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Repeated Game Theory as a Framework for
Algorithm Development in Communication

Networks
J. Coimbra, N. Correia

Abstract—This article presents a tutorial on how to use
repeated game theory as a framework for algorithm development
in communication networks. The article starts by introducing the
basis of one-stage games and how the outcome of such games can
be predicted, through iterative elimination and Nash equilibrium.
In communication networks, however, not all problems can
be modeled using one-stage games. Some problems can be
better modeled through multi-stage games, as many problems in
communication networks consist of several iterations or decisions
that need to be made over time. Of all the multi-stage games, the
infinite-horizon repeated games were chosen to be the focus in
this tutorial, since optimal equilibrium settings can be achieved,
contrarily to the suboptimal equilibria achieved in other types
of game. With the theoretical concepts introduced, it is then
shown how the developed game theoretical model, and devised
equilibrium, can be used as a basis for the behavior of an
algorithm, which is supposed to solve a particular problem and
will be running at specific network devices.

Index Terms—Game Theory, Repeated Game Theory, Com-
munication Networks, Algorithm Development.

I. I NTRODUCTION

GAME theory is a mathematical tool that aims to study
and predict the outcome of situations where two or more

agents have conflicting interests [1]. The field of game theory
has its roots in decision theory and, in fact, it can be thought
as a generalization of decision theory for multiple agents [1].
As a field on its own, game theory was pioneered by John von
Neumann and Morgenstern in [2], laying the foundations of
current game theory. A general formal description of games
was presented and several zero-sum games were analyzed and
solutions to the games were devised.

Following the concepts published in [2], many other contri-
butions were published, such as the first mathematical discus-
sion of the prisoner’s dilemma in [3] and the Nash equilibrium
in [4], probably one of the most relevant contributions. Nash
equilibrium was quite important because it is applicable toa
wide variety of game types [1], [4]. The field kept evolving
with the research and analysis of several types of games
such as extensive form and repeated games, which will be
presented in this tutorial [5], [6]. Game theory also laid down
the foundations for modern disciplines, which are very active
nowadays, such as algorithmic game theory and mechanism
design [7], [8].
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Since its inception, game theory has been researched and
used mainly for economical purposes, but other fields started
to use it as well. For instance, game theory was extensively
applied to biology, mainly due to the work from John May-
nard Smith who developed the evolutionary stable strategy
[9]. Other fields like political and social sciences followed
and started using game theory [10]. Computer science and
communication networks are no exception and much research
emerged in the frontier between computer science and game
theory. Most of the research in computer science and game
theory has been related to complexity theory, where several
algorithms to compute Nash equilibrium have been proposed
and studied [11]. As for communication networks, game
theory has been used mainly for analytical purposes, where
devices, such as routers, are players with selfish interests.
Nonetheless, there are also some works where game theory is
used in communication networks as a framework for algorithm
development [12], [13].

In this tutorial, it is shown how repeated game theory can
be used as a framework for algorithm development in commu-
nication networks, instead of using it just as an analyticaltool.
No prior knowledge on game theory is assumed. That is, the
tutorial starts by introducing the basis of one-stage gamesand,
with such knowledge, continues onto dynamic and repeated
games. It is shown how optimal Nash equilibrium strategies
can be obtained with infinite-horizon repeated games, while
the equivalent one-stage version have suboptimal Nash equilib-
ria and how that can be used as a support for the development
of an algorithm to be run at devices in the network. This
tutorial also exemplifies, with a simplified model taken from
[12], the use of game theory to model a problem, devise an
equilibrium strategy and develop an algorithm that mimics
such equilibrium strategy.

The rest of this paper is organized as follows. The next
section introduces one-stage games, pure and mixed strategies
and Nash equilibrium. In Section III, multi-stage games are
presented together with Nash equilibrium and backward induc-
tion. Repeated games are then presented in Section IV, as well
as the Nash equilibrium in infinite-horizon repeated games and
the folk theorem. An example is then shown in Section V, from
the model to the development of the algorithm. The tutorial
finalizes with some conclusions in Section VI.

II. ONE-STAGE GAMES

Game theory can be used to model and study situations
where agents have conflicting interests. One example of such
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Fig. 1. Forwarder’s dilemma representation.

a situation is the widely knownprisoner’s dilemma, which is
usually presented as follows [1]. Two men are arrested, but
the police does not have enough information for them to be
convicted. Both prisoners are then interrogated separately and
at the same time. Each prisoner can choose to stay silent or
betray the other. If both stay silent, both will go to prison for
just 1 month. If one prisoner betrays the opponent, while the
opponent stays silent, then the silent prisoner goes to prison
for 12 months and the betrayer goes free for cooperating
with the police. Finally, if both prisoners betray each other
simultaneously, then both will go to prison for 3 months. The
question is what will prisoners do, assuming that none of them
can be sure if the other will betray or stay silent. If both
stay silent, both get a minor sentence of one month. However,
each prisoner may feel tempted to betray the other in order to
be freed. As a result, both may end up betraying each other.
Hence the dilemma.

In [14], a conceptually similar version of the prisoner’s
dilemma is presented. It is called theforwarder’s dilemma
and will be used throughout this article to help explaining
some definitions. The game can be explained as follows. There
are two players, routerp1 and routerp2, that want to send a
packet tod1 and d2, respectively. As shown in Figure 1, for
d1 to receive the packet fromp1, p2 will have to cooperate
and forward the packet. Conversely, the same applies for the
packet fromp2 sent tod2. If a packet reaches its destination,
then the player who sent it receives a payment of1. A player
that chooses to forward the packet of the opponent is incurred
a cost of C, where 0 < C << 1. This cost represents
the consumption of resources to forward foreign traffic. The
question is whether or not players in the forwarder’s dilemma
will cooperate with each other by forwarding packets. If both
players cooperate, then both will receive a payoff of1 − C.
However, a player might feel tempted to defect in order to
receive a payoff of1, which is the highest payoff in this game,
leaving a payoff of−C for the opponent. In non-cooperative
one-stage games, it is assumed that players decide at the same
time what will be their actions without communicating their
preferencesbeforehand. Here, the term preference refers to the
action that a player feels tempted to choose, forward or drop
the packet in the case of the forwarder’s dilemma. However,
even if players in the forwarder’s dilemma communicate their
preferences beforehand and agree to cooperate, both players
will still be tempted to lie and drop the packet belonging to
the opponent in order to receive the highest payoff of1. As a
safe precaution, both players will defect by not forwardingthe
packet of the opponent. This way, both players will playD
and, as a result, will receive a payoff of0, even though they
could receive a better payoff of1− C. Hence the dilemma.

TABLE I
FORWARDER’ S DILEMMA IN NORMAL FORM .

p2
F D

p1
F (1− C, 1− C) (−C, 1)
D (1,−C) (0, 0)

A. Normal and Strategic Form Representations

Games can be represented in many different forms. One of
the most common is thenormal formrepresentation, which is
very useful for simple games with two players and only a few
available actions to each player [1], [15]. This representation
consists of a table, where the lines represent the strategies
of one player and the columns represent the strategies of the
other player. The cell that results from the intersection ofa
row and a column contains the payoffs that both players will
receive. Considering the just presented forwarder’s dilemma,
there are two players,p1 andp2, which can forward or drop a
packet, represented byF andD respectively. The normal form
representation of the forwarder’s dilemma is shown in Table
I. The rows represent the actions available top1, while the
columns represent the actions available top2. As already told,
the cell resulting from the chosen line and column contains the
payoffs that players will receive. For instance, ifp1 forwards
and p2 drops the packet, then the resulting cell contains
(−C, 1), which means thatp1 receives a payoff of−C andp2
receives a payoff of1. The tuple including the strategy chosen
by each player is calledstrategy profile. In the example just
used, wherep1 forwards andp2 drops, the strategy profile is
(F,D).

The normal form representation is good for simple exam-
ples, however, for games with many players and multiple
strategies, it is impossible to use the normal representation. For
those cases, thestrategic formis the most suited. In this form,
a game is represented byG = {P,S,U}, whereP represents
the set of players,S represents the set of all strategy profiles
and U represents the set of utility functions, explained next
[1], [14], [15].

The set of all strategy profiles can be obtained byS =
×i∈PSi, where Si is the set of all strategies available to
player i.1 In game theory literature, for convenience, the set
of all players excepti is denoted by−i. This way, one can
represent a strategy profile(si, s−i) that is composed of a
specific strategy fromi, si ∈ Si, and any combination of
strategies from all other players,s−i ∈ S−i. As for the set
of utility functions, U = {ui|i ∈ P}, it includes the payoffs
that each player receives as a result from the chosen strategy
profile, i.e.ui : S → R [1], [14], [15].

Players in a game can havecompleteor incomplete in-
formation. In a complete information game, every player
i ∈ P knows everything about the game he is involved in.
More specifically, every playeri ∈ P knows all the other
players, their available strategies and the respective payoffs.
Moreover, every player knows that the opponents also have
that information. This knowledge can be used to intelligently

1The symbol ′×′ represents the Cartesian product. Hence,×i∈PSi =
{(

s1, s2, . . . , s|P|

)

|s1 ∈ S1 ∧ s2 ∈ S2 ∧ . . . ∧ s|P| ∈ S|P|

}

.
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TABLE II
EXAMPLE OF A GAME WITH ONE STRONGLY DOMINATED STRATEGY,

TAKEN FROM [1].

p2
x2 y2 z2

p1
x1 (2, 3) (3, 0) (0, 1)
y1 (0, 0) (1, 6) (4, 2)

TABLE III
GAME FROM TABLE II WITH THE STRONGLY DOMINATED STRATEGY

ELIMINATED .

p2
x2 y2

p1
x1 (2, 3) (3, 0)
y1 (0, 0) (1, 6)

choose strategies that provide the highest possible payoffs [1],
[14], [15].

On the other hand, in a game with incomplete information,
players do not know which strategies are available to the
opponents, neither the resulting payoffs. Certain beliefsmight
be known about the opponents but those are not accurate and,
as such, the behavior of players can be different. In this thesis,
only complete information games will be used.

Definition 1 (Complete Information Game) A game with
complete information is a game where every playeri ∈ P
knows all the other players, their available strategies andall
payoffs that they receive as result from the chosen strategy
profiles.

B. Dominated Strategies

In game theory, players choose their strategies in order to
receive the highest possible payoff. Thus, it can be expected
that strategies that never lead to high payoffs will never be
chosen. Considering the game from Table II, taken from [1],
playerp2 will never choose strategyz2. That is because greater
payoffs can be obtained byp2, either by choosingx2 or y2,
no matter how his opponent plays. In this case, it is said that
strategyz2 is strongly dominated[1], [14], [15].

Definition 2 (Strong Dominance) Strategys′i of player i is
strongly dominated if for any strategy profile adopted by the
opponents ofi, s−i ∈ S−i, there exists at least onesi 6= s′i
such thatui (s

′
i, s−i) < ui (si, s−i).

Strongly dominated strategies can be removed from the
game, since intelligent players would never choose them. In
the case of the game from Table II, if strategyz2 is eliminated,
then the resulting game will be the one in Table III. Note
that in the resulting game, after elimination ofz2, strategy
y1 of p1 also becomes strongly dominated and, therefore, can
be removed. This elimination process of strongly dominated
strategies is callediterative elimination[1], [14], [15]. At the
end, for the given example, only one strategy for each player
will remain, x1 for p1 and x2 for p2. Since strategy profile
(x1, x2) is expected to be chosen,p1 will receive a payoff of
2 andp2 will receive a payoff of3.

TABLE IV
EXAMPLE OF A GAME WITH WEAKLY DOMINATED STRATEGIES, TAKEN

FROM [16].

p2
x2 y2

p1

x1 (1, 0) (0, 2)
y1 (0, 2) (2, 0)
z1 (1, 1) (2, 1)

Strategies can also be weakly dominated [1], [14], [15].

Definition 3 (Weak Dominance) Strategys′i of player i is
weakly dominated if for any strategy profile adopted by the
opponents ofi, s−i ∈ S−i, there exists at least onesi 6= s′i
such thatui (s

′
i, s−i) ≤ ui (si, s−i), with strict inequality for

at least ones−i ∈ S−i.

Removing weakly dominated strategies by iterative elimi-
nation can also be done, however, it can lead to unexpected
results. Considering the game from Table IV, taken from
[16], p1 has two weakly dominated strategies,x1 and y1.
In Figure 2, it is possible to see how eliminatingx1 or
y1 first can lead to different results. That is, the order in
which weakly dominated strategies are eliminated can lead
to different outcomes. Such situation does not happen with
strongly dominated strategies, because elimination does not
cause strongly dominated strategies to cease being strongly
dominated. On the other hand, a weakly dominated strategy
can cease being dominated if other strategies are removed.

C. Nash Equilibrium

It is not always possible to predict the outcome of a game
through iterative elimination. For instance, the game in Table
V, taken from [1], has no dominated strategies. Nevertheless,
it is still possible to predict what will be the outcome of
the game. For that, the notion ofbest responseneeds to be
introduced [1], [14], [15].

Definition 4 (Best Response)The best response of playeri
is a functionbri (s−i) that outputs which strategyi should
choose in order to receive the highest possible payoff, given
that the opponents will plays−i. That is, bri (s−i) =
argmaxsi∈Si

ui (si, s−i).

In the game from Table V, the strategyx1 from p1 is the
best response to strategyx2 from p2. Strategyx2, in its turn,
is the best response to strategyz1. One interesting strategy
profile is the one wherep1 playsy1 andp2 playsy2, with the
payoff (1, 1). In this case,y1 is the best response toy2 and,
similarly, y2 is the best response toy1. This strategy profile
is actually the expected outcome of this game, since none of
the players has any incentive to unilaterally choose a different
strategy. That is, ifp1 playsx1 or y1, its payoff will decrease,
considering thatp2 does not change its strategy. Similarly,
p2 will also not change tox2 or z2 because its payoff will
decrease, sincep1 is playingy1. This type of strategy profiles,
where no player has any incentive to deviate, is termedNash
equilibrium [1], [14], [15].
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Fig. 2. Difference between two alternative iterative eliminations of weakly dominated strategies.

TABLE V
EXAMPLE OF A GAME WITHOUT DOMINATED STRATEGIES, TAKEN FROM

[1].

p2
x2 y2 z2

p1

x1 (3, 0) (0, 2) (0, 3)
y1 (2, 0) (1, 1) (2, 0)
z1 (0, 3) (0, 2) (3, 0)

Definition 5 (Nash Equilibrium) A strategy profiles∗ is a
Nash equilibrium ifui

(

s∗i , s
∗
−i

)

≥ ui

(

si, s
∗
−i

)

, ∀si ∈ Si, si 6=
s∗i , ∀i ∈ P, with at least one strict inequality.

It is possible to have more than one Nash equilibrium in one
game. In the example from Table IV, both strategies obtained
through iterative elimination of weakly dominated strategies,
(z1, x2) and(z1, y2), are actually Nash equilibrium strategies.
Indeed, strategy profiles obtained by iterative elimination are
always Nash equilibrium profiles. Note, however, that in the
case of iterative elimination of weakly dominated strategies,
the resulting profiles are a subset of the Nash equilibrium
profiles, meaning that there might be more Nash equilibrium
profiles [1]. As for iterative elimination of strongly dominated
strategies, the resulting profile is the only Nash equilibrium,
as in the game from Table II [1].

Nash equilibrium, as shown, predicts what will be the
outcome of a game. For example, in the forwarder’s dilemma
from Table I, the Nash equilibrium profile is(D,D). Note that
this outcome is not the most efficient, since both players could
receive greater payoffs if the profile(F, F ) was played instead.
However, since any player might feel tempted do defect in
order to receive the highest payoff of1, both players, as a
precaution, end up choosingD in order to avoid receiving
−C. In this case, the Nash equilibrium strategy is not the
most efficient outcome, since players receive the payoff(0, 0),
and a greater payoff(1− C, 1− C) could be earned if the
profile (F, F ) was chosen instead. In fact, Nash equilibrium
only predicts what will be the natural choices of intelligent
players that do not trust each other and, in many games, it
is not the most efficient outcome. The challenge resides in
designing systems where players have incentives to cooperate,
forward traffic from each other in the case of the forwarder’s
dilemma, in order for efficient Nash equilibria to be reached
[7], [8], [17].

In game theory, the strategy profile(F, F ) of the forwarder’s
dilemma is said to bePareto superiorto other profiles.

Definition 6 (Pareto Superior) A strategy profiles ∈ S is
Pareto superior tos′ ∈ S if ui (si, s−i) ≥ ui

(

s′i, s
′
−i

)

, ∀i ∈
P, with at least one strict inequality.

The most efficient outcome in a game would be one with
the highest payoffs for every player,(F, F ) in the case of
the forwarder’s dilemma. Such efficient outcome is said to be
Pareto optimal and no other profile is Pareto superior to it [1],
[14], [15].

Definition 7 (Pareto Optimal) A strategy profiles ∈ S is
Pareto optimal if there is no other strategy that is Pareto
superior tos.

There are cases where Nash equilibrium is Pareto optimal. In
such cases, it is said that Nash equilibrium isPareto efficient.
Naturally, the most desired Nash equilibrium is the Pareto
efficient one, since payoffs are higher.

D. Mixed Strategies

Until now, in this chapter, it has been assumed that players
choose one specific strategy to be played and the expected
outcome of the game is a Nash equilibrium profile. However,
in some games, Nash equilibrium may not exist, as shown in
the example from Table VI, taken from [18].

Instead of choosing which specific strategy should be
played, players can define a probabilistic distribution over their
available strategies. In the example from Table VI, a Nash
equilibrium would exist if both players define a probabilityof
1/2 over each of their strategies, as it will become clear next.
Such distribution is termedmixed strategy[18].

Definition 8 (Mixed Strategy) A mixed strategyσi is a dis-
tribution over the strategies ofi, Si.

The set of all mixed strategies from a playeri ∈ P is denoted
by Σi (capital of σ). Similarly to strategy profiles,s ∈ S,
mixed strategy profilescan be defined byΣ = ×i∈PΣi. From
here on, to avoid confusion, the set of profiles inS will be
called pure strategy profiles, while the profiles inΣ will be
termedmixed strategy profiles.

Since mixed strategies define probabilities over the set of
available pure strategies, the utility function in this case reveals
the expected payoff based on the chosen mixed profileσ [1],
[15], [18]:
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TABLE VI
EXAMPLE OF A GAME WITHOUT PURENASH EQUILIBRIUM , TAKEN FROM

[18].

p2
x2 y2

p1
x1 (1,−1) (−1, 1)
y1 (−1, 1) (1,−1)

ui (σ) =
∑

s∈S



ui (s)
∏

j∈P

σj (sj)



 , (1)

wheresj is the strategy ofj in profile s and,σj (sj) represents
the probability ofsj being chosen. Hence,ui (s)

∏

j∈P σj (sj)
represents the expected payoff ofi if s is chosen.

Regarding the game from Table VI, and assuming thatp1
choosesx1 with probabilityqx1

andp2 choosesx2 with prob-
ability qx2

, then the expected payoff forp1 can be calculated
by:

up1
(σ) = [1qx1

qx2
] + [−1qx1

(1− qx2
)] +

+ [−1 (1− qx1
) qx2

] +

+ [1 (1− qx1
) (1− qx2

)] ,

where 1 and −1 are the payoffs thatp1 would receive
according to the different strategy profiles. As aforementioned,
Nash equilibrium will exist, in this case, forqx1

= qx2
= 1/2,

meaning that in this mixed Nash equilibrium both players will
receive a payoff of0. According to [1], [15], every game with
a finite set of strategies has at least one pure or mixed Nash
equilibrium. Note that a mixed Nash equilibrium profile is
never Pareto optimal. That is because a mixed profile is, in
fact, a linear combination of pure strategies and, as such, could
not result in higher payoffs than the ones obtained by pure
strategies.

III. D YNAMIC GAMES

One-stage games can only model situations where all play-
ers take their decisions at the same time. However, many
situations may be better modeled with games composed of
several stages [1], [15], [19]. For instance, in the forwarder’s
dilemma, players may not have packets to send at the same
time. Let us assume thatp2 is the first player with a packet to
be sent, whichp1 may or may not forward. Immediately after,
p1 also sends a packet, whichp2 can choose to forward or not.
Such games are termeddynamic gamesor multi-stage games.
In this chapter, and throughout the thesis, only dynamic games
with perfect informationare considered.

Definition 9 (Perfect Information) A dynamic game with
perfect information is one where every playeri ∈ P knows
all the actions taken in previous stages by all opponents.

In the previous multi-stage forwarder’s dilemma example,p2
can decide whether or not to forward based on the action of
p1 in the previous stage.

Naturally, dynamic games need a different representation
that must be capable of showing the order in which players

p1

(1-C,1-C) (-C,1) (1,-C) (0,0)

p2 p2

F

F F

D

D D

Fig. 3. Two stage version of the forwarder’s dilemma, wherep1 is the first
player to move.

make their moves [1]. Theextensive formrepresentation,
shown in Figure 3 for the forwarder’s dilemma, is the most
suited for these situations. The extensive form consists ofa
tree structure where the root node represents the first decision
in the game. In the previous example, the first decision belongs
to p1. The lines with labels (F andD) represent the actions
available to the players. Playerp1, at the first stage, can decide
to forward,F , or to drop,D, the packet fromp2. The leafs of
the tree contain the payoffs that players will receive according
to their decisions.

In multi-stage games, the player to move in the first stage
has a set of strategies equal to the ones available in the
one-stage game. For instance,p1 from Figure 3 has the
following strategies available:Sp1

= {F,D}. The players in
the subsequent stages can take their decisions based on the
actions from previous stages. Playerp2 from Figure 3, can
decide its action based on the move ofp1 in the previous
stage. For this reason, strategies forp2 will be different in the
multi-stage game. In this case,p2 has the following strategies
available:Sp2

= {FF, FD,DF,DD}. The first character in
a strategy fromp2 represents the action thatp2 takes if p1
choosesF in the first stage and the second character represents
the action thatp2 takes ifp1 choosesD. For instance, strategy
(FD) means thatp2 will forward if p1 has forwarded in the
previous stage and will drop ifp1 has dropped. As previously
explained, the leafs represent the payoffs that players will
receive according to the decisions taken.

A. Nash Equilibrium and Backward Induction

The concept of Nash equilibrium in dynamic games is not
different from one stage games. That is, a strategy profile is
a Nash equilibrium if no player can increase its payoff by
unilaterally deviating. Considering the example from Figure 4,
taken from [18], the pure Nash equilibrium strategy profiles
are:(H,DD), (H,DH) and(D,HH). These Nash equilibria
can be more easily extracted from the normal form equivalent
game shown in Table VII. Note that the rows of the table
include the current possible moves forp1 (H and D) and
the columns include the current possible moves forp2 that
are based on the previous action ofp1 (HH, HD, DH and
DD). In strategy profile(D,HH), which is one of the Nash
equilibrium profiles,p2 threatens to playH regardless of the
move from p1. Player p1 is aware of this threat and, as a
result, could play his best response toHH, which is strategy
D. However, looking more closely at Figure 4, ifp1 chooses
H in the first stage, thenp2 is really not willing to chooseH in
the second stage, sinceD would givep2 a better payoff. This
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p1

(-2,-2) (6,0) (0,6) (3,3)

p2 p2

H

H H

D

D D

Fig. 4. Example of a dynamic game taken from [18].

TABLE VII
NORMAL FORM EQUIVALENT GAME FROM FIGURE 4

p2
HH HD DH DD

p1
H (−2,−2) (−2,−2) (6, 0) (6, 0)
D (0, 6) (3, 3) (0, 6) (3, 3)

p1

(-2,-2) (6,0) (0,6) (3,3)

p2 p2

H

H H

D

D D

Fig. 5. Backward induction technique applied to the example from Figure
4. The continuous thick line from the root node to the leaf represents the
predicted outcome of the game.

kind of threats are termedempty threats, sincep2 is actually
bluffing andHH does not represent a real threat [15], [18].

Finding Nash equilibrium strategy profiles in multi-stage
games can lead to empty threats and their removal can be
done throughbackward induction[15], [18]. This technique
starts by analyzing the most profitable action in the last stage
and then, based on the most profitable actions at the last
stage, it is analyzed which is the most profitable action at
the penultimate stage. This analysis keeps proceeding upward
in the tree structure until the root node is reached.

To exemplify this, let us assume the game from Figure 4.
First, the action that results in the highest payoff forp2 is
determined, considering all the possible previous actionsof
p1. If p1 playedH, then the best choice is forp2 to chooseD.
On the other hand, ifp1 choseD, thenp2 will be better with
H. Given the best moves ofp2, it is possible to decide which
action results in the highest payoff forp1. Clearly,p1 will be
better by playingH, since it will give him a higher payoff.
In Figure 5, it is possible to see the result of the backward
induction, where the thick lines mark the best actions at every
stage. The continuous route of thick lines from the root to the
leaf represents the predicted outcome of the game. Hence,
(H,DD) and (H,DH) are the predicted outcomes, since
both these strategies lead to the actions chosen by backward
induction.

IV. REPEATEDGAMES

Repeated games are a specific type of dynamic games where
players face the same one-stage game repeatedly [1], [15],
[18], [19]. An example of a repeated game would be the

repeated forwarder’s dilemma, where the game in Table I is
played repeatedly over several stages. At every staget, every
player i ∈ P has to choose his action,ai (t). The profile of
all actions chosen by all players at a staget is represented by
a (t) =

(

ap1
(t) , ap2

(t) , . . . , ap|P|
(t)
)

.
In this paper, only repeated games with perfect informa-

tion are considered. As such, at every stage, all players
have access to the history of all previous actions,h (t) =
(a (0) , a (1) , . . . , a (t− 1)). Such history is taken as input
to the strategy of every player to decide what will be the
next action:si (h (t)) = ai (t). Naturally, the strategy profile
outputs the next profile of actions,s (h (t)) = a (t).

A. Finite-Horizon Games and Nash Equilibrium

Repeated games can befinite-horizon, which means that the
number of stages is limited, orinfinite-horizon, which means
that players interact over an infinite or unknown number of
stages [1], [18]. The payoff attributed to every playeri ∈ P of
finite-horizon games can be calculated by summing the stage
payoffs of all stages:

Ui (s) =
T
∑

t=0

ui (s (h (t))) , (2)

where T is the last stage,ui is the stage payoff of player
i and Ui is the total payoff. Considering the repeated for-
warder’s dilemma as an example, and assuming that both
players are using a strategy that choosesF at every stage, the
payoff attributed to both players would be

∑T
t=0 (1− C) =

(T + 1) (1− C) in this case.
To understand Nash equilibrium in finite-horizon games, let

us keep considering the repeated forwarder’s dilemma. If both
players playedF until stageT − 1, then one of the players
could deviate toD at the last stageT to increase his payoff.
The opponent knows that, and to avoid receiving−C at the
last stage, he can also playD. Moreover, since it is predicted
that both players will playD at the last stage, then players
can also deviate at the penultimate stage in order to increase
their payoff. Following this reasoning, the strategy profile that
chooses the action(D,D) at every stage is a Nash equilibrium
of the finite-horizon repeated forwarder’s dilemma. Note that
this method, used to find Nash equilibrium, is similar to the
backward induction introduced in Section III-A. Hence, any
strategy profile that produces the outcome predicted by the
backward induction is a Nash equilibrium.

B. Infinite-Horizon Repeated Games and Nash Equilibrium

Infinite-horizon repeated games, as aforementioned, are
played on forever or for an unknown number of stages. As
such, the payoff function of the finite-horizon game, shown in
equation 2, can not be used for infinite-horizon games because
it could result in infinite payoffs. Instead, a weighted sum,
termeddiscounted payoff, is used [1], [18], [19]:

Ui (s) = (1− δ)
∞
∑

t=0

δtui (s (h (t))) , (3)

where δ is the weighting factor, termeddiscounting factor,
and accepts only values between0 and1, 0 < δ < 1. As for
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(1− δ), it is responsible for normalizing the payoffs, allowing
the comparison between discounted payoffs and the payoffs
received at every stage. For instance, in an infinite-horizon
repeated game where playeri receives a stage payoff of1
at all stages, the discounted payoff fori will be 1. Note
that ast grows, δt decreases. Hence, stage payoffs become
less important ast grows, since the stage payoff is being
multiplied by δt. The actual value attributed toδt in a game
will influence how fast the stage payoffs loose importance,
altering the behavior of players and the Nash equilibrium
profiles, as will be demonstrated next.

In infinite-horizon games, similarly to one-stage games, a
strategy profiles∗ ∈ S is a Nash equilibrium if:

Ui

(

s∗i , s
∗
−i

)

≥ Ui

(

si, s
∗
−i

)

, ∀si ∈ Si, ∀i ∈ P. (4)

However, in the case of infinite-horizon games, Nash equilib-
rium is greatly influenced by the discounting factor and by
the fact that the game is played on forever [1], [18], [19].
To exemplify it, let us introduce thegrim trigger strategy,
which is widely used in game theoretical literature [1], [18],
[19]. A player i using this strategy will exert effort at every
stage, as long as the opponent also cooperates. If the opponent
shirks even only once, theni will stop cooperating from
thereafter. Applying this strategy to the forwarder’s dilemma,
and labeling one of the players byi and the opponent byj
(if i = p1 then j = p2, if i = p2 then j = p1), grim trigger
strategy can be defined by the following equation:

si (h (t)) =







F, if (ai (t− 1) = F ) and
(aj (t− 1) = F )

D, otherwise
(5)

If both players in the infinite-horizon repeated forwarder’s
dilemma play this strategy, then they will playF at all stages.
The outcome of such strategy profile for both players will be:

(1− δ)
[

(1− C) δ0 + (1− C) δ1 + . . .
]

=

= (1− δ) [(1− C)
∑∞

t=0 δ
t] = (1− δ)

[

(1− C) 1
1−δ

]

=

= (1− C) .

If player i deviates at some staget∗, then i will receive a
higher payoff in that stage but will receive zero thereafter.
The resulting discounted payoff for the deviating player can
be calculated by:

(1− δ)
[

(1− C) δ0 + (1− C) δ1 + . . .+

+1δt
∗

+ 0δt
∗+1 + 0δt

∗+2 + . . .
]

=

= (1− δ)
[

(1− C)
∑t∗−1

t=0 δt + δt
∗
]

=

= (1− δ)
[

(1− C) 1−δt
∗

1−δ
+ δt

∗
]

=

= (1− C)
(

1− δt
∗)

+ (1− δ) δt
∗

=

= (1− C)− δt
∗

(1− C) + δt
∗

(1− δ) =

= (1− C) + δt
∗

C − δt
∗

δ =

= (1− C) + δt
∗

(C − δ) .

For the profile, where both players use grim trigger, to be Nash
equilibrium, the deviation can not be profitable fori. That is:

1− C ≥ 1− C + δt
∗

(C − δ) ⇔ 0 ≥ δt
∗

(C − δ) .

Since 0 < δ < 1, then δ ≥ C for the inequality to hold.
As long as the cost of forwarding a packet,C, is lower
than the discounting factor,δ, it is more profitable to follow
the grim trigger than deviating from it. This results in a
Nash equilibrium profile where both players exert effort by
forwarding packets from each other.

As aforementioned and exemplified, the discounting factor
is an important piece in the Nash equilibrium of infinite-
horizon repeated games. Ifδ is close to0, then the importance
of the successive stage payoffs will decrease rapidly, and as a
result, the relevance of the first stage is much greater than
the subsequent payoffs. As such, players will care mostly
with the first stage and will try to earn the highest possible
immediate payoff. This mimics the behavior of an impatient
player mainly interested with the current stage payoff. On the
other hand, ifδ is close to1, the importance of the successive
stage payoffs decreases slowly, obligating players to be more
patient and cooperate to avoid severe punishments in future
stages. Relating this reasoning to the necessary conditionfor
the grim trigger strategy to be a Nash equilibrium in the
repeated forwarder’s dilemma,δ ≥ C, impatient routers will
deviate from the strategy and drop the packets, while patient
routers will follow the strategy and forward the packets.

An alternative meaning forδ is that it can represent the
probability of the game ending in the current stage. That
is, high values forδ represent a high probability that there
will exist more stages, while a low value ofδ represents a
low probability that the game will continue to a next stage.
Therefore, if the probability of the game being played for
many stages is high, then players will be patient and cooperate.
Otherwise, if there is a high probability that the game will be
played only for a few stages, then players will not care about
cooperations nor possible punishments, and will try to earn
the highest possible immediate payoffs.

As shown, equilibrium strategies where players cooperate
are possible in repeated games, as long as the discounting
factor is high enough. In communication networks, generally,
it can be considered that the discounting factor is close to1.
The reasoning is that networks are supposed to operate for very
long periods of time and it is unknown when will a network
cease operation [14]. That is, the probability that the network
will operate for many stages is high and thereforeδ can be
assumed to be close to1.

1) Folk Theorem:Many Nash equilibrium strategy profiles
exist in infinite-horizon repeated games that do not exist in
one-stage games. This allows for certain payoffs to be obtained
that would not be possible in Nash equilibrium of one-stage
games. To understand which payoff values are possible, let us
introduce themin-max payoff[18], [19].

Definition 10 (Min-Max Payoff) The min-max payoff for
player i is defined as:ui = mins−i

maxsi ui (si, s−i).

That is, the min-max payoff is the lowest payoff that some
player i can receive, provided that all opponents will choose
a strategy to minimize the payoff ofi and i will choose
the best response to such strategy to maximize his payoff.
In the case of the forwarder’s dilemma, this corresponds to
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(0,0)

(1-C,1-C)
(-C,1)

(1,-C)

Fig. 6. Illustration of the min-max and feasible payoffs. The thick lines
represent the min-max payoffs, while the gray area representsall feasible
payoffs.

the payoff (0, 0), earned when both players playD. Any
payoff greater or equal than the min-max is possible to obtain
by a Nash equilibrium strategy profile in an infinite-horizon
repeated game. In Figure 6, the min-max payoff in the infinite-
horizon forwarder’s dilemma is shown with thick lines. The
gray area represents allfeasible payoffsby Nash equilibrium
strategies [18], [19].

Definition 11 (Feasible Payoffs)The set of feasible payoff
profiles is given by:{u = (u1, u2, . . . , u|P|

)

: ui ≥ ui,
∀i ∈ P}.

Provided thatδ is high enough, then any payoff in the feasible
area can be obtained by a Nash equilibrium strategy profile.

Theorem 1 (Folk Theorem) For every feasible payoff profile
u∗ ∈ {u = (u1 , u2, . . ., u|P|

)

: ui ≥ ui, ∀i ∈ P
}

, there exists
a discounting factorδ < 1 such that for allδ ∈ ]δ, 1[, there
is a Nash equilibrium profile with payoffsu∗.

From all the possible outcomes in equilibrium, the ones with
the highest payoff, i.e. the ones obtained by a Pareto efficient
equilibrium profile, are the most desired from the network
point of view. An algorithm could be developed that mimics
the behavior of such a Pareto efficient equilibrium strategy.
For instance, in the case of the repeated forwarder’s dilemma,
an algorithm could be developed that leads every player to
cooperate at every stage, as long as the opponent also cooper-
ates. If it happens that the opponent defects, then the harmed
player can punish the defecting opponent by not forwarding its
packets for a certain amount of stages. The punishment needs
to last for enough stages in order to make the punishment
sever enough to deter any deviations. That is, it has to be clear
for the alleged defecting opponent that defecting will not be
more productive. The general idea is to model the problem
in question and seek for equilibrium profiles with the highest
possible payoffs. With such knowledge, an algorithm can then
be developed that will mimic the behavior of the equilibrium
strategy profile.

The example of the forwarder’s dilemma represents a game
where players have clear conflicting objectives. This couldbe
applied, for instance, to border routers that belong to different
autonomous networks with selfish interests. However, game
theory can also be used in settings where the conflict arises in
certain situations only or when there is a lack of coordination

between players, as will be shown in the next section through
an example.

V. A LGORITHM DEVELOPMENT IN A COMMUNICATION

NETWORK CONTEXT

As aforementioned, devices/players in a network do not
need to have persistent conflicting interests for game theory to
be useful as a mean to develop an algorithm. In this section,
a simplified model from [12] will be used to show how an
algorithm can be developed under such assumption. In this
case, several wireless routers, deployed by a service provider,
have the objective of forwarding as much traffic as possible,
while avoiding wastage of resources.

A. Fiber-Wireless Access Network Scenario

Fiber-Wireless access networks use a mixture of optical and
wireless technologies to provide Internet access to users.They
are composed of two sections: an optical back end section,
which brings fiber from the central office to near the users; and
a wireless front end section, which provides wireless Internet
access to the users. Here, it is considered that the wirelessfront
end is composed of wireless routers in a mesh topology, as
shown in Fig. 7. Some of those wireless routers are gateways
responsible for the frontier between the optical and wireless
environments. A user willing to send/receive traffic to/from the
Internet can connect to the nearest wireless router or gateway.
Traffic may need to travel through several hops in the wireless
mesh section and, as such, one of the key issues to address
is the allocation of resources throughout the mesh section in
order to serve all users in a fair manner.

At the wireless section, every wireless router/gateway wants
to send/receive traffic belonging to its users to/from the
Internet, through the optical section. Like in [12], it is assumed
that tree structures are already formed as a result from the path
selection done by a routing algorithm. Such tree formation
is exemplified in Fig. 7, where the established connections
are shown. The set of all wireless routers will be denoted by
W. Since a tree structure is used,Γ+

i is used to represent
all descents of a wireless routeri ∈ W, while the set
of ancestors is denoted byΓ−

i . Every wireless router will
forward traffic belonging to its directly connected users, both
downstream and upstream traffic. Besides traffic belonging
to its directly connected users, every wireless routeri ∈ W
also forwards downstream and upstream traffic belonging to
users connected to wireless routers inΓ+

i . The question is
how much bandwidth should every wireless router allocate
for traffic belonging to its own users, and how much should
be allocated for the traffic belonging to users connected to
wireless routers inΓ+

i .
In this model, every wireless router and gateway is a player

with the following objectives:
• Forward as much traffic as possible, either belonging

to its directly connected users or belonging to users
connected toΓ+

i .
• Have the least possible amount of packet drops. Such

packet losses lead to unfruitful use of resources, since
these packets may have traveled through several hops and
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Wireless gateway

Wireless router

Reachable wireless connection

Established wireless connection

Optical connection

Fig. 7. Example of a wireless mesh front end from a Fiber-Wireless
access network. Wireless connections are established according to the routing
protocol in use.

consumed resources from the wireless routers along the
the hops.

Resuming, every wireless router, which was deployed by a
service provider, wants to assure the best quality of service
possible and to use resources in a useful manner.

The amount of bandwidth that users connected to a wireless
router, or gateway,i ∈ W need to send/receive their traffic
at time t is represented byBi (t). Such wireless router will
then dedicate the amountB∗

i (t) of bandwidth for this traffic.
Also, every nodei ∈ W will dedicateB∗

i,j (t) of bandwidth to
downstream and upstream traffic belonging to users connected
to every wireless routerj ∈ Γ+

i , totalingB∗
Γ+

i

=
∑

j∈Γ+

i

B∗
i,j .

The actual bandwidth that a wireless router/gatewayi will
have available for traffic belonging to its users, equal to
the minimum bandwidth made available to it throughout all
wireless routers/gateway in the route to the optical link, is
denoted byBA

i (t). That is:

BA
i (t) = min

[

B∗
i , min

j∈Γ−
i

(

B∗
i,j

)

]

. (6)

Considering the objectives of the wireless routers/gateways,
the stage payoff of every player can be calculated by the
following expression:

ui (t) =

{

ηi (t) +BA
i (t)BA

Γ+

i

(t) ,Γ+
i 6= ∅

ηi (t) +BA
i (t) ,Γ+

i = ∅
, (7)

where BA

Γ+

i

(t) =
∑

j∈Γ+

i

BA
j (t) and ηi (t) represents the

amount of resources that are wasted due to packets being
dropped, termeddrop component. The following expression
can be used to calculate such component:

ηi (t) =















log
(

BA

i
(t)

B∗
i
(t)

)

+ log

(

BA

Γ
+
i

(t)

B∗

Γ
+
i

(t)

)

,Γ+
i 6= ∅

log
(

BA

i
(t)

B∗
i
(t)

)

,Γ+
i = ∅

. (8)

Note that the drop component has a logarithmic nature,
meaning that if only a few packets are dropped, then the

drop component will be close to0. On the other hand, if too
many drops occur, then the drop component value will be
too negative,ηi << 0. In computer networks, the reasoning
behind this is that a few packet drops can be recoverable, while
too many packets being dropped may end up in unrecoverable
service failures. In TCP/IP networks, for example, a low
number of packet losses can easily be solved by the fast
retransmission mechanisms that TCP offers, while a high
number of packet losses will cause TCP to enter into slow
start [20].

The expression (7) calculates only the payoff of one stage.
The discounted payoff that every player receives in the infi-
nite-horizon repeated game is calculated with the discounted
payoff function in (3), which uses expression (7) for the payoff
of every stage. As for the strategies, they decide the valuesfor
B∗

i andB∗
i,j , ∀j ∈ Γ+

i to be used at every stage, according to
the history of valuesB∗

i andB∗
i,j , ∀j ∈ Γ+

i chosen in previous
stages.

B. Nash Equilibrium, Pareto Efficiency and Algorithm Devel-
opment

As already explained in Section II-C and Section IV-B, Nash
equilibrium represents the expected outcome of the game.
From the network point of view, the most desired outcome
would be a Pareto efficient outcome, where all wireless routers
forward as much traffic as possible with as few packet drops
as possible.

In a one stage version of the game described, the Nash
equilibrium is for every wireless routeri ∈ W to setB∗

i and
B∗

i,j , ∀j ∈ Γ+
i , with values near zero. That is because it is not

known beforehand what will be the bandwidth needs of the
other wireless routers inΓ−

i and inΓ+
i . This way, routers can

rest assured that they will not receive a−∞ payoff due to the
logarithmic nature ofηi. However, if the bandwidth needs were
known beforehand, then every routeri ∈ W could setB∗

i and
B∗

i,j , ∀j ∈ Γ+
i to higher values, i.e. as close toBi andBj , ∀j ∈

Γ+
i , as possible. Note that in the forwarder’s dilemma case,

having players communicate or coordinate their preferences
does not lead to a Pareto efficient Nash equilibrium because
players still feel compelled to lie and deviate by dropping the
packet of the opponent. In the game presented in this section
however, players have no incentives to lie to their opponents
because they will receive a higher payoff if they do not lie
nor deviate. In game theory literature, this type of game is
called acoordination game. That is, players have incentives to
cooperate, as long as they can coordinate their actions. In these
games, strategies where players communicate their preferences
in order to coordinate their actions are Nash equilibrium and
Pareto efficient [21], [22].

In coordinated repeated games, players try to coordinate
their actions at every stage. In games where the set of actions
is small and well known, such coordination can be reached by
having players randomize their actions at every stage until
the desired coordination is reached and, once coordination
is reached, players will keep using the coordinated actions.
Another alternative, which reaches immediate coordination is
to have players communicate their preferences at every stage
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[21]. In the example shown here, the bandwidth needs of
the users connected to every wireless routeri, Bi (t), may
change from stage to stage and, as such, the actions,B∗

i and
B∗

i,j , ∀j ∈ Γ+
i , need to change at every stage in order for

coordination to be possible. As such, randomizing actions will
most likely not lead to coordination. If players communicate
their current preferences at every stage, then their actions
can be coordinated. This is, in fact, a Pareto efficient Nash
equilibrium in coordinated repeated games [21]. Note that in
the forwarder’s dilemma, having players communicate their
preferences at every stage will not be beneficial to achieve
a Pareto efficient equilibrium. For instance, if players in
the forwarder’s dilemma communicated that they prefer to
cooperate, then they would still fell compelled to lie and defect
in order to receive the highest payoff, unless the discounting
factor is high enough to deter deviations. In our coordination
game, however, players have no incentive to lie about their
needs, since lying would result in a lower payoff.

As shown, in this game, players do not have intrinsically
conflicting interests. Instead, players want to coordinatetheir
actions. However, if traffic congestion is to high, then some
wireless routers will end up having less bandwidth than whatis
needed. That is, a conflict of interests arises because thereis a
shortage of bandwidth to cover all requests. Let us considerthe
high traffic congestion scenario in Fig. 8, where each wireless
connection has a capacity of 100 Mbps. In this situation,
wireless routerx is using all its bandwidth capacity to forward
traffic belonging to its users and traffic belonging to users
connected to wireless routersy and z. That is, B∗

x = 20,
B∗

x,y = 50 and B∗
x,z = 30. However, wireless routerw

can not forward that much traffic becausew also needs20
Mbps for its users and may choose to dedicate its resources
the following way:B∗

w = 20, B∗
w,x = 15, B∗

w,y = 40 and
B∗

w,z = 25. As a resultx will be reserving more bandwidth
for itself, y and z than will be actually used, leavingx with
ηx << 0 due to unfruitful utilization of resources. Wireless
routerx, to safeguard itself, can lowerB∗

x,y or B∗
x,z, or both,

to increaseηx and its own payoff. This would leavey and z
with smaller payoffs due toηy << 0 andηz << 0. These two
nodes,y and z, have now two options:i) each node lowers
its dedicated bandwidth,B∗

y andB∗
z respectively;ii ) they lie

to x, by inflating their requests, in order to match as much as
possibleBA

y to B∗
y andBA

z to B∗
z .

Note that, according to the developed model,x does not
care whichB∗

x,y or B∗
x,z is reduced, sinceBA

Γ+
x

is obtained by

summingBA
y andBA

z . However, if, alternatively,BA

Γ+

i

(t) =
∏

j∈Γ+

i

BA
j (t) and B∗

i (t) =
∏

j∈Γ+

i

B∗
i,j (t), thenx will be

more interested in decreasingB∗
x,y, since that will lead to a

greaterηx and payoff2. This alternative would lead to a fairer
bandwidth allocation among wireless routers. Thus the model
can be adjusted according to the objectives.

The discussed model, the equilibrium strategy with com-
munication of preferences and detection of over demanding
wireless routers, provide the ground for the development of
an allocation algorithm. This algorithm could include the

2For anyα andβ, if α > β and1 has to be subtracted from eitherα or
β, then(α− 1)β > α (β − 1).

x

w

y z

Capacity of each wireless
connection: 100 Mbps

Bandwidth needs:
  w: 20 Mbps
  x: 20 Mbps
  y: 50 Mbps
  z: 30 Mbps

Wireless connection

Wireless router

Fig. 8. Example of a congestion scenario with unfruitful bandwidth utilization
at one of the wireless routers.

following steps:

Step 1: Communication of the bandwidth needs among all
wireless routers and gateway.

Step 2: Detection of over-demanding routers/gateway.
Step 3: Decision, by every wireless router/gatewayi ∈ W, on

the valuesB∗
i andB∗

i,j , ∀j ∈ Γ+
i , with the objective of

increasing as much as possible the payoff at every stage.

This represents only an example of a possible algorithm for
the bandwidth allocation problem in Fiber-Wireless Access
Networks. Note that the concepts explained here can be
applied to other problems related to any of the layers of the
OSI model. Moreover, other types of games, such as coalition
games or network formation games, can also be used to model
existing problems and develop algorithms. For instance, in
[13], a coalition game is used to develop a mechanism where
unmanned aerial vehicles collect messages from certain data
sources, scattered throughout a field, to be then delivered to a
common receiver. In [23], a network formation game is used
to develop an energy efficient routing algorithm for the mesh
front end of Fiber-Wireless Access Networks.

VI. CONCLUSION

The development of algorithms to solve existing problems
in communication networks is a complex task. The purpose of
this tutorial is to showcase how to use repeated game theory as
a tool for algorithm development in communication networks.
It starts by giving the basis of game theory and repeated
game theory, including how their outcome can be predicted
through Nash equilibrium and how certain Nash equilibria
can be possible in infinite-horizon repeated games while not
being possible in one stage games. With the basis introduced,
an example is then given where a model is developed and
necessary conditions are devised for the existence of Nash
equilibrium where all players cooperate, which can be used as
a basis for the development of an algorithm.
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