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ABSTRACTThis paper discusses the adoption of Artificial Intelligence-based techniques to estimate seismic 
damage, not with the goal of replacing existing approaches, but as a mean to improve the precision of 
empirical methods. For such, damage data collected in the aftermath of the 1998 Azores earthquake (Portugal) 
is used to develop a comparative analysis between damage grades obtained resorting to a classic damage 
formulation and an innovative approach based on Artificial Neural Networks (ANNs). The analysis is carried 
out on the basis of a vulnerability index computed with a hybrid seismic vulnerability assessment methodology, 
which is subsequently used as input to both approaches. The results obtained are then compared with real post-
earthquake damage observation and critically discussed taking into account the level of adjustment achieved 
by each approach. Finally, a computer routine that uses the ANN as an approximation function is develop and 
applied to derive a new vulnerability curve expression. In general terms, the ANN developed in this study 
allowed to obtain much better approximations than those achieved with the original vulnerability approach, 
which has revealed to be quite non-conservative. Similarly, the proposed vulnerability curve expression was 
found to provide a more accurate damage prediction than the traditional analytical expressions. 

KEYWORDSArtificial Neural Networks, seismic vulnerability, masonry buildings, damage estimation, 
vulnerability curves 

1 Introduction 
Large-scale seismic vulnerability assessment methods are often based on a few empirical-based parameters 
defined through the statistical analysis of large sets of post-earthquake damage data [1], and normally uses 
simplified expressions, which are very easy to implement in Geographical Information Systems (GIS software), 
being a worldwide adopted approach. Some of these methods have been reviewed and discussed in depth in 
recent review articles [2,3]. However, the inability of traditional statistical methods to handle missing or noisy 
data, as well as to manage nonlinearities and to identify certain behavior patterns, opens up space to the use of 
innovative computer-based solutions. In the last couple of years, the use of Artificial Neural Networks (ANNs) 
is becoming increasingly popular in many civil engineering applications [4–6], namely in the field of 
earthquake engineering [4–17]. Traditionally, ANNs are used as “black boxes” to obtain a problem solution 
without a clear understanding about the mathematical relations between the inputs and the outputs, which are 
often considered as being a handicap for engineering purposes. Moreover, as discussed by Estêvão [18], the 
precision of the results obtained from ANNs-based approaches is very dependent on the dimension of training 
data set required, which often makes it impossible to use this kind of techniques when only small data sets are 
available. Trying to overcome this issue and taking the best of these two important group of approaches, a 
simplified large-scale seismic vulnerability assessment approach and an ANN are used together. It is worth 
noting that the ANN is used herein, not only to obtain a problem solution, as usual, but also as a guiding line 
function to develop a new simplified vulnerability curve expression with a good approximation to the observed 
damage data. Despite not solving the above mentioned “black box” problem, using the proposed approach 
opens the possibility of deducing new simplified expressions using the well-known mapping capabilities of 
ANNs to better correlate input and output variables. For such, a set of computer routines were developed to 
find an expression that best fits the results of a Multi-layer Feed-Forward Neural Network (MFFNN), which 
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was previously trained with data obtained from a post-earthquake damage data set collected in the aftermath of 
the 9th of July 1998 Azores earthquake. A comparative analysis between the vulnerability functions derived 
from the application of a widely used seismic vulnerability assessment approach and an approach based on the 
use of ANNs was carried out to understand how capable an ANN is to find a problem solution, even when 
using a low number of training sets. This comparative analysis was carried out by evaluating the relative 
deviations between observed damage and the damage estimated by both approaches. Results shows that the 
ANN solutions are more accurate than the ones obtained with traditional approaches. Moreover, it was also 
possible to develop a computer routine that uses the ANN as an approximation function, which led to another 
simplified expression, yet with almost the same precision obtained with the ANN. More than simply deducing 
a new simplified expression, which domain of validation is obviously limited to Azores and just for the effect 
of a single earthquake, in this paper is presented a new approach for developing worldwide simplified 
expressions to describe vulnerability, namely if more data are used to train an ANN. 

2 The earthquake of July 9, 1998 
With a macroseismic intensity VII on the Modified Mercalli Intensity (MMI) scale [19], the July 9th 1998 
Azores earthquake is considered one of the most destructive events in the recent seismic history of Portugal, 
having affected a total of more than 5,000 people, within which 8 fatalities, 150 injured and about 1500 
homeless were reported [20]. Final estimates reported that about 70% of the building stock of Faial, Pico and S. 
Jorge islands was buffeted by this earthquake. From the technical and academic point of view, the 1998 event 
allowed to gather an unprecedented amount of good quality post-earthquake data concerning different 
variables related with the building stock, namely concerned to their main architectural and constructive 
features, damage report, and the costs associated with repair and/or retrofitting interventions. The database 
(hereinafter mentioned as “Faial database”) resulting from the 10-year reconstruction process of Faial Island, 
which was carried out under the supervision of the Society of Promotion for Housing and Infrastructures 
Rehabilitation (SPRHI), was gathered in 2007 by the Regional Secretariat for Housing and Equipment (SRHE) 
of Faial Island and subsequently assembled in the book edited by Oliveira et al. [21]. 

The quality and uniqueness of this database in both national and international context have encouraged the 
development of several advanced studies throughout the following years. Even though the authors were 
allowed to access the full database, a complementary field work was conducted to understand the evolution 
and the diachronic process resulting from rehabilitation interventions implemented since 1998 [21]. Zonno et 
al. [22] presented a proposal of a macroseismic intensity distribution map for the Faial island, which was 
constructed on the basis of the post-earthquake field survey and observation campaigns that followed the 
earthquake of July 9, 1998.  

As referred in the introductory section, this extensive database was used in this work to compare the 
feasibility of the vulnerability function proposed by Bernardini et al. [23] with that resulting from an 
innovative approach based on the use of ANNs. Using as input data the same vulnerability parameters that 
compose the vulnerability index method, ANNs were trained to predict the damage grade for a given 
macroseismic intensity, IEMS-98. The data set of 90 stone masonry buildings is distributed in Table 1 by the four 
observed macroseismic intensities mapped for the island of Faial (from IEMS-98 = V to VIII). 
Table 1 Location and distribution of the assessed buildings considering the Macroseismic Intensity registered in situ 

geographical location observed macroseismic intensity, IEMS-98 
V VI VII VIII 

Angústias (7/90) – 7 – – 
Castelo Branco (5/90) – 4 1 – 
Cedros (6/90)  – – 4 2 

Conceição (12/90)  7 5 – – 
Feteira (5/90) – 5 – – 
Flamengos (5/90) – – 5 – 
Matriz (16/90) 13 3 - – 



Verso: Front. Struct. Civ. Eng. 2020 
Recto:Tiago Miguel FERREIRA et al. Damage and vulnerability analysis based on ANNs 
Front. Struct. Civ. Eng. 2020 
RESEARCH ARTICLE 
https://doi.org/10.1007/s11709-020-0623-6 

 4

Pedro Miguel (5/90) – – 5 – 
Praia de Almoxarife (16/90) 5 1 10 – 
Ribeirinha (8/90) – – – 8 

Salão (5/90) – – – 5 

number and percentage of 
buildings per intensity 

25 (27.8%) 25 (27.8%) 25 (27.8%) 15 (16.6%)

The traditional stone masonry buildings comprised in this sample are considered representative of the 
Azorean vernacular heritage, not only in terms of material and constructive technology, but also in terms of 
typology, which differs significantly depending on whether the building is located within a rural or an urban 
environment. The following Table 2 presents the distribution of these buildings by parish and the respective 
frequency in terms of observed discrete damage grades, Di, which are classified according to the European 
Macroseismic Scale, EMS-98 [24]. 
Table 2 Location and distribution of the assessed buildings considering their observed damage grades 
geographical location observed damage grades, Di 

no damage 
(D0) 

D1 D2 D3 D4 D5 

Angústias (7/90) – 7 – – – – 
Castelo Branco (5/90) – 1 3 – – 1 

Cedros (6/90)  – – 3 3 – – 
Conceição (12/90)  1 4 5 2 – – 
Feteira (5/90) – 2 1 1 1 – 
Flamengos (5/90) – – 3 0 2 – 
Matriz (16/90) 1 13 2 – – – 
Pedro Miguel (5/90) – – – – 2 3 

Praia de Almoxarife (16/90) 2 3 4 7 – – 
Ribeirinha (8/90) – 1 – 2 1 4 

Salão (5/90) – 1 1 1 – 2 

number and percentage of 
buildings 

4 (4.4%) 32 (35.6%) 22 (24.4%) 16 (17.8%) 6 (6.7%) 10 (11.1%) 

As one can observe, about 60% of the considered buildings present a damage grade ranging between D1 and 
D2, which corresponds to “negligible” and “moderate damage,” 25% show a damage grade between D3 and D4, 
which corresponds to “substantial” to “very heavy damage,” and finally, about 11% present a damage grade D5, 
corresponding to a “total or near total collapse.” The remaining 4% don’t present any damage (D0). 

3 The seismic vulnerability assessment approach 

3.1 General formulation 
The seismic vulnerability assessment approach used in this work was originally developed in Italy and has 
been successfully applied during the past 25 years in several research works all over the globe, particularly in 
Europe. Most recently, it was adapted and calibrated to the Portuguese masonry building stock reality by 
Vicente et al. [25] and Ferreira et al. [20], respectively. In conceptual terms, the methodology is based on the 
calculation of a vulnerability index that results from the weighted sum of the 14 evaluation parameters given in 
Table 3, each of which focused on a specific aspect related to the seismic response of the building. 
Table 3 Vulnerability index parameters, classes and weights, adapted from [13]. 
parameters  vulnerability class cvi weight,  

wi 
relative 
weightA B C D 

Group 1. structural building system P1 Type of resisting system 0 5 20 50 2.50  50/100

P2 Quality of resisting system 0 5 20 50 2.50  
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P3 Conventional strength 0 5 20 50 1.00  

P4 Maximum distance between 
ll

0 5 20 50 0.50  

P5 Number of floors 0 5 20 50 0.50  

P6 Location and soil conditions 0 5 20 50 0.50  

Group 2. irregularities and interactions P7 Aggregate position and 
i t ti

0 5 20 50 1.50  20/100

P8 Plan configuration  0 5 20 50 0.50  

P9 Height regularity  0 5 20 50 0.50  

P10 Wall facade openings and 
li t

0 5    20 50 0.50  

Group 3. floor slabs and roofs P11 Horizontal diaphragms 0 5 20 50 0.75  18/100

 P12 Roofing system 0 5 20 50 2.00  

Group 4. conservation status and other 
elements 

P13 Fragilities and conservation 
status 

0 5 20 50 1.00  12/100

 P14 Non-structural elements 0 5 20 50 0.75  

As presented in Table 3, the 14 parameters that compose the method are distributed over 4 vulnerability 
classes, Cvi of growing vulnerability: A, B, C and D. Each class is associated to a weight, wi, that reflects the 
importance of that parameter in particular; ranging from 0.5 for the less important to a 1.5 for the most 
important. A complete discussion on the relative importance of each parameter can be found in Ref. [25]. 

Equation (1) gives the seismic vulnerability index associated to each building, ∗ . The higher the 
vulnerability index, the more vulnerable is the building. For ease of use, it is usually normalized to fall within 
the range of 0 to 100, assuming from that moment on the notation, . 

∗ ∑ 	 .	(1) 

3.2 Damage estimation 
Based on the above-presented vulnerability index formulation, mean damage grades, , can be estimated for 
different seismic hazard scenarios. To this end, an analytical expression that correlates macroseismic 
intensities with the mean damage grade, , of the damage distribution in terms of the vulnerability value, Iv, 
was proposed by Bernardini et al. [23]. Such formulation is expressed by Eqs. (2) and (3): 

2.5 3 tanh
. .

.
,  (2) 

, 	 , if	 7
1																						, if 7

 (3) 

where, IEMS-98 is the seismic hazard described in terms of Macroseismic Intensity [24], V is the vulnerability 
index used in the Macroseismic Method [26], given in Eq. (4), and f (V, IEMS-98) is a function depending on the 
vulnerability index and intensity, which was introduced in the expression to adjust the trend of the 
vulnerability curves for the lower extremes of the macroseismic intensity grades, namely for IEMS-98  V. This 
expression was proposed within the framework of an innovative macroseismic approach allowing the 
vulnerability analysis of building typologies defined according to the European Macroseismic Scale, EMS-98 
[24], and relate it to its vulnerability classes. Moreover, this expression has been widely used and validated in 
literature, see for example [22]. 

0.592 0.0057  (4) 

To simplify the interpretation of the mean damage grade value, , and to compare it with the discrete 
damage grades, Di, used in Section 2, these two descriptors can be indirectly correlated through a set of 
damage factors, DF, which represent the cost of returning a building to its original condition. To this purpose, 
a probabilistic distribution of damage, derived from the discretisation of the beta distribution defined within 
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whereas, in the case of the traditional mean damage grade formulation, in Eq. (2), that percentage increases to 
41% (37 out of 90 buildings). Moreover, it is important to note that this better approximation is observed for 
all the macroseismic intensity spectrum, not only for certain subsets of its domain. 

 

(a) 

 
(b) 
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(c) 

 
(d) 

Fig. 11 Comparison between observed and estimated damage resorting to Eqs. (11) and (2) for macroseismic intensities: (a) 
IEMS-98= V; (b) IEMS-98= VI; (c) IEMS-98 = VII; and (d) IEMS-98 = VIII. 

Finally, Fig. 12 shows the vulnerability curves obtained with the new proposed analytical expression for 
different vulnerability index values, Iv. 
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