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Abstract 

Here we report the first use of massive scale RNA-Sequencing to explore seagrass response 

to CO2-driven ocean acidification (OA). Large-scale gene expression changes in the seagrass 

Cymodocea nodosa occurred at CO2 levels projected by the end of the century. C. nodosa 

transcriptome was obtained using Illumina RNA-Seq technology and de novo assembly, and 

differential gene expression was explored in plants exposed to short-term high CO2 / low pH 

conditions. At high pCO2, there was a significant increased expression of transcripts 

associated to photosynthesis, including light reaction functions and CO2 fixation, and also to 

respiratory pathways, specifically for enzymes involved in glycolysis, in the tricarboxylic 

acid cycle and in the energy metabolism of the mitochondrial electron transport. The up-

regulation of respiratory metabolism is probably supported by the increased availability of 

photosynthates and increased energy demand for biosynthesis and stress-related processes 

under elevated CO2 and low pH. The up-regulation of several chaperones resembling heat 

stress-induced changes in gene expression, highlighted the positive role these proteins play in 

tolerance to intracellular acid stress in seagrasses. OA further modifies C. nodosa secondary 

metabolism inducing the transcription of enzymes related to carbon-based-secondary 

compounds biosynthesis, in particular the synthesis of polyphenols and isoprenoid 

compounds that have a variety of biological functions including plant defense. By 

demonstrating which physiological processes are most sensitive to OA, this research provide 
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a major advance in the understanding of seagrass metabolism in the context of altered 

seawater chemistry from global climate change.  

 

Introduction 

Ocean acidification (OA) is a direct consequence of the oceanic uptake of atmospheric CO2 

(Caldeira & Wickett 2003) that is causing fundamental ecological transformations as a result 

of changes in physical, chemical and biological environments (Gruber 2011; Hoegh-

Guldberg & Bruno 2010). A drop of ocean pH of about 0.1 pH units from ≈ 8.21 to 8.10 has 

already been recorded (Royal Society 2005) and a further reduction of 0.3–0.5 units is 

predictable by the end of the century (Caldeira & Wickett 2005; Feely et al. 2009). In this 

process, the relative proportion of the inorganic carbon species is being altered, shifting away 

from carbonate (CO3
2-

) towards more bicarbonate (HCO3
-
) and aqueous carbon dioxide 

(CO2(aq)) (Rhein et al. 2013).  

Marine organisms vary broadly in their individual responses to OA, as a result of differences 

in their physiological and ecological characteristics (Hendriks et al. 2010; Kroeker et al. 

2010). The meta-analysis of published data suggests that there is greater sensitivity among 

heavily calcified organisms and a higher tolerance among more active and mobile organisms 

such as crustaceans and fishes (e.g. Orr et al. 2005; Doney et al. 2009; Hofmann et al. 2010). 

Non-calcifying marine photoautotrophs are expected to benefit from enhanced CO2 and 

HCO3
-
 supply for photosynthesis (Koch et al. 2013; Kroeker et al. 2013; Kroeker et al. 

2010).  

In both temperate and tropical shallow coastal systems marine angiosperms (seagrasses) act 

as foundation species (Larkum et al. 2006). Seagrasses sequester carbon and nutrients and the 

habitat complexity within their meadows enhances the diversity and abundance of associated 

organisms (Hughes et al. 2008) and influences the physical environment by reconfiguring 
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water flow, trapping and stabilizing sediments (Hemminga & Duarte 2000). Because of the 

key ecological services they provide to the coastal zone, seagrass-based ecosystems rank 

amongst the most valued ecosystems on earth, surpassing the economic value of coral reefs 

and tropical rainforests (Barbier et al. 2010; Costanza et al. 1997; Costanza et al. 2014). 

The distribution of seagrass ecosystems is declining worldwide, as a direct consequence of 

human-induced factors that negatively impact the meadows, such as eutrophication, 

mechanical destruction, and aquaculture (Orth et al. 2006; Waycott et al. 2009). An open 

question is whether current climate changes exacerbate seagrass threats. Establishing if these 

key habitat-forming species possess the physiological plasticity or adaptation capacity to 

adjust in a rapidly changing environment is a central question for current research (Reusch 

2014; Short & Neckles 1999). 

Seagrasses, unlike macroalgae, are commonly considered to be DIC (Dissolved Inorganic 

Carbon) limited under current CO2 conditions because they are relatively inefficient in 

utilizing bicarbonate (HCO3
-
) for photosynthesis (Beer 1989; Beer & Koch 1996; Invers et al. 

2001). Under actual increasing CO2 conditions seagrass species are expected to increase their 

use of CO2 (Beer & Koch 1996), enhancing photosynthesis, growth rates and biomass (Koch 

et al. 2013; Russell et al. 2013). Despite this assumption, results from laboratory and 

mesocosm experiments conducted so far, over different time periods, are not consensual. For 

example, short-term CO2 enrichment of Zostera marina increased photosynthetic rate and 

shoot productivity decreasing the species daily light requirements (Zimmerman et al. 1997). 

On the other hand, a long-term experiment (1 year) on the same species showed that 

increasing CO2 did not alter biomass-specific growth rates, leaf size, or leaf sugar content of 

aboveground shoots, but significantly enhanced reproductive output, belowground biomass 

and vegetative proliferation of new shoots (Palacios & Zimmerman 2007). Similarly, 

Thalassia hemprichii responded to high CO2 increasing maximum relative electron transport 
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rate, minimum saturating irradiance, leaf growth rate, and non-structural carbohydrates in 

belowground tissues (Jiang et al. 2010). Alexandre et al. (2012) found higher maximum 

photosynthetic rate and photosynthetic efficiency in Zostera noltii, after 5 months of 

exposure to high CO2, but they did not observe any significant effects on leaf growth rates, 

probably due to nitrogen limitation. More recently, Ow and coauthors (2015) examined the 

physiological responses of three tropical seagrasses to a range of seawater CO2 levels for 2 

weeks. Despite increases in net productivity and photosynthetic parameters in all three 

species, a differential growth response was observed, probably due to varying carbon 

allocation strategies among species. 

Studies conducted in the proximity of natural CO2 vents revealed that seagrasses can be 

adapted to live under permanently high-CO2 levels (Fabricius et al. 2011; Hall-Spencer et al. 

2008; Takahashi et al. 2015) and are able to exploit CO2 of volcanic origin (Vizzini et al. 

2010), but can also exhibit a stress-like response, putatively related to their level of 

adaptation to CO2 and other compounds of volcanic origin (Lauritano et al. 2015; Olivè et al. 

2017). In Posidonia oceanica, Hall-Spencer et al. (2008) found no difference in the 

photosynthetic performances of individual shoots between control and naturally acidified 

sites, but seagrass production and shoot density was highest in an area of lower pH (7.6). 

Differently, the photosynthetic activity of Cymodocea nodosa was stimulated by acidified 

conditions at a shallow volcanic CO2 vent, as shown by the significant increase in Chla 

content, maximum electron transport rate and compensation irradiance (Apostolaki et al. 

2014). Low pH promoted C. nodosa community productivity, but without a corresponding 

increase in plant biomass, possibly resulting from nutrient limitation, grazing or poor 

environmental conditions (Apostolaki et al. 2014). In contrast, Olivè et al. (2017) found a 

significant decrease in C. nodosa net plant productivity in the volcanic CO2 vents at Vulcano 

Island. Globally, these results indicate that seagrass responses in naturally acidified 
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conditions are highly dependent upon species and environmental characteristics of the site, 

and cautious must be taken when using data derived from vent sites as a proxy for future 

ocean acidification scenario. 

The application of high-throughput gene-expression profiling, primarily transcriptomics, is 

increasingly recognized as a powerful tool for physiological investigation in response to 

environmental change (Evans & Hofmann 2012; Hofmann et al. 2008; Hofmann et al. 2005). 

For organisms experiencing environmental stress, the modulation of gene expression is 

indeed one of the most rapid and versatile ways to react. Hence, examining the expression 

levels of many thousands of genes simultaneously provides a broad view of molecular 

changes that accompany alterations in physiological states (Evans & Hofmann 2012; Gracey 

2007). Yet, the advent of fast and cost-effective Next Generation Sequencing (NGS) 

technologies has shown great potential for expanding transcriptome resources also in non-

model species (Ekblom & Galindo 2011; Unamba et al. 2015). 

Transcriptomic approaches have been successfully applied to assess the effects of OA in 

several marine taxa, such as corals (Barshis et al. 2013; Kaniewska et al. 2012; Moya et al. 

2012; Moya et al. 2015; Vidal-Dupiol et al. 2013), sea-urchins (Evans et al. 2013; Evans & 

Watson-Wynn 2014; Todgham & Hofmann 2009) and crustaceans (Harms et al. 2014).  

In seagrasses, several studies have published whole transcriptomes of Zostera spp. (Z. marina 

and Z. noltii), obtained via sequencing cDNA libraries and 454 pyrosequencing (Franssen et 

al. 2011; Franssen et al. 2014; Gu et al. 2012; Massa et al. 2011; Reusch et al. 2008; Wissler 

et al. 2011; Wissler et al. 2009) or, more recently, via Illumina sequencing technology (Kong 

et al. 2014), under a range of environmental conditions (e.g. temperature, salinity, light 

intensity and quality). However, the effects of either short- or long-term exposure to elevated 

CO2 and low pH have not been assessed so far. 
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Here, the whole transcriptome of the seagrass Cymodocea nodosa, the only temperate species 

of a tropical widespread genus, was sequenced and de novo assembled using Illumina RNA-

Seq technology, with the goal of exploring the large-scale differential expression of 

transcripts in response to short-term CO2-driven acidification. This work represents the first 

transcriptome assembly and annotation for C. nodosa, thus significantly expanding the 

molecular resources available for this species. Furthermore, by demonstrating which 

biological processes are most sensitive to OA, this research constitutes a major advance in the 

understanding of seagrass metabolism, in the context of altered seawater chemistry from 

global climate change. 

 

Materials and methods 

Model species and experimental system 

Cymodocea nodosa (Ucria) Aschers. is a dioecious, rhizomatous seagrass (Hemminga & 

Duarte 2000), widely distributed in the Mediterranean basin, and also occurring along the 

Southern Portuguese and Northwestern African coasts (den Hartog 1970). It grows on both 

sandy and muddy substrates, and most commonly occurs in shallow waters, although it can 

reach depths of about 30-40 m (den Hartog 1970). C. nodosa is a perennial species, that 

reproduces both clonally by vegetative propagation (stolonization) and sexually by seed 

germination (Buia & Mazzella 1991).  

For this study, C. nodosa ramets (i.e. morphological individuals) were randomly collected in 

Cadiz Bay Natural Park (SW Spain, 36°32′N 6°17′W) at the end of January 2014, from a 

shallow-water meadow (1-3 m depth). The distance between sampled plants within the 

meadow was 4-5 m to ensure sufficient genetic diversity. Special care was taken to limit 

breakage of rhizome connections. Plants were then transported to the CCMAR (Centre of 

Marine Sciences) field station at Faro, Portugal in darkened containers filled with seawater. 
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On the 1
st
 of February shoots were planted (within 24h after uprooting), in an outdoor facility 

composed of 10 independent mesocosm tanks (250L each), operating in open-circuit (water 

flow set to 800 mL/min), each with a 10cm-high sand bottom layer (Fig. S1). About fifteen 

C. nodosa ramets were planted per tank. Each experimental tank was coupled with a header-

tank where running seawater was strongly bubbled with either ambient or CO2-enriched air. 

The CO2-enriched air was prepared by injecting pure CO2 in a 5000L closed mixing tank. 

The CO2 partial pressure (pCO2) in the mixing tank was set at 1200 ppm and continuously 

monitored by a non-dispersive infrared gas analyzer (IRGA), connected to a PID 

(Proportional-Integrative-Derivative) digital controller that in turn regulated the operation of 

a solenoid valve for the injection of CO2. This type of regulation (using PID control instead 

of the common on/off switches) allowed for an extremely stable pCO2 in the mixing tank 

along the experimental period. The CO2-enriched air was being prepared in continuous mode 

and pumped to the header tanks by an industrial grade air blower. The partial pressure of CO2 

in the experimental tanks was allowed to naturally rise at plant’s respiration, and to decrease 

during the day under the effect of photosynthesis (Fig. S1). 

 

High-CO2 exposure and sampling for transcriptome analysis 

Prior to the start of the CO2 treatment, plants were left to recover from transportation and 

monitored for five days after transplantation (i.e. tank acclimation). At the end of the 

acclimation period (t0), C. nodosa was either kept under present day pCO2 conditions (400 

μatm), or under elevated pCO2 (1,200 μatm), i.e. close to the IPCC ‘business as usual’ 

scenario for 2100 (Ipcc 2014). Plant material for RNA extraction and subsequent 

transcriptome sequencing was sampled at t0 and after 15 days of exposure to current or 

elevated pCO2 (t1) from three of the five experimental tanks per treatment (Fig. S2). All 

samples were collected between 11 and 13h to avoid variability from the circadian 
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modulation of gene expression, rapidly cleaned of epiphytes and entirely submerged in 

RNAlater© tissue collection (Ambion, life technologies), to inhibit RNA degradation. After 

allowing the solution to penetrate throughout the tissue for one night at 4°C, leaf samples 

were definitely stored at -20°C until RNA extraction.  

 

Seawater chemistry 

Dissolved oxygen concentration (O2) in the water (Optode MiniDO2T, PME) and 

environmental irradiance (Licor LI-190) were continuously measured throughout the 

experimental period. Water flow, temperature, salinity, pH (NBS scale) and alkalinity were 

monitored daily at 10-11 am in each mesocosms and header-tank. Alkalinity was estimated 

by linearization from potentiometric titration following Gran (1952) method. Accuracy (~ 9 

μmol·KgSW
-1

) was checked using Certified Reference Material (CRM batch #126 and #129; 

Scripps Institution of Oceanography, La Jolla, CA, USA). DIC system parameters were 

calculated with the CO2sys.xls program (Pierrot et al. 2006) using the dissociation constants 

of Mehrbach et al. (1973) as refitted by Dickson & Millero (1987). Daily data of physico-

chemical parameters are shown in Fig. S3, average values for the whole experimental period 

are reported in Table S1 and S2.  

 

Genotyping and RNA extraction  

Before proceeding to RNA extraction, C. nodosa samples were genotyped by using seven 

species-specific polymorphic microsatellite markers (Ruggiero et al. 2004). To ensure a 

sufficient number of distinct genotypes to be used for gene expression analysis, we randomly 

collected a total of 10 plants at t0, and 10 plants per each individual tank at t1, for a total of 70 

samples. DNA samples were obtained from individual shoots by cutting off a 4cm-long leaf 

piece. Leaf tissue was then dried with silica gel (AppliChem) and ground through a Mixer 
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Mill MM300 (QIAGEN). Subsequent DNA extraction was carried out using the 

NucleoSpin® 96 Plant II kit (Macherey-Nagel) following manufacturer’s instructions. 

Microsatellites primers were combined for amplification in a single 7-plex PCR reaction (for 

details see Table S3). Multiplex PCRs were conducted in 25μL reaction volumes containing 

12.5μL Multiplex PCR Master Mix (QIAGEN) and 0.5μL of genomic DNA (6-10ng). 

Thermal cycling consisted of 15min at 95°C, 35 cycles of 60 s at 94°C, 90 s at 58°C, and 90 s 

at 72°C, followed by a final extension of 30min at 72°C. PCR products were analyzed on an 

Automated Capillary Electrophoresis Sequencer 3730DNA Analyzer (Applied Biosystems). 

Distinct Multi Locus Genotypes (MLGs) were determined with the software Gimlet (Valière, 

2002).  

Total RNA from the youngest fully developed leaves (second-rank leaves) of genotyped 

ramets was extracted with Aurum™ Total RNA Mini Kit (BIO-RAD), following 

manufacturers protocol. About 7cm-long leaf sections were ground to a fine powder with 

mortar and pestle containing liquid N2. 700µL of lysis solution (supplemented with 2% (w/v) 

polyvinylpyrrolidone-40 (PVP) and 1% β-mercaptoethanol) were added to about 100-120mg 

of powdered tissue. Samples were then homogenized through a Mixer Mill MM300 

(QIAGEN) and tungsten carbide beads (3mm) for 3min at 20.1Hz. The quantity and purity of 

the total RNA was checked using NanoDrop (ND-1000 UV-Vis spectrophotometer; 

NanoDrop Technologies) and 1% agarose gel electrophoresis. RNA was used when Abs260 

nm/Abs280nm and Abs260nm/Abs230nm ratios were >1.8 and 1.8<x<2, respectively. RNA 

quality was calculated by measuring the RNA Integrity Number (RIN) with an Agilent 2100 

Bioanalyzer (Agilent Technologies, Inc.); only high quality (RIN >7) RNA was used.  
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Library preparation and sequencing 

For C. nodosa transcriptome sequencing and assembly, 3 genotypes (as biological replicates) 

at t0 and 3 genotypes per treatment at t1, for a total of 9 distinct genotypes, were used. Quality 

checked RNA samples were sent to Personal Genomics s.r.l. (Verona, Italy) for libraries 

preparation and sequencing. The nine cDNA libraries were constructed according to the 

Illumina TruSeq® Stranded mRNA library protocol outlined in “TruSeq® Stranded mRNA 

Sample Preparation Guide” (Part # 15031047; Rev. E; October 2013), from 2.5µg total RNA. 

The libraries were subsequently size selected using the Pippin Prep automated gel 

electrophoresis system (Sage Science) for 350 to 550bp. Paired-end sequencing (100bp × 2) 

was performed on two separate lanes of the HiSeq
TM

1000 Illumina platform, with an 

estimated depth of about 160-180millions of reads per lane. Demultiplexing to FASTQ files 

was performed with CASAVA ver. 1.8.2 using default parameters. Reads not passing the 

Illumina chastity filter were removed, prior to proceed with the subsequent analyses. 

 

Data filtering and de novo assembly 

Raw sequencing data were checked using FastQC (http://bit.ly/1aNGclw), and then cleaned 

for adaptors and trimmed for quality using  Trimmomatic (Bolger et al. 2014) with the 

following parameters: ILLUMINACLIP:TruSeq3-PE-2.fa:2:30:10:1:true 

SLIDINGWINDOW:3:25 MINLEN:50. Data were then normalized in silico and de novo 

assembled using the Trinity pipeline (ver. Trinity_201407) (Haas et al. 2013) using the 

following parameters: SS_lib_type RF --normalize_reads --inchworm_cpu 24 --

bflyHeapSpaceInit 24G --bflyHeapSpaceMax 240G —bflyCalculateCPU --CPU 24 --

jaccard_clip --min_kmer_cov 2. Jaccard clip was used to mitigate false fusion of transcripts 

resulting adjacent/overlapping on the genome. The assembling resulted in 171,105 contigs 

which were then used as a reference to map back the single reads using the software Bowtie 
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(parameters: -p 20--chunkmbs 10240--maxins 500--seedlen 20--tryhard-a –S) (Langmead et 

al. 2009). The –a parameter in Bowtie allows to retain all the valid alignments which 

guarantees that all alternative transcripts from the same gene in a common exon are reported. 

In order to remove sequences that did not have enough representative reads, and to count 

reads aligned to each transcript only those transcripts having a count per million (cpm) 

greater than 1 for at least 2 samples (replicates) were retained.  

 

Functional annotation, differential expression and functional enrichments analysis 

Functional annotation of C. nodosa de novo generated transcriptome was conducted using the 

Annocript pipeline (Musacchia et al. 2015). The software allows the alignment of the 

transcripts against known proteins from the UniProt database (The UniProt 2009; The 

UniProt Consortium 2013). Specifically, Swiss-Prot and UniRef90 proteins (ver. 2014_08) 

were used with the blastx with parameters: -word_size 4 -evalue 1E-5 -num_threads 20 -

num_descriptions 5 -num_alignments 5 -threshold 18. Rpstblastn against the Conserved 

Domains Database (CDD) (Marchler-Bauer et al. 2013) was performed to annotate the 

domains composition of the putative proteins with the following parameters: -evalue 0.00001 

-num_descriptions 20 -num_alignments 20. A blastn against Rfam to align against non-

coding RNAs permitted to find possible contaminations. Annocript executes also dna2pep 

and Portrait to get respectively, from each sequence, the longest ORF (Open Reading Frame) 

and a non-coding potential score. Based on the best hit, Annocript also associates GO terms 

(Ashburner et al. 2000; The Gene Ontology Consortium 2008), Enzyme Commission 

identifiers from the ExPASy database (Bairoch 2000), and UniPathways (Morgat et al. 2012). 

The R package “edgeR” (Robinson et al. 2010) was used to normalize the expression levels 

of the transcripts obtained and to select the differentially expressed transcripts between C. 

nodosa under elevated relative to control CO2 condition. Transcripts were considered 
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significantly differentially expressed if the false discovery rate (FDR) ≤ 0.05 and the fold 

change (FC) > ±2. A plot of Biological Coefficient of Variation (BCV) to determine 

variability among biological replicates within our RNA-Seq experiment was also calculated 

using edgeR. Gene Ontology (GO) and Pathways enrichment analyses were conducted 

exploiting the Fisher exact test and the FDR correction of the p-values. We selected as 

significant only GO terms and Pathways showing a different proportion among the 

differentially expressed genes with respect to the whole transcriptome, showing at least 5 

representative transcripts in the whole transcriptome and at least 2 among the differentially 

expressed ones and an adjusted p-value smaller than 0.05 (FDR 5%) for GO or 0.1 (FDR 

10%) for Pathways.  

 

RT-qPCR validation  

To verify RNA-Seq results, Reverse Transcription-quantitative Polymerase Chain Reaction 

(RT-qPCR) using Fast SYBR® Green Master Mix (Applied Biosystems) and Viia7 Real 

Time PCR System (Applied Biosystems) was conducted as described in Mazzuca et al. 

(2013). Six replicates per treatment at t1, comprising at least 4 distinct genotypes, and 

independent from those used for the transcriptome analysis, were assayed. Five hundred 

nanograms of RNA from each sample were retro-transcribed in cDNA with the iScript™ 

cDNA synthesis kit (BIO-RAD), according to the manufacturers’ instructions. All RT-qPCR 

reactions were conducted in triplicate and contained a 1:5 dilution of the cDNA template. 

Among transcripts shown to be significantly differentially regulated by RNA-Seq, 10 were 

selected to have their expression data validated by RT-qPCR. These were genes involved in 

photosynthesis, protein folding and transport, isoprenoid biosynthesis, translation, autophagy, 

and ion transport. Primer design and optimization procedures were carried out as outlined in 

Serra et al. (2012) and Dattolo et al. (2014). Table 5 lists transcript names, primer sequences 
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and percent efficiencies. Relative quantitative analysis of transcripts was obtained using the 

Relative Expression Software Tool (REST) 2009 ver. 2.0.13. (Pfaffl et al. 2002). The REST 

2009 software estimates up and down gene regulation by using randomization and 

bootstrapping techniques. The eukaryotic initiation factor 4A (eIF4A), which has been 

previously tested in C. nodosa at different CO2 condition (Olivé et al. 2016), was selected as 

reference gene for RT-qPCR assays. 

 

Results 

Transcriptome sequencing and de novo assembly  

An average of 43.5 million reads were obtained for each of the nine sequenced libraries, for a 

total of 391,433,655 (100 bases, paired-end) reads (Table 1). After raw data were adapter- 

and quality-trimmed and filtered, remaining reads were used for the de novo assembly of C. 

nodosa transcriptome, which resulted in 171,105 contigs. For each sample, the single reads 

were mapped back to the assembled reference transcriptome thus generated. More than 78% 

of reads had at least one alignment, while 21.32% failed to align (Table 1). In order to limit 

sequencing and assembly artifacts we selected only the contigs showing an expression level 

greater than 1 cpm in at least 2 out of 9 samples, yielding a total of 59,478 unique sequences 

(Table 2 and S4). Total length of the transcripts was observed to be 136,813,002 bases (136.8 

Mb). Distribution of contigs length is shown in Fig. S4. The minimum and maximum 

sequence length were respectively 202 and 18,275, with a mean sequence length of 2,300 

bases, and N50 = 2,279 (Table 2), both values are comparable with the values obtained for Z. 

marina Illumina transcriptome dataset by Kong et al. (2014). Transcriptome G-C 

composition was 41.42 % (Table 2).   
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Functional annotation 

De novo assembled C. nodosa transcriptome was annotated using the Annocript pipeline. In 

total, 55,343 contigs (93.05 % of all unique contigs) showed at least one hit with an E-value 

lower than 1.0E
-5

 (Table S4). The percentage of transcripts annotated with a Swiss-Prot 

identifier was 72.68 % (43,231 contigs), while 92.68 % were annotated in UniRef90 (55,126 

contigs), and 75.73 % in Conserved Domains (CDD) (45,045 contigs). We also identified 110 

putative long non-coding RNAs. The high rate of annotation and classification of the 

assembled transcriptome represents more than what had been obtained for any other seagrass 

transcriptome currently available. 

Table 3 and Fig. S5 summarize all the results from the functional annotation of the 

transcriptome. The annotation process also retrieved information on Gene Ontology (GO) 

terms, metabolic pathways and enzyme codes. GO terms were assigned to 57.39 % (34,133) 

of contigs (Table 3), including Biological Processes (59.45 %), Molecular Functions (80.82 

%), and Cellular Components (60.53 %). Pathway information were obtained for 10.13 % 

(6,028) of the total number of contigs (Table 3), while enzyme identifiers were assigned to 

23.59 % (14,032) of them.  

 

Differential expression analysis 

A biological coefficient of variation (BCV) of 0.277 was obtained for our experiment (Fig. 

S6; Common dispersion = 0.077). In total, 170 transcripts were found significantly 

differentially expressed (FC > ±2 and FDR ≤ 0.05) in C. nodosa under elevated pCO2 (1,200 

μatm) relative to control condition (400 μatm) after 15 days of exposure (t1), including 153 

up-regulated and 17 down-regulated. The full list of differentially expressed genes (DEGs), 

and their annotation can be retrieved from Table S5.  
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Among the DEGs, the most highly expressed in high CO2 (logFC > 3) were the enzyme 

Bifunctional pinoresinol-lariciresinol reductase, involved in the biosynthesis of plant lignans 

(logFC = 12.9), three transcripts encoding for as many Probable LRR receptor-like 

serine/threonine-protein kinase and a Serine/threonine-protein phosphatase. Six highly 

expressed transcripts (logFC > 3) were not annotated and thus the functions of their products 

remain unknown. Conversely, CO2 enrichment induced a strong down-regulation (logFC < -

3) of two transcripts associated to putative retro-elements, both annotated as Retrovirus-

related Pol polyprotein from transposon TNT 1-94 and of the Zinc finger protein 

CONSTANS-LIKE 5.  

 

Gene Ontology and Pathway enrichment analysis 

GO enrichment analysis of DEGs was used to identify significantly over-represented 

functional gene classes with respect to the whole C. nodosa transcriptome. We found 47 

significantly enriched GO terms (adjusted p-value <0.05) that were clustered into “Biological 

Processes”, “Molecular Functions” and “Cellular Components” categories. Figure 1 shows 

the top 15 significantly enriched GO terms in each GO class division (only the top 15 are 

shown in case they were more). The most significant Biological Processes were “iron ion 

homeostasis” (p = 8.21E-42), “ion transport” (p = 1.72E-33), “thiamine biosynthetic process” 

(p = 2.41E-14), “photosynthesis, light harvesting” (p = 7.03E-14) and “response to 

bacterium” (p = 3.92E-13) (Fig. 1a). Other relevant over-represented GO categories included 

“autophagy”, “response to biotic stimulus”, “tricarboxylic acid cycle”, “protein folding”, and 

“gluconeogenesis” (Fig. 1a). Significantly enriched terms in the Molecular Function category 

were related to “ferric-chelate reductase activity” (p = 1.70E-55), “farnesyltranstransferase 

activity” (p = 3.49E-16), “3-isopropylmalate dehydratase activity” (p = 1.16E-14), “4 iron, 4 

sulfur cluster binding” (p = 1.33E-12), “nutrient reservoir activity” (p = 1.07E-08) (Fig. 1b). 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

The most frequently occurring GO terms within Cellular Components included 

“mitochondrion”, “chloroplast”, “chloroplast stroma”, and “membrane” (Fig. 1c). All 

significantly enriched GO terms are summarized in Table S6. Pathway enrichment analysis 

showed that most of the DEGs were enriched in the “isoprenoid biosynthesis” and 

“carbohydrate biosynthesis” classes (Fig. 2a). All 11 significantly enriched pathways 

(adjusted p-value <0.1), are summarized in Table S7. Enriched Gene Ontology terms and 

Pathways in high CO2 uncovered functional gene classes relevant to fundamental plant 

metabolic processes, as the formation and breakdown of carbohydrates (i.e. Calvin cycle, 

glycolysis / gluconeogenesis, tricarboxylic acid (TCA) cycle), the production of plant 

isoprenoids, protein folding, and ion homeostasis. A graphical representation of major 

transcript levels changes occurring in C. nodosa in response to elevated pCO2 compared to 

control conditions, is shown in Fig. 3. In the following sections, we focus on a subset of 

DEGs within most relevant GO and pathway enriched classes.  

 

Carbohydrate metabolism 

Up-regulated transcripts emphasized functions related to carbon metabolism and utilization 

(Table 4 and Table S5). Most of them encoded components involved in respiratory pathways: 

glycolysis, tricarboxylic acid cycle and mitochondrial electron transport chain. In particular, 

we observed the up-regulation of the transcript for the cytosolic Glucose-6-phosphate 

isomerase 1, an essential enzyme of glycolysis that catalyzes the reversible isomerization of 

glucose-6-phosphate to fructose-6-phosphate, and of a number of genes belonging to the 

TCA pathway (Aconitate hydratase, two Isocitrate dehydrogenases NADP, 2-oxoglutarate 

dehydrogenase, Succinyl-CoA ligase ADP-forming subunit beta). Downstream from the TCA 

cycle, the mitochondrial NADH dehydrogenase ubiquinone iron-sulfur proteins 1 and 3, and 

NADH dehydrogenase ubiquinone flavoprotein 1, which encode for core subunits of the 
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mitochondrial NADH:ubiquinone oxidoreductase (Complex I), together with the transcript 

for the Gamma carbonic anhydrase 3, which mediates Complex I assembly, were also 

significantly induced by elevated CO2. Equally up-regulated were some transcripts for genes 

with a function in carbohydrate biosynthesis, associated to the Calvin Cycle (Ribulose-

phosphate 3-epimerase, Ribulose bisphosphate carboxylase small chain 2), and to 

gluconeogenesis (Phosphoenolpyruvate carboxykinase ATP 2). Chloroplastic 

Phosphoglucomutase, involved in starch biosynthesis, and Alpha, alpha-trehalose-phosphate 

synthase, involved in trehalose biosynthetic process, were also induced under CO2 

enrichment. 

 

Protein folding and repair  

Transcripts for a number of genes with a function in protein metabolism were found up-

regulated in plants exposed to high CO2 (Table 4 and Table S5). The majority of them encode 

molecular chaperones, which assist in de novo folding or refolding of stress-denatured 

proteins, protein transport or proteolytic degradation. Specifically, three up-regulated 

transcripts (Heat shock 70 kDa protein 6, 20 kDa chaperonin, Chaperone protein ClpC1) 

mediate the folding of newly translated polypeptides or the degradation of denatured proteins 

within the chloroplast. Differently, Heat shock 70 kDa protein and Chaperonin CPN60-1 are 

implicated in mitochondrial protein import and assembly and may prevent misfolding or 

promote the refolding of polypeptides generated under stress conditions in the mitochondrial 

matrix. Three transcripts coding for as many putative peptidyl-prolyl cis-trans isomerase 

(PPIs) were also found to be up-regulated in high-CO2 plants. PPIases are known to 

accelerate the folding of proteins, but may also regulate the activity of other proteins. Yet, 

two distinct subunits of the T-complex protein 1 (T-complex protein 1 subunit beta, T-

complex protein 1 subunit delta), which is known to assist the folding of proteins upon ATP 
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hydrolysis, were found among up-regulated genes. Finally, elevated CO2 also induced the 

expression of transcripts for Peptide methionine sulfoxide reductase A and 26S proteasome 

regulatory subunit 4 involved in protein repair and degradation; and ADP-ribosylation factor 

1, a GTP-binding protein which mediate protein trafficking. 

 

Ion and pH homeostasis  

Six transcripts for two putative different isoforms of ferric-chelate reductases (NADH) were 

down-regulated in elevated CO2 (Ferric reduction oxidase 4 and Ferric reduction oxidase 2) 

(Table 4 and Table S5). Diverse roles for ferric reductase oxidases (FROs) in both iron and 

copper metabolism have been highlighted in plants. FRO2 isoforms are responsible for the 

reduction of extra cellular ferric iron chelates to soluble ferrous iron, whereas FRO4 has been 

newly shown to act as a copper-chelate reductase to facilitate its uptake from the soil.  

Conversely, high CO2 / low pH induced the expression of transcripts encoding for a number 

of membrane proteins, such as sodium hydrogen antiporters (Na
+
/H

+
 antiporter NhaD) and 

proton channels (Vacuolar-type H+ -ATPases) (Table 4 and Table S5), that play an integral 

role in pH homeostasis of the cells. 

 

Isoprenoid Metabolism  

Elevated CO2 caused transcript level changes of key genes related to plastidic isoprenoids 

biosynthetic routes (Table 4 and Table S5). Two transcripts encoding for chloroplastic 

Geranylgeranyl pyrophosphate synthase (GPPS) were induced in C. nodosa by high CO2. 

Similarly, we observed the up-regulation of 1-deoxy-D-xylulose-5-phosphate synthase, a 

limiting enzyme for plastidic isoprenoid biosynthesis and essential for chloroplast 

development. The transcript for a chloroplastic Geranylgeranyl diphosphate reductase, which 
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catalyzes the reduction of geranylgeranyl diphosphate to phytyl diphosphate, was also found 

significantly over-expressed in high-CO2 plants.  

 

Other relevant differentially expressed genes categories 

Autophagy-related genes appeared to be responsive to elevated CO2. Specifically, four 

transcripts for three putative different isoforms of autophagy-related protein 8 resulted 

significantly down-regulated (Autophagy-related protein 8g, Autophagy-related protein 8e, 

Autophagy-related protein 8f) (Table 4 and Table S5). The possible involvement of certain 

ATG genes in plant carbon metabolism and signaling has been recently suggested, and 

ATG8e in particular belongs to a core carbon signaling response shared by a large number of 

Arabidopsis accessions (Ren et al. 2014; Sulpice et al. 2009). 

On the contrary, high CO2 induced the expression of transcripts involved in plant defense 

responses, such as major latex proteins (MLP-like protein 423), that have been associated 

with pathogen defense responses as well as environmental stresses such as drought, 

wounding, and oxidative stress, and transcripts related to thiamine biosynthetic process 

(Thiamine thiazole synthase 2, Phosphomethylpyrimidine synthase) (Table S5).  

Finally, a number of transcripts encoding enzymes involved in different amino-acids 

biosynthetic routes (e.g. 3-isopropylmalate dehydratase, Ketol-acid reductoisomerase, 

Adenosylhomocysteinase) were also up-regulated in high-CO2 plants (Table 4 and Table S5).  

 

Verification of RNA-Seq results by RT-qPCR 

Quantitative Real-Time PCR was carried out to verify RNA-Seq results. Ten out of the 170 

transcripts significantly differentially expressed in high (1,200 μatm) versus control (400 

μatm) pCO2 were chosen for validation, based on their relevance for the physiological 

processes exhibiting higher variation. Selected transcripts belonged to categories with a 
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known role in photosynthesis (Photosystem II D2 protein, Ribulose bisphosphate carboxylase 

small chain), protein folding and transport (Heat shock 70 kDa protein 6, ADP-ribosylation 

factor 1, Peptidyl-prolyl cis-trans isomerase), isoprenoid biosynthesis (Geranylgeranyl 

pyrophosphate synthase), translation (Ubiquitin-60S ribosomal protein L40), autophagy 

(Autophagy-related protein), ion transport (Ferric reduction oxidase 2) and chloroplast 

organization (Chloroplast stem-loop binding protein of 41 kDa) (Table 5). Specific primer 

pairs were established and tested for amplification (Table 5). Figure 4 shows a plot of the Log 

2 fold expression changes estimated with RT-qPCR (n = 6), together with the corresponding 

results obtained from transcriptome analysis. The trend of up- or down-regulation was 

consistent for all but one of the selected transcripts (Fig. 4), although significant results 

according to REST 2009 software (Pfaffl et al. 2002) were found for 5 out of the 10 

transcripts (see hypothesis test P(H1) in Table 6). The difference between the two methods is 

possibly due to the higher number of biological replicates used in the RT-qPCR experiment, 

and/or to the different sensitivity of the two techniques. However, a highly significant 

positive correlation was established between the two methods (R = 0.89, Pearson; p < 

0.0006), confirming the validity of RNA-Seq data.  

 

Discussion  

Our RNA-Seq analysis unveil, for the first time, the genome-wide molecular changes that 

modulate the physiological responses of seagrasses to high CO2 and low pH.  

The enhanced availability of CO2 was primarily reflected in an increased expression of 

transcripts associated with carbohydrate metabolism and respiratory pathways. Specifically, a 

significantly greater abundance of transcripts for enzymes involved in glycolysis, the 

tricarboxylic acid cycle, and mitochondrial electron transport chain, was found. Although the 

transcriptome profile by itself cannot predict how gene expression translates into metabolic 
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consequences, due to the multiple levels of gene regulation, this provides important evidence 

for an overall stimulation of the respiratory activity by elevated CO2 in C. nodosa plants.  

Leaf respiration is a key determinant of growth and maintenance of plant tissues and the 

carbon cycle (Amthor 1995), but the underlying mechanisms and the effects of elevated CO2 

have not yet been fully elucidated (Amthor 1991; Davey et al. 2004; Drake et al. 1999; 

Gonzalez-Meler et al. 2004; Wang & Curtis 2002).  

In seagrasses, the effects of CO2 enrichment on leaf mitochondrial respiration have been 

rarely addressed. The few existing studies reported a general lack of response in both the 

short and the long-term. For example, Zimmerman et al. (1997) found no significant impact 

on leaf respiration after 45 days of exposure of the eelgrass Zostera marina to elevated CO2. 

Similarly, respiration rate was found not to vary with DIC enrichment in the two tropical 

seagrass species Cymodocea serrulata and Halodule uninervis, after two weeks of exposure 

(Ow et al. 2015). 

On the other hand, our observations are in agreement with molecular and physiological 

responses of some terrestrial plants when grown at elevated CO2, such as soybean (Ainsworth 

et al. 2006; Leakey et al. 2009), Arabidopsis thaliana (Markelz et al. 2014; Watanabe et al. 

2014), and tomato (Li et al. 2013), where an increased foliar respiratory capacity was driven 

by a greater abundance of proteins, carbohydrates, and transcripts encoding enzymes 

throughout the respiratory pathway. 

The up-regulation of respiratory metabolism might be supported by an augmented availability 

of photosynthates from enhanced photosynthesis and increased energy demand for 

biosynthesis and stress-related processes under elevated CO2 and low pH. High-CO2 effects 

on photosynthesis in plants are largely dependent on the duration of the exposure. In the 

short-term, the exposure to elevated CO2 can stimulate photosynthesis and lead to an 

increased activity of the primary enzyme responsible for CO2 fixation, Rubisco (Cheng et al. 
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1998; Pritchard & Amthor 2005). Though, a reduction in photosynthetic capacity, termed 

“photosynthetic acclimation” (Ludewig & Sonnewald 2000), has also been described, and is 

accompanied by a reduced expression of genes involved in photosynthesis and CO2 

assimilation (Gupta et al. 2005; Kaplan et al. 2012; Li et al. 2008; Li et al. 2006; Taylor et al. 

2005). 

In seagrasses, short and medium term laboratory and mesocosm experiments showed an 

optimization of photosynthetic performance (e.g. maximum photosynthetic rates, 

photosynthetic efficiency, and pigment content) in response to CO2 enrichment (Alexandre et 

al. 2012; Beer & Koch 1996; Campbell & Fourqurean 2013; Jiang et al. 2010; Ow et al. 

2015; Zimmerman et al. 1997). Accordingly, here we observed a significant up-regulation of 

some transcripts related to photosynthesis, including light reaction functions, and CO2 

fixation. For example, the transcript for the subunit psaK of the Photosystem I reaction 

center, transcripts for light-harvesting and electron transport-related proteins (Ferredoxin-1), 

as well as the small subunit of Rubisco (Ribulose-1,5-bisphosphate carboxylase/oxygenase 

small chain 2) and the Ribulose-phosphate 3-epimerase, which catalyzes fundamental steps 

of the Calvin cycle, were all induced in high-CO2 plants.  

Apparently, our findings, contrasts with the idea that C. nodosa has a C4-like mechanisms of 

carbon fixation (Beer et al. 1980). It is assumed, in fact, that C4 plants are less affected (or 

not at all) than C3 species by increasing CO2, because their photosynthesis is saturated at 

current atmospheric CO2 and photorespiration is minimized thanks to the operation of the 

carboxylating enzyme phosphoenolpyruvate carboxylase (PEPC) (Bowes 1993; Bowes & 

Ogren 1972; Bowes et al. 2002). However, over the last decade, many studies have shown 

that several C4 weeds and crop can also significantly increase their photosynthetic rates, 

growth and total biomass under elevated CO2 (Cousins et al. 2001; Maroco et al. 1999; Wand 
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et al. 1999; Ziska & Bunce 1997), and also modify gene expression levels (De Souza et al. 

2008).  

The increased respiratory energy demand of C. nodosa under simulated CO2-driven 

acidification can be attributed to enhanced protein turnover (including degradation and “re-

synthesis”), carbohydrate translocation, sucrose synthesis, maintenance of ion homeostasis, 

and other factors (Bouma et al. 1994; Li et al. 2013; Noguchi & Yoshida 2008). Accordingly, 

the GO terms “protein folding” and “ion transport” have been identified as two of the most 

frequently occurring in our transcriptome dataset.  

A considerable number of transcripts encoding molecular chaperones, which assist the 

folding of newly synthesized polypeptides, refolding of stress-denatured proteins, protein 

trafficking and proteolytic degradation (Ellis 1987; Hartl et al. 2011), in different cellular 

compartments, was found up-regulated in high-CO2 plants.  

It was of particular interest to observe the induction of a peptidyl-prolyl cis-trans isomerase 

of the FK506-binding protein class (FK506-binding protein 1A), that has recently been 

shown to modulate intracellular pH homeostasis in Arabidopsis (Bissoli et al. 2012).  

In plants, the components of the pH homeostatic machinery, including intracellular pH 

sensors, signal-transducing molecules, regulators of cation transport and the most pH-

sensitive cellular systems are largely unknown (Felle 2001). However, recent transcriptomic 

studies have indicated that intracellular acidification increases the expression of several 

chaperones, resembling heat stress-induced changes in gene expression patterns (Bissoli et al. 

2012). Therefore, our results confirm that low cytosolic pH, here caused by seawater 

acidification, generates misfolded proteins and that damage to protein structure may be one of 

the most important problems induced by intracellular acid stress, as suggested elsewhere 

(Bissoli et al. 2012; Kawahata et al. 2006; Mira et al. 2010; Schüller et al. 2004; Timmins-

Schiffman et al. 2014). Furthermore, the role of chaperone molecules would be restricted not 
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only to assist in refolding proteins, but also in triggering H
+
 extrusion, through the activation 

of H
+
-ATPases, to restore intracellular pH (Bissoli et al. 2012). In accordance with this, a 

number of transcripts for membrane proteins, such as sodium hydrogen antiporters (Na
+
/H

+
 

antiporter NhaD), and proton channels (Vacuolar-type H
+
 -ATPases) were also found 

significantly up-regulated. This was already observed in a range of marine organisms under 

ocean acidification (Evans & Watson-Wynn 2014; Harms et al. 2014; Hu et al. 2014; Li et al. 

2016; Pan et al. 2015). Interestingly, Na
+
/H

+
 antiporters in plants have recently been shown 

to be regulated by distinct Ca
2+

-dependent mechanisms, based on the Ca
2+

-binding protein 

calmodulin (Ranty et al. 2006; Yamaguchi et al. 2005), whose expression levels were also 

find to increase in our dataset.  

High CO2 / low pH conditions induced the down-regulation of two putative different isoforms 

of ferric-chelate reductases (NADH), that have an important role in both iron and copper 

metabolism (Jain et al. 2014). In particular, FRO2 isoforms are involved in the transfer of 

electrons from the cytosol across the plasma membrane to reduce extra cellular ferric iron 

chelates to soluble ferrous iron, whereas FRO4 has been recently shown to act as a copper-

chelate reductase to facilitate its uptake from the soil (Jain et al. 2014). These isoforms are 

strongly induced by iron and copper limitation, respectively (Connolly et al. 2003; Jain et al. 

2014). Thus, the regulation of ion transport and pH homeostasis appears very likely to be a 

second important mechanism contributing to the increased energy demand of C. nodosa 

under seawater acidification.  

A proportion of the C presumably flowing through the glycolytic pathway was diverted into 

C. nodosa secondary metabolism, and in particular to the synthesis of polyphenols and 

isoprenoid compounds. In fact, pathway enrichment analysis identified “isoprenoid 

biosynthesis” as one of the most represented in high CO2.  
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Isoprenoids represent a hugely diverse group of plant metabolites which can function either 

as primary metabolites, participating in essential cellular processes such as photosynthesis 

and respiration, or as specialized secondary metabolites (Pulido et al. 2012; Vranová et al. 

2012).  

Specifically, we observed the induction of the transcripts for (i) Geranylgeranyl 

pyrophosphate synthase (GPPS), a crucial branch point enzyme that catalyzes the formation 

of geranylgeranyl pyrophosphate, a precursor of several biochemical pathways including 

those leading to the biosynthesis of carotenoids, gibberellins, prenyl quinones, chlorophylls, 

and geranylgeranylated proteins (Okada et al. 2000; Takaya et al. 2003; Tata et al. 2015), (ii) 

1-deoxy-D-xylulose-5-phosphate synthase, involved in the first step of the 2C-methyl-D-

erythritol 4-phosphate (MEP) pathway, which synthesizes 1-deoxy-D-xylulose 5-phosphate 

(DXP) from D-glyceraldehyde 3-phosphate and pyruvate (Estévez et al. 2001), which is in 

turn utilized in plastidic isoprenoids precursors biosynthesis, as well as in the production of 

thiamin (vitamin B1) (Julliard & Douce 1991), and (iii) and Geranylgeranyl diphosphate 

reductase, that catalyzes the reduction of geranylgeranyl diphosphate to phytyl diphosphate, 

providing phytol for both chlorophyll and tocopherol synthesis (Keller et al. 1998).  

Remarkably, the most up-regulated transcript among all DEGs was the enzyme Bifunctional 

pinoresinol-lariciresinol reductase, involved in lignans (-)-hinokinin biosynthesis (Bayindir 

et al. 2008). Lignans are plant phenolic compounds, derived biosynthetically from 

phenylpropanoids (Moss 2000), and widely distributed among angiosperms and 

gymnosperms. A variety of biological functions for plant lignans have been documented, 

including plant defense mechanisms (Harmatha & Dinan 2003; MacRae & Towers 1984; 

Zhang et al. 2014).  
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Elevated atmospheric CO2 is known to trigger the accumulation of plant carbon-based-

secondary compounds (phenolics and terpenoids) in terrestrial plants (Bidart-Bouzat & Imeh-

Nathaniel 2008; Coley et al. 2002; J. Mattson et al. 2005; Lindroth 2010; Peñuelas & Estiarte 

; Penuelas et al. 1997; Stiling & Cornelissen 2007; Valkama et al. 2007; Xu et al. 2015). This 

has been frequently explained on the basis of the carbon-nutrient balance hypothesis 

(Gebauer et al. 1997; Karowe et al. 1997), which predicts an increase in carbon allocation to 

secondary metabolism due to increased resources (carbohydrates) availability (Bryant et al. 

1983; Bryant et al. 1987). However, this should not be considered as a simple cause-effect 

relationship, since the interactions of plants with herbivores and pathogens are a major factor 

determining variability in plant chemical defenses (Bidart-Bouzat & Imeh-Nathaniel 2008). 

 

Under ocean acidification an accumulation of phenolic compounds has been shown in 

phytoplankton (Jin et al. 2015) and macroalgae (Celis-Plá et al. 2015), and this was also 

already observed in C. nodosa (Silva et al., in preparation). On the contrary, Arnold et al. 

(2012) found lower concentrations of phenolic compounds in the seagrass C. nodosa growing 

close to a CO2 vent site in Vulcano Island. Our results, obtained in a controlled mesocosm 

system suggest that high CO2 / low pH conditions trigger accumulations of transcripts 

involved in the biosynthetic routes of diverse secondary metabolites, leading to an 

improvement of C. nodosa carbon-based chemical defenses. 

 

In summary, we have identified, for the first time, large-scale gene expression changes that 

occur when a seagrass is exposed to high pCO2, at levels projected by the end of the century. 

Our transcriptomic data provide evidence that CO2-driven OA alters plants primary and 

secondary metabolite pathways. The up-regulation of respiratory metabolism, supported by 

an augmented carbohydrates availability, appears to be related to an increased energy demand 
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for biosynthesis and stress-related processes under elevated CO2 and low pH. Changes in the 

expression of genes related to energy metabolism paralleled the expression of those related to 

ion / pH homeostasis maintenance and regulation of protein folding. Finally, high pCO2 

seems to stimulate seagrass chemical defense, as suggested by the up-regulation of enzymes 

involved in the synthesis of polyphenols and isoprenoid compounds.  

 

By demonstrating which biological processes are most sensitive to OA, this research 

constitutes a major advance in the mechanistic understanding of seagrass metabolism, in the 

context of altered seawater chemistry and global climate change. Future studies should be 

designed to assess the interspecies differences in gene expression responses amongst 

seagrasses and in the long-term, and to integrate gene expression with physiological data in 

order to better understand how gene transcription translates into metabolic consequences. 

Furthermore, other environmental conditions such as light and nutrients, could vary species 

response to CO2 enrichment and low pH and this deserves further examination. 
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Figure captions  

Figure 1. GO enrichment analysis. Top 15 GO terms (y axis labels; adjusted p-value <0.05) 

associated to DEGs in high pCO2, clustered as “Biological Process” (a), “Molecular 

Function” (b) and “Cellular Components” (c), and enriched respect to the whole 

transcriptome (grey bars). The full list of 47 enriched GO terms can be retrieved from Table 

S6.  

Figure 2. Pathways enrichment analysis. Top 15 pathways (y axis labels; adjusted p-value 

<0.1) associated to DEGs in high pCO2, clustered as “pathways level 1” (a) and “pathways 

level 2” (b), and enriched respect to the whole transcriptome (grey bars). The full list of 11 

enriched pathways can be retrieved from Table S7. 

Figure 3. Graphical representation of major transcript levels changes occurring in C. nodosa 

under elevated pCO2 (1,200 μatm), compared to control conditions (400 μatm). Each colored 

square represents the statistically significant treatment response (FC > ±2 and FDR ≤ 0.05) of 

a unique transcript encoding an enzyme or a protein subunit. Detailed information on selected 

transcripts and their annotation are provided in Table 4. The full list of DEGs can be retrieved 

from Table S5. C: chloroplast; CYT: cytosol; M: mitochondrion; ER: endoplasmic reticulum; 

Nc: nucleus.  

Figure 4. Verification of RNA-Seq results by RT-qPCR. Log 2 (high CO2 / control CO2) 

values for ten transcripts at the end of the experiment (t1): c45675_g1_i1, c45592_g3_i6, 

c37061_g3_i1, c44949_g7_i1, c12412_g1_i1, c30548_g1_i1, c31115_g1_i3, c33790_g1_i1, 

c23065_g1_i1, c35362_g1_i1. Transcripts annotation and primer sequences are listed in 

Table 5. RT-qPCR data are presented as mean ± SD for n = 6. For significant values 

according to REST 2009 analysis (P(H1), see Table 6). 
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Supporting information captions 

 

Figure S1. Example of daily variation of pCO2 in reference and high-CO2 experimental 

tanks. 

Figure S2. Scheme of the experimental system. 

Figure S3. Daily variation of physico-chemical parameters measured in the mesocosms 

during the acclimation and the experimental period for both present day pCO2 conditions 

(Tank Ref) and elevated pCO2 (Tank CO2) conditions. (a) pH; (b) Salinity; (c) Temperature; 

(d) Total Dissolved Inorganic Carbon (DIC); (e) Total Alkalinity. 

Figure S4. Distribution of contig lengths. 

Figure S5. Transcript annotation information. (a) Histogram of e-values for UniRef and 

SwissProt databases, respectively; (b) Closer organisms; (c) Distribution of hit and query 

coverages for UniRef and SwissProt databases; (d) Histogram of longest ORFs length. 

Figure S6. Plot of biological coefficient of variation (BCV), calculated in edgeR, either 

assuming a common value of dispersion (red), trended value (blue) or tagwise (black), as a 

function of the average log counts per million of mapped reads. 

Table S1. Average values of physico-chemical parameters measured in the mesocosms 

during the acclimation and the experimental period for both present day pCO2 conditions 

(Tank Ref) and elevated pCO2 (Tank CO2) conditions. Data are mean ± se. 

Table S2. Average values of physico-chemical parameters measured in the header-tanks 

during the acclimation and experimental period for both present day pCO2 conditions (Ref) 

and elevated pCO2 (CO2) conditions. Data are mean ± se.  

Table S3. PCR conditions for multiplexing. All primers were assembled in the same 

multiplex (7-plex). Concentration, microsatellite repeat-motifs, and fluorescent dye are 

provided for each primer. 

Table S4. Full annotation of C. nodosa de novo generated transcriptome. For each contig, 

length, first HSP result (lowest e-value), as given from the BLASTx output against Swiss-

Prot and UniRef90, and related description are reported. Domain composition of putative 

proteins, as given by Rpstblastn against the Conserved Domains Database (CDD) is also 

indicated. For each sequence, the longest ORF (Open Reading Frame) and a non-coding 

potential score are specified. Annocript also associates the best scored putative proteins to 

GO terms, Enzyme Commission identifiers from the ExPASy database, and UniPathways. 

Table S5. Full list of significantly DEGs (FC > ±2 and FDR ≤ 0.05) in C. nodosa under 

elevated pCO2 (1,200 μatm) relative to control condition (400 μatm) after 15 days of 

exposure (t1) and their annotation.  

Table S6. Results of Gene Ontology (GO) enrichment analysis. GO terms with at least 5 

transcripts and adjusted p-value smaller than 0.05 were considered as significant. The 

analysis shows the GO terms as “Biological Processes”, “Molecular Functions”, and 

“Cellular Components” enriched in high CO2, respect to the whole C. nodosa transcriptome. 
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Table S7. Results of Pathway enrichment analysis. Pathways with at least 5 transcripts and 

adjusted p-value smaller than 0.1 were considered as significant. The analysis shows the 

Pathways as “pathways level 1”, “pathways level 2”, “pathways level 3” enriched in high 

CO2 respect to the whole C. nodosa transcriptome. 

 

 

Table 1. Read number and alignment summary  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2. Assembly statistics 

 

 

 

 

 

 

 

 

 

 

  

Category  Statistics 

Total number of reads 391,433,655 

Mean number of reads per sample 43,492,628 

Reads aligned 308,098,530 

% Reads aligned 78.7 

Reads not aligned 83,335,125 

% Reads not aligned 21.3 

Category Statistics 

Total number of sequences 59,478 

Maximum sequence length (in bases) 18,275 

Minimum sequence length (in bases) 202 

Mean sequence length (in bases) 2,300 

N50 value 2,279 

Total transcripts length (in bases) 136,813,002 

Mean percentage of N 0.00 

Mean percentage of GC 41.42 
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Table 3. Transcript annotation information 
 

 

 

 

 

 

 

 

 

 

 

  

Category  Statistics 

Total number of annotated sequences 55,339 

Number of hits against Swiss-Prot  43,231 

Number of hits against UniRef90  55,126 

Number of hits against Conserved Domains Database 45,045 

Number of hits with  Enzyme Commission identifiers 14,032 

Number of hits with Gene Ontology terms 34,133 

Number of hits with Pathway information 6,028 

Number of non-coding sequences 110 
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Table 4. Selected differentially expressed genes (FC > ±2 and FDR ≤ 0.05) in C. nodosa 

under elevated pCO2 (1,200 μatm) relative to control condition (400 μatm) after 15 days of 

exposure. The full list of DEGs can be retrieved from Table S5. 

Description 
Transcript 

Name 
logFC high CO2 / 

control CO2 
FDR 

Photosynthesis (light reactions) 

Photosystem I reaction center subunit psaK,  chloroplastic c12206_g1_i1 2.4599 0.0424 

Chlorophyll a-b binding protein of LHCII type I,  chloroplastic c47634_g4_i3 2.6363 0.0189 

Chlorophyll a-b binding protein of LHCII type I,  chloroplastic c47634_g4_i9 2.1861 0.0477 

Photosystem II CP43 chlorophyll apoprotein c37061_g3_i1 -1.1605 0.0222 

Ferredoxin-1 c39669_g1_i1 2.8330 0.0209 

Calvin cycle 

Ribulose-1,5-bisphosphate carboxylase/oxygenase small chain 2, chloroplastic c35362_g1_i1 2.4538 0.0470 

Ribulose-phosphate 3-epimerase, chloroplastic c33844_g1_i1 2.4392 0.0125 

Glycolysis / Gluconeogenesis    

Phosphoenolpyruvate carboxykinase ATP 2 c47944_g1_i3 2.6590 0.0246 

Glucose-6-phosphate isomerase 1, cytosolic  c37969_g1_i1 2.6553 0.0047 

TCA cycle and mitochondrial electron transport chain 

Succinyl-CoA ligase ADP-forming subunit beta, mitochondrial c27993_g1_i1 2.6561 0.0330 

Aconitate hydratase, mitochondrial c40717_g1_i1 2.5414 0.0246 

2-oxoglutarate dehydrogenase, mitochondrial c23814_g1_i1 2.5234 0.0125 

Isocitrate dehydrogenase NADP  c38293_g1_i2 2.6976 0.0096 

Isocitrate dehydrogenase NADP  c38293_g1_i1 2.7262 0.0173 

NADH dehydrogenase ubiquinone iron-sulfur protein 1, mitochondrial c35994_g1_i1 2.6406 0.0084 

NADH dehydrogenase ubiquinone iron-sulfur protein 3, mitochondrial c34702_g1_i1 2.6513 0.0189 

NADH dehydrogenase ubiquinone flavoprotein 1, mitochondrial c26326_g1_i1 2.4641 0.0351 

Gamma carbonic anhydrase 3, mitochondrial c34205_g1_i1 2.4965 0.0263 

Starch and trehalose biosynthesis    

Phosphoglucomutase, chloroplastic c28179_g1_i2 2.8284 0.0059 

Alpha alpha-trehalose-phosphate synthase UDP-forming 6 c32701_g1_i1 2.7679 0.0054 

Cell wall    

Leucine-rich repeat extensin-like protein 6 c32830_g1_i1 2.0365 0.0173 

Protein folding, repair and transport 

T-complex protein 1 subunit beta c24188_g1_i1 2.5719 0.0172 

T-complex protein 1 subunit delta c29725_g2_i1 2.3688 0.0222 
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Peptidyl-prolyl cis-trans isomerase c46125_g5_i2 2.4815 0.0216 

Peptidyl-prolyl cis-trans isomerase CYP19-4 c12412_g1_i1 2.5135 0.0405 

FK506-binding protein 1A c49444_g1_i1 2.5054 0.0381 

Heat shock 70 kDa protein 6, chloroplastic c30548_g1_i1 2.3332 0.0351 

Heat shock 70 kDa protein, mitochondrial c39554_g6_i1 2.4936 0.0351 

20 kDa chaperonin, chloroplastic c12765_g1_i2 2.8003 0.0351 

Chaperone protein ClpC1, chloroplastic c27879_g1_i1 2.3389 0.0134 

Chaperonin CPN60-1, mitochondrial c40249_g1_i1 2.3947 0.0479 

Probable mediator of RNA polymerase II transcription subunit 37e c40832_g2_i1 2.6299 0.0153 

Peptide methionine sulfoxide reductase A c12053_g1_i2 2.6702 0.0266 

26S proteasome regulatory subunit 4 homolog B c35440_g1_i1 2.6304 0.0157 

ADP-ribosylation factor 1 c44949_g7_i1 2.5128 0.0351 

Ion and pH homeostasis  

Ferric reduction oxidase 4 c45675_g1_i2 -1.7758 0.0100 

Ferric reduction oxidase 2 c45675_g1_i1 -1.5056 0.0027 

Ferric reduction oxidase 2 c45675_g1_i5 -1.4763 0.0027 

Ferric reduction oxidase 2 c45675_g1_i4 -1.4898 0.0027 

Ferric reduction oxidase 2 c45675_g1_i6 -1.4961 0.0027 

Ferric reduction oxidase 2 c45675_g1_i7 -1.5000 0.0027 

V-type proton ATPase catalytic subunit A isoform 1 c31286_g1_i1 2.7444 0.0329 

Vacuolar proton ATPase a2 c32906_g1_i2 2.6164 0.0330 

Vacuolar proton ATPase a3 c32906_g1_i1 2.5246 0.0351 

Na+/H+ antiporter NhaD c23761_g1_i1 2.8814 0.0282 

Isoprenoids and polyphenols biosynthesis 

Geranylgeranyl pyrophosphate synthase,  chloroplastic c31115_g1_i2 2.4981 0.0312 

Geranylgeranyl pyrophosphate synthase,  chloroplastic c31115_g1_i3 2.4820 0.0351 

1-deoxy-D-xylulose-5-phosphate synthase 1,  chloroplastic c36479_g1_i1 2.8260 0.0246 

Geranylgeranyl diphosphate reductase,  chloroplastic c29233_g1_i1 2.5222 0.0351 

Bifunctional pinoresinol-lariciresinol reductase c955_g1_i2 12.9033 0.0330 

Autophagy 

Autophagy-related protein 8g c45592_g3_i6 -2.2564 0.0001 

Autophagy-related protein 8e c45592_g3_i5 -1.0704 0.0134 

Autophagy-related protein 8e c45592_g3_i4 -1.0573 0.0153 

Autophagy-related protein 8f c45592_g3_i1 -1.9047 0.0000 

Amino-acid biosynthesis 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

 

 

  

3-isopropylmalate dehydratase large subunit c8458_g1_i1 2.7535 0.0209 

3-isopropylmalate dehydratase small subunit 3 c34359_g1_i2 2.4252 0.0222 

Ketol-acid reductoisomerase,  chloroplastic c37400_g1_i1 2.5911 0.0220 

Adenosylhomocysteinase c46054_g2_i1 2.4565 0.0337 

Thiamine biosynthesis    

Thiamine thiazole synthase 2,  chloroplastic c44350_g2_i1 2.7317 0.0208 

Phosphomethylpyrimidine synthase,  chloroplastic c37164_g1_i1 2.8190 0.0437 

DNA Integration    

Retrovirus-related Pol polyprotein from transposon TNT 1-94 c48028_g1_i2 2.8940 0.0027 

Retrovirus-related Pol polyprotein from transposon TNT 1-94 c45874_g1_i4 -7.5633 0.0027 

Retrovirus-related Pol polyprotein from transposon TNT 1-94 c48028_g1_i4 2.7435 0.0034 

Retrovirus-related Pol polyprotein from transposon TNT 1-94 c45874_g1_i15 -4.8290 0.0045 

Retrovirus-related Pol polyprotein from transposon TNT 1-94 c47814_g1_i2 -1.8422 0.0125 
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Table 5. List of transcripts used for transcriptome validation via RT-qPCR 
 

 

S: base pair; E: percent efficiency; R2: correlation coefficient. 

 

Transcript 

name 
Description  Primer (5'- 3') S (bp) E (%) R

2
 

c45675_g1_i1 Ferric reduction oxidase 2 
F:ATCTCCACCACTCGTCCAAC 

R:GGTTCGCTTTCTCGAGTGAC 
167 94% 0.999 

c45592_g3_i6 Autophagy-related protein 
F:AGTTTCAGGCAAGAGCATGAC 

R:CTGCCTTCTCCACGATCACT 
100 100% 0.998 

c37061_g3_i1 Photosystem II D2 protein 
F:CCGCTTTTGGTCACAAATCT 

R:CGGATTTCCTGCGAAACGAA 
162 100% 0.986 

c44949_g7_i1 ADP-ribosylation factor 1 
F:TCAACGTCGAGACAGTCGAG 

R:CGCTCACGATCATTGCTATC 
145 97% 0.999 

c12412_g1_i1 Peptidyl-prolyl cis-trans isomerase 
F:CACTTCGAAGGCTCCATGTT 

R:ACAAGTACCCAGGACCAACG 
157 92% 0.981 

c30548_g1_i1 Heat shock 70 kDa protein 6  chloroplastic 
F:GAGGTTGTTGCTCTTGGTGC 

R:GATGTTGGGAGGGTGGTGTT 
158 100% 0.979 

c31115_g1_i3 Geranylgeranyl pyrophosphate synthase 
F:CGAGTGCATGTGCTATGGAA 

R:GGGCAACATCTTCACCGTAT 
129 100% 0.980 

c33790_g1_i1 
Chloroplast stem-loop binding protein of 41 kDa 

b  chloroplastic 

F:AAGGCATGTGCTGAGGCTAT 

R:AGTCCATACTCAGGCCTCCA 
167 100% 0.985 

c23065_g1_i1 Ubiquitin-60S ribosomal protein L40 
F:GTGGAGGCCTCAGACACAAT 

R:TGTAGTCCGCAAGTGTCCTG 
130 100% 0.985 

c35362_g1_i1 

Ribulose-1,5-bisphosphate 

carboxylase/oxygenase small chain 2 

chloroplastic 

F:GCCCACACAACAACAAGATG 

R:GGCTCTTGTCCTGGACGTAA 
156 98% 0.997 
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Table 6. Relative Expression Report by REST 2009 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
P(H1): Probability of alternate hypothesis that difference between sample and control groups is due 

only to chance. Significantly differentially regulated contigs (P(H1)< 0.05) are indicated in bold. 

P(H1) < 0.1 are underlined. 

 

 

 

  

Contig Name Expression Std. Error 95% C.I. P(H1) Result 

c45675_g1_i1 1.245 0.550 - 3.290 0.379 - 7.137 0.600  

c45592_g3_i6 0.24 0.160 - 0.378 0.115 - 0.491 0.001 DOWN 

c37061_g3_i1 0.841 0.428 - 1.879 0.218 - 2.933 0.590  

c44949_g7_i1 2.989 0.856 - 10.739 0.439 - 22.019 0.072  

c12412_g1_i1 2.371 1.166 - 4.888 0.671 - 6.779 0.032 UP 

c30548_g1_i1 2.197 0.997 - 4.465 0.608 - 8.241 0.043 UP 

c31115_g1_i3 1.739 0.495 - 5.759 0.321 - 9.194 0.286  

c33790_g1_i1 2.472 0.757 - 6.421 0.477 - 17.181 0.087  

c23065_g1_i1 2.778 0.968 - 7.090 0.539 - 18.493 0.049 UP 

c35362_g1_i1 2.61 1.014 - 6.303 0.661 - 17.026 0.045 UP 
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