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Abstract

We study CPT and Lorentz violation in the electroweak gauge sector of the Standard Model in

the context of the Standard-Model Extension. In particular, we consider the Lorentz-violating and

CPT-odd Chern-Simons like parameter for the W boson, which is thus far unbounded by experi-

ment. We demonstrate that any non-zero value of this parameter implies that, for sufficiently large

energies, one of the polarization modes of the W boson propagates with spacelike four-momentum.

In this scenario, emission of W bosons by ultra-high-energy cosmic rays is possible. We calculate

the induced fermion energy-loss rate and we deduce the first limit on the pertinent Lorentz- and

CPT-violating parameter that couples to the W boson. Consistency between the quantum descrip-

tion in various reference frames is preserved by using a recently formulated covariant quantization

procedure for massive photons and applying it to the W bosons.
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Searches for departures from relativity are motivated by candidate theories of quantum

gravity that allow for (spontaneous) Lorentz violation (LV) [1]. Studies of LV, both theoret-

ical and experimental, are facilitated by a general effective-field-theory framework called the

Standard-Model Extension (SME) [2]. The Lagrangian of the matter sector of this framework

contains all LV gauge-invariant effective operators that can be built from the conventional

Standard-Model fields, coupled to vector and tensor coefficients that parametrize the LV. In

fact, the SME also contains all CPT-violating operators, since in any local interacting quan-

tum field theory CPT violation (CPTV) implies LV [4]. The SME thus enables a general

quantification of the exactness of Lorentz and CPT symmetry in the form of observational

contraints on the Lorentz-violating coefficients (LVCs) [5]. Ultimately, such restrictions on

LV and CPTV can provide guidelines to find the correct theory of quantum gravity.

A possible observational consequence of LV, that can be addressed using astrophysical

data, is vacuum Cherenkov radiation [6]. The LVCs can in some cases be interpreted as

inducing a refractive index for the vacuum. Consequently, the velocity of charged particles

above some energy threshold might exceed the phase velocity of light. This causes these

particles to rapidly lose energy through photon emission. The mere observation of high-

energy cosmic particles can then be used to constrain the LVCs.

In this work, we consider a similar process, but with the emitted photon replaced by

a W boson. We assume the latter to obey a LV and CPTV dispersion relation, originating

from the superficially renormalizable part of the SME, called the minimal SME (mSME).

In this case, the LV originates from a Chern-Simons like addition to the Standard-Model

Lagrangian [7] and is captured by one four-vector: kµ2 . Such a theory has been shown to be

consistently and covariantly quantizable, despite the presence of spacelike momenta, which

are necessary for vacuum Cherenkov radiation to occur. Although such momenta also give

rise to negative-energy states in some (highly boosted) observer frames, the theory turns

out to be stable within the framework of conventional quantum field theory [8].

Apart from the fact that the W -boson parameter kµ2 has not been studied before, an

essential difference between the analysis performed here and several previous calculations in

the literature involving massive photons [6], is that the W -boson mass is very large compared

to the incoming fermion mass. In previous studies, the mass of the photon was an arbitrarily

small parameter (well below experimental bounds for the photon mass) that was only large

enough to dominate the ill effects of kµ. It was primarily introduced as a regulator to define
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the quantization procedure and allow for consistent calculations. Here, the W -boson mass

is large and therefore determines the size of the threshold energy (together with kµ2 ).

The relevant LV and CPT-odd contribution to the Lagrangian is given by

LLV =
1

2
(k2)κε

κλµνW+
λ W

−
µν + h.c. , (1)

where W±
µν = ∂µW

±
ν − ∂νW±

µ and W±
µ represents the physical charged W boson. The LV

four-vector kµ2 is real and can either be timelike, lightlike, or spacelike. It corresponds to the

SU(2) gauge-boson parameters defined in Ref. [2], which is complemented by a U(1) gauge-

boson parameter kµ1 . The four-vectors kµ1 and kµ2 parametrize all the possible CPTV in the

SU(2)× U(1) gauge sector of the mSME [9], with the exception of a kµ0 parameter coupled

to a term linear in the U(1) gauge field. This term is mostly ignored, since it generates a

linear instability in the potential. In addition to the term in Eq. (1), other terms exist that

contain combinations of kµ1 and kµ2 . These include a Z-boson term analogous to Eq. (1), two

gauge-boson three-point vertices, and a mixing term involving the Z-boson and the photon

[10]. We will ignore all of these in the following. Furthermore, there is a well-studied photon

term, analogous to Eq. (1), coupled to a LVC kµAF = 2 cos2 θwk
µ
1 + sin2 θwk

µ
2 , with θw the

weak mixing angle, which is experimentally limited to be smaller than 10−43 GeV [5]. For

our present purposes, we can thus consider this linear combination of kµ1 and kµ2 to be zero.

We aim to calculate the rate at which a Dirac fermion with mass m1 decays to a LV W

boson with mass M and a Dirac fermion with mass m2, using results from [8] that will allow

for a consistent interpretation of the rate in any observer frame. We label the momenta of

the particles as follows: the incoming fermion has momentum q, the emitted gauge boson

has momentum p, and the outgoing fermion has momentum q′ = q − p. We assume that

the fermions obey a conventional Lorentz-symmetric dispersion relation and that m1 < M

as well as m2 < M . From simple kinematic considerations it follows that the decay can

only take place if p2 < (m1 −m2)2 < M2. In the only polarization mode that allows this

inequality to be satisfied, the W bosons obey the dispersion relation [8]

Λ+(p) ≡ p2 −M2 + 2
√

(p · k)2 − p2k2 = 0 , (2)

where we dropped the subscript on kµ2 for conciseness. Combining this with the aforemen-

tioned inequality p2 < (m1 −m2)2, it follows that

4(p · k)2 > (M2 − (m1 −m2)2)2 + 4k2(m1 −m2)2 (3)
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FIG. 1. The green line is the energy difference q0 − q′0 in the rest frame of the incoming particle.

The red (blue) line represents a possible solution of the W -boson dispersion relation for kµ smaller

(larger) than some critical value κcrit.. The gray area represents the lightcone for which p2 > 0.

is a necessary condition for the decay to be possible. For m1 = m2 this becomes the condition

for the W -boson momentum to be spacelike, i.e. p2 < 0 if and only if

4(p · k)2 > M4 . (4)

It is interesting to note that once such a gauge boson with spacelike momentum exists, it

cannot decay to particles with exclusively timelike momenta. This follows directly from

energy-momentum conservation and the reversed triangle inequality for timelike vectors in

Minkowski space. It might be interesting to investigate this in the context of cosmology and

the dark-matter content of the universe, however, this lies outside the scope of the present

considerations.

That there exist, in fact, sets of (q, p, q′) in which dispersion relation (2) for the W

momentum p is satisfied, can be seen fairly simply in the rest frame of the incoming fermion,

see Fig. 1. In this frame the components of kµ must be larger than some critical value

κcrit. ' M2−(m1−m2)2

2m1
, i.e. the rest frame should be highly boosted with respect to so-called

concordant frames, where kµ is phenomenologically constrained to be small. This implies

very large incoming momenta in concordant frames, cf. Eq. (15). In Fig. 1, we usedm1 > m2,

which allows for a small range of timelike pµ that satisfy the energy-momentum balance, as

well as Eq. (2).
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We now turn to the differential decay rate, which is given by

dΓ =
1

2q0

d3p

(2π)3

1

Λ′+(p)

d3q′

(2π)3

1

2q′0

(
1

2

∑
spins

|M|2
)

(2π)4δ4(q − p− q′) . (5)

Here, the squared matrix element |M|2 is summed (averaged) over the final (initial) fermion

spin. The unconventional, but positive definite [8], factor

Λ′+(p) =
∂Λ+(p)

∂p0
(6)

in the denominator defines a normalization in which the phase space and the matrix element

are separately observer Lorentz invariant [8], i.e. invariant under simultaneous Lorentz trans-

formations of the momenta and the LV four-vector. Explicit observer Lorentz covariance

of the formalism is important because it will allow us to transform to convenient observer

frames later on. Note that the phase space normalization using (6) even allows transforma-

tions to observer frames in which the energy of the emitted boson goes to zero, typically

leading to divergent factors in conventional formalisms for LV.

The matrix element that follows from the appropriate tree-level Feynman diagram is

given by

iM =
ig

2
√

2
ū(q′)γµ(1− γ5)u(q)e(+)∗

µ (p) , (7)

where u(q) and u(q′) are conventional Dirac spinors. An analogous expression can be written

down for the matrix element for antiparticles. The four-vector e
(+)
µ (p) is the gauge-boson

polarization vector that corresponds to the dispersion relation in Eq. (2). The explicit

expression for the latter can be found in Ref. [8]. The constant g ' 0.65 is the SU(2)

coupling constant.

Using the fact that [8]

e(+)
µ (p)e(+)∗

ν (p) = −1

2
ηµν −

pµpνk
2 + kµkνp

2 − (pµkν + pνkµ)(p · k)

2((p · k)2 − p2k2)
+

iεµναβk
αpβ

2
√

(p · k)2 − p2k2
,

(8)

we find that the spin-summed squared matrix element is given by∑
spins

|M|2 = −g
2

4
p2

[
(1∓X)2 − (m2

1 −m2
2)2

p4

]
, (9)

where the upper (lower) sign holds for a decaying particle (antiparticle) and

X =
p2(p · k − 2q · k) + (m2

1 −m2
2)(p · k)

p2
√

(p · k)2 − p2k2
. (10)
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The decay rate becomes

dΓ = − g2

64π2q0

∫
d3p

Λ′+(p)
θ(q0 − p0)δ((q − p)2 −m2)p2

[
(1∓X)2 − (m2

1 −m2
2)2

p4

]
. (11)

Here, the requirement that p2 < (m1 −m2)2 is reflected by the fact that it is a necessary

condition for the product of the delta function and the step function to be non-vanishing.

Moreover, the step function is automatically satisfied for momenta, p2 < (m1 − m2)2, for

which the delta function has support.

Because of the observer-Lorentz-covariant normalization, it is easy to see that dΓ

transforms as 1/q0 under an observer Lorentz transformation. To perform the integrations

over ~p, given in Eq. (11), we can thus specialize to an observer frame that simplifies the

calculation. For the cases that kµ is timelike or spacelike, we go the frame where kµ is purely

timelike, i.e. k = (k0,~0), or purely spacelike, i.e. k = (0, ~k), respectively. If kµ is lightlike,

we do not need to specialize to a particular frame. We assume that the components of kµ are

small, compared to M , in the selected frames. This is equivalent to assuming the existence

of concordant frames, since in other frames than those with purely spacelike/timelike kµ,

kµ will have larger values for (some of) its components, while for lightlike kµ we can always

find a frame where the components are small.

In the mentioned frames Eq. (3) translates to

|~p| > M̃2

2|κ|
, (12)

where M̃2 = M2+O
(
κ2

M2 ,
m2

1,2

M2

)
and κ = k0 for purely timelike kµ, κ = |~k|(1−sgn(k0) cos θpk)

for lightlike kµ, and κ = |~k| cos θpk for purely spacelike kµ (θpk denotes the angle between the

vectors indicated by the subscript). Furthermore, the delta function in Eq. (11) demands

that

cos θpq = 1 +O(κ2/M2) . (13)

All gauge bosons are thus emitted in a very narrow forward beam around the direction of

the incoming fermion. It also follows that cos θpk = cos θqk, up to terms quadratic in LVCs.

The fact that cos2 θpq has to be smaller than unity determines the integration limits

for |~p|. They are found by demanding that the higher-order terms in Eq. (13) are negative.

Although straightforward to obtain, the explicit expressions for the integration limits are

not very illuminating. They can be approximated by

|~p|min ≈
M2

2|κ|
and |~p|max ≈ |~q| , (14)
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where we omitted terms of order κ2/M2 and terms quadratic in the fermion to gauge-boson

mass ratio. Within the same approximation, the threshold value for |~q| is given by

|~q|th =
M(M + 2m2)

2|κ|
, (15)

meaning that fermions with an absolute momentum larger than |~q|th will start decaying

while emitting a W boson.

Using Eqs. (13) and (14), we can perform the integration over ~p. We find that the

decay rate is given by

Γ =
g2|κ|
64π

G(a)θ(a− 1). (16)

where

G(a) = α(a)

[
1

a
(−7 + 3y)

(
1− m2

M

)
− 1

a2
(1− y)

(
1− 3m2

M

)]
− 4

(
1 +

1

a
(1− y)

)(
1− 2m2

M

)
log

(
1 + a−m2(1− a)/M − α(a)

1 + a−m2(1− a)/M + α(a)

)
+O

(
m2

1,2

M2
,
κ2

M2

)
(17)

with α(a) =
√

(a− 1)2 + 2m2(a2 − 1)/M and y = ±sgn(κ), where the upper (lower) sign

applies to the particle (antiparticle).

The variable a is defined as the ratio of |~q| to its threshold value, i.e. a = |~q|/|~q|th. In

a general observer frame and up to terms of order κ2/M2 and m2
1,2/M

2, we can write this as

a =
2|q · k|

M(M + 2m2)
. (18)

The step function in Eq. (21) imposes the threshold condition for the initial fermion.

A fermion that interacts with a CPT-violating W boson will start emitting W bosons

if the fermion has an energy above threshold. The W boson will carry away at least an

energy that corresponds to Eq. (15). From Eq. (16) we determine that the typical decay

time is in the order of 10−15 s if O(κ) = 10−7 GeV, corresponding to the bound we will find

later on. This means that it will take about a× 10−15 s for all fermions in a decay cascade

to fall below threshold for such values of κ.

Strictly speaking, these results are only valid for elementary fermions and not for

composite particles. In the important case of the proton, the emission of a W boson will

provoke a break-up, since the typical momentum transfer lies in the range of the W -boson
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mass, which is well within the energy range of for example deep inelastic scattering. In this

case, the proton-decay rate can be written as

Γ =
1

2q0

∫
d3~p

(2π)3

4π

Λ′+(p)
e(+)
µ (p)e(+)∗

ν (p)W µν , (19)

where W µν is the hadronic part, given by

W µν =
1

8π

∑
σ

〈p(q, σ)|Jν(−p)
∑∫
X

|X〉〈X|Jµ(p)|p(q, σ)〉 (20)

while |p(q, σ)〉 is a proton state with momentum q and spin σ, Jµ(p) is the hadronic current,

and
∑∫
X

represents a sum over all hadronic final states X along with the corresponding

integrations over phase space. W µν can be evaluated in the parton model. This essentially

involves calculating the decay rate of an elementary quark that caries a fraction x of the

longitudonal proton momentum. We can thus use many of the results obtained for the

elementary fermion rate. For a pedagogical introduction to parton-model calculations, we

refer to Ref. [12].

The final result for the decay rate is

Γ =
g2|κ|
64π

∑
q

∫ 1

0

dx (fq(x) + f̄q(x))G̃q(ax)θ(ax− 1) . (21)

Here the functions fq(x) and f̄q(x) are the parton distributions functions (PDFs) for the

quarks and antiquarks of flavor q, respectively. They represent the chance of finding a quark

with momentum fraction x inside the proton. We assumed the PDFs to be independent of

p2, which is a good approximation to leading order in the strong coupling constant. The

function G̃q(ax) in Eq. (21) is the function in Eq. (17) with the substitutions m2 → xm2

and y → ỹq = sgn(κ)fq(x)−f̄q(x)

fq(x)+f̄q(x)
. As expected, Eq. (21) is basically the sum over elementary-

quark-decay rates, weighted by the relevant PDF.

The integral over x in Eq. (21) can be carried out numerically using fits for the PDFs

[13]. The presence of the PDFs is particularly important for energies close to threshold,

i.e. when a ≈ 1. Here, x also has to be close to one for the decaying quark to be above

threshold, i.e. ax > 1. At such large values of x, the proton PDFs for valence quarks decay

to zero approximately as a constant times (1 − x)cq with cu ≈ 4 and cd ≈ 5, typically [13].

For this reason, the integral over x in Eq. (21) yields decay rates just above threshold that

are considerably smaller than if the proton would have been an elementary particle.
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To obtain a bound on κ, we observe that a cosmic-ray proton that has an energy

below threshold has zero probability to disintegrate by W -boson emission, and can thus

reach Earth unimpeded. Above threshold, the proton can disintegrate, and thus it cannot

reach Earth if its mean free path is much smaller than the distance D from its source to

Earth.

Since many ultra-high-energy cosmic-ray (UHECR) particles with energies above

57 EeV ≡ |~q|obs have been observed, coming more or less from all directions [14], we can

take it as a first estimate for the lower bound for Eth. It follows that

|κ| < M(M + 2m2)

|~q|obs
≈ 1.1× 10−7 GeV ≡ |κ|0 . (22)

This bound can only be relaxed if the mean free path of protons above threshold is not much

smaller than D. From Eq. (21) we see that the mean lifetime of protons (in Earth’s frame)

tp is still proportional to |κ|−1, but is enhanced, mainly by the minute values of the PDFs

at large x. A conservative estimation that comes from comparing to the elementary-fermion

decay time gives a mean free path of

L ' ctp ∼ (~c/|κ|0)× 1015 ≈ 103 km . (23)

Clearly, in such a scenario, protons with an energy above threshold will not be able to reach

Earth from any viable UHECR source. We thus obtain a bound on all four components of

the LVC:

|kµ2 | < 1.1× 10−7 GeV . (24)

We note that we have to assume that at least some of the detected UHECRs are protons

and that these have a sufficient spread in arrival direction. Although the mass content of

the UHECRs, in particular at high energies, is still largely unexplored [15], it seems very

unlikely that such a significant low-mass component is completely absent. Moreover, even

if this is the case, one can calculate a decay rate equivalent to Eq. (21), by using nuclear

PDFs [16]. Since L� D by many orders of magnitude, it is highly improbable that any of

this will change our result in Eq. (24).

Using the limit in Eq. (24) and the fact that the photon parameter kµAF = 2 cos2 θwk
µ
1 +

sin2 θwk
µ
2 is bounded to be virtually zero [5], we find bounds on the fundamental parameters

kµ1 and kµ2 , given by |kµ1 | < 1.7× 10−8 GeV and |kµ2 | < 1.1× 10−7 GeV. This thus limits the

entire CPT-odd SU(2)×U(1) gauge sector of the mSME to be smaller than about 10−7 GeV.
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