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19 Abstract
20
21 We document the history of terms used to describe Heinrich (H-) layers and 

22 events and which mark major glaciological iceberg discharge events in the North 

23 Atlantic.  We argue that the usage “Heinrich layer,” “Heinrich zone”, or “Heinrich 

24 event” should be restricted to only those sediments that can be ascribed to an 

25 origin from the Hudson Strait Ice Stream and the Laurentide Ice Sheet.  We also 

26 argue that the commonplace understanding of these events---as dominated by 

27 massive iceberg discharges ---fails to include the earlier well-documented 

28 evidence that these events were also massive meltwater events linked to 

29 deposition along the North Atlantic Mid-Ocean Channel (NAMOC) in the 

30 Labrador Sea.   We make five recommendations for future usage of “Heinrich 

31 events,” which include: restricting the usage to those events that can be 

32 mineralogically/geochemically linked to Hudson Strait; abandoning the term 

33 “Heinrich stadial”; and promote local terminology for “ice rafted events” that 

34 may be correlated, or not, with Hudson Strait Heinrich events based on 

35 calibrated radiocarbon dates or other appropriate chronological markers. 

36
37
38
39 Introduction
40
41 In a recent paper (Andrews et al., 2017) comparing sediment records from north 

42 (PS2644) and south of the Denmark Strait (MD99-2260) (Fig. 1A and B) we 

43 stated, in terms of discrete ice rafted debris (IRD) events   “….we suggest that this 

44 term (H-events) be restricted to sediments that have a diagnostic mineral and 

45 geochemical signature linked to that source (i.e. Hudson Strait/Hudson Bay) 

46 (Andrews and Tedesco, 1992; Farmer et. al., 2003; Hemming, 2004).  Despite our 
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47 own prior usage we now argue that the IRD events recorded in MD99-2260 and 

48 PS2644 should be given their own designation (e.g. Kangerlussuaq IRD event 1 or 

49 PS2644 IRD event 2) and that temporal correlation with H-events may or may not be 

50 required.”  This paper outlines the rationale behind this quotation.  

51 The Hudson Strait Heinrich (H)-events originated from the major ice stream 

52 draining the Laurentide Ice Sheet (Alley and MacAyeal, 1994; Andrews and 

53 MacLean, 2003; Stokes et al., 2016), but it is important to note that this ice stream 

54 differs from virtually all others, at least in the Northern Hemisphere. It is not, for 

55 example, associated with the deposition of massive trough mouth fans (TMF) at the 

56 foot of the slope (O'Cofaigh et al., 2003; Vorren and Labert, 1997), but rather with a 

57 highly gullied slope that leads to the North Atlantic Mid-Ocean Channel (NAMOC) 

58 (Chough et al., 1987; Hesse et al., 1996; Praeg et al., 1986) (Fig. 1C).  This implies 

59 that the Hudson Strait Detrital Carbonate events may not have equivalent counter-

60 parts seaward of other Northern Hemisphere ice streams, and that proximal sediment 

61 processes might be very different.  We would also affirm the statement made by 

62 Marshall and Koutnik (2006, p. 10 of 13)  “The difference between Heinrich events 

63 and D-O cycles has been broadly misunderstood by the paleoclimate community”.  

64 Our “Opinion Paper” is in no-way intended as an in depth review of all facets of H-

65 events (Hemming, 2004), and thus, the purpose of this note is to: 

66 1) discuss the history of the usage of the term H- layer/events, 

67 2) emphasize the complexity of these ice stream collapse sediments, 

68 3) compare and contrast with the terminology and usage of discrete volcanic tephra 

69 plumes, and 

70 4) suggest the use of the term “Heinrich” be more rigorously restricted. 

71 Definition and usage of Heinrich layers/events: history
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72 On Figure 1A, B, and C we illustrate the location of cores that have been associated 

73 with or correlated with H-events, whereas on Figure 2 we show the large range in the 

74 number of citations linked to the key papers.  In Supplemental Table 1 we document 

75 the papers that preceded and followed Heinrich’s classic paper (Heinrich, 1988), the 

76 terminology and proxy/proxies employed, and the areas affected (Fig. 1A, B, C). 

77 The role of icebergs and sea ice in contributing sediments to the ocean floor 

78 has a long history (e.g. Tarr, 1897; Trask, 1932) but the recognition of IRD in North 

79 Atlantic sediments may have been first documented by Bramlette and Bradley (1940), 

80 followed by Connolly and Ewing (1965) (see Andrews and Matsch (1983) for 

81 literature review and bibliography).  Iceberg rafting gained paleoclimate prominence 

82 when Ruddiman (1977) described a series of sand-rich units in the eastern North 

83 Atlantic which defined a broad area between 46 to 50°N and 20 and 30°W (Fig. 1A, 

84 B), frequently termed the “ice-rafting belt” or the “Ruddiman IRD belt”.  Andrews 

85 (1998) noted that research in Baffin Bay (Aksu, 1985; Aksu and Mudie, 1985) and the 

86 Labrador Sea (Chough, 1978; Hesse et al., 1987) described relatively thick facies of 

87 both coarse iceberg rafted sand grains and clasts, and fine-grained water transported 

88 facies.  These units were generally buff colored and had high % of carbonate (both 

89 calcite and dolomite).  But these papers received little notice both prior to and post 

90 Heinrich’s classic paper (1988) (Fig. 2), perhaps because subsequent H events related 

91 studies focused mainly on: i) the open North Atlantic latitudes within and north/south 

92 of the Ruddiman IRD belt (Fig. 1B, Suppl. Table 1), and ii) on retrieving high-

93 resolution sequences from the sediment drifts formed by the Western Boundary 

94 Undercurrent (e.g. Orphan Knoll, Blake Bahama Outer Ridge) and from the deep 

95 overflows from the Nordic Seas (e.g. Gardar Drift, Feni Drift).  
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96 Heinrich (1988) described a series of cores from the Dreizack seamount 

97 (47°23’N, 19° 40’W) (Fig. 1A, Suppl. Table 1) and on his Figure 3 (core Me69-17) 

98 he documented a series of discrete IRD units (seven total) plus Ash Zone I (~Vedde, 

99 12.2 cal ka BP) and what is now called North Atlantic Ash Zone (NAAZ) II  (~55 cal 

100 ka BP).  The grain-size used for the IRD designation was 180 to 3000 µm, and it is 

101 worth noting that there has been no consensus on what sand-size fraction constitutes 

102 “ice-rafted debris” (Andrews, 2000).  Heinrich (1988) referred to the discrete sand-

103 rich units as “IRD layers” (p. 147) or “dropstone layers (p.149)” and recognized 5 

104 such units < 54 cal ka BP.  This work was followed up by Huon et al. (1991) in a far-

105 sighted paper dealing with the radiometric ages of the sand fractions in the Dreizack 

106 cores.

107 In 1992 Broecker et al. (1992) recognized the implications and importance of 

108 Heinrich’s data and in this paper referred to “Heinrich events” and called the sand-

109 rich (> 150 µm) layers  “Heinrich zones” and noted that they represent a distinct 

110 switch from foraminiferal rich deep-sea sediments to those dominated by coarse sand 

111 grains.  They also noted that “….Heinrich layers 1, 2, 4 and 5 (but not 3) contain 

112 detrital limestone and dolomite not present in sediment between layers…..” (Fig. 1A, 

113 Suppl. Table 1). 

114 In 1992 the link between “Heinrich zones/layers” and the Laurentide Ice 

115 Sheet, in particular the Hudson Strait ice stream, was confirmed by the work of Bond 

116 et al. (1992), and by Andrews and Tedesco (1992) who recognized (following Hesse 

117 et al., 1990), that the thick Detrital Carbonate (DC)-rich facies in the Labrador Sea 

118 were the proximal record of the distal IRD units described by Heinrich (1988) and 

119 Broecker et al. (1992).  Andrews and Tedesco (1992) noted “Our evidence indicates 

120 that Heinrich events 1 and 2 are associated with the dynamics of the Hudson Strait 
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121 ice stream and denote considerable glaciological instability.”  Bond et al. (1992) 

122 described Heinrich layers as “….rich in ice-rafted debris and unusually poor in 

123 foraminifera.”   In Bond et al. (1992, p. 248, their Table 3) the “thickness of detrital 

124 carbonate-rich units within Heinrich deposits (H)” are listed with a range between 

125 61.5°N and 41.0°N and 58.65° to 16.83°W; the DC-rich zones (Fig. 1A) thin rapidly 

126 downstream (Dowdeswell et al., 1995).   

127 This was followed in 1993 by a highly influential paper that argued that H-

128 events could be tied into the newly documented Greenland Ice Sheet record and the 

129 link to atmospheric processes was explicit in the use of “climate” in the paper’s title 

130 (Bond et al., 1993).  This paper is the most cited of the Heinrich literature (Fig. 2) and 

131 represented a fundamental shift from the previous sediment/source foci to 

132 atmospheric and ocean climate links.  In particular the paper placed the occurrence of 

133 H-events in the context of the rapid isotopic oscillations (Dansgaard-Oeschger (D-O) 

134 events) documented from the Greenland ice cores (Dansgaard et al., 1993). It is worth 

135 noting that D-O events are difficult to detect in H-event dominated Labrador Sea 

136 cores (Andrews and Barber, 2002), but the reverse is true off NE Greenland (core 

137 PS2644) where D-O events constitute the dominant signal (van Kreveld et al., 2000; 

138 Voelker, 1999, 2002) versus a weak possible H-like IRD event (Andrews et al., 

139 2017).  

140 Grousset et al. (1993) (Fig. 1A, Suppl. Table 1) defined “Heinrich layers” on 

141 the basis of volume magnetic susceptibility, color, lithic grains > 150 µm, and the 

142 presence of the polar planktonic foraminifera species Neoglobquadrina pachyderma.  

143 Their sites lay within the Ruddiman IRD belt and their results (their Fig. 6) mapped 

144 out an eastward thinning of the H-layers (see also Dowdeswell et al., 1995).  Revel et 

145 al. (1996) then utilized Sr and Nd isotopic ratios on lithic grains to further investigate 
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146 the source(s) of the North Atlantic H-layers (or events). This was a precursor to 

147 several papers dealing with the provenance of the IRD units (e.g. Farmer et al., 2003; 

148 Hemming, 2004; Hemming et al., 1998; Snoeckx et al., 1999).  

149 The importance of meltwater in the formation and creation of the proximal H-

150 layers (Hesse, 2016; Hesse and Khodabakhsh, 2016) has, in our opinion, not been 

151 given the attention it deserves, and the literature has rather focused on the ice-rafting 

152 component. It is also important to note the connection between Hudson Strait and the 

153 massive NAMOC, that was the conduit for extensive turbidites (Chough, 1978; 

154 Chough et al., 1987), coeval with the more cited IRD sand units. 

155 Thus the basic literature on the recognition of what Broecker et al. (1992) and 

156 Bond et al. (1992) termed H-zones, layers and events, had been published by 1992.  

157 The descriptive terms “zone, layer, and event” had been used interchangeably and the 

158 term “Heinrich” was already linked to these sediment-based descriptive terms. 

159 The early literature clearly focused on the North Atlantic (Fig. 1A) but the 

160 term “Heinrich” expanded in the mid- to late 1990’s to include IRD sediments 

161 originating from the eastern margin of the Greenland Ice Sheet (Andrews et al., 1998; 

162 Elliot et al., 1998; Stein et al., 1996; Voelker et al., 1998) or from the western margin 

163 of the Scandinavian Ice Sheet (Rasmussen et al., 1996; Dokken and Jansen, 1999) 

164 (Fig. 1B).  This was also the general period during which the D-O events were 

165 initially recognized and eventually brought into the H-event scenario through the 

166 concept of the “Bond Cycle” (Bond et al., 1997); earlier Bond and Lotti (1995) 

167 argued that they could detect evidence (core VM28-14 south of the Denmark Strait, 

168 Fig. 1B, Suppl. Table 1) that the Iceland Ice Sheet responded as a precursor to the 

169 Laurentide H-events.  Discrete DC-events have also been described from cores across 

170 the Arctic Basin (Fig. 1B) (Phillips and Grantz, 2001) and they too have been titled 
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171 “Heinrich events” (Darby and Zimmerman, 2008; Stokes et al., 2005) and linked to 

172 ice export events from the ice streams that occupied the Canadian Arctic Channels 

173 (Margold et al., 2015) (Fig. 1B).

174 The term “Heinrich stadial” may have been applied for the first time by 

175 Vautravers and Shackleton (2006) but was then used by Barker et al. (2009), Sanchez-

176 Goñi and Harrison (2010) and Stanford et al (2011); this usage has increased over the 

177 last several years.  It may have been introduced to simply provide a “name” to the 

178 stadial interval associated with a H- event in regions (rather than using established 

179 geologic-climate terms such as Late Wisconsinan or Late Weischelian) where the sea-

180 surface temperature signal (cooling) exceeds the IRD signal in duration and often 

181 magnitude, such as the southern Portuguese margin (Vautravers and Shackleton, 

182 2006; Sanchez-Goñi and Harrison, 2010). Stanford et al. (2011) on-the-other-hand 

183 used it to name the stadial interval between the LGM and the Boelling/Allerød 

184 interstadial (i.e., the interval between Greenland interstadial 2 and 1; Rasmussen et 

185 al., 2014).  However, we note that the term “stadial” is a geologic-climate term that 

186 traditionally defined an interval of glacial advance (Flint, 1971, p. 372) and there has 

187 been no attempt to directly link the Greenland Ice Sheet isotopic identification of 

188 stadials and interstadials with the Greenland glacial record.  For example, what is the 

189 precise link between the Greenland Flakkerhuk stadial (Funder and Hansen, 1996; 

190 Funder et al., 2004) and Greenland interstadial 2?  Unfortunately, the literature now 

191 has examples of “Heinrich stadial (H-1)” being used both for the event (< 1 ky in 

192 duration) (Li et al., 2017; Butzin et al., 2017), and for the stadial period between the 

193 LGM and the Boelling/Allerød (Barker et al., 2009; Stanford et al., 2011).  This 

194 interval is also being called the “mystery interval” (Denton et al., 2006) because of 

195 the contradictory paleoclimate evidence. Thus over time, the term “Heinrich event” 
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196 evolved from its original definition as lithostratigraphic unit describing an ice-sheet 

197 surge/collapse event, to a chronostratigraphic term of unclear and confused duration.   

198  Summary: After Heinrich’s first description in 1988 of a series of IRD-rich 

199 sediment units and the subsequent identification of “Heinrich zones/layers” or 

200 “events,” the use has spread, even escalated, to include cores and areas well removed 

201 from any influence of deposition sourced from Hudson Strait (Fig. 1B, C), which we 

202 argue is fundamental in the recognition and usage of the term.  It is amazing that the 

203 mineral signature (e.g. dolomite) and radiogenic signatures of the Hudson Strait H-

204 events is retained along a ~3500 km transect from Hudson Strait as far east as the 

205 Bara Fan on the Celtic margin (Haapaniemi et al., 2010; Fig. 1A, Suppl. Table 1).  

206 The high rates of accumulation of ice rafted sediments along the Labrador Sea 

207 indicates that significant melting occurred along the transport path. Thus given our 

208 knowledge of the processes that cause the destruction of icebergs (mainly wave 

209 erosion; Bigg, 2016; Clarke and Prairie, 2001; Venkatesh et al., 1985; Venkatesh et 

210 al., 1994) the retention of sediment over such distances implies either i) very large 

211 icebergs, and/or ii) sediment dispersed (evenly?) throughout the iceberg (Dowdeswell 

212 et al., 1995). The latter may imply the freezing in of sediment (Alley et al., 1998; 

213 Lawson et al., 1998; Andrews and MacLean, 2003).      

214     All the major H-events can be traced back to the Laurentide Ice Sheet and 

215 Hudson Strait, including H-0 (Pearce et al., 2015; Stoner et al., 1996), although there 

216 has been considerable discussion about H-3 (Bigg et al., 2010; Kirby and Andrews, 

217 1999; Rashid et al., 2003).  Rashid et al (2003) argued that this event, not always 

218 present in the northernmost Labrador Sea records, represented an ice flow across 

219 Hudson Strait, similar to the ~10.8 cal ka BP Gold Cover event (Kaufman et al., 

220 1993).  This and subsequent events associated with the final stages in the collapse of 
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221 the LIS are recorded as a complex of DC and IRD events on the Labrador Shelf 

222 (Barber et al., 1999; Jennings et al., 2015) (Fig. 3A).  Also, H-1 could be seen as a 

223 special case within the H events of the last glacial period, because it represents a 

224 deglacial event during the early phase of Termination 1 (e.g. Barker et al., 2009). 

225 Within the Pleistocene, H-1 is, however, not unique because deglacial ice-rafting 

226 events with a detrital carbonate signal, i.e. a Hudson Strait event, also occurred during 

227 Termination 2 (H-11, e. g. Lototskaya and Ganssen, 1999; H-7 in van Kreveld et al., 

228 1996; Stoner et al., 1996) and older Terminations back to Marine Isotope Stage 16 

229 (Hodell et al., 2008; Stein et al., 2009; Channell et al., 2012).        

230 The duration of H-events, while difficult to accurately determine, are probably 

231 < 1 ky (Veiga-Pires and Hillarie-Marcel, 1999; Hemming, 2004). We have compiled 

232 published 14C dates from the base and top of H-1 and H-2 (see Andrews et al., 1999; 

233 Stolk et al., 1994) from cores near the outlet of the Hudson Strait ice stream as 

234 representing the “type area”(Andrews et al., 1994; Rashid and Piper, 2007; Rashid et 

235 al., 2011).  Sedimentation rates were high and the thicknesses of these H-layers are in 

236 the range of 30-60 cm thus negating any problems with bioturbation.  The dates were 

237 calibrated using a ∆ R of 0 ± 100 y using the “14C date combination” option in Oxcal 

238 (Bronk Ramsey, 2008); all the dates were on Neoglobquadrina pachyderma.  On 

239 Figure 4 we show the probability density plots and the estimate “best estimates” for 

240 H-2 as 24856 ± 202 to 24127 ± 149 cal y BP, a duration of ≤ 730 y, and H-1 from 

241 17678 ± 142 to 16744 ± 200 cal y BP, or a duration of ≤ 1085 y.  These estimates are 

242 based on the assumption that ∆R does not change before and after these two H-events, 

243 and they are consistent with earlier evaluations of 800 and 600 y (Francois and Bacon, 

244 1994) based on 230Th excess.  
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245 Given the temporal errors across the North Atlantic in the ocean reservoir 

246 correction (e.g. Stern and Lisieki, 2013; Butzin et al., 2017), and in the Greenland Ice 

247 Sheet’s isotopic record (Rasmussen et al., 2014), it is difficult if not impossible to 

248 argue where H-events lie exactly within the D-O framework (Fig. 3).  Indeed, 

249 Rasmussen et al. (2014) did not designate the temporal positions of H-events; and (p. 

250 26) they state “We recommend that the term “Heinrich event” or more accurately 

251 “Heinrich layer” is used to designate only the period where IRD is found in a 

252 particular record.”   For correlations to be made it would appear important for the 

253 periodicities of the two signals to have some common value(s).  Long and Stoy (2013) 

254 used the Lomb-Scargle algorithm on the GISP2 and NGRIP isotope data for the 30 to 

255 60 cal ka BP interval and noted several significant periodicities but none easily 

256 adapted to the ~7 cal ky H- beat.  In our analysis we converted the NGRIP data into 

257 an equi-spaced 250 yr series (between 10 and 60 cal ka BP) and used spectral 

258 methods from the UCLA Toolkit (Ghil et a., 2002) to detrend the series (Fig. 3B) and 

259 to examine the residuals for statistically significant periodicities and to then 

260 reconstruct the time-series (Fig. 3C & D).  Note how the location of the H-events 

261 varies within the range of the D-O oscillations.  We should add, however, that 

262 Ditlevsen et. Al. (2007) concluded that the D-O cycle is “…probably noise..”.  The 

263 “heart-beat” of H-events (Fig. 3A) has been estimated at a pacing of  ~7 ky 

264 (Hemming, 2004) or 7.2± 2.4 ky (Sarnthein et al., 2001), and this was reinforced 

265 when Rashid et al. (2003b) reported a H-event between 5 and 6 (H-5a), which 

266 reduced the original timing between H-5 and H-6 to ~7 ky. This timing, however, 

267 relies heavily on the GISP2 chronology (the tuning target for many earlier studies), 

268 which in the interval > 40 ky becomes significantly younger than the GICC05 

269 chronology of NGRIP (Svensson et al., 2008). Regardless of the specific forcing(s) 



12

270 the relatively steady pacing between the H-events argues for a “binge/purge” process 

271 (Alley and MacAyeal, 1994; MacAyeal, 1993).  Many of the issues associated with 

272 the interpretation of H-events are linked to the efforts to partner H- and D-O events 

273 (Fig. 3A, B and C), and we re-emphasise our earlier quotation from Marshall and 

274 Koutnik (2006) suggesting that “tuning” H-events to D-O may pose problems.  

275 Indeed, as we noted earlier, the D-O signal is dominant in the western Nordic Seas (in 

276 both the near-surface isotopic record and the sediment archive;  e.g. van Kreveld et 

277 al., 2000; Andrews et al., 2017), but hardly detectable in the Labrador Sea.  Tuning 

278 records means that potentially critical leads and lags between the atmosphere, ocean, 

279 and cryosphere are unable to be determined (Blaauw, 2012)---for example, the Baffin 

280 Bay DC events lag the Hudson Strait DC (H-) events (Jennings et al., 2017; Simon et 

281 al., 2014), and the spatial and temporal variations in the ocean reservoir correction 

282 also make it difficult to determine if IRD- events are synchronous or not (Dowdeswell 

283 et al., 1999). Thus the use of “H-stadial” is firmly tied (incorrectly in our view) to the 

284 inclusion of the D-O atmospheric signal into the H-event glaciological signal (Fig. 3B 

285 & C)---in this interval the amplitude of D-O events is severely dampened.     

286     In retrospect, it is now obvious that the series of papers in 1992 on 

287 “Heinrich events” marked a major change in marine paleoclimate focus away from 

288 insolation-driven time-scales (Hays et al., 1976) to millennial-scale abrupt events, as 

289 typified earlier in ice cores.  This has placed an emphasis on rapid changes in the 

290 Earth’s climate system, perhaps very appropriate given current concerns and evidence 

291 for “Climate Change”.  

292 Discussion

293 We argue that the confusion/misuse in usage of H layers/events/stadials arose from 

294 the following: 
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295 1) It is difficult to correctly calibrate marine 14C ages of North Atlantic deep-sea 

296 sediments because of the large reservoir-age changes around these massive IRD and 

297 meltwater events (e.g., Sarnthein, 2011; Sarnthein et al., 2001; Waelbroeck et al., 

298 2001), so many authors use(d) the approach of correlating surface-water records with 

299 one of the Greenland ice core δ18O records to establish a chronology for their 

300 millennial-scale climate oscillations (e.g., Bond et al., 1999; Shackleton et al., 2000; 

301 van Kreveld et al., 2000; Voelker et al., 1998).  This is problematic because “tuning” 

302 the two records (H- and D-O events, Fig.3) argues for a “cause and effect” and 

303 ignores the possibility of leads and lags between the records.   

304 2) The Greenland ice core δ18O records do not contain a signal that can be related to 

305 the ice-rafting event per se – the very reason why the INTIMATE event stratigraphy 

306 never refers to H events in their figures or list of events (Lowe et al., 2008; 

307 Rasmussen et al., 2014).  However, new types of analyses in the ice cores, such as 17O 

308 excess (Guillevic et al., 2014), might help in the future to identify the imprints of H 

309 events in the ice core records. 

310 3) The impression of millennial-scale climate variability, in particular the amount and 

311 duration of IRD sedimentation and of meltwater presence, greatly varies between the 

312 different North Atlantic regions (e.g., sites within the IRD belt vs. north/south of the 

313 belt) and the Nordic Seas. Some paleoclimate records, especially along the eastern 

314 North Atlantic margin, show IRD precursor events (linked to the European ice sheets; 

315 e.g., Bond and Lotti, 1995; Grousset et al., 2000; Hall et al., 2006, but see Andrews, 

316 2008; Haapaniemi et al., 2010). Other papers even recorded a three phased climate 

317 evolution during a H “stadial” interval (e.g., Naughton et al., 2009; Stanford et al., 

318 2011). Furthermore, a climatic response to the H events can be detected in world-wide 

319 paleoclimate records (e.g., Voelker, 2002).  Thus there is no consensus on the correct 
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320 terminology to be used to refer to these world-wide events.  As already pointed out 

321 above, it is unfortunate that the term “Heinrich stadial” now commonly refers to a 

322 long interval correlative with the youngest interval of Greenland Stadial 2 (Rousseau 

323 et al., 2006), i.e. Greenland Stadial 2a (Lowe et al., 2008; Voelker et al., 2009) that 

324 has a much longer duration (Lowe et al. 2008 = 2200 y; Rasmussen et al., 2014 =2788 

325 y) than estimated for H 1 in the near source sediment cores (≤ 1085 y; Fig. 4). 

326 The issue of whether other ice sheets, or other sectors of the Laurentide Ice 

327 Sheet, were involved in a synchronous manner with the Hudson Strait H events is 

328 implicit in the usage of “Heinrich” as a precursor identifier.  However, arguments for 

329 the global synchronicity of IRD events are difficult to develop, and arguments for 

330 asynchronous glaciological responses (Dowdeswell et al., 1999; Dyke et al., 2014; 

331 Jackson et al., 2017; Stokes et al., 2014) have been advanced.  In the Norwegian Sea 

332 “H- events” can even be recorded as meltwater events but with no coeval IRD signal 

333 (Lekens et al., 2006).  

334 The existence of the IRD-belt (Ruddiman, 1977) implies that debris-rich 

335 icebergs retain their sediment load over a considerable distance with little or no 

336 melting.  Melting of icebergs, and release of any entrained sediment, is a function of 

337 several variables (Bigg, 2016; Daley and Veitch, 2000) although wave erosion is 

338 judged to be the most important (Venkatesh et al., 1994); this process could be 

339 reduced if the icebergs are travelling within heavy concentrations of sea ice. The 

340 notion of the dominance of melting to explain the IRD belt is contradicted by the 

341 evidence for a decrease in H-layer thickness along the transport trajectory (Bond et 

342 al., 1992; Dowdeswell et al., 1995).  Modeling of iceberg discharge during an H-event 

343 also documents considerable melting near the iceberg source (Bigg et al., 2011) 

344 suggesting associated sediment release. The distributions of the flux of sand (mg/cm2 
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345 ky), as of 1977 (Fig. 1), may have been biased by the available core distribution (note 

346 also that carbonate was removed) and the integration over a longer period of time than 

347 individual H-events.  This is hinted at by the values of 800 mg/cm2 ky just south of 

348 Denmark Strait (Ruddiman, 1977), and our own data (Andrews et al., 2017) from 

349 nearby sites in Denmark Strait with average fluxes between 30 to 40 cal ka BP of 

350 ~2000 mg/cm2 ky (JM96-122GC) and 900 mg/cm2 ky (PS2644).  Furthermore, in a 

351 proximal H- site (HU87033-009, Fig. 5), the sediment accumulation rate (SAR) 

352 between H-/DC events is ~22 cm/ky versus ~100 cm/ky within the events.  During H-

353 2, the median sand flux (> 63 µm) was 10,000 mg/cm3/ky, the > 250 µm flux was 

354 1700 mg/cm2/ky, and the deposition of detrital carbonate approached 50,000 

355 mg/cm2/ky.  It would be useful to map not only the thicknesses of H-events but also to 

356 calculate the IRD flux along the iceberg drift trajectories (e.g. Dowdeswell et al., 

357 1995, their Fig. 1).   

358   The implicit notion of H events as being solely IRD events, based on the 

359 earlier papers (e.g. Heinrich, 1988) and on an “armada of ice bergs,” neglects the 

360 complexity of the depositional processes off the Hudson Strait Ice Stream where four 

361 distinct sediment facies have been identified (Hesse et al., 1997, 1999; Hesse and 

362 Khodabakhsh, 2016). In core HU87033-009 (Suppl. Table 1) (Andrews and Tedesco, 

363 1992), north of Hudson Strait (Fig. 1A, 4A), the DC-events are much broader than the 

364 IRD events (either > 250 or > 125 µm) (Fig. 5B), which occur at the onset of the 

365 DC/H-events.  They are also marked by a trough in the mass susceptibility, due to the 

366 dominance of calcite (Stoner and Andrews, 1999).  Furthermore, the textural 

367 description of the sediment at this ice proximal site testifies to the dominance of silt-

368 sized grains, although the presence of IRD is clearly evident in the grain-size 

369 “shoulder” for modes 2 and 3 and more emphatically by the counts on X-radiographs 
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370 (every 2 cm) of clasts > 2mm.  Thus, especially within the Labrador Sea, the sediment 

371 regimes during deposition of DC/H-layers is more complex than suggested by a 

372 simple IRD signal.          

373 Recommendations

374 Rarely, if ever, has a lithostratigraphic unit been named for an individual, and despite 

375 arguments of prior recognition (Andrews, 1998) the terms “Heinrich layer, zone, or 

376 event” are so entrenched in the literature that to argue for removal would be both 

377 unlikely and disrespectful. In a stratigraphic sense Heinrich sediment events are 

378 “xenoconformities” (Carroll, 2017; Halverson, 2017) defined as “a stratigraphic 

379 surface or gradational interval that records a fundamental, abrupt, and persistent 

380 change in sedimentary facies across basinal to global scales” (Carroll, 2017, p. 639).  

381 However, it is clear that the “Heinrich” usage needs both clarification and restriction 

382 in usage---in particular the term “Heinrich stadial” is a radical departure from the 

383 original usage, and is clearly associated with the absence of D-O excursions onto the 

384 longer H-event recurrence interval (Fig.3). It is noteworthy that the number of 

385 citations dealing with the meltwater events and sediment facies in the Labrador Sea 

386 only number in the 10’s to 100 (Fig. 2) indicating that this facet of H-event 

387 glaciological/sedimentological processes (Alley et al., 1995; Hesse, 2016; Hesse and 

388 Khodabakhsh, 2016; MacAyeal, 1993a, b) is not being adequatly addressed  nor 

389 understood by many in the paleoclimate community (see however Johnson and 

390 Lauritzen, 1995 as introducing the possibility of outburst floods being associated with 

391 the Hudson Strait H-events).

392 A useful analog for the recognition and naming of abrupt IRD-rich ice sheet 

393 events that terminate in the ocean is the deposition of tephras---in so-far-as that they 

394 have a specific source, have a geochemistry that is linked to that source, and have a 
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395 geographic pattern of dispersal (e.g. Bursik et al., 1992; Lacasse et al., 1998; Voelker 

396 and Haflidason, 2015; Wastegard et al., 2003).  The literature might document that 

397 tephras from several volcanic centers might be coeval, but these are not “lumped” into 

398 a single stratigraphic unit.  Similarly in the case of Heinrich layers, there may be some 

399 provenance ambiguity at times, especially if the criterion is based on isotope 

400 geochemistry (Farmer et al., 2003; Grousset et al., 2000). We further note that 

401 biogeochemical proxies also have a role to play in provenance identification (Naafs et 

402 al., 2013; Parnell et al., 2007; Rosell-Mele et al., 1997).

403  Our specific recommendations are as follows:

404 1. IRD-rich events that can be attributed to a Hudson Strait mineral/geochemical 

405 source, or are located along the iceberg drift trajectory, be called “Hudson 

406 Strait Heinrich events” (HSH-layers/events).

407 2. Discrete IRD-rich sediment units that cannot be linked to Hudson Strait should 

408 have their own designation, such as for example: PS2644 IRD #2, or Scoresby 

409 Sund TMF#3.  Such a process would naturally lead toward a more rigorous 

410 and independent analysis of global ice sheet instabilities on late Quaternary 

411 time-scales       

412 3. Correlation between IRD-events should be based on radiocarbon ages and 

413 specific geochemical signature.  This approach, combined with 

414 recommendation #2 above, would shed light on the important issue of whether 

415 discrete IRD events represent individual ice sheet/ice stream responses or 

416 whether there is a synchronous response.  

417 4. The term “Heinrich stadial” should be abandoned; a more appropriate linkage 

418 would be via the Greenland stadial/interstadial nomenclature. 
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419 5. We suggest that papers “tuning” their records to the GIS D-O calendar need to 

420 explicitly state their underlying assumptions and an assessment as to whether 

421 this may ignore leads or lags in the driving processes.   

422
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431 Figures
432

433 Figure 1: A: Core sites of the initial Heinrich layer/event studies (red dots; published 

434 between 1988 and 1999; see Supplementary Table 1 for details) and sites with a 

435 detrital carbonate signal during Heinrich events (polygons). B: Core sites with IRD 

436 signals during Heinrich events (published between 1978 and 2017; see Supplementary 

437 Table 1 for details). Inset on the right shows cores in the Arctic Ocean with reference 

438 to H events. In A and B, the dark gray dots mark the core sites studied by Ruddiman 

439 (1977). Petrol-blue colored lines indicate IRD concentrations reconstructed by 

440 Ruddiman (1977) for the period from 25-40 ka, i.e. late Marine Isotope Stage 3 and 

441 encompassing H 3 and H 4, with numbers 200 and 50 (thinner line) denoting the 

442 respective concentrations [milligrams per square centimetre per 1000 y]. The stippled 

443 area marks the region referred to as “Ruddiman IRD belt”.  Black lines show the Last 

444 Glacial Maximum ice sheet extent according to Stokes et al. (2016) for North 



19

445 America, Greenland and Iceland and to Hughes et al. (2016) for Scandinavia, Ireland, 

446 England and northern Europe. C (inset on left in B): Close-up of the Labrador Sea 

447 with the North Atlantic Mid-Ocean Channel (NAMOC) and some feeder channels on 

448 the Canadian margin indicated by black lines. All maps were generated with Ocean 

449 Data View (Schlitzer, 2016).

450 Figure 2: Graph of citation numbers of select references using the www.webof 

451 knowledge.com/ online service for the number of citations.

452 Figure 3:  A) Suggested timing of the Hudson Strait Heinrich/detrital carbonate events 

453 (Hemming, 2004; Rashid et al., 2003b), including the deglacial detrital carbonate 

454 events (Jennings et al., 2015).  The ages are plotted with a range of ± .2 ky with the 

455 central bar two-times the height of the range; B) The NGRIP data, integrated to a 0.25 

456 ky time-series (10-65 ka BP), and the Singular Spectrum trend (Ghil et al., 2002); C) 

457 residuals from the trend and the 3.7 ky pacing that explains 49% of the residual 

458 variance; D) Multi-Taper Method (MTM) showing the reconstruction based on 4 

459 significant periodicities (* = 95%, and ** = 99% confidence levels).  Explained 

460 variance is the r2 value of the residuals versus the two reconstructions (C & D). Black 

461 stippled lines in B) to D) indicate Greenland stadials during which the respective H 

462 event occurred. Note that position of line does not mark the exact timing of the H 

463 event within the Greenland stadial!

464 Figure 4: Probability density function plots of dates at the base and top of H-2 and H-

465 1 from the northwestern Labrador Sea (e.g. Fig. 5A).  n = number of dates per event.

466 Figure 5: A) The location of core HU87033-009 off Hudson Strait. B) Downcore plot 

467 of sediment data from core HU87033-009 off Hudson Strait in 1437 m water depth 

468 (Andrews et al., 1993).  The core has 4 H-/DC events (a H-3 event is not evident).
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469  The relationships between coarse IRD (number of clasts per 20 cm2), mass magnetic 

470 susceptibility (*10-7 kg/m3), carbonate sources and ∂18O is evident, but also note that 

471 there are additional discrete IRD events (e.g. 820 and 560 cm) (see also Bond and 

472 Lotti, 1995).

473

474

475 Supplemental Table 1:
476
477 Compilation of data for the reported Heinrich events (see text and Figures 1A, B and 
478 C).
479
480
481
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