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Abstrato 

O National Institute for Standards and Technology (NIST) tem procedimentos definidos para a 

aceitação dos seus Materiais de Referência Certificados (MRC) para medição de pH.  Estes 

procedimentos são morosos e destrutivos para a amostra. A sua substituição por métodos 

quimiométricos recorrendo a técnicas de análise não destrutivas traria grandes benefícios, por um 

lado em termos da rapidez e simplicidade do procedimento de aceitação de MRC. 

Neste trabalho recolheram-se espectros no infravermelho próximo (NIR) e espectros Raman e 

trataram-se os dados através de análise de componentes principais (PCA), a fim de realizar uma 

análise qualitativa de três diferentes MRC de pH: carbonato de cálcio (CaCO3), tetraborato de 

sódio decahidratado ( bórax) e hidrogeno ftalato de potássio (KHP). 

O método foi testado para distinguir entre MRCs produzidos pelo NIST e outros materiais 

candidatos a MRC, assim como amostras comerciais de menor pureza que serviram como 

controlo negativo. 

Uma coleção de 87 amostras de CaCO3, 52 amostras de bórax e 63 amostras de KHP foi 

analisada por espectroscopia NIR e Raman. No caso do CaCO3, o PCA alcançou uma boa 

discriminação, coerente com o método de referência NIST para aceitação de MRC de pH. No 

caso do bórax, obteve-se boa discriminação entre as amostras, mas  que se revelou inadequada 

para controle de qualidade dos materiais candidatos. No caso do KHP, a discriminação entre 

amostras foi insuficiente, mas não exclui a possibilidade de aplicar o método proposto ao 

controle de qualidade de materiais candidatos visto o método de referência NIST também foi 

incapaz de distinguir os controlos negativos. 

A diferenciação obtida por PCA para o caso do CaCO3 foi explicada por difração de raios-X, 

tendo-se verificado que os diferentes grupos observados por PCA correspondem a diferentes 

polimorfos de calcite, aragonite e vaterite. 

No caso do bórax, a análise termogravimétrica revelou que o bórax tende a perder parte de sua 

água de cristalização ao longo do tempo de armazenamento e se transforma lentamente na forma 

pentahidratada. A análise por PCA diferenciou grupos de acordo com o grau de hidratação das 

amostras.  



V 
 

As amostras de KHP não foram suficientemente separadas na análise por PCA, com exceção de 

amostras com maior grau de cristalinidade, o que se explicou devido à presença de água oclusa 

nos cristais de KHP. 

Este estudo prova que o uso de quimiometria e sua capacidade de discriminar entre amostras 

quimicamente diferentes é potencialmente uma ferramenta poderosa para garantir a identidade e 

a qualidade de MRC para pH, e para simplificar o procedimento de aceitação de novos MRC. 
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Abstract 

Spectra collected with near infrared (NIR) and Raman spectroscopic methods were used along 

with unsupervised pattern recognition, namely, principle component analysis (PCA), to conduct 

a qualitative analysis of three different pH materials: calcium carbonate (CaCO3), sodium 

tetraborate decahydrate (borax) and potassium hydrogen phthalate (KHP). 

The NIR and Raman based fingerprinting with PCA were tested to distinguish between standard 

reference materials (SRM‘s) produced by the National Institute of Standards and Technology 

(NIST), and other potential candidate materials, and  commercial samples of lower purity.  

A collection of 87 samples of CaCO3, 52 samples of borax and 63 samples of KHP were 

measured by NIR and Raman spectroscopy. In the case of CaCO3, PCA achieved a good 

discrimination coherent with the NIST reference method for acceptance of pH SRM‘s. In the 

case of borax, good discrimination was obtained between the samples but inadequate for quality 

control of candidate materials. In the case of KHP, insufficient discrimination was obtained 

between samples. This does not exclude the possibility of applying the proposed method to the 

quality control of candidate materials, because the NIST reference method was also unable to 

distinguish negative controls from SRMs. 

The PCA clusters were further explained by X-ray diffraction (XRD) in case of calcium 

carbonate, which revealed that the PCA discrimination is based on the phase transformation of 

polymorphs of calcite, aragonite and vaterite. 

In the case of borax, thermogravimetric analysis (TGA) revealed that borax is not a stable 

substance but it tends to lose some of its crystallization water and transforms slowly into the 

pentahydrate. This is in good agreement with the different groups distinguished on the PCA. 

KHP was characterized by the impurities within the samples. The dominant impurity was proven 

to be the occluded water. 

This study proves that the use of chemometrics and its ability to discriminate between chemically 

different samples could be a powerful tool to assure the identity and quality of the pH buffer 

materials and to streamline the acceptance procedure of new issues of SRM‘s. 
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1. INTRODUCTION 

1.1. Objectives 

The most frequently measured chemical quantity, often described as a master descriptive 

variable, is pH. Measurement of pH serves as a key indicator for acid/base equilibria, metal 

speciation, mineral saturation states and the bioavailability of metals, organic ligands, and 

proteins. Accurate measurements of pH depend on the availability of pH Certified Materials 

(CRM‘s). National metrology institutes such as the National Institute of Standards and 

Technology (NIST) supply primary pH buffers to ensure the quality of pH measurements 

worldwide. 

The overall control of the quality of NIST pH standard reference materials (SRMs) starts from 

the candidate pH raw material and continues through the value assignment process which 

involves the preparation of liquid buffer solutions from solid buffers and an inter-comparison of 

the new buffer with the former one. The process to examine the quality of candidate materials 

can be time consuming and non-destructive methods to quickly screen materials is desired. An 

alternative procedure would involve spectroscopic fingerprinting.  Spectroscopic fingerprinting 

has been widely used as a tool for the quality control of raw materials. However, discussions are 

still on-going as to whether a single technique provides adequate information to control the 

quality of pH buffer reference materials. In this study, we applied near infrared spectroscopy 

(NIR) and Raman spectroscopy in combination with chemometrics approaches to streamline the 

production process of three pH reference materials: calcium carbonate (used as saturated 

Ca(OH)2 solution), sodium tetraborate decahydrate (borax) and potassium hydrogen phthalate 

(KHP). We aimed to reduce the time as well as the procedure needed to accept new candidate pH 

raw materials. NIR and Raman spectroscopy are known as fast, low cost, non-destructive tools 

with no or minimal sample preparation; and with the application of chemometrics, we tested the 

ability to distinguish between different quality levels of raw materials for use as primary pH 

standards. To accomplish this goal, former batches of pH SRM‘s were compared against 

potential candidate materials. Common commercial samples were also tested, functioning as 

negative control samples. 
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The traditional method of issuing new pH buffer materials is through wet experiments, which 

may take up to two weeks such as in the case of calcium carbonate pH buffer material. We 

believe that the use of an unsupervised classification method for multivariate data treatment such 

as principal component analysis (PCA) and hierarchical cluster analysis (HCA) would provide a 

quick and non-destructive qualitative tool to characterize the buffer samples. 

It is worth mentioning that the traditional method of characterization is a univariate method using 

glass electrodes which does not provide as much information as the application of multivariate 

methods. Therefore, we consider the use of rapid analytical techniques NIR and Raman to 

examine variance in the buffer materials and supplemented these findings with analysis by 

techniques such as X-ray powder diffraction (XRD) and thermogravimetric analysis (TGA) for 

further explanation and interpretation of the results. 

1.2. NIST pH SRM program 

Measurement and control of pH is required nearly in every laboratory where industrial processes 

and research work are carried out. It is claimed that commercial pH glass electrodes can measure 

pH values with a reproducibility of 0.01 and therefore, standard solutions are used to calibrate 

the electrode reading system. The pH values of the tested samples are compared to those of 

standard solutions of known pH. National metrology institutes like NIST provide high quality 

materials which link these pH values to the International System of Units (SI units). Guidelines 

developed by research and through standard practice at NIST and then agreed upon by the 

International Union or Pure and Applied Chemistry (IUPAC) outline the qualifications needed to 

produce a primary pH reference material
1
. These guidelines ensure that pH values assigned to 

primary pH buffer materials are reproducible and have well defined uncertainties. The pH of six 

primary standards (potassium hydrogen tartrate, potassium dihydrogen citrate, potassium 

hydrogen phthalate, potassium dihydrogen phosphate/disodium hydrogen phosphate, sodium 

tetraborate decahydrate and sodium bicarbonate/sodium carbonate and two secondary (potassium 

tetroxalate and calcium hydroxide) reference standards are routinely assigned.
2
 

1.3. pH concept 

The current concept of pH was evolved through several theories. It started by Arrhenius in the 
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last decade of the 19th century; he introduced the theory of electrolytic dissociation where the 

dissociation constant of water was determined by providing the relationship between hydrogen 

ions (H
+
) and hydroxyl ions (OH

-
). This was followed by the establishment of the acidity scale 

by Friedenthal in 1904 where he examined the color change of indicator dyes in 14 solutions of 

known hydrogen concentration. Later in 1909, Sørensen, a Danish chemist, introduced the 

concept of pH with regard to the concentration derived from the ionic product of water with a 

(zero to 14) scale at 25 ºC. The application of glass electrode (shown in Figure 1) to acidimetric 

titrations was introduced by Haber and Klemensiewicz in the same year.
3
 Later, the concept of 

pH (Equation 1)  was proposed by Sørensen and K. Linderstrøm-Lang as the activity of the 

hydrogen ions in solution.
3
 

                                  (Equation 1) 

where aH is the relative (molality basis) activity; γH is the molal activity coefficient of the 

hydrogen ion H
+ 

at the molality mH; and m° is the standard molality (equal to 1 mol
.
kg

-1
).  

 

 

 

 

 

 

 

 

 

Figure 1 - Structure of the combination pH glass electrode 
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hydrogen ions deficiency (proton deficiency) in water. Measurements of pH can be made using 
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activity is most commonly measured in laboratory settings by glass electrodes using the 

electrochemical method. However, the concept of hydrogen ion activity is a practical approach 

and applies to solutions where the ionic strength is sufficiently low in concentration and where 

the activity coefficient of the hydrogen ion (γH+) does not deviate significantly from unity. To 

overcome this difficulty, Roger G. Bates proposed another more practical definition where the 

pH is determined relative to that of a standard buffer based on the infinite dilution system from 

measurements obtained from cells without liquid junction.
4
 A buffer is an acid-base system 

consisting of a mixture of a weak acid/base and its conjugate base/acid. Changes of pH occur 

when the buffer presented in the solution reacts with the liberated hydrogen or hydroxide ion as 

expressed in Henderson-Hasselbatch equation (Equations 2):
4
 

pH = pKA + log 
   

   
                      (Equation 2) 

where pH is the concentration of [H
+
] in mol/L; KA is the acid ionization constant, and [A] and 

[B] are the concentrations of the conjugate acid and base, respectively. 

Ionic strength (I) may affect pH in the following way:
5
 

1. Ionic strength is the measure of the total concentration of ions in a solution where the 

contribution by a given ion is influenced by its charge (Equation 3). An ion with a higher 

charge gives a larger contribution. This property impacts the dissociation constant and 

thereby the solubility of salts. High ionic strength reduces the attraction between anions 

and cations relatively as compared to their attraction in distilled water and therefore 

promoting the dissociation of salts, increasing their solubility and ultimately affecting the 

pH of the solution. 

2. The activity coefficient depends on the ionic strength as it measures the deviation of 

behavior from ideality. The activity coefficient (γH
+) approaches unity as the ionic 

strength approaches zero as shown as in equations 3 and 4.  

   
 

 
     

                           (Equation 3) 

Where ci is the concentration of the ith component, zi is the charge on the ion in question, and 

µ is the symbol for the total ionic strength of a solution. 



5 
 

      
                                  (Equation 4) 

Several factors can contribute to errors associated with glass electrode pH measurements:
5
 

1. The accuracy of pH standards limit sample accuracy by ±0.01 pH units; pH measurement 

cannot be more accurate than the standards. 

2. Junction potential (the porous plug near the bottom of the electrode) contributes 

uncertainty of at least ~0.01 pH unit due to the change of the junction potential because 

the ionic composition of the analyte solution within the electrode (~ 3 mol/kg) is different 

from that of the standard buffer (typically < 0.1 mol/kg); even if the pH of the two 

solutions is the same, the junction potential will change as shown in Figure 2. 

3. Junction potential drift is often caused by two factors. Drift could be initiated if the Ag(s) 

precipitates due to the presence of a reducing agent in the analyte solution. Junction 

potential drift could also be an issue when the potassium chloride (KCl) filling solution is 

diluted causing AgCl to precipitate onto the porous plug. This occurs because most 

combination electrodes have an Ag|AgCl reference electrode containing saturated KCl 

solution (around 3 mol kg
-1

). In both of these cases, the junction potential change will 

cause a slow drift in the pH reading. This error can be compensated by recalibrating the 

electrode every two hours. 

4. Alkaline or sodium error occurs when [H
+
] is much lower than [Na

+
] leading to lower 

measured pH than the actual one. 

5. Acid error is evident if the apparent pH is higher than the true one due to the saturation of 

the glass with H
+
 which prevents any further protonation. 

6. Equilibrium time impacts a measurement with even in a well-buffered solution taking 

~30 s with appropriate stirring to reach equilibrium with an electrode. The time increases 

for a poorly buffered solution which may require several minutes. 

7. Hydration of glass should be maintained by soaking a dry electrode for several hours in 

order to correctly respond to H
+
 in a given medium.  

8. Temperature must be stabilized such that the calibration of the pH meter should be 

carried out at the same temperature at which the measurement will be carried.  

9. Cleanliness of the electrode can cause incorrect measurements whereby the reading of an 

improperly cleaned electrode can drift for hours while it is re-equilibrating with aqueous 
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solution. Therefore, glass electrodes should be cleaned with a solvent after being exposed 

to any hydrophobic liquid and then should be well conditioned in aqueous solution. 

 

 

 

 

 

 

 

Figure 2 - Development of the junction potential caused by unequal mobility of Na
+
 and Cl

- 

1.4. Certification of NIST pH SRMs 

To help control the impact of error associated with glass electrode pH measurements, the proper 

use of standards to calibrate the electrode is required. NIST along with other National Metrology 

Institutes (NMI‘s), issues seven primary pH standards as SRM‘s as illustrated in Table 1. These 

SRM‘s are used by chemical manufacturers to provide traceability of pH measurements for 

routine analysis.  

The primary measurement of pH is carried out with a cell without transference (liquid junction) 

using the hydrogen gas electrode, known as the Harned cell (see Figure 3). It is used for 

certifying the seven standard pH reference materials as it has high reproducibility and low 

uncertainty. The Harned cells fulfill all the essential features to be considered as a primary 

method of measurement: they function according to a precise measurement equation where all 

the variables can be experimentally determined in terms of the International System of units (SI). 

The Harned cell is a cell without liquid junction, defined as Pt | H2 | buffer S, Cl
-
 | AgCl Ag, 

which means there is no separation between reference and sensing electrode. The Harned cell 

contains standard buffer (S) and potassium and sodium chloride as a source of chloride ions. 

Both solutions are added in order to use Ag|AgCl reference electrode.
1
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Figure 3 - Harned cell 
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Table 1 - The seven pH standards as Standard Reference Materials (SRMs) by NIST 

pH Standard name Approximate 

pH 

SRM 

series 

Structure Year first 

issued 

Average unit 

sold per year 

Potassium Tetroxalate Dihydrate 

 

1.7 189 

 

1964 26 

Potassium Hydrogen Tartrate 3.5 188 

 

N/A 6 

Potassium Hydrogen Phthalate (KHP) 4.0 185 

 

1967 67 

 

(1) Potassium Dihydrogen Phosphate 

(2) Disodium Hydrogen Phosphate 

2 formulations 

6.9 (1:1) 

7.4 (1:3.5) 

 

186 

 

1965 65 

Sodium Tetraborate Decahydrate 

(Borax) 

9.2 187 

 

1970 50 

(1) Sodium Bicarbonate 

(2) Sodium Carbonate 

10.0 191 

                               

1968 34 

Calcium Carbonate (used as saturated 

calcium hydroxide solution) 

12.5 2193 

 

N/A 12 
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According to the NIST definitions of Terms and Modes
6
, a Certified Reference Material (CRM) 

is a reference material, accompanied by a documentation body providing one or more of 

specified property values with associated uncertainty at a stated level of confidence and 

traceability using valid procedures while a Standard Reference Material
®
 (SRM

®
) is a CRM 

issued by NIST that meets additional specific certification criteria required by NIST. SRMs are 

supplied with Certificates of Analysis that state the results of their characterizations and provide 

information about the proper use of the material. Normally, NIST does not produce or 

manufacture the materials from which SRMs are fabricated. Rather, materials are provided by 

industry, scientific companies, or groups that meet NIST specifications as shown in Figure 4.  

For the pH SRM‘s, the raw materials are purchased from a chemical manufacturer. After 

receiving the material, NIST scientists perform acceptance testing then the NIST Office of 

Reference Materials (ORM) bottles the material for distribution. The bottled material is 

subsequently tested for homogeneity (heterogeneity) and NIST scientists conduct value 

assignment on the material with Harned cell measurements. After the value assignment is 

conducted, the Statistical and Engineering Department (SED) at NIST provides determinations 

of the overall uncertainty of the values according to the Joint Committee for Guides in 

Metrology Guide to the Expression of Uncertainty in Measurement.
7
 For primary pH SRMs, the 

following conditions are required for certification:
6
 

1. Homogeneity assessment for each pH SRM by inter-comparison of randomly selected 

aliquots of candidate material(s) normalized to the former issuance of the corresponding 

pH SRM using a glass electrode. 

2. Internal control measures require that if there is a significant difference between the mean 

pH value of the current candidate material and the certified pH of the preceding SRM 

issue, the candidate material is rejected.  

3. Each pH SRM is certified using Harned cells at each temperature of interest using at least 

three independently prepared buffer solutions of composite samples of the candidate 

SRM. 

4. The combined uncertainty with the certified value involves the uncertainty in potential 

Harned cell, standard potential of Ag|AgCl reference electrodes, theoretical uncertainty, 

 

pH Standard name Approximate 

pH 

SRM 

series 

Structure Year first 

issued 

Average unit 

sold per year 

Potassium Tetroxalate Dihydrate 

 

1.7 189 

 

1964 26 

Potassium Hydrogen Tartrate 3.5 188 

 

N/A 6 

Potassium Hydrogen Phthalate (KHP) 4.0 185 

 

1967 67 

 

(1) Potassium Dihydrogen Phosphate 

(2) Disodium Hydrogen Phosphate 

2 formulations 

6.9 (1:1) 

7.4 (1:3.5) 

 

186 

 

1965 65 

Sodium Tetraborate Decahydrate 

(Borax) 

9.2 187 

 

1970 50 

(1) Sodium Bicarbonate 

(2) Sodium Carbonate 

10.0 191 

                               

1968 34 

Calcium Carbonate (used as saturated 

calcium hydroxide solution) 

12.5 2193 

 

N/A 12 

 

Table 2 - The seven pH standards as Standard Reference Materials (SRMs) by NIST 
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the replication uncertainty for the overall pH value assignment, and the uncertainty from 

the homogeneity assessment.  

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

Figure 4 - Schematic Outline of the main steps in producing a pH Standard Reference Material 
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At NIST, there are several modes to be applied in the value assignment of any SRM for chemical 

measurement. The choice of mode is based on different factors such as previous experiences and 

knowledge of the specific matrix, analyte(s) of interest, current measurement capabilities, the 

quality of the analytical methods results, and the intended use of the material.
6
 NIST follows the 

ISO/Guide 35:2017 Reference materials — Guidance for characterization and assessment of 

homogeneity and stability for the acceptance testing.
8
 For the accepting testing of the raw 

materials for the primary pH standards, NIST makes liquid buffer solutions from the buffer 

materials when they arrive from the supplier and each solution is measured using a glass 

electrode against a former batch of the same material used as a control. This acceptance process 

may take up to one to two weeks to complete depending on the pH SRM tested. Efforts to 

decrease the SRM production time are underway and methodologies to streamline the acceptance 

process will both reduce time and financial investment in the production of a new issue of the pH 

SRM‘s. Furthermore, the glass electrode is univariate technique (∆pHi) that does not provide an 

appropriate explanation if the material is deemed unsuitable for use. The currently used electrode 

method cannot assess the purity of the material or reasons for the variability between batches 

and/or bottles. This study investigates the use of nondestructive multivariate techniques for use 

in the acceptance testing of these materials. 

1.5. Pharmaceutical case study 

The pharmaceutical industry can be used as a solid case study for the streamlining of material 

acceptance as similar problems are experienced by regulatory bodies for pharmaceutical 

industry. Many regulatory bodies such as the United Sates Pharmacopeia and the European 

Pharmacopeia require inspection of every barrel in every shipment of raw materials for the 

pharmaceutical industry to prevent public health concerns resulting from contaminated or 

mislabeled materials. Laboratory based analytical techniques such as chromatography, wet 

chemistry and titrations are traditionally used for pharmaceutical raw material identification or 

verification of the packaging label. This common quality control practice is time consuming and 

of high cost, destructive in nature, and labor intensive which is considered challenging to handle 

an enormous number of analyses.
9
 Among the real-world application of this study is the 

possibility of routine testing of raw materials for acceptance directly in the warehouses. Raw 

substances for the pharmaceutical industry can be tested for identification and quality 
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conformance in minutes once a chemometrics model for a substance is developed. This 

procedure is highly convenient to be applied in pharmaceutical industry as an essential part of 

Process Analytical Technology (PAT).
10

 To address this problem, techniques that are non-

destructive in nature with minimal manipulation or without sample preparation along with fast 

acquisition are required. 

1.6. Non-destructive techniques 

In this study, non-destructive pectroscopic methods such as Near infrared (NIR) spectroscopy 

and Raman spectroscopy were applied in combination with chemometrics approaches to provide 

a robust method for characterizing of several of the primary pH SRMs: calcium carbonate 

(CaCO3), sodium tetraborate decahydrate (borax) and potassium hydrogen phthalate (KHP). 

Standard Reference Materials (SRMs) quality to streamline the production process along with 

better understanding of batch to batch variability as shown in Figure 5.                                                             

Near infrared (NIR) spectroscopy and Raman spectroscopy are widely used in quality control 

and assessment of purity in diverse fields such as chemical manufacturing, food production, oil 

industry and agriculture because they can quickly characterized materials by their spectral 

properties. They are known as fast, low cost, non-destructive tools with no or minimal sample 

preparation.
11,12

 In near infrared (NIR) spectroscopy, changes in the molecular dipole moment 

influence the observed spectra and can provide information regarding the chemical and physical 

properties of the samples. A drawback to NIR is the technique has low sensitivity due to its high 

sensitivity to water bonds (this can be useful if the highest impurity of a molecule is water), and 

strong overlap can occur. In these cases, Raman spectroscopy is implemented as a 

complementary technique to infrared (IR) absorption spectroscopy.
11,12

 It is worth mentioning 

that the development of fiber optics technology and recent improvements made to the 

instruments have increased the interest and applicability of NIR.
11

 Raman spectroscopy is a 

phenomenon where the laser light is scattered by molecules creating vibrational transitions. The 

spectrum of scattered light reveals spectral bands which provide information related to the 

properties of the material, either directly or indirectly.
13,14

 The limitation in size and variation of 

sample database is one of the biggest challenges in applying such techniques and therefore, one 

goal of this study was to build a library for the qualitative analysis of three pH reference 
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Data 

transformation 

 

NIR 

Raman Sample 

Spectroscopic 

Analysis Fingerprint 

Dataset 

 

Multivariate 

Analysis 

PCA 

HCA 

Classification 

materials (calcium carbonate (CaCO3), sodium tetraborate decahydrate (borax) and potassium 

hydrogen phthalate (KHP)) by sampling materials from current and past issues of the SRMs and 

supplementing the dataset with materials from different manufacturers or sources.
15,16

 

Chemometrics methods simplified the process of data interpretation.  

 

 

 

 

 

Figure 5 - Workflow of the study design 

1.7. Chemometrics 

The International Chemometrics Society defines chemometrics as the science of linking 

measurements made on a chemical system or process to the state of the system through 

application of mathematical or statistical methods. In other words, chemometrics extract relevant 

information from complex multivariate data.
14

 There are two types of chemometrics 

classification techniques: the unsupervised method and the supervised method. Concerning 

qualitative analysis, we use the unsupervised method where samples are classified according to 

their spectra without any other prior knowledge. In this work, the principal component analysis 

(PCA) was applied as unsupervised classification method for multivariate data treatment. PCA is 

a mathematical method that reduces the number of correlated variables of multivariate data into 

lower dimensional uncorrelated variables expressed as Principal Components (PCs). The 

analysis of loadings (new variables) provided by PCA contribute to the understanding of the 

causes of variance, whether they are caused by instrumental, environmental, or sample 
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properties. Loadings are linear combinations of the original variables and can be interpreted like 

spectra while scores (samples) were plot to confirm statistical differences between different 

batches (SRM and commercial samples) forming different ellipses or clusters (groups).  

On the other hand, the obtained classification was confirmed by the hierarchical cluster analysis 

(HCA) as this clustering method is characterized by successive divisions of the dataset resulting 

in a cluster sequence (dendrogram). The main advantage of HCA is the possibility to cluster the 

samples based on the similarities in terms of the distance and proximity of the samples.
11,14,15

  

1.8. Methodology 

Multivariate analysis by NIR and Raman spectroscopy was conducted on three pH reference 

materials: calcium carbonate (CaCO3), sodium tetraborate decahydrate (borax) and potassium 

hydrogen phthalate (KHP) for chemometrics analysis. The results from the spectroscopic 

analysis were also compared to those obtained by the reference univariate electrochemical 

method. Additional investigations were conducted to examine the sources of variation between 

materials. Information on the samples used for the analysis is summarized in Table 2. 

All data was imported to MATLAB R2018a and the principal component analysis (PCA) and the 

hierarchical cluster analysis (HCA) were performed using the PLS Toolbox. 

Furthermore, rapid analytical techniques such as X-ray powder diffraction (XRD) and 

Thermogravimetric Analysis (TGA) were applied for further explanation and interpretation of 

the obtained results by chemometrics.  
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A: One composite solid sample used as calibrant for the pH combined electrode 

B: One solid sample from which one solution was prepared and measured on two different days 

C: One composite solid sample from which two solutions were prepared and each was measured in duplicate 

D: One solid sample from which two solutions were prepared and each was measured in duplicate 

 

E: One composite solid sample from all SRMs where one part was not ground and from which one solution was prepared and each 

was measured in duplicate and another part was ground and from which two solutions were prepared and each was measured in 

duplicate. 

Buffer 

material 

Batch 
(Italic number gives the 

batch number as plotted 

in the PCA) 

Sampling 

Number of NIR/Raman Samples Reference Method Supplemental Analysis 

 SRM 2193b* (1) 11 individual bottles N/A *One solid composite sample was 

analyzed by XRD  

 

**One solid sample was analyzed by 

XRD 

 

SRM 2193a (2) 10 individual bottles A 

SRM 915b* (3) 10 replicates of the same bottle N/A 

Baker** 10 replicates of the same bottle B 

Sigma** 10 replicates of the same bottle B 

Home Science** 10 replicates of the same bottle  B 

Cuttlefish bone** 5 replicates of the same bottle B 

Chalk brand 1  10 replicates of the same bottle (NIR only) B 

Chalk brand 2 10 replicates of the same bottle (NIR only) B 

 

 

 

SRM 187f* (1) One solid composite sample C *One solid composite sample was 

analyzed by TGA 

 

**One  solid sample was analyzed by 

TGA 

SRM 187e* (2) 10 individual bottles C 

Merck** 10 replicates of the same bottle D 

Home Science** 10 replicates of the same bottle D 

Detergent** 10 replicates of the same bottle D 

 SRM 185i (1) 14 individual bottles  

 

E 

Not applicable 

SRM 185e (2) 2 bottles (5 replicates per each bottle) 

SRM 185f (3) 2 bottles (5 replicates per each bottle) 

SRM 185h (4) 2 bottles (5 replicates per each bottle) 

SRM 84L 10 composite solid samples C 

Home Science 10 replicates of the same bottle C 

Table 3 -  Summary of pH Materials Examined by NIR, Raman, and Supplementary Analysis 
C
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2. MATERIALS AND METHODS 

2.1. Samples and Reagents 

Nine batches of calcium carbonate were examined using NIR Spectroscopy: three issues of 

calcium carbonate (SRM) 2193 from the National Institute of Standards and Technology 

(Gaithersburg, MD, USA); five commercial batches: Baker Analyzed Reagent (USA); Sigma 

chemical Co. (USA); Home Science Tools (USA); Tiza Chalk (USA) and UP&UP Chalk (USA); 

and 1 natural batch (Cuttlefish bone). Raman Spectroscopy was applied to all the batches except 

the two chalk batches.  

Five batches of sodium tetraborate decahydrate (borax) and six batches of potassium hydrogen 

phthalate (KHP) were analyzed by NIR and Raman. For the borax, two were issued of the NIST 

SRM 187 (Gaithersburg, MD, USA), a three were commercial batches: Merck (Germany); Borax 

Detergent (USA) and Home Science Tools (USA).  

For KHP, four batches were pH NIST SRMs (Gaithersburg, MD, USA), one high purity 

acidimetric NIST SRM 84L (Gaithersburg, MD, USA), and one commercial batch (Home 

Science Tools, USA).  

The water used in the preparation of the buffer solutions was dispensed directly from a 

deionization-based point-of-use system (Milli-Q system) into the vessel used to prepare the 

buffer solutions (resistivity > 18 MΩ·cm, conductivity < 0.06 μS/cm). The prepared solutions 

were protected against evaporation and contamination. 

2.2. Measurement of liquid buffers with glass pH electrode (Reference method)  

Selected samples were analyzed by the reference method used by NIST to accept candidate pH 

SRM materials and to determine bottle to bottle heterogeneity of the batch of SRM> Liquid 

buffers were prepared according to the procedure outlined in the Certificates of Analysis (see 

section 2.2.1 – 2.2.3).  

A Thermo Scientific Orion Micro combination pH electrode was connected to an electrometer 

(Keithley model 6514) to provide greater sensitivity to pH changes than routine pH meters 

(Figure 6). Two-point electrode calibrations were performed by bracketing the analysis pH with 
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SRM buffer solutions of known pH, as shown in Figure 7. The standard buffer solutions were 

given designated, pH values of pH(S1) and pH(S2) and the unknown designated as pH(X) (Table 

3). The respective potential differences were measured as EV(S1), EV(S2), and EV(X), the pH 

value of pH(X), was obtained by the following equations:
1
 

                                                                   (Equation 5) 

Where the practical slope factor (k′) is defined as follows 

                                                             (Equation 6) 

 

 

 

 

 

 

 

 

 

 

Figure 6 - Keithley model 6514 electrometer connected to a Thermo Scientific Orion Micro 

combination pH electrode 
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Figure 7 - Two-point calibration or bracketing of a glass electrode 

Table 4 - pH values pH(S1) and pH(S2), were used to bracket the unknown pH(X) 

pH(X) (unknown) pH(S1) at 25 ºC pH(S2) at 25 ºC 

calcium carbonate 

 

sodium tetraborate decahydrate 

(borax), pH(S1) = 9.195  

calcium carbonate, pH(S2) = 12.469 

sodium tetraborate 

decahydrate (borax) 

sodium tetraborate decahydrate 

(borax), pH(S1) = 9.195 

calcium carbonate, pH(S2) = 12.469 

potassium hydrogen 

phthalate (KHP) 

potassium tetroxalate dihydrate 

pH(S1) = 1.677 

potassium hydrogen phthalate 

(KHP), pH(S2) = 4.005 

Two freshly prepared standard buffers were used to determine the pH electrode response (k′) for 

each set of sample buffers (Table 3). The pH electrode was kept in the standard buffer solution 

for 30 minutes prior to the start of the measurements to equilibrate. For each measurement, the 

sample solution was contained in 2 cm
3
 micro-centrifuge tube where the pH electrode was placed 

and the sample solution was stirred with the electrode for 30 seconds followed by an additional 

motionless 30 seconds, after which the glass electrode potential was measured. 

The calibrant standard reference buffer solution (its pH is close to the sample pH) was measured 

using the equilibration protocol before and after each sample measurement as a control to 

pH(S1) pH(S2) 

E/V 

pH 
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account for electrode drift. The other standard buffer solution was measured at the start and end 

of each set of samples to determine the practical pH electrode response. 

All buffer solutions (except calcium carbonate) were prepared gravimetrically by weighing the 

masses of the salts and adjusting for air buoyancy effects. The quality of prepared buffer 

solutions was maintained by minimizing atmospheric exposure.  

2.2.1. Calcium Carbonate 

A saturated calcium hydroxide (Ca(OH)2) solution was prepared from calcium carbonate. About 

7.5 g of calcium carbonate was placed into a fused silica (Vycor®) crucible then was slowly 

heated in a muffle furnace to 950 °C to 1000 °C. The CaCO3 was ignited for one hour at this 

temperature. Immediately, the obtained product (CaO) was transferred to a desiccator and was 

allowed to cool. Lumps were removed by gently crushing and 100 mL of carbon dioxide-free 

water from Milli-Q system was added while stirring to form a calcium hydroxide Ca(OH)2 

suspension.  This suspension was boiled for 15 minutes and cooled. The final produce was 

vacuum filtered on a sintered-glass funnel of medium porosity. 

The solid Ca(OH)2 was dried in an oven for 2 h at 110 °C and later was crushed by mortar and 

pestle to a fine powder. Approximately 1 kg carbon dioxide-free water was added to the dried 

Ca(OH)2 (approximately 5g) into a 1 L plastic bottle. This bottle was shaken for a week about 

every 2 h and no less than four times per day while being maintained at 25 °C in a thermostated 

water bath between periods of shaking. The procedure yielded a saturated Ca(OH)2 solution 

(0.0202 mol.kg
-1

) .   

For the analysis, the saturated solution of Ca(OH)2 was filtered immediately before use with a 

disposable syringe fitted with a 0.45 µm nylon in-line filter.  

2.2.2. Sodium Tetraborate Decahydrate (Borax) 

Solutions of 0.01 mol
.
kg

-1
 were prepared by weighing approximately 3.7 g of each borax sample 

by difference to an accuracy of 1 mg, into a clean, dry 1 L polyethylene bottle. The solution was 

prepared according to the certificate of analysis whereby the weighed mass was multiplied by a 

conversion factor of 261.841 to give the amount of CO2-free water needed to make the solution. 
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The water was weighted to an accuracy of 0.1 g and the solution was then shaken until the solid 

was totally dissolved. The borax samples were not dried prior to the preparation of the solution. 

2.2.3. Potassium Hydrogen Phthalate (KHP) 

A solution of the 0.05 mol/kg was prepared by weighing approximately 9.8 g of the material by 

difference to an accuracy of 1 mg, into a clean, dry 1 L polyethylene bottle. The mass of KHP 

was multiplied by 97.887, according to the certificate of analysis, to determine the amount of 

CO2-free water needed to prepare the solution. The water was weighed to an accuracy of 0.1 g 

and the bottle was thoroughly shaken until the solid was totally dissolved. The KHP samples 

were not dried prior to the preparation of the solution. 

2.3. NIR and Raman measurement 

Acquisition of NIR spectra was done using a Bruker® Vertex 70 FT-IR spectrometer equipped 

with a Quart-Tungsten Halogen (QTH) lamp and thermo-electrically cooled InGaAS detector as 

shown in Figure 8. Data were collected and processed using OPUS software. The fiberoptic 

reflectance was used to record reflectance spectra at 8 cm
-1 

resolution in the spectral range 3500-

12500 cm
-1

. Samples were held in 2 mL vials from Agilent made of Type 1 borosilicate glass 

because they have invisible reflectance in the NIR region. To collect the background, a piece of 

Spectralon (polytetrafluoroethylene, PTFE) disc was cut into to fit inside the sample vial. The 

measurement was carried out by putting the fiberoptic reflectance probe close to the sample. 

During each measurement, 64 scans were averaged. Three spectra were obtained for each 

sample. The sample vial was rotated in three different positions with the NIR light being directed 

through the glass vial where reflected signals being recorded, and the measuring locations 

distributed as consistently as possible. A white reference standard consisting of Spectralon was 

used for calibration after every 15 measurements. 

Raman spectra were collected with a Bruker® Vertex 70 FT-IR with RAM II module (near-

infrared dispersive Raman spectroscopy technique) using a 785-nm (NIR) diode laser for 

excitation, over a 0– 3500 cm
-1

 spectral range, with a resolution of 4 cm
-1 

(Figure 9). The laser 

power at the sample was ~500 mW (varied according to sample), and a LN-Ge Diode detector 

(liquid-nitrogen cooled Ge-diode detector). Samples were held the same 2 mL glass vials used 
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for the NIR measurements. Each sample collected consisted of two spectra at 5 kHz velocity, 

each spectrum consisting of 32 scans. Naphthalene was used to collect the background prior to 

the first measurement and after each 20 measurements. For both techniques, samples were 

subjected to drying and/or grinding conditions according to the certificate of analysis supplied by 

NIST (Appendix A). 

 

 

 

 

 

 

 

Figure 8 - Bruker® Vertex 70 FT-IR spectrometer and Spectralon (polytetrafluoroethylene, PTFE) 

fitted inside the HPLC vial 

 

 

 

 

 

 

 

Figure 9 - Bruker® Vertex 70 FT-IR with RAM II module (near-infrared dispersive Raman 

spectroscopy technique) 
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2.3.1. Calcium Carbonate 

The samples were dried at 200 °C to 210 °C for 4 h and stored in a desiccator over anhydrous 

magnesium perchlorate before use according to instructions in the certificate of analysis for SRM 

915b (See Appendix A). Note that the calcium carbonate for the spectral methods do not require 

the conversion of CaCO3 to Ca(OH)2. 

2.3.2. Sodium Tetraborate Decahydrate (borax) 

The samples were used without further preparation as they were not dried in an oven nor stored 

in a desiccator before use according to the preparation instructions in the certificate of analysis 

(See Appendix A). 

2.3.3. Potassium Hydrogen Phthalate (KHP) 

The pH Standards and commercial sample were dried for 2 h at 110 °C and stored in a desiccator 

over anhydrous magnesium perchlorate before use according to the instructions provided in the 

certificate of analysis for SRM 185i (See Appendix A). 

The acidimetric primary standard (SRM 84L) was ground by hand for a period of 60 s to 90 s in 

an agate mortar to obtain a fine powder. This preparation step helped to break down larger 

crystals so that occluded water could be sufficiently released during the drying procedure. The 

powder was dried at 120 ºC for 2 h and stored over anhydrous magnesium perchlorate in a 

desiccator. 

2.4. X-ray powder diffraction (XRD) 

Representative samples for CaCO3 were used as received without any further treatment. Analysis 

of the samples was carried out by the National Institute of Metrology, Standardization and 

Industrial Quality in Brazil (INMETRO).  

2.5. Thermogravimetric Analysis (TGA) 

The thermogravimetric analysis of the sodium tetraborate decahydrate (borax) was performed on 

an Instrument Specialists Incorporated TGA i1000 to examine weight changes due to the loss of 
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water and other volatiles loosely bound to the samples and to observe sample degradation as 

function of time and temperature. TGA data was used to predict the decomposition of borate 

hydrates. The TGA was calibrated using an approximately 10 mg weight whose mass had been 

verified with a Mettler Toledo XPR2U balance to provide traceability. The oven of the TGA was 

purged with dry nitrogen gas running at a flow rate of 20 mL/min. The temperature program for 

the analysis was as follows: the TGA oven was allowed to equilibrate at 25 ᵒC then the 

temperature was increased at a heating rate of 10 ᵒC per minute up to 900 ᵒC. 

Before each sample was measured, a baseline run was performed on an empty platinum pan to 

correct for apparent fluctuations in mass from buoyancy variations in the sample chamber caused 

by changes in the temperature of the oven and purge gas. After a smooth baseline was obtained, 

a sample of the sodium tetraborate decahydrate (borax) was weighed into a platinum crucible 

(open pan) using an analytical microbalance with a resolution of 0.1 µg. The sample was then 

run on the TGA using the same temperature program and conditions as the baseline. The baseline 

was then smoothed and subtracted from the sample runs to give the overall mass versus 

temperature profile of the sample.  

3. DATA ANALYSIS 

NIR and Raman provide distinctive and complex fingerprints for each material examined. NIR is 

associated with the vibration of chemical bonds. Raman is good as a fingerprinting technique 

because it is dependent on chemical bonds and the local environment of the molecules. Each 

molecule has a unique spectrum. Therefore, PCA combined with HCA are used as a dimension 

reduction data analysis tool to explain variation between spectra with as few variables as 

possible. The data analysis procedure involved two steps. First, a discrimination stage of analysis 

for the NIR and Raman data using PCA uncovered sources of spectral interferences and 

differences between NIST SRM‘s and commercial samples. The cluster analysis on this analysis 

was carried out with Ward‘s linkage type combined with the obtained PCs from the PCA 

analysis. 

The second stage consisted assessing some of the differences attributed to properties and 

characteristics of the materials using either XRD or TGA techniques. 
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3.1. Data reduction  

Each NIR and Raman spectrum is represented by 4407 and 3682 variables, respectively (figures 

10 and 11). All spectra were imported to MATLAB R2018a (The MathWorks, Inc.). Firstly, NIR 

spectra were imported as a function of Reflectance and wavenumber (cm
-1

). Then, they were 

converted to Kubelka-Munk (KM) units because the obtained analytical signal is highly complex 

function that is influenced not only by both physical and chemical properties of the sample but 

also by the scattering, stray light and inconsistency in the instrument response. Griffiths
17

 states 

in the handbook of near-infrared analysis that the choice of converting the recorded data 

(spectra) into absorbance values (equation 7) or KM units (equation 8) depends on the type of 

sample and the spectral region. He also claims that whenever KM units are used, the baseline is 

irreproducible and the band intensities vary with it. However, Dahm and Dahm
17

 do not share the 

same opinion of Griffiths that log (1/R) plots are more linear in practice than those of KM. The 

key is the light scatter depends on the physical features related to the particle properties of the 

sample such as particle size, particle shape and particle size distribution: the more the scatter, the 

lesser the light will penetrate the sample which impact on the amount of light absorbed by the 

sample.
17

  

       
 

 
                        (Equation 7) 

Where A is absorbance, R is reflectance 

 

 
  

      

  
                (Equation 8) 

ƒ(R) is KM function where R is diffuse reflectance, k is constant coefficient of absorption and s 

is scattering coefficient. 

However, Kubelka-Munk is the most general and widely validated theory. It assumes three easy 

and clear assumptions:
18

 

1- The scattered light is identically distributed; 

2- The particles are randomly distributed in the layer and smaller than the layer thickness; 

3- The layer is affected by the diffuse reflectance only. 
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After the conversion of all NIR spectra, averaging of the duplicate measurements of each sample 

was carried out where X is the data matrix (samples x variables); X1 is calcium carbonate data 

matrix (87 x 4407), X2 is sodium tetraborate decahydrate (Borax) data matrix (52 x 4407), and 

X3 is potassium hydrogen phthalate (KHP) data matrix (63x 4407).  

Raman spectra were imported to MATLAB R2018a in function of intensity (a.u.) and 

wavelength known as Raman shift (cm
-1

) for preliminary spectra assessment and manual removal 

cosmic ray removal. Each sample was collected in triplicate and the average was calculated 

where X` is the data matrix (samples x variables); X1` is calcium carbonate data matrix (66 x 

3682), X2` is sodium tetraborate decahydrate (Borax) data matrix (52 x 3682), and X3` is 

potassium hydrogen phthalate (KHP) data matrix (63x 3682). Then, the laser light peak was 

excluded from the spectra and the regions with no or little information were eliminated as well 

before any further preprocessing. 

 

 

 

 

 

 

 

 

 

Figure 10 - NIR Raw Spectra. (a) calcium carbonate N=87; (b) borax N=52 and (c) KHP N=63. 

Subplots (d), (e), and (f) show representative spectra from each batch for CaCO3, borax, and KHP, 

respectively 
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Figure 11 - Raman Raw Spectra. (a) calcium carbonate N=87; (b) borax N=52 and (c) KHP N=63. 

Subplots (d), (e), and (f) show representative spectra from each batch for CaCO3, borax, and KHP, 

respectively 

3.2. Spectral Pretreatment 

Combinations of various data pretreatment methods were investigated for both NIR and Raman 

spectra. Many spectra pretreatment combinations were investigated to provide a satisfactory 

level of group separation or discrimination between SRM‘s and other samples. For NIR spectra, 

the best results were obtained using first derivative (polynomial order: 2, filter width: 21) 

followed by Standard Normal Variate (SNV). As shown in Figure 10, the raw spectra of the 

different materials from each batch displayed broad bands and variability in shape, intensity, and 

baseline over the whole spectral range. This variability may be caused by uncontrollable physical 

effects such as non-homogeneous distribution of the particles, changes in refractive index, 

sample packing/density variability, and sample morphology. In order to minimize or eliminate 

unwanted variability, spectral pretreatment is necessary. The key is to minimize or eliminate 

variability unrelated to the key spectral features for classification because some spectral features 

related to physical properties are significant in differentiating compounds long with chemical 
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differences. Thus, moderate pretreatment is necessary. The key is to minimize or eliminate 

variability unrelated to the key spectral features for classification thereby differentiating between 

spectral features related to physical properties which are significant in differentiating compounds 

from chemical differences. To accomplish this objective, moderate pretreatment was selected. 

The first derivative was used to obtain more resolvable peaks and to minimize the baseline drift 

while SNV corrected for both additive and multiplicative effects present in the spectra.
9
 The 

crystalline forms as well as variations of optical path-length and the particle sizes of the sample 

can affect the NIR spectra. These effects this cannot only be overcome by a well-defined sample 

preparation procedure but also by applying mathematical pretreatments
11

 (Figure 12). 

Raman Spectra of each sample was pre-processed before calculating the PCA model. The raw 

spectra of all compounds and representative spectra from each batch are shown in Figure 11. The 

first derivative (polynomial order: 2, filter width: 21), normalizing (2-Norm, length = 1) and 

mean centering were applied to both calcium carbonate and KHP raw Raman spectra while 

baseline (Automatic Weighted Least Squares, order=2) followed by smoothing (polynomial 

order: 1, filter width: 15), SNV, and finally mean centering were applied to borax raw Raman 

spectra.   

Mean center is the last preprocessing technique applied in each combination before calculation to 

reduce data scatter for NIR and Raman data matrix. 

Generally, spectral differences are enhanced by the first derivative and the mean centering is 

applied to track changes in the distribution or to compare the distributions of different types of 

features as it is the average x and y. This combination of pre-processing diminishes any 

deviations during measurements such as small temperature variations and other sources of 

difference impacting the intensity of the peaks.
19

 As shown in Figure 12, Raman pre-processed 

spectral data provides more detailed information about the sample by resolving the previously 

overlapped bands and by minimizing the baseline drift in the raw spectra.
19
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Figure 12 - NIR preprocessed Spectra. (a) calcium carbonate; (b) borax and (c) KHP. Subplots (d), (e), 

and (f) show Raman preprocessed Spectra for CaCO3, borax, and KHP, respectively 

4. RESULTS AND DISCUSSION 

4.1. PCA and HCA 

4.1.1. Calcium carbonate 

The principal component analysis on the calcium carbonate NIR and Raman data matrix are 

presented in Figure 13. We observe six different ellipses when plotting the first two principal 

components of NIR data accounting for respectively 72 % and 19% of the total variance. Two 

overlapped ellipses correspond to NIST SRM‘s and one of the candidate materials (Sigma). 

Close to them falls another ellipse that corresponds to the Baker candidate material. Other groups 

are noticeably distinguishable from the SRM cluster. These outlier materials include the chalk, 

Home Science batch and the fishbone.  

Raman data was not collected for chalk samples because they were dark in color after the drying 

procedure. The PCA of the CaCO3 Raman samples is differentiated into three distinct groups 
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using PC1 (94%) and PC2 (6%). One group has the SRM batches along with all candidate 

materials, another corresponds to the natural batch ‗cuttlefish bone‘ and the third group includes 

the commercial batch ‗Home Science‘. 

Figure 14 shows the loadings plots of PC1 and PC2 for NIR and Raman data. Calcite is 

characterized by features at 5405, 5000, 4255 and 4000 cm
-1

 in NIR spectra.
20

 In our study, all 

features can be seen in the spectra of our dried SRM samples, Sigma and Baker batches as well.  

The interpretation of the loadings plot of Raman spectra provides further interpretation of the 

variables responsible for the obtained discrimination. The first PC mainly separates according 

the presence or the absence of calcite; which represent SRM, Baker and Sigma batches. Samples 

are negatively affected by the first PC due to presence of the calcite peak. The second PC is 

responsible for the separation according to the dolomite peak.  

We plotted representative raw Raman spectra among each batch against those of the SRM and 

the peaks of  calcite, dolomite and aragonite and vaterite were found to be  in good agreement 

with previous literature.
21,22

 As shown in Figure 15, both Baker and Sigma are characterized by 

the presence of calcite peak at 711 cm
-1 

in perfect agreement with the three batches of SRM. 

It was proven that Home Science batch is dolomite in nature when we plotted its spectrum 

against the spectra of SRM batches. Home science is characterized by the presence of dolomite 

peak at 725 cm
-1

. According to Kontoyannis
21

, aragonite is characterized with a peak at 700 cm
-1

. 

The spectrum of the cuttlefish bone indicates the presence of the aragonite peak at 704 cm
-1

.
22

 It 

is worth mentioning that the absence of vaterite peak at 750cm
-1

 proves that none of our samples 

is in this phase of crystallization.
21

 

One difference to notice is that the NIR method provides more information about the Baker 

batch as its ellipse in the score plot of NIR shows clear separation away from the ellipse of the 

SRM‘s and the Sigma batch. In contrast, the Baker fingerprint based PCA was not satisfactory in 

the score plot of Raman, in which the Baker ellipse is overlapping and misclassified along with 

the SRM‘s and Sigma ellipse. This illustrates the fact that NIR technique may be more preferable 

in the case of calcium carbonate. 
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The results of the hierarchical cluster analysis are presented in Figure 16 for both NIR and 

Raman data matrices.  The obtained pattern is the same separation obtained by the PCA where 

the Baker sample stands out as a separate group on the NIR while it shares some similarities with 

Sigma and SRM‘s batches on the Raman data. This confirms that NIR is the most useful 

technique in the case of calcium carbonate. 
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Figure 13 - PCA scores plots of calcium carbonate samples for (a) NIR and (b) Raman 
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Figure 14 - PCA loadings plots of calcium carbonate samples for (a) NIR and (b) Raman 
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Figure 15 - Raw Raman spectra of SRM batches versus (a) Baker and Sigma and (b) Home Science and Fishbone 
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Figure 16 - Dendrogram calculated with the PCA scores of calcium carbonate for (a) NIR and (b) Raman 
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4.1.2. Sodium Tetraborate Decahydrate (borax) 

The PCA scores biplots for NIR and Raman spectra for five different batches are shown in 

Figure 17. The first two PCs of each method accounted for over 80% of variability, represent an 

excellent summary variation between data sets. We observe five different ellipses when plotting 

the first two PCs, which account for respectively 72 % and 20% of the total variance in case of 

NIR data matrix and 97% and 1% for the Raman data. The ellipses are 95% confidence limits of 

each batch. 

Unexpectedly, the two ellipses representing the SRM‘s are not overlapping and show a clear 

distinction. Since both batches were previously approved by NIST and are already available in 

the market, we investigated the date of production of each batch to understand more about the 

stability of the pH reference material, borax. SRM Batch 1, shown as a red ellipse is SRM 187f 

and was produced in 2016 while the green ellipse is SRM 187e and was produced in 2004.  

Further interpretation of the PCA plot shows that the ellipse formed by commercial batch Home 

Science falls relatively close to that of SRM 187f in NIR and they are overlapping in case of 

Raman. Checking other clusters, we observe that the blue cluster corresponding to the candidate 

batch Merck falls near that of SRM 187e in both NIR and Raman data. The Merck batch was 

acquired in 2010. The negative control batch corresponding to the detergent falls in between both 

groups of old and newly produced batches. 

The visual examination of both SRM batches shows significant differences in the crystals size 

and texture as shown in Figure 18. SRM 187f is formed of large well-defined crystals while 

SRM 187e has a fine powdered texture.  

According to Naumann R et al.
23

, who studied the stability of the pH reference material borax 

SRM 187c versus a Merck batch, borax is not a stable substance. It is indicated that solid 

materials are stable as long as they are closed in their original containers, this guarantee a long 

shelf life as the containers are frequently opened to only withdraw the material. However, borax 

tends to lose some of its crystallization water, even when stored in its closed original container, 

to transform from the decahydrate into pentahydrate form which is more stable. Several factors 

control the rate of transformation of borax such as the storage period of material in the original 
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closed container (age of material), time of atmospheric exposure, relative humidity during 

subsequent exposures, and temperature. 

Further research exploration into the discrimination of the groups based on hydration was 

conducted by applying TGA to the samples to determine water content. 

The dendrograms of NIR and Raman data matrices are shown in Figure 19. The results of the 

classification are similar to the PCA analysis. All samples are correctly classified in the NIR 

dendrogram; we can observe five clear groups. Similar batches are close in distance where 

Merck is adjacent to SRM Batch 2 and Home Science is adjacent to SRM Batch 1. The 

Detergent falls between and shares some similarities with Home Science as indicated by the PCA 

as well. 

Raman dendrogram shows three well separated groups of which Merck, Detergent and SRM 

Batch 2 are clustered in one area. Home Science and SRM Batch 1 share several similarities. 

This discrimination reflects the conclusions obtained by the PCA as all samples were correctly 

classified. 
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Figure 17 - PCA scores plots of borax samples for (a) NIR and (b) Raman 
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 Figure 18 - SRM’s Samples. (a) SRM 187f; (b) SRM 187e 
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Figure 19 - Dendrogram calculated with the PCA scores of borax for (a) NIR and (b) Raman 
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4.1.3. Potassium Hydrogen Phthalate (KHP) 

Initially, NIR and Raman spectra were collected for three different pH standards, one acidimetric 

standard and one commercial batch to run the PCA. According to the certificate of analysis of 

the pH SRM series 185, this standard was prepared to ensure high purity and uniformity, but it is 

not as a pure substance. On the other hand, the primary acidimetric standard, SRM 84L, consists 

of a highly purified potassium hydrogen phthalate (KHP) as given in Appendix A. The primary 

acidimetric standard is intended to be used for acidimetric assays and not as a pH standard. The 

two SRMs were treated differently as stated in their certificates of analysis, where acidimetric 

standard should be ground and dried before use while the pH standard should only be dried. The 

drying step in both cases was carried at the same temperature. 

The results of the PCA performed on the NIR and Raman data matrix are presented in Figure 20. 

We observe two different groups when plotting the first two PCs of the NIR data, which account 

for respectively 65 % and 14% of the total variance. These groups correspond to the separation 

according to the purity level of the SRMs as well as the commercial batch. The first group 

involves the pH standards close to the Home Science batch, while the second group corresponds 

to the acidimetric standard. We observe high intra-variability among the samples of both pH 

SRMs and Home Science, which are dispersed over a wide area as compared to the ellipse 

formed by the acidimetric batch. The small cluster by the acidimetric standard proves that the 

purity and the homogeneity of the acidimetric SRM are high enough to ensure consistency 

among the samples withdrawn from different bottles. 

Although the Home Science batch falls close to the SRM batches on the NIR PCA, the PCA 

performed on the Raman data matrix shows higher bottle to bottle variability within each batch. 

The samples are dispersed in one somewhat continuous cluster over PC1 and PC2.   

Two different groups are observed when plotting the first three PCs of the Raman data matrix. 

The three PCs account for respectively 41%, 27% and 17% of the total variance (Figure 20b). 

The groups distinguish between the less homogenous SRM‘s and commercial (Home Science) 

batch and the ―purer‖ acidimetric SRM. 

To understand better, we studied the PCA of the SRM‘s samples where we ground two batches 

of pH SRM versus one batch of acidimetric standard in two different forms. We used a part of 
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the material of the acidimetric standard as-is without any further treatment and we ground the 

other half. The discrimination that is displayed in Figure 21 shows that the ellipses formed by the 

ground pH standards are smaller in size as compared to those obtained from not ground samples. 

Unexpectedly, they look similar to the ground acidimetric samples while the not ground 

acidimetric standard is characterized by high bottle to bottle variability forming a relatively large 

ellipse. This indicates that the grinding step is critical as it releases the occluded water within the 

material which is evaporated later in the drying step. 

To test the fact that grinding step is a limiting factor in the discrimination, we studied the 

acidimetric standard in both forms; ground and not ground. The obtained PCA for both NIR and 

Raman data matrix is given in Figure 22. Both forms are perfectly separated when plotting the 

first two PCs of each data matrix, where the ellipse of ground material is relatively small to that 

of the untreated material. We conclude that the entrapped water within the material is the 

dominant impurity and the primary factor responsible for the obtained discrimination between 

the pH and acidimetric standard.  

The results of the hierarchical clusters analysis are shown in Figure 23. The dendrograms for 

both NIR and Raman matrices show no patterns for pH standards while the acidimetric standard, 

which has a highly purified crystalline form, has a clear distinct separation. The classification is 

similar to the PCA analysis.  
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Figure 20 - PCA scores plots of KHP samples for (a) NIR and (b) Raman 
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Figure 21 - PCA scores plots of pH standards versus acidimetric standard for (a) NIR and (b) Raman 

 

 

 

 

 

 

 

 

 

 

Figure 22 - PCA scores plots of ground / not ground acidimetric standard for (a) NIR and (b) Raman 
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Figure 23 - Dendrogram calculated with the PCA scores of KHP for (a) NIR and (b) Raman 
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4.2. Reference electrochemical pH method 

Each potential reading was recorded to 0.01 mV (corresponding to roughly 0.0002 pH units) and 

the pH electrode response was measured by the difference in pH (∆pH) obtained from the mean 

of the two bracketing of the second standard buffer solutions (calibrant) measured immediately 

preceding and following the sample. 

The change in ∆pH, ∆pHi, between the standard reference calibrant and each sample was 

calculated by the following equation: 

     (   
        

 
)                             (Equation 9) 

where EA and EA′ are the potentials recorded for the bracketing calibrant: A (before the sample) 

and A′ (after the sample). Ei is the potential recorded for the sample and K` is the pH electrode 

response factor (slope). 

4.2.1. Calcium carbonate 

The potential readings of pH electrode were determined by using two freshly prepared standard 

buffers SRM 187f (sodium tetraborate decahydrate) and SRM 2193a (calcium carbonate used as 

saturated Ca(OH)2 solution). To determine the practical pH electrode response factor (k′) while 

minimizing any memory effects on the liquid junction potential within the set of calcium 

hydroxide measurements, the SRM 187f borate buffer was measured at the start and end of each 

run and the second calibrant and control SRM 2193a was measured before and after each sample 

measurement as shown in Table 4. 

Table 4 shows the calculated ΔpHi for the duplicate samples run on two different days. The 

value of ΔpHi of each sample for the candidate batches from Baker and Sigma as well as the 

commercial Home Science batch and Chalk samples functioning as negative control samples is 

used for acceptance assessment. In the same table, we compared our results to those results of 

homogeneity assessment for SRM 2193b provided by NIST Statistical Engineering Division 

analysis.
24

 The homogeneity assessment for SRM 2193b was carried out on 12 bottles where the 

mean and the standard deviation of all samples were given.  

Comparing the results of our samples to the mean and the standard deviation given by the SRM 
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2193b, we will conclude that all our samples are not within the accepted threshold except for the 

candidate batch of sigma (average ∆pHi of the two days = 0.0007). Therefore, not all of our 

samples should be accepted as pH buffer materials. 

Both brands of the negative control batches (Chalk) are rejected as their ∆pHi is too high 

compared to that of the SRM. Unsurprisingly, the ∆pHi of the commercial batch Home Science 

is not within the accepted range as visually appeared to be a lower quality material during the 

buffer preparation process. The color of the calcium hydroxide Ca(OH)2 suspension was a 

blueish gray instead of white and the boiling and filtration steps took much longer time relatively 

to the other batches. This can be explained by the fact that dolomite crystals are less soluble than 

calcite crystals. 

 The Baker batch is on the border of the acceptance threshold and it shows inconsistent ∆pHi 

from day to day. This means if a larger batch was tested, ∆pHi may fall within the accepted range 

as the homogeneity will be increased. 

 

 

 

 

 

 

 

 

 

 

 



  

46 
 

 Table 5 - Acceptance testing for calcium carbonate 

 

 

  

 

 

 

 

t /°C pH(S) t /°C pH(S)

15 9.288 15 12.83

25 9.1950 25 12.469

dpH/dT -0.0093 pH per °C dpH/dT -0.0361 pH per °C

19.5 9.24615 19.5 12.66755

SRM 187f temp coeff SRM 2193a temp coeff

DpH(X) from DE  data

Run 1 pH(S) Run 1 E /mV dE /dpH Run 1 T  Sample DpH(X) DmV(X)

9.246 calibration 12.574 -139.44 -336.13 -59.110 22.1 22.1

Baker -336.39 -336.08 -336.40 101.80% 22.1 22.1 22.1 Baker -0.0053 0.01

Sigma -336.34 -336.32 -336.45 22.1 22.1 22.1 Sigma -0.0013 0.11

Home Science -336.15 -335.45 -336.13 22.1 22.1 22.1 Home Science -0.0117 -0.02

Chalk (Tiza) -335.44 -221.85 -335.43 22.1 22.1 22.1 Chalk (Tiza) -1.9216 -0.01

Chalk (Up) -335.42 -283.65 -335.51 22.1 22.1 22.1 Chalk (Up) -0.8766 0.09

101.44%

12.574 calibration check 9.246 -335.48 -139.48 -58.902 22.1 22.1

Run 2 pH(S) Run 2 E /mV dE /dpH Run 2 T  Sample DpH(X) DmV(X)

9.246 calibration 12.668 -140.28 -334.24 -56.690 19.5 19.5

Baker -334.36 -335.41 -335.43 97.63% 19.5 19.5 19.5 Baker 0.0087 1.07

Sigma -335.29 -335.70 -335.82 19.5 19.5 19.5 Sigma 0.0025 0.53

Home Science -335.83 -336.70 -335.25 19.5 19.5 19.5 Home Science 0.0196 -0.58

Chalk (Tiza) -335.88 -220.60 -335.13 19.5 19.5 19.5 Chalk (Tiza) -1.9439 -0.75

Chalk (Up) -335.39 -282.28 -335.23 19.5 19.5 19.5 Chalk (Up) -0.8971 -0.16

104.47%

12.668 calibration check 9.428 -335.44 -138.89 -60.663 19.5 19.5
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Table 6 - Results of acceptance testing for our samples of calcium carbonate versus the results of homogeneity assessment for 

SRM 2193b provided by NIST Statistical Engineering Division analysis 

 

 

 

 

 

 

 

Samples SRM issue N Mean of  

ΔpH (S) 

Standard deviation 

s[ΔpH(S)] 

Range 

SRM 2193
24

 b 12 -0.0002 0.0011 - 

Baker - 2 0.0017 - 0.014 

Sigma - 2 0.0006 - 0.0038 

Home Science - 2 0.004 - 0.0313 

Chalk Brand 1 

(Tiza) 

 

- 

2 -1.9328 - 0.0223 

Chalk Brand 2 

(Tiza) 

 

- 

2 -0.8869 - 0.0206 
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4.2.2. Sodium Tetraborate Decahydrate (borax) 

The potential readings of pH electrode were determined by using two freshly prepared standard 

buffers SRM 187f (borax) and SRM 2193b (calcium carbonate used as saturated Ca(OH)2 

solution). The SRM 2193a was measured at the start and end of each run and the calibrant SRM 

187f borate buffer was measured before and after each sample measurement as shown in Table 6. 

Two buffer solutions were prepared and each solution was measured in duplicate runs for each 

batch. 

According to the rule of the dilution value of the reference material, the pH values of the 

prepared solutions using the older issue (SRM 187e) should decrease since the batch was 

transformed into pentahydrate and lost 5 molecules of water. In contrast to this expectation, the 

experiments carried out by Naumann R et al. for the re-standardization of new Merck reference 

material sodium tetraborate decahydrate with respect to an approximately 5 years old NIST SRM 

187c, proved that pH value increases with increasing loss of water. They estimated ΔpH to be -

0.003 if a linear dependence of pH on concentration is assumed.
23

 

In other words, the dehydration process means increasing the concentration of tetraborate if the 

same amount of material is dissolved and therefore, decreasing the pH value of the prepared 

solution but it seems that the reaction is more complex since the observed ΔpH = +0.02 with the 

transformation of decahydrate to pentahydrate. This observed ΔpH is about eight times the 

predictable change in the contrary direction, which supports the fact that the concentration 

differences, represented by the decahydrate transformation into pentahydrate, is not the only and 

the major cause of the observed pH changes.
23

  

The average ΔpH of the two buffer solutions of SRM 187e included in this study is 0.0094 with 

standard deviation 0.0014 (see table 7). Those pH values are after 15 years of the production date 

(2004) with countless times of exposing the material to the atmosphere while the salt is 

withdrawn to prepare the solutions. On the other hand, the ΔpH of the freshly produced SRM 

187e is 0.0023 with standard deviation 0.0012 according to Pratt who studied the within-

laboratory variation of the certified pH value of the NIST pH SRM series.
25

 

Comparing the value of the newly produced SRM 187e and that of the same lot after 15 years, 

we notice that ΔpH increased about +0.0071 which is less than the value stated in the study by 
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Naumann R et al. (ΔpH = +0.02) while the standard deviation in both cases is nearly the same. 

This confirms that the transformation of decahydrate into pentahydrate is not the major factor in 

increasing the ΔpH since of notice that ΔpH started to decrease again after more than 10 years 

over the storing period stated in the study by Naumann R et al.(5 years). 

The Merck batch which was initially decahydrate in nature and then was converted into 

pentahydrate since it was produced in 2010 and subsequently exposed to the atmosphere for 

countless number of times yielded a ΔpH of 0.0178 with a standard deviation of 0.0002. This 

means that ΔpH was increased and therefore it is confirmed that ΔpH starts to decrease again 

after a certain number of years obeying the linear dependence of pH on concentration. 

The ΔpH of two solutions of Home Science is -0.001 and standard deviation = 0.0005 as given in 

Table 7. As expected, those values are nearly the same as those obtained from the SRM 187b, 

187c and 187e with ΔpH = -0.0003, -0.0014 and -0.0008, respectively, and standard deviation = 

0.0008, 0.0021 and 0.0006, respectively.
25

 Based on the results and knowledge of the material 

purchases, the series SRM lot 187 and Home Science are both decahydrate borates. 

Although the detergent is pentahydrate borate, its ΔpH was inconsistent among the two 

preparations (average of ΔpH of the two runs of each preparation were =0.0017 and 0.1436). 

This was expected as it is a commercial batch and it includes a lot of unknown impurities. 
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Table 7 - Acceptance testing for borax 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

t /°C pH(S) t /°C pH(S)

15 12.83 15 9.288

25 12.4690 25 9.195

dpH/dT -0.0361 pH per °C dpH/dT -0.0093 pH per °C

19.5 12.66755 19.5 9.24615

SRM 187f temp coeff

DpH(X) from DE  data

SRM 2193b temp coeff

Run 1 pH(S) Run 1 E /mV dE /dpH Run 1 T  Sample DpH(X) DmV(X)

12.668 calibration 9.246 -332.05 -140.12 -56.096 19.5 19.5

187e (1,1) -140.23 -140.68 -140.20 96.61% 19.5 19.5 19.5 187e (1,1) 0.0084 -0.03

187e (1,2) -140.17 -140.66 -140.19 19.6 19.5 19.6 187e (1,2) 0.0085 0.02

187e (2,1) -140.58 -141.08 -140.50 19.6 19.5 19.6 187e (2,1) 0.0096 -0.08

187e (2,2) -140.44 -141.23 -140.74 19.6 19.5 19.6 187e (2,2) 0.0114 0.30

Merck (1,1) -140.70 -141.84 -140.80 19.6 19.5 19.6 Merck (1,1) 0.0195 0.10

Merck (1,2) -140.44 -141.58 -140.93 19.6 19.5 19.6 Merck (1,2) 0.0159 0.49

Merck (2,1) -140.67 -141.67 -140.52 19.6 19.5 19.7 Merck (2,1) 0.0191 -0.15

Merck (2,2) -140.72 -141.56 -140.51 98.34% 19.6 19.5 19.7 Merck (2,2) 0.0168 -0.21

9.244 calibration check 12.668 -140.33 -335.81 -57.103 19.8 19.8

Run 2 pH(S) Run 2 E /mV dE /dpH Run 2 T Sample DpH(X) DmV(X)

12.574 calibration 9.222 -334.46 -141.67 -57.519 22.1 22.1

Home Science (1,1) -141.34 -141.37 -141.39 99.06% 22.1 22.1 22.1 Home Science (1,1) 0.0001 0.05

HomeScience (1,2) -141.38 -141.23 -141.405 22.1 22.1 22.1 HomeScience (1,2) -0.0028 0.03

Home Science (2,1) -141.57 -141.26 -141.5 22.1 22.1 22.1 Home Science (2,1) -0.0048 -0.07

Home Science (2,2) -141.82 -141.72 -141.22 22.1 22.1 22.1 Home Science (2,2) 0.0035 -0.60

Detergent (1,1) -141.32 -141.68 -141.744 22.1 22.1 22.1 Detergent (1,1) 0.0025 0.42

Detergent (1,2) -141.54 -141.65 -141.67 22.1 22.1 22.1 Detergent (1,2) 0.0009 0.13

Detergent (2,1) -141.56 -149.90 -141.71 22.1 22.1 22.1 Detergent (2,1) 0.1437 0.15

Detergent (2,2) -141.53 -149.79 -141.54 99.52% 22.1 22.1 22.1 Detergent (2,2) 0.1435 0.01

9.246 calibration check 12.574 -141.51 -333.811 -57.791 22.1 22.1
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Table 8 - Results of acceptance testing for our samples of borax versus the results of homogeneity assessment for SRM 187 series 

provided by Pratt  

 

 

 

 

 

 

 

 

 

 

 

  

 

 

Samples SRM issue n Mean of  

ΔpH (S) 

Standard deviation 

s[ΔpH(S)] 

 

SRM 187  

(by Pratt
25

) 

b 11 -0.0003 0.0008 

c 10 -0.0014 0.0021 

d 10 -0.0008 0.0006 

e 11 0.0023 0.0012 

SRM 187 e 4 0.0094 0.0014 

Merck - 4 0.0178 0.0002 

Home Science - 4 -0.001 0.0005 

Detergent - 4 0.0727 0.1003 
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4.2.3. Potassium hydrogen phthalate (KHP) 

The potential readings of pH electrode were determined by using two freshly prepared standard 

buffers SRM 189c (potassium tetroxalate dihydrate) and SRM 185i (potassium hydrogen 

phthalate). The SRM 189c was measured at the start and end of each run and the calibrant SRM 

185i borate buffer was measured before and after each sample measurement as shown in Table 8. 

We recorded pH measurements for the acidimetric SRM 84L in both ground and not ground 

form along with the pH SRM 185i in both forms as well to test the impact of the grinding step. 

We tested the commercial Home Science batch to compare its ΔpH to that of the pH SRM. 

According to Pratt
25

, The ΔpH of SRM 185 series d, e, f, g, h and i are respectively equal  

0.0014, -0.0025, -0.0007, 0.0007, 0.0018 and -0.0005. The ΔpH values of our samples are within 

the accepted range as given in Table 9. The absence of grinding step in the case of the 

acidimetric standard gives respectively average ΔpH = 0.0009 for the two prepared solutions 

while it gives average ΔpH = 0.0008 in case of the pH SRM. On the other hand, the ground form 

of pH SRM gives mean ΔpH = 0.0034 for the two prepared solutions.  

Home Science batch ΔpH is similar to that of the SRM 84L (not ground form) with ΔpH equal to 

-0.0002. This can be explained that grinding of the Home Science samples increased the exposed 

surface area during the drying step and this allows the samples to give a similar ΔpH as the not 

ground acidimetric SRM. 

As given in Table 9, there is no difference when we compare the standard deviation of the not 

ground acidimetric SRM (0.0016) and the ground pH SRM (0.0015). Those values are within the 

range of standard deviation for the certified SRM as stated by Pratt.
25

 

It is noticeable that the ground pH standard gives a higher ΔpH than the untreated sample of the 

same standard. This shows the impact of grinding step on releasing the trapped water within the 

material and therefore on increasing the homogeneity within the same bottle and from bottle to 

bottle. 
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Table 9 - Acceptance testing for potassium hydrogen phthalate 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

t /°C pH(S) t /°C pH(S)

15 1.669 15 3.999

25 1.6770 25 4.005

dpH/dT 0.0008 pH per °C dpH/dT 0.0006 pH per °C

19.1 1.67228 19.1 4.00146

SRM 185i temp coeff

DpH(X) from DE  data

SRM 189c temp coeff

Run 1 pH(S) Run 1 E /mV dE /dpH Run 1 T Sample DpH(X) DmV(X)

1.672 calibration 4.001 297.31 160.37 -58.796 19 19

84L (Sample 1,1 NOT Ground) 160.13 159.87 159.86 101.39% 19.2 19.2 19.2 84L (Sample 1,1 NOT Ground) 0.0022 0.27

84L (Sample 1,2 NOT Ground) 159.75 159.47 159.43 19.3 19.3 19.3 84L (Sample 1,2 NOT Ground) 0.0020 0.32

84L (Sample 2,1 NOT Ground) 159.46 159.07 159.14 19.3 19.3 19.3 84L (Sample 2,1 NOT Ground) 0.0039 0.32

84L (Sample 2,2 NOT Ground) 159.23 158.86 157.96 19.3 19.3 19.3 84L (Sample 2,2 NOT Ground) -0.0044 1.27

Home Science (Sample 1,1) 158.77 158.71 158.58 19.3 19.3 19.3 Home Science (Sample 1,1) -0.0006 0.20

Home Science (Sample 1,2) 158.72 158.63 158.56 100.88% 19.3 19.3 19.3 Home Science (Sample 1,2) 0.0002 0.16

4.002 calibration check 1.672 158.64 294.91 -58.501 19.30 19.3

Run 2 pH(S) Run 2 E /mV dE /dpH Run 2 T Sample DpH(X) DmV(X)

1.672 calibration 4.002 294.77 158.908 -58.331 19.3 19.3

pH Std (Comp Sample 1,1 NOT Ground) 158.65 158.56 158.48 100.59% 19.3 19.3 19.3 pH Std (Comp Sample 1,1 NOT Ground) 0.0001 0.18

   pH Std (Comp Sample 1,2 NOT Ground) 158.66 158.46 158.433 19.3 19.3 19.3    pH Std (Comp Sample 1,2 NOT Ground) 0.0015 0.22

pH Std (Comp Sample 1,1 Ground) 158.61 158.16 158.64 19.3 19.3 19.3 pH Std (Comp Sample 1,1 Ground) 0.0080 -0.03

pH Std (Comp Sample 1,2 Ground) 158.63 158.28 158.26 19.3 19.3 19.3 pH Std (Comp Sample 1,2 Ground) 0.0028 0.36

pH Std (Comp Sample 2,1 Ground) 158.67 158.24 158.364 19.3 19.3 19.3 pH Std (Comp Sample 2,1 Ground) 0.0047 0.31

pH Std (Comp Sample 2,2 Ground) 158.60 158.45 158.50 101.14% 19.3 19.3 19.3 pH Std (Comp Sample 2,2 Ground) 0.0018 0.10

4.001 calibration check 1.672 158.52 295.115 -58.647 19.30 19.3
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Table 10 - Results of acceptance testing for our samples of KHP versus the results of homogeneity assessment for SRM 185 series 

provided by Pratt  

 

 

 

 

 

 

 

 

 

Samples SRM issue N Mean of ΔpH (S) standard deviation, 

s[ΔpH(S)] 

Range 

 

 

 SRM 185 

(by Pratt
25

) 

d 10 0.0014 0.0008  

e 11 -0.0025 0.0011  

f 11 -0.0007 0.0005  

g 11 0.0007 0.0017 - 

h 11 0.0018 0.0004  

i 11 -0.0005 0.0003  

SRM 84 (Not ground) L 4 0.0009 0.0016 - 

Home Science - 2 -0.0002 - 0.0008 

pH SRM (Not ground) Composite sample 2 0.0008 - 0.0013 

pH SRM (Ground) Composite sample 4 0.0043 0.0015 - 
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4.3. X-ray powder diffraction (XRD) for Calcium Carbonate 

The separation by the PCA could be explained by the results obtained from XRD patterns as 

these groups correspond to the separation according to the crystal phase of calcium carbonate. 

Vaterite, aragonite and calcite are the three phases of crystallization of anhydrous calcium 

carbonate. Vaterite and aragonite are precursor phases for calcite as the transformation is thermal 

dependent taking into consideration that calcite is the most thermodynamically stable form and 

aragonite is the least stable polymorph.
21,26

  

The X-ray spectra of our samples are shown in Figure 24. In the case of SRM 915b and 2193b as 

well as candidate batches of Sigma and Baker, the calcite phase of CaCO3 perfectly describes 

these diffraction patterns. The Home Science is structured in the dolomite phase, CaMg(CO3)2 

stoichiometry. Finally, Fish Bone sample is structured in the aragonite phase. Another phase is 

also present in the Fish Bone sample but we could not assign it to any simple Ca-C-O structure. 

Most probably this phase is an oxide with a mixture of many elements (Ca, Al, Fe, Ti,…etc.) in 

its stoichiometry. 

According to Ni and Ratner
26

, the 2θ peak positions can be used as fingerprint to identify crystal 

phases where calcite is characterized by a sharp intense peak at 29 which is absent in case of 

both aragonite and vaterite spectra. Our results are in good agreement with the literature because 

SRM batches showed the calcite peak as expected. We assumed that the accepted calcium 

carbonate candidate pH buffer materials are thermo-stable and this is can only be applied to the 

calcite crystal form. Group 1 is negatively on PC1 and positively on PC2 corresponds to the 

samples having calcite crystals (SRM, Sigma and Baker batches) while group 2 corresponds to 

the samples having dolomite crystals (Home Science). According to J. Perić et al.
27

 the thermal 

transformation of vaterite directly and irreversibly into calcite happens upon heating above 730 k 

(387.778 ᵒC). We assume this may be what happened to the Fishbone which is natural vaterite, 

during the sample preparation which includes drying at 200 °C to 210 °C for 4 h. The 

transformation process into calcite started but since the required temperature was not reached, 

the vaterite did not reach the stable calcite form. The Fishbone batch is therefore a true negative 

control in that it contains a complex crystalline and elemental composition with an oxide phase 

made of a mixture of several elements (Ca, Al, Fe, Ti,…etc.) in its stoichiometry. 
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Figure 24 – XRD pattern for calcium carbonate samples  
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4.4. Thermogravimetric analysis (TGA) of Borax 

As it was hypothesized that the separation of borax samples by PCA is due to the different levels 

of hydration of each sample, TGA was used to study the hydration of sodium tetraborate 

samples. The moisture loss was determined with the TGA results by measuring the mass loss of 

the sample in the full TGA curve between 25 ºC and 900 ºC. 

The thermal decomposition at high temperature leads to an internal rearrangement forming new 

crystallization patterns. In both sodium tetraborate decahydrate and pentahydrate forms, two 

water molecules are involved in the ionic structure of the borate ion as hydroxyl groups. 

Removal of those water molecules is relatively more difficult whereas the removal of the 

remaining water molecules which are crystallization water molecules.
28

 TGA curves for borax 

samples are shown in Figure 25. All calculations are detailed in Appendix B. 

The dehydration of SRM 187f was investigated by TGA technique.  The dehydration occurs in 

two steps. It was shown that the first curve is related to the removal of the crystallization water in 

the temperature range between 82.58 ºC and 154.12 ºC followed by the second curve indicating 

the complete removal of the remaining water at 500 ºC. Ten molecules of water were released 

from borax SRM 187f. 

The TGA result for Home Science batch released approximately nine molecules of water, which 

is marked by an initial curve of water loss followed by a second curve, that we believe, is related 

to impurities within the material as we know it is a commercial salt. The last curve indicates the 

complete loss of water at 500 ºC. 

There is an expected difference in the water content of the SRM 187f and Home Science batch 

versus SRM 187e and Merck batch. The gradual change from the decahydrate form to the 

pentahydrate form is complete 14 months later to the first exposure of the decahydrate to the 

atmosphere
23

. That is exactly what happened in the case of SRM 187e as well as Merck batch. 

Their weight loss decreases with time in accordance with the production year to reach values of 

30.93 wt% for SRM 187e (produced in 2004) and 26.37 wt% for Merck (produced in 2010), 

which is close to the water content of the pentahydrate of 30.92 wt%.  
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The recently produced and opened samples represented by SRM 187f and Home science consist 

of nearly 100% sodium tetraborate decahydrate according to the practical water loss of 46.65 

wt% and 44.2 wt%, respectively and with a theoretical water content of 47.23 wt% for SRM 

187f and of 44.62 wt% for Home Science batch. 

On the other hand, SRM 187e and Merck batch consist of nearly 100% sodium tetraborate 

pentahydrate according to the practical water loss of 30.23 wt% and 27.79 wt%, respectively and 

with the loss of approximately five or four molecules of water from SRM 187e and Merck, 

respectively. 

The detergent batch lost almost five molecules of water (see appendix B), although it was bought 

recently but this proves that the decomposition rate of hydrates does not depend only on the 

frequency with which the material is exposed to the atmosphere but also on the storage time 

before the opening of the closed container. 

The uncertainty of the raw masses was assigned a simple rectangular distribution of 0.0288 mg 

for the TGA mass loss and 0.0001 mg for the initial masses of the materials measured on the 

analytical balance. 
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Figure 25– TGA curve for borax samples for (a) SRM 187f; (b) Home Science; (c) SRM 187e and (d) Merck 
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5. CONCLUSION 

This work presents a study of multivariate statistical analysis of NIR and Raman spectra as a 

powerful tool for quality control of pH raw materials. Comparison of the results of PCA obtained 

by the NIR and Raman processed spectra to those obtained by the reference electrochemical pH 

method, demonstrated the ability to distinguish between NIST pH reference materials and other 

potential candidate materials. In a regulatory setting, having a non-destructive, fast and low cost 

methodology to ensure the identity of the raw material will help to ensure the quality of the 

candidate materials and provide evidence that approved candidate materials will supply pH 

values within the accepted threshold of the SRM‘s series. The power of these techniques could 

be used to streamline the production the pH buffer materials. 

A non-destructive classification analysis for assessing the quality of calcium carbonate samples 

was carried out by NIR and Raman techniques. However, NIR could detect minor differences 

which were not rejected by the reference electrochemical method. For instance, Baker samples 

were overlapped with the SRM‘s ellipse on the PCA of Raman but they fall outside it on that of 

NIR. It was shown that the batch is on the margin of the acceptable limit according to the 

reference method.  By applying XRD, it was shown that the difference in the crystal arrangement 

of the calcium carbonate is responsible for the discrimination of the batches. 

NIR and Raman proved to be of similar discriminating power for the sodium tetraborate 

decahydrate (borax) samples. Five different ellipses representing five different batches were 

identified when plotting the first two PCs of both data matrices. Further studies on the 

discrimination of borate samples with the help of TGA represent an efficient technique to 

distinguish between different samples based on their hydration level.  

The separation between the batches of potassium hydrogen phthalate (KHP) was based on the 

grinding step performed before the collection of the spectra. NIR and Raman techniques are both 

powerful to provide discrimination wherever water is considered to be the dominant impurity 

within the samples. Both techniques represent a sensitive and an efficient way to distinguish 

between the acidimetric standards and the pH standard of potential lesser purity. 
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It can be concluded that the proposed methodology for analysis of the NIR and Raman spectra 

implementing chemometrics tools allows a quick discrimination of the samples comparable to 

the usual reference electrochemical pH method in case of calcium carbonate. This illustrates the 

fact that non-destructive, fast and low cost techniques such as NIR and Raman techniques 

combined with chemometrics tools could streamline the acceptance process of calcium carbonate 

pH reference materials. 

This may not be the same in case of borax since two separate ellipses were identified for NIST 

SRM‘s while negative controls could be found in the space between the two accepted SRMs. 

Hence, it was not possible to identify one clear region for the acceptance of candidate SRM.  

NIR and Raman techniques do not provide enough information related to the differences among 

the KHP batches. This does not eliminate the possibility of applying the proposed method to the 

quality control of candidate materials; because the NIST reference method was also unable to 

distinguish negative controls from SRMs. Nuclear magnetic resonance (NMR) spectroscopy may 

be helpful for further investigations. 
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APPENDIX A 



SRM 2193a Page 1 of 4 

National Institute of Standards & Technology 
 

Certificate of Analysis 
 

Standard Reference Material 2193a 
 

Calcium Carbonate pH Standard 
[used as saturated Ca(OH)2 solution] 

 
This Standard Reference Material (SRM) is intended for use in preparing solutions for calibrating electrodes for pH 
measuring systems at pH values above 11.0.  This lot of calcium carbonate (CaCO3) was selected for its low level of 
alkali metal impurities.  However, this SRM is certified ONLY as a pH standard, NOT as a pure substance.  A unit of 
SRM 2193a consists of 30 g of CaCO3. 
 
Certified Values and Uncertainties:  The certified standard pH, pH(S), values provided in Table 1 correspond to 
log (1/aH), where aH is the conventional activity of the hydrogen (hydronium) ion referred to the standard state 
(p° = 1 atm = 1.013 25 × 105 Pa) on the scale of molality.  The values were derived from emf measurements of cells 
without liquid junction by the primary measurement method [1,2].  NOTE:  These certified values apply ONLY to 
SRM 2193a.  Minor variations of pH(S) values (of the order of 0.01 units) may be expected to occur between different 
lots of this SRM. 
 
The expanded uncertainty in the certified value, U, is calculated as U = kuc(y), where uc(y) is the “combined standard 
uncertainty” calculated according to the ISO/JCGM and NIST Guides [3].  The value of uc(y) is intended to represent 
the combined effect of the following uncertainty components associated with the primary measurement method and 
material homogeneity: curve-fit; standard electrode potentials, Eo; material homogeneity; molality of HCl, bHCl, used 
for determining Eo; measured cell potentials; correction to the standard pressure for H2 gas; mean activity coefficient 
of HCl at bHCl; gas constant; temperature; Faraday constant; the molality of NaCl; and uncertainty [4,5] of the 
conventional calculation of log γC1 (Bates-Guggenheim convention [6]).  The value of uc(y) has been multiplied by k, 
obtained by the Student’s t-distribution for effective degrees of freedom at the given temperature and a 
95 % confidence level.  A NIST certified value is a value for which NIST has the highest confidence in its accuracy 
in that all known or suspected sources of bias have been investigated or taken into account [7].  The measurand is the 
certified pH, pH(S), values listed in Table 1 as a function of temperature.  The certified value is traceable to NIST’s 
primary measurement of pH. 
 
Expiration of Certification:  The certification of SRM 2193a is valid, within the measurement uncertainties specified, 
until 01 July 2020, provided the SRM is handled and stored in accordance with the instructions given in this certificate 
(see “Instructions for Use”).  The certification is nullified if the SRM is damaged, contaminated, or otherwise. 
 
Maintenance of SRM Certification:  NIST will monitor this SRM over the period of its certification.  If substantive 
technical changes occur that affect the certification before the expiration of this certificate, NIST will notify the 
purchaser.  Registration (see attached sheet or register online) will facilitate notification. 
 
The experimental work leading to the certification of this material was performed by K.W. Pratt of the NIST Chemical 
Sciences Division. 
 
Statistical consultation was provided by W.F. Guthrie of the NIST Statistical Engineering Division. 
 
Support aspects involved with the issuance of this SRM were coordinated through the NIST Office of Reference 
Materials. 

 

 Carlos A. Gonzalez, Chief 
 Chemical Sciences Division 
 
Gaithersburg, MD 20899 Robert L. Watters, Jr., Director 
Certificate Issue Date:  30 September 2015 Office of Reference Materials 
Certificate Revision History on Last Page 
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Table l.  Certified pH(S) Values and Expanded Uncertainties as a Function of Temperature 
 
Before use for pH calibrations, a freshly filtered, saturated (at 25 °C) solution of Ca(OH)2 must be prepared from 
SRM 2193a as described in the “Instructions for Use” section of this certificate.  The certified pH(S) and U of this solution 
as a function of temperature are given below. 
 

t/°C pH(S) uc(measurement)(a) uc(y)(b) k U(b) 
5 13.232 0.0030 0.0058 2.0 0.011 

10 13.026 0.0025 0.0056 2.0 0.011 

15 12.830 0.0025 0.0056 2.0 0.011 

20 12.645 0.0024 0.0056 2.0 0.011 

25 12.469 0.0024 0.0055 2.0 0.011 

30 12.303 0.0071 0.0087 2.0 0.017 

35 12.145 0.0071 0.0087 2.0 0.017 

37 12.084 0.0071 0.0087 2.0 0.017 

40 11.995 0.0071 0.0087 2.0 0.017 

45 11.853 0.0072 0.0087 2.0 0.017 

50 11.717 0.0074 0.0089 2.0 0.017 
 
(a)  uc(measurement) includes components associated with the measurement method and material homogeneity, but does not 

include the uncertainty of the Bates-Guggenheim convention (0.0050) [4,5]. 
(b)  uc(y) includes uc(measurement) combined with u(Bates-Guggenheim convention) = 0.0050 [4,5]. 
 
Reference Values:  To attain traceability to the NIST reference pH(S) values for SRM 2193a when traceability to the 
SI is not necessary, the uncertainty of the Bates-Guggenheim convention is excluded from the uncertainty calculation.  
Each reference value includes the respective pH(S) value in Table 1 and its corresponding expanded uncertainty, UR: 
 

UR  =  kRuc (measurement) 
 
where kR is the coverage factor for UR.  The value of kR = 2.0 at all temperatures.  A NIST reference value is a 
noncertified value that is the best estimate of the true value; however, the values do not meet NIST criteria for 
certification and are provided with associated uncertainties that may not include all sources of uncertainty [7]. 
 
NOTICE AND WARNINGS TO USERS(1) 
 
Source of Material:  The calcium carbonate (CaCO3) was obtained from a commercial company.  This material 
conforms to the specifications of the American Chemical Society for “calcium carbonate, low in alkalies” [8]. 
 
Storage:  SRM 2193a is stable when stored in its original container, with the cap tightly closed, in a dry environment, 
and under normal laboratory temperatures.  The saturated solution of Ca(OH)2, prepared as described below, should 
be freshly filtered before use in pH calibrations. 
 
INSTRUCTIONS FOR USE 
 
Preparation of Carbon Dioxide-Free Water:  Carbon dioxide-free water must be used for making the solutions.  This 
water must be prepared either by (1) boiling a good grade of distilled water (conductivity < 2 µS/cm) for 10 min and 
guarding it with a soda-lime tube while cooling or (2) dispensing water directly from a deionization-based point-of-use 
system into the vessel used to prepare the buffer solutions (resistivity > 17 MΩ·cm). 
 

                                                 
(1) Certain commercial instruments, materials, or processes are identified in this report to adequately specify the experimental 

procedure.  Such identification does not imply recommendation or endorsement by the National Institute of Standards and 
Technology, nor does it imply that the instruments, materials, or processes identified are necessarily the best available for the 
purpose. 
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Preparation and Use of the Saturated Ca(OH)2 Solution:  Put 7.5 g SRM 2193a into a platinum or fused silica 
(Vycor®) crucible or dish, heat slowly in a muffle furnace to 950 °C to 1000 °C and ignite for 1 h at this temperature.  
Immediately transfer the product (CaO) to a dessicator and allow to cool.  After cooling, gently crush any lumps and add 
slowly to 100 mL carbon dioxide-free water while stirring.  Heat the resulting Ca(OH)2 suspension to boiling for 
15 minutes, cool, and filter on a sintered-glass funnel of medium porosity.  Dry the resulting solid Ca(OH)2 in an oven 
for 2 h at 110 °C and crush in a mortar and pestle to a fine powder.  Put the obtained Ca(OH)2 (approximately 5 g) into a 
1 L plastic bottle, add approximately 1 kg carbon dioxide-free water and shake the bottle periodically (nominally every 
2 h, four times per day).  Between periods of shaking, maintain the bottle at 25 °C in a thermostated water bath. 
 
To obtain a truly saturated solution (0.0202 mol·kg-1) by this procedure, approximately 1 week is required.  However, 
after 1 day of mixing the excess Ca(OH)2 with water, the pH is lower by only 0.02 pH units than that of the saturated 
solution.  After 2 days, the difference is only 0.01 pH units. 
 
Filter a portion of the saturated Ca(OH)2 solution immediately before use (a syringe feeding a 0.45 µm in-line filter works 
well).  Use the fresh filtrate as the pH standard. 
 
Stability of Prepared Solution:  The filtered solution (see above) will develop a CaCO3 film on its surface in a few 
minutes.  Although the pH of this filtered solution changes only slightly in 1 hour, it is preferable to use a fresh filtered 
solution for each measurement.  The stock saturated solution maintains its pH value if stored in the thermostated water 
bath, provided that excess Ca(OH)2 remains present. 
 
Calibration of pH Electrode-Meter Systems for High-Alkalinity Measurements (pH > 11):  For the pH measurement 
of highly alkaline solutions, a 2-point calibration is suggested.  Prepare and use 0.01 mol·kg-1 borax (SRM 187d or current 
renewal) as the first standard and adjust the pH meter accordingly.  Then use the freshly filtered, saturated Ca(OH)2 
solution prepared from SRM 2193a as the second standard and adjust the temperature compensation to set the pH reading 
to the certified value. 
 
Notice to User:  For pH measurements in highly alkaline solutions using commercial glass-reference electrode 
systems, larger uncertainties are to be expected.  The sources of this uncertainty are:  (1) changing liquid junction 
potential with increasing concentration of the highly mobile OH– ions; (2) nonideal performance of glass electrodes, 
including poorer reproducibility, sluggish response, and “sodium error”; and (3) higher sensitivity of pH to 
temperature changes.  An uncertainty of 0.05 pH is not uncommon and is reasonable for pH measurements in highly 
alkaline solutions. 
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National Institute of Standards & Technology 
 

Certificate of Analysis 
 

Standard Reference Material® 187f 
 

Sodium Tetraborate Decahydrate (Borax) 
 

pH Standard 
 
This Standard Reference Material (SRM) is intended for use in preparing solutions for calibrating electrodes for pH 
measuring systems.  SRM 187f Sodium Tetraborate Decahydrate (Na2B4O7

.10 H2O) was prepared to ensure high 
purity and uniformity.  However, this SRM is certified ONLY as a pH standard [pH(S)], not as a pure substance.  A 
unit of SRM 187f consists of 30 g of sodium tetraborate decahydrate. 
 
Certified Values:  The certified pH(S) values provided in Table 1 correspond to lg(1/aH), where aH is the conventional 
activity of the hydrogen (hydronium) ion referred to the standard state (p = 1 atm = 1.013 25 × 105 Pa) on the scale of 
molality.  The values were derived from potential measurements of cells without liquid junction by the primary 
measurement method [1,2].  A NIST certified value is a value for which NIST has the highest confidence in its accuracy 
in that all known or suspected sources of bias have been investigated or taken into account [3].  The certified pH(S) values 
and their expanded uncertainties, U, are stated in Table 1.   
 
Reference Values:  The uncertainty [1,4] of the Bates-Guggenheim convention [5] is excluded from the uncertainty 
calculation for the reference values provided in Table 2.  Reference values are noncertified values that are the best 
estimate of the true value; however, the values do not meet the NIST criteria for certification and are provided with 
associated uncertainties that may not include all sources of uncertainty [3].   
 
Traceability:  The measurand is the pH of the specified buffer solution.  The certified values in Table 1 are 
metrologically traceable to the International System of Units (SI) of amount-of-substance and mass and to the 
convention [5] used to define ionic activity, including its uncertainty [1,4].  The reference values in Table 2 are traceable 
to the SI units for amount-of-substance and mass and to this defining convention [5], taken as an exact value with no 
uncertainty (the uncertainty of the Bates-Guggenheim convention is excluded from the uncertainty calculation). 
 
Expiration of Certification:  The certification of SRM 187f is valid, within the measurement uncertainty specified, until 
31 August 2021, provided the SRM is handled and stored in accordance with the instructions given in this certificate 
(see “Instructions for Handling, Storage and Use”).  The certification is nullified if the SRM is damaged, contaminated, 
or otherwise modified. 
 
Maintenance of SRM Certification:  NIST will monitor this SRM over the period of its certification.  If substantive 
technical changes occur that affect the certification before the expiration of this certificate, NIST will notify the purchaser.  
Registration (see attached sheet or register online) will facilitate notification. 
 
Experimental work leading to the certification of this material was performed by R.A. Easley and J.F. Waters of the NIST 
Chemical Sciences Division. 
 
Statistical consultation was provided by W.F. Guthrie of the NIST Statistical Engineering Division. 
 
Support aspects involved in the issuance of this SRM were coordinated through the NIST Office of Reference Materials. 
 
 
 
 Carlos A. Gonzalez, Chief 
 Chemical Sciences Division 
 
Gaithersburg, MD 20899 Steven J. Choquette, Director 
Certificate Issue Date:  29 August 2017 Office of Reference Materials 
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INSTRUCTIONS FOR HANDLING, STORAGE AND USE 
 
Storage:  SRM 187f is stable when stored in its original container, with the cap tightly closed, in a dry environment, and 
under normal laboratory temperatures. 
 
Drying Instructions:  Use as received.  SRM 187f must not be dried in an oven.  Do not store in a desiccator before use. 
  
Source Water for Solution Preparation:  The water used in the preparation of the SRM 187f buffer solution should be 
protected from atmospheric carbon dioxide.  This water must be prepared either by (1) boiling of distilled water 
(conductivity < 2 μS/cm) for 10 min and guarding it with a soda-lime tube while cooling or (2) dispensing water directly 
from a deionization-based point-of-use system into the vessel used to prepare the buffer solutions 
(resistivity > 17 MΩ·cm, conductivity < 0.06 μS/cm).  The prepared solution should be protected against evaporation 
and contamination. 
 
Preparation of the 0.01 mol/kg Solution:  Quantities denoted by m' and associated numerical factors in this paragraph 
include the effect of air buoyancy, i.e., they correspond to the balance indication in units of mass obtained in the laboratory 
(the balance reading).  Weigh by difference approximately 3.7 g of SRM 187f, m'187f, to an accuracy of 1 mg, into a 
clean, dry 1 L polyethylene bottle.  Add a weighed quantity of CO2-free water, equal to 261.841 multiplied by m'187f, to 
an accuracy of 0.1 g.  Shake until the solid has totally dissolved.  Gravimetric preparation in this manner eliminates the 
need to weigh exactly predetermined masses of solid samples.  Proportionately smaller quantities of each SRM may be 
used in this preparation, provided that m'187f exceeds 0.42 g.   
 
Stability of the Prepared Solution:  The solution should be discarded after one month, or sooner if sediment appears or 
if it has been exposed repeatedly to air containing carbon dioxide.  To avoid contamination of the buffer solution with 
atmospheric carbon dioxide, keep the bottle capped except when removing a portion of the solution.  
 
SOURCE, PREPARATION AND ANALYSIS(1) 
 
Source of Material:  The sodium tetraborate decahydrate (Na2B4O7

.10 H2O) was obtained from a commercial company.  
This material conforms to the specifications of the American Chemical Society for primary standard chemicals [6]. 
 
Certified Values:  The pH(S) and the expanded uncertainty, U, of this solution as a function of temperature are given in 
Table 1.  The expanded uncertainty in the certified value, U, is calculated as U = kuc(y), where uc(y) is the “combined 
standard uncertainty” calculated according to the ISO/JCGM Guide [7].  The value of uc(y) represents the combined 
effect of the following uncertainty components:  extrapolation to obtain the acidity function, p(aHγCl)°; standard electrode 
potentials, E°; material heterogeneity(2); molality of HCl, bHCl, used for determining E°; measured cell potentials; 
correction to the standard pressure for H2 gas; mean activity coefficient of HCl at bHCl; gas constant; temperature; Faraday 
constant; the molality of NaCl; and the uncertainty of the conventional calculation of log γCl (Bates-Guggenheim 
convention [5]).  Current expert opinion [1,4] has assessed the uncertainty attributable to the Bates-Guggenheim 
convention as 0.010 pH (95 % confidence interval).  The value of uc(y) has been multiplied by a coverage factor, k, 
obtained by the Student’s t-distribution for effective degrees of freedom at the given temperature and a 95 % confidence 
level.  A solution of molality 0.01 mol/kg is recommended for the calibration of pH measuring systems.  NOTE: These 
certified values apply ONLY to a 0.01 mol/kg solution prepared from SRM 187f.  Minor variations of pH(S) values may 
be expected to occur between SRM lots. 
 

                                                 
(1) Certain commercial equipment, instruments, or materials are identified in this certificate to adequately specify the experimental 

procedure.  Such identification does not imply recommendation or endorsement by the National Institute of Standards and Technology, 
nor does it imply that the materials or equipment identified are necessarily the best available for the purpose. 

(2) The uncertainty for material heterogeneity includes analysis of the relevant uncertainty arising from the uncertainty in SRM 187e, 
which was used in the collection of the data for assessing material heterogeneity. The uncertainty from the use of SRM 187e was 
determined to add only negligible uncertainty to the assessed material heterogeneity value.  
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Table 1.  Certified pH(S) Values and Expanded Uncertainties (95 % Confidence) 

 

Temperature 
(°C) pH(S) Combined Standard 

Uncertainty, uc(y) 
Coverage 
Factor, k 

Expanded 
Uncertainty, U 

   
 

 

5 9.401 0.0052 1.96 0.010 

10 9.342 0.0051 1.96 0.010 

15 9.288 0.0051 1.96 0.010 

20 9.239 0.0051 1.96 0.010 

25 9.195 0.0051 1.96 0.010 

30 9.155 0.0054 1.96 0.010 

35 9.120 0.0053 1.96 0.010 

37 9.107 0.0052 1.96 0.010 

40 9.088 0.0052 1.96 0.010 

45 9.059 0.0052 1.96 0.010 

50 9.034 0.0052 1.96 0.010 
 
Reference Values:  To attain traceability to the NIST reference pH(S) values for SRM 187f when traceability to the 
SI units is not necessary, the uncertainty of the Bates-Guggenheim convention is excluded from the uncertainty 
calculation.  The respective pH(S) values in Table 2 are identical to those in Table 1 but are listed to the number of 
decimal places reported for the expanded uncertainty, UR: 

 
UR = kRuc(measurement), 

 
where kR is the coverage factor for UR.  The quantities UR and uc(measurement) each include all components associated 
with the measurement method and assessment of material heterogeneity, but DO NOT include the uncertainty [1] of the 
Bates-Guggenheim Convention.    

 
 

Table 2.  Reference pH(S) Values and Expanded Reference Uncertainties (95 % Confidence) 
 

Temperature 
(°C) pH(S) 

Combined Standard 
Uncertainty, 

uc(measurement) 

Reference 
Coverage 
Factor, kR 

Expanded 
Uncertainty, 

UR 
     

5 9.4013 0.0013 2.08 0.0028 

10 9.3417 0.0012 2.09 0.0024 

15 9.2878 0.0010 2.04 0.0021 

20 9.2390 0.0010 2.02 0.0019 

25 9.1951 0.0010 2.03 0.0020 

30 9.1554 0.0019 2.01 0.0038 

35 9.1198 0.0017 1.98 0.0033 

37 9.1066 0.0016 1.97 0.0031 

40 9.0879 0.0015 1.96 0.0029 

45 9.0593 0.0015 1.96 0.0029 

50 9.0338 0.0014 1.96 0.0028 
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National Institute of Standards & Technology 
 

Certificate of Analysis 
 

Standard Reference Material® 185i 
 

Potassium Hydrogen Phthalate 
 

pH Standard 
 
This Standard Reference Material (SRM) is intended for use in preparing solutions for calibrating electrodes for pH 
measuring systems.  SRM 185i Potassium Hydrogen Phthalate (KHC8H4O4) was prepared to ensure high purity and 
uniformity.  However, this SRM is certified ONLY as a pH standard [pH(S)] not as a pure substance.  A unit of 
SRM 185i consists of 60 g of potassium hydrogen phthalate. 
 
Certified Values:  The certified pH(S) values provided in Table 1 correspond to lg(1/aH), where aH is the conventional 
activity of the hydrogen (hydronium) ion referred to the standard state (p°= 1 atm = 1.013 25 × 105 Pa) on the scale of 
molality.  The values were derived from potential measurements of cells without liquid junction by the primary 
measurement method [1,2].  A NIST certified value is a value for which NIST has the highest confidence in its 
accuracy in that all known or suspected sources of bias have been investigated or taken into account [3].  The certified 
pH(S) values and their expanded uncertainties, U, are stated in Table 1.   
 
Reference Values:  The uncertainty [1,4] of the Bates-Guggenheim convention [5] is excluded from the uncertainty 
calculation for the reference values provided in Table 2.  Reference values are noncertified values that are the best 
estimate of the true value; however, the values do not meet the NIST criteria for certification and are provided with 
associated uncertainties that may not include all sources of uncertainty [3].   
 
Traceability:  The measurand is the pH of the specified buffer solution.  The certified values in Table 1 are 
metrologically traceable to the International System of Units (SI) of amount-of-substance and mass and to the 
definition of single ion activity.  The reference values in Table 2 are traceable to the SI units of amount-of-substance 
and mass and to the convention [5] used to define the single ion activity. 
 
Expiration of Certification:  The certification of SRM 185i is valid, within the measurement uncertainty specified, 
until 15 July 2023, provided the SRM is handled and stored in accordance with the instructions given in this certificate 
(see “Instructions for Handling, Storage and Use”).  The certification is nullified if the SRM is damaged, contaminated, 
or otherwise modified. 
 
Maintenance of SRM Certification:  NIST will monitor this SRM over the period of its certification.  If substantive 
technical changes occur that affect the certification before the expiration of this certificate, NIST will notify the 
purchaser.  Registration (see attached sheet) will facilitate notification. 
 
The experimental work leading to the certification of this material was performed by J.F. Waters and K.W. Pratt of the 
NIST Chemical Sciences Division. 
 
Statistical consultation was provided by W.F. Guthrie of the NIST Statistical Engineering Division. 
 
Support aspects involved in the issuance of this SRM were coordinated through the NIST Office of Reference 
Materials. 
 
 
 
 
 Carlos A. Gonzalez, Chief 
 Chemical Sciences Division 
 
Gaithersburg, MD 20899 Robert L. Watters, Jr., Director 
Certificate Issue Date:  08 August 2013 Office of Reference Materials 
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INSTRUCTIONS FOR HANDLING, STORAGE AND USE 
 
Storage:  SRM 185i is stable when stored in its original container, with the cap tightly closed, in a dry environment, 
and under normal laboratory temperatures. 
 
Drying Instructions:  SRM 185i should be dried for 2 h at 110 °C and stored in a desiccator over anhydrous 
Mg(ClO4)2 before use. 
  
Source Water for Solution Preparation:  The water used in the preparation of the SRM 185i buffer solution need not 
be protected from atmospheric carbon dioxide, and elaborate precautions for the exclusion of air from the solution are 
not necessary.  Distilled water with an electrolytic conductivity not greater than 2 µS/cm or water directly obtained 
from a point-of-use, deionization-based system, of electrolytic conductivity less than 1 µS/cm, may be used, without 
boiling.  The solution should, however, be protected against evaporation and contamination by mold spores. 
 
Preparation of the 0.05 mol/kg Solution:  Quantities denoted by mW and associated numerical factors in this 
paragraph include the effect of air buoyancy, i.e., they correspond to the balance indication in units of mass obtained in 
the laboratory (the balance reading).  Weigh by difference approximately 9.8 g of SRM 185i, mW,185i, to an accuracy of 
1 mg, into a clean, dry, 1 L polyethylene bottle.  Add a quantity of water, equal to 97.887 multiplied by mW,185i, to an 
accuracy of 0.1 g.  Shake thoroughly until the solid has totally dissolved.  Gravimetric preparation in this manner 
eliminates the need to weigh exactly predetermined masses of solid samples.  Proportionately smaller quantities of each 
SRM may be used in this preparation, provided that mW,185i exceeds 4.0 g.   
 
Stability of Prepared Solution:  Solutions should be discarded after one month or sooner if mold or sediment appears.  
 
PREPARATION(1) 
 
Source of Material:  The potassium hydrogen phthalate (KHC8H4O4) was obtained from a commercial company.  
This material conforms to the specifications of the American Chemical Society for primary standard chemicals [6]. 
 
Certified Values:  The pH(S) and the expanded uncertainty, U, of this solution as a function of temperature are given 
in Table 1.  The uncertainty in the certified value, U, is calculated as U = kuc(y), where uc(y) is the “combined standard 
uncertainty” calculated according to the ISO/JCGM Guide [7].  The value of uc(y) represents the combined effect of the 
following uncertainty components associated with the primary measurement method and material homogeneity:  
extrapolation to obtain the acidity function, p(aHγCl)°; standard electrode potentials, E°; material homogeneity; molality 
of HCl, bHCl, used for determining E°; measured cell potentials; correction to the standard pressure for H2 gas; mean 
activity coefficient of HCl at bHCl; gas constant; temperature; Faraday constant; the molality of NaCl; and the 
uncertainty of the conventional calculation of log γCl (Bates-Guggenheim convention [5]).  Current expert opinion [1,4] 
has assessed the uncertainty attributable to the Bates-Guggenheim convention as 0.010 pH (95 % confidence interval).  
The value of uc(y) has been multiplied by a coverage factor, k, obtained by the Student’s t-distribution for effective 
degrees of freedom at the given temperature and a 95 % confidence level.  A solution of molality 0.05 mol/kg is 
recommended for the calibration of pH measuring systems.    
 

                                                 
(1)Certain commercial equipment, instruments, or materials are identified in this certificate to adequately specify the experimental 

procedure.  Such identification does not imply recommendation or endorsement by the National Institute of Standards and 
Technology, nor does it imply that the materials or equipment identified are necessarily the best available for the purpose. 
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Table 1.  Certified pH(S) Values and Expanded Uncertainties (95 % Confidence)  
 

Temperature 
(°C) 

pH(S) Combined 
Uncertainty, uc(y) 

Coverage 
Factor, k 

Uncertainty, U 

   
 

 

5 4.003 0.0050 1.96 0.010 

10 3.999 0.0050 1.96 0.010 

15 3.999 0.0050 1.96 0.010 

20 4.001 0.0050 1.96 0.010 

25 4.005 0.0050 1.96 0.010 

30 4.012 0.0051 1.96 0.010 

35 4.021 0.0051 1.96 0.010 

37 4.025 0.0051 1.96 0.010 

40 4.031 0.0051 1.96 0.010 

45 4.044 0.0051 1.96 0.010 

50 4.058 0.0051 1.96 0.010 
 
Reference Values:  To attain traceability to the NIST reference pH(S) values for SRM 185i when traceability to the 
SI units is not necessary, the uncertainty of the Bates-Guggenheim convention is excluded from the uncertainty 
calculation.  The respective pH(S) values in Table 2 are identical to those in Table 1 but are listed to the number of 
decimal places reported for the expanded uncertainty, UR: 

 
UR = kRuc(measurement), 

 
where kR is the coverage factor for UR.  The quantities UR and uc(measurement) each include all components associated 
with the measurement method and assessment of material homogeneity, but DO NOT include the uncertainty of the 
Bates-Guggenheim Convention.    

 
 

Table 2.  Reference pH(S) Values and Expanded Reference Uncertainties (95 % Confidence) 
 

Temperature 
(°C) 

pH(S) Combined 
Uncertainty, 

uc(measurement) 

Reference 
Coverage 
Factor, kR 

Reference 
Uncertainty, 

UR 
     

5 4.0025 0.0005 2.04 0.0011 

10 3.9993 0.0004 1.99 0.0008 

15 3.9988 0.0004 2.00 0.0008 

20 4.0009 0.0004 1.99 0.0008 

25 4.0053 0.0004 2.05 0.0007 

30 4.0120 0.0010 1.96 0.0020 

35 4.0207 0.0010 1.96 0.0020 

37 4.0247 0.0011 1.96 0.0021 

40 4.0313 0.0011 1.96 0.0022 

45 4.0438 0.0011 1.96 0.0021 

50 4.0579 0.0011 1.96 0.0022 
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Users of this SRM should ensure that the Certificate of Analysis in their possession is current.  This can be 
accomplished by contacting the SRM Program:  telephone (301) 975-2200; fax (301) 948-3730; 
e-mail srminfo@nist.gov; or via the Internet http://www.nist.gov/srm. 
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National Institute of Standards & Technology 
 

Certificate of Analysis 
 

Standard Reference Material 84L 
 

Potassium Hydrogen Phthalate 
 

KHC8H4O4 

Acidimetric Primary Standard 
 
This Standard Reference Material (SRM) is intended for use as an acidimetric primary standard.  It consists of 
highly purified potassium hydrogen phthalate (KHP), KHC8H4O4.  A unit of SRM 84L is supplied as crystalline 
material in a 60 g unit. 
 
Certified Value:  The certified value listed in Table 1 is the mass fraction of total acid (replaceable H+) expressed as 
KHP.  A NIST certified value is a value for which NIST has the highest confidence in its accuracy in that all known 
or suspected sources of bias have been investigated or taken into account [1]. 
 

Table 1. Certified Value (a) for SRM 84L Potassium Hydrogen Phthalate 
 

99.9934 %    0.0076 % 

 
(a) The certified value is expressed as the value  its expanded uncertainty, U.  The expanded uncertainty is calculated as 

U = kuc, where k is the coverage factor and uc is the combined standard uncertainty calculated according to the ISO Guide 
[2].  The value of uc represents the combined uncertainty in the certified value, at the level of one standard deviation, and 
includes the replication uncertainty of the 30 titrations of the SRM and all sources of uncertainty inherent to the 
coulometric method.  The value of k controls the approximate level of confidence associated with U.  For this SRM, 
k = 2.04.  This value corresponds to a level of confidence of approximately 95 %.  The value of k is obtained from the 
Student’s t-distribution with effective degrees of freedom, νeff = 31. 

 
Information Value:  The theoretical total organic carbon (TOC) content is 47.05 %, based on the 2005 Atomic 
Weights [3].  This TOC value is a noncertified value with no reported uncertainty, as there is insufficient 
information to assess the uncertainty.  An information value is considered to be a value that will be of interest to the 
SRM user, but insufficient information is available to assess the uncertainty associated with the value or only a 
limited number of analyses were performed [1]. 
 
Expiration of Certification:  The certification of SRM 84L is valid, within the measurement uncertainties 
specified, until 01 April 2024, provided the SRM is handled in accordance with instructions given in this certificate 
(see “Instructions for Use”).  This certification is nullified if the SRM is damaged, contaminated, or otherwise 
modified. 
 
Maintenance of SRM Certification:  NIST will monitor this SRM over the period of its certification.  If 
substantive technical changes occur that affect the certification before the expiration of this certificate, NIST will 
notify the purchaser.  Registration (see attached sheet) will facilitate this notification. 
 
The overall direction and coordination of technical measurements leading to certification was provided by 
T.W. Vetter of the NIST Analytical Chemistry Division. 
 
Coulometric analyses were performed by K.W. Pratt of the NIST Analytical Chemistry Division. 
 
 Stephen A. Wise, Chief 
 Analytical Chemistry Division 
 
Gaithersburg, MD 20899 Robert L. Watters, Jr., Chief 
Certificate Issue Date:  01 February 2010 Measurement Services Division 
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Statistical consultation was provided by W.F. Guthrie of the NIST Statistical Engineering Division. 
 
Support aspects involved in the issuance of this SRM were coordinated through the NIST Measurement Services 
Division. 
 
INSTRUCTIONS FOR USE 
 
Stability and Storage:  This SRM should be stored in its original bottle at room temperature.  It must be tightly 
recapped after use and protected from moisture, ammonia, and light. 
 
Homogeneity:  Tests indicate that this SRM is homogeneous within the uncertainty limits for test portions with a 
mass greater than 300 mg.  Test portions with a mass less than 300 mg are not recommended, to avoid possible 
inhomogeneity. 
 
Drying Instructions:  As issued, SRM 84L contains some entrapped (occluded) water that is released by a 
combination of grinding and drying.  The following procedure was used in the certification of this material and must 
be followed to attain the certified value.  Grind a test portion to a fine, flour-like powder, taking special care to 
fragment the larger crystals.  Dry the powder at 120 ºC for 2 h and store over anhydrous magnesium perchlorate in a 
desiccator. 
 
The SRM 84L material was ground by hand for a period of 60 s to 90 s in an agate mortar for this certification.  
Other methods that do not introduce contaminants may also yield a suitable powder.  
 
Analyses of dried, unground test portions of SRM 84L yielded non-certified values from 99.94 % to 99.99 %, 
owing to variations in the frequency or size of inclusions of water in the KHP crystals in the given test portion.  
Such inclusions are well known for KHP [4,5] and a mass fraction of occluded water in the range of 0.01 % to 0.15 
% was present in previous issues of this SRM [4]. 
 
Intended Use:  This SRM is certified for acidimetric assay ONLY and is not intended for use as a pH standard. The 
current issue of SRM 185 Potassium Hydrogen Phthalate, pH Standard, is certified for pH. 
 
SOURCE, PREPARATION, AND ANALYSIS1 
 
Source of Material:  The material used for this SRM was obtained from a commercial supplier.  The material was 
examined for compliance with the specification for reagent grade KHP as specified by the American Chemical 
Society [6].  The material was found to meet or exceed these specifications in all respects. 
 
Assay Technique: The certified value is based on the results of coulometric assays of ground and dried material 
(see Drying Instructions).  The assay value for this material was obtained by automated coulometric titration [7] to 
the inflection point (pH ≈ 8.4) of weighed test portions of KHP.  The certified value represents the result of 30 
titrations of test portions taken from 16 bottles selected by stratified random sampling from the entire lot of 
SRM 84L.  The value of the Faraday constant used in this work was 96 485.3399 C/mol [8].  The 2005 values for 
the atomic weights [3] were used. 

                                          
1 Certain commercial equipment, instruments or materials are identified in this certificate to adequately specify the 

experimental procedure.  Such identification does not imply recommendation or endorsement by the National Institute of 
Standards and Technology, nor does it imply that the materials or equipment identified are necessarily the best available for the 
purpose. 
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Internet at http://www.nist.gov/srm. 
 



 

 

 

 

 

APPENDIX B 



1. Practical and theoretical mass loss for SRM 187f 

% mass loss (practically) = Δm/mο = (4.983/10.6819) x 100 = 46.65 % 

% mass loss (theoretically) = (10.H2O) / (mborax + 10.H2O) = (10 x 18.015) / [201.217+ (10 x 

180.15)] x 100 = 47.23 % 

 

Balance uncertainty = µ balance = 0.0001 mg 

Graph scale uncertainty (half of one dimension) = m = 0.05 mg 

 

µ (rectangular) = 0.05/3 = 0.0288 mg 

µΔm = (µm
2
 + µm

2
) =  [(0.05/3)

2
 + (0.05/3)

2
] = 0.0408 mg 

(µ % / mass loss %) =  [(µΔm / Δm)
2
 + (µmο / mο)

2
] =  [(0.0408/4.983)

2
 + (0.0001/10.6819)

2
] = 

0.00818 x 100 = 0.8187 % 

 µ % = µ mass loss = 0.00818 x mass loss % = 0.00818 x 46.65 = 0.3815 % 

 

C.I = 46.65 ± 0.3815 (Z95% = 1.96 ~ 2) 

       (46.6 ± 0.8) % for 95 % confidence 

 

N of H2O molecules = (mf H2O x mborax) X [mH2O (1 x mf H2O)] = 9.77 molecules. 

 

2. Practical and theoretical mass loss for Home Science 

% mass loss (practically) = Δm/mο = (4.543/10.2895) x 100 = 44.15 % 

% mass loss (theoretically) = (9.H2O) / (mborax + 9.H2O) = (9 x 18.015) / [201.217+ (9 x 18.015)] 

x 100= 44.62 % 

 

Balance uncertainty = µ balance = 0.0001 mg 

Graph scale uncertainty (half of one dimension) = m = 0.05 mg 

µ (rectangular) = 0.05/3 = 0.0288 mg 

µΔm = (µm
2
 + µm

2
) =  [(0.05/3)

2
 + (0.05/3)

2
] = 0.0408 mg 



(µ % / mass loss %) =  [(µΔm / Δm)
2
 + (µmο / mο)

2
] =  [(0.0408/4.543)

2
 + (0.0001/10.2895)

2
] = 

0.00895 x 100 = 0.89588 % 

 

 µ % = µ mass loss = 0.00895 x mass loss % = 0.00895 x 44.15 = 0.3951 % 

 

C.I = 44.15 ± 0.3951 (Z95% = 1.96 ~ 2) 

       (44.15 ± 0.8) % for 95 % confidence 

 

N of H2O molecules = (mf H2O x mborax) X [mH2O (1 x mf H2O)] = 8.8 molecules. 

 

3. Practical and theoretical mass loss for SRM 187e 

% mass loss (practically) = Δm/mο = (3.241/10.7216) x 100 = 30.23 % 

% mass loss (theoretically) = (5.H2O) / (mborax + 5.H2O) = (5 x 18.015) / [201.217+ [(5 x 18.015)] 

x 100= 30.93 % 

 

Balance uncertainty = µ balance = 0.0001 mg 

Graph scale uncertainty (half of one dimension) = m = 0.05 mg 

µ (rectangular) = 0.05/3 = 0.0288 mg 

µΔm = (µm
2
 + µm

2
) =  [(0.05/3)2 + (0.05/3)2] = 0.0408 mg 

(µ % / mass loss %) =  [(µΔm / Δm)
2
 + (µmο / mο)

2
] =  [(0.0408/3.241)

2
 + (0.0001/10.7216)

2
] = 

0.012588 x 100 = 1.2588 % 

 

 µ % = µ mass loss = 0.012588 x mass loss % = 0.012588 x 30.23 = 0.3805 % 

 

C.I = 30.23 ± 0.3805 (Z95% = 1.96 ~ 2) 

       (30.23 ± 0.8) % for 95 % confidence 

N of H2O molecules = (mf H2O x mborax) X [mH2O (1 x mf H2O)] = 4.8 molecules. 

 

 



4. Practical and theoretical mass loss for Merck 

% mass loss (practically) = Δm/mο = (2.970/10.6874) x 100 = 27.79 % 

% mass loss (theoretically) = (4.H2O) / (mborax + 4.H2O) = (4 x 18.015) / [201.217+ [(4 x 18.015)] 

x 100= 26.37 % 

 

Balance uncertainty = µ balance = 0.0001 mg 

Graph scale uncertainty (half of one dimension) = m = 0.05 mg 

µ (rectangular) = 0.05/3 = 0.0288 mg 

µΔm = (µm
2
 + µm

2
) =  [(0.05/3)

2
 + (0.05/3)

2
] = 0.0408 mg 

(µ % / mass loss %) =  [(µΔm / Δm)
2
 + (µmο / mο)

2
] =  [(0.0408/2.970)

2
 + (0.0001/10.6874)

2
] = 

0.0001877 x 100 = 0.01877 % 

 

 µ % = µ mass loss = 0.0001877 x mass loss % = 0.012588 x 27.79 = 0.3498 % 

 

C.I = 27.79 ± 0.3498 (Z95% = 1.96 ~ 2) 

       (27.79 ± 0.7) % for 95 % confidence 

 

N of H2O molecules = (mf H2O x mborax) X [mH2O (1 x mf H2O)] = 4.3 molecules. 

 

5. Practical and theoretical mass loss for Detergent 

 

% mass loss (practically) = Δm/mο = (2.975/10.0666) x 100 = 29.55 % 

% mass loss (theoretically) = (5.H2O) / (mborax + 5.H2O) = (5 x 18.015) / [201.217+ [(5 x 

18.015)] x 100= 30.92 % 

 

Balance uncertainty = µ balance = 0.0001 mg 

Graph scale uncertainty (half of one dimension) = m = 0.05 mg 

µ (rectangular) = 0.05/3 = 0.0288 mg 

µΔm = (µm
2
 + µm

2
) =  [(0.05/3)

2
 + (0.05/3)

2
] = 0.0408 mg 



 

(µ % / mass loss %) =  [(µΔm / Δm)
2
 + (µmο / mο)

2
] =  [(0.0408/2.970)

2
 + (0.0001/10.6874)

2
] = 

0.01368 x 100 = 1.368 % 

 

 µ % = µ mass loss = 0.01368 x mass loss % = 0.01368 x 29.55 = 0.4042 % 

 

C.I = 29.55 ± 0.4042 (Z95% = 1.96 ~ 2) 

       (29.55 ± 0.8) % for 95 % confidence 

 

N of H2O molecules = (mf H2O x mborax) X [mH2O (1 x mf H2O)] = 4.6 molecules. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

TGA curve for Detergent 
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