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Abstract

The development of novel drugs for the treatmereishmaniases continues to be crucial
to overcome the severe impacts of these diseasdsuman and animal health. Several
bioactivities have been described in extracts froacroalgae belonging to th&ystoseira
genus. However, none of the studies has reporeedhit@mical compounds responsible for the
antileishmanial activity observed upon incubatidnttee parasite with the aforementioned
extracts. Thus, this work aimed to isolate and atterize the molecules present in a hexane
extract ofCystoseira baccatthat was found to be bioactive agaibstshmania infanturm a
previous screening effort. A bioactivity-guided dtianation of theC. baccataextract was
carried out and the inhibitory potential of theléded compounds was evaluated via the MTT
assay against promastigotes and murine macrophagesell as direct counting against
intracellular amastigotes. Moreover, the promas#igdtrastructure, DNA fragmentation and
changes in the mitochondrial potential were asskessanravel their mechanism of action. In
this process, two antileishmanial meroditerpenoi®®)- and (¥)-tetraprenyltoluquinol
(1a/1b) and (R)- and (H)-tetraprenyltoluquinone2@/2b), were isolated. Compoundsand
2 inhibited the growth of thé&. infantumpromastigotes (1= 44.9 + 4.3 and 94.4 + 10.1
MM, respectively), inducing cytoplasmic vacuolipati and the presence of coiled
multilamellar structures in mitochondria as wellaasintense disruption of the mitochondrial
membrane potential. Compoudddecreased the intracellular infection indexsgl€ 25.0
4.1 uM), while compound2 eliminated 50% of the intracellular amastigotes aat
concentration > 88.0 pM. This work identified corapd 2 as a novel metabolite and
compoundl as a biochemical isolated fro@ystoseiraalgae displaying antileishmanial
activity. Compoundl can thus be an interesting scaffold for the dguwalent of novel
chemotherapeutic molecules for canine and humarenrat|eishmaniases studies. This work

reinforces the evidence of the marine environmsrgaarce of novel molecules.

Keywords
Leishmania infanturmmacroalgaeCystoseira baccataneroterpenoids; tetraprenyltoluquinol;

tetraprenyltoluquinone.
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Abbreviations
BALBY/c, albino mouse laboratory-bred strain of tlmise mouse;

CC,, cytotoxic concentration that causes the deaB0&6 of the viable cells;

COSY, correlation spectroscopy;

DEPT, distortionless enhancement by polarizatiandfer spectrometry;
FBS, fetal bovine serum;

HMBC, heteronuclear multiple-bond correlation spestopy;

HRESIMS; high-resolution electrospray ionisationssiapectrometry;
HSQC, heteronuclear single-quantum correlationtspsoopy;

IC,, half-maximal inhibitory concentration;

IR, infrared,;

LRESIMS, low-resolution electrospray ionisation apectrometry;
MTT, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetzalium bromide;
NMR, nuclear magnetic resonance spectroscopy;,

NOESY, nuclear Overhauser effect spectroscopy;

RCF, relative centrifugal force;

SDS, sodium dodecyl sulfate;

TLC, thin-layer chromatography;

TMS, tetramethylsilane;

UV, ultraviolet;

Aym, mitochondrial membrane potential.



88 1. Introduction

89 Leishmaniases are a group of infectious diseasasedaby obligate intracellular

90 protozoa of theLeishmaniagenus. Endemic in 98 tropical and subtropical toesm and

91 affecting 12 million people, leishmaniases may #cistaneous, mucocutaneous and diffuse

92 forms as well as the potentially fatal viscerahfiofAlvar et al., 2012). Visceral leishmaniasis

93 causes considerable morbidity in 200-400 thousadividuals every year, with extreme

94  suffering and financial loss, especially in the st populations of the Indian subcontinent

95 (Mondal et al., 2014). Currently, leishmaniases ameong the most neglected tropical

96 diseases, facing problems of resistance of thespart the available therapeutic molecules.

97 The need for the discovery and development ofradtere drugs allowing more efficient and

98 effective treatments is thus quite urgent (Fredasior et al., 2012).

99 Nowadays, marine natural products are recognizedp@serful reservoirs of novel,
100 chemically diverse molecules with wide applicalilib health sciences (Tempone et al.,
101 2011). Occurring worldwide, mainly in the rocky striates of the Mediterranean Sea and the
102  adjoining Atlantic coastsCystoseiraC. Agardh (1820) genus encompasses 39 species of
103  brown macroalgae (Guiry and Guiry, 2015). Severadtivities such as anti-inflammatory,
104  antiproliferative, antioxidant (Mhadhebi et al.,14), enzyme inhibitory (Ghannadi et al.,
105  2013), cytotoxic (Khanavi et al., 2010), antifun@abpes et al., 2013), antiviral (Ibraheem et
106  al., 2012), antibacterial (Tajbakhsh et al., 20419 antiprotozoal (Spavieri et al., 2010) have
107 been detected in this algal genus. Despite thensixte chemical studies available for the
108  Cystoseiragenus, there have been only a few reports desgrthim antileishmanial potential
109 effects of its crude extracts, and no informaticasviound on the compounds responsible for
110 the inhibitory effects on theeishmaniaparasites (Amico, 1995; de Los Reyes et al., 2012)
111 As part of ongoing research on the identificatidnaatileishmanial compounds from the
112 Cystoseiragenus, this work describes the bioactivity-guidegctionation of the hexane
113 extract from Cystoseira baccataand the effect of the extract, fractions and isola
114  compounds on the promastigote and amastigote fofosishmania infantum
115
116 2. Material and Methods

117 2.1 General Experimental Procedures

118 Optical rotations were measured in a JASCO DIP-@g@al polarimeter (Na filterh =
119 588 nm). UV spectra were recorded using a UV/wsibBhimadzu 1650-PC

120  spectrophotometer. IR spectra were obtained with SAimadzu IR Prestige-21



121
122
123
124
125
126
127
128
129

130

131
132
133
134
135
136

137

138
139
140
141
142
143
144
145
146
147
148
149
150
151
152

spectrophotometefH, *C, DEPT, COSY, HSQC, HMBC and NOESY NMR spectraaver
recorded in a Bruker Avance Ill 500 spectrometeerating at 500 and 125 MHz, 16 and
3C nuclei, respectively. CDg(Aldrich) was used as the solvent with TMS asititernal
standard. HRESIMS spectra were measured with a dBrikaltonics MicroTOF QI
spectrometer while LRESIMS spectra were recordedaoviG Platform Il spectrometer.
Silica gel (Merck, 230-400 mesh) and Sephadex LHAiiersham Biosciences) were used
for column chromatographic separation, while silgal 60 PEss (Merck) was used for

analytical (0.25 mm) and preparative TLC (1.0 mm).

2.2 Algal material

Cystoseira baccatdiomass was collected in July 2012 in Areosa, ¥ia@o Castelo,
Portugal (41°42'27.60”N, 8°51'44.90"W). After delction, biomass was cleaned and
cryodesiccated. Voucher specimen (MB-1) was depdswithin the Laboratory of the
Marine Biotechnology Group - MarBiotech at the CGentf the Marine Sciences of the

University of Algarve (Faro, Portugal).

2.3 Extraction and isolation of compounds

Dried and powdered biomass (120 g) was exhausteshacted with hexane in a Soxhlet
apparatus. After evaporation of the solvent un@eluced pressure, 1.3 g of crude extract
were obtained. Part of this extract (0.6 g) wagestido column chromatography over $i0
eluted with hexane containing increasing amount&t@Ac (up to 100%), followed with
CHCI; containing increasing amounts of MeOH (up to 1008&nerating 13 fractions (1 —
13). As fraction 10 (370.0 mg) displayed activibyvards promastigote forms bfinfantum
it was fractionated over SiCcolumn, and eluted with hexane:EtOAc 1:1 yield®gub-
fractions (A — F). Bioactive sub-fraction E (195 Jngas purified in a Sephadex LH-20
column being eluted with hexane:gH, 1:4, CHCIl,:Me,CO 3:2 and 1:1 (Cardellina II,
1983) originating 4 groups (E1 — E4). Bioactive ypoE4 (65.3 mg) was subjected to
preparative TLC (hexane-EtOAc, 7:3, twice) to aff@ompoundsla/lb (23.2 mg; 0.30%)
and2a/2b (2.5 mg; 0.04%) (Fig.1).

3R - tetraprenyltoluquino{1a) and 3S — tetraprenyltoluquino{lb). Yellowish oil; *H
NMR and®*C NMR (500 MHz, CDGJ) data, see Table 1; LRESIM8/z 441 [M+H]" and
463 [M + NaJ (calcd for GgH4104, 441, and ggH4004Na, 463, respectively).
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3R — tetraprenyltoluguinonga) and 3S — tetraprenyltoluquinon@b). Colourless oil;
[a]o®® = + 0.06 € 0.15, CHC}); UV (MeOH) Amax (log €) 352 (2.0), 248 (3.4) nm; IR (KBr)
Vmax3400, 1670, 1480, 1180, 1060 ¢ntH and™*C NMR (500 MHz, CDG)), see Table 1
and Fig. 2; HRESIMS (positive mode)/z455.2776 [M+H] and 477.2604 [M+N&](calcd
for CagH3905 and GgH3s0sNa, 455.2797 and 477.2616, respectively).

2.4. Parasites, mammalian cells and animal mainteea

L. infantum strain (MHOM/PT/88/IMT-151) promastigotes were ahed from the
cryobank of the Instituto de Higiene e Medicina gical (Universidade Nova de Lisboa,
Portugal) and cultivated in M199 medium supplementegh 10% foetal bovine serum (FBS),
penicillin (10 U/L), streptomycin (0.01 mg/L) andaof human male urine at 25 °C.
Peritoneal macrophages from BALB/c mice were cattd in RPMI-1640 medium
supplemented with 10% FBS, L-glutamine (2 mM), p#im (50 U/L) and streptomycin
(0.05 mg/L) at 37 °C in humidified atmosphere va# CQ. BALB/c mice were obtained in
the Animal Facility of the School of Medicine of G&aulo University — Brazil. These
animals were maintained in accordance with thetutginal guidelines regarding the welfare
of experimental animals and with the approval & Animal Ethics Committee of S&o Paulo
University (322/12).

2.5. Activity againsteishmanigoromastigotes

For the determination of the antileishmanial atfiviL. infantum promastigotes in
stationary phase (2xiOparasites/mL) were incubated with the hexane et a
concentration of 25@ug/mL for 24h on 96-well plates. Using the same roéthogy, the
fractions obtained during the bioactivity-guideddtionation were tested at a concentration
of 50ug/mL. At a later stage, compounti®nd2 were added at concentrations ranging from
0.9 to 227.0 and 0.9 to 220ub/, respectively. Parasites treated with miltefosiehe half
maximal inhibitory concentration (kg = 23.1 uM) were used as positive control.
Promastigotes incubated with M199 medium were @sedegative control. Parasite viability
was determined by the MTT colorimetric assay (Dettal., 2005; Dal Picolo et al., 2014).
Briefly, after incubation plates were centrifugddl@ °C, using an RCF of 1479gxfor 10
min, washed three times with PBS, and supernathstarded. Afterwards, 50 of MTT (5
mg/mL in PBS) were added to each well and plate® weincubated at 37 °C for 2 h. Upon
incubation, 5QuL of SDS were added to each well and plates wengbated for 18 h in order
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to dissolve the formazan crystals. Absorbance waasored at 590 nm using a Thermo
Scientifc Multiskan™ FC Microplate Photometer. Reswere expressed in terms of parasite
viability (%) relative to non-treated parasites d@hd half maximal inhibitory concentration
(ICs0; UM).

2.6. Ultrastructural alterations of the promastigst

L. infantumpromastigotes in stationary phase (2 % d€lls/mL) wereincubated at 25 °C
for 24 h on 96-well plates with compounti&nd?2 at their 1G values, i.e. 44.9 uM of 94.4
UM, respectively. Non-treated promastigotes weesl s negative control. After incubation,
the plate was centrifuged at 1473 %or 10 min at 4 °C, and washed with PBS three dime
Pellets were fixed in 0.1% tannic acid dissolved2i®% glutaraldehyde in a 0.15 M
phosphate buffer pH 7.2 and incubated for 1h at aH@se were afterwards contrasted in 1%
osmium tetroxide and a 0.5% uranyl acetate solufmnl12 h; then the samples were
embedded in araldite resin (Yamamoto et al., 20Ufiyathin sections (70 nm), obtained
with a ultramicrotome Reichert and double contrhstéh 2% uranyl acetate and 0.5% lead

citrate, were examined using a JEOL 1010 transomssliectron microscope.

2.7. Promastigotes DNA integrity

To detect whether the compounds induced fragmentatnL. infantumnuclear DNA,
promastigote forms in stationary phase of growth (B¢ cells) were incubated with &
concentrations of compounds(44.9 uM),2 (94.4 uM) and hydrogen peroxide (i) as
an inductor of DNA damage in parasites (Das et@l]1) for 24 h at 25 °C. Non-treated cells
were used as control. After incubation, plates veergrifuged at 1479 g for 10 min at 4 °C,
and the supernatants discarded. Parasites pellets extracted with a Macherey-Nagel
nucleoSpin® Blood kit according with the manufaeturecommendations and ran on a 2%

agarose gel, 100 V for 90 min.

2.8. Promastigote transmembrane mitochondrial pidén

In order to evaluate the influence of compouhan the promastigote mitochondrial
membrane potentialA®m), parasites in the stationary phase (Pxp@rasites/mL) were
incubated with compound and miltefosine at their ¥g values (44.9 and 23.1 uM,

respectively) for 24h on 96-well plates. Mitochaatiembrane potential was evaluated



218
219
220
221
222
223
224
225
226
227
228
229

230

231
232
233
234
235
236
237
238
239
240
241
242

243

244
245
246
247
248
249
250

using the widefield automated microscope Mitoscrggr{(BD Biosciences) according to the
manufacturer's recommendations (Levy et al., 20d@mnamoto et al., 2015). Briefly, cells
were incubated with working solution, containinge tdC-1 (5,5,6,6-tetrachloro-1,1,3,3-
tetraethylbenzimidazolylcarbocyanine iodide) fludymome, for 15 min at 37 °C in an
atmosphere of 5% CGOAYmM induces the uptake of JC-1 monomers into the timmeal
mitochondria. Once inside the organelle, JC-1 marsraggregate, exhibiting high levels of
red fluorescence and¥m is assessed through the determination of theepcesof JC-1
fluorochrome inside the mitochondria. ImageXpfesticro XLS Widefield High-Content
Analysis System and transfluor MetaXpress softwegee used to determine the presence of
J-aggregates in nine sites per well and three vpaistreatmentA¥Ym was expressed as a

percentage of J-aggregates per cell.

2.9. Cytotoxicity against murine macrophages

To determine the compounds toxicity vitro, murine peritoneal macrophages, were
seeded in RPMI-1640 at a density of® Xlls/mL and incubated overnight at 37 °C in
humidified atmosphere with 5% GQCallowing the cells to adhere to the plate backgdd
Compoundsl and2 were tested for 24h at concentrations ranging féo#nto 227.0 and 0.9
to 220.0uM, respectively. Miltefosine control cells were utated with RPMI-1640 medium
at concentrations from 3.8 up to 49QuK1. Cell viability was evaluated by the MTT
colorimetric assay (Ferrari et al., 1990; Dal Ricet al., 2014), as described above, for the
determination of the activity againseishmanigpromastigotes. Absorbance was measured at
590 nm using a Thermo Scientific Multiskan™ FC Miglate Photometer. Results were
expressed in terms of the cytotoxic concentratiansmg a 50% decrease in cell viability
(CCsp; UM) relative to non-treated cells (100 %).

2.10. Activity against_eishmaniantracellular amastigotes and NO production

Peritoneal macrophages of BALB/c mice were collgdtg intraperitoneal lavage, seeded
on 24-well plates (IOcells/mL) and incubated at 37°C with 5% Qfiring 2h for cell
attachment. Afterwardd,. infantumpromastigotes in stationary phase were added db ea
well at an infection ratio of 10 promastigotes pel, being further incubated at 37 °C for
24h. Infected macrophages were treated wtmpoundsl and?2 at concentrations ranging
from 7 to 90uM to determine the correspondingstCSupernatants were collected for nitric

oxide (NO) determination after 24h and intracelldanastigote burden was microscopically
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assessed upon Giemsa staining for determinatiothefinfection index [% of infected
macrophages x internalized amastigote forms / nphege)] (Passero et al., 2015) and the
inhibitory concentration allowing 50% reductiontbg infection index (I6) was estimated.
Miltefosine was used as positive control. Culturgpeynatants of treated and control
macrophages were used for NO determination thatpea®rmed using the Measurelif
High-Sensitivity Nitrite Assay Kit in accordancetlvithe manufacturer's recommendations
(Life Technologies). The NO concentration was dateed using a calibration curve
prepared with several known concentrations (2.7, BL, 22, 33, 44 and %8/) of nitrite as
standard. Results were expressed as NO produgatieh) &nd compared with untreated
infected and non-infected macrophagéde selectivity index (SI) was obtained by
calculating the ratio of the Gg of the macrophage by the JCof the intracellular

amastigotes.

2.11. Statistical analysis

Bioassays results were expressed as mean z staedand of the mean (SEM) of
replicates samples from at least two independesdyas The 16y values were calculated
fitting the data as a non-linear regression usingose-response inhibitory model, in the
GraphPad Prism V 5.0 program. Studemiest was used to determine whether differences
between means were significant at different leyels 0.05 ancp < 0.01).

3. Results and Discussion

The hexane extract from th@. baccatawas incubated with promastigote forms Lof
infantumfor 24h, and cell viability was determined by mearighe MTT assay. As this
extract decreased the viability of the parasit& 4% at a concentration of 2p@/mL, it was
selected for further study. Bioactivity-guided fiaoation afforded compound$ and 2
(Fig. 1).

Compoundl was obtained as an optically active ailf = + 17.8 (CHCL, ¢ 2.7).
Structural evidence was obtained by analysis of N(WR **C and DEPT 139, HREIMS
spectra and comparison with those data previoggigrted in the literature to -(1a) and
(39-(1b) tetraprenyltoluguinol, previously isolated froth baccata(Valls et al., 1993). In
addition, some corrections in the attributions beémical shifts of C-18 and C-19 fiC
NMR spectrum were carried out, based on the HMB&Etsal analysis (Table 1). Compound
2, also obtained as an optically active colourlesgadih = + 0.06 (CHCL, ¢ 0.15), appeared
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to be homogeneous on the TLC chromatograms, rexgd#fiat it is a mixture of closely
related derivatives. Th&H NMR spectrum of compoun® revealed some similarities with
compoundl - two peaks assigned to hydrogens of aromaticatdg 7.15 (d,J = 3.0 Hz, H-
3’) and 7.00 (d,J = 3.0 Hz, H-5’), one methoxyl group &t 3.78 (s) as well as five singlets
assigned to methyl groups &t 1.20 (H-20), 1.25/1.26 (H-17), 1.13/1.11 (H-16)0%1.04
(H-18), and 0.91/0.83 (H-195°C and DEPT 135NMR spectra confirmed the presence of
aromatic ring due the peaks at radgel51.9 — 114.6 (C-1’ — C-6’), and one methoxyl grou
at &c 55.7. Additionally, peaks assigned to a carbormglug atdc 192.2/192.1 (C-1), to
carbinolic carbons abc 81.3/81.2 (C-3) and 71.0 (C-15) as well as gf-unsaturated
carbonyl carbon adc 153.3/154.3 (C-5), 133.5/134.0 (C-13) and 208.8/2qQC-12) were
observed. Finally, HRESIMS showed the [M+Hind [M + Na] quasimolecular ion peaks
atm/z455.2776 and 477.2604, respectively, indicatirgrtiolecular formula §HssOs. The
connectivity between hydrogens and carbon atomsresasaled by analysis of the HMBC
spectrum as showed in Fig. 2. The correlations &éetwsignals ady 7.15 (H-3’) and
2.56/2.57 (H-2) withdc 192.2/192.1 (C-1) as well as betwegi2.70 (H-4) withdc 81.3/81.2
(C-3) and 133.5/134.0 (C-13) indicated that compb2rcontained one additional carbonyl
group at C-1. Based on these results, it was pessibhdentify2 as epimers of &-(2a) and
(39-(2b) tetraprenyltoluquinones.

In vitro antiparasitic activity and cytotoxic studies ok tlbompoundsl and 2 were
evaluated by the colorimetric MTT method againginpastigote forms oE. infantumand
murine macrophages, respectively (Table 2). Comgdudisplayed an 1§ value of 44.9 +
4.3 uM against promastigote formslofinfantum The cytotoxicity against mouse peritoneal
macrophages (Gg= 126.6 =+ 21.1 uM) was similar to that of the refece drug, miltefosine
(130.3 £ 17.2 uM). Compour@ishowed lower activity against the promastigoten®i(1Gs
=94.4 + 10.1 uM), and higher toxicity to the moysgitoneal macrophages (6G 84.5 +
12.5 uM).

To assess the alterations induced by the compoondbsepromastigotes forms df.
infantum transmission electron microscopy images were ie@du(Fig. 3). Important
changes were observed with both treatments, inoduldiss of the typical fusiform shape (Fig.
3A). Ultrastructural analysis revealed morphologh@nges in parasites treated with thgy IC
concentrations of both compountigFigs. 3B and 3C) and (Figs. 3D and 3E). Moreover,
cellular vacuolization was observed, which mightabeonsequence of cytoplasmic organelle

disruption (Figs. 3B and 3D). When treated with poond 1, parasites presented coiled

10
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multilamellar structures within the mitochondriagF3C). These structures have been shown
to be a consequence of starvation processes céuysddficient mitochondrial activity or
autophagic mechanisms caused by the action of claéroompounds on these organelles
(Lockshin and Zakeri, 2004). If left unchecked, bptocesses may result in the removal of
the damaged organelles as well as cell death (kéisfa et al., 2010). Previous studies have
described similar structures in promastigotes dfiedint Leishmaniaspecies treated with
distinct natural products (Monte Neto et al., 200d9mpound inducednoticeable changes
in the ultrastructure of the cell, in particulaetbccurrence of pyknotic nuclei, which was
accompanied by the disappearance of the chromasoceated with the nuclear inner
membrane (Fig. 3D).

Overall, these compounds seem to induce parasdih dierough different mechanisms.
Other reports have shown thatishmaniaapoptosis occurs in response to different drugs
(Holzmuller et al., 2002). In order to evaluatdhé alterations observed in the nuclei were
associated with DNA fragmentation and consequentith programmed cell death,
promastigote DNA was analysed through horizontattebphoresis. This analysis did not
reveal any fragmentation of the genomic DNA wheonpaistigote forms df. infantumwere
treated with the 165 concentrations of compoundsand 2 (Fig. 4A), suggesting that the
observed cytotoxic effect might not be associatéith ywrogrammed cell death. Although
chromatin condensation culminating in nucleolytigkiposis is usually accompanied by
macronuclear DNA digestion, generating oligonuobeoal fragments of low molecular
weight (Kobayashi and Endoh, 2003), non-nucleolyy&notic processes have also been
described previously (Burgoyne, 1999).

As Leishmaniecells have a single mitochondrion, the proper fi@ming of mitochondria,
including the stability of their membrane potential vital for the survival of the parasite.
This organelle is usually considered as a gooctatdr of cellular dysfunction and therefore
IS an interesting target for chemotherapeutic swdiSouza et al., 2009). Because the
variation of the mitochondrial membrane potentia¥’(n) in differentLeishmaniaspecies
exposed to various drugs has been reported (Beittal., 2014) and that changes were
observed in the morphology of the mitochondria mfnpastigotes treated with compouhd
the AYm in cells incubated with the latter chemical waaleated. This was carried out in
order to elucidate possible mechanisms of cellrdeatuced by the compound displaying the
most potent activity againdt. infantumpromastigotes. This parameter was determined by
assessing the presence of JC-1 fluorochrome inidemitochondria using a widefield

automated microscopeA¥Ym induces the uptake of JC-1 monomers into the tiomeal
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mitochondria. Once inside the organelle, JC-1 marsmggregate, exhibiting high levels of
red fluorescence. At the ig compoundl induced a significantp(< 0.01) decrease in
fluorescence-emitting cells (133.3 + 8.5 J-aggreg/atell) as compared to non-treated (762.5
+ 36.7 J-aggregates/well) promastigotes (Fig. 4B)yresponding to a disruption of 83% of
the A¥m. This effect was higher than that observed wititefosine (216.0 + 22.6 J-
aggregates/well), which disrupted th¢'m by only 72%. Interestingly, similar dropsAt¥'m
coupled with changes in the mitochondrial ultradtiee have also been detected when using
an iron chelator againkt (V.) braziliensigMesquita-Rodrigues et al., 2013).

When tested againdt. infantuminfected macrophages the tetraprenyltoluquirl (
applied at concentrations of 34 and 66 UM decretisethfection index by 64.5% and 66.3%,
respectively, showing an égof 25.0 + 4.1 uM and a selectivity index of 5.0gamst the
peritoneal macrophages (Fig. 5A; Table 2).

Only five compounds isolated from marine algae withileishmanial activity have been
reported previously (da Silva Machado et al., 2adds Santos et al., 2010, 2011; Soares et
al., 2012). However, none of the studies was alfoystoseiramacroalgae. Reported
sesquiterpenes obtusol g 9.4uM; da Silva Machado et al., 2011) and elatol{l€ 13.5
uM and 0.45uM) from the red algd.aurencia dendroidea(daSilva Machado et al., 2011,
dos Santos et al., 2010) showed strong activityingge.. amazonensigntracellular
amastigotes. However, the triquinane sesquitergeamted from the same algae was
significantly less effective (IC50 = 217.#M; da Silva Machado et al., 2011). In addition, 4-
acetoxydolastane and dolabelladienetriol, isolafiesn the brown algaCanistrocarpus
cervicornis (ICso = 12.3uM; dos Santos et al., 2011) abictyota pfaffii (ICso = 44.0uM;
Soares et al., 2012), respectively, were also deatminst the same species and form of
Leishmania Therefore, the activity of compourddwas in the range of that reported for the
aforementioned diterpenes.

Despite the lower activity of compou@dagainst promastigotes @&= 94.4 + 10.1), it
was higher than the effect reported for triquingr@s, = 195.5uM) on promastigotes.
However, similarly to what has been reported fauinane (da Silva Machado et al., 2011),
the treatment with the tetraprenyltoluquino@® did not decrease the infection index (Fig.
5A).

During the infection byLeishmania NO is released by macrophages to eliminate
intracellular amastigotes (reviewed by de Almeitlale 2003). In addition, NO production
can be triggered by natural compounds, includirggéhfrom algae (Robertson et al., 2015).

In the present study, infected peritoneal macropbaigeated with compounds and 2
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produced low or undetectable amounts of NO as coedpto controls. The NO released
when the lowest concentrations (8.4 and 17 uM) vegelied to the cells was residual,
suggesting that the leishmanicidal effect obsefeed was not related to NO production by
the host macrophages (Fig. 5B) and that these congso did not display an
immunomodulatory effect. These results are in @gent with Silva Machado et al. (2011)
who observed that triquinane, elatol and obtusdl niot promote enhanced NO levels,
indicating that leishmanicidal effect of these campds might be mediated by a mechanism
that does not involve the release of this signglfimolecule by the host cell.

In conclusion, this is the first report describitige identification of compounds from
Cystoseiramacroalgae displaying activity againseishmaniaparasites. In addition, the
isolation of tetraprenyltoluquinon&)(as a novel metabolite from algae of gstoseira
genus is described. Concerning the particular ctanstructure of these compounds, our
data suggest that the presence of the carbonylpgnouC-1 could play a role in the
antileishmanial activity of the compoundsand 2. Although not as active as miltefosine,
tetraprenyltoluquinol X) displayed significant antileishmanial activity dancould be
considered as an interesting scaffold for the dgpmknt of novel chemotherapeutic
molecules for canine and human visceral leishmasiagudies. Furthermore, this work

reinforces the evidence of the marine environmsrgaarce of novel molecules.
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Fig. 1. Structures of the tetraprenyltoluquinalg{1b) and tetraprenyltoluquinone®4g-2h)
isolated fromC. baccata

18



544

545
546

547
548

7 ) 2a (3R)-tetraprenyltoluquinone

2b (3S)-tetraprenyltoluquinone

Fig. 2. HMBC of the tetraprenyltoluquinone®4-2b) isolated fromC. baccata

19



549

CONTROL COMPOUND 1 COMPOUND 2

550
551 Fig. 3. Effect of compounds and 2 on the ultrastructure df. infantum promastigotes.

552  Parasites were treated with/1b (44.9 uM) and treated with compouBd/2b (94.4 uM). N
553 — nucleus, FP - flagellar pocket, K — kinetoplagt,— mitochondrion, V — vacuole, * -
554  disappearance of the chromatin associated withdlkear inner membrane
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572  Tables

573

574 Table 1.*H and™*C NMR data (500 and 125 MHz, CRCS/ppm) for compounds (a/b)
575 and2 (a/b)

Compounc la 1b 2a 2b
Position  §c, type &y (JinHz) 3¢, type Oy JinHz) dc type Oy (dinHz) ¢ type Oy (JinHz)

1 22.7,CH 2.79,(m) 22.6,CH 2.79, (m) 192.2,C - 192.1,C -

2 325,CH 1.80,(m) 33.6,CH 1.80,(m) 47.8,ChH 2.56,(m) 486,CH 2.57,(m)

3 76.4, C - 76.2, C - 81.3,C - 81.2,C -

4 43.6,CH 2.66,(s) 45.2,ChH 2.66,(s) 44.1,CH 2.70,(s) 44.8,CH  2.70,(s)

5 153.7,C - 1545, C - 153.3,C - 154.3,C -

6 44.3,CH 257,(m) 44.7,ChH 257, (m) 44.1,CH 2.60,(d, 4.0) 44.1,CH 2.63, (d, 4.0)
2.60, (m) 2.60, (m) 2.68, (d, 4.0) 2.68, (d, 4.0)

7 44.8,C - 44.8,C - 449, C - 44.9,C -

8 35.0,CH 1.54,(m) 35.0,CH 1.54,(m) 35.0,CH 1.54,(m) 35.0,CH 1.54,(m)
1.73, (m) 1.73, (m) 1.73, (m) 1.73, (m)

9 18.8,CH 1.74,(m) 188,CH  1.74,(m) 188,CH 174,(m) 188,CH 1.74,(m)
10  29.3,CH 1.46,(m) 29.3,CH  1.46,(m) 29.4,CH 1.40,(d,13.0 29.7,CH 1.42, (d, 13.0)

11 54.9,C - 54.9,C - 54.9,C - 54.9,C -

12 208.5, C - 208.9, C - 208.0, C - 208.1, C -

13 132.9,C - 133.3,C - 1335, C - 134.0,C -

14  39.4,CH 2.45,(d,15.C 39.9,CH 2.45,(d,15.0 39.4,CH 2.54,(d, 15.0 39.6, CH 2.54, (d, 15.0)
2.73, (d, 15.0) 2.73, (d, 15.0) 2.59, (d, 15.0) 2.59, (d, 15.0)

15 70.8, C - 71.1,C - 71.0,C - 71.0,C -

16  28.8,CH 1.12,(s) 28.8,CH  1.14,(s) 291,CH  111,(s) 29.1,CH 113, (s)
17  305,CH 1.24,(s) 31.6,CH  1.19,(s) 30.8,CH  125(s) 31.3,CH 1.26,(s)
18  21.1,CH  1.09,(s) 21.1,CH  1.03,(s) 21.1,CH  1.04,(s) 21.1,CH  1.09, (s)
19  224,CH 091,(s) 225CH  083,(s) 224,CH 083,(s) 225CH 0.91(s)
20  24.1,CH 1.28,(s) 245CH  1.28,(s) 239,CH  1.20,(s) 24.2,CH  1.20,(s)

1 145.2, C - 145.3,C - 167.8, C - 167.8, C -
2 120.4, C - 120.4, C - 119.6, C - 119.6, C -
3 111.1, CH 6.45, (d, 3.0 111.2, CH 6.46, (d, 3.0) 114.6, CH 7.15, (d, 3.0) 114.6, CH 7.16, (d, 3.0)
4 152.6, C - 152.6, C - 151.9, C - 151.9, C -
5 115.2, CH 6.59, (d, 3.0 115.3, CH 6.60, (d, 3.0) 104.5, CH 7.00, (d, 3.0) 104.5,C 7.01, (d, 3.0)
6 127.0,C - 127.2,C - 1265, C - 126.5, C -

Me-6' 16.6,CH  2.16,(s) 16.8,CH  2.17,(s) 16.2,CH  221,(s) 16.4,CH  2.23,(s)
OMe-4' 556,CH  3.73,(s) 556,CH  3.74,(s) 55.7,CH 3.78,(s) 55.7,CH  3.78,(s)
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578
579

580

Table 2. Effect of the compoundsand2 againsti. infantumpromastigotes and intracellular
amastigotes and mouse peritoneal macrophages

: Intracellular Peritoneal c
Compounds Promastigotes amastigote’s macrophagé’s Sl
1 449+4.3 25.0x4.1 126.6 £ 21.1 5.04
2 944 +10.1 > 88.0 84.5+125 <0.96
Miltefosine 23.1 £0.0 20.3+1.3 130.3+17.2 6.42

%Cs - Half maximal inhibitory concentration in uMCGCs,- Cytotoxic concentration that causée death ¢
50% of the viable cells in uMSI — Selectivity index concerning the activity atstithe intracellular amastigotes.
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Highlights

Tetraprenyltoluquinols and tetraprenylquinones from Cystoseira baccata.

Tetraprenyltoluquinols displayed antileishmanial activity

Tetraprenyltoluquinols induce aterations on promastigotes morphol ogy.

Tetraprenyltoluquinol disrupt the Leishmania mitochondrial membrane potential.



