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Abstract—This article presents a tutorial on how to use Since its inception, game theory has been researched and
repeated game theory as a framework for algorithm development ysed mainly for economical purposes, but other fields starte

in communication networks. The article starts by introducing the to use it as well. For instance, game theory was extensively
basis of one-stage games and how the outcome of such games can ) ’

be predicted, through iterative elimination and Nash equilibrium.  PPlied to biology, mainly due to the work from John May-
In communication networks, however, not all problems can Nnard Smith who developed the evolutionary stable strategy
be modeled using one-stage games. Some problems can bf9]. Other fields like political and social sciences follave
better modeled through multi-stage games, as many problems in and started using game theory [10]. Computer science and
communication networks consist of several iterations or decisions communication networks are no exception and much research
that need to be made over time. Of all the multi-stage games, the . . .
infinite-horizon repeated games were chosen to be the focus in €Merged in the frontier between computer science and game
this tutorial, since optimal equilibrium settings can be achieved, theory. Most of the research in computer science and game
contrarily to the suboptimal equilibria achieved in other types theory has been related to complexity theory, where several
of game. With the theoretical concepts introduced, it is then algorithms to compute Nash equilibrium have been proposed
shown how the developed game theoretical model, and devisedyq gyydied [11]. As for communication networks, game
equilibrium, can be used as a basis for the behavior of an . .
algorithm, which is supposed to solve a particular problem and theOry has been used mainly for analytical purposes, where
will be running at specific network devices. devices, such as routers, are players with selfish interests
Nonetheless, there are also some works where game theory is
used in communication networks as a framework for algorithm
development [12], [13].
In this tutorial, it is shown how repeated game theory can
. INTRODUCTION be used as a framework for algorithm development in commu-
AME theory is a mathematical tool that aims to studyication networks, instead of using it just as an analytioal.
and predict the outcome of situations where two or moféo prior knowledge on game theory is assumed. That is, the
agents have conflicting interests [1]. The field of game theotutorial starts by introducing the basis of one-stage gaanels
has its roots in decision theory and, in fact, it can be thougWith such knowledge, continues onto dynamic and repeated
as a generalization of decision theory for multiple agefijs [ games. It is shown how optimal Nash equilibrium strategies
As a field on its own, game theory was pioneered by John vean be obtained with infinite-horizon repeated games, while
Neumann and Morgenstern in [2], laying the foundations dfie equivalent one-stage version have suboptimal Naslikequi
current game theory. A general formal description of gaméi@ and how that can be used as a support for the development
was presented and several zero-sum games were analyzedodn@n algorithm to be run at devices in the network. This
solutions to the games were devised. tutorial also exemplifies, with a simplified model taken from
Following the concepts published in [2], many other contr{12], the use of game theory to model a problem, devise an
butions were published, such as the first mathematical stisc@quilibrium strategy and develop an algorithm that mimics
sion of the prisoner’s dilemma in [3] and the Nash equilibriu such equilibrium strategy.
in [4], probably one of the most relevant contributions. Nas The rest of this paper is organized as follows. The next
equilibrium was quite important because it is applicabletosection introduces one-stage games, pure and mixed stsiteg
wide variety of game types [1], [4]. The field kept evolvinggnd Nash equilibrium. In Section Ill, multi-stage games are
with the research and analysis of several types of gam@ésented together with Nash equilibrium and backwarddndu
such as extensive form and repeated games, which will #en. Repeated games are then presented in Section IV, &s wel
presented in this tutorial [5], [6]. Game theory also laidvdo as the Nash equilibrium in infinite-horizon repeated ganmes a
the foundations for modern disciplines, which are verywvacti the folk theorem. An example is then shown in Section V, from
nowadays, such as algorithmic game theory and mechaniéié model to the development of the algorithm. The tutorial
design [7], [8]. finalizes with some conclusions in Section VI.

Index Terms—Game Theory, Repeated Game Theory, Com-
munication Networks, Algorithm Development.
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Fig. 1. Forwarder’s dilemma representation.

A. Normal and Strategic Form Representations

a situation is the widely knowprisoner’s dilemmawhich is Games can be represented in many different forms. One of
usually presented as follows [1]. Two men are arrested, dhe most common is theormal formrepresentation, which is
the police does not have enough information for them to byery useful for simple games with two players and only a few
convicted. Both prisoners are then interrogated sepgratel available actions to each player [1], [15]. This represiomna

at the same time. Each prisoner can choose to stay silentconsists of a table, where the lines represent the strategie
betray the other. If both stay silent, both will go to prisam f of one player and the columns represent the strategies of the
just 1 month. If one prisoner betrays the opponent, while tlagher player. The cell that results from the intersectioraof
opponent stays silent, then the silent prisoner goes tomprigow and a column contains the payoffs that both players will
for 12 months and the betrayer goes free for cooperatingceive. Considering the just presented forwarder’s ditem
with the police. Finally, if both prisoners betray each othdéhere are two playerg,; andp,, which can forward or drop a
simultaneously, then both will go to prison for 3 months. Thpacket, represented ly and D respectively. The normal form
guestion is what will prisoners do, assuming that none ahthgepresentation of the forwarder's dilemma is shown in Table
can be sure if the other will betray or stay silent. If botth. The rows represent the actions availablepio while the
stay silent, both get a minor sentence of one month. Howeveolumns represent the actions availablefoAs already told,
each prisoner may feel tempted to betray the other in ordertte cell resulting from the chosen line and column contdies t
be freed. As a result, both may end up betraying each otheayoffs that players will receive. For instance pif forwards
Hence the dilemma. and po, drops the packet, then the resulting cell contains

In [14], a conceptually similar version of the prisoner'é_c’ 1), which means thag, receives a payoff of-C andps

dilemma is presented. It is called ttierwarder’s dilemma receives a payoff of. The tuple including the strategy chosen
g%;each player is calledtrategy profile In the example just

and will be used throughout this article to help explainin 4 wh ¢ d q the strat file i
some definitions. The game can be explained as follows. Th eD,)w ergy, forwards andp; drops, the strategy profile is

are two players, routes; and routerp,, that want to send a - | f tation i d for simol
packet tod; andd,, respectively. As shown in Figure 1, for € normal form representation 1S good for Simple exam-
ples, however, for games with many players and multiple

d; to receive the packet fromy, po will have to cooperate SR .
! b 1, P2 b ﬁ;céategles, it is impossible to use the normal represemtafior

and forward the packet. Conversely, the same applies for fh tretrateqic formis th t suited. In this f
packet fromp, sent tod,. If a packet reaches its destination, 0S€ cases, rategic formss the most suited. in this torm,

then the player who sent it receives a payment.oh player ¢ 92M€ is represented by= {P,S,U}, whereP representg
player w ! V pay Pay rtge set of playersS represents the set of all strategy profiles

a cost of C. where0 < C << 1. This cost representsandu represents the set of utility functions, explained next

the consumption of resources to forward foreign traffic. Tt%]_'l_rl]m]’ [t15]f' Il strat il be obtained $
guestion is whether or not players in the forwarder’s dileanm (‘asse ho aSs_ra ?hgy pr;) ! ?S IcI:ant f obtaine i @f ¢
will cooperate with each other by forwarding packets. Ifrbot™i€? i_’lw ereo; 1S the set ot all strategies available 1o
players cooperate, then both will receive a payoffiof C. playeri.* In game th.e'ory literature, fqr convenience, the set
However, a player might feel tempted to defect in order t%f all players except is denoted by—i. This way, one can

receive a payoff o, which is the highest payoff in this game,repre_?enttatstrattigy Pmﬁl@“;‘i) tf(]jat Is compk))(_)set(_j of ?
leaving a payoff of—C for the opponent. In non-cooperativeSloeCI Ic strategy Irom, s; € o;, and any combination o
tegies from all other players, ; € S_;. As for the set

one-stage games, it is assumed that players decide at tlee Sae . = ; o
time what will be their actions without communicating theiP! Utility functions, i/ = {uili € P}, it includes the payoffs

preferencebeforehand. Here, the term preference refers to tH?ﬁf@h playe:;r re(§|st alia rlesult from the chosen girateg
action that a player feels tempted to choose, forward or dr8[)° ne, 1.e.u; : o = [1], [14], [15]. . :
Players in a game can hawmmpleteor incompletein-

the packet in the case of the forwarder’s dilemma. Howev?r, : . .
lormation. In a complete information game, every player

even if players in the forwarder’s dilemma communicaterthej D Kk thi bout th he is involved i
preferences beforehand and agree to cooperate, both $)Ial T noy:; e”very N9y 6} ou. epgakme € :IS tlr:WO \:ﬁ n.
will still be tempted to lie and drop the packet belonging t ore specilically, every player € nows all the other
the opponent in order to receive the highest payoff.oAs a players, their available strategies and the respectiveffsay

: : : Moreover, every player knows that the opponents also have
safe precaution, both players will defect by not forwarding . ) i ) i
packet of the opponent. This way, both players will ply that information. This knowledge can be used to intelligent

and, as a _reSUIt' will receive a payoff 6f even thO_UQh they  1The symbol’x’ represents the Cartesian product. HengeenS; —
could receive a better payoff af— C. Hence the dilemma. {(si,s2,...,5p|) [s1 €S1 Asa €S2 A... Asip| € Sp|}-



TABLE I TABLE IV

EXAMPLE OF A GAME WITH ONE STRONGLY DOMINATED STRATEGY EXAMPLE OF A GAME WITH WEAKLY DOMINATED STRATEGIES, TAKEN
TAKEN FROM [1]. FROM [16].
p2 p2
T2 Y2 22 T2 Y2
» z1 | (2,3) | (3,0) | (0,1) z1 | (1,0) | (0,2)
Y1 (07 0) (176) (4’ 2) p1 Y1 (07 2) (270)
z | (1,1) | (2,1)
TABLE Il
GAME FROM TABLE Il WITH THE STRONGLY DOMINATED STRATEGY . .
ELIMINATED . Strategies can also be weakly dominated [1], [14], [15].
P2 L . L.
o m Definition 3 (Weak Dominance) Strategy s; of player i is

o 2 2,3) [ (3,0) weakly dominated if for any strategy profile adopted by the
y1 | (0,0) | (1,6) opponents of, s_; € S_;, there exists at least ong # s/
such thatu; (s, s—;) < u; (s;, s—;), with strict inequality for
at least ones_; € S_;.

choose strategies that provide the highest possible majidff

[14], [15]. Removing weakly dominated strategies by iterative elimi-
On the other hand, in a game with incomplete informatiomation can also be done, however, it can lead to unexpected

players do not know which strategies are available to thesults. Considering the game from Table 1V, taken from

opponents, neither the resulting payoffs. Certain beheifght [16], p; has two weakly dominated strategies, and y;.

be known about the opponents but those are not accurate gndFigure 2, it is possible to see how eliminating or

as such, the behavior of players can be different. In thisishe 4, first can lead to different results. That is, the order in

only complete information games will be used. which weakly dominated strategies are eliminated can lead

to different outcomes. Such situation does not happen with

Definition 1 (Complete Information Game) A game with strongly dominated strategies, because elimination dags n

complete information is a game where every player P cause strongly dominated strategies to cease being sgrong|

knows all the other players, their available strategies afld dominated. On the other hand, a weakly dominated strategy

payoffs that they receive as result from the chosen strategyn cease being dominated if other strategies are removed.

profiles.

C. Nash Equilibrium

B. Dominated Strategies It is not always possible to predict the outcome of a game
In game theory, players choose their strategies in orderttoough iterative elimination. For instance, the game ibl@a
receive the highest possible payoff. Thus, it can be expecté, taken from [1], has no dominated strategies. Nevertlseles
that strategies that never lead to high payoffs will never lieis still possible to predict what will be the outcome of

chosen. Considering the game from Table I, taken from [lthe game. For that, the notion bEst responseeeds to be

playerps will never choose strategy,. That is because greaterintroduced [1], [14], [15].

payoffs can be obtained hy,, either by choosing:, or -,

no matter how his opponent plays. In this case, it is said th@aeéfinition 4 (Best Response)The best response of player

strategyz, is strongly dominated1], [14], [15]. is a functionbr; (s_;) that outputs which strategy should
choose in order to receive the highest possible payoff,ngive

Definition 2 (Strong Dominance) Strategys; of playeri is that the opponents will plays_;. That is, br; (s—;) =

strongly dominated if for any strategy profile adopted by therg max;,cs, wi (Si, 5—:).

opponents of, s_; € S_;, there exists at least ong # s

such thatu; (s}, s_;) < u; (s, 5_)- In the game from Table V, the strategy from p; is the

best response to strategy from ps. Strategyzs, in its turn,

Strongly dominated strategies can be removed from thethe best response to strategy. One interesting strategy
game, since intelligent players would never choose them. profile is the one wherg, playsy; andp, playsys, with the
the case of the game from Table Il, if strategyis eliminated, payoff (1,1). In this casey; is the best response » and,
then the resulting game will be the one in Table Ill. Notsimilarly, y, is the best response tg. This strategy profile
that in the resulting game, after elimination of, strategy is actually the expected outcome of this game, since none of
y1 Of p; also becomes strongly dominated and, therefore, ctre players has any incentive to unilaterally choose a réiffe
be removed. This elimination process of strongly dominatestirategy. That is, ip; playsx; or y, its payoff will decrease,
strategies is callederative elimination[1], [14], [15]. At the considering thatp, does not change its strategy. Similarly,
end, for the given example, only one strategy for each player will also not change tory or z; because its payoff will
will remain, x; for p; andz, for p,. Since strategy profile decrease, singe, is playingy;. This type of strategy profiles,
(z1,22) is expected to be chosem, will receive a payoff of where no player has any incentive to deviate, is teridadh
2 andp- will receive a payoff of3. equilibrium [1], [14], [15].
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Fig. 2. Difference between two alternative iterative eliations of weakly dominated strategies.
TABLE V Definition 6 (Pareto Superior) A strategy profiles € S is

EXAMPLE OF A GAME WITHOUT DE)ll\]/IINATED STRATEGIES TAKEN FROM Pareto Superior tOS/ c S if Uu; (3i7 S—i) 2 U (82, 3/,2) ,VZ c
' P, with at least one strict inequality.

Z2 U2 29 The most efficient outcome in a game would be one with
z1 | (3,0) | (0,2) | (0,3) the highest payoffs for every playefF, F) in the case of
P Zi E(Q) gg gé ég g 8; the forwarder’s dilemma. Such efficient outcome is said to be
: : : Pareto optimal and no other profile is Pareto superior to]jt [1
[14], [15].

Definition 5 (Nash Equilibrium) A strategy profiles* is a
Nash equilibrium ifu; (s}, s*;) > u; (s;,s*;),Vs; € S;,s; # Definition 7 (Pareto Optimal) A strategy profiles € S is
sf, Vi € P, with at least one strict inequality. Pareto optimal if there is no other strategy that is Pareto
superior tos.
It is possible to have more than one Nash equilibrium in one
game. In the example from Table 1V, both strategies obtainddiere are cases where Nash equilibrium is Pareto optimal. In
through iterative elimination of weakly dominated stragsg such cases, it is said that Nash equilibriunPéseto efficient
(21,72) and(z1,y2), are actually Nash equilibrium strategiesNaturally, the most desired Nash equilibrium is the Pareto
Indeed, strategy profiles obtained by iterative eliminatiwe efficient one, since payoffs are higher.
always Nash equilibrium profiles. Note, however, that in the
case of iterative elimination of weakly dominated stragsgi . .
the resulting profiles are a subset of the Nash equilibriuRf Mixed Strategies
profiles, meaning that there might be more Nash equilibrium Until now, in this chapter, it has been assumed that players
profiles [1]. As for iterative elimination of strongly dondted choose one specific strategy to be played and the expected
strategies, the resulting profile is the only Nash equilitnj outcome of the game is a Nash equilibrium profile. However,
as in the game from Table I [1]. in some games, Nash equilibrium may not exist, as shown in
Nash equilibrium, as shown, predicts what will be th#&e example from Table VI, taken from [18].
outcome of a game. For example, in the forwarder's dilemmalnstead of choosing which specific strategy should be
from Table I, the Nash equilibrium profile {0, D). Note that played, players can define a probabilistic distributionrdkieir
this outcome is not the most efficient, since both playerdccolavailable strategies. In the example from Table VI, a Nash
receive greater payoffs if the profilé, ') was played instead. equilibrium would exist if both players define a probabilaly
However, since any player might feel tempted do defect iry2 over each of their strategies, as it will become clear next.
order to receive the highest payoff af both players, as a Such distribution is termecthixed strategy[18].
precaution, end up choosinB in order to avoid receiving

—C. In this case, the Nash equilibrium strategy is not thBefinition 8 (Mixed Strategy) A mixed strategy; is a dis-

most efficient outcome, since players receive the paiofi), tribution over the strategies af S;.
and a greater payoffl — C,1 — C) could be earned if the

profile (F, F') was chosen instead. In fact, Nash equilibriuriThe set of all mixed strategies from a playet P is denoted
only predicts what will be the natural choices of intelligenby ; (capital of o). Similarly to strategy profiless € S,
players that do not trust each other and, in many gamespiixed strategy profilesan be defined by, = x;cp;. From
is not the most efficient outcome. The challenge resides liere on, to avoid confusion, the set of profilesSrwill be
designing systems where players have incentives to co@peraalled pure strategy profileswhile the profiles inX will be
forward traffic from each other in the case of the forwardertermedmixed strategy profiles
dilemma, in order for efficient Nash equilibria to be reached Since mixed strategies define probabilities over the set of
[71, [8], [17]. available pure strategies, the utility function in thiseasveals

In game theory, the strategy profil€, F') of the forwarder’s the expected payoff based on the chosen mixed profil#],
dilemma is said to b&areto superiorto other profiles. [15], [18]:



TABLE VI
EXAMPLE OF A GAME WITHOUT PURENASH EQUILIBRIUM, TAKEN FROM
[18].

P2
T2 Y2
z1 | (1,-1) | (—1,1)
P lu LD [@-D (1-C1-0) (-G (1-0)  (0,0)
Fig. 3. Two stage version of the forwarder’'s dilemma, whereis the first
player to move.
u; (o) = u; (s o;(s; 1 . . .
i) Ee;s i )1; i ()] @ ke their moves [1]. Thesxtensive formrepresentation,
s J

shown in Figure 3 for the forwarder’'s dilemma, is the most

wheres; is the strategy of in profile s and,o; (s;) represents suited for these situations. The extensive form consista of
the probability ofs; being chosen. Hence, (s) [[;cp 0; (s;) tree structure where the root node represents the firstidecis
represents the expected payoffiof s is chosen. in the game. In the previous example, the first decision lgelon

Regarding the game from Table VI, and assuming fhat to p,. The lines with labels ¥ and D) represent the actions
choosesr; with probability ¢, andp, choosesr, with prob- available to the players. Playgr, at the first stage, can decide
ability ¢,,, then the expected payoff for, can be calculated to forward, F, or to drop,D, the packet fronp,. The leafs of
by: the tree contain the payoffs that players will receive aditay
to their decisions.

Upy (0) = 1z, Gr,] + [~ 100, (1 =g, )] + In multi-stage games, the player to move in the first stage
+ 1= ) @] + has a set of strategies equal to the ones available in the
+ [1(1—qz) 1 —qw)], one-stage game. For instance, from Figure 3 has the

following strategies availableS,, = {F, D}. The players in
the subsequent stages can take their decisions based on the
actions from previous stages. Player from Figure 3, can
fjecide its action based on the move mf in the previous

where 1 and —1 are the payoffs thaip; would receive
according to the different strategy profiles. As aforenmargd,
Nash equilibrium will exist, in this case, far,, = ¢., = 1/2,
meaning that in this mixed Nash equilibrium both playerd wi

. . .. stage. For this reason, strategies fgwill be different in the
receive a payoff ob. A_ccordlng o [1], [15], every game with mHIti—stage game. In this casg, has the following strategies
a finite set of strategies has at least one pure or mixed Nash . X . .

o ) e = . available:S,, = {F'F,FD,DF,DD}. The first character in
equilibrium. Note that a mixed Nash equilibrium profile ISy strategy fromp, represents the action tha takes if p
never Pareto optimal. That is because a mixed profile is, in . 2 !
fact, a linear combination of pure strategies and, as swafidc choosed" in the first stage and the second character represents

’ o P 9 ' the action thap, takes ifp; choosesD. For instance, strategy
not res_ult in higher payoffs than the ones obtained by pu(%D) means thap, will forward if p; has forwarded in the
strategies. previous stage and will drop ff; has dropped. As previously
explained, the leafs represent the payoffs that players wil

lll. DYNAMIC GAMES receive according to the decisions taken.

One-stage games can only model situations where all play-
ers take their decisions at the same time. However, MaRy \ash Equilibrium and Backward Induction
situations may be better modeled with games composed of o ) ) )
sovera siages 1, ), 1] Fr o, n e nemt 1 S0P 0 S e e
dilemma, players may not have packets to send at the sa oA < : B "
time. Let us assume that is the first player with a packet to @ Nash equilibrium if no player can increase its payoff by
be sent, whickp; may or may not forward. Immediately after,unllaterally deviating. Considering the_:_ex_ample from I-Fega,_
p1 also sends a packet, whigh can choose to forward or not.tak?”};r%mD [18};[ tgerurengS?I?w-I;Enum NStrar;{egy _IIO_LOTHGS
Such games are termelynamic gamesr multi-stage games &'€:(H, DD), (H, DH) and(D, HH). These Nash equilibria

In this chapter, and throughout the thesis, only dynamiceganfa" be more easily extracted from the normal form equivalent
with perfect informatiorare considered. game shown in Table VII. Note that the rows of the table

include the current possible moves fpr (H and D) and

Definition 9 (Perfect Information) A dynamic game with the columns include the current possible moves jigrthat
perfect information is one where every playee P knows aré based on the previous actionyof (HH, HD, DH and

all the actions taken in previous stages by all opponents. D). In strategy profile(D, HH), which is one of the Nash
equilibrium profiles,p, threatens to playd regardless of the

In the previous multi-stage forwarder's dilemma example, move from p;. Playerp; is aware of this threat and, as a
can decide whether or not to forward based on the action result, could play his best responseHdd, which is strategy
p1 in the previous stage. D. However, looking more closely at Figure 4,;if chooses
Naturally, dynamic games need a different representatiéhin the first stage, them, is really not willing to choosé{ in
that must be capable of showing the order in which playetise second stage, sinég would givep, a better payoff. This



repeated forwarder’s dilemma, where the game in Table | is
played repeatedly over several stages. At every stageery
playeri € P has to choose his action, (¢). The profile of
all actions chosen by all players at a stage represented by
a(t) = (apl (t) » Upy (t) yee s Opipy (t))

In this paper, only repeated games with perfect informa-

(_27_2) (670) (076) (313) . .
tion are considered. As such, at every stage, all players
Fig. 4. Example of a dynamic game taken from [18]. have access to the history of all previous actioh$;) =
(a(0),a(1),...,a(t—1)). Such history is taken as input
TABLE VII to the strategy of every player to decide what will be the
NORMAL FORM EQUIVALENT GAME FROM FIGURE 4 next action:s; (h (t)) = a; (t). Naturally, the strategy profile
o outputs the next profile of actions,(h (t)) = a (t).
HH HD DH | DD
H | (=2,-2) | (=2,-2) | (6,0) | (6,0) A. Finite-Horizon Games and Nash Equilibrium
LD 0,6 3,3 | (0,6) | 3,3)

Repeated games can fimite-horizon which means that the
number of stages is limited, anfinite-horizon which means
that players interact over an infinite or unknown number of
stages [1], [18]. The payoff attributed to every player P of
finite-horizon games can be calculated by summing the stage
payoffs of all stages:

T
(-2,-2) (6,0) (0,6) (3,3) Ui (s) = Z u; (s (h (1)), 2)
t=0

Fig. 5. Backward induction technique applied to the exampbenfFigure . .
4. The continuous thick line from the root node to the leafrespnts the Where T is the last stagey; is the stage payoff of player

predicted outcome of the game. 1 and U; is the total payoff. Considering the repeated for-
warder's dilemma as an example, and assuming that both

kind of th od h , ) I players are using a strategy that chooBeat every stage, the
ind of threats are termeempty threatssincep, is actually payoff attributed to both piayers would @fio (1-C) =
bluffing and H H does not represent a real threat [15], [18].(T +1)(1 - C) in this case

Finding Nash equilibrium strategy profiles in multi-stage ¢ nderstand Nash equilibrium in finite-horizon games, let
games can lead to empty threats and their removal can R€yeep considering the repeated forwarder's dilemma.tt bo
done throughbackward induction15], [18]. This technique players playedr until stageT — 1, then one of the players

starts by analyzing the most profitable action in the lagiesta.,1q deviate taD at the last stagé" to increase his payoff.

and then, based on the most profitable actions at the lggfg opponent knows that, and to avoid receiving' at the
stage, it is analyzed which is the most profitable action pf; stage, he can also pldy. Moreover, since it is predicted
the penultimate stage. This analysis keeps proceedingrdpwWg,a poth players will playD at the last stage, then players
in the tree structure until the root node is reached. can also deviate at the penultimate stage in order to inereas
_To exemplify this, let us assume the game from Figure gheir payoff. Following this reasoning, the strategy peoftiat
First, the action that results in the highest payoff feris chooses the actiofD, D) at every stage is a Nash equilibrium

determined, considering all the possible previous actiins uf e finite-horizon repeated forwarder's dilemma. Notatth
p1- If p1 playedH, then the best choice is f@; to chooseD.  hig method, used to find Nash equilibrium, is similar to the

On the other hand, if, choseD, thenp, will be better with  5¢1ward induction introduced in Section IlIl-A. Hence, any
H. Given the best moves gk, it is possible to decide which gyrategy profile that produces the outcome predicted by the

action results in the highest payoff fpi. Clearly, p; will be  packward induction is a Nash equilibrium.

better by playingH, since it will give him a higher payoff.

In Figure 5, it is possible to see the result of the backwagl |nfinite-Horizon Repeated Games and Nash Equilibrium
induction, where the thick lines mark the best actions atyeve . ) ,

stage. The continuous route of thick lines from the root ® th Infinite-horizon repeated games, as aforementioned, are
leaf represents the predicted outcome of the game. Henk ,yed on forever or 'for an “”",”PW” ”Pmber of stages. '_A‘S
(H,DD) and (H, DH) are the predicted outcomes, sinca&uch, the payoff function of the finite-horizon game, shown i

both these strategies lead to the actions chosen by backw@faton 2, can not be_ used for infinite-horizon games becaus
induction. it could result in infinite payoffs. Instead, a weighted sum,

termeddiscounted payaoffis used [1], [18], [19]:

IV. REPEATED GAMES Ui (s) = (1— 5)25%1 (s(h (1), ©)
Repeated games are a specific type of dynamic games where t=0

players face the same one-stage game repeatedly [1], [Mhere § is the weighting factor, termediscounting factor

[18], [19]. An example of a repeated game would be thend accepts only values betweerand1, 0 < § < 1. As for



(1 =), itis responsible for normalizing the payoffs, allowingSince0 < § < 1, thené > C for the inequality to hold.
the comparison between discounted payoffs and the payois long as the cost of forwarding a packet, is lower
received at every stage. For instance, in an infinite-harizéhan the discounting factod, it is more profitable to follow
repeated game where playgémreceives a stage payoff af the grim trigger than deviating from it. This results in a
at all stages, the discounted payoff forwill be 1. Note Nash equilibrium profile where both players exert effort by
that ast grows, 6 decreases. Hence, stage payoffs becorfawarding packets from each other.

less important ag grows, since the stage payoff is being As aforementioned and exemplified, the discounting factor
multiplied by §*. The actual value attributed # in a game is an important piece in the Nash equilibrium of infinite-
will influence how fast the stage payoffs loose importanceprizon repeated games.dfis close to0, then the importance
altering the behavior of players and the Nash equilibriumf the successive stage payoffs will decrease rapidly, aral a

profiles, as will be demonstrated next. result, the relevance of the first stage is much greater than
In infinite-horizon games, similarly to one-stage games,the subsequent payoffs. As such, players will care mostly
strategy profiles* € S is a Nash equilibrium if: with the first stage and will try to earn the highest possible

- N . immediate payoff. This mimics the behavior of an impatient
Ui (s,575) 2 Ui (s0:5%) Vs € S Vi€ P (4) player mainly interested with the current stage payoff. bm t
However, in the case of infinite-horizon games, Nash equilibther hand, if is close tol, the importance of the successive
rium is greatly influenced by the discounting factor and bstage payoffs decreases slowly, obligating players to beemo
the fact that the game is played on forever [1], [18], [19patient and cooperate to avoid severe punishments in future
To exemplify it, let us introduce thgrim trigger strategy, stages. Relating this reasoning to the necessary condiion
which is widely used in game theoretical literature [1], ][18the grim trigger strategy to be a Nash equilibrium in the
[19]. A playeri using this strategy will exert effort at everyrepeated forwarder’'s dilemma, > C, impatient routers will
stage, as long as the opponent also cooperates. If the appowieviate from the strategy and drop the packets, while patien
shirks even only once, then will stop cooperating from routers will follow the strategy and forward the packets.
thereafter. Applying this strategy to the forwarder’s dilaa, An alternative meaning fob is that it can represent the
and labeling one of the players liyand the opponent by probability of the game ending in the current stage. That
(if i« = py thenj = po, if i = po thenj = py), grim trigger is, high values for§ represent a high probability that there

strategy can be defined by the following equation: will exist more stages, while a low value of represents a
F, if (a;(t—1)=F) and low probability that the game will continue tq a next stage.
s; (h (1) = { (a; (t—1) = F) (5) Therefore, if the probability of the game being played for
D, otherwise many stages is high, then players will be patient and cotgera

Otherwise, if there is a high probability that the game wél b

If_ both players .in the infinite-horizon .repeated forwarder’p|ayed only for a few stages, then players will not care about
dilemma play this strategy, then they will pl@y at all stages. ¢qgnerations nor possible punishments, and will try to eam

The outcome of such strategy profile for both players will bgj,o highest possible immediate payoffs.

(1-0)[1-C)8+(1-C)d' +...] = As shown, equilibrium strategies where players cooperate
N L are possible in repeated games, as long as the discounting
=([1-0)[1-C)3=0"]=(1-9) {(1 -C) m} = factor is high enough. In communication networks, gengrall
=(1-0). it can be considered that the discounting factor is closg. to

The reasoning is that networks are supposed to operaterfor ve

If. player i dev_iates at some stagé_, then_i will receive a long periods of time and it is unknown when will a network
higher payoff in that stage but will receive zero thereafteéease operation [14]. That is, the probability that the oetw
The resulting discounted payoff for the deviating playen ¢ '

) o latod by, il operate for many stages is high and thereférean be
e calculated by: assumed to be close fo

1-0)[1-C)"+(1-C)é" +...+ 1) Folk Theorem:Many Nash equilibrium strategy profiles
+168 4088+ 40882 1 . ] _ exist in infinite-horizon repeated games that do not exist in

; . one-stage games. This allows for certain payoffs to be obthi
= (1-9) [(1 —O) Y o+ 6 } = that would not be possible in Nash equilibrium of one-stage

games. To understand which payoff values are possibleslet u
introduce themin-max payoff[18], [19].

(1-0) [1-0) 525 + 5] -

(1-C)(1=06") +(1-6)6" =
— (1—C)—6" (1—C)+6" (1-9) — Definitio_n 10 (Min—Max Payoff) The min-max payoff for
(1-C)+6"C—6"5 playeri is defined asu; = min,_, maxs, u; (S;,5—;).

= (1-C)+6" (C—-9). That is, the min-max payoff is the lowest payoff that some

glayerz‘ can receive, provided that all opponents will choose

a strategy to minimize the payoff of and ¢ will choose

the best response to such strategy to maximize his payoff.
1-C>1-C+8" (C-68)=0>68 (C-4). In the case of the forwarder's dilemma, this corresponds to

For the profile, where both players use grim trigger, to behNa;
equilibrium, the deviation can not be profitable forThat is:



between players, as will be shown in the next section through
an example.

V. ALGORITHM DEVELOPMENT IN A COMMUNICATION
NETWORK CONTEXT

As aforementioned, devices/players in a network do not
need to have persistent conflicting interests for game yhieor
be useful as a mean to develop an algorithm. In this section,
. . . . L a simplified model from [12] will be used to show how an
Fig. 6. llustration of the min-max and feasible payoffs. Théck lines | ith be d | d d h . In thi
represent the min-max payoffs, while the gray area represdhteasible algorithm can _e eveloped under suc assump?'on- n t IS
payoffs. case, several wireless routers, deployed by a servicedaovi
have the objective of forwarding as much traffic as possible,
while avoiding wastage of resources.

the payoff (0,0), earned when both players plap. Any

payoff greater or equal than the min-maxis p(_)ss_|l?le to qbtaA_ Fiber-Wireless Access Network Scenario

by a Nash equilibrium strategy profile in an infinite-horizon™ ) ) )
repeated game. In Figure 6, the min-max payoff in the infinite .Flber—ereIess access netvyorks use a mixture of optical and
horizon forwarder’s dilemma is shown with thick lines. Thavireless technologies to provide Internet access to uSeey

gray area represents déasible payoffdy Nash equilibrium aré composed of two sections: an optical back end section,
strategies [18], [19]. which brings fiber from the central office to near the userd; an

a wireless front end section, which provides wireless heer
Definition 11 (Feasible Payoffs)The set of feasible payof“facce_SS o the users. He_re, Itis con5|der_ed that the wirketess
: P o . end is composed of wireless routers in a mesh topology, as
profiles is given by {u = (u1, wug, ..., U"P‘) Dup > g, oo ;
Vi e P). — shown in Fig. 7. Some of those wireless routers are gateways
responsible for the frontier between the optical and wagle

Provided thab is h|gh enough, then any payoff in the feasib|@nVir0nmentS. A user WIIIIng to send/receive traffic toffrthe

area can be obtained by a Nash equilibrium strategy profildnternet can connect to the nearest wireless router or ggtew
Traffic may need to travel through several hops in the wigeles

mesh section and, as such, one of the key issues to address
is the allocation of resources throughout the mesh section i
order to serve all users in a fair manner.

At the wireless section, every wireless router/gatewaytsvan
to send/receive traffic belonging to its users to/from the

From all the possible outcomes in equilibrium, the ones withternet, through the optical section. Like in [12], it isased
the highest payoff, i.e. the ones obtained by a Pareto efficiéghat tree structures are already formed as a result fromatre p
equilibrium profile, are the most desired from the networgelection done by a routing algorithm. Such tree formation
point of view. An algorithm could be developed that mimicés exemplified in Fig. 7, where the established connections
the behavior of such a Pareto efficient equilibrium strateggre shown. The set of all wireless routers will be denoted by
For instance, in the case of the repeated forwarder's dilemmyV. Since a tree structure is usell, is used to represent
an algorithm could be developed that leads every player @&l descents of a wireless routér € )V, while the set
cooperate at every stage, as long as the opponent also eoopl@ncestors is denoted by;". Every wireless router will
ates. If it happens that the opponent defects, then the hiarrfierward traffic belonging to its directly connected usersthb
player can punish the defecting opponent by not forwardimg downstream and upstream traffic. Besides traffic belonging
packets for a certain amount of stages. The punishment netlés directly connected users, every wireless rodter W
to last for enough stages in order to make the punishmengo forwards downstream and upstream traffic belonging to
sever enough to deter any deviations. That is, it has to lze clgsers connected to wireless routersIifi. The question is
for the alleged defecting opponent that defecting will net thow much bandwidth should every wireless router allocate
more productive. The general idea is to model the problei®r traffic belonging to its own users, and how much should
in question and seek for equilibrium profiles with the highede allocated for the traffic belonging to users connected to
possible payoffs. With such knowledge, an algorithm cam thavireless routers i,
be developed that will mimic the behavior of the equilibrium In this model, every wireless router and gateway is a player
strategy profile. with the following objectives:

The example of the forwarder’s dilemma represents a games Forward as much traffic as possible, either belonging
where players have clear conflicting objectives. This cdadd to its directly connected users or belonging to users
applied, for instance, to border routers that belong taedifit connected td";".
autonomous networks with selfish interests. However, games. Have the least possible amount of packet drops. Such
theory can also be used in settings where the conflict anises i packet losses lead to unfruitful use of resources, since
certain situations only or when there is a lack of coordorati these packets may have traveled through several hops and

Theorem 1 (Folk Theorem) For every feasible payoff profile
u* € {u=(uy,us ... U"pl) Tu > Uy, Vi€ P}, there exists
a discounting factow < 1 such that for allé € ]4, 1], there
is a Nash equilibrium profile with payoffs*.



drop component will be close t@. On the other hand, if too
many drops occur, then the drop component value will be
too negativey; << 0. In computer networks, the reasoning
behind this is that a few packet drops can be recoverablde whi
too many packets being dropped may end up in unrecoverable
service failures. In TCP/IP networks, for example, a low
number of packet losses can easily be solved by the fast
retransmission mechanisms that TCP offers, while a high
number of packet losses will cause TCP to enter into slow
start [20].

The expression (7) calculates only the payoff of one stage.
The discounted payoff that every player receives in the infi-

[ Wireless gateway ~~ ~ - Teachable wireless connection nite-horizon repeated game is calculated with the disealint
_ — Established wireless connection payoff function in (3), which uses expression (7) for the gfy
[J Wireless router Emm  Optical connection of every stage. As for the strategies, they decide the vdbares

. , _ _ BrandB;,VjeT] tobe used at every stage, according to
Fig. 7. Example of a wireless mesh front end from a Fiber-Wazle . J N N . + . .
access network. Wireless connections are establisheddinogdo the routing the history of values3} and B} ;,V;j € I';” chosen in previous

protocol in use. stages.

consumed resources from the wireless routers along tRe Nash Equilibrium, Pareto Efficiency and Algorithm Devel-
the hops. opment
Resuming, every wireless router, which was deployed by aAs already explained in Section II-C and Section IV-B, Nash
service provider, wants to assure the best quality of serviequilibrium represents the expected outcome of the game.
possible and to use resources in a useful manner. From the network point of view, the most desired outcome
The amount of bandwidth that users connected to a wirelessuld be a Pareto efficient outcome, where all wireless rsute
router, or gateway; € YW need to send/receive their trafficforward as much traffic as possible with as few packet drops
at time ¢ is represented byB; (t). Such wireless router will as possible.
then dedicate the amout! (¢) of bandwidth for this traffic. ~ In a one stage version of the game described, the Nash
Also, every node € )V will dedicate B} ; (¢) of bandwidth to equilibrium is for every wireless routére W to setB; and
downstream and upstream traffic belonging to users coruheclﬁ;j,w € I'f, with values near zero. That is because it is not
to every wireless routej € ', totaling Bl = Zjeﬁ B; ;. known beforehand what will be the bandwidth needs of the
The actual bandwidth that a wireless router/gatewayill other wireless routers ifi;’ and inT';". This way, routers can
have available for traffic belonging to its users, equal tgst assured that they will not receive-ao payoff due to the
the minimum bandwidth made available to it throughout alpgarithmic nature of);. However, if the bandwidth needs were
wireless routers/gateway in the route to the optical lirk, known beforehand, then every routee »V could setB; and
denoted byB# (¢). That is: Br;.Vje€ F;r to higher values, i.e. as close &) andB;,Vj €
', as possible. Note that in the forwarder's dilemma case,
(6) having players communicate or coordinate their preference
does not lead to a Pareto efficient Nash equilibrium because
players still feel compelled to lie and deviate by droppihg t
Ig)é':\cket of the opponent. In the game presented in this section
however, players have no incentives to lie to their oppaent
because they will receive a higher payoff if they do not lie
ni (t)+ B () B, (1) T #0 nor deviate. In game theory literature, this type of game is
u; (t) = i (t) + BA (1) H =g’ (7)  called acoordination gameThat is, players have incentives to
’ ! o cooperate, as long as they can coordinate their actionsebet
where B?,+ (t) = Xjer+ BJ-A (t) and n; (t) represents the games, strategies where players communicate their prefese
amount of resources that are wasted due to packets beim@rder to coordinate their actions are Nash equilibriurd an
dropped, termedirop componentThe following expression Pareto efficient [21], [22].

can be used to calculate such component: In coordinated repeated games, players try to coordinate
their actions at every stage. In games where the set of action

A

B ) BFT ® + is small and well known, such coordination can be reached by
log B (1) +log | 5 @ I #0 . ; . - :
; (8) having players randomize their actions at every stage until
log (B;“(t)) =0 the desired coordination is reached and, once coordination
Bi(®) e is reached, players will keep using the coordinated actions

Note that the drop component has a logarithmic natur&nother alternative, which reaches immediate coordimaiso
meaning that if only a few packets are dropped, then the have players communicate their preferences at everg stag

B (t) = min

?

B;, min (B; ;)

Jery

Considering the objectives of the wireless routers/gayewa
the stage payoff of every player can be calculated by t
following expression:

ni (t) =
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Capacity of each wireless
connection: 100 Mbps

[21]. In the example shown here, the bandwidth needs of
the users connected to every wireless routeB; (¢), may

change from stage to stage and, as such, the acti®insind Bandwidth needs:

B;;,Vj € I'f, need to change at every stage in order for w: 20 Mbps
coordination to be possible. As such, randomizing actioitis w i 28 ﬁgg:

. . . . y. o0 M S
most likely not lead to coordination. If players communécat 2 30 Mbps

their current preferences at every stage, then their action

can be coordinated. This is, in fact, a Pareto efficient Nash — Wireless connection
equilibrium in coordinated repeated games [21]. Note that i
the forwarder’s dilemma, having players communicate their
preferences at every stage will not be beneficial to achieyg. s. Example of a congestion scenario with unfruitful baiutih utilization

a Pareto efficient equilibrium. For instance, if players iat one of the wireless routers.

the forwarder’s dilemma communicated that they prefer to

cooperate, then they would still fell compelled to lie anfedé .

in order to receive the highest payoff, unless the discognti’!lowing steps:

factor is high enough to deter deviations. In our coordorati Step 1: Communication of the bandwidth needs among all
game, however, players have no incentive to lie about their wireless routers and gateway.

needs, since lying would result in a lower payoff. Step 2: Detection of over-demanding routers/gateway.

As shown, in this game, players do not have intrinsicallgtep 3: Decision, by every wireless router/gateway »V, on
conflicting interests. Instead, players want to coordiraggr the valuesB; and B} ;,Vj € '}, with the objective of
actions. However, if traffic congestion is to high, then some increasing as much as possible the payoff at every stage.
wireless routers will end up having less bandwidth than usatThig represents only an example of a possible algorithm for
needed. That is, a conflict of interests arises becauseithare {ne pandwidth allocation problem in Fiber-Wireless Access
shortage of bandwidth to cover all requests. Let us consier Networks. Note that the concepts explained here can be
high traffic congestion scenario in Fig. 8, where each wileypplied to other problems related to any of the layers of the
connection has a capacity of 100 Mbps. In this situatiogys| model. Moreover, other types of games, such as coalition
wireless router: is using all its bandwidth capacity to forwardgames or network formation games, can also be used to model
traffic belonging to its users and traffic belonging to usesisting problems and develop algorithms. For instance, in
connected to wireless routegs and z. That is, B; = 20, [13], a coalition game is used to develop a mechanism where
B, = 50 and B; . = 30. However, wireless routetv  ynmanned aerial vehicles collect messages from certam dat
can not forward that much traffic becausealso needs0  soyrces, scattered throughout a field, to be then delivered t
Mbps for its users and may choose to dedicate its resouregsnmon receiver. In [23], a network formation game is used
the following way: B;, = 20, By, , = 15, B, = 40 and {5 gevelop an energy efficient routing algorithm for the mesh

By, ., = 25. As a resultz will be reserving more bandwidth front end of Fiber-Wireless Access Networks.
for itself, y and z than will be actually used, leaving with

1. << 0 due to unfruitful utilization of resources. Wireless

routerz, to safeguard itself, can lowds;  or B} ., or both, VI. CONCLUSION

to increase;, and its own payoff. This would leavg and =
with smaller payoffs due tg, << 0 andn, << 0. These two

nodes,y and z, have now two optionsi) each node lowers

D Wireless router

The development of algorithms to solve existing problems
in communication networks is a complex task. The purpose of

its dedicated bandwidth3* and B} respectivelyiii) they lie this tutorial is t(_) showcase how to. use repeat_ed game theory a
to , by inflating their requests, in order to match as much gstool for algorlthm developr_nent in communication networks
possibIeB?j‘ to B and BA to B:. It starts by giving t'he basis of. game theory and repgated

Note that, according to the developed modeldoes not game theory, mclu_d_mg_ how their outcome_: can be pre_d_|ct_ed
care whichB: , or B: _ is reduced, sincé?lf‘% is obtained by through Nas_h equn_lbr_lu_m anq how certain Nash equ!hbrla

. A A . e, A can be possible in infinite-horizon repeated games while not

summing B, and Bz However, if, alternatlvely,BFT (t) = being possible in one stage games. With the basis introduced
[Tjer+ Bi' (t) and B (t) = [1;cr+ By, (t), thenz will be  an example is then given where a model is developed and
more interested in decreasirg); ,, since that will lead to a necessary conditions are devised for the existence of Nash
greatern, and payoff. This alternative would lead to a fairerequilibrium where all players cooperate, which can be used a
bandwidth allocation among wireless routers. Thus the modgbasis for the development of an algorithm.
can be adjusted according to the objectives.

The discussed model, the equilibrium strategy with com-
munication of preferences and detection of over demanding ACKNOWLEDGMENT
wireless routers, provide the ground for the development of

an allocation algorithm. This algorithm could include the, This work was supported by FCT (Foundation for Science
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B, then(a — 1) B > a (B — 1). Coimbras Ph.D. grant SFRH/BD/37808/2007.



(1]
(2]
(3]

[4] John Nash, “Non-Cooperative Game$he Annals of Mathematicsol.

(5]

11

REFERENCES [18] Kevin Leyton-Brown and Yoav Shohankssentials of Game Theory:
Roger B. MyersonGame Theory: Analysis of Confliddarvard Univer- éu%ﬁgﬁésrg \l;/luunltlcilgggolmary Introductignist ed. Morgan and Claypool

sity Press, Sep. 1997. [19] George J. Mailath and Larry SamuelsdRepeated Games and Rep-

John von Neumann and Oskar Morgenstefieory of Games and e B : ; : .
Economic BehavigrPrinceton, NJ, Princeton University Press, 1944. ldtr?it\llz?ssi.tngpgsgugeEe;aoté%nshlpﬁlew York City, NY, USA: Oxford

Merrill M. Flood, “Some Experimental GamesManagement Science [20] TCP Congestion Control, RFC5681, September 2009.

vol. 5, no. 1, pp. 5-26, 1958. [21] Vincent P. Crawford and Hans Haller, “Learning How to dperate:
Optimal Play in Repeated Coordination Gamédsgbnometricavol. 58,
no. 3, pp. 571-595, May 1990.

[22] Alvaro Sandroni, “Reciprocity and Cooperation in Rafe Coordi-
nation Games: The Principled-Player ApproadBdmes and Economic

54, no. 2, pp. 286-295, Sep. 1951.
H. W. Kuhn, “Extensive Games and the Problem of Information
Contributions to the Theory of Gamespp. 193-216, 1953.

[6] Jean-Francois Mertens, Sylvain Sorin, and Shmuel ZatRepeated Behavior vol. 32, no. 2, pp. 157-182, Aug. 2000.

[7] Alvin E. Roth, “The economist as engineer: Game theory,eexpenta-

(8]

Games,” Center for Operations Research & Econometrics, thiige

Chatholique de Louvain, Belgium, 1994 [23] J. Coimbra, G. Sdlitz, and N. Correia, “Network game based routing for

energy efficient Fibre-Wireless access networks,IBEEE International

tion, and computation as tools for design economiEsnometricavol. fgggi&eggg on Communicatign®tiawa, Ontario, Canada, 2012, pp.

70, no. 4, pp. 1341-1378, Jul. 2002.

Noam Nisan and Amir Ronen, “Algorithmic mechanism desigxtéaded
abstract),” inACM Symposium on Theory of Computitigw York City,
NY, USA, 1999, pp. 129-140.

[9] J. M. Smith and G. R. Price, “The logic of animal conflicfature vol.

[10] James D. MorrowGame theory for political scientist®rinceton, N.J.:

[11] Joseph Y. Halpern, “Computer Science and Game Theory: i&fBr

[12] J. Coimbra, G. Sditz, and N. Correia, “A game-based algorithm for

[13] Walid Saad, Zhu Han, Tamer Basar,éMuane Debbah, and Are

[14] Mark Felegytazi, Jean-Pierre Hubaux, “Game Theory in Wireless Net-

[15] Drew Fudenberg and Jean TirolBame TheoryCambridge, MA: MIT

[16] William Spaniel,Game Theory 101: The Complete Texthd®ép. 2011.
[17] Mark Felegytazi, Jean-Pierre Hubaux, Levente Baity “Nash equilib-

246, no. 5427, pp. 15-18, Nov. 1973. J. Coimbra received the BSc in Computer Science
from the University of Algarve, where he is currently
working on his PhD in IP/Optical and Wireless
Access Networks.

His current research interests include optical and
hybrid optical-wireless access networks, wireless
mesh networks, game theory, throughput and cost
optimization.

Princeton University Press, 1994.

Survey,” in The New Palgrave Dictionary of Economic&.N. Durlauf
and L.E. Blume (eds.), Palgrave MacMillan, 2008.

fair bandwidth allocation in Fibre-Wireless access neks@r Optical
Switching and Networkingvol. 10, no. 2, pp. 149-162, Apr. 2013.

Hjgrungnes, “A Selfish Approach to Coalition Formation among- U
manned Air Vehicles in Wireless Networkszame Theory for Networks
Istanbul, Turkey, May 2009, pp. 259-267.

Dr. N. Correia is a lecturer at the Faculty of
Science and Technology of the University of Al-
garve, Portugal. She received her BSc and MSc in
Computer Science from the University of Algarve.
The PhD in Survivable WDM Networks, obtained
at University of Algarve, was done in collaboration
with University College London, UK.

Her research interests include the application of
optimization techniques to several network design
ria of packet forwarding strategies in wireless ad hoc netep IEEE problems, optical and access networks, and devel-
Transactions on Mobile Computingol. 5, no. 5, pp. 463—476, Mar. 2006. opment of algorithms for networks issues.

works: A Tutorial,” EPFL, Lausanne, Switzerland, Tech. R&CA-
REPORT-2006-002, Jun. 2006.

Press, 1991.




