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Abstract 
Only a few studies have examined the variation of oxygen and hydrogen isotopes of seawater in 
NE Atlantic water masses, and data are especially sparse for intermediate and deep-water masses.  
The current study greatly expands this record with 527 δ18O values from 47 stations located 
throughout the mid- to low-latitude NE Atlantic. In addition, δD was analyzed in the 192 samples 
collected along the GEOTRACES North Atlantic Transect GA03 (GA03_e = KN199-4) and the 
115 Iberia-Forams cruise samples from the western and southern Iberian margin. An 
intercomparison study between the two stable isotope measurement techniques (cavity ring-down 
laser spectroscopy and magnetic-sector isotope ratio mass spectrometry) used to analyze GA03_e 
samples reveals relatively good agreement for both hydrogen and oxygen isotope ratios. The 
surface (0-100 m) and central (100-500 m) water isotope data show the typical, evaporation 
related trend of increasing values equatorward with the exception for the zonal transect off Cape 
Blanc, NW Africa. Off Cape Blanc, surface water isotope signatures are modified by the 
upwelling of fresher Antarctic Intermediate Water (AAIW) that generally has isotopic values of 
0.0 to 0.5‰ for δ18O and 0 to 2‰ for δD. Along the Iberian margin the Mediterranean Outflow 
Water (MOW) is clearly distinguished by its high δ18O (0.5-1.1‰) and δD (3-6‰) values that 
can be traced into the open Atlantic. Isotopic values in the NE Atlantic Deep Water (NEADW) 
are relatively low (δ18O: –0.1 to 0.5‰; δD: –1 to 4‰) and show a broader range than observed 
previously in the northern and southern convection areas. The NEADW is best observed at 
GA03_e Stations 5 and 7 in the central NE Atlantic basin. Antarctic Bottom Water isotope values 
are relatively high indicating modification of the original Antarctic source water along the flow 
path. The reconstructed δ18O-salinity relationship for the complete data set has a slope of 0.51, i.e. 
slightly steeper than the 0.46 described previously by Pierre et al. (1994) for the tropical to 
subtropical Northeast Atlantic. This slope decreases to 0.46 for the subtropical North Atlantic 
Central Water (NACW) and the MOW and to 0.32 for the surface waters of the upper 50 m. The 
δD-salinity mixing lines have estimated slopes of 3.01 for the complete data, 1.26 for the MOW, 
3.47 for the NACW, and 2.63 for the surface waters. The slopes of the δ18O-δD relationship are 
significantly lower than the one for the Global Meteoric Water Line with 5.6 for the complete 
data set, 2.30 for the MOW, 4.79 for the NACW, and 3.99 for the surface waters. The lower 
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slopes in all the relationships clearly reflect the impact of the evaporation surplus in the 
subtropics. 
 
Keywords: oxygen isotopes, hydrogen isotopes, NE Atlantic, Mediterranean Outflow Water, 
GEOTRACES 
 
 
1. Introduction 

High precision stable isotope (δ18O, δD) analyses of fresh and ocean water were first 
discussed by Epstein and Mayeda (1953) and Friedman (1953). Craig and Gordon (1965) later 
showed that δ18O can be used as a water mass tracer and that the δ18O-salinity relationship 
follows a slope of 0.61 in the surface waters of the high-latitude North Atlantic and thus the 
North Atlantic Deep Water (NADW) but changes to a slope of 0.22 in the surface waters of the 
subtropical North Atlantic or even 0.11 in the Atlantic’s equatorial trough. Subsequent studies 
focused on specific regions (e.g., Fairbanks, 1982; Van Donk and Mathieu, 1969; Weiss et al., 
1979) and a global study of seawater stable isotope transects and vertical profiles was made by 
the GEOSECS program (Östlund et al., 1987). Although the GEOSECS program provided the 
first global data set, the spatial coverage was limited. In the North Atlantic south of the 
Greenland-Iceland-Scotland ridge, six vertical stations covered the complete water column, but 
only Station 115 at 28°N and 26°W was located in the eastern basin. After the GEOSECS 
program a major gap followed in seawater stable isotope studies. In the last two decades, 
however, various studies provided new δ18O data that focused on high latitude regions and the 
influence of meltwater in the Atlantic sector (e.g., Azetsu-Scott and Tan, 1997; Bauch et al., 
1995; Cox et al., 2010; Mackensen, 2001; Meredith et al., 1999a; Meredith et al., 1999b), the 
NW African upwelling region off Cape Blanc (Pierre et al., 1994: Fig. 1b) and the Mediterranean 
Sea (Pierre, 1999). Pierre et al. (1994) proposed a slope of 0.46 for the δ18O-salinity mixing line 
for the waters of the tropical to mid-latitude North Atlantic. In the Mediterranean Sea basin with 
its excess evaporation the slope is lower varying from 0.25 to 0.27 (Pierre, 1999).  

Data on the intermediate to deep waters in the North Atlantic remained sparse until the 
study of Frew et al. (2000) who analyzed vertical δ18O profiles from stations in the North 
Atlantic’s subpolar gyre. The authors found a mixing slope of 0.62 that matches the one of Craig 
and Gordon (1965), but could also show that Northeast Atlantic Deep Water (NEADW; 0.22‰) 
can be distinguished isotopically from the bottom waters in the Northwest Atlantic (0.13‰) 
owing to different formation and mixing processes. Furthermore, they were able to trace the 
signature of the more saline Mediterranean Outflow Water (MOW) as an isotopically relative 
higher value (0.3‰) at a water depth of 800 m in their easternmost station at 51.75°N 20°W. 
Bigg and Rohling (2000) used the global data base compiled by Schmidt et al. (1999) and related 
a break in the slope of the mixing line at 36.5 to the high salinity waters of the Mediterranean Sea 
with the slope above this salinity value being less steep.  

In regions with excess evaporation the slope of the δ18O (or δD)-salinity mixing line or the 
δ18O-δD relationship strongly diverges from the global slope (Bigg and Rohling, 2000) or the 
Global Meteoric Water Line (Craig and Gordon, 1965) as clearly demonstrated by Gat et al. 
(1996) for the eastern Mediterranean Sea. Gat et al. (1996) showed that is important to 
understand the regional mixing lines because the isotopic signals observed in the surface waters 
impact the isotopic range of the marine moisture and the subsequent precipitation over the sea 
and land (e.g., Gat, 1996; Benetti et al., 2014). Conditions in the Mediterranean Sea are highly 
relevant for our study because deep convection, in particular in the eastern basin, form the 
intermediate to deep-water masses that contribute to the deep outflow from the Mediterranean 
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Sea feeding into the MOW. The MOW plays an important role for the North Atlantic’s 
overturning circulation because the excess salt it exports into the North Atlantic contributes to 
increase the density in the convection areas of deep-water formation (Bigg et al., 2003).  

In the last six decades, the world oceans experienced changes that also affect the 
hydrological cycle. As a consequence of the increased salinity in the surface waters of 
evaporation dominated regions, such as the Atlantic’s subtropical gyres, and enhanced freshening 
in precipitation dominated regions the global hydrological cycle was intensified (Durack et al., 
2012). Salinity changes were not restricted only to the surface ocean but also affected deeper 
levels. In the northeastern Atlantic higher salinities at the 1000-dbar level are linked to MOW 
enhancement and spreading along the southern pathways (Curry et al., 2003; Durack and Wijffels, 
2010). Freshening and equatorward spreading of this signal is observed in the Antarctic 
Intermediate Water (AAIW) and Upper Circumpolar Deep Water (UCDW) (Curry et al., 2003). 
Likewise, deep waters formed in the northern hemisphere, such as the Central Labrador Sea 
Water (CLSW), are freshening (Durack and Wijffels, 2010). 

Changes in the hydrological cycle are also relevant for paleoclimate studies. In the last 
years, δ18O and δD data have gained increasing importance in paleoclimate studies, in particular 
for the hydrological cycle, and have been incorporated into global climate models (LeGrande and 
Schmidt, 2009; Roche and Caley, 2013; Schmidt, 1998; Schmidt et al., 2007). Understanding 
isotopic changes in precipitation is particularly relevant for ice core and speleothem studies (e.g., 
Masson-Delmotte et al., 2005, 2010; Cai et al., 2010; Cheng et al., 2013). Furthermore, seawater 
δ18O data are essential for the calibration of the δ18O signal of foraminiferal calcite (e.g., Kohfeld 
et al., 1996; Mulitza et al., 2003; Ortiz et al., 1996; Peeters et al., 2002; Wilke et al., 2009) that is 
used extensively in paleoceanographic studies. Ecological or climate models evaluating the 
relationship between foraminiferal calcite and water isotopes rely on seawater isotope data as 
input or for comparison (Caley and Roche, 2013; Paul et al., 1999; Schmidt, 1999; Schmidt and 
Mulitza, 2002).  
 In the Northeast Atlantic most water masses have been altered by mixing, especially in the 
depths below the permanent thermocline, and isotopic values likely diverge from the ones found 
at the source of a particular water mass. Given the dearth of stable isotope data for NE Atlantic 
water masses and the MOW we analyzed seawater samples collected during several cruises 
occurring during the years from 2006 to 2012 (Table 1). The data set presented here includes 
stable isotope data for 527 levels from 47 stations (Fig. 1, Table 1), of which only 41 data points 
have been published previously (Voelker et al., 2009).  
 
2. Sample Stations and Hydrographic Setting 
 Corresponding δ18O and δD profiles are available for the 18 stations sampled during the 
GA03_e and the Iberia-Forams (Ib-F) cruise. The GA03_e transect (US GEOTRACES 
Meridional and Zonal transect) was sampled during the KN199-4 cruise on R/V Knorr in October 
2010 in a profile from Lisbon to the Cape Verde Islands (Fig. 1b). Because the cruise is related to 
the international GEOTRACES program (www.geotraces.org) and involved multi-parameter 
analyses (see related publications in this issue) samples were collected at 24 levels. The Iberia-
Forams cruise on R/V Garcia del Cid took place in September 2012 and collected water samples 
at 9 stations along the western and 3 stations along the southern Iberian margin sampling up to 12 
levels at each station (Voelker, 2012). The British Atlantic Meridional Transect (AMT; 
www.amt-uk.org) program conducts an annual cruise from the UK to the South Atlantic 
undertaking biological, chemical and physical oceanographic research. Samples for the seawater 
stable isotope study (Fig. 1b, Table 1) were gathered during the AMT-18 cruise on RRS James 
Clark Ross during October 2008 in profiles covering the upper 300 m of the water column. 
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Additional water samples were collected during various cruises on the German R/V Poseidon 
(Table 1). Most of these cruises were part of a recurring sampling program across the Azores 
Front in meridional transects along the longitudes of 22°W or 20°W (Fig. 1). Reoccupation of 
stations during different years and seasons allows the comparison of interannual and seasonal 
δ18O variations.  
 From a hydrographic point of view the study region belongs to the transitional waters and 
subtropical gyre of the NE Atlantic (Fig. 1a). The dominant surface-water currents are the North 
Atlantic Current (NAC) in the north, the Azores Current (AzC), which separates from the NAC 
near the Grant Banks and flows towards the east, and the Portugal (PC) and Canary Currents 
(CC) as the recirculating eastern boundary currents. The typically 150 km wide AzC crosses the 
Atlantic in large meanders between 31 and 37°N and is on its northern boundary associated with 
the subtropical front, the Azores Front, that reaches at least 500 m deep and is often defined by 
the 15°C isotherm (Klein and Siedler, 1989; Pingree, 1997; Pingree et al., 1999; Siedler and 
Onken, 1996; Fründt and Waniek, 2012). In the eastern basin the AzC splits into different 
branches, most of which recirculate equatorward and feed the CC (Siedler and Onken, 1996; Fig. 
1a). The eastern branch of the AzC flows, however, into the Gulf of Cadiz (Johnson and Stevens, 
2000; Peliz et al., 2005; Vargas et al., 2003) and, especially during the non-upwelling season 
(October-March), waters from this branch flow also along the western Iberian margin as the 
Iberian Poleward Current (Peliz et al., 2005). The subsurface component of the Iberian Poleward 
Current conveys eastern North Atlantic Central Water (NACW) of subtropical origin poleward 
that is formed by strong evaporation and winter cooling along the Azores Front (Rios et al., 
1992). The PC, centered west of 10°W off Portugal, advects freshly ventilated surface and 
subsurface waters southward (Perez et al., 2001; van Aken, 2001) with the subsurface component 
being eastern NACW of subpolar origin (Brambilla et al., 2008; McCartney and Talley, 1982). 
The CC, at 500 m deep on average, flows along the NW African margin and the AzC waters are 
modified by the entrainment of the colder AAIW upwelled along the African margin all year-
round (Knoll et al., 2002; Wooster et al., 1976).  
 In the intermediate depth range (500-1600 m), i.e. below the permanent thermocline 
formed by the NACW (van Aken, 2001), the most important water masses are the MOW and the 
AAIW. The warm, salty MOW is formed in the Gulf of Cadiz by mixing of Mediterranean Sea 
with Atlantic central and surface water. As a result of mixing the MOW splits into two cores 
centered at about 800 and 1200 m (Ambar and Howe, 1979) that flow as poleward undercurrents 
along the western Iberian margin. Facilitated by the topography (canyons, capes, seamounts) the 
MOW sheds many eddies (Richardson et al., 2000; Serra and Ambar, 2002). These so-called 
meddies greatly contribute to the MOW’s admixing into the wider North Atlantic basin and can 
be traced throughout the eastern North Atlantic basin (Richardson et al., 2000). Only north of 
40.5°N and at depths around 1600 m can CLSW, the uppermost component of the NADW, be 
observed along the Iberian margin (Alvarez et al., 2004; Fiuza et al., 1998). Along the NW 
African margin AAIW, a relatively fresh water mass of Antarctic origin, is generally encountered 
between 700 and 1000 m and is the water mass upwelled in the filaments formed off Cape Ghir 
or Cape Blanc (Knoll et al., 2002; Mittelstaedt, 1989; Tsuchiya, 1989). Knoll et al. (2002) 
observed that AAIW influence is strongest during the autumn. Small amounts of AAIW have 
been traced as far north as the southwestern Iberian margin (Cabeçadas et al., 2003; van Aken, 
2001).  

Deeper in the water column NEADW and Lower Deep Water (LDW) are encountered. 
LDW (> 4000 m) is warmed Antarctic Bottom Water (AABW) that enters the eastern Atlantic 
basin through the Vema fracture zone at 11°N and the Iberian and Tagus abyssal plains partly as 
an intensified current through the Discovery Gap near 37°N (Saunders, 1987). The NEADW is a 
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mixture between Iceland-Scotland Overflow Water (ISOW), CLSW, LDW, and MOW with the 
contributions of LDW and MOW increasing to the south (van Aken, 2000).  

Jenkins et al. (this volume) performed an Optimum MultiParameter Analysis (OMPA) 
water mass analysis for the stations along the GA03 transect. OMPA assesses the relative 
contributions of endmember water masses that have mixed to form each water sample collected.  
This analysis employs a least-square optimization using input values for the concentrations of a 
suite of conservative properties measured on the sample and defined for the endmembers 
(Tomczak, 1981; Jenkins et al., this volume). The OMPA data revealed that NACW occupied the 
depth interval between 50 and 500 m at all stations (Fig. 2 a, b) and as deep as 600 m at Station 5, 
i.e. within the Azores Front region. Atlantic Equatorial Water (AEW) had the strongest signal 
along the zonal transect through the Cape Blanc upwelling system (Stations 9-12; Fig. 1b) and 
was identified at water depths from 100 to 600 m (Fig. 3 a, b; Jenkins et al., this volume). 
Salinity profiles indicate MOW was present between 500 and 1600 m as hardly modified water 
mass at Station 1 on the Portuguese margin and slightly diluted at Station 3 (Fig. 2b). At Station 5 
MOW contributed more than 50% to the waters around 800 m and a diluted signal can be traced 
south to the zonal transect stations (Jenkins et al., this volume). AAIW was encountered between 
600 and 1000 m, in particular at Stations 7 to 12 (Fig. 2, 3). Minor influence is also observed 
between 800 and 1000 m at Station 5. All three major NADW water masses could be identified in 
the eastern basin as well (Jenkins et al., this volume). CLSW contributed 50-80% to the waters in 
the depth range of 1900 – 2500 m. Between 2500 and 3500 m, ISOW contributed 20% to the 
water mass signal and Denmark Strait Overflow Water (DSOW) 20% below 3500 m, in 
particular at Stations 5 and 7 (Fig. 2 a, b). AABW contributed 30-40% to the water masses below 
4000 m at Stations 5 to 12 but less than 20% at Stations 3 and 1 (Jenkins et al., this volume).  

With the absence of upwelling prior to and during the Iberia-Forams cruise (Voelker, 
2012) subtropical surface and subsurface (NACW) waters were encountered along the southern 
and western Iberian margin down to 250 m (Fig. 4, 5). Below the subtropical NACW the lower 
salinities clearly depict the fresher subpolar NACW between depths of 250 to 500 m along the 
southwestern margin, deepening to 750 m at the northernmost station (Ib-F 2). MOW occupied 
the water depths between 500 and 1500 m along the western margin but reached as deep as 1600 
m at Station Ib-F 11 that is located in the vicinity of GA03_e Station 1 (Fig. 1). Along the 
southern margin the uppermost MOW core was observed at the two eastern stations (Ib-F 8 and 
9; Fig. 5). The AMT-18 hydrographic sections place the Azores Front at about 36°N based on the 
15°C thermocline and steep salinity gradient (Fig. 6). 
 
3. Methods 
3.1 Sampling 
 During the KN199-4 cruise, samples were collected from the Niskin bottles on the ship’s 
CTD rosette as described in Colman and Olack (in preparation). Samples were collected into 20 
ml borosilicate glass vials with polyethylene-seal, conical-insert screw caps (Kimble, no. 74516-
20). Vials were stored dark and at room temperature or 4°C. Samples from GA03_e Stations 1, 5 
and 10, used for the intercomparison, were split in the laboratory at U. Chicago into multiple 4 ml 
borosilicate vials with polyseal caps, using a pipette and minimizing the time that each sample 
was uncapped. The Iberia-Forams samples were filled into 10 cc glass vials that were closed with 
a rubber septum and a crimped aluminum cap. All samples were stored at 4°C and shipped to 
Cambridge within a few months after the cruise. AMT-18 and POS cruise samples were collected 
into 100 cc glass flasks. The flasks were sealed with ground glass stoppers after applying a thin 
layer of silicone grease to enable a tight fit. Stoppers were furthermore fixed with tape to avoid 
loosening during transport. Samples were stored in aluminum boxes at 4°C. 



 6 

 
3.2 Stable Isotope Analyses 

The samples from the KN199-4 and Iberia-Forams cruises were analyzed at the Godwin 
Laboratory for Palaeoclimate Research in the Department of Earth Sciences at the University of 
Cambridge (UK). Water oxygen and hydrogen isotopes were measured simultaneously by cavity 
ring-down laser spectroscopy (CRDS) using a L1102-i Picarro water isotope analyzer and A0211 
high-precision vaporizer. Each sample was injected nine times into the vaporizer. Memory effects 
from previous samples were avoided by rejecting the first three analyses. Values for the final six 
injections were averaged with in-run precision of less than ±0.1‰ for δ18O and ±1‰ for δD (1-
standard deviation). Calibration of results to VSMOW was achieved by analyzing internal 
standards before and after each set of 7 or 8 samples. The instrument was calibrated at the start 
and during each run using three working standards from the University of Cambridge (Delta, 
Botty, SPIT) with known values calibrated against VSMOW, GISP, and SLAP. An internal 
seawater standard (SPIT) was analyzed after every three samples to correct for instrument drift.  

At the Department of the Geophysical Sciences of the University of Chicago (USA) all 
seawater samples were processed on a GasBench II (Thermo, Bremen, Germany) with a GC PAL 
autosampler (CTC Analytics, Zwingen, Switzerland) and interfaced to a Delta V Plus isotope 
ratio mass spectrometer (Thermo) operating in continuous flow mode with helium carrier gas. A 
hydrogen equilibration method using platinum catalyst was used for δD analysis (Nelson, 2000); 
a classical CO2-H2O equilibration at 26°C was used for δ18O analysis. In both cases, samples 
were entrained in a helium carrier gas with gas sample cleanup and removal of water vapor 
achieved on the GasBench II peripheral prior to isotopic analysis in continuous flow mode on the 
mass spectrometer. Raw δ18O analyses are corrected for the fractionation factor between water 
and CO2 as a function of temperature of equilibration (Friedman and O’Neill, 1977), mass 
balance between water oxygen and CO2 oxygen present in the tube. Replicate analyses of the 
standards VSMOW2, SLAP2, and GISP were included in every run, and samples were evaluated 
against these isotopic reference materials using standard practices. The δD analyses are corrected 
to the standards (Nelson, 2000), and then a uniform -2.0‰ salt correction (Martineau et al., 2012) 
is applied to compensate for isotopic enrichment of the headspace H2 for the seawater samples. 
With few exceptions, all samples analyzed in Chicago were analyzed in triplicate. The resultant 
precision (1 s.d.) for triplicate δ18O analyses run on the same day averaged better than 0.03‰ and 
for δD analyses averaged 1.4‰. Splits from a subset of samples were preserved in smaller 
conical insert vials and reanalyzed in triplicate four months later. The means of the repeat 
analyses agreed with the original means within the measured analytical uncertainty as determined 
from the triplicates run each day.  
 Oxygen isotope ratios in POS and AMT-18 cruise samples were measured at the Leibniz 
Laboratory for Radiometric Dating and Isotope Research at the University of Kiel (Germany). 
POS349, POS377, POS383 and AMT-18 samples were analyzed in continuous flow mode on the 
DeltaPlusXL mass spectrometer coupled to a Gasbench II. POS334 samples were analyzed on a 
Delta E mass spectrometer coupled to an equilibration bath (Voelker et al., 2009). During the 
analyses three to four lab internal standards were used that are calibrated against VSMOW, GISP 
and SLAP. Analyses have a precision better than ±0.06‰. 

Both oxygen and hydrogen isotope compositions are reported in parts per thousand (‰) 
on the VSMOW scale. The isotope and Iberia-Forams CTD data is available from the 
PANGAEA world data center (http://doi.pangaea.de/10.1594/PANGAEA.831469). The KN199-4 
data is also archived with the Biological and Chemical Oceanography Data Management Office 
(www.bco-dmo.org/) and the AMT-18 data with the British Oceanographic Data Centre (BODC). 
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 Figures 1 to 6 and 8 were constructed using the Ocean Data View program (Schlitzer, 
2013). The transects in figures 2 to 6 were done with weighted-average gridding using scale-
length values as small as possible (Fig. 2-5: x-axis length: 75-80 permil; y-axis length: 40-60 
permil; Fig. 6: x-axis length: 85 permil; y-axis length: 125 permil). Owing to the greater x-axis 
values some features/isolines might artificially be elongated. 

 
4. Results  
4.1 Intercomparison Data for GA03_e Stations 1, 5 and 10 
 Figure 7 shows the comparison between the δ18O and δD values analyzed for the same 
samples with the Picarro water isotope analyzer at the Godwin Laboratory and the Thermo Delta 
V Plus mass spectrometer in Chicago. For δ18O values, especially those from Station 1 (see also 
Fig. 9a, b), the agreement is relatively good and many values fall onto or near a 1:1 line. Within 
the 1σ standard deviations nearly all values of Station 1 fall onto the 1:1 line. A larger scatter is 
observed for samples from Stations 5 and 10 compared to results from Station 1 (see also Fig. 9), 
which might be related to the larger range of salinity values encountered at Stations 5 and 10 (Fig. 
2,3). At these stations the Picarro results appear to be less reliable because the isotope values 
obtained with the Delta V mass spectrometer fit more closely to the GEOSECS Station 115 data 
(see Fig. 9d for St. 5) than the Picarro results. However, there is no systematic offset from the 1:1 
line as indicated by the linear relationship that clearly follows the above-mentioned trends. 
Although not measured on the same samples, the δ18O profiles from Station Ib-F 10 analyzed on 
the Picarro and Station POS334-72 measured on a Delta E mass spectrometer are nearly identical 
(Fig. 10e) indicating that the Picarro data are not systematically offset. Nevertheless, the KN199-
4 data shows that more intercalibration work should be carried out in the future. 
 The reproducibility of δD among different labs is as good as for δ18O with values falling 
close to the 1:1 line (Fig. 7b). However, error bars for some of the Picarro measurements are 
large because duplicate measurements often gave results that differ by more than the estimated 
precision of 1‰ (especially for Station 5). Similar to the δ18O data this relates mostly to the 
Stations 5 and 10 and especially to the levels of the intermediate- to deep-water masses that have 
values in the lower range. Although perhaps some scatter in the Picarro measurements could be 
related to the fact that with VSMOW (0‰ for δ18O and δD) being the most enriched standard 
analyzed the δD regression for the KN199-4 samples (significantly more enriched than VSMOW) 
is extrapolated beyond the range of the standard values, the lower precision is more likely caused 
by salt buildup in the vaporizer, which greatly reduces accuracy (Saad and Trinh, 2013). As for 
δ18O more intercomparison work is needed as well as potentially repeating the analysis of some 
of the GA03_e samples using the new set-up proposed by Picarro to minimize salt buildup (Saad 
and Trinh, 2013). 
 
4.2 KN199-4 GEOTRACES transects 
 Water mass isotopic ranges (only Picarro results) along the GA03_e transects are grouped 
according to the OMPA water mass analysis of Jenkins et al. (this volume) as briefly outlined in 
paragraph 2. Very few of the water samples collected along GA03_e represent nearly pure 
endmember compositions. Therefore, most of the isotopic compositions we report are the result 
of mixtures of endmembers. We highlight the distribution and isotopic influence of some key 
endmembers below, using the water mass identifications from Jenkins et al. (this volume).   

Surface waters (0-50 m) along the meridional transect show δ18O values from –0.4 to 
1.6‰ and δD values from 4 to 10‰ (Fig. 2, 8, 9). Along the East-West transect off Cape Blanc 
these values are 0.4 to 1.0‰ and 4 to 7‰, respectively (Fig. 3). Based on Stations 1-7, water in 
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the 50-500 m depth interval has isotopic values ranging from –0.6 to 2.6‰ for δ18O and 3 to 11‰ 
for δD.  The majority of the δ18O values between 0.6 and 0.9‰ and of the δD values between 5 
and 7‰ represent water samples with >80% NACW and small contributions from Southwest 
Atlantic Central Water and AEW. In the Cape Blanc transect (Stations 9-12) these depths are 
mostly occupied by the AEW and NACW (100-600 m) with δ18O values spanning from –0.1 to 
1.2‰ and δD values from 1 to 8‰ (Fig. 3). MOW was most important in contributing to mid-
depth waters (500-1600 m) at Stations 1 and 3 with declining importance at stations further south 
than Station 3 and below 1000 m; δ18O values in this depth interval (500-1600 m) are 0.6 to 0.9‰ 
and δD values 4 to 7‰ (Fig. 2, 8). At the stations and depths where MOW declines in importance, 
AAIW, UCDW, and CLSW are all important contributors with generally small (<20%) fractions 
of Irminger Sea Water (ISW). Over the 600-1000 m depth range for these stations, isotopic 
values range from –0.1 to 0.6‰ δ18O and 0 to 6‰ δD based on Stations 7 to 12 and the 1000 m 
level of Station 5. In the interval from 1000 to 1900 m (excluding Stations 1 and 3 where MOW 
is present) δ18O values vary between –0.2 and 0.5‰ in the meridional transect and 0.1 and 0.7‰ 
in the zonal Cape Blanc transect. Respective δD values are –1 to 3‰ and 2 and 6‰ (Fig. 2, 3, 8). 
 Most stations show substantial (40-70%) contributions from CLSW in the 1900-2500 m 
interval, and water isotopic compositions are in the range of –0.1 to 0.8‰ for δ18O and 0 and 4‰ 
for δD and for the ISOW (2500-3500 m) 0.0 to 0.5‰ for δ18O and 0 to 3‰ for δD. In the DSOW 
depth range (3500-4000 m) δ18O values vary from –0.1 to 0.2‰ and δD values from –1 to 2‰. 
Jenkins et al. (this volume) show that waters from > 3500 m (Stations 5 and 7) have substantial 
(>15%) contributions from AABW, CLSW, DSOW, and ISOW. Measured isotopic compositions 
on these waters are 0.0 to 0.7‰ for δ18O and 1 to 3‰ for δD (Fig. 2, 3, 8). 
 
4.3 Iberia-Forams Stations 
 Along the Iberian margin δ18O values in the seasonal thermocline water (upper 90 m) 
ranged from 0.6 to 1.3‰ and δD values from 3 to 6‰ (Fig. 4, 5, 8). Isotopic values in the depth 
range from 100 to 280 m, representing mostly the subtropical NACW, are 0.6-1.1‰ δ18O and 3-
7‰ δD, respectively. The lower δ18O values of 0.7‰ and 0.6‰ were measured at Station Ib-F 5 
at 240 m (also lowest δD value) and Station Ib-F 11 at 250 m, respectively, and might reflect 
remnants of upwelling events occurring prior to the cruise and consequently potential admixing 
of the fresher subpolar NACW. Within the depth range of the subpolar NACW (300-680 m but 
excluding depths ≥ 500 m at southern Stations Ib-F 8 and 9) isotopic compositions of 0.4 to 0.9‰ 
δ18O and 2 to 4‰ δD were observed (Fig. 8). On the Algarve coast at Stations Ib-F 8 and 9 
depths ≥ 500 m reveal high isotopic values (Fig. 5c, d) related to the presence of the shallowest 
(third) MOW core that in this region can be observed between 400 and 600 m (Ambar, 1983). 
The lowest subpolar NACW isotope values were recorded at Station Ib-F 6 north of Lisbon 
(38.8°N; Fig. 4).  

In the depth interval from 700 to 1450 m the MOW is clearly depicted in the hydrographic 
and isotopic data along the western Iberian margin (Fig. 4, 8). Ranges of isotopic values for the 
samples most heavily influenced by MOW are 0.7 to 1.1‰ for δ18O and 3 to 6‰ for δD, 
respectively. In the δ18O values the upper MOW is well illustrated all along the western margin 
(Fig. 4c) whereas the lower MOW core is best portrayed at Station Ib-F 3 (41.2°N). The 
differences between the stations and levels are to be expected because the MOW cores are 
dynamic flows that shed many eddies (Serra and Ambar, 2002; Serra et al., 2005; Serra et al., 
2002), especially in regions with topographic features such as the Portimão Canyon (vicinity of 
Station Ib-F 10) and the Estremadura promontory on which southern edge Station Ib-F 6 is 
located. Actually, at Station Ib-F 10 only a diluted lower MOW core is observed (Fig. 4). At this 
station the isotopic value at 790 and 1000 m is 0.5‰ for δ18O and 3‰ for δD. The δ18O value is 
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similar to those observed in the AAIW levels along the GA03_e sections (Fig. 2, 3) and might 
indicate AAIW advection into the Gulf of Cadiz as previously observed by Cabeçadas et al. 
(2002; 2003) and Louarn and Morin (2011). The Ib-F 10 δ18O profile agrees very well with the 
data from station POS334-72, located nearby but sampled in 2006 (Fig. 10e). 
 Below 1500 m isotopic values range from 0.1 to 0.9‰ δ18O and 0 to 5‰ δD (Fig. 4, 8). 
The high values of 0.9‰ and 5‰ at 1750 m depth at Station Ib-F 2 result probably from 
admixing of lower MOW core waters, even though the depth range also fits the LSW level 
(Alvarez et al., 2004; Fiuza et al., 1998). 
 

4.4 AMT-18 transect 
Oxygen isotope values of the surface to subsurface water masses sampled along the AMT-

18 transect range from 0.8 to 1.5 (Fig. 6c, 8). As to be expected with increasing evaporation in 
the subtropical gyre surface water isotope values rise from the north to the south. North of the 
Azores Front the subpolar NACW has δ18O values between 0.9 and 1.0‰ whereas the values 
increase to 1.1-1.2‰ in the subtropical NACW. 
 
4.5 Azores Current and Front Stations 

Figures 8 and 10 show the δ18O data for the stations located in the Azores Current region 
and of the ESTOC (European Station for Time-Series in the Ocean, Canary Islands) station close 
to the Canary Islands (Fig. 1). Combining the data from all POS stations surface water δ18O 
values range from 0.8 to 1.4‰ and in the 60-600 m level from 0.4 to 1.5‰. In the depth interval 
from 600 to 1000 m, occupied by MOW and/or ISW/AAIW in the GA03_e transect, values vary 
between 0.3 and 0.8‰ (Fig. 8). Samples from 1500 m have δ18O values of 0.2 to 0.6‰ and from 
2000 m (LSW level) of 0.2 to 0.6‰. Station POS383-175 is the only one extending to depths 
below 2000 m and shows a δ18O value of 0.4‰ at 3000 and 4000 m, respectively (Fig. 9c). At the 
deepest point (4700 m), i.e. in the AABW/LDW depth range, 0.2‰ are observed.   
 
5. Discussion 
5.1 Potential Outliers 
 At GA03_e Station 3 unusually low δ18O values of –0.6 to –0.4‰ were measured in the 
four samples from the upper 100 m (Fig. 2, 8). In comparison to all the other surface water values 
observed, especially at the open ocean POS and AMT-18 stations (Fig. 6, 10), these values are 
very low. The corresponding δD values are also relatively low at 4 to 5‰. Because these values 
were measured in four adjacent samples they suggest a real signal of a strong contribution from 
an isotopically light source (i.e., a freshwater source). A potential freshwater source could be 
heavy rain associated with perishing Hurricane Otto that crossed the sampling region as tropical 
storm on October 13th to 14th, 2010 (National Hurricane Center, US National Weather Service; 
http://www.nhc.noaa.gov/2010atlan.shtml), i.e. just days prior to the occupation of Station 3 on 
October 19th, 2010. Storm related winds could also explain why a freshwater signal was mixed as 
deep as 100 m. However, there is no significant salinity anomaly observable in these samples as 
would be required in order for rainwater to account for the oxygen isotope compositions. The 
salinities for these samples were between 36.25 and 36.65 and generally decline with depth. 
These are more saline (about 0.15 higher) than the surface waters at GA03_e Station 2 to the 
north and less saline (about 0.20 lower) than the surface waters at GA03_e Station 4 to the south. 
Because the four samples are interpreted as reflecting singular conditions they were excluded 
from the calculation of the δ18O-salinity relationships (Fig. 11a, 12). 
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 The other set of unusual data are the values from the upper 185 m at GA03_e Station 5 
(Fig. 2, 8, 9). Here enriched values of 1.2 to 2.6‰ δ18O and 8 to 11‰ δD were analyzed with the 
Picarro and 1.0 to 1.2‰ δ18O and 8 to 10‰ δD with the Delta V. With the exception of the 2.6‰ 
measured at 81.5 m the δ18O values fit into the range observed for the subtropical gyre at the 
other stations (Fig. 8). What makes these samples outstanding are the high δD values that are the 
greatest found in the whole data set. However, the high values are measured in duplicates and in 
both laboratories indicating that they reflect a true signal, for which we do not have an 
explanation. Corroboration for the occurrence of such high values comes from the recent study of 
Benetti et al. (2014) who measured δD values between 7.5 and 9‰ in the surface waters along a 
transect extending from the Canary Islands into the subtropical gyre. Only the sample at 81.5 m, 
which was just measured with a δD value of 11‰ by the Picarro, is flagged as outlier because of 
the extreme δ18O value (excluded in Figs. 2, 8, 10). It is assumed that the sample flask was not 
sealed properly, so that evaporation occurred during shipping and/or storing.  
 The δ18O values obtained for the POS383 stations are nearly all enriched by about 0.2‰ 
relative to the data from the previous R/V Poseidon cruises and to GA03_e Station 5 (Figure 8, 
10). The POS383 and POS377 samples were analyzed at the same time, so that an analytical error 
can be excluded. Although the time series study of Fründt et al. (2013) revealed that the 
subtropical gyre is displaced northward during the recent years, the temperature and salinity 
profiles of the different cruises show no large changes that could explain the isotopic offset. We 
thus assume that the majority of the POS383 samples are altered by evaporative loss caused by 
poorly sealed glass flasks. One level that might not be affected by evaporation might be the 
deepest sample from the AABW/LDW level at station POS383-175 because the value matches 
the GA03_e and GEOSECS data (Fig. 9d). Nevertheless, all the POS383 data was excluded from 
the calculation of the δ18O-salinity relationships (Fig. 11a, 12). 
 
5.2 Water Mass Characteristics 
 As expected surface water (upper 100 m) δ18O and δD values increase equatorward with 
increasing evaporation (Fig. 2, 4, 6). The stations along the GA03_e Cape Blanc transect are the 
exceptions to this rule. These are the southernmost stations in the dataset but isotope values (Fig. 
3, 8) are much lower than those observed in the open ocean at 25°N (Fig. 2, 6, 8). The cause of 
this offset is the mixing of the surface waters with the fresher and thus isotopically lighter AAIW, 
which is upwelled along the NW African margin, as clearly depicted in the GA03_e Station 9 and 
10 values from 50 to 100 m depth (Fig. 12). The Cape Blanc area experiences annual upwelling 
and Knoll et al. (2002) observed that the AAIW signal is especially strong in fall, i.e. the season 
when the GA03_e was sampled. The influence of the AAIW on the surface waters properties is 
something that is unique to the isotopic values and not seen in the OMPA by Jenkins et al. (this 
issue). 
 The MOW is marked by high δ18O and δD values, generally in the range of 0.5-1.1‰ and 
δD 3-6‰ (Fig. 8, 12), respectively. In the transects along the Iberian margin the isotopic 
signatures allow one to clearly distinguish the different cores, even the shallowest one in the Gulf 
of Cadiz (Fig. 5), and related dynamics. In the open Atlantic at the AzC stations δ18O values 
between 0.4 and 0.8‰ highlight MOW presence (Fig. 8; “diluted” MOW in Fig. 12). In the same 
region the δD data of GA03_e Station 3 reveals that meddies, shed from both the upper and the 
lower MOW core, were present and that isotopic signatures from the lower MOW core were 
entrained into the CLSW level (Fig. 2), in agreement with the OMPA data (Jenkins et al., this 
volume). The contribution of MOW to the intermediate water depths at GA03_e Stations 5 and 7 
is also indicated by the isotopic values (Fig. 2), although for Station 7 this is not seen in the T-S 
diagram (Fig. 8a, b) and needs the corroboration of the OMPA (Jenkins et al., this volume). 
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 Low δ18O and δD values of 0.2 to 0.5‰ and 0 to 2‰, respectively, between 800 and 1500 
m at the stations south of 32°N indicate the presence of AAIW (Fig. 8), in agreement with the 
OMPA data of Jenkins et al. (this volume). The strong overprint of the MOW δ18O signal in this 
depth range does not allow recognition of AAIW further to the north (GA03_e Stations 5 and 3), 
where the OMPA still reveals AAIW contribution to the water mass mixture (up to 25% at 
Station 5; Jenkins et al., this issue). Along the zonal transect off Cape Blanc (Fig. 3) higher 
variability is observed in this depth interval, most likely related to the upwelling. At the 
easternmost Station 9 the AAIW dominated water (around 900 m) is overlain by a water mass 
with slightly higher isotopic values and MOW and AEW influence. This water mass probably 
reflects the mixing between subtropical/equatorial surface and central water with the AAIW 
during the upwelling. Further offshore there appear two AAIW “cores” based on the isotope 
values. Figure 9f shows the comparison between the GA03_e Station 9 and 10 δ18O profiles with 
two profiles measured by Pierre et al. (1994). The Station 9 values for the AAIW depth range are 
slightly more enriched than the Pierre et al. (1994) records whereas Station 10 records shows 
much more depleted values (Fig. 9f, g). Figure 9g compares the complete data set of Pierre et al. 
(1994) to Cape Blanc GA03_e Stations 9, 10 and 12. Both data sets show a broadly defined 
mixing line. The higher variability in the isotopic values from the upper water column can be 
linked to interannual variability in the upwelling strength and thus the admixing of AAIW. 
Nevertheless, to better evaluate the Cape Blanc transect values it would be good to obtain isotope 
data for the AAIW closer to the source region or at least in the eastern South Atlantic. The 
UCDW is difficult to distinguish because the isotopic range is not much different from the 
overlying AAIW and underlying CLSW. Only with the background knowledge of the OMPA can 
the plume of lower δ18O and δD data in the Cape Blanc transect (Fig. 3) be attributed to the 
UCDW. 
 The isotopic ranges in the depth interval related to the NEADW, based on the OMPA data 
a mixture of up to 5 different water masses, are  –0.1-0.5‰ for δ18O and –1-4‰ for δD (Fig. 8). 
This is a wide range for a relative narrow salinity range and the observed scatter is much larger 
than in the Pierre et al. (1994), GEOSECS and Frew et al. (2000) data (Fig. 11c). The Pierre et al. 
(1994) data, the only one with records for more than one station in the deeper NE Atlantic, does, 
however, reveal a higher variability than the Frew et al. (2000) data from close to the source 
areas. As Figure 9 shows the GA03_e values for the CLSW depth range are much more depleted 
than in the Pierre et al. (1994) profiles whereas the values merge for the ISOW. In relation to the 
GEOSECS Station 115 data from 28°N and 26°W (Östlund et al., 1987) the values observed in 
the ISOW and DSOW depth levels at GA03_e Stations 5 and 7 are not so different (Fig. 9c, d) 
and the contributions of these two water masses to the NEADW are clearly depicted in the 
meridional transect (Fig. 2, 8). From the stable isotope data alone it is, however, impossible to 
say which water masses contributed the most to the NEADW (CLSW, ISOW, AABW according 
to Jenkins et al., this volume) as sampled along the GA03_e transect. Because the presented 
dataset is so much larger than any of the previous studies in the mid-latitude North Atlantic we 
assume that at least some of the observed scatter is related to interannual variability within the 
water masses themselves and signal modification due to entrainment of adjacent waters such as 
MOW and AABW (Fig. 8). Some part of the scatter is probably related to the lower precision of 
the Picarro analyses, most likely linked to salt buildup in the vaporizer (Saad and Trinh, 2013). 
 Within the AABW/LDW depth range the observed δ18O values of 0.0 to 0.7‰ are 
comparably higher than the –0.3 to 0.1‰ range measured at stations within or close to the region 
of AABW formation (Mackensen, 2001; Meredith et al., 1999a; Fig. 11c). The more enriched 
values in deep NE Atlantic are probably related to the mixing of the AABW with isotopically 
heavier water masses on its way northward as previously observed by Pierre et al. (1994).  
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5.3 Interannual and Seasonal Variability 
  Several locations were occupied more than once during the various cruises and Figures 9 
and 10 show comparisons between the respective profiles. This data allows looking at interannual 
and seasonal variability.  

On the Iberian margin there are two areas where profiles were measured for nearby 
locations. GA03_e Station 1 and Station Ib-F 11 (located slightly to the south and more offshore; 
Fig. 1) were sampled two years apart under non-upwelling/ fall-type hydrographic conditions. 
Their δ18O profiles nearly replicate themselves whereas the δD values show differences beyond 
the analytical error range (± 1‰) in the MOW and NEADW (Fig. 9a). The small differences 
reflect the slightly higher salinities during October 2010 (GA03_e Stations 1). Given the 
dynamical hydrography in this region, which is a major area of meddy generation and meddy 
recirculation (due to the Estremadura promontory at 39°N; Serra and Ambar, 2002; Serra et al., 
2002), it is actually astonishing that the records agree so well. The second group is stations Ib-F 
10 and POS344-72 in the central Gulf of Cadiz (Fig. 1b). Although sampled 6 years apart, the 
δ18O profiles (Fig. 10e) are nearly identical indicating the dominant influence of AzC derived 
subtropical subsurface waters at this location (MOW only sampled at Station Ib-F 11). The 
persistent AzC influence on the waters above 600 m in the Gulf of Cadiz confirms the westward 
extension of the northern AzC branch into the Gulf of Cadiz (Fig. 1a; Peliz et al., 2005; 2009) 
and thus the causal linkage between the AzC itself and the MOW formation that is evident in 
modeling studies (Jia, 2000; Özgökmen et al., 2001). In the depth range between 700 and 1000 m 
relatively low δ18O and δD values are recorded at station Ib-F 10 (Fig. 4, 10), contrary to any of 
the other stations along the Iberian margin where this depth range is occupied by the MOW. 
Together with the lower temperatures and salinities these isotopic compositions confirm the 
presence of modified AAIW (Louarn and Morin, 2011) at station Ib-F 10. 

With the exclusion of the POS383 data the interannual and seasonal differences observed 
between the other R/V Poseidon cruises are relatively small (Fig. 10a-d). For the stations at 35 
and 32°N there are even water depths where no differences are observed. More variability 
between the years and seasons are seen at 33°N (Fig. 10b), which is probably related to water 
mass dynamics on the southern side of the Azores Front. Exactly at this station Fründt et al. 
(2013) observed extensive subsurface warming shifting from a depth of 240 to 500 m due to the 
northward expansion of the subtropical gyre. This observation agrees with the higher δ18O values 
observed at station POS377-700 (sampled in 2008) than at station POS334-67 (sampled in 2006); 
likewise for the POS337 and POS334 stations at 35°N. Small differences in the isotopic values in 
the depth range between 700 and 1200 m values can also be caused by the presence/absence of 
meddies. At the ESTOC station (Fig. 1b, 10f) the new POS377-693 data fit well with the data 
previously obtained by Wilke et al. (2009), even though more than a decade separates the two 
time series for late fall/winter. The Wilke et al. (2009) data highlight, however, an additional 
aspect that is the seasonal differences that can be observed in a region influenced by upwelling. 
At this station the summer values are much lighter than during any of the other seasons indicating 
the strong modification of the summer values by the isotopically lighter AAIW upwelled along 
the NW African margin (similar to the surface waters in GA03_e Stations 9 and 10). Because the 
ESTOC station is located outside of the direct influence of the upwelling filaments formed off 
Cape Ghir or Cape Yubi (Fig. 1b) it is possible that the isotopically lighter surface waters are 
advected from the margin to the offshore region. The varying influence of the upwelled waters as 
well as the southward flowing Canary Current (strongest under the trade winds in summer and 
fall; Knoll et al., 2002) are the most likely reasons for the small variations seen in the fall to 
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spring records (Fig. 10f). Nevertheless, the POS cruise data shows that open ocean isotopic 
values can vary and that the higher variability observed along the GA03_e sections is not 
necessarily unusual. 

The interannual differences observed at our stations can reach 0.1‰, i.e. a range similar to 
the 1σ analytical error (0.06-0.1‰). Based on this interannual variability and the standard 
deviations of our measurements we recommend that users who might want to compare our 
seawater data to their climate model results to apply at minimum a 1σ error 0.1‰ for δ18O and 
1‰ for δD, better yet the respective 2σ range. 

 
 
5.4 Isotope Ratio to Salinity Relationships  
 Based on the complete δ18O data set presented we observe a δ18O-salinity (S) relationship 
of δ18O = 0.51*S – 17.53 with a R2 value of 0.75 (Fig. 11a). The observed δD-salinity 
relationship is δD = 3.01*S – 103.84 with a R2 value of 0.69 (Fig. 11b). The slope of 0.51 in the 
δ18O-salinity relationship is slightly steeper than the one given by Pierre et al. (1994) for the 
subtropical to tropical Atlantic but lower than the 0.61 and 0.62 slopes found by Craig and 
Gordon (1965) and Frew et al. (2000), respectively, for the subpolar gyre. If calculated just for 
the water masses below 1750 m, i.e. those waters consisting of a mixture of CLSW, AABW and 
ISOW with minor contributions of MOW and DSOW (Jenkins et al., this volume), the slope 
becomes 0.55 (Fig. 11c). Some of our data points fall into the cluster of existing North Atlantic 
deep-water values (Fig. 11c); the scatter in our data is, however, much larger leading to a very 
low R2 value of 0.10. The larger scatter is related to some of the relatively low values determined 
with the Picarro. Interestingly, the slope and intercept (0.55; –18.98) we observe for the deeper 
waters fit those estimated by LeGrande and Schmidt (2006), using the database of Schmidt et al. 
(1999), for the whole North Atlantic, whereas their NADW slope and intercept (0.51; –17.75) 
matches those we observe for our complete data set. Nevertheless, the values are close enough to 
corroborate our slopes. Because of the strong water mass mixing in the study area (Jenkins et al., 
this volume) we did not separate the deeper water masses further.   

Separate δ18O- and δD-salinity relationships were, however, calculated for the surface 
water, the NACW, of which the subtropical version is formed within our study area, and the 
MOW (Fig. 12). With the exception of the 50-100 m values observed at GA03_e Stations 9 and 
10, which are likely affected by the upwelled, isotopically lighter AAIW, the 0-50 and 0-100 m 
values are generally comparable (Fig. 12 top panel). This is also reflected in the similar slopes 
estimated for the 0-50 m (δ18O/S: 0.32; δD/S: 2.63) and 0-100 m values (δ18O/S: 0.36; δD/S: 
2.89). Most of our samples are from subtropical waters where evaporation exceeds precipitation 
but the slope is nevertheless less steep than the 0.22 found by Craig and Gordon (1965) for the 
North Atlantic’s subtropical surface waters between 20 and 27°N. One reason for this difference 
might be that most of our stations are from latitudes north of 27°N and also include stations 
within the North Atlantic’s transitional waters with values falling on the lower end of the 
reconstructed mixing line (Fig. 12). Several points, in particular those with δ18O values higher 
than 1.2‰, plot above the mixing line hinting at the existence of another mixing line, which may 
be the one pointed out by Craig and Gordon (1965). However, more data from the central 
subtropical gyre are needed to confirm if this potential mixing line is related to the latitudinal 
band (and thus the evaporation surplus), the δ18O or the salinity range because with our current 
dataset no subgroup (24-27°N, δ18O > 1.2 or S >36.8) provides a clear picture.   

For the combined NACW data the δ18O-salinity relationship has a slope of 0.50 with an 
intercept of –17.35 and a R2 value of 0.59 (Fig. 12 central panel). If just calculated for those 
points that can clearly be attributed to the subtropical NACW the slope decreases to 0.46 and the 
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intercept to -15.82. In the δ18O realm the statistics are too poor (R2 of <0.09) to calculate a mixing 
line for the subpolar NACW. The δD-salinity mixing line for the subpolar NACW, however, has 
a much lower slope (1.86) than the one for the subtropical NACW (3.06) or for the NACW in 
general (3.47). The slope of the subtropical NACW’s δ18O-salinity mixing line matches the one 
found by Pierre et al. (1994) for the surface and central waters in the Cape Blanc upwelling 
region.  

The slope (0.46) and intercept (–15.94) calculated for the extended MOW data set, 
including the stations along the Iberian margin and those offshore (“diluted” MOW) with a clear 
MOW-related higher salinity and temperature signal, is nearly identical to the one of the 
subtropical NACW (Fig. 12). This is not a big surprise because the MOW is formed by 
entrainment of NACW in the Gulf of Cadiz, but there is also indication of detrainment (upward 
mixing of the salinity signal) from the MOW into the NACW (Mauritzen et al., 2001). The 
statistics are too poor (R2 of <0.01) to estimate a mixing line for the MOW just from the stations 
along the Iberian margin. The slope of the MOW’s mixing line is not too far off from the 0.41 
slope LeGrande and Schmidt (2006) obtained for the deep Mediterranean Sea, i.e. some of those 
waters contributing to the outflow through the Strait of Gibraltar, indicating that some of the 
Mediterranean Sea signal is likely still preserved in the MOW. The Mediterranean Sea influence 
is probably also behind the slope of the MOW’s δD-salinity mixing line that with a slope of 1.26 
is much lower than the subtropical NACW’s slope (3.06; Fig. 12) but lies between the summer 
(1.64) and winter (nearly constant δD) slopes for the eastern Mediterranean Sea (Gat et al., 1996) 
where the Levantine Intermediate Water, a major contributor to the outflow from the 
Mediterranean Sea, is formed. A mixture of the Mediterranean Sea and NACW influence is likely 
also driving the slope of the δ18O-δD mixing line that, at 2.3, is much lower than for the NACW, 
the surface waters (Fig. 12) or the complete data set (Fig. 11d). 

For the surface waters the estimated δ18O-δD slope is 3.99 (R2 = 0.50), whereas it 
increases to 4.79 (R2 = 0.46) for the NACW and 5.60 (R2 = 0.74) for the complete data set. All of 
these slopes are clearly offset from the slope of 8 of the Global Meteoric Water Line (GMWL; 
Craig and Gordon, 1965). However, the slope is already close to 7 in southern France (Genty et 
al., 2014), i.e. at the northern boundary of our study area. In our data the lower slopes likely 
reflect the impact of the higher net evaporation in the subtropics, in particular in the surface 
waters. The influence of the subpolar NACW, formed in a region where precipitation exceeds 
evaporation, is seen in the steeper NACW slope compared to the surface waters. Likewise the 
effect of the AAIW, AABW and deeper North Atlantic water masses, all formed in regions with 
net precipitation, is visible in the shift of the slope of the complete data set more towards the 
GMWL. Nevertheless, our data clearly confirms the observation of Craig and Gordon (1965) and 
later on Gat et al. (1996) that the linear δ18O-δD relationship breaks down in areas with high net 
evaporation.  
 
6. Conclusions 
 The new large dataset presented here greatly improves our knowledge of oxygen and 
hydrogen isotope ratios in NE Atlantic water masses. The MOW has been sampled for the first 
time close to its source region and is clearly distinguishable in isotope profiles from the NE 
Atlantic. The AAIW can also clearly be recognized by its isotopic compositions and is modifying 
surface to subsurface waters in the Cape Blanc upwelling area. The stable isotope values for the 
depth range occupied by the NEADW masses show a range wider than previously observed. This 
scatter is related to interannual variability, which is constrained in this larger data set, and water 
mass modification by entrainment. Additional constraints on deep-water isotope values in the NE 
Atlantic will come in the near future from the OVIDE 2010 transect (Portugal to Reykjanes 
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Ridge), for which analyses are currently underway, as this data will directly link the data 
presented to the area studied by Frew et al. (2000). These new data also provide a broader 
empirical basis for models of seawater stable isotope composition (e.g., Roche and Caley, 2013) 
or for the hydrological cycle (e.g., LeGrande and Schmidt, 2009).  
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Figure Captions 
Figure 1: Map of the North Atlantic (a) with surface water currents (Fratantoni, 2001; Peliz et al., 
2005) and flow directions of major deeper water masses indicated by arrows and (b) a close-up of 
the NE Atlantic with the GA03_e stations marked by stars and station number, the Iberia-Forams 
stations by black dots, the AMT-18 stations by black diamonds, and the POS stations by gray 
triangles. E denotes the ESTOC station north of the Canary Islands. 
 

Figure 2: Hydrographic conditions (a: temperature; b: salinity; Jenkins et al., this volume) and 
δ18O (c) and δD (d) data along the North-South section of GA03_e (Stations 1 to 7 and 11; e). 
Gray lines in a) and b) mark positions and lengths of CTD profiles; back dots in c) and d) sample 
depths. Dominant water mass identification mostly follows Jenkins et al. (this volume) with 
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AEW indicating the Atlantic Equatorial Water, NACW the North Atlantic Central Water, MOW 
the Mediterranean Outflow Water, AAIW the Antarctic Intermediate Water, UCDW the Upper 
Circumpolar Deep Water, CLSW the Central Labrador Sea Water, NEADW the Northeast 
Atlantic Deep Water as mix of MOW, LSW, ISOW as Iceland Scotland Overflow Water, DSOW 
as Denmark Strait Overflow Water, and AABW as Antarctic Bottom Water. In general, most 
water masses encountered are a mixture of three or more source water masses. 
 
Figure 3: Hydrographic conditions (a: temperature; b: salinity; (Jenkins et al., submitted) and 
δ18O (c) and δD (d) data along the East-West GA03_e section (Stations 9 to 12; e) through the 
Cape Blanc (Fig. 1b) upwelling system. Gray lines in a) and b) mark positions and lengths of 
CTD profiles; back dots in c) and d) sample depths. Water masses as in Fig. 2.  
 
Figure 4: Hydrographic conditions (a: temperature; b: salinity; CTD data) and δ18O (c) and δD 
(d) data along the western Iberian margin based on the Iberia-Forams results (Stations Ib-F 2 to 6 
and 10 to 12; e). Note that the transect bends towards the SE into the Gulf of Cadiz between the 
two southernmost stations (Ib-F12 and Ib-F10). Gray lines in a) and b) mark positions and 
lengths of CTD profiles; back dots in c) and d) sample depths. Water mass abbreviations same as 
before with “sp” indicating the subpolar and “st” the subtropical variety of the North Atlantic 
Central Water (NACW). 
  
Figure 5: Hydrographic conditions (a: temperature; b: salinity; CTD data) and δ18O (c) and δD 
(d) data along the nearshore southern Iberian margin transect of the Iberia-Forams cruise 
(Stations Ib-F 12 and 7 to 9; e). The westernmost station (Ib-F 12) is also part of the western 
transect shown in Figure 4. Gray lines in a) and b) mark positions and lengths of CTD profiles; 
back dots in c) and d) sample depths. 
 
Figure 6: Hydrographic conditions (a: temperature; b: salinity; CTD data provided by the British 
Oceanographic Data Centre) and δ18O (c) variations along the AMT-18 transect with black dots 
marking the sample depths. Note that the δ18O scale differs from the previous plots. (d) Map with 
AMT-18 stations. Abbreviations for the water masses are the same as before with addition of 
NATW as North Atlantic Transitional Waters. AzF marks the Azores Front (15°C isotherm). 
 
Figure 7: Crossplots of Picarro and Delta V results for δ18O (a) and δD (b). For data points 
representing averages of duplicate measurements error bars show the 1σ standard deviation of the 
average (mostly Picarro results). Where no standard deviation was available the analytical error 
of 0.1‰ for δ18O and 1‰ for δD was used for the Picarro data. For the Delta V mass 
spectrometer results error bars mostly reflect the 1σ standard deviation of the measurement itself. 
Black dots mark Station 1 results, gray triangles Station 5 and gray dots Station 10.  
 
Figure 8: Isotope values in relation to the temperature – salinity profiles (small black dots). (a) 
δ18O for all KN199-4 stations; (b) δD for all KN199-4 stations; (c) δ18O for all Iberia-Forams 
stations; (d) δD for all Iberia-Forams stations; (e) δ18O for all stations within the Azores Front 
region (POS stations; GA03_e-5; CTD data from Fründt et al., 2013); and (f) δ18O for AMT-18 
stations. Water mass abbreviations see Fig. 2. 
 
Figure 9: (a) δ18O and δD profiles of GA03_e Station 1 measured in the Picarro (black dots, 
black line) and Delta V (gray dots, gray line) mass spectrometers in comparison to nearby station 
Ib-F 11 (crosses, black line). (b) δ18O to salinity relationship of data shown in (a). (c) δ18O and 
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δD profiles of GA03_e Station 5 measured in the Picarro (black dots, black line) and Delta V 
(gray dots, gray line) mass spectrometers in comparison to station POS377-696 (triangles, black 
line; same position as Station 5) and station POS383-175 (crosses, dark gray line; 33°N). (d) δ18O 
– salinity crossplot for GA03_e Station 5 (black dots: Picarro; gray dots: Delta V), Station 7 
(black circles) and GEOSECS Station 115 (black stars). (e) GA03_e Station 5 (crosses) and 7 
(gray dots) δ18O profiles (Picarro) in comparison to GEOSECS Station 115 at 28°N 26°W 
(triangles; (Östlund et al., 1987). (f) Comparison between GA03_e Station 9 (crosses) and 10 
(gray dots) δ18O profiles and two of the Pierre et al. (1994) records (18°W eutrophic station = 
stars; 21°W mesotrophic station = black dots). For Pierre et al. (1994) the δ18O data adjusted 
(+0.14) by Schmidt et al. (1999) is shown. (g) δ18O – salinity relationship plot comparing the 
values of GA03_e Stations 9 (crosses), 10 (gray dots) and 12 (triangles) with the complete Pierre 
et al. (1994) data (plus signs). Note scale changes between panels. 
 
Figure 10: (a) δ18O profiles of stations POS383-163 (black dots; April 2009), POS377-704 (gray 
dots; December 2007), POS349-263 (crosses; April 2007), and POS334-68 (stars; March 2006) 
at 35°N. (b) δ18O profiles of stations POS383-175 (black dots; April 2009; complete profiles 
shown in Fig. 8c), POS377-700 (gray dots; December 2007) and POS334-67 (stars; March 2006) 
at 33°N. (c) δ18O profiles of stations POS383-173 (black dots; April 2009), POS377-698 (gray 
dots; December 2007) and POS349-267-1 (crosses; April 2007) at 32°N. (d) δ18O profiles of 
stations POS383-161 at 36°N (black dots; April 2009) and POS334-69 at 36.2°N (stars; March 
2006). (e) Comparison of neighboring stations POS334-72 (black stars; March 2006) and Ib-F 10 
(gray dots; September 2012), also located at 36°N but within the Gulf of Cadiz. (f) Seasonal 
records for the upper 600 m at the ESTOC station. The black line and dots mark the POS377-693 
record in comparison to the Wilke et al. (2009) data for spring 1998 (black circles), summer 1998 
(gray dots), fall 1995 (crosses), and winter 1997 (triangles). (g) δ18O – salinity relationship of 
POS383 data (black dots) in comparison to the data from all the other R/V Poseidon cruises (gray 
crosses) and GEOSECS Station 115 (black stars; Östlund et al., 1987). Note scale changes in (e) 
and (f). 
 
Figure 11: Relationships between δ18O (a) and δD (b) and salinity for the complete data set 
(excluding the POS383 data). Crosses indicate surface and NACW samples (0-600 m) and circles 
filled in gray those from 600-1750 m with MOW-related samples highlighted as black stars. 
Deep-water samples (>1750 m) are marked by triangles. (c) δ18O-salinity mixing line for the 
deep-water samples and comparison to endmember values for the AABW (Weddell Sea: 
Mackensen, 2001; WOCE A11 transect: Meredith et al., 1999a) and the NADW (CONVEX 
cruise: Frew et al., 2000). In addition, the deep-water values from GEOSECS station 115 
(Östlund et al., 1987) and Pierre et al. (1994) in the Cape Blanc area are shown. (d) δ18O-δD 
crossplot for the complete data set of this study. Open circles mark the four lighter values from 
GA03_e Station 3. 
 
Figure 12: Mixing line plots for the surface water (0-50 m and 0-100 m), the NACW and the 
MOW. Dashed balloon and NATW in the surface water δ18O-salinity plot indicate values from 
the North Atlantic Transitional Waters. “st” and “sp” in conjunction with NACW abbreviate 
subtropical and subpolar, respectively. The “diluted” MOW samples group the data from the 
open ocean stations and from 1450 m at Station Ib-F 3, a depth below the typical lower boundary 
for the MOW on the Iberian margin.   
 



Table 1: Overview of station data and analytical laboratory 
 

Cruise ID Station ID Latitude 
[°N] 

Longitude 
[°W] 

Sample Date 
[month/year] 

Sample Depth 
Range [m];  

No. of 
levels 

Lab* 

KNR199-4 GA03_e-1 38.32 -9.66 10/2010 18 - 2810 24 1, 2 
KNR199-4 GA03_e-3 35.20 -16.30 10/2010 22 - 2785 24 1 
KNR199-4 GA03_e-5 31.00 -22.00 10/2010 32 - 5030 24 1, 2 
KNR199-4 GA03_e-7 24.09 -22.00 10/2010 33 - 4586 24 1 
KNR199-4 GA03_e-9 17.36 -18.25 10/2010 22 - 3019 24 1 
KNR199-4 GA03_e-10 17.35 -20.78 10/2010 27 - 3324 24 1, 2 
KNR199-4 GA03_e-11 17.35 -22.74 10/2010 32 - 3337 24 1 
KNR199-4 GA03_e-12 17.40 -24.50 11/2010 32 - 3531 24 1 
Iberia-Forams Ib-F 2 42.09 -9.6 09/2012 10 - 1750 12 1 
Iberia-Forams Ib-F 3 41.20 -9.60 09/2012 10 - 1650 12 1 
Iberia-Forams Ib-F 4 40.33 -9.77 09/2012 10 - 780 12 1 
Iberia-Forams Ib-F 5 40.33 -9.88 09/2012 10 - 2300 12 1 
Iberia-Forams Ib-F 6 38.76 -9.98 09/2012 10 - 1150 12 1 
Iberia-Forams Ib-F 8 36.80 -8.04 09/2012 10 - 560 7 1 
Iberia-Forams Ib-F 9 36.81 -7.71 09/2012 10 - 540 12 1 
Iberia-Forams Ib-F 10 36.04 -8.23 09/2012 10 - 1900 12 1 
Iberia-Forams Ib-F 11 37.56 -10.11 09/2012 10 - 2500 12 1 
Iberia-Forams Ib-F 12 36.72 -9.37 09/2012 10 - 1000 12 1 
AMT 18 JRC218-008 46.59 -18.70 10/2008 3.5 - 300 6 3 
AMT 18 JRC218-010 45.66 -19.59 10/2008 2.5 - 300 6 3 
AMT 18 JRC218-011 42.67 -22.19 10/2008 3.5 - 300 6 3 
AMT 18 JRC218-013 38.88 -25.32 10/2008 3.5 - 300 5 3 
AMT 18 JRC218-015 36.01 -27.74 10/2008 2.5 - 300 5 3 
AMT 18 JRC218-018 33.30 -30.80 10/2008 100 - 300 4 3 
AMT 18 JRC218-021 30.47 -33.95 10/2008 0 - 300 6 3 
AMT 18 JRC218-024 27.63 -37.03 10/2008 2.5 - 300 6 3 
AMT 18 JRC218-027 24.74 -40.09 10/2008 2.5 - 300 6 3 
POS383 161 36.00 -22.00 04/2009 40 - 2000 11 3 
POS383 163 35.00 -22.00 04/2009 20 - 2000 10 3 
POS383 165 34.00 -22.00 04/2009 40 - 2000 9 3 
POS383 173 32.00 -21.00 04/2009 50 -2000 11 3 
POS383 175 33.00 -22.00 04/2009 10 - 4700 16 3 
POS377 693 (ESTOC) 29.00 -15.00 12/2008 5 - 2000 9 3 
POS377 694 30.00 -22.00 12/2008 5 - 2000 8 3 
POS377 696 31.00 -22.00 12/2008 5 - 2000 10 3 
POS377 698 32.00 -22.00 12/2008 5 - 900 8 3 
POS377 700 33.00 -22.00 12/2008 5 - 900 10 3 
POS377 704 35.00 -22.00 12/2008 10 - 900 8 3 
POS349 263 35.00 -20.00 04/2007 400 - 2000 6 3 
POS349 267-1 32.00 -20.00 04/2007 400 - 2000 6 3 
POS349 270-1 30.00 -22.00 04/2007 600 - 2000 3 3 
POS334 67 33.00 -20.00 03/2006 10 - 600 6 3 
POS334 68 35.00 -20.00 03/2006 10 - 600 7 3 
POS334 69 36.33 -20.00 03/2006 10 - 600 7 3 
POS334 70 37.09 -20.00 03/2006 10 - 600 7 3 
POS334 71 38.38 -20.00 03/2006 10 - 600 7 3 
POS334 72 36.00 -8.50 03/2006 10 - 2000 9 3 

* Analytical laboratories are: 1 Godwin/ Cambridge; 2 Chicago; 3 Leibniz/ Kiel 
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