

The University of Notre Dame Australia ResearchOnline@ND

IHR Papers and Journal Articles

Institute for Health Research

2020

Self-report motor competence in adolescents aged 12-18 years in regional and rural Victoria (Australia)

Mandy S. Plumb

Beth Hands The University of Notre Dame Australia, beth.hands@nd.edu.au

Fleur McIntyre The University of Notre Dame Australia, fleur.mcintyre@nd.edu.au

Amanda Timler The University of Notre Dame Australia, amanda.timler@nd.edu.au

Follow this and additional works at: https://researchonline.nd.edu.au/ihr_article

Part of the Medicine and Health Sciences Commons

This article was originally published as:

Plumb, M. S., Hands, B., McIntyre, F., & Timler, A. (2020). Self-report motor competence in adolescents aged 12-18 years in regional and rural Victoria (Australia). *Research Quarterly for Exercise and Sport,*.

Original article available here: https://doi.org/10.1080/02701367.2020.1739606

This article is posted on ResearchOnline@ND at https://researchonline.nd.edu.au/ihr_article/21. For more information, please contact researchonline@nd.edu.au.

This is an Author's Original Manuscript of an article published by Taylor & Francis Group in *Research Quarterly for Exercise and Sport* on 22 May 2020, available online: <u>https://www.tandfonline.com/doi/full/10.1080/02701367.2020.1739606</u>

Plumb, M.S., Hands, B., McIntyre, F., and Timler, A. (2020). Self-report motor competence in adolescents aged 12-18 years in regional and rural Victoria (Australia). *Research Quarterly for Exercise and Sport*, https://doi.org/10.1080/02701367.2020.1739606

1	Self-report Motor Competence in Adolescents Aged 12 – 18
2	years in Regional and Rural Victoria (Australia)
3	
4	Mandy Plumb ¹
5	Fleur McIntyre ²
6	Beth Hands ³
7	Amanda Timler ³
8 9 10 11 12	Institutional affiliations ¹ School of Health, Medical and Applied Sciences, Central Queensland University ² School of Health Science, University of Notre Dame Australia ³ Institute for Health Research, University of Notre Dame Australia
13 14 15	Corresponding author Dr Mandy Plumb
10 17 18 19	Applied Sciences, Central Queensland University, Cairns, Qld, 4870, Australia <u>a.plumb@cqu.nd.edu.au</u>
20 21 22	Manuscript type: Original research
23	
24	
25	
27	
28	
29	

30 Abstract

Background: Poor motor skills are an increasing issue for adolescents in our local
communities. In regional Victoria, almost 20% of children starting school in 2018
were considered at risk or developmentally vulnerable in the domain of physical
health and wellbeing.

35 Purpose: The aim of the current study was to examine factors (how adolescents 36 perceive their fine and gross motor skills, activities of daily living, comparison to 37 peers) of motor competence that may be important to adolescents in regional 38 Victoria, Australia, using the Adolescent Motor Competence Questionnaire 39 (AMCQ).

40 Methods: A sample of 183 Australian adolescents ([138 females (M_{age} = 15.59 years, 41 SD = 1.56); 45 males, (M_{age} = 15.82 years, SD = 1.95); 12 – 18 years old] completed 42 the AMCQ.

Results: The mean AMCQ score was 87.86 (SD = 7.55), with no significant
difference between males (M = 89.67 SD = 7.29) and females [M = 87.28 SD = 7.56;
t (181 = 1.86 p = .065)]. A Principal Component Analysis (PCA), extracted five
factors (Eiqenvalue of 1.389) explaining 43.46% of variance, representing, Ball *Skills and Kinesthesis; Activities of Daily Living; Fine Motor and Gross Motor;*Proprioception and Exteroception; Public Performance.

49 Conclusion: The results highlight key factors important in describing an 50 adolescent's motor competence within regional Victoria. With physical health a 51 priority in local communities, understanding these factors is an important first, that 52 which may inform development of physical activity interventions for adolescents.

53 Key words: Self-report ; Motor competence ; Adolescents ; AMCQ

54

56 What this paper adds

This paper reports results collected in regional and rural western Victoria, Australia, using the Adolescent Motor Competence Questionnaire (AMCQ). The questionnaire was designed for adolescents aged between 12 and 18 years to self-report their level of motor competence. Recent statistics from the Australian Government report approximately 50% of children entering school are classed as developmental vulnerable in areas such as fundamental motor skills (FMS). It is known that motor competence and FMS impacts on participation in physical activities into adolescence, which may negatively affect their health in later years. So, understanding what factors are important for an adolescent's motor competence may be one way of supporting their engagement with physical activity, development of FMS and afford us the opportunity to develop interventions at community level.

- .

- 82
- 83

Self-report Motor Competence in Adolescents Aged 12 – 18 years in Regional and Rural Victoria (Australia)

86

In Australia, great importance is placed on participating in physical activity 87 (PA) and sporting achievements, especially among adolescents. Nearly 50% of 88 children and adolescents have fundamental motor skills (FMS) below that expected 89 for their age (Brian et al, 2017; Bardid, Rudd, Lenoir, Polma & Barnett, 2015; 90 Foulkes et al, 2015; Gallahue, Ozmun, Goodway, 2012; Hardy, Barnett, Espinel & 91 92 Okely, 2013; O'Brien, Belton, Issartel, 2016), which may influence their involvement in PA. Of concern are those who live in rural and remote communities 93 94 as many do not receive the same opportunities to participate in physical activities 95 and sport compared to those living in more urban areas (Barnett, Cliff, Morgan, & 96 van Beurden, 2013). In 2018, almost 20% of children starting school who lived in 97 rural and remote Victoria were considered at risk or developmentally vulnerable in 98 the physical health domain, which focuses on physical readiness for school, physical 99 independence, and developing fine and gross motor skills. (Australian Government, 100 2018). In the Ballarat region difficulties in the physical health domain increased 101 from 8.0% in 2015 to 11.1% in 2018, which is higher than the Victorian state national 102 average, of 7.9% in 2015, and raised to 8.2% in 2018. This lower than average 103 developmental delay may continue into adolescence unless further research is 104 undertaken on the underlying mechanisms as to why this may be occurring 105 (Australian Government, 2018).

Measuring motor competence is a complex and time consuming process.
Other methodologies such as self-report have been recognized to complement formal
movement assessment batteries such as the McCarron Assessment of Neuromuscular

Development (Hardy et al, 2011; Robinson, 2011, Vandrope et al., 2012). These studies have demonstrated that children and adults self-reported motor skills are correlated, showing higher levels of perceived motor competence being positively linked to higher participation rates in PA. Therefore, understanding what motor competence represents during adolescence may be one way to encourage and engage them in PA and sports and consequent physical health.

115 Adolescent perceptions of a number of different domains such as academic 116 ability, social support, athletic proficiency, physical appearance and close 117 friendships have been identified and reported by a number of researchers (Harter, 118 2012; Rose, Larkin, Parker, & Hands, 2015). Rose and colleagues (2015) found that 119 level of motor competence among 14 year old adolescents also influenced the 120 number of domains and which domains they valued. For example, those with lower 121 motor competence may place less focus on their athletic competence and focus on 122 other areas such as academic achievements. Harter (2012) defines athletic 123 competence as an adolescent's ability and preference to participate in sports and PA, 124 such as recreation activities and outdoor games. To the authors' knowledge, only 125 one study has previously identified factors that contribute to an adolescent's motor 126 competence (Timler, McIntyre, & Hands, 2018a). These were identified as 127 Participation in PA and Sports, Activities of Daily Living, Public Performance, and Peer Comparisons. Timler et al. (2018a) also found that males had higher self-128 reported motor competence compared to females, except in regards to activities of 129 130 daily living.

Gender should also be considered (Cliff, Okely, Smith, & McKeen, 2009;
Reed, Metzker, & Phillips, 2004; Ziviani, Poulsen, & Hansen, 2009), as participation
in PA and level of motor competence often differs between males and females
throughout their lifespan (Cairney, Hay, Faught, Mandigo & Flouris, 2005; Hands,
Larkin, Parker, Straker, & Perry, 2009; Hands, Parker, Rose, & Larkin, 2015; Hill,
Brown, & Sorgardt, 2011; Piek, Baynam, & Barrett, 2006). An adolescent's level

137 of motor competence is an important aspect to consider as participation in PA often declines for both genders by around 7% per year throughout adolescence (Dumith, 138 Gigante, Domingues, & Kohl, 2011), with a greater reduction occuring among 139 females (Okely, Booth, & Patterson, 2001). Although there is some evidence to 140 141 suggest that females gain greater health benefits from participating in less intense and vigorous PA than males (Hands, Parker, Larkin, Cantell, & Rose, 2016) and 142 143 prefer to participate in non-sports based activities such as yoga, walking or gym 144 based exercises (Australian Institute for Health & Welfare, 2019). Males usually 145 place greater importance on their motor competence and participate in more high-146 intensity physical activities and find ways to participate regardless of their level of 147 motor competence (Hands et al., 2016). On the other hand, females place greater 148 importance on social interactions, looking presentable and physically attractive and 149 therefore often participate in less vigorous activity (Harter, 2012; Vannatta, 150 Gartstein, Zeller, & Noll, 2009), as well as their level of self-esteem, self-confidence, 151 and even social support (Harter, 2012; Phillips & Pittman, 2007; Vannatta et al., 152 2009).

153 A number of motor competence questionnaires are available, some use parent proxy-reports (van der Linde et al., 2013; Wilson et al., 2009), others use self-154 report for adolescents (Timler et al., 2018a) and adults (Clark, Thomas, Khattab & 155 156 Car, 2013; Kirby, Edwards, Sugden, & Rosenblum, 2010; Tal-Saban, Ornoy, & Parush, 2014). In older populations, self-report is a reliable and realistic way to 157 capture an individual's perceptions of their motor competence (Timler, McIntyre, & 158 Hands, 2018b), is closely linked to their actual motor competence and determining 159 level of PA participation (Barnett, Morgan, van Beurden, & Beard, 2008a). The 160 161 aim of the current study is to identify what factors are important for an adolescents level of motor competence in regional and rural Victoria, Australia, using the 162 163 Adolescent Motor Competence Questionnaire (AMCQ; Timler et al, 2016) and 164 determine if these differ from adolescents in a main city of Western Australia. A

secondary aim of this study was to examine if gender differences existed in responseto individual items.

167

168 **Participants**

Method

A sample of 183 adolescents (138 females, $M_{age} = 15.59$ years, SD = 1.56; 169 45 males, $M_{age} = 15.82$ years, SD = 1.95) completed the Adolescent Motor 170 171 Competence Questionnaire (AMCQ). Data were collected from participants from 172 seven Government schools in regional and rural Western Victoria via a Victoria Certificate of Education (VCE) program run at Federation University (n = 142). 173 Additional individuals were recruited via the University (newsletter; n = 14), ballet 174 (n = 6), trampolining (n = 7), WestVic Academy (n = 11) and commencing 175 176 University students (n = 3).

The inclusion criteria specified adolescents to be aged between 12 and 18 177 years; have English as their first language, good linguistic and cognitive ability 178 179 sufficient to comprehend questions and no other diagnosed disability such as 180 cerebral palsy, learning difficulties or muscular dystrophy. This project was approved by the Human Research Ethics Committee of Federation University 181 182 Australia, Ballarat, Victoria. Further ethics was obtained from the Department of Education, Victoria and the Catholic Diocese in Ballarat to approach and access 183 184 schools within the Western Victoria region.

185

186 Measures

187 The Adolescent Motor Competence Questionnaire (AMCQ; Timler et al.,
2016) is a self-report motor competence questionnaire developed for adolescents
189 between the ages of 12 and 18 years of age. It consists of 26 items examining the
ecological presence of motor tasks and functional activities of daily living and was
informed by the DSM-V criteria for Developmental Coordination Disorder (DCD;

192	American Psychiatric Association [APA], 2013). Participants respond on a 4-point
193	Likert scale of Never (1), Sometimes (2), Frequently (3), and Always (4). The
194	maximum AMCQ score is 104, with a higher score indicating a higher level of motor
195	competence. A score of 83 and below indicates suspected motor difficulties. To
196	account for response bias, fifteen items are negatively worded. These are reverse
197	scored for the analyses to Never (4), Sometimes (3), Frequently (2) and Always (1).
198	The questionnaire was originally designed in consultation with adolescents
199	diagnosed with DCD to ensure the items discriminated between high and low motor
200	competence. The questionnaire has evidence of concurrent validity against the
201	McCarron Assessment of Neuromuscular Development (MAND; McCarron, 1997),
202	test re-test reliability (intra-class correlation coefficients = 0.956), internal
203	consistency ($\alpha = 0.902$; Timler et al., 2016) and can be completed in less than 10
204	minutes.

205 **Procedures**

Data collection took place over an 18-month period. The questionnaire and written consent forms were distributed to all individuals who agreed to take part in the study, as outlined under the participants section.

209

210 Data Analysis

SPSS version 25 (SPSS Inc., Chicago, IL, USA) was used to analyse the 211 212 data. Descriptive statistics were derived for the total sample, males and females. 213 The data were tested for normality, and the skewness (+/-1) and kurtosis (+/-1)214 values indicated that parametric tests could be used for analyses (Pallant, 2013). 215 Firstly, a Principal Component Analysis (PCA) of the participant's responses was 216 conducted using varimax rotation to examine how many factors would emerge from 217 the 26 items. This method was chosen as PCA is a form of factor analysis that is commonly used during scale development and evaluation (Pallant, 2013). The 218

219 factors were named according to the best representation of similar items. As 15 items were negatively worded, scores were reversed and reworded into positive 220 221 language. The authors grouped the responses into negative (sometimes and never) 222 or positive (frequently and always). These terms were chosen to represent responses 223 where activities or experiences were easy or positive compared to difficult or negative (e.g. coming last in a running race). Individual item responses were 224 compared between males and females within each factor. Treating the responses at 225 226 this nominal level made it easier to interpret individual item responses. With the 227 AMCO Total score as the dependent variable, a General Linear Model (GLM) analysis was completed separately for each of the 26 items controlling for response 228 229 category (positive or negative) and gender. Finally, a chi square analysis compared 230 the percentage of positive and negative responses by males and females for each 231 item. Given the same dataset was used for multiple statistical analyses, to reduce the 232 chance of Type 1 error statistical significance was set at p < .001.

233

Results

The mean score for the AMCQ was 87.86 (SD = 7.55). There were no significant differences in the mean AMCQ score between males (M = 89.67 SD =7.29), compared to females (M = 87.28 SD = 7.56; t (181 = 1.86 p = .065). A greater proportion of adolescents were identified as High Motor Competence (HMC; n = 141, M = 91.04, SD = 4.69), compared to Low Motor Competence [(LMC; n = 42, M = 72.21, SD = 5.18; t (181) = 16.35, p < 0.001)].

240 Factors contributing to self-reported motor competence

Five factors with an Eiqenvalue of 1.389 or above explained 43.46% of variance and were supported by the scree plot. The Kaiser-Meyer-Olkin value was $0.710 \ (p <.001)$ which indicated the sample was suitable for analysis (Pallant, 2013) as it exceeded the recommended value of 0.6. The five factors were named (Table 245 1), Ball Skills and Kinesthesis; Activities of Daily Living; Fine Motor and Gross
246 Motor; Proprioception and Exteroception; Public Performance.

247 Factor 1, Ball Skills and Kinesthesis, consisted of seven items about ball 248 skills, balance, learning new games, and being able to identify right and left sides. 249 Factor 2, Activities of Daily Living, consisted of seven items related to flossing teeth, 250 getting ready to go out, completing tasks, using a knife and fork, handling objects, 251 changing clothes, and walking in a straight line and upstairs. Factor 3, Fine Motor 252 and Gross Motor, consisted of six components including items about being clumsy, less coordinated than friends, and easy to read and fast handwriting. Factor 4, 253 254 Proprioception and Exteroception consisted of four components that all require complex coordination, spatial awareness, planning, dexterity, and balance 255 256 components. Factor 5, Public Performance, consisted of two components looking 257 at whether they participated in general sports games and participation in school 258 sports (see Table 1).

To investigate the construct validity of the AMCQ a second order analysis was undertaken using the five first order factors. This yielded a one factor solution with an Eigenvalue of 2.13 explaining 42.68% of the variance with factor loadings ranging between 0.492 and 0.733 and supported by the scree plot. The Kaiser-Meyer-Olkin value was 0.717 (p < .001).

Factor loadings for all items ranged between 0.244 and 0.729. Some items such as catch a ball consistently, use a knife and fork, compete tasks and do not break objects loaded to a similar extent onto several factors. However, for the purpose of this paper, the factor with the highest loading was used.

268

Insert Table 1 about here

With the Total AMCQ score as the dependent variable, a GLM analysis was completed separately for each of the 26 items controlling for response category

271	(positive or negative) and gender. Not surprisingly, there were significant
272	differences (p <.001) in the participants' mean AMCQ scores between response
273	categories (positive or negative) for 18 of the 26 items (except, Ride a bicycle (6),
274	Easy to get ready to go out (7), Use a knife and fork (14), Do not stumble upstairs
275	(21), Change clothes easily (22), Do not break objects (23), Balance on one foot (24),
276	and Learn new outdoor games (26; see Table 2). For all twenty-six questions, those
277	who responded negatively to items had lower Total AMCQ scores than those who
278	responded positively. Significant gender difference (p <.001) in mean AMCQ was
279	found for one item (see Table 3), which was easy to read handwriting in favour of
280	the females. No interactions between response category (positive or negative) and
281	gender emerged.

282

Insert Table 2 and 3 about here

A chi square analysis comparing the percentage of negative and positive responses for males and females for each item revealed that males responded more positively towards items compared to females. There were significant differences for two items (see Table 4). A higher percentage of the females (57%) compared to males (27%) responded negatively to kicking a ball at a target. More males responded negatively (33%) compared to females (11%) for easy to read handwriting.

Insert Table 4 about here

291

290

Discussion

The PCA of the AMCQ items identified five factors that contributed to adolescent's self-reported motor competence who were living in rural and remote Victoria. These were related to Ball Skills and Kinesthesis, Activities of Daily Living, Fine Motor and Gross Motor, Proprioception and Exteroception and Public Performance. Interestingly there was no significant difference in the mean AMCQ

scores between gender and both males (all 26 items) and females (24/26 items)
responded positively to most items. Ball skills (59 positive vs 79 negative) and
'thinking one is clumsy' (66 positive vs 72 negative) were the only items where
females reported more negative scores.

The five factors from the AMCQ were named according to the best 301 302 representation of items which were based on supporting evidence of factors 303 developed for other questionnaires such as Fine Motor/Handwriting, Gross Motor/Planning and General Coordination (Wilson et al., 2009), Fine and Gross 304 Motor Function and Writing, Activities of Daily Living, and Organization Skills 305 (Tal-Saban, Ornoy, Grotto, & Parush, 2012) and Participation in PA and Sport, 306 307 Activities of Daily Living, Public Performance and Peer comparison (Timler et al., 308 2018a). The five factors identified in this paper were similar to some of the factors 309 identified in the AMCQ completed by adolescents living in Western Australian. For example "Ball skills", "Activities of Daily Living" and "Public Performance" were 310 311 similar factors that emerged from both studies. However, some differences were seen as additional factors of "Fine and Gross Motor Skills" and "Proprioception and 312 Exteroception" were identified in this study. These differences may have occurred 313 314 due to the geographic location, availability of resources and money, as reported by 315 Barnett et al. (2013). The items cover a wide range of motor proficiency skills such 316 as sports participation, handwriting, and getting dressed, which may explain why 317 some items loaded onto more than one factor and why differences within Australia 318 were seen.

A number of items on the AMCQ loaded onto multiple factors. For example, 'use of fork and knife,' Do not break objects', and 'Walk along a straight line' loaded onto "Activities of Daily Living" factor, but also loaded onto the factor "Fine Motor and Gross Motor", this may have occurred as completing these tasks efficiently require a degree of fine motor coordination. These items may have loaded

324 onto more than one factor as the adolescents were living in a country setting and perceived environmental factors such as availability to equipment may limit the 325 326 amount of time they spend completing these types of tasks (Barnett, Hinkley, Okely, & Salmon, 2013). Interestingly 'Co-ordinated like friends' loaded greatest onto the 327 328 "Fine Motor and Gross Motor" factor but also loaded on "Ball skills and Kinesthesis" and "Public Performance" as this relates to an individual's perception 329 of their movement ability and bumping into objects can be displaced in a public 330 331 domain. Peer support during adolescence is often influenced by an adolescent's 332 willingness to participate in physical activities and sports, with judgements made 333 around their physical capacity to preform (Haga, Gísladóttír, & Sigmundsson, 2015). 334 Similarly, Barnett et al. (2013) found adolescents felt being a 'skilled performer' was 335 related to being more active and engaging in PA.

336 The item 'Completing tasks' loaded onto "Activities of Daily Living" and 337 "Public Performance." Asking friends or family for help when completing tasks 338 may publically expose an individual's physical awkwardness. 'Catch a ball 339 consistency' loaded onto "Ball Skills and Kinesthesis" and also "Public Performance", as ball skills are also viewed visibly among peers when participating 340 341 in PA and sports (Hands et al., 2015). The term balance also relates to the positioning of one's body and limbs, this item loaded onto "Ball Skills and Kinesthesis" as well 342 as "Proprioception and Exteroception". During adolescents, many participate in a 343 range of sports throughout the year (summer versus winter sports) which require a 344 345 lot of focus given towards positioning and complex movement on the sports field 346 (Toohey & Taylor, 2009). Barnett et al. (2013) interviewed 33 adolescents aged 16-347 to 18-years about their attitudes towards their childhood skill proficiency and their 348 current movement skills and PA and sport participation. They found that earlier development of a child's actual and perceived movement skills lead to an increase 349 350 in an adolescent's PA participation, with many of these adolescents reporting that

351 skill could be acquired at any time given the right circumstance (Barnett et al., 2013). Adolescent's motivation for participation in sport and PA include being in a team 352 353 environment, participating for fitness and health, for mental health reasons (Barnett 354 et al., 2013), and to improve physical appearance (Barnett, Van Beurden, Morgan, 355 Brooks, & Beard, 2008b). Consequently, lower participation in PA often leads to 356 poor peer support (Hill et al., 2011), lower self-efficacy towards physical play 357 (Cairney et al., 2005; Wilson et al., 2013), and less motivation for sports participation 358 (Bardid et al., 2016). This may also results in adolescents spending more time in sedentary leisure activities (Rivilis et al., 2012), and placing lower perceptions 359 360 towards their actual and perceived motor competence (Barnett et al., 2008a; Stodden 361 et al., 2008a).

362 Easy to read handwriting loaded on the "Fine Motor" factor, but also onto 363 the "Proprioception and Exteroception", the reason for this may be due to the fact 364 that writing requires good visual awareness and appropriate strength and tension to 365 grasp a handwriting utensil. Bo and colleges (2014) found children with lower motor 366 scores had prominent difficulties on the temporal aspect of handwriting and lower legibility scores, particularly with letters such as cursive "e" and printed "I". 367 368 Therefore the ease of reading one's handwriting during adolescence is important 369 towards their level of motor competence, which may result from the adolescents 370 being of school age. Adolescents with lower motor competence often experience 371 school difficulties in their handwriting and completing tasks on time (Harrowell, 372 Hollén, Lingam, & Emond, 2018). This item may also be important among those 373 living in rural settings as the amount of students in each classroom year group is 374 smaller resulting in greater comparisons in their writing skills.

375 Males responded more positively towards the majority of the items 376 compared to females, although no significant differences between individual items 377 were seen. Females only responded negatively towards the items 'Kicking a ball'

378 and 'Do not think I am clumsy'. This may have occurred as females often participate in more physical activities that require flexibility and agility such as dancing or 379 380 gymnastics compared to activities that require balls skills (Hands, Parker, Rose, & Larkin, 2015; Okely, Booth, & Patterson, 2001) and gain greater health benefits from 381 382 participating in less vigorous activities compared to males (Hands, Parker, Larkin, Cantell, & Rose, 2016). The Australian Bureau of Statistics (2013) reported females 383 384 by the age of 12 years, averaged 21 minutes less moderate to vigorous PA compared 385 to males, with a further 17 minute reduction among female adolescents aged 15-to 386 17-years. Gilchrist and colleagues (2018) found adolescent males and females were 387 motivated and engaged in more PA if they understood the health behaviors and 388 benefits to being active rather than focusing on body dissatisfaction, which may 389 explain why positive responses were seen regardless of gender. Female adolescents 390 are motivated to participate in physical activities if an appropriate social and 391 supportive environment was provided (Barnett et al., 2013). This may be true for 392 the females who participated in this study as in rural communities, more participation 393 may be provided in co-ed sporting teams.

394 Parents may encourage greater participation in more vigorous activities and be more aware of their son's ability to master ball skills compared to their daughters 395 396 (Timler et al., 2018b). Female adolescents also work hard to preserve their image 397 and rely on peer appearance-related feedback through their higher use of social 398 media compared their male counterparts (de Vries, Peter, de Graaf, & Nikken, 2016; Harter, 2012; Vannatta et al., 2009). This self-preservation may explain why 399 400 female's responded more negatively towards the item 'Do not think I am clumsy' 401 because they do not want others to view them in that way (Harter, 2012). This may 402 also be driven by a female adolescents level of social support, as those with lower 403 motor competence who experience good social communication often report healthier 404 mental states (Harrowell, Hollén, Lingam, & Emond, 2017), positive psychosocial

well-being, and lower levels of conduct problems, hyperactivity and emotional
problems (Viholainen Aro, Purtsi, Tolvanen, & Cantell, 2014).

407 The lack of discrepancy between individual items among male and female 408 responses was a surprising finding, as Timler et al. (2018a) previously found males 409 response more positive towards ball related items compared to females. Gender differences between the AMCQ items may not have occurred in this study for a 410 411 number of reasons. For example, females may still find ways to get involved, 412 participate, or receive health benefits from less vigorous PA compared to males (Hands et al., 2016). This may be reflective of more female sports being aired on 413 414 primetime television (Angelini, 2008; Toohey & Taylor, 2009) and weekend and 415 after school sports being a primary form of socialization, including forming stronger 416 social relationships, and developing self-confidence (Ullrich-French & Smith, 417 2009). Although, one longitudinal study found that motor competence proficiency 418 of kicking, throwing and catching improved from childhood through to adolescence 419 to a greater extent among males compared to females (Barnett, van Beurden, 420 Morgan, Brooks, & Beard, 2010). The females in this study may not experience gender stereotyping among the activities they are participating in (Riemer & Visio, 421 422 2003), focus on the greater proficiency exhibited among males, or place greater 423 attention on other areas such as their scholastic ability and physical appearance (Piek 424 et al., 2006).

The items on the AMCQ may represent motor competence during adolescence, resulting in no gender bias among the items (Hands & Larkin, 1997), and an opportunity for females to report their motor competence. The geographic location (rural and remote) may also explain the female's positive responses towards the items as the adolescents may participate in more co-ed or cross-gendered (males participating in female sports and vice versa) sports (Schmalz & Davison, 2006). Schmalz and Davison (2006) found adolescents who participated in cross-gender 432 sports had higher physical self-concept compared to those who participated only in433 only single gender-typed sports.

434 The AMCQ is the first questionnaire available for 12- to 18- year olds to 435 self-report their level of motor competence. Therefore, this questionnaire could be utilized as a tool for early detection of motor difficulties as there is no cost associated 436 437 with administering, and does not require the help of a professional. The AMCQ 438 could also be used as a screening tool for professionals working with those with motor difficulties, to inform their inclusion into PA interventions. Cultural 439 adaptations of the questionnaire items could be completed for the use of the AMCQ 440 in other countries. The results from this study illustrates that the 26-items represent 441 different factors towards motor competence during adolescents compared to those 442 443 that were reported by Timler et al. (2018a), which seem to be due to geographical location. 444

445

Strengths and limitations

Recruiting participants to complete the AMCQ was a limitation of this study, as it 446 was difficult to access an adolescent population. Unfortunately, less males than 447 448 females participated in this study due to the limited access to this group. The lower 449 number of male participants may explain why only small gender differences were seen. Replicating this study with more males will allow for greater generalizability 450 451 of the results and a chance to control for gender bias. Although, participants were 452 drawn from a range of sources, the generalization of the results to the broader 453 Australian population may not be possible due to recruitment strategies. At first 454 glance we thought there maybe differences in the AMCQ scores between areas individuals were recruited but on further analysis, there were no significant 455 456 differences in the Total AMCQ scores found between those recruited through the VCE program (M= 87.47, SD = 7.51) compared to those recruited elsewhere (M=457

89.22, SD = 7.62; t (181 = -1.31, p = .192). On reflection, for future studies we need 458 to ensure the recruitment process has a greater representation of individuals at the 459 460 lower end of motor competence levels. This may be achieved by recruiting through a range of clubs, through online media platforms compared to traditional sporting 461 462 avenues. The use of a self-report survey compared to an objective measure of motor competence may also be considered a limitation in this study. The adolescents may 463 464 have provided socially desirable responses, or have limited knowledge on their personal motor ability. To try to account for this, the participants completed the 465 466 questionnaire on their own, and with no influence by the researchers. Some items loaded onto multiple factors, which may be a limitation as individual items may 467 468 represent multiple components of motor competence.

469 A strength of this study is that it is the first study to examine what factors 470 are important towards an adolescent's motor competence among those living within 471 rural and remote Victoria. This study has come out of community consultation with 472 the Ballarat local council who has identified 'Physical health', which includes areas 473 such as participating in PA and sport and motor skill proficiency. Physical health is one of five developmental factors important during childhood and adolescence. 474 475 Therefore, understanding what factors are important for an adolescent's motor 476 competence is an important first, that can be used to inform the development of PA 477 interventions for adolescents.

478

Conclusions

In summary, five factors contributed to adolescents' self-reporting of their motor competence were identified, which were, Ball Skills and Kinesthesis, Activities of Daily Living, Fine Motor and Coordination, Proprioception and Exteroception and Public Performance. Although males had higher mean AMCQ scores compared to females, only small gender differences were observed between individual item response, indicating that male and female adolescents view their

485 motor competence similarly. However, understanding of why no gender difference 486 occurred is not understood but may be due to females participating in more cross-487 gender sports and higher reported motor competence, which is reflective of the 488 location and setting in which adolescents live and grow up. Further research should 489 include adolescents living in a wide range of locations to understand if different 490 factors towards motor competence exist across Australia.

491

Acknowledgements

The authors would like to acknowledge the Government schools, Federation
University including the VCE program and community organizations (ballet,
trampolining, and WestVic Academy) for their assistance in promoting and
providing participants for the current study.

497	References
498	American Psychiatric Association. (2013). Diagnostic and Statistical Manual of
499	Mental Disorders (5th ed.). Arlington, VA: American Psychiatric
500	Publishing.
501	Angelini, J. R. (2008). Television Sports and Athlete Sex: Looking at the
502	Differences in watching male and female athletes. Journal of Broadcasting
503	& Electronic Media, 52(1), 16-32.
504	http://dx.doi.org/10.1080/10934520701820752
505	
506	Australian Bureau of Statistics (2013). Australian Health Survey: Physical
507	Activity, 2011-12. Retrieved from
508	https://www.abs.gov.au/ausstats/abs@.nsf/Latestproducts/462FBA87B642F
509	CA4CA257BAC0015F3CE?opendocument
510	
511	Australian Institute for Health and Welfare (2019) Physical activity. Retreived
512	from: https://www.aihw.gov.au/reports-data/behaviours-risk-
513	factors/physical-activity/overview
514	
515	Australian Government. (2018). Australian Early Development Consensus 2018.
516	514 AEDC National Report. Canberra, ACT; Australian Government.
517 518	Bardid, F., Rudd, J.R., Lenoir, M., Polma, R., & Barnett, L.M. (2015). Cross-
519	cultural comparison of motor competence in children from Australia and
520	Belgium. Frontiers in Psychology, 6: p. 964.
521	http://dx.doi.org/10.3389/fpsyg.2015.00964
522	Bardid, F., De Meester, A., Tallir, I., Cardon, G., Lenoir, M., & Haerens, L.
523	(2016). Configurations of actual and perceived motor competence among
524	children: Associations with motivation for sports and global self-worth.

525	Human Movement Science, 50, 1-9.
526	https://doi.org/10.1016/j.humov.2016.09.001
527 528	Barnett, L. M., Morgan, P. J., van Beurden, E., & Beard, J. R. (2008a). Perceived
529	sports competence mediates the relationship between childhood motor skill
530	proficiency and adolescent physical activity and fitness: A longitudinal
531	assessment. International Journal of Behavioral Nutrition and Physical
532	Activity, 5(1), 40. https://doi.org/10.1186/1479-5868-5-40
533	
534	Barnett, L. M., Van Beurden, E., Morgan, P. J., Brooks, L. O., & Beard, J. R.
535	(2008b). Does childhood motor skill proficiency predict adolescent fitness?
536	Medicine & Science in Sports & Exercise, 40(12), 2137-
537	2144. https://doi.org/10.1249/MSS.0b013e31818160d3
538	
539	Barnett, L., Cliff. K., Morgan, P., & van Beurden, E. (2013). Adolescents'
540	perception of the relationship between movement skills, physical activity
541	and sport. European Physical Education Review, 19(2), 271-285.
542	http://dx.doi.org/10.1177/1356336X13486061
543	Barnett, L., Hinkley, T., Okely, A. D., & Salmon, J. (2013). Child, family and
544	environmental correlates of children's motor skill proficiency. Journal of
545	Science and Medicine in Sport, 16(4), 332-336.
546	http://dx.doi.org/10.1016/j.jsams.2012.08.011
547	Barnett, L. M., van Beurden, E., Morgan, P. J., Brooks, L. O., & Beard, J. R.
548	(2010). Gender differences in motor skill proficiency from childhood to
549	adolescence: A longitudinal study. Research Quarterly for Exercise and
550	Sport, 81(2), 162-170.

551	Bo, J., Colbert, A., Lee, C. M., Schaffert, J., Oswald, K., & Neill, R. (2014).
552	Examining the relationship between motor assessments and handwriting
553	consistency in children with and without probable Developmental
554	Coordination Disorder. Research in Developmental Disabilities, 35(9),
555	2035-2043. http://dx.doi.org/10.1016/j.ridd.2014.04.027
556	Brian, A., Bardid, F., Barnett, L.M., Deconink, F.J., Lenoir, M., & Goodway, J.
557	(2018). Actual and perceived motor competence levels of Belgian and US
558	preschool children. Journal of Motor Learning and Development, 6 (2),
559	S320 – S336.
560	Cairney, J., Hay, J., Faught, B., Mandigo, J., & Flouris, A. (2005). Developmental
561	coordination disorder, self-efficacy toward physical activity, and play:
562	Does gender matter? Adapted Physical Activity Quarterly, 22(1), 67-82.
563	http://dx.doi.org/10.1123/apaq.22.1.67
564	
565	Clark, C. J., Thomas, S., Khattab, A. D., & Car. (2013). Development and
566	psychometric properties of a screening tool for assessing developmental
567	coordination disorder in adults. International Journal of Physical Medicine
568	& Rehabilitation, 1(5), 1–9. <u>http://dx.doi.org/10.4172/2329-9096.1000145</u>
569	
570	Cliff, D. P., Okely, A. D., Smith, L. M., & McKeen, K. (2009). Relationships
571	between fundamental movement skills and objectively measured physical
572	activity in preschool children. Pediatric Exercise Science, 21(4), 436-449.
573	http://dx.doi.org/10.1123/pes.21.4.436
574	
575	de Vries, D. A., Peter, J., de Graaf, H., & Nikken, P. (2016). Adolescents' Social
576	Network Site Use, Peer Appearance-Related Feedback, and Body

577	Dissatisfaction: Testing a Mediation Model. Journal of Youth and
578	Adolescence, 45(1), 211-224. http://dx.doi.org/10.1007/s10964-015-0266-4
579	
580	Dumith, S., Gigante, D., Domingues, M., Kohl, H (2011). Physical activity
581	change during adolescence: a systematic review and a pooled analysis. Int
582	J Epidemiol, 40, 685–98.
583	Foulkes, J.D., Knowles, Z.R., Fairclough, S.J., Stratton, G., O'dwyer, M., Ridgers,
584	& N.D. Foweather, L. (2015). Fundamental movement skills of preschool
585	children in Northwest England. Perceptual and Motor Skills, 121: p. 260-
586	283. http://dx.doi.org/10.2466/10.25.PMS.121c14x0
587	Gallahue, D.L.; Ozmun, J.C.; Goodway, J.D. (2012). Understanding Motor
588	Development: Infants, Children, Adolescents, Adults; McGraw-Hill: New
589	York, NY, USA.
590	Gilchrist, J. D., Pila, E., Castonguay, A., Sabiston, C. M., & Mack, D. E. (2018).
591	Body pride and physical activity: Differential associations between fitness-
592	and appearance-related pride in young adult Canadians. Body Image, 27,
593	77-85. http://dx.doi.org/10.1016/j.bodyim.2018.08.010
594	Haga, M., Gísladóttír, T., & Sigmundsson, H. (2015). The relationship between
595	motor competence and physical fitness is weaker in the 15-16 yr.
596	adolescent age group than in younger age groups (4–5 yr. and 11–12 yr.).
597	Perceptual and Motor Skills, 121(3), 900-912.
598	http://dx.doi.org/10.2466/10.PMS.121c24x2
599	
600	Hands, B., & Larkin, D. (1997). Gender bias in measurement of movement. (1997).
601	The ACHPER Healthy Lifestyles Journal, 44(1), 12-16.

602	Hands, B., Larkin, D., Parker, H., Straker, L., & Perry, M. (2009). The relationship
603	among physical activity, motor competence and health-related fitness in
604	14-year-old adolescents. Scandinavian Journal of Medicine and Science in
605	Sports, 19(5), 655-663. http://dx.doi.org/10.1111/j.1600-
606	<u>0838.2008.00847.x</u>
607	
608	Hands, B., Parker, H., Rose, E., & Larkin, D. (2015). Gender and motor
609	competence affects perceived likelihood and importance of physical
610	activity outcomes among 14 year olds. Child Care Health and
611	Development, 42 (2), 246 – 252. http://dx.doi.org/10.1111/cch.12298
612	
613	Hands, B. P., Parker, H., Larkin, D., Cantell, M., & Rose, E. (2016). Male and
614	female differences in health benefits derived from physical activity:
615	implications for exercise prescription. Journal of Women's Health Issues
616	and Care, 5(4), 1-5. http://dx.doi.org/10.4172/2325-9795.1000238
617	
618	Hardy, L.L., Barnett, L., Espinel, P., & Okely, A. D. (2013). Thirteen-year trends
619	in child and adolescent fundamental movement skills: 1997-2010.
620	Medicine and Science in Sports and Exercise, 45 (10), 1965-1970.
621	http://dx.doi.org/10.1249/MSS.0b013e318295a9fc
622	
623	Harrowell, I., Hollén, L., Lingam, R., & Emond, A. (2017). Mental health
624	outcomes of developmental coordination disorder in late adolescence.
625	Developmental Medicine & Child Neurology, 59(9), 973-979.
626	http://dx.doi.org/10.1111/dmcn.13469
627	
628	Harrowell, I., Hollén, L., Lingam, R., & Emond, A. (2018). The impact of
629	developmental coordination disorder on educational achievement in

630	secondary school. Research in Developmental Disabilities, 72, 13-22.
631	http://dx.doi.org/10.1016/j.ridd.2017.10.014
632	
633	Harter, S. (2012). Construction of the Self: Developmental and Sociocultural
634	Foundations (2nd Edition). New York; London: Guilford Press.
635	
636	Hill, E. L., Brown, D., & Sorgardt, S. K. (2011). A preliminary investigation of
637	quality of life satisfaction reports in emerging adults with and without
638	Developmental Coordination Disorder. Journal of Adult Development,
639	18(3), 130-134. http://dx.doi.org/10.1007/s10804-011-9122-2
640	
641	Kirby, A., Edwards, L., Sugden, D., & Rosenblum, S. (2010). The development
642	and standardization of the adult developmental co-ordination
643	disorders/dyspraxia checklist (ADC). Research in Developmental
644	Disabilities, 31(1), 131-139. http://dx.doi.org/10.1016/j.ridd.2009.08.010
645 646	Li, YC., Wu, S. K., Cairney, J., & Hsieh, CY. (2011). Motor coordination and
647	health-related physical fitness of children with developmental coordinaiton
648	disorder: A three-year follow-up study. Research in Developmental
649	Disabilities, 32(6), 2993-3002.
650	doi:http://dx.doi.org.ipacez.nd.edu.au/10.1016/j.ridd.2011.04.009
651	
652	McCarron, L. (1997). McCarron Assessment of Neuromuscular Development (3rd
653	ed.). Dallas, TX: McCarron-Dial Systems Inc.
654	
655	O'Brien, W.; Belton, S.; Issartel, J. (2016). Fundamental movement skill
656	proficiency amongst adolescent youth. Phys. Educ. Sport Pedagog. 21,
657	557–571.

658	
659	Okely, A. D., Booth, M. L., & Patterson, J. W. (2001). Relationship of physical
660	activity to fundamental movement skills among adolescents. Medical
661	Journal of Science Sports Exercise, 33(11), 1899-1904.
662	http://dx.doi.org/10.1097/00005768-200111000-00015
663	
664	Pallant, J. (2013). A step by step guide to data analysis using IBM SPSS: Survival
665	Manual (5 th ed.). England: McGraw-Hill.
666	
667	Piek, J., Baynam, G., & Barrett, N. (2006). The relationship between fine and gross
668	motor ability, self-perceptions and self-worth in children and adolescents.
669	Human Movement Science, 25, 65-75.
670	http://dx.doi.org10.1016/j.humov.2005.10.011
671	
672	Phillips, T. M., & Pittman, J. F. (2007). Adolescent psychological well-being by
673	identity style. Journal of Adolescence, 30(6), 1021-1034.
674	http://dx.doi.org/10.1016/j.adolescence.2007.03.002
675	
676	Riemer, B.A., & Visio, M.E. (2003). Gender typing of sports: An investigation of
677	Metheny's classification. Research Quarterly for Exercise and Sport,
678	74,193-204.
679	
680	Rivilis, I., Liu, J., Cairney, J., Hay, J. A., Klentrou, P., & Faught, B. E. (2012). A
681	prospective cohort study comparing workload in children with and without
682	Developmental Coordination Disorder. Research in Developmental
683	Disabilities, 33(2), 442-448. http://dx.doi.org/10.1016/j.ridd.2011.09.027

685	Robinson, L. (2010). The relationship between perecieved physical competence
686	and fundamental motor skills in preschool children. Child: Care, health and
687	development, 37 (4), 589 – 596. <u>https://doi.org/10.1111/j.1365-</u>
688	<u>2214.2010.01187.x</u>
689	
690	Rose, E., Larkin, D., Parker, H., & Hands, B. (2015). Does Motor Competence
691	Affect Self-Perceptions Differently for Adolescent Males and Females?
692	SAGE Open, 5(4), 1-9. http://dx.doi.org/10.1177/2158244015615922
693	
694	Schmalz, D. L., & Davison, K. K. (2006). Differences in physical self-concept
695	among pre-adolescents who participate in gender-typed and cross-gendered
696	sports. Journal of Sport Behavior, 29(4), 335.
697	
698	Stodden, D. F., Goodway, J. D., Langendorfer, S. J., Roberton, M. A., Rudisill, M.
699	E., Garcia, C., & Garcia, L. E. (2008). A developmental perspective on the
700	role of motor skill competence in physical activity: An emergent
701	relationship. Quest, 60(2), 290-306.
702	http://dx.doi.org/10.1080/00336297.2008.10483582
703	
704	Tal-Saban, M., Ornoy, A., & Parush, S. (2014). Young adults with Developmental
705	Coordination Disorder: A longitudinal study. American Journal of
706	Occupational Therapy, 68(3), 307-316.
707	http://dx.doi.org/10.5014/ajot.2014.009563
708	
709	Timler, A., McIntyre, F., Cantell, M., Crawford, S., & Hands, B. (2016).
710	Development and evaluation of the psychometric properties of the
711	Adolescent Motor Competence Questionnaire (AMCQ) for Adolescents.

712	Research in Developmental Disabilities, 59, 127-137.
713	http://dx.doi.org/10.1016/j.ridd.2016.08.005
714	
715	Timler, A., McIntyre, F., & Hands, B. (2018a). Factors contributing to Australian
716	adolscents' self-report of their motor skill compentence. Journal of Motor
717	Learning and Development, 6), S281-S300.
718	http://dx.doi.org/10.1177/0308022617743681
719	
720	Timler, A., McIntyre, F., & Hands, B. (2018b). Adolescents' self-reported motor
721	assessments may be more realistic than those of their parents. British
722	Journal of Occupational Therapy, 81(4), 227-233.
723	https://dx.doi.org/10.1123/jmld.2016-0069
724	
725	Toohey, K., & Taylor, T. (2009). Sport in Australia: 'worth a shout'. Sport in
726	Society, 12(7), 837-841. http://dx.doi.org/10.1080/17430430903053059
727	
728	Ullrich-French, S., & Smith, A. L. (2009). Social and motivational predictors of
729	continued youth sport participation. Psychology of Sport and Exercise,
730	10(1), 87-95. doi:http://dx.doi.org/10.1016/j.psychsport.2008.06.007
731	
732	van der Linde, B. W., van Netten, J. J., Otten, B., Postema, K., Geuze, R. H., &
733	Schoemaker, M. M. (2013). Development and psychometric properties of
734	the DCDDaily: a new test for clinical assessment of capacity in activities
735	of daily living in children with developmental coordination disorder.
736	Clinical Rehabilitation, 27(9), 834-844.
737	http://dx.doi.org/10.1177/0269215513481227
738	

739	Vandorpe, B., Vandendriessche, J., Vaeyens, R., Pion, J., Matthys, S., Lefevre, J.,
740	Philippaerts, R., Lenoir, M. (2012). Relationship between sports
741	participation and the level of motor coordination in childhood: A
742	longitudinal approach. Journal of Science and Medicine in Sport, 15 (3),
743	220-225. https://dx.doi.org/10.1016/j.jsams.2011.09.006
744	
745	Vannatta, K., Gartstein, M. A., Zeller, M., & Noll, R. B. (2009). Peer acceptance
746	and social behavior during childhood and adolescence: How important are
747	appearance, athleticism, and academic competence? International Journal
748	of Behavioral Development, 33(4), 303-311.
749	http://dx.doi.org/10.1177/0165025408101275
750	
751	Viholainen, H., Aro, T., Purtsi, J., Tolvanen, A., & Cantell, M. (2014). Adolescents'
752	school-related self-concept mediates motor skills and psychosocial well-
753	being. British Journal of Educational Psychology, 84(2), 268-280.
754	http://dx.doi.org/10.1111/bjep.12023
755	
756	Wilson, B. N., Crawford, S. G., Green, D., Roberts, G., Aylott, A., & Kaplan, B. J.
757	(2009). Psychometric properties of the revised Developmental
758	Coordination Disorder Questionnaire. Physical & Occupational Therapy in
759	Pediatrics, 29(2), 182-202. http://dx.doi.org/10.1080/01942630902784761
760	
761	Ziviani, J., Poulsen, A., & Hansen, C. (2009). Movement skills proficiency and
762	physical activity: A case for Engaging and Coaching for Health
763	(EACH)Child. Australian Occupational Therapy Journal, 56(4), 259-265.
764	http://dx.doi.org/10.1111/j.1440-1630.2008.00758.x