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ABSTRACT

We develop a new perspective on the uncertainties affecting the predictions of coastal species 

distributions using patterns of genetic diversity to assess the congruence of hindcasted distribution 

models. We model the niche of the subtidal seagrass Cymodocea nodosa, for which previous 

phylogeographic findings are used to contrast hypotheses for the Last Glacial Maximum (LGM) in 

the Mediterranean and adjacent Atlantic coastal regions. We focus on amelioration of sampling 

bias, and explore the influence of other sources of uncertainty such as the number of variables, 

Ocean General Circulation Models (OGCMs), and thresholds used. To do that, we test geographical

and environmental filtering of presences, and a species-specific weighted filter related to political 

boundaries for background data. Contrary to our initial hypothesis that reducing sampling bias by 

means of geographical, environmental or background filtering would enhance predictive power and 

reliability of the models, none of these approaches consistently improved performance. These 

counter-intuitive results might be explained by the higher relative occurrence area (ROA) inherent 

to linear coastal study areas in relation to terrestrial regions, which may cause worse predictions 

and, thus, higher variability among models. We found that the Ocean General Circulation Models 

(OGCMs), the threshold and, to a smaller extent, the number of variables used, conditioned greatly 

the variability of the predictions in both accuracy and geographic range. Despite these uncertainties,

all models achieved the goal of identifying long-term persistence regions (glacial refugia) where the

highest genetic diversity for Cymodocea nodosa is found nowadays. However, only the CCSM 

corroborated the hypothesis, raised in previous studies, of a vicariant process in shaping the species’

genetic structure.  

KEYWORDS

Ecological niche modelling; genetic diversity; Last Glacial Maximum; Ocean General Circulation 

Models; sampling bias; threshold.
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1. INTRODUCTION

Although modelling the niche of species has proven to be an efficient approach to ecological, 

conservational and biogeographical questions during the last decades (see Guisan & Thuiller, 2005; 

Araújo & Peterson, 2012), a growing number of studies focused on the terrestrial realm highlights 

the importance of assessing the sources of uncertainty affecting species distribution models (SDMs)

in order to obtain more reliable predictions. The potential sources of uncertainty may be related to a 

large list of factors ranging from the data included in the models to the algorithm used (see e.g. 

Rocchini et al., 2011; Beale & Lennon, 2012; Gould et al., 2014 for a review). Many of the studies 

on uncertainty in ecological niche modelling pay particular attention to sampling bias in occurrence 

data caused by proximity to cities, rivers, roads or conservation reserves (e.g. Reddy & Dávalos, 

2003; Kadmon et al., 2004) or historical bias (Hortal et al., 2008), as they may result in inaccurate 

estimations of niche. More recent attention has focused on the provision of methodologies to 

ameliorate geographic bias by filtering (or “thinning”) occurrences to avoid clumping and 

autocorrelation (Veloz, 2009; Beck et al., 2014; Aiello-Lammens et al., 2015), or to correct the 

derived bias in the environmental space which improved performance of the models in comparison 

to the use of geographic filters (Varela et al., 2014; de Oliveira et al., 2014). Finally, filters for 

background data have also been applied (Phillips et al., 2009; Kramer-Schadt et al., 2013), as the 

location of pseudo-absences or background data also affects predictions (Zaniewski et al., 2002; 

Chefaoui & Lobo, 2008; Merow et al., 2013). 

Despite previous efforts to reduce uncertainty, much of the research up to now referred to 

biases shown by terrestrial species, while uncertainties related to the study of marine taxa have been

poorly investigated. The relatively recent availability of satellite data on marine environmental 

variables has driven an increase in the use of SDMs in this realm and, consequently, studies suited 

to its peculiarities are needed. One particularly relevant distinction is that most important marine 

species are coastal and therefore have a distribution that is more linear than bidimensional. 

Regarding sampling bias, coastal studies are not biased by the same geographic elements as 
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terrestrial do (e.g. distance to roads). The proximity to cities or research institutions with diving 

centers may affect sampling effort, and at a large scale, the observed under-surveyed regions are 

coincident with countries with limited investment in research and political instability such as those 

located in coastal regions of North Africa (Chefaoui et al., 2016). In the Global Biodiversity 

Information Facility (GBIF, www.gbif.org/), it has been shown that more records of the common 

Eurasian butterfly are available from developed countries though the real occurrence of the species 

is higher in less developed ones (Beck et al., 2014). These differences among countries might be 

even more prevalent concerning subtidal marine habitats, where sampling marine campaigns are 

more expensive and require more infrastructure and technical expertise. 

The unavailability of predictors is another source of uncertainty affecting niche projections 

to the past for marine species in comparison with terrestrial ones. Uncertainties affecting the 

General Circulation Models (GCMs) pertaining to the Coupled Model Intercomparison Project 

(CMIP) have been reported both for oceanic variables (Wang et al., 2013) and for atmospheric ones 

(Svenning et al., 2008; Braconnot et al., 2012; Varela et al., 2015). However, although those 

uncertainties are common to both marine and terrestrial realms and despite the improved 

reconstructions of climate during the LGM (Last Glacial Maximum; 23 000–18 000 years BP), 

there is a scarcity of ocean paleoclimatic variables corresponding to the Ocean GCMs (OGCMs) for

the LGM in comparison with the models of atmospheric variables used in terrestrial studies. This 

limits the possibilities to use a wider set of oceanic predictors for the LGM to hindcast marine 

niches (see e.g. Chefaoui et al 2017). There is also an observable incompleteness of data for all seas

and oceans, as important gaps are found in some models (e.g. Black Sea), and some OGCMs are 

available just at a coarse resolution (~2º). 

To provide a new perspective for marine coastal species, we explore these uncertainties in 

SDMs for the subtidal seagrass Cymodocea nodosa (Ucria) Ascherson. Although C. nodosa is the 

most common seagrass in the eastern Mediterranean, no exact mapping has been carried out and 

scanty reports of its distribution exist from some countries (e.g., Egypt, Lebanon…) in comparison 
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with the western basin (Green & Short, 2003). We will estimate if sampling bias linked to 

geographical boundaries is affecting data input of C. nodosa to calibrate niche models and, 

consequently, derived past projections. If so, we will try to ameliorate sampling bias under the 

expectation that the accuracy of niche models for coastal species may be improved similarly as 

terrestrial ones by the use of filters for species data. Thus, in addition to testing geographical and 

environmental filters for presences, we will seek to ameliorate a possible political bias by creating a

weighted probability filter for background data in accordance to political boundaries. This “weight” 

filter will combine an estimation of sampling effort for C. nodosa in relation to the available 

distribution records of similar marine plants from GBIF, with the developmental level of each 

country.

We will also test if the lack of oceanic predictors pertaining to climate simulations for the 

LGM might be hindering the reliability of SDM-based hindcasting marine studies. Under the 

assumption that differences found using current climatic predictors may prevail through niche 

hindcasting, we give an account of the uncertainty caused by the reduced availability of oceanic 

LGM variables examining performance differences among current climate models obtained using 

nested groups of predictors varying in number. Finally, we will also take into consideration the 

effect on our predictions of the threshold used to validate and transform probabilities into binary 

outputs, which has been identified as a yet unexplored source of uncertainty modelling species 

range shifts (Nenzén & Araújo, 2011).

To assess these uncertainties on our current and LGM models for C. nodosa, we will take 

advantage of previous ecological (Chefaoui et al., 2015) and genetic (Alberto et al., 2008; Masucci 

et al., 2012) findings allowing us to assess congruence between the hypotheses supported by 

different approaches. Species distribution shifts throughout the Quaternary leave genetic signatures 

on populations (Hewitt 2004). High congruence between the distribution of present intraspecific 

genetic diversity and regions of long-term population persistence since the LGM have been found 

for several marine species (Assis et al. 2014; Neiva et al. 2014; Assis et al. 2016; Chefaoui et al 
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2017). Thus, finding a congruence between genetic information and SDMs for the LGM could help 

us identify possible uncertainties in the SDMs. We will contrast our hindcast results with the 

predictions made based on the present genetic structure of the species along its distribution, namely 

environmental barriers limiting gene flow inferred by Alberto et al. (2008) and Masucci et al. 

(2012) for the species across the Mediterranean and Atlantic. Alberto et al. (2008) identified four 

regions with a strong genetic structure, and two potential imprints of vicariance located in the range 

areas with presumably higher sea surface temperature (SST), namely the low-latitude Atlantic (AL) 

and the Eastern Mediterranean (EM) regions (Fig. 1). Masucci et al. (2012) inferred the gene flow 

directionality among C. nodosa populations. We will examine if these hypothesized glacial refugia 

(persistence regions with high genetic diversity) are supported by the LGM projections obtained by 

all models to evaluate the most accurate prediction on the basis of independent genetic data.

Our goals are to examine for the first time how sampling bias, and other sources of 

uncertainty such as the availability of variables, the Ocean General Circulation Model (OGCM), 

and the threshold used, affect the predictions of a coastal marine species, in this case a subtidal 

seagrass, comparing predictions derived from our models with previous predictions derived from 

data on genetic diversity throughout the species range. This paper investigates those uncertainties 

for current and Last Glacial Maximum (LGM) predictions, using the observed geographical 

distribution of extant genetic diversity for assessment of congruence of the predictions.

 2. METHODS

 2.1. Effect of the number of variables on performance of models under current conditions

We used 299 records of Cymodocea nodosa compiled from the literature, the Global Biodiversity 

Information Facility (GBIF, www.gbif.org/), and Algaebase (Guiry & Guiry, 2014), covering the 

entire species range (Mediterranean Sea, North-East Atlantic coasts and the Black Sea) at any depth

along its known distribution (0 to 35 m depth). A total of 210 presence cells remained after 

georeferencing data to a 0.083°×0.083°(~9.2 km) grid resolution (Fig. 1). To assess the influence of

a reduction in the number of variables on performance, we compared different sets of nested 
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predictors under current conditions, using a specific SDM for this purpose (see Fig. 2). The 

complete set of 18 variables was comprised of the environmental variables and landscape metrics 

previously found to be the best for modelling the niche of C. nodosa in Chefaoui et al. (2016). 

Environmental predictors were: sea surface temperature (SST) of winter and summer, diffuse 

attenuation coefficient (Kd), wave height, nitrate, phosphate, pH, photosynthetically available 

radiation (PAR), and salinity (Appendix A in the Supplementary material, Table A.1). Landscape 

metrics were: mean edge contrast index distribution (ECON_MN), area weighted mean fractal 

dimension index (FRAC_AM), mean perimeter–area ratio (PARA_MN), percentage of landscape 

(PLAND), mean shape index (SHAPE_MN) and total edge contrast index (TECI). These landscape 

metrics were previously found to be good predictors of coastal morphology (Chefaoui, 2014) and of

the presence of C. nodosa (for a complete description see Chefaoui et al. (2016) and Appendix A in 

the Supplementary material, Table A.2). From this entire set we selected just the variables which 

were also available for LGM climate scenarios and were not highly correlated (r≥|0.80|, p<0.001), 

which resulted in a set of 9 variables: minimum SST of winter, maximum SST of summer, salinity, 

and the six landscape metrics. In addition, we also tested the two SST variables selected to perform 

the modeling approach using filters (minimum SST of winter and maximum SST of summer). This 

last set was chosen on the basis of a good performance of SST determining northern and southern 

range limits for C. nodosa in Chefaoui et al. (2016). We used the “biomod2” package (Thuiller et 

al., 2014) to perform six presence–absence techniques: generalized linear model (GLM), 

generalized additive model (GAM), generalized boosting model (GBM), flexible discriminant 

analysis (FDA), multiple adaptive regression splines (MARS), randomForest (RF), and subsequent 

ensembles. A total of 180 models were run for each group of predictors (10 iterations x 3 pseudo-

absence sets x 6 methods), using the same procedure described by Chefaoui et al. (2016). We 

computed afterwards the “committee averaging” ensemble (the average of binary predictions) as 

this method obtained better accuracy scores than the ensemble produced estimating the mean 

probabilities in Chefaoui et al. (2016) for C. nodosa. The Wilcoxon signed-rank test was used to 
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compare the performance of the models produced using a reduced number of variables with those 

obtained with the complete set.

2.2. Estimation of sampling bias and amelioration by filters 

First, we estimated the existence of a climatic bias using the Kolmogorov-Smirnov two-sample test 

to compare the climatic values of descriptor variables in occurrence cells with a random distribution

within the same range of values in the study area. To assess also the existence of a geographical 

bias related to different survey effort, we tested if frequencies of observed occurrences of 

Cymodocea nodosa in each country were different from random. To correct these possible biases 

we created three filters, two for presence data and one for background data to be used in MaxEnt 

(Phillips et al., 2006). An environmental filter (ENV) and a geographic filter (GEO) were produced 

to discard aggregated presences according to the procedure described by Varela et al. (2014). 

Minimum SST of winter and maximum SST of summer (the same set of two SST variables as in the

previous experiment) were selected to produce the ENV filter and the models. GEO filter for 

presence data was elaborated using latitude and longitude. For both filters, each pair of variables 

were the axes of a grid used as stratification to extract subsamples using the “gridSample” function 

of dismo packge (Hijmans et al., 2014).  

To account for the geographical boundaries bias, we created a filter to be applied to the 

background data. A weighted sampling probability filter (from now on, “WEIGHT”) was produced 

for each country delimited by terrestrial and marine political boundaries. To create the WEIGHT 

filter we took into account: i) the number of occurrences of Cymodocea nodosa; ii) the number of 

occurrences available in GBIF for all species of marine plants present in the study area of the same 

order as C. nodosa (order Alismatales) occupying similar marine habitats and therefore likely to 

receive a similar sampling effort: 4877 records representing 5 genera (Cymodocea, Halophila, 

Posidonia, Ruppia and Zostera); iii) data publishing activity in the GBIF for each country 

(www.gbif.org/country/); and iv) the level of development in each country according to the United 

Nations (www.naturalearthdata.com). To create the WEIGHT filter, these data were classified by 
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countries and contrasted using a set of condition alternatives by means of decision rules (see 

Appendix A in the Supplementary material, Figs. A.1 and A.2, Table A.3). 

2.3. Modelling approach and LGM projections using filters

To test the effect of sampling bias, OGCMs, and thresholds on LGM predictions, we used the sets 

of predictors which had available LGM variables: the set of nine variables, and the set of two SST 

variables (Fig. 2). Paleoclimate variables were obtained from the LGM experiment pertaining to the

Coupled Model Intercomparison Project (CMIP5, http://cmip-pcmdi.llnl.gov/cmip5/). From all 

available LGM models, CCSM4 (over 100 years) and CNRM-CM5 (over 200 years) were selected 

on the basis of these criteria: (a) to have a resolution ≤ 1 degree, (b) inclusion of Black Sea data, (c) 

availability of both SST and salinity variables. We calculated maximum summer SST and minimum

winter SST from the LGM long-term monthly SST means of each model. Additionally, the long-

term mean sea surface salinity (SSS) for both models was also obtained. To elaborate our LGM 

land-sea mask and delimit the study area, a mean sea-level change of -116 m was calculated from 

bathymetric data derived from the General Bathymetric Chart of the Oceans (GEBCO; 

http://www.gebco.net/data_and_products/gridded_bathymetry_data/). This estimated sea-level 

change is consistent with the ice-sheet reconstruction used in the Paleoclimate Modelling 

Intercomparison Project Phase III (PMIP 3, pmip3.lsce.ipsl.fr/). From this coastline, we recalculated

for the LGM the six landscape metrics used in the set of nine variables. As it is beyond the scope of 

this study to examine the variability caused by different modelling techniques, we chose MaxEnt 

(Phillips et al., 2006), a maximum entropy technique which uses presence and background data. 

This choice is due to replicate methodologies for filtering (Varela et al., 2014), and also for being 

widely used for projections. We used MaxEnt with “dismo” package to model the niche using the 

different filters and sets of variables. MaxEnt models were generated by splitting raw data (n=210) 

into a calibration set (n=167 ~ 80%) and a validation set (n=43 ~ 20%). Filters ENV and GEO were 

obtained from the calibration set as well as a random presence set for comparison. Each presence 

set size was equal to 100, an amount sufficient according to Varela et al. (2014). To calibrate the 
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models, we used WEIGHT filter and a random set (n=4000, each) as background data. The 

combinations of presence, background data and variables sets originated eight different models 

(Fig. 2) which were iterated 100 times. 

To validate the models we measured the area under the receiver operating characteristic 

(ROC) curve (AUC), sensitivity (presences correctly predicted), and specificity (absences correctly 

predicted). We calculated three thresholds using “dismo” package in R to transform predicted 

probability into binary values: i) the prevalence: threshold at which the predicted prevalence 

(proportion of locations where the species is predicted to be present) is closest to the observed 

prevalence; “Spec_sens”: the value at which the sum of the sensitivity and specificity is highest; 

and “No omission”: the highest threshold at which there are no omission errors (all presence data 

are classified as presences). We used a Wilcoxon signed-rank test to compare AUC measures 

among filters using the same threshold. The eight models were projected into the CCSM4 and 

CNRM-CM5 scenarios as well as an ensemble of both calculated as the mean value. All analyses 

were run in R (R Core Team, 2014).

2.4. Comparison of regions of persistence with genetic diversity

The LGM projections obtained with our approaches were used to identify the distribution of the 

regions of long-term persistence (where high probability of presence is found for the species under 

current and LGM conditions). These were then compared with the long-term persistence zones 

hypothesized based on population genetic diversity data in a previous study (Alberto et al. 2008). 

The purpose here was to estimate the congruence between hypotheses derived from independent 

data: those based on genetic data and our niche models. The allelic richness (Â, number of alleles) 

and expected heterozygosity (He, gene diversity; Nei, 1978) obtained by Alberto et al. (2008) were 

used as measures of genetic diversity. That study analysed genetic diversity of 47 populations 

covering the Mediterranean and Atlantic distribution of C. nodosa. We calculated the mean values 

of Â and He for the four genetic clusters identified by Alberto et al. (2008): low-latitude Atlantic 

(AL), high-latitude Atlantic (AH), Western Mediterranean basin (WM), and Eastern Mediterranean 
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basin (EM) (Fig. 1). The frequencies of cells classified as having higher probability of occurrence 

than the threshold were computed after a binary transformation of current and LGM SDMs using 

the mean value of the three thresholds explained in section 2.3 for each model. Afterwards, we 

estimated the intersection among SDMs for current and LGM periods and each genetic region to 

calculate the habitat area of persistence regions, where the species could have found appropriate 

long-term conditions. Similarity between raster predictions was estimated using a Pearson 

correlation test.

The existence of a previous study inferring the network of directions of gene flow among 

meadows of C. nodosa (Masucci et al. 2012), based on computing the pairwise difference of the 

genetic information shared or exclusive of the gametes from each meadow, allowed further 

assessment of congruence between hypotheses raised by distinct studies. We thus compared also if 

this gene flow network among genetic clusters is in agreement with the refugia found in this study.

 

3. RESULTS

 3.1. Sampling bias estimation

The Kolmogorov-Smirnov test found a distribution of the presences significantly different from 

random both in climatic (minimum SST of winter: D = 0.3, p-value = 1.238e-08; maximum SST of 

summer: D = 0.3095, p-value = 3.66e-09) as in geographic space (D = 0.4194, p-value = 0.008579),

thus evidencing the observed sampling bias. The distribution of marine plants records (Alismatales) 

seemed to have a representation similar to the overall GBIF records in each country (Pearson's 

product-moment correlation (r) = 0.97, p < 0.001). Although marine plant occurrences were also 

correlated to those of C. nodosa (r = 0.78, p < 0.001), we used the differences found in the number 

of records to estimate the sampling effort for C. nodosa in our study area in relation to plants of the 

same order (Alismatales, angiosperms growing also in marine habitats) by means of decision rules 

(Appendix A in the Supplementary material, Figs. A.2 and A.3) and produce the WEIGHT filter 

(Fig. 3).

 3.2. Effect of the number of variables
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There were significant differences among the three sets of predictors in terms of accuracy and 

predicted probability of presence for the present. The Wilcoxon signed-rank test revealed 

significantly lower AUC values in the models obtained using nine and two variables in comparison 

to the complete set (Table 1). These differences in AUC were consistent across the techniques used.

In general, specificity and sensitivity also decreased, though specificity was more influenced by the 

reduction of variables. Just one method (GLM) showed a sensitivity that was significantly higher 

using nine or two variables in comparison to the complete set. 

In order to establish a comparison among the probability of presence predicted by each set, 

we selected the ensemble that achieved the best scores in the complete set (the “committee 

averaging” ensemble computed with the average of binary predictions of the GAM models) as there

was no agreement for a best method for all sets. Comparing the “committee averaging” of GAMs, 

we found that sets with fewer variables tended to overpredict and obtained a higher density of cells 

of elevated probability of presence (Fig. 4). 

 3.3. Differences among filters

Mean AUC values obtained by each filter differed according to the threshold used (Fig. 5). Thus, 

there was not a filter that consistently improved model results. “No omission” and “prevalence” 

were the thresholds which optimized the sensitivity of the models with values close to 1, while 

“Spec_sens” increased specificity (Appendix A in the Supplementary material, Fig. A.4). Wilcoxon 

test used to compare the scores of AUC among filters revealed more significant differences among 

models using “prevalence” threshold (89.28% of 28 cases were significant: 22 at p-value< 0.001 

and 3 at p-value< 0.05) than “No omission” (57.14% significant: 12 at p-value< 0.001 and 4 at p-

value< 0.05), or “Spec_sens” (42.85% significant at the 0.001 level). Using “prevalence” threshold, 

non filtered models achieved significantly better AUC scores than filtered ones in the set of two 

variables, and there were no significant differences between filtered or not using the nine variables 

set (Fig. 5). Similarly, models obtained with nine variables (filtered and non-filtered) showed better 

or worse results than the two variables set depending on the threshold used. Models produced with 
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the WEIGHT filter were completely correlated (r=1) with their homologous in presence data sets 

using two variables. Just LGM projections using CNRM model showed remarkably little variation 

(Table 2).

 3.4. Congruence between genetic diversity and LGM SDMs

There was a high similarity in terms of probability of presence among the raster predictions of each 

filter. All filters produced with the same set of variables showed Pearson's correlation coefficients 

higher than 0.9, and maps obtained using both sets of variables (two or nine) showed also 

correlations > 0.7(Table 2). EM, the region which obtained a higher genetic diversity both in terms 

of allelic richness and expected heterozygosity (Fig. 1), was also the one showing a major area with 

higher probability of presence in most of the models under current and past conditions (Fig. 6). 

However, there were differences regarding the persistence regions between CCSM and CNRM 

models and the threshold used. Although all LGM scenarios (CCSM, CNRM and the ensemble of 

both) found a possible persistence of the species in AL and EM regions, just the threshold 

“Spec_sens” applied on CCSM showed also the genetic discontinuity identified by Alberto et al. 

(2008) (Fig. 7).

4. DISCUSSION

Applying different filters to presence and background data did not enhance model performance, 

though our findings suggest that known occurrences of Cymodocea nodosa show a biased 

distribution both in the geographical and environmental space. Despite finding significant 

differences in predictive power among filters, those were dependent on the threshold used to 

validate the models. Therefore, a better performance of geographic or environmental filters cannot 

be concluded, as even non-filtered models performed better according to some thresholds. Contrary 

to expectations, our specific WEIGHT filter to ameliorate bias due to differences in survey effort 

from each country produced a negligible effect on performance in comparison with the models 

obtained with the same set of presences, filtered or not. At the moment, we can only compare our 
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results on reduction of sampling bias with studies of terrestrial species. Manipulation of the 

background data by (Kramer-Schadt et al., 2013) also caused weak improvements. Our results are 

also consistent with other studies which did not find major improvements correcting geographical 

bias (Syfert et al., 2013; Varela et al., 2014), though differ from those which obtained an increase in

accuracy (e.g. Kramer-Schadt et al., 2013). 

The performance of the environmental filter was an improvement in some studies (Varela et 

al., 2014; de Oliveira et al., 2014), but our findings differ, even from those obtained by Varela et al. 

(2014) who - using just one threshold value and a virtual species - used a similar approach. This 

discrepancy could be attributed to intrinsic characteristics of AUC, which is influenced by the 

threshold, the extent of the study area, and it is only accurate when using true absences (Lobo et al., 

2008; Jiménez-Valverde, 2012). In addition, these seemingly counterintuitive results may be due to 

the idiosyncrasy of coastal areas, defined by its linear shape and a lower number of cells than 

terrestrial studies. The particularities of linear study areas as is the case of coastal areas, affect the 

proportion of occupied area by the species in relation to the total area, known as the relative 

occurrence area (ROA; Lobo, 2008; Lobo et al., 2008), which has been identified as an important 

factor influencing performance of the models, because species with lower ROA are predicted more 

accurately (Chefaoui et al., 2011; Tessarolo et al., 2014). A species with low ROA shows a similar 

relation between presences/absences in its habitat as a specialist species, which implies a higher 

discrimination power of its predictive models (Lobo et al., 2008; Jiménez-Valverde et al., 2008). 

The linearity of coastal studies indefectibly involves a higher ROA than most terrestrial studies - 

regardless of the studied species - thus, the effect of ROA might reduce predictability, increasing 

the variability between models and, therefore, their uncertainty. The smaller extent of coastal areas 

may also contribute to reduce the heterogeneity of the study area and mitigate the effects of both 

geographical and environmental filtering in comparison to the larger areas usually found in 

terrestrial studies. 

Concerning other sources of uncertainty, our results are in agreement with those of Nenzén 
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and Araújo (2011), who demonstrated that the threshold selected to produce a binary transformation

affected greatly the projections of bioclimatic envelope models. We also found great variability 

caused by the election of this value, evidencing the need for using a range of thresholds in 

comparisons among filtered models for confirmation of consistent results. Besides, this study has 

shown that the number of variables also caused differences in accuracy and projections. Though a 

more complete set of variables increased the discriminative power and reduced the potential area 

predicted by the models, the SST set (minimum SST of winter and maximum SST of summer) were

also able to produce accurate models (Table 1, Fig. 4). Thus, just two SST variables seem enough to

summarize changes in the range of distribution of C. nodosa across time. These two variables were 

also sufficient to provide accurate models for Posidonia oceanica in a previous study (Chefaoui et 

al 2017). This may be explained because Mediterranean east-west LGM temperature gradients were

wider in comparison to present day gradients (Hayes et al., 2005). However, as the lack of variables

is not a problem for terrestrial species as much as for marine ones, this source of uncertainty is not 

very well explored. Though we have not found in the particular case of C. nodosa a relevant 

reduction of accuracy by only using two SST variables, that might not be the case for other marine 

species whose distribution might be more influenced by other variables different from SST and 

salinity. Thus, in waiting for the availability of a major variety of variables in OGCMs, further 

studies would be needed to estimate if there is a generality among marine species.

The predictions of long term climatic refugia from previously studied distribution of 

population genetic diversity and differentiation along the species range were in agreement with the 

long term persistence zones inferred by our data. Despite the large differences between hindcasts 

obtained from the CCSM and CNRM scenarios, they all had a remarkable agreement in reference to

the long-term persistence in the AL and EM regions, which correspond to the locations with the 

highest genetic diversity, a pattern that indicates long-term persistence of large populations that 

accumulate diversity over time in the absence of major bottlenecks. Both CCSM and CRNM 

hindcasts were also congruent in finding the major potential habitat in EM. However, only the 
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model produced with CCSM supported the vicariance hypothesis proposed by Alberto et al. (2008). 

These results are not surprising as a multimodel comparison among LGM SST simulations (Wang 

et al. 2013) found large discrepancies in the mid-latitude ocean. We have also detected that the 

anomalies between CCSM and CNRM differ in distribution between the minimum and the 

maximum SST (see Appendix A in the Supplementary material, Fig. A.5). Thus, not just the 

OGCM used, but also the relative relevance of each measure of SST in the model, for a particular 

marine species, can be a potential source of uncertainty in the hindcasts. Ensemble approaches have

been proposed to average uncertainties (Araújo & New, 2007; Thuiller et al., 2009), but it is the 

marine researcher who has to find a compromise among the number of OGCMs used, the available 

resolution of those OGCMS, and their completeness. In our case, we produced an ensemble using 

just the two OGCMs which fitted our resolution and completeness criteria (e.g. including the Black 

Sea). This ensemble described a high probability of presence for the AL region and most of the 

southern Mediterranean Sea (Fig. 7). Other studies could test if the use of more OGCMs could help 

reducing uncertainty despite sacrificing data resolution. 

The model that was most congruent with the independent evidence derived from genetic 

data, was the LGM CCSM (Fig. 7). This model supported the hypothesis that suitable habitat for the

species could have existed during the LGM in two very distant regions: the low-latitude Atlantic 

range edge (AL, the western coast of Saharian Africa) and the Eastern Mediterranean basin (EM), 

which coincide nowadays with very genetically differentiated groups. Those regions showing 

higher SST in the LGM and currently, could have acted as glacial refugia, in contrast with habitats 

with lower probability of presence in the past, which were located in the AH and WM regions, thus 

supporting the vicariance hypothesis proposed by Alberto et al. (2008). A recent study by Masucci 

et al. (2012) inferred the pathways of gene flow of the species (Fig. 7), confirming a main flow 

from Western Africa and Morocco (AL region) towards the Canary Islands, and another from Sicily

(limit between EM and WM region) to the Western Mediterranean basin (WM). This vicariance 

hypothesis cannot be definitely supported by our results because it is only congruent with our 

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

16



CCSM hindcast, therefore this remains an open question. 

This study has found that the threshold, the OGCM and, to a lesser extent, the number of 

variables used, represent larger sources of uncertainty than the environmental or geographical bias 

of existing distributional records of C. nodosa. Though the use of environmental filters seems an 

intuitive approach improving predictions of terrestrial species, the linear shape of coastal studies 

may originate a higher ROA and/or different environmental heterogeneity, which might result in 

that the filtering process may not cause equivalent improvements in coastal studies. More research 

on coastal areas would help us to establish if differing levels of reported georeferenced data for 

species presence, as found in GBIF or other databases, can influence our understanding of the 

distribution of a species, and more robust conclusions on the effect of the ROA. As improvements 

occur in the OGCMs for LGM, projections to the past will gain reliability to allow further testing of

the hypothesis of existence of just two climatic refugia for Cymodocea nodosa during the LGM, 

located at its warmer range limits in Africa and the eastern Mediterranean (a hypothesis supported 

by one model and by the present genetic data), versus the alternative hypothesis of existence of a 

wider glacial refugia.
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Table 1 Comparison among mean AUC, sensitivity (sens.) and specificity (spec.) values of the models obtained using the complete set of 18 predictors (environmental variables + 

landscape metrics), the subset of 9 variables available for current and LGM conditions, and just the set of 2 variables (minimum SST of winter and maximum SST of summer) to 

predict the distribution of Cymodocea nodosa. The best scores are highlighted in bold. The last six columns show the change in validation scores (AUC, sensitivity and specificity) 

when using just nine or two variables in relation to the complete set. The significance of this comparison is expressed as p-values of Wilcoxon test (** p< 0.001; * p<0.05; n.s. = no 

significant). (s.d.= standard deviation).

Complete set
(18 variables)

Subset 
(9 variables)

SST set
(2 variables)

Subset minus 
complete set

SST set minus 
complete set

Model AUC 
(± s.d.)

Sens. 
(± s.d.)

Spec. 
(± s.d.)

AUC 
(± s.d.)

Sens. 
(± s.d.)

Spec. 
(± s.d.)

AUC 
(± s.d.)

Sens. 
(± s.d.)

Spec. 
(± s.d.)

 AUC Sens. Spec.  AUC Sens. Spec. 

GLM 0.839
(±0.01)

76.939
(±4.37)

78.630
(±4.16)

0.788
(±0.03)

81.639
(±3.77)

66.397
(±5.74)

0.691
(±0.06)

86.011
(±3.34)

52.546
(±6.81)

-0.051
(**)

4.699
(*)

-12.233
(**)

-0.147
(**)

9.071
(**)

-26.083
(**)

GBM 0.874 
(±0.01)

79.398
(±4.41)

80.501
(±3.46)

0.837
(±0.02)

71.912
(±4.93)

81.358
(±4.86)

0.838
(±0.02)

77.978
(±4.09)

77.123
(±3.55)

-0.036
(**)

-7.486
(*)

0.857
(n.s.)

-0.035
(**)

-1.420
(n.s.)

-3.377
(n.s.)

GAM 0.957 
(±0.01)

91.858
(±1.67)

89.450
(±1.24)

0.814
(±0.01)

79.945
(±4.51)

72.326
(±4.83)

0.757
(±0.01)

81.366
(±4.20)

62.777
(±2.44)

-0.142
(**)

-11.912
(**)

-17.123
(**)

-0.199
(**)

-10.491
(**)

-26.672
(**)

FDA 0.836 
(±0.02)

76.885
(±5.72)

76.650
(±5.39)

0.810
(±0.02)

78.142
(±7.91)

71.699
(±7.90)

0.804
(±0.02)

77.814
(±4.70)

70.797
(±6.86)

-0.025
(**)

1.256
(n.s.)

-4.950
(n.s.)

-0.031
(**)

0.929
(n.s.)

-5.852
(*)

MARS 0.843 
(±0.02)

78.525
(±3.82)

79.532
(±4.59) 

0.805
(±0.02)

78.852
(±4.96)

72.211
(±5.90)

0.789
(±0.02)

79.726
(±3.24)

69.928
(±4.58)

-0.037
(**)

0.327
(n.s.)

-7.321
(**)

-0.054
(**)

1.202
(n.s.)

-9.604
(**)

RF 0.891 
(±0.01)

80.819
(±2.64)

82.596
(±2.39)

0.851
(±0.01)

76.284
(±2.99)

80.786
(±3.61)

0.823
(±0.01)

72.076
(±4.63)

81.743
(±3.41)

-0.040
(**)

-4.535
(*)

-1.809
(n.s.)

-0.067
(**)

-8.743
(**)

-0.852
(n.s.)
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Table 2 Pearson's correlation coefficients among the SDMs predictions (probabilities of presence) obtained for present 

and Last Glacial Maximum (LGM) conditions according to the different Ocean General Circulation Models and filters 

used to reduce sampling bias.

No filter GEO GEO
_WEIGHT

ENV ENV
_WEIGHT

WEIGHT No filter 
_9var

WEIGHT
_9var

Present No filter 1

GEO 0.98 1

GEO_WEIGHT 0.98 1 1

ENV 0.97 0.99 0.99 1

ENV_WEIGHT 0.97 0.99 0.99 1 1

WEIGHT 1 0.98 0.98 0.97 0.97 1

No filter_9var 0.82 0.79 0.79 0.79 0.79 0.82 1

WEIGHT_9var 0.81 0.79 0.79 0.78 0.78 0.81 1 1

LGM CCSM No filter 1

GEO 0.95 1

GEO_WEIGHT 0.95 1 1

ENV 0.96 0.92 0.92 1

ENV_WEIGHT 0.96 0.92 0.92 1 1

WEIGHT 1 0.95 0.95 0.97 0.97 1

No filter_9var 0.81 0.78 0.78 0.85 0.85 0.82 1

WEIGHT_9var 0.89 0.83 0.83 0.89 0.89 0.89 0.93 1

LGM CNRM No filter 1

GEO 0.96 1

GEO_WEIGHT 0.96 1 1

ENV 0.98 0.97 0.98 1

ENV_WEIGHT 0.97 0.97 0.98 1 1

WEIGHT 1 0.96 0.97 0.98 0.98 1

No filter_9var 0.73 0.77 0.78 0.76 0.77 0.74 1

WEIGHT_9var 0.7 0.74 0.74 0.72 0.71 0.71 0.92 1

LGM Ensemble No filter 1

GEO 0.95 1

GEO_WEIGHT 0.96 1 1

ENV 0.97 0.93 0.94 1

ENV_WEIGHT 0.97 0.92 0.93 1 1

WEIGHT 1 0.95 0.95 0.98 0.97 1

No filter_9var 0.87 0.87 0.88 0.85 0.85 0.87 1

WEIGHT_9var 0.8 0.82 0.81 0.77 0.76 0.79 0.93 1
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FIGURE LEGENDS

Fig. 1 Occurrence records of Cymodocea nodosa in its entire range of distribution (blue circles) and

location of populations analyzed genetically and genetic regions identified by Alberto et al. (2008)

(AH: high-latitude Atlantic; AL: low-latitude Atlantic; EM: Eastern Mediterranean; WM: Western 

Mediterranean). Mean values of allelic richness (A) and expected heterozygosity (He) for each 

region, and the assignment of individuals to genetic clusters are also shown. Adapted from Alberto 

et al. (2008).

Fig. 2 Scheme showing the procedure used to test the uncertainties affecting the predictions of a 

coastal species distribution. We assessed the effect of the number of variables and sampling bias on 

the niche modelling of Cymodocea nodosa, a subtidal seagrass, by using the combinations of 

variables and techniques shown. We tested the filters for occurrences (GEO and ENV) and the 

background data filter (WEIGHT) against random sets and compared their performance. We used 

sets of variables from the complete set: “Two SSTs” (minimum SST of winter and maximum SST 

of summer), and “9var” (a subset of nine variables: minimum SST of winter, maximum SST of 

summer, salinity, ECON_MN, FRAC_AM, PARA_MN, PLAND, SHAPE_MN and TECI).

Fig. 3 Weighted sampling probability filter (WEIGHT) used to give a statistical weight to the 

background data used in MAXENT models according to the probability of having been sampled for

each country. These probabilities were estimated using a set of rules including variables about 

GBIF publishing activity (for Alismatales order, and in general) and country development. A 

weight of 1 represents “very high” reliability of absences, while a weight of 0 represents “very 

low”.

Fig. 4 Violin plot of the distribution of probabilities of presence in the three sets of variables using 
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the ensemble committee averaging of Generalized Additive models (GAMs). All: Complete set of 

18 variables; Subset: set of 9 predictors; and SSTs: minimum sea surface temperature (SST) of 

winter and maximum SST of summer. The dark blue bar represents the interquartile range and the 

white dot represents the median.

Fig. 5 Mean AUC measures obtained by filtered and non filtered environmental niche models of 

Cymodocea nodosa using different thresholds for validation. No agreement among thresholds on 

the best filtering option was found. (Env: environmental filter; geo: geographic filter; weight: 

weighted background data filter according to political boundaries; 9var: subset of nine variables).

Fig. 6 Stacked chart illustrating comparisons among habitat area predicted as having higher 

probability of occurrence after a binary transformation of the models produced using different 

filters and thresholds (“No omission”, “Prevalence” and “Spec_sens”) for each genetic cluster 

(regions; Alberto et al. (2008). AH: high-latitude Atlantic; AL: low-latitude Atlantic; EM: Eastern 

Mediterranean; WM: Western Mediterranean).

Fig. 7 Likelihood of presence of Cymodocea nodosa according to the projection to the Last Glacial 

Maximum climate modelled using the Ocean General Circulation Models CNRM-CM5, CCSM4 

and an ensemble. In all models the glacial refugia found are coincident with the populations with 

higher genetic diversity (Alberto et al. 2008) delimiting the low latitude Atlantic region (AL) and 

the Eastern Mediterranean region (EM), those with higher sea surface temperature during 

glaciations. But just CCSM model would be congruent with a vicariant hypothesis. Directional 

genetic flows (grey arrows) identified by Masucci et al. (2012) are also congruent explaining how a 

post-glacial recolonization could have happened.
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