last
458	deglaciation: deconvolved records of δ 18O profiles, micropaleontological variations and
459	accelerator mass spectrometric14C dating. Climate Dynamics, 1(2), 101-112.
460	doi:10.1007/bf01054479
461	Bard, E., Arnold, M., Duprat, J., Moyes, J., & Duplessy, J. C. (1987b). Bioturbation Effects on
462	Abrupt Climatic Changes Recorded in Deep Sea Sediments. Correlation between $\delta 180$
463	Profiles and Accelerator 14C Dating. In W. H. Berger & L. D. Labeyrie (Eds.), Abrupt
464	Climatic Change: Evidence and Implications (pp. 263-278). Dordrecht: Springer
465	Netherlands.
466	Bard, E., Rostek, F., & Ménot-Combes, G. (2004). Radiocarbon calibration beyond 20,000 14C
467	yr B.P. by means of planktonic foraminifera of the Iberian Margin. <i>Quaternary Research</i> ,
468	61(2), 204-214. doi: <u>https://doi.org/10.1016/j.yqres.2003.11.006</u>
469	Bard, E., Tuna, T., Fagault, Y., Bonvalot, L., Wacker, L., Fahrni, S., & Synal, H. A. (2015).
470	AixMICADAS, the accelerator mass spectrometer dedicated to C-14 recently installed in
471	Aix-en-Provence, France. Nucl Instrum Meth B, 361, 80-86.
472	Barker, S., Broecker, W., Clark, E., & Hajdas, I. (2007). Radiocarbon age offsets of foraminifera
473	resulting from differential dissolution and fragmentation within the sedimentary
474	bioturbated zone. <i>Paleoceanography</i> , 22(2). doi:doi:10.1029/2006PA001354
475	Berger, W. H. (1968). Planktonic Foraminifera: selective solution and paleoclimatic
476	interpretation. Deep Sea Research and Oceanographic Abstracts, 15(1), 31-43.
477	$\frac{\text{doi:} \underline{\text{https://doi.org/10.1016/0011-/4/1(68)9002/-2}}{\underline{\text{M}_{1000000000000000000000000000000000000$
478	Berger, W. H. (1970). Planktonic Foraminifera: Selective solution and the hysocline. <i>Marine</i> $C_{1} = \frac{9(2)}{111} \frac{111}{129} \frac{129}{120} \frac{120}{100} \frac{100}{100} \frac{100}{10$
4/9	$Geology, \delta(2), 111-138. doi: https://doi.org/10.1016/0025-322/(/0)90001-0$
480	Atlantici 2 Origin and transformation Lournal of Coophysical Passanchi Oceans
481	Adamic. 2. Origin and transformation. Journal of Geophysical Research. Oceans, 113(CA). doi:10.1020/2006IC004063
402	Breitenbach S E M & Bernasconi S M (2011) Carbon and ovugan isotope analysis of small
405	carbonate samples (20 to 100 µg) with a GasBench II preparation device Ranid
404	Communications in Mass Spectrometry, 25(13), 1910-1914, doi:doi:10.1002/rem 5052
405	Broecker W Barker S Clark F Haidas I & Bonani G (2006) Anomalous radiocarbon
480	ages for foraminifera shells. <i>Paleoceanography</i> 21(2). doi:doi:10.1029/2005PA001212
488	Broecker W & Clark F (2011) Radiocarbon-age differences among coexisting planktic
400	foraminifera shells: The Barker Effect Paleoceanography 26(2)
490	doi:doi:10.1029/2011PA002116
491	Broecker, W., Matsumoto, K., & Clark, E. (1999). Radiocarbon age differences between
492	coexisting foraminiferal species <i>Paleoceanography</i> 14(4) 431-436
493	doi:doi:10.1029/1999PA900019
494	Broecker, W., Mix, A., Andree, M., & Oeschger, H. (1984). Radiocarbon measurements on
495	coexisting benthic and planktic foraminifera shells: potential for reconstructing ocean
496	ventilation times over the past 20 000 years. Nuclear Instruments and Methods in Physics
	/

497	Research Section B: Beam Interactions with Materials and Atoms, 5(2), 331-339.
498	doi: <u>https://doi.org/10.1016/0168-583X(84)90538-X</u>
499	Broecker, W. S., Sutherland, S., Smethie, W., Peng, T. H., & Ostlund, G. (1995). Oceanic
500	radiocarbon: Separation of the natural and bomb components. Global Biogeochemical
501	Cycles, 9(2), 263-288. doi:doi:10.1029/95GB00208
502	Bronk Ramsey, C. (2009). Bayesian Analysis of Radiocarbon Dates. Radiocarbon, 51(1), 337-
503	360. doi:10.1017/S0033822200033865
504	García, H. E., Locarnini, R. A., Boyer, T. P., Antonov, J. I., Baranova, O. K., Zweng, M. M.,
505	Johnson, D. R. (2014). World Ocean Atlas 2013, Volume 4: Dissolved Inorganic
506	Nutrients (phosphate, nitrate, silicate). In S. Levitus & A. Mishonov (Eds.), NOAA Atlas
507	NESDIS 76 (pp. 25).
508	Gherardi, J. M., Labeyrie, L., McManus, J. F., Francois, R., Skinner, L. C., & Cortijo, E. (2005).
509	Evidence from the Northeastern Atlantic basin for variability in the rate of the meridional
510	overturning circulation through the last deglaciation. Earth and Planetary Science
511	Letters, 240(3-4), 710-723. doi: <u>http://dx.doi.org/10.1016/j.epsl.2005.09.061</u>
512	Haynes, R., & Barton, E. D. (1990). A poleward flow along the Atlantic coast of the Iberian
513	peninsula. Journal of Geophysical Research: Oceans, 95(C7), 11425-11441.
514	doi:10.1029/JC095iC07p11425
515	Hernández-Molina, F. J., Serra, N., Stow, D. A. V., Llave, E., Ercilla, G., & Van Rooij, D.
516	(2011). Along-slope oceanographic processes and sedimentary products around the
517	Iberian margin. Geo-Marine Letters, 31, 315-341.
518	Hodell, D. A., Elderfield, H., Greaves, M., McCave, I. N., Skinner, L., Thomas, A., & White, N.
519	(2014). The JC089 scientific party, JC089 cruise report - IODP site survey of the
520	Shackleton sites, SW iberian margin, British ocean data Centre.
521	https://www.bodc.ac.uk/data/information_and_inventories/cruise_inventory/report/13392
522	<u>/</u> . Retrieved from
523	Hutson, W. H. (1980). Bioturbation of deep-sea sediments: oxygen isotopes and stratigraphic
524	uncertainty. <i>Geology</i> , 8, 127-130.
525	Incarbona, A., Martrat, B., Di Stefano, E., Grimalt, J. O., Pelosi, N., Patti, B., & Tranchida, G.
526	(2010). Primary productivity variability on the Atlantic Iberian Margin over the last
527	70,000 years: Evidence from coccolithophores and fossil organic compounds.
528	Paleoceanography, 25(2), PA2218, doi:2210.1029/2008PA001709.
529	Jenkins, W. J., Smethie, W. M., Boyle, E. A., & Cutter, G. A. (2015). Water mass analysis for
530	the U.S. GEOTRACES (GA03) North Atlantic sections. <i>Deep Sea Research Part II:</i>
531	Topical Studies in Oceanography, 116, 6-20.
532	Key, R. M., Kozyr, A., Sabine, C. L., Lee, K., Wanninkhof, R., Bullister, J. L., Peng, T. H.
533	(2004). A global ocean carbon climatology: Results from Global Data Analysis Project
534	(GLODAP). Global Biogeochemical Cycles, 18(4). doi:doi:10.1029/2004GB002247
535	Libby, W. F., Anderson, E. C., & Arnold, J. R. (1949). Age Determination by Radiocarbon
536	Content: World-Wide Assay of Natural Radiocarbon. <i>Science</i> , 109, 227-228.
537	doi:10.1126/science.109.2827.227
538	Lindsay, C. M., Lehman, S. J., Marchitto, T. M., & Ortiz, J. D. (2015). The surface expression of
539	radiocarbon anomalies near Baja California during deglaciation. Earth and Planetary
540	Science Letters, 422, 67-74. doi: <u>https://doi.org/10.1016/j.epsl.2015.04.012</u>

541 542 543 544 545 546 547 548 549 550	 Löwemark, L., & Grootes, P. M. (2004). Large age differences between planktic foraminifers caused by abundance variations and Zoophycos bioturbation. <i>Paleoceanography</i>, <i>19</i>(2). doi:doi:10.1029/2003PA000949 Magill, C. R., Ausín, B., Wenk, P., McIntyre, C., Skinner, L., Martínez-García, A., Eglinton, T. I. (2018). Transient hydrodynamic effects influence organic carbon signatures in marine sediments. <i>Nature Communications</i>, <i>9</i>(1), 4690. doi:10.1038/s41467-018-06973-W McManus, J. F., Francois, R., Gherardi, J. M., Keigwin, L. D., & Brown-Leger, S. (2004). Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes. <i>Nature</i>, <i>428</i>, 834. doi:10.1038/nature02494
551	https://www.nature.com/articles/nature02494#supplementary-information
552	Mekik, F. (2014). Radiocarbon dating of planktonic foraminiter shells: A cautionary tale.
553	Mollonhouser C (1000) Einfluß von Bisturbation Draduktivität und Zinkulation auf 14C
554 555	Datienungen an nlanktonischen Eenaminiferen (MS). University of Promon
555	Obleventi N. Eglipton T. I. Hughen K. A. Bossen E. & Keigwin I. D. (2005). Bedieserben
550	Define of Alkenones from Marine Sediments: III. Influence of Solvent Extraction
559	Procedures on 14C Measurements of Foraminifera, Radiocarbon 47(3), 425, 432
550	d_{0} :10 1017/S0033822200035207
560	Pahnke K Goldstein S I & Hemming S R (2008) Abrunt changes in Antarctic
561	Intermediate Water circulation over the past 25 000 years <i>Nature Geoscience</i> 1 870
562	doi:10.1038/ngeo360
563	https://www.nature.com/articles/ngeo360#supplementary-information
563 564	https://www.nature.com/articles/ngeo360#supplementary-information Pearson P N (2012) Oxygen Isotopes in Foraminifera: Overview and Historical Review <i>The</i>
563 564 565	https://www.nature.com/articles/ngeo360#supplementary-information Pearson, P. N. (2012). Oxygen Isotopes in Foraminifera: Overview and Historical Review. <i>The</i> <i>Paleontological Society Papers</i> , 18, 1-38, doi:10.1017/S1089332600002539
563 564 565 566	 <u>https://www.nature.com/articles/ngeo360#supplementary-information</u> Pearson, P. N. (2012). Oxygen Isotopes in Foraminifera: Overview and Historical Review. <i>The</i> <i>Paleontological Society Papers, 18,</i> 1-38. doi:10.1017/S1089332600002539 Peliz Á, Dubert J, Santos A, M, P. Oliveira P, B. & Le Cann, B. (2005). Winter upper ocean
563 564 565 566 567	 https://www.nature.com/articles/ngeo360#supplementary-information Pearson, P. N. (2012). Oxygen Isotopes in Foraminifera: Overview and Historical Review. <i>The</i> <i>Paleontological Society Papers, 18</i>, 1-38. doi:10.1017/S1089332600002539 Peliz, Á., Dubert, J., Santos, A. M. P., Oliveira, P. B., & Le Cann, B. (2005). Winter upper ocean circulation in the Western Iberian Basin—Fronts. Eddies and Poleward Flows: an
563 564 565 566 567 568	 <u>https://www.nature.com/articles/ngeo360#supplementary-information</u> Pearson, P. N. (2012). Oxygen Isotopes in Foraminifera: Overview and Historical Review. <i>The</i> <i>Paleontological Society Papers, 18,</i> 1-38. doi:10.1017/S1089332600002539 Peliz, Á., Dubert, J., Santos, A. M. P., Oliveira, P. B., & Le Cann, B. (2005). Winter upper ocean circulation in the Western Iberian Basin—Fronts, Eddies and Poleward Flows: an overview. <i>Deep Sea Research Part I: Oceanographic Research Papers, 52</i>(4), 621-646.
563 564 565 566 567 568 569	 <u>https://www.nature.com/articles/ngeo360#supplementary-information</u> Pearson, P. N. (2012). Oxygen Isotopes in Foraminifera: Overview and Historical Review. <i>The</i> <i>Paleontological Society Papers, 18</i>, 1-38. doi:10.1017/S1089332600002539 Peliz, Á., Dubert, J., Santos, A. M. P., Oliveira, P. B., & Le Cann, B. (2005). Winter upper ocean circulation in the Western Iberian Basin—Fronts, Eddies and Poleward Flows: an overview. <i>Deep Sea Research Part I: Oceanographic Research Papers, 52</i>(4), 621-646. doi:http://dx.doi.org/10.1016/j.dsr.2004.11.005
563 564 565 566 567 568 569 570	 https://www.nature.com/articles/ngeo360#supplementary-information Pearson, P. N. (2012). Oxygen Isotopes in Foraminifera: Overview and Historical Review. <i>The</i> <i>Paleontological Society Papers, 18,</i> 1-38. doi:10.1017/S1089332600002539 Peliz, Á., Dubert, J., Santos, A. M. P., Oliveira, P. B., & Le Cann, B. (2005). Winter upper ocean circulation in the Western Iberian Basin—Fronts, Eddies and Poleward Flows: an overview. <i>Deep Sea Research Part I: Oceanographic Research Papers, 52</i>(4), 621-646. doi:<u>http://dx.doi.org/10.1016/j.dsr.2004.11.005</u> Peng, TH., & Broecker, W. S. (1984). The impacts of bioturbation on the age difference
563 564 565 566 567 568 569 570 571	 https://www.nature.com/articles/ngeo360#supplementary-information Pearson, P. N. (2012). Oxygen Isotopes in Foraminifera: Overview and Historical Review. <i>The</i> <i>Paleontological Society Papers, 18,</i> 1-38. doi:10.1017/S1089332600002539 Peliz, Á., Dubert, J., Santos, A. M. P., Oliveira, P. B., & Le Cann, B. (2005). Winter upper ocean circulation in the Western Iberian Basin—Fronts, Eddies and Poleward Flows: an overview. <i>Deep Sea Research Part I: Oceanographic Research Papers, 52</i>(4), 621-646. doi:<u>http://dx.doi.org/10.1016/j.dsr.2004.11.005</u> Peng, TH., & Broecker, W. S. (1984). The impacts of bioturbation on the age difference between benthic and planktonic foraminifera in deep sea sediments. <i>Nuclear Instruments</i>
563 564 565 566 567 568 569 570 571 572	 https://www.nature.com/articles/ngeo360#supplementary-information Pearson, P. N. (2012). Oxygen Isotopes in Foraminifera: Overview and Historical Review. <i>The</i> <i>Paleontological Society Papers, 18</i>, 1-38. doi:10.1017/S1089332600002539 Peliz, Á., Dubert, J., Santos, A. M. P., Oliveira, P. B., & Le Cann, B. (2005). Winter upper ocean circulation in the Western Iberian Basin—Fronts, Eddies and Poleward Flows: an overview. <i>Deep Sea Research Part I: Oceanographic Research Papers, 52</i>(4), 621-646. doi:<u>http://dx.doi.org/10.1016/j.dsr.2004.11.005</u> Peng, TH., & Broecker, W. S. (1984). The impacts of bioturbation on the age difference between benthic and planktonic foraminifera in deep sea sediments. <i>Nuclear Instruments</i> <i>and Methods in Physics Research Section B: Beam Interactions with Materials and</i>
563 564 565 566 567 568 569 570 571 572 573	 https://www.nature.com/articles/ngeo360#supplementary-information Pearson, P. N. (2012). Oxygen Isotopes in Foraminifera: Overview and Historical Review. <i>The</i> <i>Paleontological Society Papers, 18,</i> 1-38. doi:10.1017/S1089332600002539 Peliz, Á., Dubert, J., Santos, A. M. P., Oliveira, P. B., & Le Cann, B. (2005). Winter upper ocean circulation in the Western Iberian Basin—Fronts, Eddies and Poleward Flows: an overview. <i>Deep Sea Research Part I: Oceanographic Research Papers, 52</i>(4), 621-646. doi:<u>http://dx.doi.org/10.1016/j.dsr.2004.11.005</u> Peng, TH., & Broecker, W. S. (1984). The impacts of bioturbation on the age difference between benthic and planktonic foraminifera in deep sea sediments. <i>Nuclear Instruments</i> <i>and Methods in Physics Research Section B: Beam Interactions with Materials and</i> <i>Atoms, 5</i>(2), 346-352. doi:<u>https://doi.org/10.1016/0168-583X(84)90540-8</u>
563 564 565 566 567 568 569 570 571 572 573 574	 https://www.nature.com/articles/ngeo360#supplementary-information Pearson, P. N. (2012). Oxygen Isotopes in Foraminifera: Overview and Historical Review. <i>The</i> <i>Paleontological Society Papers, 18,</i> 1-38. doi:10.1017/S1089332600002539 Peliz, Á., Dubert, J., Santos, A. M. P., Oliveira, P. B., & Le Cann, B. (2005). Winter upper ocean circulation in the Western Iberian Basin—Fronts, Eddies and Poleward Flows: an overview. <i>Deep Sea Research Part I: Oceanographic Research Papers, 52</i>(4), 621-646. doi:http://dx.doi.org/10.1016/j.dsr.2004.11.005 Peng, TH., & Broecker, W. S. (1984). The impacts of bioturbation on the age difference between benthic and planktonic foraminifera in deep sea sediments. <i>Nuclear Instruments</i> <i>and Methods in Physics Research Section B: Beam Interactions with Materials and</i> <i>Atoms, 5</i>(2), 346-352. doi:https://doi.org/10.1016/0168-583X(84)90540-8 Pérez, F. F., Castro, C. G., Álvarez–Salgado, X. A., & Ríos, A. F. (2001). Coupling between the
563 564 565 566 567 568 569 570 571 572 573 574 575	 <u>https://www.nature.com/articles/ngeo360#supplementary-information</u> Pearson, P. N. (2012). Oxygen Isotopes in Foraminifera: Overview and Historical Review. <i>The</i> <i>Paleontological Society Papers, 18</i>, 1-38. doi:10.1017/S1089332600002539 Peliz, Á., Dubert, J., Santos, A. M. P., Oliveira, P. B., & Le Cann, B. (2005). Winter upper ocean circulation in the Western Iberian Basin—Fronts, Eddies and Poleward Flows: an overview. <i>Deep Sea Research Part I: Oceanographic Research Papers, 52</i>(4), 621-646. doi:<u>http://dx.doi.org/10.1016/j.dsr.2004.11.005</u> Peng, TH., & Broecker, W. S. (1984). The impacts of bioturbation on the age difference between benthic and planktonic foraminifera in deep sea sediments. <i>Nuclear Instruments</i> <i>and Methods in Physics Research Section B: Beam Interactions with Materials and</i> <i>Atoms, 5</i>(2), 346-352. doi:<u>https://doi.org/10.1016/0168-583X(84)90540-8</u> Pérez, F. F., Castro, C. G., Álvarez–Salgado, X. A., & Ríos, A. F. (2001). Coupling between the Iberian basin — scale circulation and the Portugal boundary current system: a chemical
563 564 565 566 567 568 569 570 571 572 573 574 575 576	 https://www.nature.com/articles/ngeo360#supplementary-information Pearson, P. N. (2012). Oxygen Isotopes in Foraminifera: Overview and Historical Review. <i>The</i> <i>Paleontological Society Papers, 18</i>, 1-38. doi:10.1017/S1089332600002539 Peliz, Á., Dubert, J., Santos, A. M. P., Oliveira, P. B., & Le Cann, B. (2005). Winter upper ocean circulation in the Western Iberian Basin—Fronts, Eddies and Poleward Flows: an overview. <i>Deep Sea Research Part I: Oceanographic Research Papers, 52</i>(4), 621-646. doi:http://dx.doi.org/10.1016/j.dsr.2004.11.005 Peng, TH., & Broecker, W. S. (1984). The impacts of bioturbation on the age difference between benthic and planktonic foraminifera in deep sea sediments. <i>Nuclear Instruments</i> <i>and Methods in Physics Research Section B: Beam Interactions with Materials and</i> <i>Atoms, 5</i>(2), 346-352. doi:https://doi.org/10.1016/0168-583X(84)90540-8 Pérez, F. F., Castro, C. G., Álvarez–Salgado, X. A., & Ríos, A. F. (2001). Coupling between the Iberian basin — scale circulation and the Portugal boundary current system: a chemical study. <i>Deep Sea Research Part I: Oceanographic Research Papers, 48</i>(6), 1519-1533.
563 564 565 566 567 568 569 570 571 572 573 574 575 576 577	 https://www.nature.com/articles/ngeo360#supplementary-information Pearson, P. N. (2012). Oxygen Isotopes in Foraminifera: Overview and Historical Review. <i>The</i> <i>Paleontological Society Papers, 18</i>, 1-38. doi:10.1017/S1089332600002539 Peliz, Á., Dubert, J., Santos, A. M. P., Oliveira, P. B., & Le Cann, B. (2005). Winter upper ocean circulation in the Western Iberian Basin—Fronts, Eddies and Poleward Flows: an overview. <i>Deep Sea Research Part I: Oceanographic Research Papers, 52</i>(4), 621-646. doi:http://dx.doi.org/10.1016/j.dsr.2004.11.005 Peng, TH., & Broecker, W. S. (1984). The impacts of bioturbation on the age difference between benthic and planktonic foraminifera in deep sea sediments. <i>Nuclear Instruments</i> <i>and Methods in Physics Research Section B: Beam Interactions with Materials and</i> <i>Atoms, 5</i>(2), 346-352. doi:https://doi.org/10.1016/0168-583X(84)90540-8 Pérez, F. F., Castro, C. G., Álvarez–Salgado, X. A., & Ríos, A. F. (2001). Coupling between the Iberian basin — scale circulation and the Portugal boundary current system: a chemical study. <i>Deep Sea Research Part I: Oceanographic Research Papers, 48</i>(6), 1519-1533. doi:https://doi.org/10.1016/S0967-0637(00)00101-1
563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578	 https://www.nature.com/articles/ngeo360#supplementary-information Pearson, P. N. (2012). Oxygen Isotopes in Foraminifera: Overview and Historical Review. <i>The</i> <i>Paleontological Society Papers, 18</i>, 1-38. doi:10.1017/S1089332600002539 Peliz, Á., Dubert, J., Santos, A. M. P., Oliveira, P. B., & Le Cann, B. (2005). Winter upper ocean circulation in the Western Iberian Basin—Fronts, Eddies and Poleward Flows: an overview. <i>Deep Sea Research Part I: Oceanographic Research Papers, 52</i>(4), 621-646. doi:http://dx.doi.org/10.1016/j.dsr.2004.11.005 Peng, TH., & Broecker, W. S. (1984). The impacts of bioturbation on the age difference between benthic and planktonic foraminifera in deep sea sediments. <i>Nuclear Instruments</i> <i>and Methods in Physics Research Section B: Beam Interactions with Materials and</i> <i>Atoms, 5</i>(2), 346-352. doi:https://doi.org/10.1016/0168-583X(84)90540-8 Pérez, F. F., Castro, C. G., Álvarez–Salgado, X. A., & Ríos, A. F. (2001). Coupling between the Iberian basin — scale circulation and the Portugal boundary current system: a chemical study. <i>Deep Sea Research Part I: Oceanographic Research Papers, 48</i>(6), 1519-1533. doi:https://doi.org/10.1016/S0967-0637(00)00101-1 Rebotim, A., Voelker, A. H. L., Jonkers, L., Waniek, J. J., Meggers, H., Schiebel, R., Kucera,
 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 	 https://www.nature.com/articles/ngeo360#supplementary-information Pearson, P. N. (2012). Oxygen Isotopes in Foraminifera: Overview and Historical Review. <i>The</i> <i>Paleontological Society Papers, 18</i>, 1-38. doi:10.1017/S1089332600002539 Peliz, Á., Dubert, J., Santos, A. M. P., Oliveira, P. B., & Le Cann, B. (2005). Winter upper ocean circulation in the Western Iberian Basin—Fronts, Eddies and Poleward Flows: an overview. <i>Deep Sea Research Part I: Oceanographic Research Papers, 52</i>(4), 621-646. doi:http://dx.doi.org/10.1016/j.dsr.2004.11.005 Peng, TH., & Broecker, W. S. (1984). The impacts of bioturbation on the age difference between benthic and planktonic foraminifera in deep sea sediments. <i>Nuclear Instruments</i> <i>and Methods in Physics Research Section B: Beam Interactions with Materials and</i> <i>Atoms, 5</i>(2), 346-352. doi:https://doi.org/10.1016/0168-583X(84)90540-8 Pérez, F. F., Castro, C. G., Álvarez–Salgado, X. A., & Ríos, A. F. (2001). Coupling between the Iberian basin — scale circulation and the Portugal boundary current system: a chemical study. <i>Deep Sea Research Part I: Oceanographic Research Papers, 48</i>(6), 1519-1533. doi:https://doi.org/10.1016/S0967-0637(00)00101-1 Rebotim, A., Voelker, A. H. L., Jonkers, L., Waniek, J. J., Meggers, H., Schiebel, R., Kucera, M. (2017). Factors controlling the depth habitat of planktonic foraminifera in the
 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 	 https://www.nature.com/articles/ngeo360#supplementary-information Pearson, P. N. (2012). Oxygen Isotopes in Foraminifera: Overview and Historical Review. <i>The</i> <i>Paleontological Society Papers, 18,</i> 1-38. doi:10.1017/S1089332600002539 Peliz, Á., Dubert, J., Santos, A. M. P., Oliveira, P. B., & Le Cann, B. (2005). Winter upper ocean circulation in the Western Iberian Basin—Fronts, Eddies and Poleward Flows: an overview. <i>Deep Sea Research Part I: Oceanographic Research Papers, 52</i>(4), 621-646. doi:http://dx.doi.org/10.1016/j.dsr.2004.11.005 Peng, TH., & Broecker, W. S. (1984). The impacts of bioturbation on the age difference between benthic and planktonic foraminifera in deep sea sediments. <i>Nuclear Instruments</i> <i>and Methods in Physics Research Section B: Beam Interactions with Materials and</i> <i>Atoms, 5</i>(2), 346-352. doi:https://doi.org/10.1016/0168-583X(84)90540-8 Pérez, F. F., Castro, C. G., Álvarez–Salgado, X. A., & Ríos, A. F. (2001). Coupling between the Iberian basin — scale circulation and the Portugal boundary current system: a chemical study. <i>Deep Sea Research Part I: Oceanographic Research Papers, 48</i>(6), 1519-1533. doi:https://doi.org/10.1016/S0967-0637(00)00101-1 Rebotim, A., Voelker, A. H. L., Jonkers, L., Waniek, J. J., Meggers, H., Schiebel, R., Kucera, M. (2017). Factors controlling the depth habitat of planktonic foraminifera in the subtropical eastern North Atlantic. <i>Biogeosciences, 14</i>(4), 827-859. doi:10.5194/bg-14-
563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581	 https://www.nature.com/articles/ngeo360#supplementary-information Pearson, P. N. (2012). Oxygen Isotopes in Foraminifera: Overview and Historical Review. <i>The</i> <i>Paleontological Society Papers, 18</i>, 1-38. doi:10.1017/S1089332600002539 Peliz, Á., Dubert, J., Santos, A. M. P., Oliveira, P. B., & Le Cann, B. (2005). Winter upper ocean circulation in the Western Iberian Basin—Fronts, Eddies and Poleward Flows: an overview. <i>Deep Sea Research Part I: Oceanographic Research Papers, 52</i>(4), 621-646. doi:http://dx.doi.org/10.1016/j.dsr.2004.11.005 Peng, TH., & Broecker, W. S. (1984). The impacts of bioturbation on the age difference between benthic and planktonic foraminifera in deep sea sediments. <i>Nuclear Instruments</i> <i>and Methods in Physics Research Section B: Beam Interactions with Materials and</i> <i>Atoms, 5</i>(2), 346-352. doi:https://doi.org/10.1016/0168-583X(84)90540-8 Pérez, F. F., Castro, C. G., Álvarez–Salgado, X. A., & Ríos, A. F. (2001). Coupling between the Iberian basin — scale circulation and the Portugal boundary current system: a chemical study. <i>Deep Sea Research Part I: Oceanographic Research Papers, 48</i>(6), 1519-1533. doi:https://doi.org/10.1016/S0967-0637(00)00101-1 Rebotim, A., Voelker, A. H. L., Jonkers, L., Waniek, J. J., Meggers, H., Schiebel, R., Kucera, M. (2017). Factors controlling the depth habitat of planktonic foraminifera in the subtropical eastern North Atlantic. <i>Biogeosciences, 14</i>(4), 827-859. doi:10.5194/bg-14- 827-2017
563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582	 https://www.nature.com/articles/ngeo360#supplementary-information Pearson, P. N. (2012). Oxygen Isotopes in Foraminifera: Overview and Historical Review. <i>The</i> <i>Paleontological Society Papers, 18</i>, 1-38. doi:10.1017/S1089332600002539 Peliz, Á., Dubert, J., Santos, A. M. P., Oliveira, P. B., & Le Cann, B. (2005). Winter upper ocean circulation in the Western Iberian Basin—Fronts, Eddies and Poleward Flows: an overview. <i>Deep Sea Research Part I: Oceanographic Research Papers, 52</i>(4), 621-646. doi:http://dx.doi.org/10.1016/j.dsr.2004.11.005 Peng, TH., & Broecker, W. S. (1984). The impacts of bioturbation on the age difference between benthic and planktonic foraminifera in deep sea sediments. <i>Nuclear Instruments</i> <i>and Methods in Physics Research Section B: Beam Interactions with Materials and</i> <i>Atoms, 5</i>(2), 346-352. doi:https://doi.org/10.1016/0168-583X(84)90540-8 Pérez, F. F., Castro, C. G., Álvarez–Salgado, X. A., & Ríos, A. F. (2001). Coupling between the Iberian basin — scale circulation and the Portugal boundary current system: a chemical study. <i>Deep Sea Research Part I: Oceanographic Research Papers, 48</i>(6), 1519-1533. doi:https://doi.org/10.1016/S0967-0637(00)00101-1 Rebotim, A., Voelker, A. H. L., Jonkers, L., Waniek, J. J., Meggers, H., Schiebel, R., Kucera, M. (2017). Factors controlling the depth habitat of planktonic foraminifera in the subtropical eastern North Atlantic. <i>Biogeosciences, 14</i>(4), 827-859. doi:10.5194/bg-14- 827-2017 Reimer, P. J., Baillie, M. G. L., Bard, E., Bayliss, A., Beck, J. W., Blackwell, P. G.,
 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 	 https://www.nature.com/articles/ngeo360#supplementary-information Pearson, P. N. (2012). Oxygen Isotopes in Foraminifera: Overview and Historical Review. <i>The</i> <i>Paleontological Society Papers, 18</i>, 1-38. doi:10.1017/S1089332600002539 Peliz, Á., Dubert, J., Santos, A. M. P., Oliveira, P. B., & Le Cann, B. (2005). Winter upper ocean circulation in the Western Iberian Basin—Fronts, Eddies and Poleward Flows: an overview. <i>Deep Sea Research Part I: Oceanographic Research Papers, 52</i>(4), 621-646. doi:http://dx.doi.org/10.1016/j.dsr.2004.11.005 Peng, TH., & Broecker, W. S. (1984). The impacts of bioturbation on the age difference between benthic and planktonic foraminifera in deep sea sediments. <i>Nuclear Instruments</i> <i>and Methods in Physics Research Section B: Beam Interactions with Materials and</i> <i>Atoms, 5</i>(2), 346-352. doi:https://doi.org/10.1016/0168-583X(84)90540-8 Pérez, F. F., Castro, C. G., Álvarez–Salgado, X. A., & Ríos, A. F. (2001). Coupling between the Iberian basin — scale circulation and the Portugal boundary current system: a chemical study. <i>Deep Sea Research Part I: Oceanographic Research Papers, 48</i>(6), 1519-1533. doi:https://doi.org/10.1016/S0967-0637(00)00101-1 Rebotim, A., Voelker, A. H. L., Jonkers, L., Waniek, J. J., Meggers, H., Schiebel, R., Kucera, M. (2017). Factors controlling the depth habitat of planktonic foraminifera in the subtropical eastern North Atlantic. <i>Biogeosciences, 14</i>(4), 827-859. doi:10.5194/bg-14- 827-2017 Reimer, P. J., Baillie, M. G. L., Bard, E., Bayliss, A., Beck, J. W., Blackwell, P. G., Weyhenmeyer, C. E. (2009). IntCal09 and Marine09 radiocarbon age calibration curves,

- Reimer, P. J., Bard, E., Bayliss, A., Beck, J. W., Blackwell, P. G., Bronk Ramsey, C., . . . van der
 Plicht, J. (2013). IntCal13 and Marine13 Radiocarbon Age Calibration Curves 0-50,000
 Years cal BP. Radiocarbon. *Radiocarbon*, 55.
- Reimer, P. J., Brown, T. A., & Reimer, R. W. (2004). Discussion: Reporting and Calibration of
 Post-Bomb 14C Data. *Radiocarbon*, 46(3), 1299-1304. doi:10.1017/S0033822200033154
- Rickaby, R. E. M., & Elderfield, H. (2005). Evidence from the high-latitude North Atlantic for
 variations in Antarctic Intermediate water flow during the last deglaciation.
 Geochemistry, Geophysics, Geosystems, 6(5). doi:doi:10.1029/2004GC000858
- Rodríguez-Tovar, F. J., & Dorador, J. (2014). Ichnological analysis of Pleistocene sediments
 from the IODP Site U1385 "Shackleton Site" on the Iberian margin: Approaching
 paleoenvironmental conditions. *Palaeogeography, Palaeoclimatology, Palaeoecology,* 409, 24-32. doi:https://doi.org/10.1016/j.palaeo.2014.04.027
- Rodríguez-Tovar, F. J., Dorador, J., Grunert, P., & Hodell, D. (2015). Deep-sea trace fossil and
 benthic foraminiferal assemblages across glacial Terminations 1, 2 and 4 at the
 "Shackleton Site" (IODP Expedition 339, Site U1385). *Global and Planetary Change*,
 122, 250, 270, doi/https://doi.org/10.1016/j.cloplacha.2015.05.002
- 600 *133*, 359-370. doi:<u>https://doi.org/10.1016/j.gloplacha.2015.05.003</u>
- Rubin, S. I., & Key, R. M. (2002). Separating natural and bomb-produced radiocarbon in the
 ocean: The potential alkalinity method. *Global Biogeochemical Cycles*, *16*(4), 52-51-52 19. doi:doi:10.1029/2001GB001432
- Salgueiro, E., Voelker, A., Abrantes, F., Meggers, H., Pflaumann, U., Lončarić, N., . . . Wefer,
 G. (2008). Planktonic foraminifera from modern sediments reflect upwelling patterns off
 Iberia: Insights from a regional transfer function. *Marine Micropaleontology*, 66(3–4),
 135-164. doi:http://dx.doi.org/10.1016/j.marmicro.2007.09.003
- Salgueiro, E., Voelker, A. H. L., de Abreu, L., Abrantes, F., Meggers, H., & Wefer, G. (2010).
 Temperature and productivity changes off the western Iberian margin during the last
 150 ky. *Quaternary Science Reviews*, 29(5–6), 680-695.
 doi:http://dx.doi.org/10.1016/j.quascirev.2009.11.013
- 612 Schlitzer, R. (2014). Ocean Data View, <u>http://odv.awi.de</u> (last access: 22 August 2018).
- Shackleton, N. J., Fairbanks, R. G., Chiu, T.-c., & Parrenin, F. (2004). Absolute calibration of
 the Greenland time scale: implications for Antarctic time scales and for Δ14C. *Quaternary Science Reviews*, 23, 1513-1522.
 doi:http://dx.doi.org/10.1016/j.quascirev.2004.03.006
- Shackleton, N. J., Hall, M. A., & Vincent, E. (2000). Phase relationships between millennial scale events 64,000–24,000 years ago. *Paleoceanography*, 15, 565-569.
- 619 doi:10.1029/2000pa000513
- Skinner, L. C., & Shackleton, N. J. (2004). Rapid transient changes in northeast Atlantic deep
 water ventilation age across Termination I. *Paleoceanography*, *19*(2).
 doi:doi:10.1029/2003PA000983
- Skinner, L. C., Waelbroeck, C., Scrivner, A. E., & Fallon, S. J. (2014). Radiocarbon evidence for
 alternating northern and southern sources of ventilation of the deep Atlantic carbon pool
 during the last deglaciation. *Proceedings of the National Academy of Sciences*, 111(15),
 5480-5484. doi:10.1073/pnas.1400668111
- Thornalley, D. J. R., Barker, S., Broecker, W. S., Elderfield, H., & McCave, I. N. (2011). The
 Deglacial Evolution of North Atlantic Deep Convection. *Science*, *331*(6014), 202-205.
 doi:10.1126/science.1196812

630	Trauth, M. H. (2013). TURBO2: A MATLAB simulation to study the effects of bioturbation on
631	paleoceanographic time series. Computers & Geosciences, 61, 1-10.
632	doi: <u>https://doi.org/10.1016/j.cageo.2013.05.003</u>
633	van Aken, H. M. (2000). The hydrography of the mid-latitude Northeast Atlantic Ocean: II: The
634	intermediate water masses. Deep Sea Research Part I: Oceanographic Research Papers,
635	47(5), 789-824. doi: <u>https://doi.org/10.1016/S0967-0637(99)00112-0</u>
636	Voelker, A. H., & de Abreu, L. (2011). A Review of Abrupt Climate Change Events in the
637	Northeastern Atlantic Ocean (Iberian Margin): Latitudinal, Longitudinal, and Vertical
638	Gradients. In H. Rashid, L. Polyak, & E. Mosley-Thompson (Eds.), Abrupt Climate
639	Change: Mechanisms, Patterns, and Impacts.
640	Wacker, L., Fahrni, S., & Moros, M. (2014). Advanced gas measurements of foraminifera:
641	Removal and analysis of carbonate surface contamination Ion Beam Physics, ETH Zurich
642	Annual report, 23.
643	Wacker, L., Lippold, J., Molnár, M., & Schulz, H. (2013). Towards radiocarbon dating of single
644	foraminifera with a gas ion source. Nuclear Instruments and Methods in Physics
645	Research Section B: Beam Interactions with Materials and Atoms, 294, 307-310.
646	doi: <u>https://doi.org/10.1016/j.nimb.2012.08.038</u>

- 647 Wycech, J., Kelly, D. C., & Marcott, S. (2016). Effects of seafloor diagenesis on planktic
- 648 foraminiferal radiocarbon ages. *Geology*, 44(7), 551-554. doi:10.1130/G37864.1

649

Figure 1. Location of core SHAK06–5K and age-depth model. Study area and surface
circulation. PC: Portugal Current. IPC: Iberian Poleward Current. Modified from Voelker and de
Abreu (2011).

Figure 2. Influence of the sample preparation method on radiocarbon ages. a) ¹⁴C ages of the

leachate (open circle) and the leached samples (dot) of *G. bulloides* picked from sediments

extracted with organic solvents (light blue) and non-extracted sediments (dark blue). b) Age

differences between paired leachates and leached samples from extracted (light blue) and non-

extracted (dark blue) sediments, and between paired leached samples (black diamonds).

Figure 3. Radiocarbon ages and related offsets of planktonic foraminifera. (a) Radiocarbon ages of *G. bulloides* and (b) *G. ruber*. (c) 14 C-age discrepancies between the leached sample and the

leachate of each species. (d) ¹⁴C-age discrepancies between leached samples of both species

calculated as G. bulloides - G. ruber. Open diamonds and dots in (c) and (d) indicate age offsets

that fall within the 1- σ uncertainty envelope of the two ¹⁴C dates, respectively. Grey bars mark

663 periods or maximum age offsets, coinciding with the Heinrich Stadials (HS) 2 and 1, the

664 Younger Dryas (YD), and part of the Early and mid-Holocene (E/M-H).

Figure 4. Oxygen isotopic records and abundances. (a) Sedimentation rate of core SHAK06–5K

based on ${}^{14}C$ ages of leached samples of *G. bulloides*. (b) Carbon and (c) Oxygen isotope record

of *G. bulloides* and *G. ruber*. (d) Oxygen isotopic difference between *G. bulloides* and *G. ruber*.

(e) Species absolute and relative abundances. Grey bars mark periods or maximum age offsets

shown in figure 3, coinciding with the Heinrich Stadials (HS) 2 and 1, the Younger Dryas (YD),

and part of the Early and mid-Holocene (E/M-H).

Figure 5. Modern estimated natural Δ^{14} C data at station ID15364 from GLODAP (*Key et al.*,

672 2004) corresponding to the overlying water column of SHAK06–5K core location. Data was
673 plotted with ODV (*Schlitzer*, 2014).

674

Laboratory code	Depth (cm)	Radiocarbon age (14C yr BP)±1σ	Calendar age (yr cal. BP)±2σ
82182.2.1	0	790±150	414 ±112
82183.2.1	4	1010±150	591 ±92
72979.2.1	10	1250±70	815 ±72
82185.2.1	14	1450±70	1001 ±73
72981.2.1	20	1820±55	1367 ±60
72983.2.1	30	2300±50	1920 ±60
72985.2.1	40	3090±65	2879 ±82
75040.1.1	44	3620±75	3514 ±86
70397.1.1	48	3760±60	3702 ±82
75041.1.1	54	5300±80	5670 ±86
72987.2.1	60	7470±60	7923 ±68
72989.2.1	70	8740±70	9404 ±70
75042.1.1	76	9960±80	10925 ±128
72991.2.1	82	11050±85	12566 ±75
72993.2.1	90	11450±90	12913 ±108
70400.1.1	100	120100±110	13517 ±112
72995.2.1	110	12400±100	13909 ±117
72997.2.1	120	13250±95	15276 ±141
70403.1.1	130	136100±110	15875 ±149
72999.2.1	140	14100±100	16522 ±158
75043.1.1	146	14300±100	16864 ±161
73001.2.1	152	14900±100	17527 ±121
73002.2.1	160	14900±110	17742 ±113
73003.2.1	172	15350±110	18219 ±133
73005.2.1	180	15950±140	18791 ±122
75044.1.1	196	16650±120	19642 ±155
75016.1.1	200	17100±120	19989 ±143
75018.1.1	210	17300±120	20347 ±130
75020.1.1	220	17400±140	20679 ±162
75022.1.1	230	18600±180	21899 ±180
75024.1.1	240	18750±140	22241 ±131
70406.1.1	260	20000±180	23537 ±200

75028.1.1	270	20400±150	24012 ±156
75030.1.1	280	20700±150	24482 ±179
75048.1.1	284	201000±160	24781 ±215
75032.1.1	290	21300±160	25245 ±186
75033.1.1	300	22100±170	25936 ±125
75034.1.1	310	22600±180	26416 ±184
75036.1.1	320	23000±180	26974 ±210
75038.1.1	329	24100±200	27800 ±163

Table 1. Age model for core SHAK06–5K, based on monospecific samples of the planktonic

for a for a for a for a bulloides. Convention radiocarbon ages and associated 1σ uncertainties have been rounded according to convention.

- 703
- 704
- 705
- 706
- **Table 2**. Influence of the sample preparation method on radiocarbon ages. ¹⁴C ages and
- associated 1- σ confidence level (68.2% probability), and corresponding age discrepancies, shown
- in figure 2. Age offsets that can be explained within the $1-\sigma$ confidence level of the associated
- 710 dates are indicated in bold.

	G. bulle	<i>bides</i> from no	on-extrac	cted sedimen	ts	G. bulle solvents	<i>oides</i> from se	G. bulloides- G. bulloides			
	Leached sample		Leachate		Leached sample- Leachate	Leached sample		Leachate		Leached sample- Leach fraction	Leached Sample (Extracted sediment)- Leached sample (non-extracted sediment)
Depth (cm)	Lab code ETH-	14C age (yr)± 1 σ	Lab code ETH-	14C age (yr)± 1 σ	Age difference (yr)	Lab code ETH-	14C age (yr)±1 σ	Lab code ETH-	14C age (yr)± 1 σ	Age difference (yr)	Age difference (yr)
120	90559. 1.1	12901±86	90559 .2.1	12846±135	55±160	72997. 2.1	13228±93	72997 .1.1	12328±190	900±211	327±126
172	90557. 1.1	15262±100	90557 .2.1	13377±134	1885±167	73003. 2.1	15346±115	73003 .1.1	13730±202	1616±232	84±152
210	90555. 1.1	17303±109	90555 .2.1	16651±167	652±199	75018. 1.1	17292±123	75018 .2.1	15468±242	1824±271	-11±164
240	90553. 1.1	18529±119	90553 .2.1	16378±162	2151±201	75024. 1.1	18735±134	75024 .2.1	16214±256	2521±288	206±179
300	90552. 1.1	22171±152	90552 .2.1	21509±237	662±281	75033. 1.1	22110±172	75033 .2.1	20832±342	1278±382	-61±229

711

712

Table 3. Radiocarbon ages and associated $1-\sigma$ confidence level (68.2% probability), and

corresponding age discrepancies. * Stands for untreated samples. Numbers in bold indicate age

offsets that can be explained within the 1- σ confidence level of the associated dates.

	G. bulloid	es				G. ruber			G. bulloides- G. ruber	G. bulloides- G. bulloides		
	Leached sample		Leachate		Leached sample- Leachate	Leached sample		Leachate		Leached sample-Leach fraction	Leached sample-Leached sample	Leached sample-Untreated sample
Depth (cm)	Lab code ETH-	¹⁴ C age (yr)± 1 σ	Lab code ETH-	$^{14}C age (yr) \pm 1 \sigma$	Age difference (yr)	Lab code ETH-	$^{14}C age \\ (yr)\pm 1 \ \sigma$	Lab code ETH-	14 C age (yr)± 1 σ	Age difference (yr)	Age difference (yr)	Age difference (yr)
0	*82182. 2.1	788±151										
4	*82183. 2.1	1012±153										
10	82184.2 .1	1253±71	82184. 1.1	1373±77	120±105	72980.2 .1	1463±45	72980. 1.1	1216±108	247±117	-210±84	

	*72979. 1.1	1458±110										-205±131
14	*82185. 2.1	1451±70										
20	72981.2 .1	1820±55	72981. 1.1	2078±124	-258±136	72982.2 .1	1884±46	72982. 1.1	1930±113	-46±122	-64±72	
30	72983.2 .1	2301±47	72983. 1.1	2229±120	72±129	72984.2 .1	2471±75	72984. 1.1	2349±123	122±144	-170±88	
40	72985.2 .1	3087±64	72985. 1.1	2927±117	160±133	*72986. 1.1	2628±185					
44	75040.1 .1	3619±74	75040. 2.1	3823±124	-204±144							
48	70397.1 .1	3762±62	70397. 2.1	3848±122	-86±137	70399.1 .1	3389±63	70399. 2.1	3137±123	252±138	373±88	
54	75041.1 .1	5295±80	75041. 2.1	5343±122	-48±146							
	72987.2 .1	7470±63	72987. 1.1	6556±149	914±162	72988.2 .1	6705±60	72988. 1.1	6964±207	-259±215	765±87	220.00
60	*90560. 1.1	7250±64										220±90
70	72989.2 .1	8744±69	72989. 1.1	8731±156	13±171	72990.2 .1	8482±89	72990. 1.1	8261±157	221±180	262±113	
76	75042.1 .1	9957±76	75042. 2.1	9338±160	619±177							
82	72991.2 .1	11056±84	72991. 1.1	10351±180	706±199	72992.2 .1	10204±75	72992. 1.1	10130±175	74±190	852±113	
90	72993.2 .1	11437±86	72993. 1.1	11191±178	246±198	72994.2 .1	10806±104	72994. 1.1	10854±174	-48±203	631±135	
100	70400.1 .1	12077±107	70400. 2.1	11261±193	816±221	70402.1 .1	11900±105	70402. 2.1	11442±201	458±227	177±150	
110	72995.2 .1	12385±103	72995. 1.1	12413±187	-28±213	*72996. 1.1	12318±210					
120	72997.2 .1	13228±93	72997. 1.1	12328±190	900±211	72998.2 .1	12198±91	72998. 1.1	12688±198	-490±218	1030±130	
120	70403.1 .1	13615±109	70403. 2.1	12794±204	821±231	70405.1 .1	13193±109	70405. 2.1	12905±304	288±323	422±154	
130	*90558. 1.1	13279±88										336±140
140	72999.2 .1	14090±104	72999. 1.1	13535±199	555±224	73000.2 .1	13252±596	73000. 1.1	11980±272	1272±655	838±605	
146	75043.1 .1	14290±101	75043. 2.1	13079±225	1211±247							
152	73001.2 .1	14884±105	73001. 1.1	14160±216	724±240							
160	73002.2 .1	14924±108	73002. 1.1	14334±210	590±236							
172	73003.2 .1	15346±115	73003. 1.1	13730±202	1616±232	*73004. 1.1	14572±328					191+154
	*90556. 1.1	15155±102										
180	73005.2 .1	15977±138	73005. 1.1	14560±207	1417±249	73006.2 .1	15261±230	73006. 1.1	15071±339	190±410	716±268	
190	73007.2 .1	15916±206	73007. 1.1	16179±247	-263±322	*73008. 1.1	15513±260					
196	75044.1 .1	16636±120	75044. 2.1	15351±270	1285±295							
200	75016.1 .1	17066±120	75016. 2.1	16105±238	961±266	75017.1 .1	16786±134	75017. 2.1	16599±267	187±299	280±180	
210	75018.1 .1	17292±123	75018. 2.1	15468±242	1824±271	*75019. 1.1	17064±161					
214	75045.1 .1	17242±122	75045. 2.1	16159±279	1083±304							

220	75020.1 .1	17427±142	75020. 2.1	16248±270	1179±305	75021.1 .1	17511±137	75021. 2.1	16493±260	1018±294	-84±197	
230	75022.1 .1	18634±176	75022. 2.1	17495±259	1139±313	*75023. 1.1	18146±170					
234	75046.1 .1	18305±130	75046. 2.1	17318±278	987±307							
	75024.1 .1	18735±134	75024. 2.1	16214±256	2521±289	75025.1 .1	18301±177	75025. 2.1	17803±280	498±331	435±222	
240	*90554. 1.1	17581±123										1154±182
250	75026.1 .1	18726±150	75026. 2.1	18314±288	412±325	75027.1 .1	19231±141	75027. 2.1	18481±289	750±322	-506±206	
260	70406.1 .1	19979±181	70406. 2.1	18387±301	1592±351	70408.1 .1	19831±180	70408. 2.1	18166±307	1665±356	148±255	
264	75047.1 .1	19776±143	75047. 2.1	17717±276	2059±311							
270	75028.1 .1	20361±152	75028. 2.1	17665±287	2696±325	*75029. 1.1	18348 ±172					
270 r						*82186. 2.1	18310±320					
280	75030.1 .1	20684±155	75030. 2.1	17045±257	3639±300	*75031. 1.1	15814±166					
284	75048.1 .1	20991±159	75048. 2.1	18691±319	2300±356							
290	75032.1 .1	213487±161	75032. 2.1	20247±338	1100±374							
300	75033.1 .1	22110±172	75033. 2.1	20832±342	1278±383							
310	75034.1 .1	22573±178	75034. 2.1	20153±339	2420±383	*75035. 1.1	21912±278					
314	75049.1 .1	23133±189	75049. 2.1	21020±484	2113±519							
	75036.1 .1	22984±185	75036. 2.1	19376±305	3608±357	*75037. 1.1	22763±286					
320	*90551. 1.1	21565±157										1419±242
329	75038.1	24126±203	75038. 2.1	20116±317	4010±376	*75039. 1.1	23166±329					

Figure 1.

Figure 2.

Depth (cm)

a)

Figure 3.

b)

Depth (cm)

Figure 4.

Depth (cm)

Figure 5.

