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Abstract 

Expanded carrier screening (ECS) for recessive monogenic diseases requires prior knowledge 

of genomic variation including DNA variants that cause disease. The composition of 

pathogenic variants differs greatly among human populations, but historically research 

about monogenic diseases has focused mainly on people with European ancestry. By 

comparison, less is known about pathogenic DNA variants in people from other parts of the 

world. Consequently, inclusion of currently under-represented Indigenous and other 

minority population groups in genomic research is essential to enable equitable outcomes in 

ECS and other areas of genomic medicine. Here we discuss this issue in relation to the 

implementation of ECS in Australia, which is currently being evaluated as part of the national 

Government’s Genomics Health Futures Mission. We argue that significant effort is required 

to build an evidence base and genomic reference data so that ECS can bring significant 

clinical benefit for many Aboriginal and/or Torres Strait Islander Australians. These efforts 

are essential steps to achieving the Australian Government’s objectives and its commitment 

“to leveraging the benefits of genomics in the health system for all Australians”. They 

require culturally safe, community-led research and community involvement embedded 

within national health and medical genomics programs that ensure that new knowledge is 

integrated into medicine and health services in ways that address the specific and 

articulated cultural and health needs of Indigenous people. Until this occurs, people who do 

not have European ancestry are at risk of being, in relative terms, further disadvantaged.
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Introduction 

Genomic technologies have enabled major advances in understanding and treating rare 

monogenic diseases. Greater accessibility to genomic data and the knowledge to interpret it 

have: improved diagnostic rates for existing conditions; greatly expanded the number of 

diseases for which diagnostic tests are available; led to greater understanding of biological 

processes underlying pathology; enabled development of better and targeted therapies; and 

resulted in improved prenatal and preimplantation testing1–4. Genomic technologies have 

also created the possibility of pre-conception expanded carrier screening (ECS), by which 

prospective parents are simultaneously screened as potential carriers of a range of different 

recessive diseases 5–7.  

Pre-reproductive carrier screening is generally targeted at specific genes and carried out 

where there is increased risk of a child being born with a specific recessive condition due to 

ancestry or based on clinical information8. It has been extremely effective, e.g., in reducing 

the incidence of Tay-Sachs disease (MIM: 272800) in Ashkenazi Jewish populations around 

the world9,10. ECS is an extension of this approach that involves simultaneous screening for 

many pathogenic variants responsible for a broad range of diseases in the general 

population. This broad-scale approach to screening is achieved by sequencing the entire 

genomes (genome sequencing) or the fraction of the genome that encodes proteins – the 

exome (exome sequencing) – of prospective parents. Although data are obtained for the 

whole genome or exome, screening is often targeted at a predetermined subset of genes 

and/or variants11,12. 

The Australian government is evaluating the potential benefits and challenges that ECS 

presents7,12–17 with a view to its introduction into the national healthcare system18. Our 

focus here is on the significant challenges of achieving inclusion and equitable benefits for 
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Indigenous Australians from this approach and, by extension, medical genomics generally. 

While our focus is on Indigenous Australians, many of the points we raise apply to other 

groups that are under-represented in current genomic reference data.  

Ethical, cultural, social and policy considerations are of over-riding importance in genomics. 

Implementation of ECS in Aboriginal and Torres Strait Islander communities raises questions 

about: the cultural appropriateness of screening in different communities; how prospective 

parents should be counselled and appropriately informed about ESC; the means by which 

consent should be obtained; the potential impact on social and cultural norms; the potential 

for group, family and/or individual stigmatisation; how screening can be harmonised with 

cultural practices, lifestyles and traditional concepts; whether the autonomy of patients, 

families and communities can be preserved; the proportion of the population likely to 

benefit from this approach; how screening will be administered through community 

controlled and other local health services; and whether there is the capacity for culturally 

safe counselling and follow-up clinical care.  

Fully articulating these complex issues for health professionals and Indigenous communities 

is a substantial undertaking that needs adequate resourcing to ensure appropriate support. 

Consequently, we address only the salient points here. Our main focus is on scientific 

evidence about genetics and its medical implications for Indigenous Australians, as a 

foundation to better inform this process. 

The core challenge for ECS implementation is lack of knowledge about genomic variants in 

Indigenous populations and of appropriate clinical and genomic reference data. Carrier 

screening depends on prior knowledge of pathogenic variants, most of which comes from 

studies of people of European ancestry, which may have limited or sub-optimal applicability 

to other populations19–27.  
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As Australia is a culturally and ancestrally diverse nation, there is a need to recognise how 

genomic information is interpreted, incorporated and translated meaningfully in the lives, 

experiences, and healthcare of individuals from diverse cultural and ethnic backgrounds. In 

particular, there is a national imperative to ensure equitable benefit for Aboriginal and 

Torres Strait Islander Australians, who collectively experience significant disparity in 

morbidity and mortality28 and access to health services28,29 compared with non-Indigenous 

Australians.  

We discuss how the involvement of Indigenous people must be fully embedded within 

national health genomics initiatives such as ECS to ensure that the needs of Aboriginal and 

Torres Strait Islander people are met, and to ensure that these initiatives deliver outcomes 

consistent with the equity principles that underpin Australia’s public healthcare system: 

universal cover and universal access. 

Medical genomics in Australia 

The national introduction of ECS is being evaluated as part of the Genomics Health Futures 

Mission (GHFM), a program funded by the Medical Research Future Fund (MRFF). Projects 

funded through the GHFM operate within the policy settings provided by Australia’s National 

Health Genomics Policy Framework (NHGPF) developed by the Australian Health Ministers’ 

Advisory Council (AHMAC) and agreed by the Council of Australian Governments (COAG) 

Health Ministers in November 2017 (Box 1). The NHGPF recognizes the importance of 

addressing the requirements for Indigenous inclusion in the implementation of genomic 

medicine (Box 1).  
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Box 1. The National Health Genomics Policy Framework, 
Medical Research Future Fund (MRFF) and Genomic Health 
Futures Mission (GHRM) 

The NHGPF provides the blueprint for embedding genomics in the Australian health system. It 
“presents a shared commitment to leveraging the benefits of genomics in the health system for all 
Australians” 

The principles underpinning NHGPF priorities are: 

 The application of genomic knowledge is ethically, legally and socially responsible and 
community trust is promoted 

 Access and equity are promoted for vulnerable populations  

 The application of genomic knowledge to health care is supported and informed by 
evidence and research. 

Recognising the importance of equity and inclusion, particularly in relation to Indigenous 
Australians, the priority areas of action of the National Health Genomics Policy Framework 2018–
2021 include: 

 1.5. exploring the potential for discrimination, and evaluating the delivery of genomic 
services in terms of being accessible, appropriate and culturally secure and responsive for 
Aboriginal and Torres Strait Islander peoples. 

 5.2. Promote culturally safe and appropriate genomic and phenotypic data collection and 
sharing that reflects the ethnic diversity within the Australian population, including for 
Aboriginal and Torres Strait Islander peoples. 

The intended outcomes of the Medical Research Future Fund (MRFF) are:  
1. life changing discoveries such as new treatments, drugs and devices  
2. continuous improvement and innovation in the health system that benefits all Australians  
3. strengthening domestic research capacity through support, collaboration and the 

development of expert talent  
4. positioning Australia’s health and medical research sector at the forefront of the 

innovation economy  
5. improving Australia’s reputation as a global leader in health and medical research.  

The objective of the Genomics Health Futures Mission (GHFM) is to: 
1. deliver better diagnostics and targeted treatments 
2. avoid unnecessary health costs  
3. improve patient experience and outcomes. 

The fund supports research projects that aim to: 
1. provide the pathways for the development of new diagnostics, medicines and treatments 

from genomics research  
2. expand genomics research effort and reach, allowing researchers and commercial partners 

to sustain efforts in discovery 
3. build evidence for scaling applications, and build new markets  
4. ensure that later stage translation and flagship work is not hampered by a lack of 

investment in early research.  
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Pathogenic variants are generally rare and population-specific 

Most monogenic diseases are caused by many different DNA variants in one or more specific 

genes7, almost all of which are rare. These variants may occur only in people with ancestry 

from a particular geographic region, in one small community, or even in a single family. Thus, 

for example, more than 2,000 different known pathogenic variants in the CFTR gene (MIM: 

602421) can cause the recessive monogenic disease cystic fibrosis (CF; MIM: 219700). 

Approximately 1 in 3,000 people are affected by CF in northern Europe30. Elsewhere, 

however, it is much rarer and is usually caused by local, rare variants that are not found in 

European patients31. Thus for example, in China and in the many substantial Chinese 

communities elsewhere in the world, where CF, although rare, affects an estimated 20,000 

people, carrier screening panels designed for ancestrally European populations fail to detect 

most CF carriers32. 

The rarity and geographically restricted origins of pathogenic variants have important 

consequences for Australia’s diverse society.  

1. The makeup of pathogenic variants is likely to be unique, reflecting the unique diversity 

of Indigenous peoples and the ancestral makeup of settlers and immigrants. 

2. For the same reasons, it is likely that there are many pathogenic variants that have not 

been previously characterized. These novel variants may cause already described clinical 

phenotypes. It is likely, however, that even if they have similar molecular properties to 

known variants some will cause different phenotypes. These include milder or more 

serious forms of disease and different treatment responses33. Clinical and functional 

investigation will generally be required to establish their pathogenicity and associated 

disease phenotypes34.  
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3. For recessive diseases, many novel combinations of pathogenic variants are likely. A 

recessive disease can be caused by (n(n-1)/2)+n combinations of n pathogenic variants. 

Only a small fraction of these combinations can occur where the geographic distribution 

of variants is restricted. However, in a society with many people of mixed ancestry many 

novel combinations of variants are likely. These novel combinations may cause novel 

disease phenotypes and have differing effects on treatment responses. 

4. Genomic-background, environment and lifestyle are more likely to influence the 

phenotypic manifestation of recessive diseases caused by pathogenic variants, even 

potentially causing normally pathogenic variants to become benign35 or normally benign 

variants to become pathogenic36,37 because: 

I. The environment and lifestyle of many people has rapidly changed due to 

alterations in economic or social circumstances, changes in diet, or as a result of 

displacement or migration.  

II. There are many people of mixed ancestry in whom the effect of a variant on 

disease may have changed after it arrived in a genomic background different to 

the one in which it had previously existed. 

Pathogenic variants in Aboriginal and Torres Strait Islander 

communities 

Global prevalence estimates7,38 suggest that, to a first approximation, more than 30,000 

Aboriginal and Torres Strait Islander people may be affected by monogenic diseases, and 

that many more may be carriers of pathogenic variants. Many of these variants will be 

different from those causing the same diseases in people with ancestry from Europe and 

other parts of the world. Many may cause either formerly unknown diseases or phenotypic 
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manifestations of known diseases that have not previously been encountered in a clinical 

setting. 

Some Aboriginal and/or Torres Strait Islander people have pathogenic variants inherited 

from non-Indigenous ancestors. However, with few exceptions, like Machado-Joseph 

Disease39 and a complex phenotype resulting from an MTOR gene variant40, little is known 

about pathogenic variants originating within Indigenous populations. 

Unpublished data compiled by the National Centre for Indigenous Genomics (NCIG) for 160 

people from four Aboriginal communities show that: 

1. Approximately 25% of all DNA variants in the genome of an Aboriginal person, 

disregarding variants inherited from non-Aboriginal ancestors, are unknown in people 

from outside Australia. Among the large number of Aboriginal and Torres Strait Islander-

specific variants there will be some that are pathogenic. These will not be represented 

in international or Australian clinical databases or in current screening panels. These 

databases and panels may, therefore, currently be of limited value for screening in 

Aboriginal and Torres Strait Islander communities. 

2. Of these Aboriginal-specific variants, ~40% are likely to be found in a single region or 

community. Overall, based on FST distances41 and comparison with data from the Simons 

Genome Diversity Project42, genomic differences among Aboriginal communities across 

Australia are as great as those between populations across Europe and Asia combined. Thus, 

for example, using information about people from the Northern Territory as a basis for 

treating people in South Western Australia, would be equivalent to treating people with 

British ancestry on the basis of information about people from Cambodia. 
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These data can be accessed and used for specific purposes, as determined by the NCIG 

Indigenous-majority Board, in accordance with the CARE data sovereignty principles43 and 

the National Centre for Indigenous Genomics Statute, 2016 (Cth)44.  

Current lack of evidence means that for many people with Aboriginal and/or Torres Strait 

Islander ancestry, ECS will produce greater uncertainty, revealing more ‘likely-pathogenic 

variants’ (LPVs) and ‘variants of unknown significance’ (VUSs) than for those with ancestry 

from Europe and other parts of the world where the causes of monogenic diseases are 

better understood. This uncertainty could potentially lead to inappropriate clinical 

intervention if benign variants are incorrectly reported as pathogenic, as has occurred 

elsewhere45–47.  

The risk of variants being falsely reported as pathogenic can be avoided by increasing the 

threshold of evidence required to assign pathogenicity. This approach, which reduces the 

risk of false positive reports, also tends to cause under-reporting of pathogenic variants 

because some do not meet the higher threshold of evidence. The same evidence-based 

criteria will have a differential effect when applied to populations for which there are 

different levels of available evidence. Pathogenic variants will tend to be under-reported to a 

greater extent in populations where there is a relative lack of evidence, as there is for people 

with Indigenous ancestry. 

The result is greater “residual risk”, i.e. more couples with a risk of having an affected child 

that is not identified by ECS. High residual risk is equivalent to low sensitivity, i.e., high rates 

of false negative findings. Thus, when residual risk is high, negative findings have little 

predictive value. For the great majority of prospective parents who test negative, testing 

provides little information. Thus, participation in testing may raise awareness of potential 

risk but leave most participants with high levels of residual uncertainty about their own risk.  
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In addition, increasing the threshold of evidence for pathogenicity reduces the “yield”, i.e. 

the number of couples identified as being at risk. The result is that, overall, fewer people 

benefit from screening 48. If the expected yield for the general population is 1–2%, the lower 

expected yield for couples with Indigenous ancestry means that many hundreds of couples 

may be screened without any of them receiving a report that they are at risk of giving birth 

to a child with a monogenic disease.  

Lack of knowledge about variant pathogenicity adds to the challenges of counselling 

prospective Aboriginal and Torres Strait Islander parents and of supplying the accurate 

information they need in order to make informed decisions about undergoing ECS.  

Novel variants identified through ECS can be functionally and clinically investigated. These 

investigations are unlikely, however, to provide useful information to prospective parents 

because of the amount of time required to carry them out. They may, nevertheless, give rise 

to new evidence that improves the quality of screening for future patients.  

These indirect benefits might provide ethical justification for ECS as a medical intervention if 

it were not possible to obtain them in other ways, even when there is little potential benefit 

and considerable risk for patients. Novel pathogenic variants can, however, be more 

effectively identified and their phenotypic effects better characterized at greatly reduced 

risk through direct clinical investigation of affected patients and their families. This more 

direct approach is greatly enhanced by characterization of genomic variation in patient 

communities, which can be critically important for variant discovery 40,47,49 and for correct 

assignment of pathogenicity 45–47. 
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How to address the current disparity? 

The validity of ECS depends on population reference data and a preexisting evidence-base 

linking specific DNA variants with disease phenotypes, which has been painstakingly built up 

through decades of careful direct clinical investigation of affected patients and relevant 

family members50 34 51 mainly in people of European ancestry. Equitable inclusion of 

Indigenous Australians in the benefits of ECS, and medical genomics more generally, requires 

a similar level of evidence.  

The critical importance of ancestry in the many other areas of health care where genomics 

now plays an important role 19–26  has led to programs aimed at achieving diversity in 

genomics, e.g., India52, Asia53; Africa54; Aotearoa/New Zealand55, USA56.  

An equitable approach in Australia would require prioritization of research involving people 

of Aboriginal and/or Torres Strait Islander descent, as well as other under-represented 

groups, as an integral part of national medical genomics programs. National programs 

should include: 1. Detailed characterization of genomic variation in Aboriginal and Torres 

Strait Islander peoples; and 2. Careful study, with community involvement and leadership, of 

pathogenicity and the general clinical, cultural and social consequences of diseases. 

Programs must be designed and sufficiently resourced to include Indigenous community 

leadership to ensure appropriate research conduct at a time when community acceptance of 

genomics is critically important57. As in other areas of healthcare39,58,59, extending 

approaches developed for the general population or retrofitting systems that were not 

designed to meet the specific needs of Indigenous people will not be effective and may do 

more harm than good. Hence, there is a need, at all levels and stages, for Indigenous co-
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design and development and incorporation of Indigenous data governance and 

custodianship as the foundations of national medical genomics programs.  

Finally, it is essential to account for the significant genomic differences as well as the 

significant socio-cultural differences among the many Indigenous communities across the 

Australian continent. 

Conclusion 

ECS is one of many medical applications of genomics that, collectively, can transform the 

healthcare system for the better. For these developments to contribute usefully to the 

health and wellbeing of Australians with Indigenous ancestry the current dearth of evidence 

and lack of reference data must be addressed. To ensure their culturally safe conduct, 

national genomic medicine programs must ensure that Indigenous communities are 

empowered by incorporating Indigenous leadership, co-conceptualization and co-design and 

implementing the principles of Indigenous sovereignty over genomic data.  

Australia has an opportunity to embrace the challenges presented by the cultural and 

ancestral diversity of its people to deliver research and clinical outcomes with significant 

global impact. New discoveries leading to therapeutic innovation are more likely from clinical 

investigation of people whose health and disease have previously been neglected, and of 

illnesses, which, until now, have been ignored, than from focussing on better understood 

problems in well-studied populations. 

In addition, addressing the specific requirements of Australians with Indigenous ancestry and 

other under-represented groups would directly support the Australian Government’s 

commitment to equity and inclusion. It would redress past inequities and provide a model 

for better healthcare practice in Australia and internationally. 
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Australia has a unique opportunity for medical genomics innovation leading to improved 

prediction, prevention, treatment and cure of disease that is based on the distinctive 

characteristics of genomic diversity and its relationship to disease in Indigenous people, a 

reflection of their continuing ancient presence on the Australian continent60. This 

comparative advantage derives from Australia’s ancient history and geographical isolation. In 

realising it, the central role and importance of Aboriginal and Torres Strait Islander peoples 

must be recognised, they must be at the forefront of national programs, and they must stand 

to gain an equitable share of the resulting benefits. 
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