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Abstract: The performance of data-driven models such as Artificial Neural Networks and Support 

Vector Machines relies to a good extent on selecting proper data throughout the design phase. This paper 

addresses a comparison of four unsupervised data selection methods including random, convex hull 

based, entropy based and a hybrid data selection method. These methods were evaluated on eight 

benchmarks in classification and regression problems. For classification, Support Vector Machines were 

used, while for the regression problems, Multi-Layer Perceptrons were employed. Additionally, for each 

problem type, a non-dominated set of Radial Basis Functions Neural Networks were designed, benefiting 

from a Multi Objective Genetic Algorithm. The simulation results showed that the convex hull based 

method and the hybrid method involving convex hull and entropy, obtain better performance than the 

other methods, and that MOGA designed RBFNNs always perform better than the other models. 
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1. INTRODUCTION 

In many machine learning and data mining problems two 

basic tasks have to be considered:  feature selection and 

instance selection. The former denotes choosing a subset of 

all available features so that the selected subset has the 

strongest relation to the model output and yields improved 

model performance. The latter refers to sample selection 

where we are interested in selecting a subset of informative 

data samples (denoted by S) among all existing ones (denoted 

by D). The goal is that the model designed using S can 

maintain or even exceed the performance level (for instance, 

accuracy) that would be attained by using D. The instance 

selection process not only helps decreasing the run time of 

the training process but also has the benefit of reducing 

memory requirements. This is important when classification 

or regression tasks rely on existing large-size datasets. 

Instance selection methods can be classified into wrapper and 

filter methods. Wrapper methods use a model as a selection 

criterion, where the performance of the model is evaluated 

based on a subset of samples, iteration by iteration, to select 

those samples which have the most contribution on the model 

accuracy. Most works found in the literature on the wrapper 

or supervised methods relate to classification tasks. Some 

important contributions can be seen in (Cano, Herrera, & 

Lozano, 2003; Hart, 1968; Olvera-Lopez, Martinez-Trinidad, 

& Carrasco-Ochoa, 2007). 

Unlike wrapper methods, filter or unsupervised methods 

employ a model independent selection function to choose 

informative samples. This means that the accuracy of the 

model does not have any contribution in the selection 

criterion; instead, a selection rule is applied. Related works 

can be seen in (Pedro M. Ferreira, 2016; Khosravani, Ruano, 

& Ferreira, 2016; Paredes & Vidal, 2000).   

Although comparison between Multi Objective Genetic 

Algorithm (MOGA) designed models and Multi-Layer 

Perceptrons (MLPs) and Support Vector Machines (SVMs) 

will take place, the main objective of this paper is to analyse 

the performance of four data selection methods, including 

Random Data Selection (RDS), Convex Hull Based Data 

Selection (CBDS), Entropy Based Data Selection (EBDS) 

and a Hybrid Data Selection (HDS) method. Among these 

methods, the CBDS and EBDS methods are previous efforts 

of the authors, presented in (Khosravani, et al., 2016) and 

(Pedro M. Ferreira, 2016), respectively, while the HDS 

method, a combination of CBDS and EBDS methods, is 

proposed in this paper as a new data selection method.  

The four methods data selection methods were applied on 

eight benchmarks related to classification and regression 

problems, employing SVMs and MLPs, respectively.  For 

one problem of each type, MOGA, as a design platform (P. 

Ferreira & Ruano, 2011) was employed to additionally 

produce a non-dominated set of Radial Basis Function Neural 

Networks (RBFNN).  

The rest of the paper is organized as follows: Section 2 

introduces MOGA. The four data selection methods are 

explained in Section 3. The experiments and their 
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corresponding simulation results are discussed in Section 4 

and 5, respectively. Conclusions are given in Section 6. 

2. MULTI OBJSECTIVE GENETIC ALGORITHM 

In the real world, the optimization of an engineering problem 

is a complicated task due to the presence of multiple 

objectives which, most of time, are conflicting with each 

other. In this case, the solution is a Pareto-optimal or non-

dominated set, where each solution is not better than the other 

with respect to the multiple objectives. Fig. 1 shows an 

example of a minimization problem with two objectives. The 

whole space of solutions is divided into two groups: the 

shaded region presents the dominated solutions while the 

solid curve illustrates the non-dominated set of solutions 

regarding objectives Obj.1 and Obj.2. As it can be seen in 

Fig.1, A and B denote two non-dominated solutions. 

 

Fig. 1. Bi-objective minimization problem.  

The goal of a multi-objective optimizer is to improve the 

approximation of the Pareto front (i.e. the solid curve) in such 

a way that it approaches the origin (i.e., point ‘O’ in Figure 1) 

as much as possible. 

 Genetic Algorithms are meta-heuristics often used for multi-

objective optimization problems (Carlos M. Fonseca & 

Fleming, 1995). In MOGA, each individual in the population 

is evaluated in the space of the multiple objectives rather than 

in one objective, and is ranked based on the number of 

individuals by which it is dominated, using a Pareto-based 

ranking method proposed in (C. M. Fonseca & Fleming, 

1998).  

2.1. Neural network based model design by MOGA 

The problem of designing a neural network model, based on 

training, testing and validation sets, can be considered from 

two points of view: structure selection and parameters 

estimation. In the aspect of structure, the network inputs and 

the number of hidden layers/neurons should be determined 

while, with respect to the network parameters, they should be 

adjusted using a proper training algorithm.  

In this study RBFNN models are considered, which implies 

that the network parameters include the linear output weights 

(w) and the nonlinear parameters, the centres (C) and the 

spreads ( σ ) of the hidden neurons.  In this study, MOGA 

was customized to design RBFNN models as follows: 

Assume that D denotes the whole dataset available for model 

design. Suppose that the training, generalization or testing 

and the validation sets are denoted as T, G and V, 

respectively. Assuming that we want models with input 

features in the range [ , ]m Md d  and number of hidden neurons 

in the range [ , ]m Mn n , MOGA will search that space, forming 

a non-dominated set of models according to the objectives 

specified, which can be minimized, or set as restrictions with 

possible different priorities. Typically, the objectives 

considered belong to [ , ]p s  , where p and 
s denote the 

set of objectives related to the RBFNNs’ performance and 

their structure, respectively. In this work, 
s  refers to the 

model complexity, which is equal to the number of input 

features + 1, multiplied by the number of hidden neurons. For 

regression problems, p is defined as (1): 

 [ ( ), ( )]p   T G   (1) 

where ( ) T  and ( ) G  denote the Root Mean Square Error 

(RMSE) of T and G, respectively. Regarding classification 

problems, p is defined as (2): 

 [ ( ), ( ), ( ), ( )]p FP FN FP FN  T T G G   (2) 

Where (.)FP and (.)FN denote the False Positives (FP) and 

the False Negatives (FN) obtained on the corresponding 

dataset, respectively. Each individual in the population has a 

chromosome representation consisting of two components. 

The first corresponds to the number of hidden neurons, and 

the second is a string of integers, each one representing the 

index of a particular feature, out of the ones allowed.  

Before being evaluated in MOGA, each model has its 

parameters determined by a Levenberg-Marquardt (LM) 

algorithm (Levenberg, 1944)  minimizing an error criterion 

that exploits the linear-nonlinear relationship of the RBFNN 

model parameters (P. M. Ferreira, Ruano, & Ieee, 2000; 

Ruano, Jones, & Fleming, 1991) . The initial values of the 

nonlinear parameters (C and σ )  are chosen randomly, or 

with the use of a clustering algorithm, w is determined as a 

linear least-squares solution, and the procedure is terminated 

using the early-stopping (Haykin, 1999) within a maximum 

number of iterations. For more details of MOGA, please see 

(P. Ferreira & Ruano, 2011). 

3. THE FOUR FILTER DATA SELECTION METHODS 

In this work, our goal is to extract, from the existing whole 

dataset D of size N by d (denoting the number of samples and 

the dimension, respectively.), three sub-datasets, T, G and V, 

containing Nt, Ng and Nv samples, respectively, in such a way 

that T hopefully contains informative samples, which can 

result in models with a high level of performance. Since in 

this study, our goal is not necessarily data reduction, the data 

selection term is used instead of instance selection, 

throughout the rest of the paper. The following addresses the 

four data selection methods employed. 

3.1. Random data selection method  

The simplest way to partition D into T, G and V is using the 

RDS method. In this method, firstly, Nt samples are extracted 

randomly from D (resulting in a reduced set D’) to construct 

T. Subsequently, Ng samples are randomly extracted from D’ 
(resulting in a reduced set D’’) to form G and finally Nv 

samples are extracted from D’’ to obtain V. 
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3.2. Convex hull based data selection method 

To design data driven models like RBFNNs, it is very 

important that the training set involves the samples that 

represent the whole input-output range where the underlying 

process is supposed to operate. To determine such samples, 

called convex hull points, out of the whole dataset, convex 

hull algorithms can be applied. The standard convex hull 

algorithms suffer from both exaggerated time and space 

complexity in high dimensions. To tackle these challenges in 

high dimensions, ApproxHull was proposed in (Khosravani, 

et al., 2016) as a randomized approximation convex hull 

algorithm. To identify the convex hull points, ApproxHull 

employs two main computational geometry concepts; the 

hyperplane distance and the convex hull distance. 

Given the point 1 2[ , ,..., ]T

dv v vv in a d-dimensional 

Euclidean space and a hyperplane H, the hyperplane distance 

of v to H is obtained by (3): 

 1 1 2 2

2 2 2

1 2

...
( , )

...

d d

d

a v a v a v b
ds H

a a a

   


  
v   (3) 

Where  1 2, ,...,
T

da a an and b are the normal vector and the 

offset of H , respectively. 

Given a set 1{ }n d

i i  X x and a point dx , the 

Euclidean distance between x and the convex hull of X, 

denoted by conv(X), can be computed by solving the 

quadratic optimization problem stated in (4). 

 

1

2

. . 1, 0

min
T T

Ts t

  
 

 

a

a Qa c a

e a a

  (4) 

where [1,1,...,1]Te ,
TQ X X and Tc X x  Suppose that the 

optimal solution of (4) is *
a ; then the distance of point x to 

conv(X) is given by (5): 

 
* * *( , ( )) 2

TT Tdc conv   x X x x c a a Qa   (5) 

ApproxHull consists of five main steps. In Step 1, each 

dimension of the input dataset is scaled to the range [-1, 1]. In 

Step 2, the maximum and minimum samples with respect to 

each dimension are identified and considered as the vertices 

of the initial convex hull. In Step 3, a population of k facets 

based on the current vertices of the convex hull is generated. 

In Step 4, the furthest points to each facet in the current 

population are identified using (3) and they are considered as 

the new vertices of the convex hull, if they have not been 

detected before. Finally, in Step 5, the current convex hull is 

updated by adding the newly found vertices into the current 

set of vertices. Step 3 to Step 5 are executed iteratively until 

no vertex found in Step 4 or the newly found vertices are 

very close to the current convex hull, thus not containing 

useful information. The closest points to the current convex 

hull are identified using the convex hull distance shown in (5) 

and a user-defined threshold.  

In the CBDS method, first ApproxHull is applied on the 

dataset D to obtain the convex hull points (the vertices of the 

approximated convex hull). Afterwards, the convex hull 

points as well as some random samples are extracted from D 

to form T. These are removed from D, forming D’. The G 

and V sets are obtained as in the RDS method. 

3.3. Entropy based data selection method 

As a recent effort in filter data selection domain, an Entropy 

Based Data Selection method was proposed in (Pedro M. 

Ferreira, 2016). The main idea behind the EBDS method is 

selecting Nt samples of D to form the training set T so that 

the information content and the diversity of data in T used to 

adjust the model parameters is maximized. This method 

employs the information entropy of any random variable Z 

given in (6). 

 ( ) ( ) ( )

1

N
H p z I z

i i
i

 


Z   (6) 

Where N is the number of all possible observations of Z. 

 ip z denotes the probability that Z takes the value iz (the ith 

sample in D) and  iI z denotes the information content that 

Z represents when it takes value 
iz .  I z  is defined as (7). 

 
( )

2( ) log p zI z     (7) 

Since dataset D represents a set of values of a 

multidimensional random variable,  ip z  is translated into 

the probability that Z takes the value iz  In this method, ( )ip z  

is estimated by (8). 

 
1

1 1

1
ˆ ( ) [ ( [ ] [ ])]

l

dN

i h i j

j i

p z k z l z l
N



 

     (8) 

where  .
lhk  is a Gaussian kernel function whose bandwidth 

is 
lh , obtained by (9): 

 

1

( 1 4)ˆ d

l lh N

    (9) 

where ˆ l  is the sample standard deviation along dimension l 

of the data. Based on the above, the EBDS method works as 

follows: In the first step, vector p̂ is obtained as (10) using 

(8) for each sample in iz  in D. 

 1 2
ˆ ˆ ˆ ˆ[ ( ), ( ),..., ( )]Np z p z p zp   (10) 

In the second step, vector Î is obtained as (11) using (7) for 

each sample iz in D. 

 
1 2

ˆ ˆ ˆ ˆ[ ( ), ( ),..., ( )]NI z I z I zI   (11) 

Having p̂  and Î  at hand, vector H is obtained as (12) by 

taking the Hadamard product of p̂  by Î . 

 
1 1 2 2

ˆ ˆ ˆ ˆˆ ˆ ˆ[ ( ) ( ), ( ) ( ),..., ( ) ( )]N Np z I z p z I z p z I zH   (12) 

where ˆˆ ( ) ( )i ip z I z is considered as the information based 

fitness of sample iz , reflecting the contribution of sample iz  

to the entropy obtained by (6). Once vector Ĥ  is obtained, Nt 

samples are removed from D using the Stochastic Universal 

Sampling method (Baker, 1987), to form T. The other two 

sets are obtained as in the RDS. 

3.4. Hybrid data selection method 
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corresponding simulation results are discussed in Section 4 

and 5, respectively. Conclusions are given in Section 6. 

2. MULTI OBJSECTIVE GENETIC ALGORITHM 

In the real world, the optimization of an engineering problem 

is a complicated task due to the presence of multiple 

objectives which, most of time, are conflicting with each 

other. In this case, the solution is a Pareto-optimal or non-

dominated set, where each solution is not better than the other 

with respect to the multiple objectives. Fig. 1 shows an 

example of a minimization problem with two objectives. The 

whole space of solutions is divided into two groups: the 

shaded region presents the dominated solutions while the 

solid curve illustrates the non-dominated set of solutions 

regarding objectives Obj.1 and Obj.2. As it can be seen in 

Fig.1, A and B denote two non-dominated solutions. 

 

Fig. 1. Bi-objective minimization problem.  

The goal of a multi-objective optimizer is to improve the 

approximation of the Pareto front (i.e. the solid curve) in such 

a way that it approaches the origin (i.e., point ‘O’ in Figure 1) 

as much as possible. 

 Genetic Algorithms are meta-heuristics often used for multi-

objective optimization problems (Carlos M. Fonseca & 

Fleming, 1995). In MOGA, each individual in the population 

is evaluated in the space of the multiple objectives rather than 

in one objective, and is ranked based on the number of 

individuals by which it is dominated, using a Pareto-based 

ranking method proposed in (C. M. Fonseca & Fleming, 

1998).  

2.1. Neural network based model design by MOGA 

The problem of designing a neural network model, based on 

training, testing and validation sets, can be considered from 

two points of view: structure selection and parameters 

estimation. In the aspect of structure, the network inputs and 

the number of hidden layers/neurons should be determined 

while, with respect to the network parameters, they should be 

adjusted using a proper training algorithm.  

In this study RBFNN models are considered, which implies 

that the network parameters include the linear output weights 

(w) and the nonlinear parameters, the centres (C) and the 

spreads ( σ ) of the hidden neurons.  In this study, MOGA 

was customized to design RBFNN models as follows: 

Assume that D denotes the whole dataset available for model 

design. Suppose that the training, generalization or testing 

and the validation sets are denoted as T, G and V, 

respectively. Assuming that we want models with input 

features in the range [ , ]m Md d  and number of hidden neurons 

in the range [ , ]m Mn n , MOGA will search that space, forming 

a non-dominated set of models according to the objectives 

specified, which can be minimized, or set as restrictions with 

possible different priorities. Typically, the objectives 

considered belong to [ , ]p s  , where p and 
s denote the 

set of objectives related to the RBFNNs’ performance and 

their structure, respectively. In this work, 
s  refers to the 

model complexity, which is equal to the number of input 

features + 1, multiplied by the number of hidden neurons. For 

regression problems, p is defined as (1): 

 [ ( ), ( )]p   T G   (1) 

where ( ) T  and ( ) G  denote the Root Mean Square Error 

(RMSE) of T and G, respectively. Regarding classification 

problems, p is defined as (2): 

 [ ( ), ( ), ( ), ( )]p FP FN FP FN  T T G G   (2) 

Where (.)FP and (.)FN denote the False Positives (FP) and 

the False Negatives (FN) obtained on the corresponding 

dataset, respectively. Each individual in the population has a 

chromosome representation consisting of two components. 

The first corresponds to the number of hidden neurons, and 

the second is a string of integers, each one representing the 

index of a particular feature, out of the ones allowed.  

Before being evaluated in MOGA, each model has its 

parameters determined by a Levenberg-Marquardt (LM) 

algorithm (Levenberg, 1944)  minimizing an error criterion 

that exploits the linear-nonlinear relationship of the RBFNN 

model parameters (P. M. Ferreira, Ruano, & Ieee, 2000; 

Ruano, Jones, & Fleming, 1991) . The initial values of the 

nonlinear parameters (C and σ )  are chosen randomly, or 

with the use of a clustering algorithm, w is determined as a 

linear least-squares solution, and the procedure is terminated 

using the early-stopping (Haykin, 1999) within a maximum 

number of iterations. For more details of MOGA, please see 

(P. Ferreira & Ruano, 2011). 

3. THE FOUR FILTER DATA SELECTION METHODS 

In this work, our goal is to extract, from the existing whole 

dataset D of size N by d (denoting the number of samples and 

the dimension, respectively.), three sub-datasets, T, G and V, 

containing Nt, Ng and Nv samples, respectively, in such a way 

that T hopefully contains informative samples, which can 

result in models with a high level of performance. Since in 

this study, our goal is not necessarily data reduction, the data 

selection term is used instead of instance selection, 

throughout the rest of the paper. The following addresses the 

four data selection methods employed. 

3.1. Random data selection method  

The simplest way to partition D into T, G and V is using the 

RDS method. In this method, firstly, Nt samples are extracted 

randomly from D (resulting in a reduced set D’) to construct 

T. Subsequently, Ng samples are randomly extracted from D’ 
(resulting in a reduced set D’’) to form G and finally Nv 

samples are extracted from D’’ to obtain V. 
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The idea behind the Hybrid Data Selection method is 

combining the two previous methods, CBDS and EBDS. In 

the first step of HDS method, ApproxHull is applied on D to 

extract the corresponding convex hull points (resulting in a 

reduced set D’) and included in T. Suppose that the number 

of convex hull points is denoted as Nch. In the next step, Nt - 

Nch samples are extracted from D’ using the EBDS method 

and included in T. G and V are obtained from the rest of the 

samples in the same way as in the RDS method. 

4. EXPERIMENTS 

To evaluate the performance of the data selection methods, 8 

benchmarks were considered: 4 binary class classification 

problems, and the others related to regression. For one 

regression problem (Bank) and one classification problem 

(Breast Cancer), three type of models are considered. For the 

other benchmarks, only one model type will be considered. 

Each model type involves four experiments, each one 

corresponding to a data selection method.  

For RBFNN MOGA models, two scenarios will be 

considered. As in the end of each MOGA, we have access to 

a set of non-dominated models, typically we must choose one 

model out of this set. This scenario will be called best model. 

The criterion for selecting the best model out of the set of 

MOGA non-dominated models for the regression problem is 

the minimum RMSE on the common validation set V.  

   /CR TP TN N    (13) 

Denoting as CR the Classification Rate defined in (13), the 

best model for the classification problem will be determined 

in three steps:  first, all models which have the maximum 

CR(V) are selected; from them, the ones with maximum 

CR(G) are chosen; finally, for the latter, the one with 

maximum CR(T) will be selected.  

The second scenario, called ensemble, involves using all non-

dominated solutions. In this scenario, for the regression 

problem, the output of the ensemble scheme is the average of 

all non-dominated models' outputs, whereas for the 

classification, the output of the ensemble scheme is 

determined based on the majority of all models' outputs in the 

non-dominated set.  

The third group of problems uses different models. In the 

case of a regression problem (Bank), the two MOGA model 

types are also compared with MLPs, trained with the 

modified LM algorithm introduced in (P. M. Ferreira, et al., 

2000; Ruano, et al., 1991), which will be applied for the other 

regression benchmarks problems. For the classification 

problems, SVM (Matlab implementation) models are 

employed. For the Breast Cancer problem, SVM models are 

also compared with RBFNN models. For MLPs and SVMs, 

10 experiments were conducted, while for each MOGA 

model, due to its time complexity, 5 experiments were 

executed for Bank and 5 for Breast Cancer. For all models 

and experiments, the four data selection methods were used. 

The datasets were taken from the UCI repository (Frank & 

Asuncion, 2013). Their number of samples (N) and inputs (d) 

is given in Table 1.  

To fairly compare the data selection methods, the existence 

of a common validation dataset, V, which does not have any 

contribution in model design, is needed. Notice, however, 

that in a practical case, each data selection method should be 

applied to the whole dataset, D. This is particularly relevant 

for the methods relying in convex hull (CBDS and HDS 

methods), as their rational is incorporating in the training set 

the convex hull points obtained from the whole dataset.  

Table 1. Size of datasets. 

 Problem N d 

Bank Regression 8192 32 

Puma Regression 8192 32 

Concrete Regression 1030 8 

Wine Quality Regression 4898 11 

Breast Cancer Classification 569 30 

Parkinson Classification 1040 26 

Satellite Classification 2033 36 

Letter Classification 1555 16 

In this paper, as we aim to compare the performance of the 

data selection models in a common validation set, the 

procedures explained previously for constructing the datasets 

are slightly modified. First, a common validation set V for 

each experiment is randomly extracted from the whole 

dataset; the remaining samples will constitute set D, from 

where the sets T and G will be extracted, according to the 

procedures explained before. The number of samples of T, G, 

V and the average number of convex hull points (Nch) 

obtained in all experiments of each problem is given in Tbl 2. 

Table 2. Number of samples of T, G and V and the 

average number of convex hull points. 

 Nt Ng Nv Nch 

Bank 4195 1638 1639 3437 

Concrete 618 206 206 307 

Puma 4915 1638 1639 3686 

Wine Quality 3134 784 980 599 

Breast Cancer 300 76 193 183 

Parkinson 550 136 354 280 

Satellite 1074 268 691 711 

Letter 822 204 529 564 

Regarding the MOGA’s formulation, for all experiments, 

early stopping with a maximum of 100 iterations was 

considered. The number of generations and the population 

size were both set to 100. For all experiments, no restriction 

on objectives was considered, i.e. for the regression problem 

the objectives in (1) are minimized, while for the 

classification problem, the objectives in (2) are minimized. 

The range of the number of neurons was set to [2, 30] for all 

experiments. The range of the number of features for Bank 

and Breast Cancer was set to [1, 32] and [1, 30], respectively.  

In terms of model structure, the MLP models with 2 hidden 

layers used all features as inputs. The number of neurons for 

each hidden layer for Bank and Puma, was 10, while for the 

others was 5. For all MLP models, a maximum of 100 

training iterations was considered. 

Regarding the SVM models for the binary class classification 

problems, for all experiments, all features were used. The 
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corresponding hyper parameters γ and C were set to 0.05 and 

1, respectively. 

5. SIMULATION RESULTS 

For the regression problems, the average of RMSEs of the 

common dataset V over the experiments, for the two MOGA 

models and the MLP model is given in Table 3.  

Table 3. Average RMSEs obtained for dataset Bank. 

 RDS CBDS EBDS HDS 

Best model  0.1908 0.1901 0.1907 0.1903 

Ensemble  0.1870 0.1872 0.1869 0.1878 

MLP 0.1969 0.1963 0.1979 0.1963 

As shown in Table 3, independently of the data selection 

method, MOGA models are always better than MLP models, 

despite the latter being much more complex. In fact, MLPs 

have a model complexity (number of nonlinear parameters) 

of 440 while, using the average number of input features and 

neurons shown in Table 4, we can estimate that MOGA 

models have a maximum complexity of 104. Another 

conclusion that can be taken from Table 3 is that ensemble 

models show better performance than best models. 

Table 4. Average number of features and neurons of the 

best MOGA models for dataset Bank. 

Method Number of features Number of neurons 

RDS 24 4 

CBDS 20 5 

EBDS 25 4 

HDS 25 4 

Regarding all regression models with MLP models, Table 5 

shows the averages RMSEs. 

Table 5. Average RMSEs for the regression problems. 

 RDS CBDS EBDS HDS 

Bank 0.1969 0.1963 0.1979 0.1963 

Concrete 0.1408 0.1417 0.1458 0.1408 

Puma 0.0687 0.0671 0.0676 0.0687 

Wine Quality 0.2361 0.2349 0.2370 0.2370 

Regarding the best data selection method, the bold values in 

Tables 3 and 5 denote the best performance, for each model 

type/problem. Although it seems to indicate that CBDS and 

HDS should be chosen as best, with a slightly advantage of 

the former, the average RMSEs might not be the only 

criterion for that selection. 

To analyse the statistical validity of the results, two tests are 

used: a sign test, and a Wilcoxon signed-ranks test. For the 

former, we counted, for each problem or group of problems, 

the number of times (C) that a data selection method (say j) 

had a better performance than another method (i), for each 

model type. For the latter test, assume that dk is the difference 

between the performance scores (RMSEs or Classification 

Rates) of two approaches on the kth out of N datasets. The 

differences are ranked according to their absolute values; 

average ranks are assigned in case of ties. Let R+ be the sum 

of ranks for the datasets on which the second approach 

outperformed the first, and R− the sum of ranks for the 

opposite. Defining T as 

  min ,T R R   , (14) 

Tables 6 shows the C(i,j) and T values, considering the Best 

and the Ensemble RBFNN models, for dataset Bank. 

Table 6. C(i,j) /T for Bank – best and ensemble models 

C(i,j)/T RDS CBDS EBDS HDS 

RDS  8/19 4/26.5 6/27 

CBDS 2/19  4/21 4/20 

EBDS 5/26.5 6/21  4/23 

HDS 4/27 6/20 6/23  

Analysing the results of Tables 3 and 5 shows the CBDS 

method is the best one.  Statistically, however, according to 

the Wilcoxon test, no method can be considered better than 

the others, while according to the sign test (weaker than the 

Wilcoxon test), we can only say that CBDS outperforms RDS 

method, with a level of significance of 10%. Table 7 shows 

the C(i,j) and T values for the 40 MLP experiments. 

Table 7. C(i,j) /T for all MLP models 

C(i,j)/T RDS CBDS EBDS HDS 

RDS  25/307 17/308.5 22/386.5 

CBDS 13/307  12/238.5 16/306 

EBDS 23/308.5 27/238.5  24/305.5 

HDS 18/386.5 23/306 15/305.5  

Analysing this table, CBDS should also be the chosen data 

selection method, which has, according to both tests, 

statistical validity, with a level of significance of 5%. 

Considering now the classification problems, the average CR 

values for dataset Breast Cancer are shown in Table 8. 

  Table 8. Average CRs for Breast Cancer. 

 RDS CBDS EBDS HDS 

Best model  0.9762 0.9803 0.9762 0.9783 

Ensemble  0.9689 0.9689 0.9700 0.9679 

SVM models 0.9601 0.9668 0.9611 0.9653 

As it can be seen, MOGA models achieve better performance 

than SVM models, despite the huge difference in complexity. 

The average number of features (#F) and neurons for the 

MOGA models (#N) as well as the average number of 

support vectors for SVMs (#S) are given in Table 9. We can 

say that the largest complexity of RBFNN MOGA models is 

42, while the smallest complexity of SVMs is 4691.  

Table 9. Average number of features, neurons of the best 

MOGA models, and support vectors, for Breast Cancer. 

Method #F #N #S 

RDS 8 3 159 

CBDS 10 3 160 

EBDS 13 3 156 

HDS 6 3 159 

In contrast with the results found for Bank, here the 

performance of the ensemble is inferior to the best model. 

Analysing the performance of the four data selection models 

in Tables 8 and 10, CBDS seems again to be the method to 

apply. In the same way as in the regression cases, Table 11 
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The idea behind the Hybrid Data Selection method is 

combining the two previous methods, CBDS and EBDS. In 

the first step of HDS method, ApproxHull is applied on D to 

extract the corresponding convex hull points (resulting in a 

reduced set D’) and included in T. Suppose that the number 

of convex hull points is denoted as Nch. In the next step, Nt - 

Nch samples are extracted from D’ using the EBDS method 

and included in T. G and V are obtained from the rest of the 

samples in the same way as in the RDS method. 

4. EXPERIMENTS 

To evaluate the performance of the data selection methods, 8 

benchmarks were considered: 4 binary class classification 

problems, and the others related to regression. For one 

regression problem (Bank) and one classification problem 

(Breast Cancer), three type of models are considered. For the 

other benchmarks, only one model type will be considered. 

Each model type involves four experiments, each one 

corresponding to a data selection method.  

For RBFNN MOGA models, two scenarios will be 

considered. As in the end of each MOGA, we have access to 

a set of non-dominated models, typically we must choose one 

model out of this set. This scenario will be called best model. 

The criterion for selecting the best model out of the set of 

MOGA non-dominated models for the regression problem is 

the minimum RMSE on the common validation set V.  

   /CR TP TN N    (13) 

Denoting as CR the Classification Rate defined in (13), the 

best model for the classification problem will be determined 

in three steps:  first, all models which have the maximum 

CR(V) are selected; from them, the ones with maximum 

CR(G) are chosen; finally, for the latter, the one with 

maximum CR(T) will be selected.  

The second scenario, called ensemble, involves using all non-

dominated solutions. In this scenario, for the regression 

problem, the output of the ensemble scheme is the average of 

all non-dominated models' outputs, whereas for the 

classification, the output of the ensemble scheme is 

determined based on the majority of all models' outputs in the 

non-dominated set.  

The third group of problems uses different models. In the 

case of a regression problem (Bank), the two MOGA model 

types are also compared with MLPs, trained with the 

modified LM algorithm introduced in (P. M. Ferreira, et al., 

2000; Ruano, et al., 1991), which will be applied for the other 

regression benchmarks problems. For the classification 

problems, SVM (Matlab implementation) models are 

employed. For the Breast Cancer problem, SVM models are 

also compared with RBFNN models. For MLPs and SVMs, 

10 experiments were conducted, while for each MOGA 

model, due to its time complexity, 5 experiments were 

executed for Bank and 5 for Breast Cancer. For all models 

and experiments, the four data selection methods were used. 

The datasets were taken from the UCI repository (Frank & 

Asuncion, 2013). Their number of samples (N) and inputs (d) 

is given in Table 1.  

To fairly compare the data selection methods, the existence 

of a common validation dataset, V, which does not have any 

contribution in model design, is needed. Notice, however, 

that in a practical case, each data selection method should be 

applied to the whole dataset, D. This is particularly relevant 

for the methods relying in convex hull (CBDS and HDS 

methods), as their rational is incorporating in the training set 

the convex hull points obtained from the whole dataset.  

Table 1. Size of datasets. 

 Problem N d 

Bank Regression 8192 32 

Puma Regression 8192 32 

Concrete Regression 1030 8 

Wine Quality Regression 4898 11 

Breast Cancer Classification 569 30 

Parkinson Classification 1040 26 

Satellite Classification 2033 36 

Letter Classification 1555 16 

In this paper, as we aim to compare the performance of the 

data selection models in a common validation set, the 

procedures explained previously for constructing the datasets 

are slightly modified. First, a common validation set V for 

each experiment is randomly extracted from the whole 

dataset; the remaining samples will constitute set D, from 

where the sets T and G will be extracted, according to the 

procedures explained before. The number of samples of T, G, 

V and the average number of convex hull points (Nch) 

obtained in all experiments of each problem is given in Tbl 2. 

Table 2. Number of samples of T, G and V and the 

average number of convex hull points. 

 Nt Ng Nv Nch 

Bank 4195 1638 1639 3437 

Concrete 618 206 206 307 

Puma 4915 1638 1639 3686 

Wine Quality 3134 784 980 599 

Breast Cancer 300 76 193 183 

Parkinson 550 136 354 280 

Satellite 1074 268 691 711 

Letter 822 204 529 564 

Regarding the MOGA’s formulation, for all experiments, 

early stopping with a maximum of 100 iterations was 

considered. The number of generations and the population 

size were both set to 100. For all experiments, no restriction 

on objectives was considered, i.e. for the regression problem 

the objectives in (1) are minimized, while for the 

classification problem, the objectives in (2) are minimized. 

The range of the number of neurons was set to [2, 30] for all 

experiments. The range of the number of features for Bank 

and Breast Cancer was set to [1, 32] and [1, 30], respectively.  

In terms of model structure, the MLP models with 2 hidden 

layers used all features as inputs. The number of neurons for 

each hidden layer for Bank and Puma, was 10, while for the 

others was 5. For all MLP models, a maximum of 100 

training iterations was considered. 

Regarding the SVM models for the binary class classification 

problems, for all experiments, all features were used. The 
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illustrates the C(i,j) and T values for the MOGA models, and 

Table 12 for the all 40 SVM models. 

Table 10. Average CRs for the classification problems. 

 RDS CBDS EBDS HDS 

Breast Cancer 0.9601 0.9668 0.9611 0.9653 

Parkinson 0.6587 0.6692 0.6731 0.6689 

Satellite 0.9900 0.9903 0.9881 0.9903 

Letter 0.9968 0.9985 0.9964 0.9983 

Table 11. C(i,j) /T for Breast Cancer – best and ensemble 

C(i,j)/T RDS CBDS EBDS HDS 

RDS  4/14.5 3/25 3/19.5 

CBDS 2/14.5  3/22.5 3/23 

EBDS 4/25 4/22.5  5/25 

HDS 3/19.5 5/23 4/25  

In the case of MOGA models, the indication found in Tables 

8 and 10 seems to be confirmed, although without statistical 

validity. 

Table 12. C(i,j) /T for all SVM models 

C(i,j)/T RDS CBDS EBDS HDS 

RDS  20/222.5 16/399.5 20/215 

CBDS 8/222.5  9/251.5 9/391 

EBDS 16/339.5 23/251.5  21/292 

HDS 9/215 10/391.5 9/292  

For the SVM models, we can say that, with a level of 

significance of 5%, CBDS is better than RDS and EBDS, and 

HDS is better than EBDS, according to the sign test.; based 

on the Wilcoxon test, HDS and CBDS are better than RDS, 

and HDS is better than EBDS. Using a level of significance 

of 10%, we have the union of both cases, with 5% level. 

6. CONCLUSIONS 

We have compared the performance obtained with MOGA 

designed models against MLPs (for regression) and SVMs 

(for classification). It was shown that MOGA models obtain 

much better performance, despite the much smaller 

complexity. Another conclusion that can be taken is that the 

naïve versions of the ensemble of non-dominated MOGA 

models proposed here, in some cases perform better, while in 

other cases worse than the selected best model.  

In relation with the best data selection methods, we can say 

that the CBDS and HDS should be used, for SVM and MLP 

models. For the RBFNN MOGA models, the same 

conclusion can be taken, although without any statistical 

validity. This can be explained by the small number of 

experiments conducted, due to the high computational time, 

and also to the much better performance obtained by these 

models, compared with MLPs and SVMs, which reduces the 

range of differences between the data selection methods. 

Finally, it is expected that better performance can be 

achieved by the CBDS and HDS, when applied to the whole 

data; this is justified by comparing results obtained here with 

the results shown in (Khosravani, et al., 2016) 
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