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ABSTRACT 
 

The past few decades have seen, amongst other topical environmental issues, increased 

concerns regarding the imminent threat of global warming and the consequential impacts of 

climate change on environmental, social and economic systems. Numerous groundbreaking 

studies conducted independently and cooperatively have provided abundant and conclusive 

evidence that global climates are changing and that these changes will almost certainly 

impact natural and socio-economic systems. Increased global change pressures, which 

include, inter alia, climate change, have increased concerns over the supply of adequate 

quality freshwater. There is an inadequate body of knowledge pertaining to linking basic 

hydrological processes which drive water quality (WQ) variability with projected climate 

change. Incorporating such research into policy development and governance with the 

intention of developing adaptive WQ management strategies is also overlooked. Thus, the 

aim of this study was the assessment of projected climate change impacts on selected WQ 

constituents in the context of agricultural non-point source pollution and the development of 

the necessary adaptation strategies that can be incorporated into WQ management, policy 

development and governance. This assessment was carried out in the form of a case study in 

the Mkabela Catchment near Wartburg in KwaZulu-Natal, South Africa. The research 

involved applying climate change projections derived from seven downscaled Global 

Circulation Models (GCMs) used in the Fourth Intergovernmental Panel on Climate Change 

(IPCC) Assessment Report, in the ACRU-NPS water quality model to assess the potential 

impacts on selected water quality constituents (viz. sediment, nitrogen and phosphorus). 

Results indicated positive correlations between WQ related impacts and contaminant 

migration as generated from agricultural fertilizer applications. ACRU-NPS simulations 

indicated increases in runoff and associated changes in WQ variable generation and migration 

from upstream sources in response to downscaled GCM projections. However, there was 

limited agreement found between the simulations derived from the various downscaled GCM 

projections in regard to the magnitude and direction (i.e. percent changes between present 

and the future) of these changes in WQ variables. The rainfall distribution analyses conducted 

on a daily time-step resolution for each selected GCM also showed limited consistency 

between the GCM projections regarding rainfall changes between the present and the future. 

The implication was that since hydrological and climate change modelling can inform 

adaptive catchment WQ management, these forms of modelling can be used to explore future 
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adaptation under climate change. However, adaptation to climate change in water quality 

management and policy development is going to require approaches that fully recognise the 

uncertainties presented by climate change and the associated modelling thereof. It was also 

considered crucial that equal attention be given to both climate change and natural variability, 

in order to ensure that adaptation strategies remain robust and effective under conditions of 

climate change and its respective uncertainties. 

 

Keywords:  Water Quality Modelling, Water Quality Management, Climate Change, 

Global Circulation Models, Climate Change Modelling, Vulnerability, 

Adaptive Capacity, Adaptation, Policy Development. 
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1. INTRODUCTION AND BACKGROUND 
 

The past few decades have seen, amongst other topical environmental issues, increased 

concerns regarding the imminent threat of global warming and the consequential impacts of 

climate change on environmental, social and economic systems. Numerous groundbreaking 

studies conducted independently (e.g. Houghton, 1994; Pittock, 2009) or co-operatively (e.g. 

IPCC, 2001; IPCC, 2007; Bates et al., 2008; UNESCO, 2009) have provided abundant and 

conclusive evidence that global climates are changing and that these changes will almost 

certainly impact natural and socio-economic systems.  Based on observational records and 

climate projections, these and other studies have shown that natural systems are highly 

vulnerable to climate change and have the potential to experience severe climate change 

related impacts (Low, 2005; Schulze, 2005; Nelson et al., 2007). Of these systems, 

freshwater resources are considered to be the most exposed and highly vulnerable to climate 

change, considering the direct relationships that exist between prevailing climatic regimes 

and the hydrological cycle (Figure 1.1). Climate change is anticipated to significantly alter 

the behaviour of the hydrological cycle (Kundzewicz et al., 2007) and, in many instances, 

climate change related increases in the frequency of extreme meteorological events (floods, 

droughts and heavy short-duration rainfall events) are already being observed (e.g. 

Rosenzweig et al., 2001; Walther et al., 2002; Parmesan and Yohe, 2003; Beniston et al., 

2007). This presents clear, pragmatic and direct implications for water resources 

management, particularly where water quantity and quality management is concerned 

(Mimikou et al., 2000; Delpla et al., 2011). Considering the importance of water for 

environmental, social and economic systems, it becomes evident that detailing the impacts of 

climate change on water resources, in both water quantity and quality contexts, is an 

important research endeavour.   

 

As alluded to in the preceding discussion, living organisms and natural ecosystems have an 

inherent and profound dependence on freshwater for their basic survival (Falkenmark et al., 

1998; UNESCO, 2009). The requirement of a constant supply of water of adequate quality 

has been shown to be an important prerequisite for the continued functioning of both natural 

and socio-economic systems (Gleick, 2006; Nangia et al., 2008). Water quality, in its 

broadest sense, may be defined as the physicochemical state of a water body at any given 

spatial or temporal scale (Novotny, 2003; Brainwood et al., 2004).  
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High water temperatures, low oxygen concentration levels, high salinity, sedimentation and 

high nutrient status (from non-point sources of pollution), bacteria and pathogens and the 

proliferation of micro-pollutants, represent some of the most critical challenges associated 

with water quality deterioration (Van Vliet and Zwolsman, 2008; Delpla et al., 2009). 

 

 

Figure 1.1  Relationships and feedbacks between the hydrological cycle and local climatic 

regimes. The impacts of climate change on water quality and quantity-related 

processes are also indicated in this Figure (Source: National Oceanic and 

Atmospheric Administration, 2009)  

 

Although often considered separately, water quality and quantity are closely-related concepts 

concerned with water availability (Gleick, 2006; UNESCO, 2009). During extreme 

hydrological events, too much water (e.g. floods) or too little water (e.g. droughts) may cause 

water quality deterioration by serving as a conduit for the transport of pathogens or pollutants 

and affecting the dilution capabilities of rivers and other water bodies (Mimikou et al., 2000; 

Tsujimura, 2004).  
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It therefore becomes apparent that water quantity problems can initiate quality problems and, 

alternatively, water quality problems can affect supply via increases in wastewater toxicity 

and the consequent reductions in readily utilisable water (Turton, 2008).  

 

Being part of the current mosaic of global change, climate change could aggravate the water 

quality problems highlighted in the preceding discussion, by instigating rapid changes in the 

natural hydrological environment (Kundzewicz et al., 2007). Thus, the quantity and quality of 

water required to meet human and environmental demands can also be expected to be 

affected by climate change (IPCC, 2001; IPCC, 2007; Bates et al., 2008; Vairavamoorthy et 

al., 2008; Pittock, 2009; UNESCO, 2009). South Africa is a country characterized by a high 

risk hydroclimatic environment (Schulze, 2005; Schulze et al., 2005) and is expected to 

experience the impacts of severe climate change, which will be manifested through an 

amplification of the variability of an already highly variable local hydrological cycle 

(Schulze, 2005). This will have far-reaching direct and indirect impacts on water supply 

reliability, food production, health, energy and environmental sustainability for this country 

(Descheemaeker et al., 2010). Therefore, for transitional countries such as South Africa, 

climate change is anticipated to compound the complexity of socio-economic development 

and environmental sustainability in an already complex water resources management 

background (UNESCO, 2009; Descheemaeker et al., 2010; Mahjouri and Ardestani, 2011).  

 

In many respects, South Africa has highly incisive water resources management policies (e.g. 

the internationally acclaimed National Water Act (36) of 1998 and the National Water 

Resource Quality Monitoring Programme), which are intended to explicitly uphold the 

integrity and highlight the paramount importance of water in this semi-arid country (DWAF, 

1998; DWAF, 2004; Turton, 2008). However, South Africa is characterized by marked social 

and economic inequalities and, using water as a specific point of departure and a key strategic 

resource vital to social and economic development, these inequalities render many societal 

groups vulnerable to the anticipated impacts of climate change (Stuart-Hill and Schulze, 

2010). This vulnerability is not limited to societal groups only, but also applies to natural and 

artificial water resource systems such as wetlands, dams, riparian buffers, wastewater 

treatment plants and water distribution infrastructure. Füssel (2006) considers vulnerability as 

“the degree to which a system is likely to experience harm due to exposure to a hazard” 

(Figure 1.2).  
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Therefore, depending on the extent of development inherent to a particular system, different 

societal groups or artificial systems may be expected to exhibit different levels of exposure, 

and thus, vulnerability, to the impacts of climate change (Füssel, 2006; Haines et al., 2006; 

Ionescu et al., 2009). This consequently implies that the ability and/or preparedness to adapt 

(i.e. adaptive capacity) to climate change will also differ according to the level of exposure 

characteristic of a particular societal group or system (Figure 1.2). Adaptive capacity will, 

therefore, limit engagement in adaptation action; i.e. adaptation is a function of adaptive 

capacity. Pittock (2009) defines adaptation as “a response to change that seeks to minimize 

adverse effects and maximize any benefits”. Bates et al. (2008) consider adaptive capacity as 

the capability of an individual, group, community or country to effectively implement 

adaptation measures. Increased engagement in adaptation action is, therefore, more likely to 

occur with increased adaptive capacity. The concepts of adaptation, adaptive capacity and 

vulnerability will be expanded on in Chapter 2.  

 

 

Figure 1.2  Schematic conceptualization of vulnerability to climate change as a function 

of adaptive capacity, sensitivity and exposure (Ionescu et al., 2009). 

 

The above discussion illustrates the necessity of building adaptive capacity in order to 

enhance engagement in adaptation action. Although substantial work has been done in both 

the fields of climate change-related adaptation (e.g. IPCC, 2001; Paavola and Adger, 2005; 

Adger and Vincent, 2005; IPCC, 2007; Vincent, 2007; Paavola, 2008; Firman et al., 2011) 

and water quality management, based on catchment processes (Viney et al., 2000; Novotny, 

2003; Van Der Perk, 2006), there is an apparent disconnect between the two.  
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In other words, there is an inadequate body of knowledge pertaining to linking basic 

hydrological processes, which drive water quality (WQ) variability, with climate change 

projections; but also, there is a well-recognized, fundamental and applied need to detail the 

effects of a changing climate on catchment-wide nutrient and sediment transfer dynamics 

(Edwards and Withers, 2008; Han et al., 2010; Shrestha et al., 2012). Incorporating that 

understanding into policy development and governance, with the intention of developing 

adaptive WQ management strategies, is largely absent. Establishing these links is a critical 

step in building adaptive capacity and adequate adaptation activities and strategies.  

 

Thus, it is important that the primary processes and parameters, which influence fluvial water 

quality, are understood. In the scope of this study, these are: 

a)  processes influencing sediment generation, transport (or transfer) and deposition, 

such as erosion, runoff, detachment, entrainment and settling, and 

b)  processes influencing nitrogen and phosphorus generation, transport and deposition, 

such as dissolution, leaching, runoff, adsorption and desorption.  

 

Building on this understanding, the potential impacts of climate change on water quality 

through, for example, possible increases in the severity or frequency of extreme events can 

then be assessed with the help of water quality modelling and climate change projections. 

This is particularly important in the context of extreme events, whose potential on sediment, 

nitrogen (N) and phosphorus (P) dynamics have not been adequately assessed in South Africa 

and it is especially relevant in the predominantly agricultural and rural catchments of this 

country, where non-point source pollution (NPS) is widespread. The mechanisms that govern 

sediment yield, N and P distribution are anticipated to change under conditions of increased 

temperatures and altered rainfall patterns. However, the magnitude and direction of such 

changes in nutrients and sediment distribution are still not fully understood.  

 

In summary, biophysical or catchment processes and linkages that are essential in 

understanding how NPS pollution and land use change influence water quality, have not been 

reconciled with adaptive water resources management, both in management and in policy and 

governance structures. Therefore, the assessment of the links between biophysical processes, 

climate change and adaptation is of significant importance in the pursuit of reducing 

vulnerabilities and building adaptive capacity.  
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In this study, an assessment of projected climate change impacts on selected WQ constituents 

is performed using the Mkabela Catchment (near Wartburg) in KwaZulu-Natal, South Africa 

as a case study. Through the research presented in this study, it is motivated that ascertaining 

the links between biophysical WQ related processes and adaptive water resources 

management should be a key focus in efforts to adapt to the projected impacts of climate 

change. 

 

1.1 Aims and Objectives 

 

The aims and objectives of this study relating to water quality, climate change and adaptation 

are as follows: 

 

a) Review processes of sediment yield, nitrogen and phosphorus transport in local 

(agricultural) catchments and highlight the factors that influence the generation and 

transport of these water quality variables within local catchments. 

b) Develop the ability to model the projected impacts of climate change on sediment 

yield, nitrogen and phosphorus in the Mkabela Catchment using the ACRU-NPS water 

quality model by incorporating projected changes in driver variables and, where 

necessary, modifying the variables based on expert opinion. 

c) Assess the vulnerability and potential for adaptation with regard to water quality 

under conditions of climate change for the entire Mkabela Catchment and develop an 

adaptive water quality management framework based in this analysis. 

d) Use the results from the above exercises to develop (or suggest) appropriate 

adaptation strategies relevant to the Mkabela Catchment and make recommendations 

for policy development and governance at local and regional levels.  

 

1.2 Overview of Dissertation Structure 

 

This dissertation consists of 7 (seven) chapters including 4 (four) chapters written as 

“publishable” papers and submitted according to the guidelines provided by the College of 

Agriculture, Engineering and Science of the University of KwaZulu-Natal. Chapters 1 and 2 

form the introductory and literature review components of this study.  
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These chapters present the rationale behind this study (Chapter 1) and highlight the global 

and local state of research related to, inter alia, climate change, water quality management, 

vulnerability, adaptation and adaptive water resources management (Chapter 2).  

 

Chapter 3 is the first “publishable” paper that specifically details the potential impacts of 

climate change on nutrient and sediment transfer processes. This paper follows a sequence, 

which initially describes the typical behaviour of each pollutant (i.e. nitrogen, phosphorus 

and sediment) across the landscape and follows with the association of those behaviours with 

generally accepted climate change projections. Although this paper is a literature review, it 

was written as a publishable paper and is in no way related or linked to the literature review 

presented in Chapter 2. 

 

The second paper (Chapter 4), details the simulations performed in this study, using the 

ACRU-NPS water quality (WQ) module of the physical-conceptual agrohydrological ACRU 

model. This paper essentially presents the simulations performed, using historical data and 

data derived from seven downscaled Global Circulation Models (GCMs).  These historical 

and GCM derived datasets were used as input in the ACRU-NPS model. The climate change 

projections described by the downscaled GCMs were used to assess impacts on selected WQ 

constituents (viz. sediment, nitrogen and phosphorus). The historical datasets were used to 

assess the influence of hydraulic controls (dams, wetlands and riparian buffers) on the 

downstream translocation of WQ constituents. The relative impacts of climate change on the 

selected WQ constituents were assessed by observing changes between two time periods viz. 

the present (1971-1990) and the future (2046-2065). The verification of the ACRU-NPS 

model is also presented in this paper.  

 

The third paper (Chapter 5) is a detailed study of the potential changes in daily rainfall 

distribution under climate change for all the seven downscaled GCMs considered. It was 

deemed necessary to fully detail the probable changes in daily rainfall distribution between 

the present and the future as described by the selected downscaled GCM projections, in order 

to provide further insight into the simulation results presented in Chapter 4. This paper, 

therefore, presents a description of the projected changes in rainfall frequency by assessing 

changes in pre-defined rainfall event intervals and rainfall conservation statistics. Also 
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assessed in this paper are the relative changes in raindays and rainless days between the 

future and the present as described by the individual downscaled GCM projections. 

 

In the fourth paper (Chapter 6), the application of the ACRU-NPS model simulations is 

presented to suggest or recommend appropriate adaptation strategies specifically geared 

towards WQ management, policy development and governance. This paper links the 

biophysical aspects of water quality management and the projected impacts of climate change 

on nutrients and sediment transfer processes detailed in the first and second papers (Chapters 

3 and 4) with the more applied aspects of adaptive water quality management, policy 

development and governance, which are both presented in Chapter 2. Also presented in this 

paper is a framework designed to be applied in adaptive water quality management.  

 

Chapter 7 presents the overall synthesis, as well as recommendations for further study. It is 

important to note that since this dissertation was written in paper format, some overlap may 

exist between the seven chapters, particularly amongst the four papers, as they are intended to 

be submitted to different local and international journal publications.  
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2. LITERATURE REVIEW 
 

2.1 Vulnerability and Adaptation in the Context of Climate Change and Water 

Quality Management 

 

2.1.1 Introduction 

   

The climate change discussion has seen the formalised concepts of vulnerability and 

adaptation become profoundly embedded in the global change agenda. This is not surprising, 

as climate change is anticipated to induce pressures on aspects such as environmental health, 

food security and economic stability through its projected impacts on water resource systems 

(IPCC, 2001; Droogers and Aerts, 2005; IPCC, 2007; Heltberg et al., 2009). It is widely 

acknowledged that the impacts of climate change will affect all water users (IPCC, 2001; 

Schulze, 2005; Haines et al., 2006; Sadoff and Muller, 2007; IPCC, 2007; Bates et al., 2008) 

with the spectrum of affected users being determined by their individual ability to effectively 

respond to such changes (Paavola, 2008). In the context of adaptation and vulnerability, the 

developing world is considered to have more limited adaptation capacity and to be highly 

vulnerable to the impacts of climate change (Desanker and Magadza, 2001; IPCC, 2001; 

Paavola and Adger, 2005). This is, as Heltberg et al. (2009) and Paavola and Adger (2005) 

indicate, due to the high dependence on climate-sensitive economic sectors, geographic 

exposure and low-income status characteristic of the developing world. Consequently, the 

most adverse climate change related impacts are anticipated to occur in the developing 

regions of the world, of which South Africa is a part of (Bates et al., 2008). This serves to 

highlight the importance of understanding vulnerability and adaptation concepts for 

application in the most sensitive (i.e. highly exposed and least adaptive) regions of the world, 

including South Africa. Based on the above discussion, the aim of this section is, therefore, to 

define “vulnerability” and “adaptation” in the contexts of both climate change and water 

quality management. 
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2.1.2 Vulnerability and Adaptive Capacity as Determinants of Adaptation 

 

The Oxford English Dictionary defines vulnerability as “exposure to the risk of being 

attacked or harmed, either physically or emotionally”. Ionescu et al. (2009) consider 

vulnerability a relative property, denoting the vulnerability of something to something. In a 

more socio-ecological sense, vulnerability refers to the “degree to which a system is likely to 

experience harm due to exposure to a hazard” (Füssel, 2006; Ionescu et al., 2009). 

Application of this term in climate change studies has been subject to much debate and 

scrutiny owing to its apparent ambiguity (Ionescu et al., 2009). This ambiguity stems from 

the interdisciplinary nature of the term which has seen its application in ecology, agriculture, 

medicine, socio-economic development, food security and global change (Füssel, 2006; 

Füssel and Klein, 2006; Haines et al., 2006). The Third Assessment Report (TAR) of the 

Intergovernmental Panel on Climate Change (IPCC) provided the now widely-accepted 

definition of vulnerability in the context of climate change by stating that, “vulnerability is 

the degree to which a system is susceptible to, or unable to cope with, adverse effects of 

climate change, including climate variability and extremes. Vulnerability is a function of the 

character, magnitude and rate of climate variation to which a system is exposed, its sensitivity 

and its adaptive capacity” (IPCC, 2001). However, as indicated in Figure 2.1, this definition 

is not only limited to climate change as an ‘external disturbance’, but can also include 

disturbances such as disease prevalence, access to human and financial capital and innate 

system sensitivity.    

 

The collective insinuation of the definitions presented above, is that systems which are 

significantly exposed to adverse external factors that may bring harm to their normal 

functioning, are at high risk of collapsing and are therefore highly vulnerable. In South Africa 

and Africa as a whole, the general consensus regarding vulnerability is that the resilience of 

socio-economic, infrastructural and environmental systems to external disturbances such as 

climate change is very limited, making them highly vulnerable (Reid and Vogel, 2006; 

Sadoff and Muller, 2007; Paavola and Adger, 2005). Access to resources, aging 

infrastructure, stagnant economic growth and development, widespread environmental 

degradation, weakening social patterns and lack of access to information are some of the 

factors which have been identified as components that determine vulnerability in many 

African nations, including South Africa (Reid and Vogel, 2006; Gbetibouo et al., 2010) 
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(Figure 2.1). Owing to the relative nature of vulnerability (Ionescu et al., 2009), it is 

important that the vulnerabilities of various economic sectors, governmental groups and 

individuals be differentiated accordingly (Stuart-Hill and Schulze, 2010). This is an important 

consideration in the development of tailored and locally relevant adaptation strategies. 

   

Another critical dimension to this argument also exists, which serves to accentuate two 

factors viz. sensitivity and adaptive capacity, as important aspects that determine the 

vulnerability of a system. Adaptive capacity or capacity of response refers to “the potential or 

ability of a system, region or community to adapt to the effects or impacts of climate change” 

(IPCC, 2001; Gallopìn, 2006; Smit and Wandel, 2006). Systems which have limited response 

options to cope with the impacts of climate change, are considered to have low adaptive 

capacity and are therefore considered highly vulnerable to these impacts (Reid and Vogel, 

2006). Figure 2.1 presents the concept of vulnerability as a concept that is limited by the 

adaptive capacity of a system; using, in this case, an agricultural system.   

 

Figure 2.1 Conceptualization of vulnerability to climate change as a function of adaptive 

capacity and exposure to impacts in an agricultural production system 

(Gbetibouo et al., 2010). 
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As with vulnerability, adaptive capacity differs between individuals, groups, environmental 

systems, communities and even artificial systems. It is determined by various factors such as 

initial well-being (economic, physical or otherwise), livelihood resilience, social capital and 

societal protection (Cannon, 2000; Brooks et al., 2005). Adaptive capacity cannot be easily 

measured due to the direct connections between socio-economic development, social 

cohesion, political stability and the level of environmental protection (Reid and Vogel, 2006). 

This is because of the dynamism of socio-economic and political systems. Therefore, in order 

to develop appropriate adaptation strategies, it is crucial to initially assess the “state of 

nature” of a system with regard to the extent of its adaptive capacity and hence vulnerability, 

in order to locate weaknesses and address these accordingly (Gallopìn, 2006; Smit and 

Wandel, 2006; Sadoff and Muller, 2007). 

 

To effectively implement adaptation strategies, the ability of society, governance structures 

and institutions to act collectively is paramount, since adaptation is a dynamic, 

interdependent initiative (Adger, 2003; Brooks et al., 2005). Not only will this increase the 

adaptive capacity of the most vulnerable environmental and socio-economic sectors but it 

might also create much more resilient governance structures that may be flexible enough to 

adapt to future environmental changes (Brooks et al., 2005; Adger and Vincent, 2005). This 

will have to be grounded on sound scientific principles that will provide the necessary 

background critical to decision-making regarding biophysical changes that ultimately affect 

the economy, society and infrastructure. Consequently, monitoring existing adaptation policy 

or developing new policies will require constant updates from scientific research to ensure 

that the appropriate adaptation strategies are developed and updated.   

 

This section has extensively described the meaning of vulnerability, adaptation and adaptive 

capacity in the context of climate change. However, as mentioned in this discussion, these 

terms can be ambiguous and can lead to some confusion in their application. Since the focus 

of this study is on adaptive policy development, adaptive governance and adaptive water 

quality management, the following sections describe the differences in the application of 

these terms in the aforementioned focus areas.  
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2.1.3 Vulnerability and Adaptation in Policy Development and Governance 

 

The previous section defined vulnerability as “the degree to which a system is likely to 

experience harm due to exposure to a hazard” (Füssel, 2006; Ionescu et al., 2009). Adaptive 

capacity was defined as “the potential or ability of a system, region or community to adapt to 

the effects or impacts of climate change” (IPCC, 2001; Gallopìn, 2006; Smit and Wandel, 

2006). Therefore, by deduction, adaptation may be considered as a response to change which 

seeks to minimize vulnerability by enhancing adaptive capacity and maximising benefits 

(Pittock, 2009).   

 

It is also important, at this juncture, to define governance and management in the overall 

context of this discussion. According to the Oxford English Dictionary, “governance” is 

essentially the exercise of imposing authority and asserting control and/or influence over the 

policies and affairs of a state. Management is the direct handling, supervision or control of a 

state, organization, people or resource. At first glance, the two terms appear to mean the same 

thing i.e. authority and control. However, closer inspection will reveal that they are actually 

two different activities. Governance can be thought of as the “top line” focus, which 

addresses the question of what task is being attempted to be accomplished while management 

can be thought of as the “bottom line” focus, addressing the question of how to accomplish a 

particular task. In other words, governance is doing the right things and management is doing 

things right. In the context of policy development and governance these definitions will be 

expanded on using, as a backdrop of the discussion, developing countries.  

 

It is a well accepted fact that the long-term, sustainable economic development of developing 

countries is highly dependent on primary production systems (e.g. agriculture, forestry, 

fishing and mining). The maintenance and advancement of these systems requires efficient 

and sustainable management of their natural resource base (Barbier et al., 1992). The role of 

the environment, therefore, as a source of important resources and ecological functions which 

support economic activity and human welfare needs to be duly recognised and protected. One 

of the most fundamental tools of environmental protection is the development and 

promulgation of environmental policies.   
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Developing countries, such as South Africa, usually have in place highly incisive 

environmental protection policies intended for the protection of natural resources. For 

instance, the South African National Water Act (Act 36 of 1998), considered globally as a 

“progressive, forward-thinking and ambitious Act” (MacKay et al., 2003; Muller, 2002), has 

as one of its main objectives the protection, development, management and control of the 

nation’s water resources (DWAF, 1998; DWAF, 2004; RSA, 1998; Pienaar and van der 

Schyff, 2007). Evidently, failure to effectively implement this Act can potentially expose 

South African water resources to a host of serious problems. Such failure would, in the sense 

of vulnerability defined above, increase the vulnerability of South African water resources to 

external disturbances (e.g. climate change), thus increasing the vulnerability of local 

production systems and ultimately, the vulnerability of the local economy.  

 

In certain instances, where environmental policies are ineffectively implemented or are 

implemented without due monitoring of the implementation process, the potential 

deterioration or complete destruction of natural resources and ecosystems is facilitated. This 

essentially amounts to policy failure. Babier et al., (1992) state that policy failure occurs 

when a policy “under or over corrects for a problem”, provided the exact nature of the 

problem is expressly known and measures are taken to remedy the problem. Under such 

conditions, the State in their capacity as the legal custodians of the nation’s natural resources, 

may engage in corrective measures that may either be ill-advised or detrimental to the long-

term sustainability of natural resources (Huang and Xia, 2001).    

 

Therefore, in the context of policy development and governance, the ability of environmental 

resources, inclusive of water, to cope with adverse external disturbances will be functions of 

how well environmental protection policies are formulated by governance structures and how 

effective management structures are in implementing these policies. Essentially, the more 

robust, realistic and effective a policy is, the higher the adaptive capacity of the system and 

the greater the potential for the system to adapt and, resultantly, the less vulnerable the 

system is to external disturbances. The following section highlights the differences between 

adaptation in the context of policy development and governance and adaptation in the context 

of water quality management.   
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2.1.4 Vulnerability and Adaptation in Water Quality Management 

 

Water quality management and water-centric policy development are, in fact, closely linked 

focus areas that fall under the banner of water resources management. Effective water quality 

management requires a sound policy framework informed by well executed environmental 

studies and research (Brainwood et al., 2004; Nangia et al., 2008), as well as monitoring and 

evaluation. However, in many instances, there is a significant disconnect between the two. 

This disconnect can be attributed to a number of reasons including: significant time 

constraints for detailed catchment scale investigations which inform policy, information is 

usually disconnected in time, space and function and knowledge cannot be effectively 

generated from environmental studies, due to the disjointed nature of the information 

collected (Bennet et al., 2005; Harrison, 2007; Nangia et al., 2008). The result of this is 

usually the development of inadequate policies, redundant management instruments, 

inappropriate catchment biophysical process knowledge, missing or inadequate monitoring 

programs, unclear institutional responsibilities and lack of financing sources (Huang and Xia, 

2001; Gourbesville, 2008). This consequently creates an environment where adaptive 

capacity is undermined and vulnerability is increased, thus limiting the effectiveness of 

adaptation action. 

        

The current mosaic of global change issues, including climate change and population growth 

add further complexity to the already complex relationship between policy development and 

water quality management. With increasing precipitation variability and increased pollutant 

discharge and transport, particularly under climate change, the requirement for adaptive 

policy and thus adaptive water quality management has been made even more imperative. It 

is at this juncture that the importance of catchment scale investigations of pollutant discharge 

is highlighted, particularly as they ultimately contribute towards informing adaptive 

management. One of the primary tools used to improve the understanding of the processes 

controlling the release, fate and transport of pollutants across catchments is water quality 

modelling (Kadam and Kaluarachchi, 2006).  

 

According to Bormann (2009), water quality models are increasingly used in decision-

making despite calculations being fraught with input data errors, model errors and inadequate 

process knowledge.  
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While there have been significant improvements in water quality monitoring methods, 

advances in regional scale water quality modelling remain a priority. Such advances would 

effectively imply a reduction in vulnerability owing to the implied increase in adaptive 

capacity and, ultimately, improved adaptive water quality management. 

 

To ensure that adaptive water quality management is as effective as possible, it is highly 

critical that catchment processes are investigated in a holistic manner which recognises the 

interactions between people and their physical and biological environment (Bennet et al., 

2005; Lynam et al., 2009). Such an approach is critical in linking environmental and socio-

economic systems in order to create a broader understanding of sustainability and the 

integrative nature of water quality management and socio-economic dynamics. Figure 2.1 

cited social, human and financial capital as one of the key determinants of adaptive capacity 

(Gbetibouo et al., 2010). Therefore, by linking environmental and socio-economic systems 

(social, human and financial capital) a framework is somewhat automatically created, in 

which the interactions between the two are recognised and adaptive capacity in water quality 

management is increased. Such a “framework” would effectively be in the form of a policy, 

legislature or a regulatory arrangement (Gourbesville, 2008).      

   

The main aim of this section was to highlight the differences in the understanding and 

application of the terms “vulnerability” and “adaptation”, in the contexts of both policy 

development and water quality management. In essence, vulnerability and adaptation in 

policy development are concerned with how well a particular policy is formulated and 

implemented such that it effectively protects environmental resources, in order to reduce 

vulnerability, increase adaptive capacity and allow for effective adaptation. In the context of 

water quality management, however, vulnerability and adaptation are more concerned with 

the “end-pipe” factors. While policy development is more concerned with the 

conceptualization of rules and regulations which govern water quality management, water 

quality management is more concerned with the actual, physical execution of those rules and 

regulations. For instance, the monitoring of pollutant discharge from catchments is a physical 

activity but the requirement for monitoring would be informed by a policy aimed at ensuring 

that the water quality of receiving waters is protected. In essence, effective and adaptive 

water quality management relies on effective and adaptive policy development and 

furthermore, implementation.    
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Having reviewed the concepts of vulnerability, adaptation and adaptive capacity and 

highlighted the differences in the terminology and application of these concepts, the 

following section presents a review of the contemporary issues central to water quality 

management in the context of South African water resources management. The adaptation 

and vulnerability concepts detailed in the preceding section will also be factored into the 

following discussion. 

 

2.2 Contemporary Issues in Water Quality Management  

 

2.2.1 Introduction 

  

Owing to increased socio-economic pressures such as population growth and economic 

development, the requirement for a constant freshwater supply of adequate quality has been a 

subject of increased concern over the last few decades (Huang and Xia, 2001; Smeti et al., 

2009). In particular, challenges associated with water quality management have received an 

increasing amount of attention, due to the apparent close alignment of water quality related 

issues with sustainable development (Ouyang et al., 2006; Mahjouri and Ardestani, 2011). 

For example, not only is access to safe drinking water considered a basic human right but is 

also recognised as one of the key Millennium Development Goals (Kundzewicz et al., 2007). 

Global and local change issues such as population growth, economic development, urban 

sprawl and land use change have intensified the debate of whether or not the current global 

freshwater resources status will radically change over the next few decades (Falkenmark and 

Rockström, 2006; Kundzewicz et al., 2007; UNESCO, 2009).  

 

Further concerns also abound on whether the continued pressure being placed on water 

resources will lead to a change in water productivity (adequacy of water for productive use) 

and ultimately a change in agricultural and industrial productivity (Rockström et al., 2003). It 

is at this water resource availability and water productivity interface that water quality 

becomes an issue of concern. In order to further clarify this topic, this section presents a brief 

discussion on contemporary water quality management issues as a basis for adaptive water 

resources management. The arguments presented in this discussion are generic in both the 

international and local water resources management contexts. 
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2.2.2 Water Quality Management in Context 

 

Water quality management, aligned with principles of sustainable development has become 

increasingly topical in the last few decades (Pegram and Bath, 1995; Turton, 2008; Cook et 

al., 2009). This has been especially true in South Africa under the current conditions of 

economic growth and social transformation (Du Toit et al., 2009). One of the reasons for the 

elevated concern over water quality management is the increased introduction of pollutants in 

surface water and groundwater through agricultural, urban and industrial activities and the 

consequential human health concerns (Honisch et al., 2002; Ouyang et al., 2006; Zhang et 

al., 2009). As alluded to in the introductory section, increased social and economic pressures 

on water resources provide the sole basis for the deterioration of water quality in many local 

Catchments. Figure 2.2 illustrates that socio-economic development and the quality of water 

resources and the environment are all closely-related aspects. If one compartment changes, 

then by deduction, the other two also change. In effect, the vast majority of problems 

associated with water quality management are far less of a technological issue than they are 

social, political, economic and institutional issues (Novotny, 2003). This is especially true in 

South Africa, considering the capacity to generate ingenuity which this country possesses 

(Turton, 2008). 

 

Figure 2.2    Causal chains highlighting socio-economic causes of environmental and water 

pollution (Novotny, 2003).  



21 

 

Local population growth and economic development have resulted in increased food, fibre, 

forage and energy demands, which have consequently encouraged the agricultural and 

commercial production sectors to use increasing amounts of toxic chemicals, soil ameliorants 

and nutrients to enhance production rates and meet consumer market demands (Foley et al., 

2005; Dabrowski et al., 2008; Statistics South Africa, 2009). This consequently leads to the 

increased introduction of pollutants into the environment through non-point sources (NPS) 

and increased environmental and human health impact concerns (Foley et al., 2005; Haines et 

al., 2006; Leigh et al., 2010; Bryan and Kandulu, 2011). Furthermore, the reduced ability of 

natural ecosystems to provide goods and services such as the regulation and immobilisation 

of pollutants, results in increased wastewater treatment costs which have undesirable long-

term economic implications, especially for developing nations (Jewitt, 2002; Fischlin et al., 

2007; Kundzewicz et al., 2007).  

 

Considering the increased human interventions in natural ecosystems in the past century, the 

currently observed changes in water quality standards are not particularly surprising. 

Historically, humankind has a long-standing tradition of radically altering vast segments of 

natural environments in pursuit of economic and social security without necessarily 

considering the environmental impacts and/or the inevitable feedbacks (Bouma et al., 2002; 

Pittock, 2009). Nilsson and Renöfält (2008) state that compared to pristine conditions, 

numerous global rivers, streams and lakes have doubled their nitrogen and phosphorus 

content as a result of human interventions. The Mgeni Catchment, for example, located in the 

KwaZulu-Natal Midlands of South Africa, was once a relatively pristine catchment (i.e. mid-

1800s to early 1900s), with numerous undisturbed ecological regions (Water Research 

Commission, 2002). Increased urbanisation, agricultural land expansion, population and 

economic growth and development have led to the alteration and, in some cases, complete 

destruction of ecosystems and a rapid increase in water pollution, leading to water quality 

deterioration (Schulze et al., 2004; Turpie et al., 2008; Van Wilgen and Biggs, 2010). This 

catchment now requires highly incisive water quality management principles, which ensure 

that freshwater resources are protected and that adequate freshwater standards are maintained 

(DWAF, 2003).  
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Providentially, water quality management in this catchment is carried out through intensive 

monitoring programmes applying principles from the National Water Resource Quality 

Monitoring Programme, Integrated Water Resources Management (IWRM) principles and 

water resources modelling tools (DWAF, 2003; DWAF, 2004). This example shows that 

modern challenges associated with water quality management require not only the 

reinforcement of established principles, but also the extension of those principles to ensure 

future sustainable use of water resources (Huang and Xia, 2001; Cook et al., 2009). 

Furthermore, the importance of information generation and dissemination in water quality 

management cannot be over-emphasised, since decision-making is highly dependent on 

relevant and updated information (Chowdary et al., 2004). 

 

Thus, the application of experience-based management, using historical information in 

conjunction with current information and management systems is an important aspect in local 

water quality management, since it characterizes adaptive water quality management 

(Kundzewicz et al., 2007; Bates et al., 2008). The aim of adaptive water quality management 

is to recognize the impacts of human interventions on freshwater systems and offer novel 

management ideas, policies and promote institutional commitment to effectively manage 

water quality issues (Harrison, 2007; Sadoff and Muller, 2007; Mwenge-Kahinda et al., 

2010). Prior to considering adaptive water quality management, the main issues behind water 

quality management are crucial aspects to consider since they define the path towards the 

development of adaptation strategies. The following section is an introduction to the most 

critical water quality management related challenges. 

 

2.2.3 Challenges in Water Quality Management 

 

Water quality management across all different scales is primarily concerned with making 

decisions which seek to prevent the progression of pollution (Unami and Kawachi, 2003). 

However, owing to increasing pressures on water resources from climate change, population 

growth and economic development, global and local water quality management is far from 

satisfactory, particularly in developing countries (Huang and Xia, 2001; IPCC, 2007). One of 

the major reasons for this is that the most rapid growth, with regard to economic development 

and population growth, occurs primarily in low income countries (e.g. in the so-called 

developing national economic blocs such as BRICS) where water and wastewater 
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infrastructure is, by global standards, generally substandard. Furthermore, water quality 

management in these countries is usually carried out in a conservative, non-adaptive manner 

and many decisions are based on historical trends rather than on current observations (World 

Bank, 2010). This limits the flexibility of water quality management and creates a state of 

policy redundancy which can, ultimately, cause policy failure (as detailed in Section 2.3). 

Bennet et al., (2005) and Lynam et al., (2009) note that water quality management has to be 

carried out in a holistic manner which recognises the interactions between society and the 

physical and biological environment. Therefore the dynamism of both society (e.g. 

population growth and migration) and the physical and biological environment (e.g. climate 

change) has to be factored into water quality management and planning, such that policy 

redundancy and failure is avoided.  

 

For many developing and transitional countries such as South Africa, the rapid growth of 

urban centres facilitates the deterioration of water quality due to the increased generation of 

diffuse or non-point source (NPS) pollution (Edwards and Withers, 2008). Other sectors 

related to economic development in these countries including agriculture, deforestation and 

mining (acid mine drainage) also contribute significantly to water quality deterioration. 

Developing countries are subject to high levels of exposure and vulnerability (IPCC, 2007) 

and this consequently elevates their susceptibility to the effects of diffuse pollution (Novotny, 

2003; World Bank, 2010). Novotny (2003) cites the following major reasons for the high 

susceptibility of developing countries to diffuse pollution and water quality deterioration: 

 

a) Global change pressures (i.e. climate change, population growth, economic 

development and land use change) are largest in developing countries. 

b) Many urban centres in developing countries have poorly functioning or non-existent 

sewer systems and wastewater infrastructure. 

c) Surface water contaminated by diffuse pollution is often used as a source of potable 

water by households in rural communities. 

d) Surface runoff is the main contributor to flow in these countries and provides the main 

mechanism for the transport of pollutants.  

e) Intensification of the use of contaminants (fertilizer, pesticides etc.) in industrial 

agriculture increases nutrient inputs into surface waters and impairs the water quality 

of receiving waters. 
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For the reasons detailed above, it follows that the degradation of water quality is influenced 

by the interactions between society and the natural environment. It is apparent that although 

the environment contributes some background contamination, people are, for the most part, 

responsible for the undesirable changes in the quality of water resources. Therefore, the 

major challenges in water quality management are anthropogenic in nature and may be 

classified into 2 groups as follows (Novotny, 2003): 

 

1) “Human alteration of the status of a water body and its habitat that downgrades its 

integrity and creates pollution” and, 

2) “Addition of allochthonous (originating from outside the water body) pollutants to the 

water body”. 

 

Group 1 essentially refers to the alteration or modification of water bodies for the benefit of 

society. For instance, the construction of dams and impoundments, flow diversion, 

construction of inter-basin transfer nodes, channel lining, wetland drainage and conversion, 

invasion of riparian zones by foreign species originally introduced by people and urban 

development which alters the hydrology of a stream. Group 2 refers to allochthonous point 

and non-point sources (NPS) of pollution. These include discrete or point sources of pollution 

such as municipal and industrial wastewater effluent, runoff from solid waste disposal sites, 

storm drain discharge, runoff from active mines and active construction sites. Non-point 

sources include return flows from agriculture, runoff from unconfined pastures, failing septic 

tank systems, wet and dry atmospheric deposition and other unconfined sources of pollution 

(Novotny, 2003). The concept of non-point source pollution will be further expanded on in 

section 2.2.5.     

 

Successful water quality management has to recognise the role people play in the fluctuation 

of catchment water quality (Bennet et al., 2005; Lynam et al., 2009). It is for this reason that 

water quality management in developing countries has to be as adaptive as possible to ensure 

that adaptive capacity is increased and external impacts, such as climate change, are well 

prepared for. It is at this juncture that the importance of understanding the meaning of 

adaptive management is critical. The following section, therefore, briefly details the concept 

of adaptive management and its role in water quality management.  
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2.2.4 Adaptive Water Quality Management       

 

In the introductory section it was noted that being part of the current global change mosaic, 

climate change could aggravate current water quality problems. Indeed, climate change is 

anticipated to introduce added complexities that water quality managers will have to contend 

with. Although decision makers make decisions under uncertainty every day, even in the 

absence of climate change (World Bank, 2010), a paradigm shift is required in which the 

compounding set of uncertainties presented by climate change are recognised and included in 

the decision-making process (Kundzewicz et al., 2007). This essentially constitutes adaptive 

management (Kundzewicz et al., 2007; Bates et al., 2008).   

   

According to Bennet et al., (2005), adaptive management can be defined as ‘‘a systematic 

process for continually improving management policies and practices by learning from the 

outcomes of operational programs”. Figure 2.3 presents a schematic representation of an 

adaptive management framework developed by the Australian Coastal Cooperative Research 

Centre (Coastal CRC) and as shown in this diagram, adaptive management is a cyclic 

learning, application and review process in which the focus is on action and learning and not 

in preparing to learn (Lee, 1999; Bennet et al., 2005). In this diagram, the components are all 

linked through a continuous process of learning and participative action. To briefly 

summarise: Information collation refers to the pooling of information collected from research 

and from stakeholder consultation and is usually the first step in the development of an 

adaptive management framework, the core components of process and facilitation and 

evolving knowledge are essential in the planning and management cycle and comprise the 

establishment of healthy relationships amongst catchment stakeholders such that the entire 

adaptive management cycle proceeds efficiently. Systems analysis and vision focuses on 

identifying and understanding the most important catchment systems in order to clearly 

define the vision and aspirations for the catchment. Plan making involves the setting of 

clearly defined resource management goals such that impacts on ecological and socio-

economic systems are recognised and strategies are developed. Implementation involves the 

actual execution of the goals created in plan making and systems analysis and vision creation. 

Monitoring and Review follows implementation and is the assessment of the effectiveness of 

the goals set during the initial stages of framework development and of the effectiveness of 

the implementation process (Bennet et al., 2005). 



26 

 

It is apparent, therefore, that adaptive management is a process that facilitates intervention in 

the face of uncertainty. For instance, water quality modelling serves as an approach that water 

resource managers can use to abstract information about the natural environment and 

synthesise knowledge and make decisions based on that information. However, water quality 

models are often fraught with input data errors, model errors and inappropriate process 

knowledge by the users (Bormann, 2009). This does not imply that these models are not 

appropriate to be used as decision support tools; rather it implies that water quality models 

should be used as tools that facilitate explicit learning from experiments in order to inform 

and improve future decisions.       

 

 

Figure 2.3 Schematic diagram of the Coastal CRC Adaptive Management Framework 

(Bennet et al., 2005). 

 

Adaptive water quality management, therefore, requires the development of robust strategies 

that recognize the reality of a world of shifting baselines and intermittent disturbances (Adger 

and Vincent, 2005; World Bank, 2010; Firman et al., 2011).  
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This essentially demands a rethink of traditional water quality management practices which 

assume a predictable future based on past experiences. The World Bank (2010) recognizes 

four management strategies that are essential in facilitating adaptive (resource) management 

under climate change. These strategies have been adapted by the author to be more specific to 

water quality management: 

 

a) Priority should be given to no-regrets options: policy and investment options that 

maximise benefits related to water quality management even in the absence of climate 

change e.g. improving water and wastewater infrastructure to minimize water quality 

degradation in receiving waters (Novotny, 2003). 

b) Increase resilience of water resource systems by buying “safety margins” in low cost 

long-term investments e.g. increasing water quality awareness education and forming 

social resource protection schemes (Petermann, 2008). 

c) Reversible and flexible options need to be favoured such that in instances of bad 

decisions being made, the cost of reversing the impacts of decisions is kept as 

minimal as possible e.g. restrictive urban planning due to uncertain flooding trends 

can be reversed easily and is less expensive than retreat and protection options 

(Heltberg et al., 2008).  

d) Long term planning should be based on forward-thinking scenario analysis and on the 

assessment of strategies that consider a wide range of possible futures. 

 

A recurring theme in this discussion has been that adaptive water quality management 

requires a risk-based decision-making model which favours long-term planning and 

robustness taking into cognisance the dynamic nature of socio-economic and environmental 

systems. Increasing global change pressures on water resources coupled with the 

compounding effects of climate change imply that risks related to water quality management 

cannot be ignored or omitted in the decision-making process. The aforementioned 

compounding set of uncertainties presented by climate change necessitates the development 

of robust and adaptive management strategies that will minimize the risk and thus 

vulnerability of environmental, social, economic and demographic systems. Having detailed 

the concept of adaptive water quality management and its relation to climate change, the 

following section provides a brief analysis of the concept of non-point source (NPS) pollution 

as one of the primary foci in water quality management. 
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2.2.5 Non-Point Source Pollution 

 

Non-point source (NPS), or diffuse pollution, is now widely recognized as a key agent in the 

deterioration of water quality, both globally and locally (Carpenter et al., 1998; Hansen, 

2002; Novotny, 2003; DWAF, 2003; Edwards and Withers, 2008; Jolly et al., 2008; 

Oberholster et al., 2009). Although various forms of land-based activities generate NPS 

pollution, agricultural activities are considered to be the leading cause of surface water 

quality degradation (Ma and Bartholic, 2003; Liange and Shukai, 2010; Bryan and Kandulu, 

2011). Other NPS pollution sources include runoff from pastures, forestry, sewage treatment 

plants, abandoned mines, industrial facilities, rural livestock feedlots and return flows from 

irrigated agriculture (Carpenter et al., 1998; Novotny, 2003; Bates et al., 2008). During high 

flow periods or extreme flood events, vast quantities of contaminants and pollutants may also 

be exported and transported from various sources such as agricultural catchment areas, 

landfill sites and from soil erosion (Beven, 2002; Almasri and Kaluarachchi, 2004). This, as 

shown in Figure 2.4, can lead to numerous water quality related problems ranging from rapid 

distribution of contaminants and pollutants, pH reduction (acidification), stream 

sedimentation and increased turbidity and in instances of post-flood standing waters, the 

introduction of disease carriers (Nilsson and Renöfält, 2008). The effects of NPS pollution on 

water quality include the introduction of above-normal loads of sediments, contamination of 

potable water supplies, eutrophication of freshwaters, removal of aesthetic characteristics, 

increased chemical toxicity and the destruction of ecosystems (Novotny, 2003; Delpla et al., 

2009).  

 

Edwards and Withers (2008) suggest that the current global estimate of total nitrogen (63 Tg 

N yr-1) introduced into water-bodies and other aquatic environments, is double that of the pre-

industrial era, while that of phosphorus is estimated to be 20 Tg P yr-1. Haygarth et al. (2005) 

also indicate that annual inputs of phosphorus into water-bodies derived from manure and 

fertilizer range between 20 and 50 20 Tg P yr-1. Similarly, prior to the introduction of 

conservation agriculture in the Tertiary Hill of Bavaria, Germany, the total nitrogen and 

phosphorus fluxes into the adjacent Brook West were found to be 292 kg N yr-1 and 4.9 kg P 

yr-1, respectively (Honisch et al., 2002). Suspended sediment derived from soil-loss has been 

positively correlated with accelerated watershed land-use practices (Houlahan and Findlay, 

2004).  
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Figure 2.4 Summary of the water quality problems that may arise during extreme 

discharge conditions (Nilsson and Renöfält, 2008). 

 

These estimates further highlight the importance of understanding and quantifying the effects 

of NPS in water quality management. Foy and O’ Connor (2002) assessed the effects of 

agriculture on the water quality of two rivers in Northern Ireland. Specifically, this study 

aimed at “i) examining point source farm pollution and the associated damage to tributary or 

headwater streams; ii) diffuse nitrogen and phosphorus losses and associated eutrophication; 

and iii) the sedimentation of spawning redds of the Atlantic salmon (Salmo salar L.)”.   
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The Colebrooke and Upper Bann Rivers were the subjects of farm pollution studies for a 

period of 8 years from 1990 through to 1998. The enrichment of these rivers with nutrients, 

particularly phosphorus and nitrogen, over this period was attributed to farmyard discharges 

of manure and silage effluent. Although the government introduced a number of initiatives 

aimed at reducing water pollution generated from farms, the assessment of the effectiveness 

of these initiatives proved to be problematic. This was owing to the fact that monitoring sites 

were located on larger rivers and not on tributaries, and thus water pollution data reflected a 

large variety of pollutant sources other than farmyards. Therefore, various chemical and 

biological water quality assessments were undertaken in tributaries to ascertain trends in 

pollution and define the causes of this pollution. Owing to the extensive use of nitrogen- and 

phosphorus-based fertilizers in agriculture, this sector was identified as the major contributor 

to water pollution in these rivers. Additionally, due to the blockage of spawning redds (i.e. 

breeding grounds); the supply of high loads of fine sediment was recognised as another 

concern that has adverse impacts on the spawning of salmon. However, the high sediment 

loads were not attributed to agricultural practices, but rather to human interventions. The 

combination of both nutrient enrichment and sedimentation resulted in a decline in available 

habitat for salmon spawning and, consequently, a decline in salmon populations for many 

parts of Northern Ireland (Foy and O’Connor, 2002). The authors concluded that agriculture 

was primarily responsible for the deterioration of water quality in Northern Ireland and it was 

difficult to minimise the generation of diffuse pollution from farming activities. Various 

methods for the reduction of farm-generated diffuse pollution were suggested in this study, 

ranging from voluntary mitigation measures encouraging farmers to apply nutrient 

management frameworks, to the introduction of legislative measures that increased fines for 

pollution. The issue of sedimentation also did not yield satisfactory solutions due to a lack of 

consensus as to the actual cause of the problem.  

 

To counter increased NPS loads such as suspended solids, nitrates and phosphates, Choi 

(2008) and Fisenko (2004) suggested preventative management measures such as 

conservation tillage, soil protection and targeting areas where combinations of land 

management and landscape factors pose significant NPS pollution generation risks. Although 

this section has focused on non-point sources of pollution, point sources also exist. However, 

these sources tend to be continuous and vary little over time and their impacts are therefore 

considered to be inconsequential.  
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Various studies in pollution sources e.g. Beven (2002), De Vries et al. (2002) Hatch et al. 

(2002), Tsujimura (2004), Fisenko, (2004), Deasy et al. (2007) and Bryan and Kandulu 

(2011) concur that the major pollutants associated with water quality are derived from non-

point sources. The regulation and monitoring of NPS pollution has recently become central to 

most government water quality management policies both internationally (e.g. Hansen, 2002; 

Romstad, 2003) and locally (e.g. Pegram and Bath, 1995; DWAF, 2003 and 2004). 

 

In South Africa, the rapid developments and land use changes occurring within numerous 

catchments are responsible for the generation of various forms of diffuse pollution, causing 

the water quality decline of many local rivers.  However, local NPS pollution is yet to be 

effectively quantified and aligned to the impacts of climate change for the development of 

adaptation strategies. The most important pollutants in South African waterways are 

considered to be nitrates, phosphates, sediments, pesticides and salts; all of which are mainly 

generated from agricultural and urban sources (DWAF, 2004; van der Laan, 2010). An in-

depth understanding of pollutant dynamics along local rivers is, therefore, critically important 

in water quality management. In the last few decades, however, significant advances have 

been made with intent to reduce impacts on water quality and promote environmental health 

(Arthington et al., 2006; Rivers-Moore et al., 2007). In spite of these advancements, the 

continual use of pollutants in agricultural practices implies that the issue of water quality 

deterioration is going to remain significant in the future (Honisch et al., 2002; DWAF, 2003). 

Therefore, non-point source pollution and land use change form an integral part of water 

quality management and will become particularly important under an altered climate. The 

following section briefly introduces the parameters and processes most critical to South 

African waterways as recognised by this review. 

 

2.2.6 Critical parameters and processes  

 

As mentioned in the preceding sections, South African catchments are predominantly 

agricultural catchments and a major component of diffuse (NPS) pollution is generated within 

these catchments. The increased generation of nutrients such as phosphorus (P) and nitrogen 

(N) from these catchments due to high rates of manure and fertilizer application primarily 

leads to eutrophication (Foy and O’Connor, 2002; Deasy et al., 2007).  
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Both N and P are considered as the main nutrients that drive the fluctuation of water quality 

in the fluvial systems of agricultural catchments (Withers and Jarvie, 2008). This statement 

implies that in South African catchments, more focus needs to be directed towards assessing 

the potential changes in both N and P generation and transport under conditions of climate 

change. Chapter 3 provides a detailed analysis of the dynamics of nutrient generation, 

transport and deposition across catchments. Some of the parameters and processes detailed in 

Chapter 3 considered paramount in nutrient transfer include: 

 

a) surface erosion, entrainment, sedimentation and deposition, 

b) catchment connectivity, 

c) nitrogen and phosphorus cycling, 

d) precipitation and soil moisture content, 

e) leaching and runoff, and 

f) adsorption. 

 

Another equally important factor in nutrient delivery is sediment conveyance and catchment 

connectivity. N and P are either transferred in dissolved form (N and P) or attached to 

sediments (mainly P) (Heathwaite and Dils, 2000), and owing to the connectivity and 

sediment delivery dynamics characteristic of many catchments, N and P become subject to  

discontinuous transport and deposition (Avnimelech and McHenry, 1984). Furthermore, the 

connectivity of landscape compartments affects sediment conveyance processes in response 

to external disturbances of varying frequency and magnitude (Fryirs et al., 2007). Therefore, 

under conditions of climate change, the source generation and distribution of sediments and 

nutrients is highly likely to change due to the anticipated high magnitude and intensity of 

rainfall events (Heathwaite and Dils, 2000). Deasy et al., (2007) argues that because the 

“processes of sediment and nutrient transfer are not well understood over the range of scales 

needed for appropriate modelling and management applications” it is not yet possible to 

assess the likely impacts of potential changes. However, the issue of scale is somewhat 

mitigated by the vast amount of work that has been carried out in sediment, catchment 

connectivity and nutrient transfer dynamics (Haygarth et al., 2005; Owens et al., 2007). 

These issues will be expanded on in greater detail in Chapter 3. 
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2.3 Assessing the Impacts of Climate Change on Water Quality 

 

2.3.1 Introduction  

 

It is now a well-accepted notion that some impacts of climate change on water resources are 

unavoidable (Kundzewicz et al., 2007; Bates et al., 2008; UNESCO, 2009). Projections 

generated from various General Circulation Models (GCMs) present persuasive evidence that 

global climate and hydrological systems are going to change despite mitigation actions 

(Schulze et al., 2005; Bates et al., 2008; UNESCO, 2009). GCM projections that herald 

increases in temperature and changes in rainfall variability associated with climate change, 

present sobering implications for, inter alia, environmental health and water quality 

(Lumsden et al., 2009). Regardless of the uncertainty inherent in climate change science 

(Schulze, 2005; Pittock, 2009), it is important to recognize the potential effects that climate 

change may have on critical water resources management facets such as water quality 

(Nelson et al., 2007). This section therefore presents the potential impacts of climate change 

specifically on water quality and associated processes and constituents. 

 

2.3.2 Climate Change and Water Quality: Impacts and Responses  

 

The anticipated changes in temperature, flow regimes and rainfall variability associated with 

climate change are expected to exacerbate water quality problems (Ducharne, 2007; Delpla et 

al., 2009). Increased temperatures will have implications for the chemical and biological 

integrity of rivers and other aquatic environments. For example, Van Vliet and Zwolsman 

(2008) presented a case whereby a 2oC increase in water temperature during a drought in 

2003 resulted in a pH decline, eutrophication, decreased dissolved oxygen and increases in 

metal and metalloid concentrations in the Meuse River in France. In this example, the 

combination of low flows and high temperatures resulted in the deterioration of the water 

quality of this river (Van Vliet and Zwolsman, 2008). In such instances, the consequence of 

this combination is an increase in the toxicity of contaminants, which increases with 

temperature and consequently adversely affects aquatic life (Delpla et al., 2009).  
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Changes in rainfall variability result in changes in flow regimes (flow rates and timing), 

which has implications for pollutant residence times, pollutant concentrations, salinity levels 

in arid and semi-arid regions, pollutant transport and stream dilution capacities (Nelson et al., 

2007; Turton, 2008). The Meuse River case detailed in Van Vliet and Zwolsman (2008) 

provides an example that details how combinations of low flows and high temperatures, 

result in high pollutant concentrations and increased pollutant residence times 

(eutrophication), which leads to water quality deterioration. A similar but slightly varied 

trend is observed during high flow periods (during floods or rainy season peaks). Although 

high flows can result in the dilution of pollutants and in the reduction of pollutant residence 

times in rivers, the transport of pollutants to other locations which can occur during these 

events can result in the introduction of foreign contaminants to other aquatic environments 

(Beven, 2002; Turton, 2008; McCartney, 2009). For example, sedimentation, turbidity and 

increases in pollutant concentration can occur in rivers and dams following a high intensity 

rainfall event. Such events usually generate high soil losses and high runoff volumes which 

can cause pollutants and sediments to be transported from the upper parts of a catchment into 

downstream water sources (Prathumratana et al., 2008; Neal et al., 2008).  

 

Climate change is not only expected to alter rainfall patterns and, hence, variability, but also 

the intensity of individual events (Schulze et al., 2005; IPCC, 2007; Bates et al. 2008). The 

high runoff generated from these events can result in the flushing out of faecal coliform 

bacteria, disinfectant by-products (DBPs), dissolved organic matter (DOM), pathogens, 

pesticides and various industrial and agricultural pollutants into surface water and 

groundwater (Neal et al., 2008; Delpla et al., 2009). Groundwater quality has an added 

dimension when climate change is considered. Pittock (2009) noted that the El Niño Southern 

Oscillation cycle, which is expected to continue with climate change, will result in extreme 

high sea levels which can cause salt-water intrusion into aquifers thus impairing groundwater 

quality. Nelson et al. (2007) also indicate that the severe storms predicted to accompany 

global warming will result in “more polluted runoff” in a climate-altered future. Figure 2.5 

summarizes the potential impacts of climate change on water resources and on water quality, 

as outlined in this discussion. To further summarise the relationship between climate change 

and water quality, Table 2.1 correlates changes in climatic extremes and the potential 

resultant effects on water quality variables. 
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Figure 2.5 Potential impacts of climate change on water resources and drinking water 

quality (Delpla et al., 2009)  

 

These changes are based on the IPCC (2007) report that details “estimates of confidence” in 

projected changes for the 21st century. It is apparent from this table that the most serious 

impacts on water quality are either virtually certain or very likely. This is a cause for real 

concern regarding the integrity of surface water and groundwater quality. In semi-arid 

countries such as South Africa, where water resources are already under severe pressure from 

both quality and quantity perspectives, these projections have especially significant 

implications. As mentioned before, many uncertainties abound in climate change science 

(Schulze, 2005; IPCC, 2007; Bates et al., 2008; Pittock, 2009), especially because of its 

distinctly multi-disciplinary nature. Such projections, therefore, need to be viewed in a 

context that accepts the inherent uncertainty, but that does not prevent decisions being made. 

This is especially important in the application of multi-disciplinary concepts such as 

Integrated Water Resource Management (IWRM). 
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Table 2.1 Projections of extreme climatic events and associated impacts on water quality 

variables (IPCC, 2007). 

 

Changes in phenomena and 

direction of trend 

Confidence in projected 

changes (during 21st 

century) 

Impacts on water 

quality variables 

Higher maximum temperatures and 

more hot days over most land areas 

Virtually certain (>99% 

confidence) 

Higher ambient and water 

temperatures, reduces 

dissolved oxygen (BOD 

and COD), reduces pH 

(increased acidity) and 

increases pollutant 

residence times, adverse 

impacts on aquatic 

ecosystems. 

Higher minimum temperatures and 

fewer cold days over most land 

areas 

Virtually certain  Surface ice formation can 

lead to reduced oxygen 

levels, disrupts ecological 

functions (e.g. spawning 

and migration).  

Heavy precipitation events with 

increased frequency over most 

areas 

Very likely (>90% 

confidence) 

Increased flushing of 

toxic material, faecal 

coliform bacteria (e.g. E. 

coli), transport of NPS 

pollutants, disrupts 

normal flow regime 

pulses. 

Increased areas under risk of 

drought  

Likely (>66% confidence) Reduced dilution 

capacities, increased risk 

of salinity level increases, 

increased pollutant 

toxicity. 

Increased incidence of extreme 

high sea levels  

Likely (>66% confidence) Salt-water intrusion, 

destruction of coastal 

riparian ecosystems.  
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In view of the shift in emphasis towards environmental protection and water quality 

improvement under climate change, a subject that requires consideration is the water 

resources planning that will be increasingly critical in water quality management under future 

conditions of change. The previous discussion highlighted the importance of judicious 

decision-making under conditions of uncertainty. Water quality modelling and process-based 

predictive catchment studies are indispensable water resources management tools that are 

critical in decision-making under uncertainty (Rajar et al., 2007; Argent et al., 2009; Lorentz 

et al., 2010; Schellart et al., 2010). The following section presents a brief description of the 

principles and practices observed in water quality modelling and process-based predictive 

studies and the application of these concepts in climate change studies. 

 

2.3.3 Managing the Impacts of Climate Change on Water Quality 

 

With the current discussion on global change, there has been an increased requirement for the 

development of hydrological prediction and mapping tools that support appropriate water 

quality management and decision-making (Bates et al., 2008; Zimmerman et al., 2008; 

Kundzewicz et al., 2007). The connection between land use change, climate change and 

water quality degradation necessitates the development of predictive tools that will provide 

support for the assessment and analysis of pollutant loads in catchments and offer possible 

solutions towards improving catchment water quality (Argent et al., 2009; Mannina and 

Viviani, 2010). To fulfil that objective, a number of predictive tools such as water quality 

models and other predictive tools (see Leigh et al., 2010 below) have been developed, tested 

and applied under various instances in the past few decades (Rajar et al., 1997; Falconer and 

Lin, 1997; Huang et al., 2009; Leigh et al., 2010; Lorentz et al., 2010). In order to effectively 

manage the impacts of climate change on water quality, it is important to critique the 

vulnerability assessment tools that will enable the development of appropriate adaptation 

strategies. 

 

Leigh et al. (2010) undertook a study which investigated the vulnerability of reservoirs to 

poor water quality and cyanobacterial blooms under future conditions of change (climate and 

land use change), in southeast Queensland, Australia. During the summer months, this region 

experiences high ambient and water temperatures and high rainfall frequencies, both of which 

facilitate stronger stratification and increased inflow rates respectively.  
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The result of strong stratification is the release of bio-available nutrients from anoxic 

sediments and high inflow rates increase the nutrient supply into reservoirs (Shanmugam et 

al., 2008; McCartney, 2009). This results in increased incidences of toxic cyanobacterial 

blooms due to increases in nutrient loads in the reservoirs of this region. The ability, 

therefore, to assess the vulnerability of these reservoirs to bloom events was considered 

paramount in providing information for decision-making, hazard prevention and water 

resources management (Leigh et al., 2010). This statement highlights a crucial step in linking 

biophysical processes with vulnerability and adaptation in water law and policy. 

  

The study developed an “index of vulnerability” based on catchment characteristics and 

reservoir management criteria. The vulnerability index (VI) is essentially a measure of a 

reservoir’s vulnerability to poor water quality under future conditions i.e. the ratio of 

vulnerability to poor water quality for a particular reservoir (Leigh et al., 2010). The 

vulnerability index was tested by using water quality data collected from 15 reservoirs 

located in and around Queensland. Water quality parameters tested for included total nitrogen 

and phosphorus (TN and TP), dissolved inorganic nitrogen and dissolved inorganic 

phosphorus. The VI of a reservoir was assessed by analysing the correlation between index 

scores and water quality parameters in the 15 reservoirs. For instance, a reservoir with a VI of 

0.77 was considered to be the most vulnerable reservoir to poor water quality. This does not 

suggest that the reservoir had the highest concentration of nutrients over the duration of the 

study, but it implies that in the future, based on factors that influence nutrient generation and 

transport, water quality deterioration in this reservoir will be highly probable. A reservoir 

expected to experience adverse climate change related impacts would also have a high VI. 

The authors concluded that although improvements can be made to the calculation of the VI, 

it can still serve as a valuable tool to water authorities and managers to confidently assess the 

vulnerability of reservoirs to poor water quality under future conditions of change (Leigh et 

al., 2010).  

 

The study by Leigh et al. (2010) highlights an important aspect regarding the vulnerability of 

systems: vulnerability is a relative property (Ionescu et al., 2009). For example, increased 

pollutant discharge and extreme events under climate change can potentially lead to increases 

in vector-borne diseases and, consequently, an increase in human health related problems 

(Haines et al., 2006).  
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Leigh et al. (2010) also recognised that under future conditions of change, increased nutrient 

generation and transport in catchments can result in water quality deterioration, which can 

ultimately affect ecosystem functioning and human health. Therefore, the study by Leigh et 

al. (2010) was able to highlight the critical link between biophysical processes and 

vulnerability studies.  

 

The use of water quality models is another equally important water resources management 

aspect that requires attention. The ability of water quality models to predict reaction changes 

and model the impacts of these changes throughout a system is not only important in enabling 

water suppliers to select improved operational strategies, but also ensures the delivery of safe 

drinking water to consumers (Munavalli and Kumar, 2004). This statement carries with it 

important implications for water quality modelling. Under future conditions of change, the 

use of models is going to be increasingly important in the management of water resources. 

The statement by Munavalli and Kumar (2004) indicates that the use of water quality models 

enables the selection of improved operational strategies such as best management practices or 

BMPs. This can potentially be translated to improved adaptation strategies, which will take 

into account the effects of climate change on water quality. Water quality modelling is, 

therefore, a critical tool which enables the management of existing and future pollution 

dynamics of receiving water bodies and/or fluvial systems. Application of water quality 

models in South Africa is also critically important if adaptive water quality management is 

going to be effectively applied in daily water resources management. Not only does this build 

adaptive capacity by strengthening already existing predictive tools (e.g. design rainfall 

studies and the ACRU-NPS modelling system), but it also creates a new potential decision-

making tool that will reduce uncertainty in water resources management.  
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2.4 Discussion and Conclusions 

 

The above literature review of the impacts of climate change on water quality identified a 

number of critical parameters, variables and processes related to water quality that will 

become increasingly important under future conditions of change. It was identified in this 

review that nitrogen (N), phosphorus (P) and sediment will increasingly become variables of 

concern under an increasingly changing climate. Furthermore, the review recognised that the 

increased variability of rainfall and elevated temperatures anticipated under climate change 

will add further complexity to current water quality management by altering the behaviour of 

nutrients and sediment. This stems from the fact that the source generation and displacement 

of these variables is highly influenced by climatic conditions. Consequently, changes in 

rainfall and temperature are anticipated to result in changes in biophysical processes such as 

runoff (i.e. baseflow plus quickflow), evaporation, sediment and nutrient generation and 

displacement and finally, river flows.  

 

This review also raised a number of contemporary water quality management issues which 

were considered paramount to the development of adaptation strategies for local water 

resources management. For example, the issue of increased human interventions in local 

catchments, such as the Mngeni Catchment was highlighted as being the primary cause of 

water quality deterioration. It was, therefore, recommended that adaptive water quality 

management be applied in order to enable the recognition of the impacts that human 

intervention has on freshwater systems, and to offer novel management ideas and policies and 

promote institutional commitment to effectively manage water quality issues in this country. 

This review also indicated some fundamental problems regarding water quality in South 

Africa. For instance, owing to the extensive pressure on local water resources, the majority of 

South African rivers are considered to have lost their ability to dilute effluent generated from 

point and non-point sources. Increasing concentrations of pollutants such as nitrates, 

phosphates and sediments are being recorded across many South African waterways and 

reservoirs. The implications for drinking water quality standards and the sustainability of 

rivers and dams in the future are, however, yet to be established.  
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This implies that without the establishment of the links between basic biophysical processes 

that influence water quality and the impacts of climate change on those processes, local water 

quality management is going to become increasingly complex and unsustainable. This gap in 

knowledge has extensive implications for adaptive water resources management in this 

country.      

 

Increased concentrations of nutrients (N and P) generated from the increased use of 

agricultural pesticides and fertilizers, has been recognized as one of the main factors that 

contribute to fundamental local water quality problems such as eutrophication and bloom 

events. This is an inevitable outcome considering the fact that South Africa is comprised 

mainly of agricultural catchments and the increasing food demands prompt the agricultural 

sector to use increasing amounts of soil and crop ameliorants to meet these demands. An 

added dimension to the issue of nutrient generation and dislocation is that of sediment 

conveyance and catchment connectivity. 

 

N and P are transported in dissolved states and bound to sediment particles respectively. 

Considering the increased magnitude and intensity of rainfall events under climate change, an 

increase in soil erosion and sediment transfer is expected. This implies that the movement of 

sediment and these nutrients (N and P) from source areas to water resource systems is likely 

to increase. Depending on the (dis)connectivity of landscape/catchment compartments, the 

movement of nutrients and sediment, N and P will vary according to how landscapes respond 

to external disturbances. It is therefore important to assess the relationship between climate 

change, sediment, N and P dynamics and landscape/catchment connectivity in local water 

quality management. The above discussion was considered to have significantly contributed 

to one of main objectives of the review, which was to highlight the links between adaptation 

in water law and policy and adaptation in water quality management.  

 

The above discussion reveals another key gap in knowledge with respect to water quality 

management in South Africa: although the impacts of a changing climate on local water 

resources have been widely studied with a marked emphasis on water quantity, minimal 

effort has been directed towards assessing water quality issues under climate change. 

Considering the notion that water quality equally limits water quantity, this gap in knowledge 

requires due consideration. Even more disconcerting is the fact that such gaps in knowledge 
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exist in a country considered to be highly vulnerable to the impacts of climate change and one 

that is characterised by a predominantly low adaptation capacity. In the interest of developing 

appropriate adaptation strategies in local water resources management, the importance of 

incorporating water quality into policy development and governance systems cannot be 

overemphasised. Chapter 6 presents a detailed description of how this may be achieved. 

 

Another equally important topic that was assessed in this review was that of water quality 

modelling. Although South Africa has a fair amount of experience in hydrological modelling, 

local water quality modelling appears to still be in its infancy. The review highlighted the 

necessity of developing water quality models that account for potential changes in 

biophysical processes under future conditions of change. The capability to develop new water 

quality models or, if necessary, extend existing models, exists in local water resources 

management. Harnessing the ability to perform the necessary modelling exercises locally is 

going to become increasingly important under future conditions of change, as indicated by 

the literature review. Consequently, the ability to model the projected impacts of climate 

change on sediment yield and phosphorus is going to form a critical component of the 

proposed study.  

 

In conclusion, to design and implement effective adaptive water quality management 

strategies, the relationship between human activities and natural processes was highlighted as 

an important water resources management dimension in this review. The climate change 

projections contained in Table 2.1 suggest that further investigation of this dimension is 

going to be increasingly crucial for the future. This is going to be especially true in South 

Africa, considering the perpetual pursuit of economic growth, near-exponential population 

growth and socio-political instability that has become a basic characteristic associated with 

this nation. To properly ascertain the extent of climate change impacts on water quality and 

the complex relationship these impacts are expected to create with socio-economic systems, it 

is imperative that a sound understanding and quantification of biophysical processes be 

established and the various links be based on that understanding. Following from the 

preceding assessment of the fundamental issues regarding the relationships between climate 

change and water quality, the following Chapter provides a detailed discussion into the 

potential impacts of climate change on specific water quality constituents (nitrogen, 

phosphorus and sediment). 
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ABSTRACT  
 

The necessity of developing an adequate understanding of the relationships between the 

potential impacts of climate change on the generation and delivery of sediment and nutrients 

cannot be over-emphasized. The majority of hydrological processes governing the generation, 

transfer and deposition of sediment and nutrients have been shown to be highly sensitive to 

climatic factors. Consequently, changes in climatic variables such as temperature and rainfall 

are expected to trigger and/or accelerate changes in the transfer dynamics of sediment and 

nutrients across disturbed catchments. Although in South Africa the relationships between 

climatic variability, sediment delivery and nutrient transfer are not entirely understood across 

the full range of scales necessary for management, the development of the necessary 

adaptation strategies remains a critical part of local water resources management. This paper, 

therefore, aimed at reviewing the relationships between climate change and sediment/nutrient 

transport, and the potential implications this will present for locally-relevant and 

management-specific adaptation. It was concluded that regardless of the impacts of climate 

change on sediment delivery and nutrient transfer and the consequent impacts on water 

quality, the development of adaptation strategies requires an approach that recognises both 

climate variability and climate change to ensure that flexibility and robustness is incorporated 

in those strategies.   

 

Keywords:  Climate Change, Climate Variability, Sediment Delivery, Nutrient Transfer, 

Adaptation, Water Resources Management. 
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3.1 Introduction  

 

There is a well-recognised fundamental and applied need to detail the effects of a changing 

climate on catchment-wide nutrient and sediment transfer dynamics (Edwards and Withers, 

2008; Han et al., 2010; Shrestha et al., 2012) (Also see Chapter 2, Section 2.3). Furthermore, 

the increased introduction of pollutants from non-point sources into freshwater systems has 

highlighted the urgency for developing effective and integrative water resources management 

strategies to mitigate water quality deterioration in freshwater systems (IPCC, 2007). This is 

primarily motivated by the understanding that freshwater resources have finite dilution 

capacities to process pollutants generated from non-point sources and, consequently, by the 

dynamic relationships between water quality and water quantity. For instance, during extreme 

hydrological events, too much water (e.g. floods) or too little water (e.g. droughts), may 

cause water quality deterioration by instigating increased loading and transport of pathogens 

and pollutants or affecting the dilution capabilities of rivers and other water bodies (Mimikou 

et al., 2000; Tsujimura, 2004). Such conditions would effectively result in reduced water 

productivity and escalating water treatment costs.  

 

The effects of non-point source (NPS) pollution are associated with the generation, transport 

and deposition of abnormally high loads of sediment and nutrients, over and above that which 

the natural environment can assimilate. This consequently leads to, inter alia, freshwater 

eutrophication, the contamination of potable water supplies, the deterioration of aesthetic 

features, increased chemical toxicity and the destruction of terrestrial and aquatic ecosystems 

(Novotny, 2003; Delpla et al., 2009). It was noted in Section 2.2.3 that the transport or 

transfer of sediment and nutrients over the landscape is influenced by various factors 

including surface runoff, erosion, subsurface leaching from soil, point-source emissions, land 

use management, atmospheric deposition and biogeochemical processes in the freshwater 

system (Deasy et al., 2007; Rosberg and Arheimer, 2007). With the exception of point-source 

emissions and land use management, all these processes are strongly influenced by local 

weather patterns and consequently by the prevailing climate (Rosberg and Arheimer, 2007). 

It is apparent, therefore, that a changing climate can lead to changes in sediment and nutrient 

delivery dynamics. Superimposing the impacts of climate change on the effects of other 

forms of global change (i.e. population growth, economic development and land use change) 
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also illustrates the dramatic consequences that widespread NPS sediment and nutrient 

pollution may present for the management of freshwater systems. 

 

From a more local perspective, South Africa is classified by the Köppen Global Climate 

Classification System as a semi-arid country, with over 65% of the country receiving an 

average of 460mm of annual precipitation, a value significantly below the global average of 

860mm.yr-1 (Lohmann, 1993; Hewitson et al., 2005; Turton, 2008). In addition, South Africa 

is characterized as having “a high risk hydroclimatic environment” (Schulze, 2005; Schulze 

et al., 2005), and is expected to experience the impacts of severe climate change, which will 

be manifested through an “amplification of the variability of an already highly variable local 

hydrological cycle” (Schulze, 2005). If accepted, the latter statement implies serious 

implications for South African water resources management and suggests an urgent need to 

shift from the current management paradigms, which are mainly focused on water supply and 

less on water quality, to a more integrated system in which the importance of both quality and 

quantity are recognised as equally important aspects of water resources management.  

 

Similar to Rosberg and Arheimer (2007), Jennings et al., (2009) and Donohue et al., (2005) 

also note that the transfer of sediment and nutrients from non-point or diffuse sources is 

highly sensitive to climatic factors (see Section 2.3.2). In addition to this, the spatial patterns 

and magnitudes of climatic variables (i.e. precipitation and temperature) directly govern the 

magnitude, as well as the spatial and temporal losses of sediment and nutrients from 

catchments (Donohue et al., 2005). Considering the notions of Jennings et al., (2009) and 

Donohue et al., (2005), and the high variability of the South African hydroclimatic 

environment (Schulze et al., 2005), significant changes in the dynamics of NPS sediment and 

nutrient transport may be expected under projected climate change. In water resources 

management, the uncertainties associated with climate change make it critical to continually 

assess and re-assess the dynamic influence of this phenomenon on the flow, utilisation and 

treatment of water, as it moves through the hydrological cycle. This paper presents a review 

of the relationships that exist between climate change, selected nutrients and sediment 

transport and the potential implications this will present for management-specific adaptation. 

The review follows a sequence, which initially describes the typical behaviour of each 

pollutant (i.e. nitrogen, phosphorus and sediment) across the landscape and follows with the 

association of those behaviours with generally accepted climate change projections.  
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3.2 Nutrient and Sediment Transfer Processes in the Environment 

 

3.2.1 Nutrients 

 

Recent concerns over the increased anthropogenic introduction of nitrogen- and phosphorus-

related contaminants into the environment have stimulated numerous investigations aimed at 

assessing the controls of N and P transport across the landscape (e.g. Cirmo and McDonnell, 

1997; Withers et al., 2001; Scanlon et al., 2004; Bachmair et al., 2009). Much of this effort 

has been concentrated on forested and agricultural catchments, where a major proportion of N 

and P contaminants are considered to originate (Honisch et al., 2002; Edwards and Withers, 

2008; Tong et al., 2009). Point sources of N and P inputs into the environment, such as 

industrial effluent and wastewater from sewage works, can be identified and consequently 

contained with relative ease, arguably rendering these sources relatively inconsequential 

(Schärer et al., 2006). However, non-point sources of pollution, such as agriculture, regional 

and global atmospheric fallouts of harmful compounds, persist as the main contributors to 

environmental pollution (IPCC, 2007; Schindler, 2006; Pärn et al., 2011). Although nutrient 

cycling (Figure 3.1) is a natural process, it is intentionally enhanced by agriculturally-

oriented activities, in order to increase primary production. Nutrients of anthropogenic origin 

frequently enter natural ecosystems through various hydrological and atmospheric pathways 

and consequently induce water quality problems (De Vries et al., 2002; Hatch et al., 2002; 

Turpie et al., 2008; Van Wilgen and Biggs, 2010). The effective management of 

environmental pollution as a consequence of diffuse sources of pollution requires a thorough 

understanding of the processes that govern N and P transport. This section, therefore, presents 

a brief overview of the processes which govern N and P transport and the relationships that 

exists between nutrient transport and hydroclimatic processes. 
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Figure 3.1  Schematic overview of nutrient cycling in terrestrial ecosystems (Van Der 

Perk, 2006) 

 

3.2.2 Nitrogen 

 

The central role of nitrogen as a limiting nutrient in natural ecosystems and more especially 

in agriculture is well recognised (Birkinshaw and Ewen, 2000; Almasri and Kaluarachchi, 

2004). Nevertheless, at high concentrations, nitrogen in its inorganic aqueous form can be a 

detriment to water resources and is toxic to animals, plants and humans. It has been shown 

that nitrogen plays a key role in instigating eutrophication, one of the most common and 

serious impairments of surface water (Carpenter et al., 1998). The details of how nitrogen 

contributes to this condition will be outlined shortly. Additionally, the occurrence of elevated 

concentrations of nitrates or, alternatively, nitrate-nitrogen (NO3
-N) in drinking water has 

been shown to induce disorders such as methemoglobinemia or “blue-baby syndrome” 

(Nelson and Hostetler, 2003; Guay, 2009). Elevated ammonium or ammonium-nitrogen 

(NH4
+-N) concentrations have also been shown to be toxic to plants and aquatic organisms 
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(Carmago et al., 2005). Having introduced the potentially harmful effects of elevated 

nitrogen concentrations, the following section outlines the nitrogen cycle which describes the 

movement of nitrogen compounds through terrestrial ecosystems.    

 

3.2.3 The Nitrogen Cycle 

 

Nitrogen transport across the landscape is governed by various processes encompassed in the 

nitrogen cycle (Figure 3.2).  Nitrogen fixation, usually the first process in the nitrogen cycle, 

is a process whereby atmospheric nitrogen is combined with other elements or with its own 

derivatives to form useful compounds (Van Der Perk, 2006). Leguminous plants (e.g. 

lucerne, beans and clover) living in symbiosis with bacteria of the Rhizobium genus have the 

ability to capture and fix nitrogen (N2) directly from the atmosphere. Additionally, massive 

energy surges such as those generated through lightning discharge also contribute to N2 

fixation (Neitsch et al., 2005). Organic nitrogen is then gradually released through the 

decomposition of organic matter by heterotrophic bacteria and fungi.  

 

Figure 3.2  Schematic overview of the N-cycle in the natural environment (Van Der Perk, 

2006) 
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This ammonification or mineralization process follows nitrogen fixation and occurs through 

the oxidation of organic nitrogen into amino acids and ammonium nitrogen (NH4
+-N). 

Subsequent to ammonification, autotrophic bacteria belonging to the Nitrosomonas and 

Nitrobacter genera oxidise NH4
+-N to form nitrate-nitrogen (NO3

--N) and the ephemeral 

nitrite-nitrogen (NO2
--N) (Braskerud, 2002). The high reactivity of NO2

- reduces its residence 

time in soils, resulting in the primary nitrogen compounds found in soil being NH4
+-N and 

NO3
--N. The oxidation of NH4

+-N to NO3
--N and NO2

--N described above only occurs under 

aerobic (oxygenated) conditions and is known as nitrification (Carpenter et al., 1998).  

 

NH4
+-N and NO3

--N compounds are usually cycled through the system via one of three paths: 

assimilation, volatilisation and denitrification. Commonly, primary producers and certain 

microorganisms may assimilate these compounds for utilisation in growth, development and 

reproduction processes. Alternatively, NO3
--N and NH4

+-N compounds may be removed 

through denitrification and volatilisation processes respectively. Denitrification is the 

reduction of NO3
--N to N2 or N2O primarily by bacteria. The process occurs under anaerobic 

or reduced conditions and is dependent on water content, temperature and presence of carbon 

sources and nitrate. This process is not, however, the opposite of nitrification as 

intermediaries formed during denitrification such as nitric oxide (NO) and nitrous oxide 

(N2O) may be rapidly lost from the system through volatilisation before the denitrification 

reaction is completed (Carmago et al., 2005; Larsson et al., 2005). Volatilisation, on the other 

hand, describes the gaseous loss of ammonia (NH3-N) through the reduction of NH4
+-N (Van 

der Perk, 2006).  

 

Inorganic nitrogen may also be assimilated and rendered temporarily unavailable to primary 

producers through the process of immobilisation. This process is the opposite of 

mineralization and is influenced by the organic carbon to nitrogen (C:N) ratio prevalent in a 

particular soil microbial biomass. The typical C:N ratio in soil is 20:1. Therefore, if nitrogen 

is limiting relative to organic carbon (C:N<20), mineralization is favoured and when the C:N 

ratio is above 20, net immobilisation is favoured. Although the processes briefly detailed 

above are considered important in the nitrogen cycle, processes such as nitrogen fixation and 

ammonium volatilisation are considered relatively inconsequential compared to processes 

such as ammonification, nitrification, denitrification and assimilation (Neitsch et al., 2005; 

Van Der Perk, 2006).  
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It is important to note that all the processes outlined above are influenced, in some way or the 

other, by the prevalent hydroclimatic conditions, i.e. precipitation and temperature variability. 

Having briefly introduced the chemical processes and fluxes that constitute the nitrogen 

cycle, the following section will be a detailed assessment of the physical nitrogen transport 

mechanisms across the landscape.  

 

3.2.4 Nitrogen Migration  

 

Many studies on nitrogen migration tend to be restricted to local catchments where the 

prevailing hydrological and climatic regimes are well known (Quinn, 2004). Although this 

may preclude the identification of geographically extensive mechanisms that control nitrogen 

transfer dynamics (Alvarez-Cobelas et al., 2008), it warrants the isolation and mapping of 

unique local catchment pulses that govern nitrogen migration (Pellerin et al., 2004). This 

enables the design and application of management strategies that are both relevant and 

specific to the catchment in question. The discussion contained in this and following sections 

will, therefore, be in reference to South African catchments and the prevailing local 

hydroclimatic conditions will be considered as a backdrop of the overall discussion. 

 

The movement of nitrogen across the landscape is highly dependent on the availability of 

water (Figure 3.2). Additionally, temperature indirectly influences nitrogen migration by 

limiting the ability of bacteria to facilitate nitrogen transformation reactions (Carmago et al., 

2005). In a study detailing the migration of nitrates across a watershed in Whatcom County, 

Washington, the highest concentrations of nitrates were primarily found in subcatchments 

with the highest number of water bodies. In such instances, nitrate concentrations were found 

to be as high as 39 and 19.7 mg/l in some of the water bodies studied (Almasri and 

Kaluarachchi, 2004). This study also showed that leaching and runoff are the main transport 

mechanisms by which nitrogen is transported to downstream areas and water bodies where it 

is deposited and may, in association with other nutrients and high enough concentrations, 

trigger eutrophication. Both leaching and runoff are functions of soil moisture content and 

precipitation and are highly influenced by local hydroclimatic regimes (UNEP, 2010).  
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Pellerin et al. (2004) note that the ability of wetlands to increase water retention times 

influences the export of nitrogen by streams by promoting nitrogen retention and 

volatilisation through sedimentation and denitrification respectively. In the study by Almasri 

and Kaluarachchi (2004) the highest concentrations of nitrates were also found in watersheds 

with the highest average annual precipitation. 

 

Of the forms of available inorganic nitrogen, nitrate-nitrogen (NO3
--N) is considered the most 

mobile anion and migrates easily through terrestrial and aquatic ecosystems (Van Der Perk, 

2006), as it is a water soluble anion that is not readily absorbed to soil particles (Felton et al., 

2008). As noted above, the ability of NO3
--N to migrate so easily warrants high levels of 

concern for environmental pollution and human health. In addition to nitrate-nitrogen, the 

soluble component of inorganic nitrogen also includes ammonium-nitrogen (NH4
+-N). 

Similar to NO3
- -N, NH4

+-N is also considered to migrate by surface and subsurface leaching 

and by runoff. However, the environmental and human-related impacts of NH4
+-N are 

considered inconsequential relative to those of NO3
- -N. It is perhaps important to note that 

the migration of nitrogen through terrestrial and aquatic ecosystems is not limited only to its 

elemental soluble forms. Nitrogen is, in fact, considered to be transported in both dissolved 

and suspended forms. Particulate nitrogen species (e.g. HNO3) are known to migrate by 

adsorption onto sediment material generated from upstream erosion or from bank and bed 

erosion in the stream channel (Viney et al., 2000). Although particulate forms of nitrogen are 

not transported conservatively (i.e. do not remain constant over space and time) as opposed to 

their soluble counterparts, they still subscribe to processes of surface erosion, entrainment, 

runoff (baseflow plus quickflow discharge), settling and deposition. Therefore, by deduction, 

hydroclimatic and biophysical processes which influence these transport processes also 

influence the transport of particulate nitrogen species. Figure 3.3 is an extended diagram of 

the processes detailed in Figure 3.2 to include transport processes of particulate nitrogen 

species. Table 3.1 provides a summary of the various natural and anthropogenic sources of 

nitrates and their compositional and delivery characteristics. 
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Table 3.1 Anthropogenic and natural sources of nitrate including general delivery 

characteristics, chemical compositions and conservation of mass (Adapted 

from Withers and Jarvie, 2008).   

*Changes in concentration as nutrient is translocated across the landscape. 

 

Although nitrogen is a critical element in the functioning of terrestrial and aquatic 

ecosystems, the incidence of this element in abnormally high concentrations can have 

deleterious impacts. However, these impacts only manifest when nitrogen exists in 

conjunction with other nutrients. For instance, eutrophication, an increasing water quality 

management problem in many global and local waterways, is commonly caused by both 

nitrogen and phosphorus. Since the focus of this section is limited to these two elements, the 

following section details the cycling and transport of phosphorus in terrestrial and aquatic 

ecosystems. 

 

Source Delivery Chemical 
Composition 

Conservation 
of Mass* 

Reference 

 Discharge Rainfall 
Dependency 

   

      
Fertilizer Applications 
(Pastures, Feedlots etc.) 

Episodic to semi-
continuous 

Low to 
Medium 

Variable 
Particulate 

No Larsson et al., 
(2005); 
Withers and 
Jarvie (2008) 

Fertilizer Applications 
(Irrigation, Return flows etc.) 

Episodic to semi-
continuous 

High Variable 
Dissolved 

Yes Withers and 
Jarvie (2008); 
Pärn et al., 
(2011) 

Industrial Continuous Low to 
Medium 

Concentrated 
Dissolved 

No Edwards and 
Withers 
(2008) 

Septic Tanks Episodic to semi-
continuous 

Low to 
Medium 

Variable 
Particulate 

No Carpenter et 
al., (1998) 

Landfill Sites Continuous High Variable 
Particulate 

No Honisch et al., 
(2002) 

Sewage and Wastewater 
Treatment Works 

Continuous Low Concentrated 
Dissolved 

Yes Novotny 
(2003) 

Rainfall Fallout Episodic High Variable 
Dissolved 

Yes Author 

Residential Continuous Medium to 
High 

Variable 
Dissolved 

No Novotny 
(2003) 

Dry Deposition Episodic Low Variable 
Particulate 

No Han et al., 
(2010) 
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Figure 3.3  Structure of the nitrogen cycle including particulate nitrogen transport 

processes (Viney et al., 2000). 

 

3.2.5 Phosphorus 

 

Phosphorus (P), akin to nitrogen (N), is an essential nutrient for all organic life forms. It is an 

essential element critical in various cellular biochemical processes such as energy production 

and transfer (i.e. ATP) and as a constituent of essential proteins such as DNA and RNA 

(Deasy et al., 2007). In the environment, P primarily occurs as mineral-P, occluded-P, non-

occluded P and organic-P. Mineral-P is generally the dominant form of P in the environment 

and progressive dissolution of mineral-P yields the organic, occluded and non-occluded 

forms of P (Van Der Perk, 2006). P is subject to the same transport mechanisms as N, in that 

it is transported in both dissolved and suspended (or particulate) forms. Although nutrient 

cycling processes account for a large proportion of P migration, catchment connectivity is an 

equally important factor in P transport. Catchment connectivity essentially describes the 

ability of landscape compartments to convey matter or energy across one another (Fryirs et 

al., 2007) and will be discussed in greater detail in subsequent sections. 
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3.2.6 The Phosphorus Cycle 

 

The terrestrial P-cycle, summarised in Figure 3.4, is relatively less complex in comparison to 

the nitrogen cycle. This is because unlike nitrogen, phosphorus occurs in fewer forms in the 

environment and does not have volatile gaseous derivatives. Weathered from bedrock 

through the dissolution of phosphorus-bearing minerals such as apatite 

(Ca10(PO4)6(OH,F,Cl)2), P solubilised during weathering is usually available for uptake by 

plants and other microorganisms (Sims et al., 1998; Van Der Perk, 2006). However, once in 

the soil solution, P is commonly unavailable for uptake. This is due to the strong sorption of 

P by various soil constituents, particularly ferric iron and aluminium hydroxides. Although 

the bioavailability of P in the soil solution is low, plants and other organisms are able to 

extract small portions through various physiological strategies (e.g. ion-exchange and 

chelation mechanisms) (Barros et al., 2005). The transfer of P across the landscape is 

significantly influenced by ion-exchange dynamics and gradients within the soil solution 

(Schindler, 2006). Therefore, by introducing above-normal loads of P into the environment 

through anthropogenic activities, the bioavailability of P is increased and this can present 

significant environmental health problems. 

 

Figure 3.4 Structure of the phosphorus cycle including particulate phosphorus transport 

processes (Viney et al., 2000) 
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3.2.7 Phosphorus Migration 

 

P is either transferred in dissolved or soluble form or attached to sediment as particulate or 

colloidal P (Heathwaite and Dils, 2000). Similar to N, dissolved P is routed conservatively 

through the catchment via leaching and runoff processes such as surface entrainment, 

interflow, baseflow and quickflow discharge. The particulate portion of P generally moves 

through the landscape via erosion and sediment conveyance processes and is not routed 

conservatively. Figure 3.5 is an example of the various processes through which P migrates 

through an agricultural catchment. Surface runoff from uncultivated soil or from disjunct and 

adjunct impervious areas generally carries little sediment and is therefore dominated by 

dissolved P (Shigaki et al., 2006).  

 

 

Figure 3.5 Factors affecting the input, fate and transport of P in agricultural catchments 

(Shigaki et al., 2006).  
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Mainstone et al. (2008) note that particulate P attached to sediment can constitute up to 60% 

of P lost from agricultural land through surface runoff. This implies that installing runoff and 

erosion control measures such as contours and embankments is critical in minimizing P loss 

from agricultural land. P is generally released when incident precipitation or irrigation water 

interacts with a thin layer of surface soil prior to leaving the field as surface runoff. Although 

soluble P is usually found in higher concentrations in the environment in comparison to 

particulate P, the latter can serve as a long term source for algae in waterways and reservoirs 

(McDowell and Wilcock, 2004).  

 

The extent and degree of catchment connectivity can also significantly affect the migration of 

P. The connectivity of landscape compartments affects sediment conveyance processes in 

response to external disturbances of varying frequency and magnitude (Fryirs et al., 2007). 

For instance, highly urbanized catchments usually display high degrees of connectivity 

compared to their more rural counterparts. This is due to the high proportion of impervious 

areas in urban environment which favour better conveyance of matter and energy. Therefore, 

within these catchments, P can be expected to be transported with relative ease and over 

larger areas. In rural or agricultural catchments, however, connectivity is usually broken by 

the incidence of buffers. These buffers include riparian zone strips, wetlands and dams. In 

catchments where such buffers occur in high degrees, P migration is limited. However, this 

also presents numerous disadvantages in that the increase in concentration and load of P in 

these buffers favours eutrophic conditions which results in the deterioration of their water 

quality. This discussion indicates that the source generation and distribution of P is highly 

dependent on the magnitude and intensity of rainfall since rainfall drives subsurface leaching 

and surface runoff. Therefore, under conditions of an altered climate, where the variability of 

rainfall events is expected to change, the rate and direction of P migration can also be 

expected to change. Table 3.2, like Table 3.1 for nitrates, provides a summary of the various 

natural and anthropogenic sources of phosphates discharged to water and their compositional 

and delivery characteristics. 
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Table 3.2  Anthropogenic and natural sources of phosphates including general delivery 

characteristics, chemical compositions and conservation of mass (Adapted 

from Withers and Jarvie (2008)).   

*Changes in concentration as nutrient is translocated across the landscape.  

 

This section has described, albeit briefly, the processes involved in the migration of nutrients 

in the environment and the hydroclimatic processes which influence the transport of these 

nutrients. Since the aim of this review is to assess the relationships that exist between climate 

change and the transfer dynamics of sediment and nutrients, the following section provides a 

brief description of the processes influencing catchment-scale sediment delivery. 

 

 

 

 

 

Source Delivery Chemical 
Composition 

Conservation 
of Mass* 

Reference 

 Discharge Rainfall 
Dependency 

   

      
Fertilizer Application 
(Pastures, Feedlots etc.) 

Episodic to semi-
continuous 

Low to 
Medium 

Variable 
Particulate 

No Carpenter et 
al., (1998); 
Withers and 
Jarvie (2008) 

Fertilizer Application 
(Irrigation, Return flows etc.) 

Episodic to semi-
continuous 

High Variable 
Dissolved 

Yes Carpenter et 
al., (1998);   
Withers and 
Jarvie (2008);  

Industrial Continuous Low Concentrated 
Dissolved 

No Author 

Septic Tanks Episodic to semi-
continuous 

Medium Variable 
Particulate 

No Carpenter et 
al., (1998) 

Landfill Sites Continuous High Variable 
Particulate 

No Deasy et al., 
(2007) 

Sewage and Wastewater 
Treatment Works 

Continuous Low Concentrated 
Dissolved 

Yes Novotny 
(2003) 

Rainfall Fallout Episodic High Variable 
Dissolved 

Yes Author 

Wetlands Episodic to semi-
continuous 

High Variable 
Dissolved 

No Braskerud 
(2002) 

Suspended Sediment Episodic Low Variable 
Particulate 

No Han et al., 
(2010) 
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3.2.8 Catchment Scale Sediment Transfer 

 

The generally accepted theory of catchment scale sediment transfer follows the notion that 

upstream sources of runoff and sediment are (dis)connected to their corresponding 

downstream sinks through linkages referred to as hydrological and sedimentological 

connectivity (Fryirs et al., 2007; Gumiere et al., 2011). Hydrological connectivity refers to 

“the transfer of water from one part of the landscape to another” while sedimentological 

connectivity refers to the “physical transfer of sediment and attached pollutants through the 

drainage basin” (Bracken and Croke, 2007). Erosion generates sediment by detaching and 

transporting soil particles through the erosive forces of raindrops and surface flow of water. 

The detached soil particles then traverse the landscape through natural and artificial rills, 

gullies and channels and progressively move into ephemeral streams (should they exist) and 

finally into continuously flowing river channels. Depending on the degree of connectivity 

characteristic of the catchment, sediment particles can be entrained and deposited at any point 

along the river channel flow path (Neitsch et al., 2005).  

 

Although erosion and sedimentation processes are strongly influenced by environmental 

factors such as climate, morphology, relief, geology and soil type, it is the extent and type of 

land uses and land use changes unique to each catchment which are the key controls 

influencing the generation, transfer and deposition of sediment (Lexartza-Artza and 

Wainwright, 2011). Additionally, Vericat and Batalla (2005) note that sediment is transferred 

through the catchment continuously, with the river channel serving as a “conveyor belt” for 

the transfer of erosional products downstream to the ultimate depositional sites. Therefore, 

any breaks in catchment continuity through land use will directly influence the rate of 

sediment transfer. Dams, for instance, are considered to be highly effective in disrupting the 

continuity of sediment transfer by trapping bedload and a considerable amount of suspended 

sediment (McCartney, 2009). However, not only does this cause dam sedimentation resulting 

in the long-term reduction of reservoir storage capacity (Heathwaite et al., 2004), but it also 

introduces sediment-associated pollutants into receiving waters thus creating serious water 

quality problems (Ng Kee Wong et al., 2002; Leigh et al., 2010).  

 

Although erosion is a process that occurs naturally; human influences have been shown to 

accelerate the rate of erosion (Steegen et al., 2001; Bjoneberg et al., 2006). Hence catchments 
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with high degrees of human influences coupled with high connectivity (e.g. highly disturbed 

catchments or catchments with limited sediment storage compartments such as dams or 

wetlands) may be expected to experience greater degrees of sediment related pollution. 

Furthermore, the connectivity of landscape compartments affects sediment transfer processes 

in response to external disturbances of varying frequency and magnitude (Fryirs et al., 2007). 

Therefore, under conditions of an altered climate, the source generation and distribution of 

sediment is highly likely to change due to, for example, the anticipated increased magnitude 

and intensity of rainfall events (Heathwaite and Dils, 2000). Soil erosion is usually computed 

using Modified Universal Soil Loss Equation (MUSLE; Eq. 2) (Williams, 1975). The 

MUSLE equation is a modified version of the Universal Soil Loss Equation (USLE; Eq. 1) 

developed by Wischmeier and Smith (1978). According to the Soil and Water Assessment 

Tool (SWAT) Manual, the USLE equation uses rainfall energy to estimate average annual 

gross erosion whereas the MUSLE equation replaces this energy factor with a runoff factor. 

This is considered to improve sediment yield prediction, eliminate the need for sediment 

delivery ratios and facilitate the application of the equation to individual storm events 

(Neitsch et al., 2005).  

 

The USLE equation estimates average annual soil loss from: 

 

A = R.K.LS.C.S.P      (1) 

 

And MUSLE estimates average annual soil loss from: 

 

A = 11.8 (Qsurf. Qpeak. Areahru)0.56. K.C.P.LS.CFRG  (2) 

 

Where, in both equations 1 and 2, A is the estimated soil loss per unit area (metric tons), K is 

the soil erodibility factor (0.013 metric ton m2 .hr/ (m3-metric ton cm)), L is the slope-length 

factor, S is the slope-steepness factor, C is the cover and management factor and P is the 

support practice factor. In equation 1, R is the rainfall erosivity (or rainfall energy) factor 

(0.017 m-metric ton cm/ (m2 hr)) and in equation 2, Qsurf is the surface runoff volume (mm 

H2O/ha), Qpeak is the peak runoff rate (m3/s), Areahru is the area of the hydrological response 

unit (HRU) (ha) and CRFG is the coarse fragment factor (Merritt et al., 2003; Neitsch et al., 

2005).  
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The USLE soil loss model has a number of limitations. The model is not event-based, which 

essentially implies that it cannot identify events which are most likely to result in large-scale 

erosion (Merritt et al., 2003). Gully erosion and mass movement are omitted and the model 

should not be applied outside the United States (where the model was developed) due to data 

constraints. Therefore, a number of modifications and revisions to the USLE have been 

proposed. These include the previously discussed MUSLE model, the Revised USLE 

(RUSLE) model (Renard et al., 1994) and the USLE-M model (Kimmel and Risse, 1998). 

 

This section has briefly described the processes involved in the migration of nutrients and 

sediment in the environment and the hydroclimatic processes which influence their transport. 

Since the aim of this review was to assess the relationships that exist between sediment and 

nutrient transfer and projected climate change, the following section details the implications 

an altered climate presents for sediment and nutrient transfer. 

 

3.3 Impacts of Projected Hydro-Climatic Changes on Sediment and Nutrient 

Dynamics 

 

3.3.1 Impacts of Altered Precipitation Variability 

 

Changes in climate variables, including precipitation (depth, duration and frequency), are 

expected to alter the transfer dynamics of sediment and nutrients worldwide (Jeppesen et al., 

2011). Although not well understood over the full range of scales necessary for management, 

the relationships between precipitation variability, sediment delivery and nutrient transfer 

have been extensively studied (e.g. Viney and Sivapalan, 1996; McNamara and Cornish, 

2004; Low, 2005;  IPCC, 2007, Bates et al., 2008; Statham, 2011). In South Africa, for 

instance, an extensive climate change study was conducted in which the projected impacts of 

climate change on the water resources of the country were assessed through climate scenario 

development and impact modelling (Schulze et al., 2005). With respect to precipitation trends 

under climate change, some of the findings of this study were that increases in precipitation, 

increases in raindays and increases in rainfall event intensities may be expected for eastern 

and central parts of the country and the opposite is anticipated for western regions of the 

country (Hewitson et al., 2005).  
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The statements made by Hewitson et al., (2005), therefore suggest that in countries such as 

South Africa, in which climate change related increases in precipitation and runoff are 

anticipated, an increase in the rate at which sediment and nutrients are generated and 

transferred across catchments located in eastern and central regions of the country may also 

be anticipated.  

 

The timing and volume of runoff within a catchment is intrinsically linked to seasonal climate 

variability and change, particularly rainfall variability (Shrestha et al., 2012). Furthermore, 

the transfer of sediment and nutrients from upstream sources to downstream sinks has been 

shown to be highly sensitive to climatic factors (Donohue et al., 2005; Jeppesen et al., 2011). 

Table 3.3, for instance, summarises the relationship between extreme climate change, rainfall 

variability and sediment and nutrient transfer. Table 3.4, on the other hand, provides a list of 

locally relevant, climate-sensitive biophysical processes and parameters that are anticipated 

to be impacted by climate change. Taking into consideration the sensitivity of runoff to 

rainfall variability, any changes in rainfall can, therefore, be expected to produce 

considerable changes in the dynamics of sediment and nutrient generation and transfer. For 

instance, heavy rainfall events (long/short duration, high intensity) result in increased erosion 

and the generation of high volumes of stormflow and runoff which subsequently leads to high 

sediment and nutrient generation and transport. Additionally, high intensity rainfall events 

can lead to the “flash” generation and rapid transport of stored sediment and nutrients through 

the sheer force of raindrops.  

 

A lot of uncertainties abound in climate change predictive modelling, especially in rainfall-

runoff modelling (Hewitson et al., 2005; Bates et al., 2008). However, these uncertainties are 

mitigated somewhat by the fact that the currently understood relationships between rainfall, 

runoff and non-point source pollution transport can be used as reliable benchmarks for future 

predictions (Christiansen et al., 2004). To complete the discussion regarding the impacts of 

hydroclimatic changes on sediment and nutrient transfer, the following section details the 

effects of temperature on these parameters. 
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Table 3.3 Projected changes in precipitation trends and impacts on sediment and nutrient 

generation, transfer and deposition constructed from a survey of the literature.   

 

 

i. Changes in climatic  

phenomena (derived from: 

IPCC 2001; Hewitson et al., 

2005; IPCC, 2007; Bates et 

al., 2008) 

ii. Consequence on 

hydrologic 

processes 

iii. Impact on 

sediment 

iv. Impact on 

nutrients (N and 

P) 

Heavy precipitation events with 

increased frequency (i.e. floods). 

High stormflow and runoff 

volumes and increased 

streamflow (Jeppessen et 

al., 2011; Hewitson et al., 

2005). 

 

Increased transport of 

sediment from source 

generation areas (e.g. 

landslides and soil 

slips) (Heathwaite and 

Dils, 2000; Fryirs et al., 

2007).  

 

Increased flushing of 

nutrients from source 

generation areas (EPA, 

2009). 

Increased water renewal of 

water bodies leading to 

washout of nutrients 

(Rosberg and Arheimer, 

2007). 

High intensity events. Rapid generation of 

stormflow and runoff 

(IPCC, 2001; 2007; Bates 

et al., 2008). 

Increased soil 

erodibility due to high 

raindrop energy 

(Mainstone et al., 

2008). 

Altered mixing patterns in 

stratified reservoirs 

(Tsujimura, 2004). 

Increased variability of 

precipitation. 

Increased inter-annual 

variability of runoff and 

streamflow (IPCC, 2001; 

2007; Bates et al., 2008). 

Increased variability in 

sediment transfer trends 

(Withers and Sharpley, 

2007). 

Increased variability in 

nutrient cycling trends, 

increased variability in the 

timing of nutrient delivery 

(Van Der Perk, 2006). 

Reduced precipitation events with 

increased frequency (i.e. droughts). 

Low volumes of stormflow 

and runoff and reduced 

streamflow (Hewitson et 

al., 2005). 

Higher deposition of 

sediment in sink areas 

(e.g. floodplains and 

estuaries) (Fryirs et al., 

2007).  

Reduced dilution 

capacities, increased 

pollutant toxicity (e.g. 

nitrate toxicity) (Carpenter 

et al., 2008). 

Reduced transport of 

sediment from source 

to sinks (McKergow et 

al., 2006). 

Reduced transport of 

nutrients from sources to 

sinks but increased storage 

of nutrients (Mainstone et 

al., 2008). 
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Table 3.4  Selected climate-sensitive processes linked to climate change and their impacts on water quality*. The probable direction of change of 

these processes under climate change is indicated by the arrows**.  Processes and trends in a particular row are not connected. 

SEDIMENTS NUTRIENTS BIOCHEMICAL PROCESSES 

Particle detachment/Erosion (↑) Fertilizer, manure and crop residue application 

(timing and rates) (↔) 

Organic matter decomposition (release of N and 

P) (↑) 

Overland flow (↑) Fixation (↑) Mercury mobilisation (caused by a build up of 

benthic anoxic layers) (↑) 

Instream sediment transport/Bed-load transport (↑) Ammonification (↔) Denitrification (e.g. in wetlands and riparian 

buffers) (↔) 

Flow types (Laminar vs Turbulent) (↔) Mineralization (↑) Acidification (increased deposition of N and P 

and releases of H ions) (↑) 

Attenuation of sediment conveyance (↓) Conversion of Organic N and P to Mineral N and P 

(↔) 

Solubility of gases (high temp. reduces solubility 

of oxygen) (↓) 

Sedimentation (↑) Wet and Dry deposition(↑) pH fluctuations (↔) 

Particle settling (i.e. rates) (↓) Leaching (↑) N and P transformation (↑) 

Suspension and Resuspension (influence on Turbidity and 

light pen.) (↑) 

Hydraulic conductivity (as related to how easily 

nutrients move through soil) (↑) 

Eutrophication (as the culmination of the 

impacts of NPS pollution of water resources) 

(↑) 

Shear stress (influence on detachment) (↑) Subsurface flow (inclusive of g/water flow and 

recharge) (↑) 

Formation of hypoxic zones (↑) 
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* References:  Novotny, 2003; Van der Perk, 2006; Heathwaite and Dils, 2000; Fryirs et al., 2007; Carmago et al., 2005; Withers and Jarvie, 2008; 

Withers and Sharpley, 2007; Smithers and Schulze, 2004; McDowell and Wilcock, 2004; Deasy et al., 2007; IPCC, 2001; IPCC, 2007; 

Bates et al., 2008; UNESCO, 2009. 

**  ↑ implies a highly probable increase, enhancement or exacerbation of the process under climate change. 

↓  implies a highly probable decrease, retardation or impairment of the process under climate change. 

↔  probable direction of change under climate change not known or not sufficiently documented in the literature to fully ascertain direction of     

change. 

Deposition (↑) Surface runoff (excess N and P) (↑) Increased residence times (Increased growth of 

algae and cyanobacteria) (↑) 

Riverbank scouring (↑) Dilution (capacity of stream to dilute nutrients) (↑) Solubilization of nutrients (↑) 

Phosphorus adsorption by very fine sediments (↑) Washout during extreme events (↑) Chelation (↔) 

Transport of adsorbed nutrients (↑) Salinisation (↑) Mineralization-immobilization turnover (MIT) 

(↑) 

Lagging of downstream conveyance (↓) Volatilisation/Evaporation (↑) Heterotrophic nitrification (↑) 

Tributary transport capacities (↓) Effluent seepage(↑) 

Breaching capacity of buffers (↓) Preferential flow via macropores (↑) 

Selective size segregation (↓) Plant uptake (↑) 

Sediment transport through overland flow (↑) SOM formation (contributing to N and P retention 

in soil) (↑) 



75 

 

3.3.2 Impacts of Temperature Changes 

 

Temperature is perhaps the most important climatological parameter in the climate change 

discussion. Explicitly or implicitly, temperature directly influences the supply of energy 

necessary for the initiation and catalysis of critical physicochemical reactions and 

climatological processes (Warburton et al., 2005). Not only does this ensure the continued 

functioning of terrestrial and aquatic ecosystems, but it also limits the rate at which both 

hydrological and biophysical processes proceed. In the context of this review, the implication 

of the previous statement is that any changes in temperature may be expected to have 

cascading effects on the hydrological processes which influence the transfer of sediment and 

nutrients. For instance, sediment is considered as a major transport medium for nutrients such 

as nitrogen and phosphorus (Slattery and Burt, 1997).  

 

Consequently, since the generation and transfer of sediment and nutrients is highly sensitive 

to climatic and land use factors (Donohue et al., 2005; Jeppesen et al., 2011), particularly 

rainfall-runoff relationships (Bates et al., 2008), changes in rainfall (influenced by changes in 

temperature and, thus, evaporation) resulting in changes in runoff processes can be expected 

to trigger changes in the generation and rate of transfer of sediment and thus nutrients (see 

Chapter 5). The relationships between temperature and rainfall have been well studied (e.g. 

Gleick, 2000; Schulze and Maharaj, 2004; Pittock, 2009). Temperature is a major driver of 

evaporation and condensation processes which ultimately drive the propagation of 

precipitation (Warburton et al., 2005; IPCC, 2001; IPCC, 2007). Therefore, the anticipated 

increases in temperature associated with climate change may result in increased evaporation 

rates which may lead to increased precipitation. Increases in rainfall will, ultimately, result in 

increased soil erosion and runoff generation and this, as aforementioned, may lead to 

increased rates of sediment and nutrient generation and transfer.  

 

Although erosion has increased both globally and locally largely owing to anthropogenic 

land-use change, there is limited data supporting or opposing past climate-related changes in 

erosion and, thus, sediment transport (Water Research Commission, 2002; IPCC, 2007). 

However, the anticipated increases in rainfall intensity would necessarily lead to increased 

rates of soil erosion and, thus, increased sediment generation and transfer (see Chapter 5).  
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As shown in Section 3.2, phosphorus is a sediment-associated nutrient and is usually 

transported bound to sediment (McDowell and Wilcock, 2004; Bjoneberg, 2006). Owing to 

the reduced dissolved oxygen concentrations in fluvial systems initiated by rising 

temperatures, increased releases of phosphorus bound to sediment are anticipated (IPCC, 

2007). This presents numerous implications for catchment water quality management.   

 

Temperature does not directly influence the generation, transfer and deposition of sediment 

and nutrients. However, it is an important driver of the processes which facilitate the 

generation and transfer of nutrients. For instance, nitrogen retention and volatilization in 

wetlands is highly dependent on the ability of the wetland(s) to retain water, thus facilitating 

anaerobic conditions which promote volatilization (Pellerin et al., 2004). Additionally, 

temperature indirectly influences nitrogen migration by driving bacterial activation and 

deactivation temperature thresholds, thus affecting the ability of the bacteria to facilitate 

nitrogen transformation reactions (Carmago et al., 2005). Similarly, the influence of 

temperature on rainfall and consequently on runoff processes, influences the transfer of 

sediment and sediment-bound phosphorus. Evidently, the influence of temperature on the 

generation, transport and deposition of nutrients and sediment is equally important as that of 

rainfall. The development of a complete understanding of the potential impacts of climate 

change on water quality, therefore, requires due consideration of the critical influence that 

temperature has on the biophysical processes that govern the behaviour of nutrients and 

sediment. 
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3.4 Discussion and Conclusions 

 

As part of the overarching aim of this work, recognizing and characterizing the relationships 

that exist between climate change, sediment and nutrient generation, transfer and deposition 

was considered critical in the development of adaptation strategies for local water resources 

management (see Chapters 4, 5 and 6). Furthermore, since the main aim of this work was the 

development of management specific adaptation strategies based on hydrological and climate 

modelling, it was important that a sound scientific background be developed in order to 

inform the modelling. This literature review served to provide an understanding of the 

impacts of climate change on biophysical processes governing the transfer of sediment and 

nutrients. For instance, the majority of processes governing the transport of nutrients from 

source areas require the presence of water as a transport medium. This review showed that 

since these processes are highly sensitive to climatic factors, including precipitation, the 

projected changes in temperature and precipitation variability (see Section 3.3) will most 

probably alter the transfer dynamics of nutrients. The same argument applies to sediment. 

Based on these findings, it is concluded that the anticipated temperature and rainfall changes 

will most likely increase the rates at which the processes that govern the generation and 

transport of nutrients and sediment proceed (Tables 3.3 and 3.4), which will consequently 

increase the rates at which these WQ variables move across the landscape.  

 

By way of example, it was shown in this review (e.g. Mainstone et al., 2008, Section 3.2) that 

the physicochemical behaviour of phosphorus in fluvial systems is highly sensitive to 

temperature changes. High water temperatures facilitate reduced dissolved oxygen 

concentration conditions, which trigger the release of sediment-bound phosphorus. 

Considering the fact that phosphorus is a limiting nutrient in many fluvial systems, increased 

phosphorus concentrations in these systems can lead to serious water quality problems, such 

as eutrophication and algal blooms. Similarly, the numerous transformation reactions that 

occur throughout the nitrogen cycle are carried out or facilitated by temperature-sensitive 

bacteria. For instance, the release of nitrate through the nitrification process is carried out by 

bacteria belonging to the Nitrosomonas and Nitrobacter genera and significant increases in 

temperature (Table 3.4) can deactivate these bacteria, thus reducing the release of nitrates 

from their sources.  
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Although a reduction in the release of nitrates may be favourable in the water quality 

management context, in the agricultural food production context it can be a highly negative 

consequence to increased temperature since the same bacteria are critical in releasing 

essential nutrients for utilisation by crops.  

 

Projected increases in rainfall intensity are anticipated to lead to increased particle 

detachment (higher kinetic energy of raindrops), erosion and, consequently, increased 

sediment generation and transport. Not only will this result in major soil loss in agricultural 

catchments but it will also increase reservoir sedimentation and pollutant discharge. This will 

present numerous challenges for water quality management both globally and locally. Table 

3.4 presented a summary of the most probable directions of change with regard to climate-

sensitive processes. In most cases, the anticipated increases in temperature and rainfall 

intensity are expected to result in an increase or exacerbation of the rate at which these 

processes are going to occur. The implication of these changes is that in South Africa, the 

expected amplification of the variability of an already highly variable hydroclimate will 

require a radical shift of the current water quality management paradigms. This will ensure 

better preparedness for the water quality related consequences of extreme events.     

 

This review was carried out from a perspective of a highly variable and dynamic climate 

regime and a perspective that climate change will exacerbate these patterns; that is, climate 

change that favours increases in the variability of both temperature and rainfall. The reason 

behind this was that the arguments presented herein were based on available climate 

projections specific to South Africa. These climate change projections are consistent in 

suggesting increased temperature and rainfall variability for most parts of the country, 

particularly the eastern and central parts (see Hewitson et al., 2005). The opposite, however, 

is also possible. The western regions of the country, for instance, are expected to experience 

reduced rainfall and increased temperatures. Reduced rainfall would not only limit the 

downstream transfer of sediment and nutrients, but it would also result in reduced dilution 

capacities for fluvial systems, which would increase the toxicity of pollutants and present 

water quality problems. The consequences of these conditions would cascade throughout 

terrestrial and aquatic ecosystems and would create even more complex problems for water 

resources management in the western regions of South Africa. 
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Therefore, regardless of whether climate change results in “positive” impacts (e.g. increased 

runoff from high rainfall events) or “negative” impacts (e.g. increased risks of floods and 

droughts), the development of the necessary adaptation strategies requires an approach that 

recognises both ends of the spectrum (i.e. “positive” and “negative” consequences of climate 

change) in order to ensure that flexibility is incorporated in those strategies. 
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ABSTRACT  
 

The projected impacts of climate change have increased concerns over the supply of adequate 

quality freshwater. There is an inadequate body of knowledge pertaining to linking the basic 

hydrological processes which drive water quality (WQ) variability with projected climate 

change. Incorporating that research into policy development and governance with the 

intention of developing adaptive WQ management strategies is also largely overlooked. This 

paper assesses projected climate change impacts on selected WQ constituents (sediment, 

nitrogen and phosphorus) in the context of agricultural non-point source pollution. This 

assessment was carried out in the form of a case study in the Mkabela Catchment near 

Wartburg in KwaZulu-Natal, South Africa. The research involved the application of various 

climate change projections derived from downscaled Global Circulation Models (GCMs) 

with the ACRU-NPS water quality model, to assess the impact on selected WQ constituents. 

Results indicated positive correlations between WQ related impacts and contaminant 

migration as generated from agricultural fertilizer applications. GCM projections indicate 

increases in rainfall, runoff and associated changes in WQ variable generation and migration 

from upstream sources. Through the research presented in this paper, it is motivated that 

ascertaining the links between biophysical WQ related processes and adaptive water 

resources management should be a key focus in efforts to adapt to the projected impacts of 

climate change. 

 

Keywords:  Water Quality Modelling, Climate Change, Non-Point Source Pollution, Global 

Circulation Models, Water Quality Management. 
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4.1 Introduction and Background 

 

Increased global change pressures which include, inter alia, climate change, have increased 

concerns over the supply of adequate quality freshwater (Huang and Xia, 2001; IPCC, 2007; 

Smeti et al., 2009). In particular, challenges associated with water quality management have 

received an increasing amount of attention due to the close alignment of water quality related 

issues with sustainable development (Ouyang et al., 2006; Mahjouri and Ardestani, 2011). 

Global and local change issues, such as population growth, economic development and land 

use change have intensified the debate over whether or not the current global freshwater 

resources status will radically change over the next few decades and, if so, what would be the 

implications for policy development and governance (Falkenmark and Rockström, 2006; 

Kundzewicz et al., 2007; UNESCO, 2009). Further concerns also abound on whether the 

continual pressure being placed on water resources will lead to a change in water productivity 

(adequacy of water for productive use) and, ultimately, a change in agricultural and industrial 

productivity (Rockström et al., 2003). It is at this water resource availability and water 

productivity interface that water quality becomes an issue of concern. 

 

Since the continued functioning of both natural and socio-economic systems relies heavily on 

the constant supply of freshwater of an adequate quality (Gleick, 2006; Nangia et al., 2008), 

the rapid and almost unprecedented changes in ecosystem behaviour observed over the past 

few decades have resulted in the decline of fluvial water quality globally and locally (Deasy 

et al., 2007; Edwards and Withers, 2008). The marked and almost sole influence of 

anthropogenic activities on water quality deterioration has been noted by numerous scholars 

and organisations (e.g. IPCC, 2001; Hewitson et al., 2005; Schulze, 2005; Schulze et al., 

2005; IPCC, 2007; Bates et al., 2008; Vairavamoorthy et al., 2008; Pittock, 2009; UNESCO, 

2009; World Bank, 2010). In addition to the apparently unmitigated and unabated 

anthropogenic impacts on water quality, climate change will aggravate water quality 

problems and further compound the complexities involved in water quality management (see 

Chapter 2). This presents significant water quality management implications, particularly for 

transitional countries where land use change is rapid and population growth is high, such as 

in South Africa.  
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Schulze (2005) notes that South Africa is a country characterized by a high risk hydroclimatic 

environment and that the impacts of severe climate change will be manifested through “an 

amplification of an already highly variable local hydrological cycle”. With this anticipated 

increase in variability, the impacts on water quality, assurance of supply, food production, 

human health, energy production, environmental sustainability and economic efficiency will 

be far reaching and potentially economically and socially destructive (Descheemaeker et al., 

2010). Therefore, for transitional countries, such as South Africa, climate change is 

anticipated to compound the complexity of socio-economic development and environmental 

sustainability in an already complex water resources management background (UNESCO, 

2009; Descheemaeker et al., 2010; Mahjouri and Ardestani, 2011).  

 

This enhanced complexity will not only amplify the exposure and vulnerability of water 

resource systems to external adverse effects, but it will simultaneously undermine the 

adaptive capacity of these systems. Vulnerability was defined in Chapter 2, Section 2.1, as 

the degree to which a particular system is likely to experience harm due to exposure to an 

internal or external hazard (Füssel, 2006). The ability or preparedness of a system to adapt or 

to reduce its vulnerability defines the adaptive capacity of the system.  Although substantial 

work has been accomplished in both the fields of climate change related adaptation (e.g. 

IPCC, 2001; Adger and Vincent, 2005; IPCC, 2007; Vincent, 2007; Paavola, 2008) and water 

quality management based on catchment processes (Novotny, 2003; Van Der Perk, 2006), 

there appears to be a disconnect between the two. In other words, there is an inadequate body 

of knowledge to directly link basic hydrological processes which drive water quality (WQ) 

variability with climate change projections. There is also a well-recognized fundamental and 

applied need to detail the effects of changing climate on catchment-wide nutrient and 

sediment transfer dynamics (Edwards and Withers, 2008; Han et al., 2010; Shrestha et al., 

2012). Consequently, incorporating such knowledge into policy development and governance 

with the intention of developing adaptive WQ management strategies is also overlooked. As 

discussed in Chapter 2, Section 2.3, establishing these links will be a critical step in building 

adaptive capacity. In that regard, it is important that the primary processes and parameters 

which influence water quality are understood. In the scope of this paper, these are: 

a)  processes influencing sediment generation, transport (or transfer) and deposition and, 

b)  processes influencing nitrogen and phosphorus generation, transport and deposition 

in the context of agricultural non-point source pollution.  
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Building on this understanding, the potential impacts of climate change on water quality 

through, for example, possible increases in the severity or frequency of extreme events can 

then be assessed with the help of modelling and climate change projections. This is 

particularly important in the context of extreme events whose potential impacts on sediment, 

nitrogen (N) and phosphorus (P) dynamics have not been adequately assessed in South Africa 

(see Sections 2.3.3 and 3.2 for references) and is especially relevant in the predominantly 

agricultural and rural catchments of this country, where non-point source pollution (NPS) is 

widespread. The mechanisms that govern sediment yield, N and P distribution are anticipated 

to change under conditions of higher temperature and changes in rainfall but the magnitude 

and direction of that change is still not fully understood.  

 

Furthermore, biophysical or catchment processes and linkages that are essential in 

understanding how NPS pollution and land use change influence water quality have not been 

reconciled with adaptive water resources management, both in management and in policy and 

governance structures. Therefore, the assessment of the links between biophysical processes, 

climate change and adaptation is of significant importance in the pursuit of reducing 

vulnerabilities and building adaptive capacity (see Chapter 6). In this paper, an assessment of 

projected climate change impacts on selected WQ constituents is undertaken using the 

Mkabela Catchment (near Wartburg) in KwaZulu-Natal, South Africa as a case study. 

Additionally, the effects of a single wetland system located in the Mkabela Catchment in 

mitigating the aforementioned impacts of climate change on the selected WQ constituents are 

outlined in this paper.   

 

This paper reports on the various simulations carried out in this study, using data derived 

from historical observations and downscaled General Circulation Models (GCMs) and the 

results obtained from each of those exercises. It includes a description of the selected 

catchment, the selected water quality model, the selected wetland system, the acquisition and 

treatment of input data, the GCM-derived climate change projections considered, the types of 

simulations performed and the results of the simulations of the catchment, and finally, offers 

an analysis of the results highlighting the merits and possible improvements of this type of 

modelling application.  
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4.2 Site Description 

 

The water quality modelling exercise presented in this study was conducted in the Mkabela 

Catchment (42km2) located approximately 1km east of the town of Wartburg, near 

Pietermaritzburg, South Africa (Coordinates: 29.34’ 57.00" S, 30.36’ 48" E) (Figures 4.1- 

4.2). The Mkabela catchment is a sub-catchment of the Nagle Water Management Unit 

(WMU) which forms part of the Mgeni Tertiary Catchment in KwaZulu-Natal. The locations 

of both the Nagle WMU and Mkabela Catchment within the Mgeni Catchment are indicated 

in Figures 4.1 and 4.2. A more detailed illustration of the Nagle WMU (showing the Mkabela 

Catchment) is shown in Figure 4.2. Commercial agriculture is the most dominant land use 

activity in the Mkabela Catchment. The proportions of the various agricultural production 

systems in the catchment are shown in Table 4.1. Irrigated sugar cane is the most dominant 

land use, followed by commercial afforestation, with land uses such as vegetable plots and 

dairy covering minor portions of the catchment (Table 4.1). Various structures, which act as 

hydraulic controls to the movement of pollutants, are found in the catchment, including an 

assortment of farm dams, wetlands and riparian buffer strips. Synthetic fertilization only 

occurs in sugar cane, vegetable and dairy (pastures) farming systems.  

 

The Mkabela Catchment falls within the summer rainfall region of South Africa and 

experiences a warm subtropical climate with distinct dry and rainy seasons. The altitude in 

the catchment ranges from 965 m.a.s.l from the eastern escarpment to 755 m.a.s.l at the 

catchment outlet. The mean annual precipitation (MAP) of the catchment averages 835 mm 

per annum. The baseline vegetation is classified by Acocks (1988) as the Southern Tall 

Grassveld and the catchment relief ranges from open hills, low relief to open hills, high relief.  

          

For modelling purposes, the Mkabela Catchment was further subdivided into smaller 

subcatchments with similar hydrological characteristics (Figure 4.3). These subcatchments, 

alternatively referred to as Hydrological Response Units (HRUs) in this text, were delineated 

using various geomorphological, pedological and hydrological reference factors. These 

factors included land use and land cover types, soil types, catchment slope, topography and 

the location and distribution of hydraulic controls (i.e. dams, wetlands and streams).  
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Delineation of the catchment in this manner allowed the isolation and observation of the 

pathways and processes that govern the generation, transport and deposition of agricultural 

pollutants across the Mkabela Catchment (see Lorentz et al., 2010 for further details on the 

delineation of this catchment). 

 

 

Figure 4.1 Location of the Nagle WMU within the Mgeni Quaternary Catchment in (a) 

and the Mkabela Research Catchment within the Nagle WMU in (b). Also 

shown in (b) are the selected rainfall gauging stations (circled) and other 

rainfall stations and towns located in and around the Nagle WMU. 
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Figure 4.2 A more de tailed image of  the Nagle W MU indicating the location of  the 

Mkabela catchment, surrounding rainfall stations and towns. Also indicated in 

this diagram are the Windy Hill  Number 2 and Noodsberg-Jaagbaan stat ions 

(circled) selected as driver rainfall stations. 

 

This also enabled source-pathway-response modelli ng of  the Mkabela Catchment, with the 

intention of understanding the impacts of agricultural NPS pollutants on the water quality of 

hydraulic controls across the catchment. The simulation of runoff and streamflow processes 

(from the ra infall measured within the c atchment), was then c arried out for the indi vidual 

HRUs. Figure 4.3 indicates the delineated Mkabela HRUs. Also indicated in Figure 4.3 is the 

land use distribution of the Mkabela catchment and model re levant subcatchments numbers. 

The ACRU-NPS water qua lity model wa s se lected as the primary mo del for u se in  the  

simulations. A description of this model and the rationale behind its selection are detailed in 

the following section.  
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Table 4.1 Mkabela Catchment land use distribution 

Total       42.00                                 100.00 

*Values have been rounded-off. 

 

Figure 4.3  Map of the Mkabela Catchment showing land uses, hydraulic controls, and 

subcatchments (Lorentz et al., 2011). 

Land Use (km2) Area (km2) %* 

   
Sugar Cane  26.40 63.00 

Commercial Afforestation  3.09 7.36 

Maize  2.69 6.40 

Vegetables 1.56 3.71 

Dairy 1.50 3.57 

Grassland 2.56 6.10 

Riparian/Dams/Wetlands 3.75 8.93 
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4.3 Description of the ACRU-NPS Model  

 

ACRU-NPS is a water quality module of the physical-conceptual agrohydrological ACRU 

model, developed at the University of KwaZulu-Natal, South Africa. The ACRU model is a 

multi-purpose, multi-level daily time-step model which has been applied in numerous 

contexts including design hydrology, crop yield estimation, reservoir yield simulations, 

irrigation water demand and supply simulations, climate change assessment and in land use 

and management impacts (Schulze, 1995; Warburton et al., 2010). The ACRU model has 

been applied both in South Africa and internationally. The water quality routines of the 

ACRU-NPS model are based on the Groundwater Loading Effects on Agricultural 

Management Systems (GLEAMS) model. The GLEAMS model is a root zone water quality 

model which describes the transport and transformation of nutrients across surface 

boundaries (Leonard et al., 1987; Knisel and Davis, 1999). The ACRU-NPS model, therefore, 

describes the impacts that land use and land management interventions have on the 

translocation of non-point source (NPS) pollutants. Specifically, the ACRU-NPS model is 

designed to simulate (Lorentz et al., 2011): 

 

a) N and P losses in surface runoff, sediment and leaching, 

 

b) N and P cycling in the soil-water-plant-animal system, and 
 

c) N and P mass balances in the watershed system. 

 

This model was, therefore, selected owing to its ability to effectively link hydrological 

parameters such as rainfall and runoff with sources of nutrients, which include fertilization, 

irrigation and plant and animal wastes to describe or represent management impacts on N and 

P transport and transformation. The model also allows the routing of nutrients and sediment 

generated from upstream sources, or HRUs, through the various control structures (wetlands, 

dams and riparian buffer strips) allowing for the evaluation of the effect these controls have 

on the downstream displacement of these WQ variables. 
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The influence of temperature on the generation of nutrients and sediment is factored into the 

ACRU-NPS model. Although not directly responsible for the generation and translocation of 

NPS pollutants, temperature still assumes an important role in the initiation and catalysis of 

critical physicochemical reactions and climatological processes (Wartburton et al., 2005) 

(Chapter 3, Section 3.3.2). Temperature influences total evaporation, which consequently 

influences condensation processes, which influence precipitation. As mentioned in Section 

3.3.2, changes in precipitation (influenced by changes in temperature and, thus, total 

evaporation) resulting in changes in runoff processes can be expected to trigger changes in 

the generation and rate of transfer of sediment and, thus, nutrients. These processes are 

included in the ACRU-NPS model. 

 

The ACRU-NPS model was set up for three separate spatial units or HRUs located in the 

headwaters of the Mkabela Catchment. The HRUs are located upstream of a perennial 

wetland, termed “wetland1”. The combined runoff and streamflow from each of these HRUs 

form the inflow into this wetland. Owing to the effects of the wetland in retarding the 

downstream translocation of nutrients and sediment, a set of algorithms were developed to 

route daily water discharge, sediment, N and P loads through the wetland (Lorentz et al., 

2011). The reader is referred to Lorentz et al. (2011) for a complete description of these 

algorithms. The simulated daily discharges, sediment, N and P loads are read into a 

spreadsheet which is configured to route the resultant output discharges and loads from each 

HRU through the wetland.  The algorithms used to calculate the variable amounts or loads 

entering and exiting the wetland contain parameters which are specified by the user in the 

spreadsheet. The most crucial of these parameters are alphaQ and betaQ which control daily 

discharges and loads entering and exiting the wetland. AlphaQ and betaQ were specified as 

0.001 and 1 respectively. Both parameters do not have units. These parameters control the 

rate at which the wetland gains or loses water based on the following water balance: 

 

Vi = Vi-1+Vin-Vevap-Vseep-Vout  

 

Where Vi is the wetland volume on day i, Vi-1 is the wetland volume on day i-1, Vin is the 

inflow volume on day i, Vevap is the evaporation volume on day i controlled by an area-

volume relationship for the wetland, Vseep is the seepage volume from the base of the 
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wetland on day i controlled by an effective hydraulic conductivity and the wetland area, Vout 

is the outflow volume on day i controlled by the storage volume in excess of the full volume. 

The seepage volume percentage is specified by the user and is added to the outflow volume. 

All variables in the water balance are in m3 (Lorentz et al., 2011). AlphaQ and betaQ are 

adjusted according to the rate at which the wetland loses water. If the wetland drains too 

rapidly, for instance, these two parameters may either be increased or reduced until a 

favourable daily drainage rate is achieved. Since the wetland can never be allowed to run 

completely dry (i.e. Vi can never equal zero), the aforementioned values of 0.001 for alphaQ 

and 1 for betaQ were specified to ensure that this condition is never reached. 

 

The MUSLE equation (Williams, 1975) was selected for the estimation of sediment yield. In 

ACRU, stormflow is estimated using a modified form of the SCS stormflow equation 

(Schulze, 1995). Generated stormflow is released over time by specifying a value for the 

variable QFRESP, i.e. the fraction of the total stormflow store that runs off from the 

catchment on a particular day. In the simulations performed a value of 0.60 was assumed. 

Water that infiltrates the intermediate or groundwater store is released over time as baseflow 

at a rate controlled by the baseflow response coefficient (COFRU). A value of 0.001 was 

assumed for COFRU. In both cases, these are based on best practices as reported in the 

ACRU model user manual (Smithers and Schulze, 2004). Daily runoff is the sum of baseflow 

and stormflow for a particular day. Peak discharge, which is required for the estimation of 

sediment yield, is simulated using the SCS peak discharge method. Catchment lag is required 

for the simulation of peak discharge and was estimated using the Schmidt/Schulze lag 

equation (Smithers and Schulze, 2004). This equation requires as input the 2-year return 

period 30-minute rainfall intensity (XI30) in mm.hr-1, which was derived from the four 

rainfall intensity distribution zones and the 2-year return period one-day rainfall depth maps 

of southern Africa also given in Smithers and Schulze (2004). A value of 58.4mm.hr-1 was 

calculated for XI30. In the absence of an objective method to estimate this variable in a future 

climate, the variable was not adjusted for future WQ projections  The A-Pan is used in ACRU 

for reference potential evaporation and was estimated using the Hargreaves and Samani 

(1985) daily temperature-driven equation (Samani, 2000). 
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4.4 Input Data Acquisition and Processing 

 

The simulations outlined in this paper were performed using observed climate data and 

climate data derived from selected downscaled GCMs. The acquisition and treatment of these 

climatic data is described in the sections below. The last section (Section 4.4.3), provides a 

description of other (non-climatic) input data also used as input in the ACRU-NPS model. 

Each HRU was modelled for separately within the ACRU-NPS model using datasets from 

both the observed records and downscaled GCMs. For each HRU, two separate simulations 

were performed; namely, one simulation using observed data and a second simulation using 

data derived from the downscaled GCMs (see Section 4.5).  

 

4.4.1 Observed Climate Data  

 

Daily observed climate data were acquired from two rainfall stations located in and around 

the Mkabela Catchment. These stations were identified as having the longest and most 

reliable records of those available. The two stations, Windy Hill No. 2 and Noodsberg-

Jaagbaan (marked as “Union Mill Jaagbaan”), are indicated in Figures 4.1 and 4.2. The 

records from these stations had data available over different periods and were combined to 

form a single composite record for the period 1950 to 2011. These datasets were combined 

for two reasons: firstly, it was to minimise or eliminate possible errors in either one of the 

records and, secondly, it was to ensure the continuity of the newly created composite record.  

The Windy Hill Number 2 rainfall station had data from 1950 to 2000, whereas the 

Noodsberg-Jaagbaan rainfall station had data from 1971 to 2011. The Noodsberg-Jaagbaan 

dataset was, however, quality controlled and, thus, more reliable compared to the Windy Hill 

Number 2 dataset.  Therefore, combining the two datasets would ensure that the composite 

record was as extensive and error free as possible. The limitation of the Noodsberg-Jaagbaan 

dataset was that it only commenced in 1971, which meant that it could not be directly 

comparable with GCM-derived datasets, which commenced in 1961. This was particularly 

important in the estimation of mean annual precipitation and in the initialization (i.e. set-up) 

of the ACRU-NPS model. It was, therefore, necessary that the dataset from the Noodsberg-

Jaagbaan station be combined with the dataset from the Windy Hill Number 2 station to 

ensure that the final record, from 1950 to 2011, included the period from 1950 to 1970.  
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The daily maximum and minimum temperature estimates for the Mkabela Catchment were 

sourced from the gridded daily temperature database of Schulze and Maharaj (2004). The 

maximum and minimum temperature estimates were used to calculate daily evaporation 

using the Hargreaves and Samani daily temperature-driven equation (Samani, 2000). 

 

Although daily rainfall data was obtained from two stations, data from the Windy Hill 

Number 2 station was not directly representative of the Mkabela Catchment. Therefore the 

rainfall data from this station had to be adjusted to ensure that it represented the Mkabela 

Catchment in its entirety, more realistically. The Noodsberg-Jaagbaan was considered to be 

close enough to the Mkabela Catchment to permit the use of its data without the necessity for 

adjustment (see Figures 4.1 and 4.2). The adjustment of the Windy Hill Number 2 station 

rainfall data was carried out using the ACRU model rainfall adjustment or CORPPT function. 

Median monthly rainfall data were used to determine month-by-month adjustment factors, 

which were applied to the record to adjust daily rainfall (see Smithers and Schulze, 2004 for 

reference). Essentially, the aim of the adjustment was to best estimate the rainfall in the 

Mkabela Catchment (and, thus, the focal HRUs) using available data over the period of 

interest (i.e. 1950-1970). In adjusting the records from the Windy Number 2 station to better 

represent the catchment rainfall, the data from the two selected stations were, consequently, 

made to be more comparable.  

 

4.4.2 Climate Change Projections Considered 

 

The climate change projections used in this study were derived from seven downscaled 

global circulation models (GCMs) employed in the Intergovernmental Panel on Climate 

Change (IPCC) Fourth (AR4) Assessment Report (IPCC, 2007). The downscaled climate 

change projections were obtained from the Council for Scientific and Industrial Research 

(CSIR) and from the Climate Systems Analysis Group (CSAG) based at the University of 

Cape Town (UCT). The CSIR GCM projections were dynamically downscaled to a 0.5 

degree horizontal resolution grid across southern Africa (Engelbrecht et al., 2009) and the 

CSAG GCM projections were empirically downscaled to regional scales (Hewitson, 2012, 

pers. comm.), also encompassing all of southern Africa.  
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The differences between these downscaling techniques are detailed in Table 4.2, which also 

includes a summary of the relevant information regarding the selected GCM projections and 

the downscaling institutions. 

 

Table 4.2  Information on selected downscaled GCMs, the downscaling institutions and 

projected trends in mean annual precipitation. 

 

Downscaled GCM Downscaling Institute Time Periods Considered MAP Trend 

GDFL2.1 CSIR 1971-1990 Wetting 

  2046-2065  

    

MIROC CSIR 1971-1990 Drying 

  2046-2065  

    

CSIRO CSAG-UCT 1971-1990 Wetting 

  2046-2065  

    

ECHO CSAG-UCT 1971-1990 Wetting 

  2046-2065  

    

IPSL CSAG-UCT 1971-1990 Wetting 

  2046-2065  

    

ECH5 CSAG-UCT 1971-1990 No Appreciable 
Change 

  2046-2065  

    

MRI CSAG-UCT 1971-1990 Wetting 

 

The selection of the downscaled GCMs was based on projected changes in mean annual 

precipitation (MAP) and mean annual runoff (MAR) described by each downscaled GCM 

projection. An increasing trend in MAP and MAR between the present and the future 

essentially indicates a wet climate change projection or wetting pattern of change, whereas a 

declining trend in MAP and MAR suggests a dry climate change projection or drying pattern 

of change. The GFDL2.1 and MIROC GCMs downscaled by the CSIR represented wet and 

dry climate change projections respectively. With the exception of the ECH5 GCM, all 

GCMs downscaled by CSAG represented wet climate change projections, with variations in 

the degrees of change.  
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Owing to time constraints, not all GCMs downscaled by the CSIR could be included in this 

study. Therefore, based on projected changes in MAP, only the “wettest” downscaled GCM 

(i.e. the GFDL2.1 GCM) and the “driest” downscaled GCM (i.e. the MIROC GCM), were 

selected from the ensemble of CSIR GCMs (see Engelbrecht et al., 2009). Further, the 

majority of the GCMs used in this study are GCMs downscaled by CSAG. These particular 

projections represent regional/point scales, a condition which makes them more suitable for 

application in hydrological modelling. All  GCMs used in this study were originally derived 

from coupled GCM (CGCM) projections that contributed to the Intergovernmental Panel on 

Climate Change (IPCC) Fourth Assessment Report (AR4) (IPCC, 2007). It is important to 

note that these projections represent a range in global models (including their various 

sensitivities, parameterizations, etc.), downscaling methodologies and institutions and, 

therefore, reflect the uncertainty that is inherent in climate change projections at present. This 

was considered critical since using projections from a single combination of GCM-

downscaling institution runs the risk of obtaining a biased view of the future. 

 

The GFDL2.1 and MIROC GCM projections were dynamically downscaled by the CSIR 

using the high-resolution conformal-cubic atmospheric model (CCAM), developed by the 

Commonwealth Scientific and Industrial Research Organisation (CSIRO) in Australia. This 

was performed by forcing the CCAM model using bias-corrected sea-surface temperatures 

and sea-ice fields of CGCMs to produce regional scale climate change projections 

(Engelbrecht et al., 2009). The CSAG GCM projections were empirically downscaled by 

using observed data to derive relationships between synoptic scale climates and local climates 

and applying the resulting relationships to GCM output to generate higher resolution local 

scale climate change projections (Hewitson et al., 2005).  

 

It is critical to note at this juncture that this study used GCMs to provide an understanding of 

the likely behaviour of point specific catchment processes. It is recognised that GCMs are 

inherently limited by their spatial resolutions. A single GCM generally represents a spatial 

grid of ~300km (Hewitson et al., 2005). This means that a particular GCM will provide one 

average value that theoretically represents a 300km by 300km grid pixel.  At this resolution, 

this average value is of little value in the investigation of point specific (i.e. local) catchment 

processes.  
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Therefore, the use of downscaled GCM data was considered useful in understanding the 

likely changes in water quality responses to future changes in rainfall and temperature 

regimes through modelling exercises, rather than representing a precise simulation of 

Mkabela Catchment itself. The GCM projections used in this study were downscaled to 

“regional” scales, which in this case was at the scale of the Nagle WMU (Figures 4.1 and 

4.2). The ability of the downscaled GCM projections to sufficiently reproduce regional scale 

climatic data has been verified elsewhere (Engelbrecht et al., 2009; Hewitson et al., 2005) 

and these projections were considered to be credible for their application in this study.  

 

The spatial resolution limitation of GCMs mentioned above implies that when compared to 

actual point specific measured data, GCM-derived data are not infallible and must be applied 

with some caution (see Chapter 5). This can be attributed to a number of issues ranging from 

the effects of natural variability, which may not be entirely captured by the downscaled 

GCMs and land use-climate feedback mechanisms which may also influence local scale 

climates and thus be potentially omitted in the downscaled GCMs. These issues introduce 

some uncertainty with respect to the application of downscaled GCM output. This discussion 

is expanded on in Section 4.6.4 and Chapter 5. 

 

The climate change projections used in this study considered present (1971-1990) and future 

(2046-2065) time periods. The projections are based on the Special Report on Emission 

Scenarios (SRES) A2 storyline and emission scenario (Nakićenović et al., 2000), which 

assumes that global efforts to reduce greenhouse gas emissions are relatively ineffective. The 

SRES scenarios are considered to be plausible alternative futures based on current emission 

trends rather than specific predictions of the future (Woznicki and Nejadhashemi, 2012). The 

A2 scenario used in this study assumes a “business as usual” approach in which developing 

countries continue to use ever-increasing quantities of fossil fuels and developed countries 

make little effort in altering their energy consumption patterns or developing efficient fuel 

technologies. By deduction, the A2 scenario assumes conditions which favour increased 

anthropogenic pressure on environmental resources. Climatic data and, in particular, rainfall 

data, obtained from the downscaled GCMs for the Nagle WMU was not adjusted or post-

processed in any way for the Mkabela Catchment, since the catchment was considered to be 

located in relatively close enough proximity to the points of interest of the downscaled GCMs 

(i.e. the Nagle WMU). 
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4.4.3 Additional Input Data 

 

The ACRU-NPS model requires various other (non-climatic) spatial and hydrological datasets 

for use as input in the model setup (see Appendix A for example HRU input file). These 

datasets include soils and land use/cover data, catchment locational information, evaporation 

and agronomical data. The sources of input data used in this study are summarised in Table 

4.3. The following section provides a description of the simulation performed in this study. 

 

Table 4.3  Sources of input datasets used in the ACRU-NPS model setup, including 

climate variables considered. 

 

 

 

 

Input Data Data Source  Variable 

Observed Climate Rainfall Extraction Utility Tool which interrogates the 

rainfall database developed by Lynch (2003)  

Observed 

Rainfall 

 South African Sugar Research Institute (SASRI)  Observed 

Temperature 

and Rainfall 

 Mkabela Research Station  Observed 

Temperature 

and Rainfall 

 Schulze and Maharaj (2004) Temperature 

Soils  Le Roux et al., (2006) (Detailed Mkabela Catchment Soil 

Survey) 

 

Land Use and Cover In-situ observations and Acocks baseline land cover 

database (Acocks, 1988) 

 

Topography 21m x 21m Digital Elevation Model (DEM) (Lorentz et al., 

2011) 

 

 1: 10000 Maps from the Surveyor General's Office  
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4.5 Simulations Performed 

 

As alluded to in Section 4.4, the focal HRUs were modelled for separately within the ACRU-

NPS model using datasets from both the observed records and downscaled GCM projections. 

It is, therefore, important at this juncture to differentiate between the simulations performed 

based on the different datasets in the context of this study. Both modes of simulation were 

performed using the ACRU-NPS model for the HRUs considered. The 1950 to 2011 

simulations (encompassing the 1971-1990 period) in the ACRU-NPS model were based on 

observed climate data whereas the 1961-2100 simulations (encompassing the 1971 to 1990 

and 2046 to 2065 periods), also in the ACRU-NPS model, were based on downscaled GCM-

derived climate data. In the results section, these simulations are differentiated based on these 

criteria. 

  

The ACRU-NPS model was set up for three separate spatial units or HRUs located in the 

headwaters of the Mkabela Catchment. The general characteristics of each of these HRUs are 

detailed in Table 4.4. The HRUs are located upstream of a perennial wetland, marked as 

“wetland1” in Figure 4.4. The combined runoff and streamflow from each of these HRUs 

form the inflow into this wetland as indicated in Figure 4.4.      

 

Table 4.4 General characteristics of the 3 (three) upstream Hydrological Response Units. 

HRU Name Area (km2) Mean Elevation (m.a.s.l) Slope (%) 

Sugar Cane  6.31 965 3.5 

Commercial 

Afforestation  

0.61 965 5.5 

Vegetables  1.56 965 1.5 

Total 8.48 - - 
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Figure 4.4 Location of HRUs relative to the wetland. Also indicated in this diagram is the 

flow direction from each HRU in the Mkabela catchment headwaters into the 

wetland and finally the catchment outlet. 

 

4.6 Results 

 

4.6.1 Verification of the ACRU-NPS Model 

 

A number of verification studies were conducted to ensure that the ACRU-NPS model 

adequately represented the observed behaviour of the Mkabela Catchment with regard to the 

WQ variables of concern i.e. sediment, nitrogen and phosphorus. Model simulations were 

verified against observed WQ variable data from the Mkabela Catchment and results from 

these exercises indicated that the model was representing the hydrological system 

satisfactorily. Results from those exercises are presented below for runoff. The ACRU-NPS 

model was able to consistently reproduce runoff satisfactorily across the verification period 

(Figure 4.5). Additional verification results for nutrients and sediments were also performed 

and these results, similar to runoff, also indicated that the ACRU-NPS model is able to 

adequately reproduce the system of the Mkabela Catchment adequately.  
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Figure 4.5 Runoff ve rification results for the Mkabela catchment across the verification 

period (Lorentz, 2012, pers. comm.). 

 

4.6.2 Impact of the Wetland on the Transfer of NPS Pollutants 

 

As highlighted in Chapter 3, Section 3.2, wetlands and other buffers play an important role in 

the movement of nutrients through the catchment. Based on the simulations performed using 

observed input  data, the influence of  the single wetland system in the catchment on runof f 

and on the transfer of nutrients and sediments was assessed by analysing the changes between 

variable a mounts entering the we tland (Wetland1-“variable” IN) and amounts exiting the 

wetland (W etland1-“variable” OUT). These changes are indi cated in Figures 4.6 for daily 

runoff a nd in Table 4.5 for all WQ variables considered. Table 4 .5 presents mean a nnual 

estimates of the variables entering and exiting the wetland and the percent changes between 

variable qu antities entering the wetland a nd a mounts exiting the we tland for the  pe riod 

between 1971  a nd 1990 . These changes are ba sed on user spe cified values of a lphaQ and 

betaQ (see Section 4.5). Figures 4.7 to 4.9 indicate the behaviour of sediment, nitrogen and 

phosphorus before and after the wetland. These variables follow the runoff trend with respect 

to changes in the amounts or loads entering and exiting the wetland. 
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Table 4.5 Simulated mean annual estimates of water quality variables entering and 

exiting the wetland based on observed input for the present period. 

 

Figure 4.6 indicates the effect of the wetland on runoff generated from upstream HRUs. 

Mean annual runoff decreases by an average 70.72% subsequent to being routed through the 

wetland (Table 4.5). This simulation also highlights the high effectiveness of the wetland to 

mitigate floods, judging by the reduction in exit flow in the September 1987 floods by over 

97% (Figure 4.6). Sediment, being sensitive to runoff, also displays a similar attenuation 

trend to that of runoff as indicated in Table 4.5 and Figure 4.7.  Following a rainfall event, the 

amount of sediment generated from upstream sources generally increases with an increase in 

runoff. The sharp decline by 97.08% in sediment between wetland entry and exit can be 

attributed to the settling effect of sediment when routed through the wetland (see Figure 4.7). 

The factors affecting sediment transfers across water bodies have been outlined elsewhere 

(Section 3.2.8). Subsequent to wetland routing, a similar reduction trend observed for both 

runoff and sediment was also observed for nutrients. Changes in quantitative nutrient transfer 

before and after the wetland are also shown as mean annual estimates of N and P loads in 

Table 4.5. 

 

The mean annual estimates of both N and P appear to follow the runoff trend with regard to 

being retained in the wetland (Table 4.5 and Figures 4.8 and 4.9). The reason for this is that 

since the Mkabela catchment is a predominantly agricultural catchment, crop fertilization is 

administered using primarily N- and P-based fertilizers and these nutrients have been shown 

(e.g. Donohue et al., 2005; Lorentz et al., 2010; Lorentz et al., 2011) to migrate easily with 

runoff. Chapter 3, Section 3.2 detailed the factors affecting the behaviour of nutrients across 

hydraulic controls and it was shown that these nutrients have a high dependency on runoff-

generating mechanisms such as rainfall-events and frequent irrigation.  

Variable Wetland1-IN         Wetland1-OUT                        %Change 

Runoff (mm) 185.15 54.22 -70.72 

Sediment (t) 297.75 8.69 -97.08 

Nitrogen Loads (kg) 69579.00 19258.27 -72.32 

Phosphorus Loads (kg) 22101.31 6602.58 -70.13 
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The decline in nutrients subsequent to being routed through the wetland (Figures 4.8 and 4.9) 

can be attributed to the hydropedological and biochemical characteristics of wetlands. The 

ability of wetlands to retain water for prolonged periods of time promotes anaerobic 

conditions which facilitates the retention and loss of both N and P through volatilisation, 

mass adsorption and immobilisation. The simulations detailing the migration of both N and P 

through the wetland followed expected trends, as outlined in Chapter 3, regarding the 

interactions of nutrients with hydraulic controls such as wetlands and riparian buffers.   
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Figure 4.6 Simulated daily runoff entering and exiting the wetland for the period 1971 to 1990. 
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Figure 4.7 Simulated daily sediment loads entering and exiting the wetland for the period 1971 to 1990. 
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Figure 4.8 Simulated daily N loads entering and exiting the wetland for the period 1971 to 1990. 
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Figure 4.9 Simulated daily P loads entering and exiting the wetland for the period 1971 to 1990. 
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4.6.3 Comparison of Present GCM Climate with Observed Climate  

 

As mentioned before, the modelling exercises conducted in this study were performed using 

observed climatic data derived from in-situ observations and climatic data derived from a 

variety of downscaled GCM projections. Since the overall aim of this study was to 

understand and detail the impacts of future climate change on water quality constituents, the 

ability of the downscaled GCM projections to adequately reproduce present conditions with 

regard to hydrological response processes such as runoff (baseflow plus stormflow) and 

streamflow was paramount. This was considered important owing to the fact that the 

fluctuation of fluvial water quality is highly sensitive to the behaviour of the aforementioned 

hydrological response processes. To verify the ability of the downscaled GCM projections to 

adequately simulate present climatic and thus hydrological response conditions, the 

simulation output obtained from input data derived from the projections was compared with 

the simulation output obtained from input data derived from catchment observations. 

 

Although GCM projections are designed to assess climatic changes over long periods of time, 

the 20 year period between 1971 and 1990 was considered to be a representative period for 

comparison of model output from the GCM-derived present climate with that of the observed. 

The statistical analysis from the long term (20 year) ACRU-NPS modelling showed that all 

GCMs under-simulate present (1971-1990) runoff entering the wetland (Table 4.6 and Figure 

4.10). The reasons for this trend were attributed to the spatial resolutions to which the GCM 

projections were downscaled to (i.e. regional scale) and to the apparent lack of representation 

of the major September 1987 flood event (responsible for a significant portion of the 

observed MAP and MAR), by all the downscaled GCM projections. It is generally accepted 

that downscaled GCM projections do not necessarily reproduce the exact time series 

variations of point scale rainfall (Hughes, 2012) and, consequently, they may not reproduce 

the exact time series variations of local scale runoff. It was therefore, highly critical that the 

uncertainty introduced by the output from both the CSAG and CSIR downscaled GCM 

projections, be recognized and factored into the analyses of this study (see Chapter 5 for 

detailed analyses of downscaled GCM climatic output). 
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Table 4.6  Comparative s tatistics of mea n a nnual estimations of rainfall a nd runoff 

entering the wetland for  simulations ba sed on  observed c limate and 

downscaled GCMs. 

 

 

Figure 4.10  Mean a nnual estimations of  rainfall a nd runoff entering th e we tland for 

simulations based on observed climate and downscaled GCMs.  

 

 VARIABLE 

 MAP MAR 

Observed Climate 835.01 185.15 

Downscaled GCM:   

CSIRO 803.00 73.94 

ECHO 856.65 164.98 

IPSL 990.45 105.45 

MRI 817.04 107.85 

GFDL2.1 1301.06 116.70 

MIROC 1310.45 109.94 
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Temperature has been noted to indirectly influence precipitation (Section 4.3). Thus, 

increases in temperature anticipated under climate change may be anticipated to accompany, 

or influence, increases in precipitation also anticipated under climate change (Section 4.6.4). 

The indirect relationships between temperature and runoff precluded the representation of the 

relationships between nutrients, sediment and temperature in these results. Temperature was 

only used as input in the ACRU-NPS model to initialize evaporation and crop yield 

calculations within the model. However, the changes in rainfall outlined in this study were 

considered to be comparable to changes in temperature, albeit indirectly. 

 

The potential impacts of climate change on water quality in the Mkabela Catchment were 

evaluated with and without the impact of the wetland on the response of WQ variables. This 

was done in order to ascertain the relative impacts of climate change on these variables 

between the present and the future. The procedure and results of these analyses are detailed in 

the following section. 

 

4.6.4 Projected Impacts of Climate Change 

 

With regard to the present (1971-1990) and future (2046-2065) GCM projections, variable 

changes between the present and the future were presented as ratios of change and percentage 

changes. A ratio value above 1 indicates an increasing trend in the simulated variable, a value 

between 0.9 and 1 indicates a negligible change in the variable and a value below 0.9 

indicates a decreasing trend in the simulated variable. The ratios represent qualitative rather 

than quantitative changes in the simulated WQ variables. Quantitative estimates of these 

variables were considered to be less appropriate owing to the uncertainty presented by future 

GCM projections with regard to rainfall and the apparent large variations in the runoff 

outputs generated by the ACRU-NPS model using GCM-derived input (Table 4.6 and Figure 

4.8). Therefore, qualitative analyses were deemed more appropriate as they give a more 

holistic representation of the potential future changes in simulated variables and highlight 

relative changes better than quantitative assessments which are, admittedly, only as accurate 

and relevant as the modelling assumptions applied. To add further clarity to the analyses, 

percentage changes, calculated by subtracting the future value of a variable from the present 

value of the same variable and dividing by the present value of the variable, were also 

included in these analyses. 
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Unlike the ratio-based approach, in the percent change approach a positive percentage change 

suggests an increasing trend in the variable while a “negative” percentage change suggests a 

declining trend in the variable.   

 

The potential impacts of climate change on mean annual runoff, nutrient loads and sediment 

yield are indicated in Table 4.7 for all downscaled GCMs considered and in Figures 4.9 and 

4.10 for the CSIR and CSAG downscaled GCMs, respectively. Table 4.7 presents the ratios 

of change, as described above, between the future and the present for each water quality 

variable considered. Figures 4.9 and 4.10 show the potential impacts of both climate change 

and the potential impacts of the wetland under climate change (i.e. under future conditions) 

on the generation and transfer of the WQ variables considered. In Figures 4.9 and 4.10, the 

impacts of climate change (“Impact CC”) are represented by the future versus present 

changes in wetland inflows. The combined impacts of climate change and the wetland 

(“Impact CC and Wetland) are represented as future wetland outflows versus present wetland 

inflows. Table 4.7 and Figures 4.9 and 4.10 show that 4 out the 7 downscaled GCMs 

considered project increases in runoff, nutrients and sediment going into the wetland (ratios 

above 1 and positive percentage changes). These were the GDFL2.1, MRI, IPSL and CSIRO 

GCMs. However, 3 of these GCMs viz. the MIROC, ECH5 and ECHO GCMs, project 

decreases (albeit small decreases) in runoff, nutrients and sediment.  

 

For the GCMs downscaled by the CSIR, the GFDL2.1 GCM projects increased runoff going 

into the wetland (positive percentage change) while the MIROC GCM projects decreased 

runoff going into the wetland. As a consequence of the combined impacts of climate change 

and the wetland, a general decreasing trend (negative percentage change) in wetland outflow 

was observed for the MIROC GCM. Under climate change, the GFDL2.1 GCM indicates 

positive but minimal change with regard to nutrients and sediment. The MIROC GCM, 

conversely, shows decreasing trends with regard to nutrients and sediment generated from 

upstream HRUs. In all instances, however, the role of the wetland is much greater than the 

impact of climate change and results in overall decreases in nutrients and sediments (Figure 

4.11). Although the simulations project increases in runoff for most of the GCMs under 

climate change and also point to the potential increase in the generation of sediment and 

nutrients, the downstream transfer of these variables is mitigated to a high degree by the 

wetland.  



117 

 

Most of  the CSAG downsc aled GCMs indi cated posi tive c hanges with regard to runoff, 

nutrients and sediment (Figure 4.12) under future conditions. The exceptions to these trends 

were the ECHO and ECH5 GCMs which indicated negligible decreases in runoff (5.44% and 

2.5% respectively) between the future and the present. These GCMs also indicated decreases 

in nitrogen and sediment and negligible change in phosphorus. Ratios of change greater than 

1 and positive percentage changes were observed for all other GCMs (Table 4.7 and Figure 

4.12). The va rious GCMs indi cated large v ariations in projected run off, nutrients and 

sediment. For instance, the IPSL GCM suggested increases in runoff of up to 95%, while the 

MRI GCM suggested i ncreases of only 22%, and in the sa me sense the C SIRO GCM 

suggested incr eases of  up to 71%. This, as it is evident, r epresents a lar ge a mount o f 

disagreement between these GCMs.  

 

 

Figure 4.11 Impact of climate change and climate change combined with the wetland on 

mean annual runoff, sediment yield, nitrogen load and phosphorus load for the 

CSIR downscaled GCMs. 
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Regardless of these variations, the majority of the CSAG downscaled GCMs indicated the 

same direction of change, which was a generally increasing trend in the generation of runoff, 

nitrogen, phosphorus and sediment under climate change. It has been mentioned before that 

GCMs are highly uncertain and they are not always expected to explicitly reproduce the exact 

time series variations of point scale rainfall and, consequently, that of local scale runoff. It 

was, therefore, considered highly critical that the focus of these analyses be on the variability 

and relative changes presented by the downscaled GCM projections rather than on the 

absolute (i.e. quantitative) estimates that they project. Although there was consensus amongst 

the CSAG GCMs regarding the direction of change in WQ variables (i.e. nutrients and 

sediment), there was limited agreement between these GCMs as to the magnitude of change 

of these WQ variables (Table 4.7).  

 

Nearly all CSAG GCMs show that the generation of runoff and associated WQ variables will 

increase under future conditions of change, but there are significant variations between the 

GCMs regarding these increases. A closer inspection of mean annual precipitation was 

undertaken in an attempt to isolate and describe these trends. MAP changes indicated neutral 

to slight increases, yet runoff changes range from neutral to large increases (Table 4.7). 

Downscaled GCMs projecting large runoff increases, thus, indicate a change in the 

distribution of rainfall (e.g. at seasonal or daily levels) which results in a lot more runoff from 

the same total rainfall. Some GCMs (e.g. ECHO, ECH5 and MRI) show reductions in 

sediment and nitrogen. These are GCMs that also project minimal change in annual runoff 

(save for the MRI GCM) – again this suggests changes in the distribution of the rainfall, this 

time in the opposite manner (less concentrated/intense rainfall). These variations were 

considered critical in these analyses primarily for the fact that the CSAG downscaled GCM 

projections were considered to best represent the Mkabela Catchment with respect to climatic 

variability. To gain a better understanding of these variations in runoff and WQ variables, it 

is important that the nature of the changes in daily rainfall (as the main “driver” of these 

trends) under climate change be fully detailed. Chapter 5 presents a more detailed analysis of 

the correlations between observed and GCM-derived rainfall. 
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  Table 4.7 Ratios of future to present mean annual precipitation, runoff, nutrients and sediment for all downscaled GCM projections. 

 RATIOS OF CHANGE* 

 MAP RUNOFF SEDIMENT NITROGEN PHOSPHORUS 

DOWNSCALED GCM      

      

GDFL2.1 1.05 1.29 1.00 1.04 1.05 

      

MIROC 0.89 0.89 0.62 0.76 0.73 

      

CSIRO 1.08 1.71 1.60 1.10 1.40 

      

ECHO 1.04 0.95 0.75 0.91 1.27 

      

IPSL 1.01 1.95 2.85 1.34 1.36 

      

ECH5 1.00 0.97 0.92 0.73 1.00 

      

MRI 1.04 1.22 1.23 0.99 1.24 

 *As ratio of future to present 
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Figure 4.12 Impact of climate change and climate change combined with the wetland on mean annual runoff, sediment yield, nitrogen load and 

phosphorus load for the CSAG downscaled GCMs.  
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4.7 Discussion and Conclusions 

 

This paper investigated the impacts of climate change on the behaviour of selected water 

quality constituents viz. nutrients (N and P) and sediment. This was done by assessing the 

changes in these water quality constituents under present and future climate change 

conditions while also taking into account the influence of a wetland in limiting their 

downstream transfer. For the variables considered, i.e. runoff, nutrients and sediment, the 

general trend observed was a significant reduction between the values of the variables 

incident to the wetland and values exiting the wetland. This was true for both present and 

future simulations. Similar reduction trends were observed in a constructed wetland where 

between 21-44% of P input was retained from an average daily input load of 0.7-1.8m 

(Braskerud, 2002). Similarly, 3-15% of N input was retained in the same constructed wetland 

from a similar average daily input load (i.e. 0.7-1.8m) (Braskerud, 2002). Mean annual 

statistics of runoff were considered as a means of obtaining a general overview of the impact 

of climate change on the selected WQ variables and for assessing the ability of the wetland to 

limit the downstream transfer of nutrients and sediment. Simulations based on observed data 

for the present (1971-1990) period indicated that the wetland under study was highly 

competent in attenuating runoff and limiting the downstream transfer of nutrients and 

sediment (Table 4.5 and Figures 4.6 to 4.9). These were expected trends considering the 

hydropedological, geomorphological and biochemical nature of wetlands. McKergow et al. 

(2006), notes that riparian buffers, including wetlands, can be used by farmers and catchment 

managers to achieve water quality improvements. Wetlands are able to reduce the kinetic 

energy of incident variables (e.g. flow, nutrients and sediment) and through their ability to 

retain vast amounts of water, allow the settling and restraint of nutrients and sediment 

limiting their downstream transfer.  

 

This study made use of 7 different dynamically and empirically downscaled GCMs. Two of 

these GCMs were dynamically downscaled by the CSIR and five were empirically 

downscaled by CSAG-UCT. The selection of these downscaled GCMs in this manner proved 

useful in detailing the potential impacts of climate change on water quality from different 

climate change projection perspectives, as presented by the various GCMs. The different 

techniques used in downscaling GCM projections were anticipated to yield equally different 

outputs.  
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This would, necessarily, result in varied modelling outputs when the downscaled projections 

were used as input into the ACRU-NPS water quality model to generate runoff, nutrients and 

sediment estimates. In essence, although downscaled GCMs are expected to reproduce 

prevailing regional climates with confidence, they are nonetheless models and as such, are 

subject to the same uncertainty constraints and boundary conditions that are inherent to all 

mathematical models.  

 

It is important to note that downscaled GCM projections are not necessarily expected to 

explicitly reproduce the exact time series variations of point scale rainfall. This was indicated 

by the variations in MAP shown by the different downscaled GCMs when compared to the 

observed MAP (Table 4.6, also see Chapter 5). Similarly, simulated runoff (MAR) indicated 

large variations between the various downscaled GCMs and when compared to MAR 

simulated from observed records. The same was true when potential future changes in runoff 

were assessed. The different downscaled GCMs indicated large variations in potential 

changes in runoff going into the future (Figures 4.11 and 4.12). While there was a general 

consensus among the downscaled GCMs that runoff will increase in the future, there was 

little agreement between these GCMs regarding the magnitude of that change. Some 

downscaled GCMs projected significant changes while others projected little or no change. In 

the same sense, more than half of the downscaled GCMs projected increases in nutrients and 

sediment but there was little agreement as to the magnitude of those changes. Similar to 

runoff, some downscaled GCMs projected significant increases in these variables (e.g. 

GDFL2.1, MRI, CSIRO and IPSL) while others indicated no change or insignificant changes 

(e.g. MIROC, ECH5 and ECHO). 

 

These large variations in output highlight a critical aspect regarding the application of 

downscaled GCMs in the assessment of possible changes in WQ variables: GCMs, 

downscaled or otherwise, are uncertain. This is vital to note considering the fact that this 

study was using regional-scale GCM data (at the highest resolutions) to try and describe point 

scale processes. Although the simulations conformed to the initial expectations (e.g. increases 

in rainfall will potentially result in increases in runoff and potential increases in the 

downstream transfer of agricultural pollutants), the large variations in the output highlighted 

the absolutely crucial need to take uncertainty and natural variability into cognisance.  



123 

 

Further, these variations highlighted the importance of viewing downscaled GCM projections 

in a more critical light and perhaps directing more emphasis toward the variability of the 

natural climate rather than focusing on absolute estimates of change which cannot be verified. 

Therefore, focus needs to be directed more towards assessing robust patterns of change that 

are consistently shown by downscaled GCM projections and in the literature e.g. increases in 

temperature and rainfall variability. Furthermore, although these are anthropogenically 

induced changes, natural variability will always be present and will constantly remain a 

challenge. 

 

With respect to the actual impacts of climate change, this study has shown that climate 

change will potentially result in rainfall and runoff increases in the study catchment, 

regardless of the variability inherent in the various downscaled GCMs (Table 4.7). It was also 

demonstrated by this study that, with an increase in runoff, the generation and transfer of 

nutrients and sediment is also highly likely to increase, as indicated by most of the 

downscaled GCMs, particularly those that show significant trends of wetting going into the 

future. However, the wetland appeared to have an overriding effect on these changes. This 

was ascertained from the apparent high competency of the wetland to attenuate runoff and 

limit the downstream transfer of nutrients and sediment (Figures 4.11 and 4.12). Regardless 

of the increase in magnitude of a particular variable (i.e. increase in generation), the wetland 

consistently retarded the movement of the WQ variables from upstream to downstream 

sources. The reasons for this behaviour have already been outlined.     

 

The influence of temperature on the generation and translocation of runoff, nutrients and 

sediment was not overlooked in this study. Temperature is an important driver of the 

processes that influence water availability in a catchment. For instance, increased 

temperatures influence increased evapotranspiration (total evaporation) which ultimately 

influences regional rainfall patterns (depending on other biophysical aspects such as land use 

and aspect). In a study of regional impacts of climate change on  water resource quantity 

and quality, Mimikou et al. (2000) found that increased temperatures complemented by 

reduced rainfall had negative impacts on stream water quality by reducing runoff and 

consequently reducing the dilution capacities of receiving waters.   
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Since the generation of nutrients and sediment is highly sensitive to climatic factors, not 

limited to rainfall, changes in rainfall influenced by changes in temperature may be expected 

to trigger changes in the generation and rate of transfer of sediment and thus nutrients (as 

shown by Mimikou et al., 2000). In this study, the influence of temperature on water quality 

was, therefore, taken into account solely from the point of view of the influence on 

evapotranspiration. Other temperature influences, such as the influence on water temperature, 

chemical reactions and settling rates were not taken into account. Downscaled GCM 

projections generally give adequate representations of observed temperatures owing to the 

fact that temperature is influenced by fewer biophysical factors than rainfall (see Hughes, 

2012). Therefore, no significant anomalies were anticipated in the time series distribution of 

daily temperature records described by the various downscaled GCMs. The same was not true 

for rainfall with regard to biophysical influences. This explains the focus this study assumed 

on rainfall as a direct driver of the generation and transfer of WQ variables. 

 

It is generally accepted that many uncertainties abound in climate change predictive 

modelling, especially in rainfall-runoff modelling. The results presented in this study also 

highlighted this notion. The results indicate that the uncertainties presented by downscaled 

GCM projections when attempting to reproduce present hydrological conditions and 

responses must be considered in decision-making and adaptive water quality management 

based on future predictions. It is important to reiterate that the results obtained in this study 

do not necessarily imply that the downscaled GCM projections are not adequate for the 

simulation of future hydrological conditions, only that the uncertainty they display will be an 

important factor in the development of adaptive water quality management strategies. 

 

To fully explain the variations in rainfall data between the downscaled GCMs, it is critical 

that the variability and patterns of change shown by the downscaled GCMs be fully detailed 

and assessed. Rainfall, as one the primary drivers of catchment processes, should be assessed 

in terms of potential changes in the frequency distribution of daily depths and in the changes 

in certain defined rainfall thresholds. The statistics relevant in such analyses include:  MAP 

changes, number of days in which various runoff thresholds are exceeded, coefficient of 

variation (CV) of annual precipitation, total number of raindays and total number of rainless 

days. The results of those analyses are detailed in a subsequent paper (Chapter 5). 

 



125 

 

In summary, this paper evaluated the ability of seven downscaled GCMs to simulate present 

climate conditions and the behaviour of runoff, nutrients and sediment for 3 HRUs located at 

the headwaters of the Mkabela Catchment over two 20 year periods, encompassing the 

present (1971-1990) and the future (2046-2065). Additionally, the projected impacts of 

climate change on water quality constituents were assessed while also taking into account the 

ability of the wetland to attenuate and retard the downstream displacement of runoff, 

nutrients and sediment. Results showed that 4 out of 7 downscaled GCMs project increases in 

each WQ variable under future conditions and that the wetland maintains its ability to limit 

the transfer of nutrients and sediment regardless of changes in the generation of these 

variables. It is believed that this paper has shown the potential of the methodology to be 

applied to develop improved future water quality projections and, therefore, to assist in 

developing appropriate and informed climate change adaptation strategies.  

 

The scope of the analyses presented in this paper was relatively limited and there is potential 

for refinements to be made to the methodology.  It was therefore recommended that the 

following be investigated in future research: 

 

a) the exact nature of the changes in rainfall, especially with regard to variability, 

intensity and extreme events, 

b) ensure that the above changes are all incorporated in future modelling methodology to 

the best of current understanding, 

c) similarly, the changes in temperature need to be characterized and represented in the 

modelling methodology (temperature effects are currently only represented in total 

evaporation  and need to be extended to possibly include nutrient cycling, migration 

and depositions), 

d) projections for other CSIR GCMs need to be evaluated to assess the evenness of the 

spread in results between the selected downscaled GCMs, and 

e) the impact of climate change on the remainder of the catchment needs to be 

investigated (i.e. at larger scales). 
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ABSTRACT 
 

As part of a broader study, which was to detail the potential impacts of climate change on 

water quality using the daily-time step water quality model ACRU-NPS and seven 

downscaled Global Circulation Models (GCMs), it was deemed necessary to fully detail the 

probable changes in daily rainfall distribution between the present and the future as described 

by selected downscaled GCMs. Hydrologically relevant rainfall statistics of seven different 

downscaled GCMs were analysed in order to detail changes in the frequency of pre-defined 

rainfall thresholds. Results from these analyses indicated limited consistency between the 

GCMs with respect to probable changes in rainfall frequency distribution between the present 

and the future. There was also high variation between the downscaled GCMs regarding 

changes in defined rainfall event intervals with some GCMs indicating significant increases 

and others indicating minimal changes and some indicating no changes. It was concluded that 

in the development of adaptation strategies, focus should be directed more towards the 

uncertainty and variability presented by these projections rather than on absolute quantitative 

estimates of future climatic conditions. 

 

Keywords:  Rainfall, Climate Change, Global Circulation Models, Uncertainty, Variability, 

Adaptation. 
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5.1 Introduction 

 

Climate change is anticipated to result in changes in the frequency of daily rainfall 

distributions for most catchments in South Africa, particularly those located in the eastern 

and central parts of the country (Hewitson et al., 2005). This presents numerous implications 

not only for runoff and streamflow regimes, but also for the generation and translocation of 

agricultural non-point source (NPS) pollutants within these catchments (Nilsson and 

Renöfält, 2008; Lorentz et al., 2011). It is therefore important that the potential impacts of 

climate change on water resources be assessed in order to ensure the judicious and adaptive 

management of these water resources (Kundzewicz et al., 2007; IPCC, 2007). One way of 

achieving this is through daily time-step hydrological modelling. However, previous studies 

(Chapter 4; Hewitson and Crane, 2006; Hughes et al., 2011; Hughes, 2012) have highlighted 

several uncertainties in the daily rainfall generated from downscaled Global Circulation 

Models (GCMs) and used as input in these hydrological models. Therefore, it is important to 

detail the exact nature of the input rainfall data in order to understand the characteristics of 

the simulated runoff and consequently those of the simulated NPS pollutants.  

 

The majority of climate change studies rely on the output generated from various GCMs 

developed at various climate research institutes around the world (Chapter 4; IPCC, 2001; 

IPCC, 2007; Bates et al., 2008). It was noted in Chapter 4, Section 4.4.2 that GCMs are 

limited by their spatial resolutions. A single GCM generally represents a spatial grid of 

~300km (Hewitson et al., 2005). This means that a particular GCM will provide one average 

value that theoretically represents a 300km by 300km grid pixel. This average value 

generated by a GCM is of little value in the investigation of point specific catchment 

processes or local impact assessments. Therefore, the output from these GCMs needs to be 

downscaled in order to provide better representations of regional or local scale climatic 

regimes (Engelbrecht et al., 2009; Hewitson et al., 2005; Hewitson and Crane, 2006). The use 

of downscaled GCM data is, therefore, considered useful in understanding the likely changes 

in biophysical responses to future changes in rainfall and temperature regimes through 

modelling exercises. The climate change projections used in this study were derived from 7 

(seven) downscaled GCMs employed in the Intergovernmental Panel on Climate Change and 

Fourth (AR4) Assessment Reports (IPCC, 2007).  
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The downscaled climate change projections were obtained from the Council for Scientific 

and Industrial Research (CSIR) and from the Climate Systems Analysis Group (CSAG) based 

at the University of Cape Town (UCT). The CSIR GCMs were dynamically downscaled to a 

0.5 degree horizontal resolution grid over southern Africa (Engelbrecht et al., 2009) and the 

CSAG GCMs were empirically downscaled to point scales across southern Africa (Hewitson, 

2012, pers. comm.). Daily rainfall data obtained from historical observations and from the 

downscaled GCMs was assessed at a daily time-step resolution. Owing to the techniques 

applied in downscaling GCM rainfall data, some differences in daily rainfall data were 

expected between the GCM-derived time series and observed/historical time series (the terms 

“observed” and “historical” are used interchangeably in this text). This stems from the fact 

that GCMs are models that attempt to mimic the rainfall characteristics of a catchment using 

a fairly coarse spatial scale, whereas the observed records assessed in this study were 

localised, point measurements (see Section 4.4.2). As will be shown in this study, downscaled 

GCMs do not necessarily capture the exact nature of the rainfall typical of a specific point 

within a particular catchment. This presents important implications for the translation of 

rainfall to runoff within any hydrological model such as the one applied in Chapter 4 and, 

thus, for the interpretation of output obtained from such hydrological modelling exercises. 

 

It has been noted elsewhere that downscaled GCMs are not entirely infallible with respect to 

reproducing local scale climates, although they are designed to reproduce regional scale 

variables with similar statistical frequency(-ies) to what is actually observed (Hewitson et al., 

2005; Hughes, 2012).  The reason behind this is that although the downscaled GCMs attempt 

to reproduce regional rainfall records, the resolutions used in the downscaling exercises are 

inherently coarse and will not necessarily capture the exact nature of the rainfall of a specific 

point of interest within a catchment. This presents significant implications for the analysis of 

rainfall time-series generated by GCMs intended to provide climate change output. It is also 

important to assess the ability or skill of a particular downscaled GCM to represent present 

climate before evaluating future climatic changes. In this paper hydrologically relevant 

statistics of rainfall are assessed with the aim of providing a holistic view of the differences 

between the nature of observed and GCM-derived rainfall data. In addition to assessing the 

differences between observed and GCM-derived rainfall, through the analyses undertaken, 

changes in rainfall distribution for the downscaled GCMs between present (1971-1990) and 

future (2045-2065) periods are characterised.  
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5.2 Methodology 

 

5.2.1 Observed Rainfall Data Acquisition and Treatment 

 

Daily observed rainfall data were obtained from two rainfall stations located in and around 

the Mkabela Catchment, located approximately 1km east of the town of Wartburg, near 

Pietermaritzburg, South Africa (29.34’ 57.00" S, 30.36’ 48" E) (Figure 5.1). The two stations, 

Windy Hill No. 2 and Noodsberg-Jaagbaan, (marked as “Union Mill Jaagbaan”) are also 

indicated in Figure 5.1. The records from these stations had data available over different 

periods and were combined to form a single composite record for the period 1950 to 2011. 

An adjustment of daily rainfall data from the Windy Hill Number 2 station was carried out in 

order to ensure that it represented the Mkabela Catchment in its entirety, more realistically. 

Rainfall data from the Noodsberg-Jaagbaan station was not adjusted since this station was 

considered to be close enough to the Mkabela Catchment to permit the use of its data without 

the necessity for adjustment. The adjustment of the Windy Hill Number 2 station rainfall data 

was carried out using the ACRU model rainfall adjustment or CORPPT function. As 

mentioned in Chapter 4, median monthly rainfall data were used to determine month-by-

month adjustment factors, which were applied to the record to adjust daily rainfall data 

(Smithers and Schulze, 2004). Essentially, the aim of the adjustment was to best estimate the 

rainfall in the Mkabela Catchment using available data over the period of interest (i.e. 1950-

1970). In adjusting the records from the Windy Number 2 station to better represent the 

catchment rainfall, the data from the two selected stations were, consequently, made to be 

more comparable. 



135 

 

 

Figure 5.1  Location of the Mkabela Catchment within the Nagle Water Management 

Unit (WMU). Shown in (b) are the selected rainfall gauging stations (circled) 

and other rainfall stations and towns in and around the Nagle WMU. 

 

5.2.2 Climate Change Projections Considered 

 

As already noted in the introduction, the climate change projections used in this study were 

derived from 7 downscaled GCMs. The downscaled climate change projections were 

obtained from the CSIR and from CSAG based at the University of Cape Town (UCT). Table 

5.1 provides a summary of the relevant information regarding the selected downscaled 

GCMs. The selection of the downscaled GCMs was based on projected changes in mean 

annual precipitation (MAP) described by each downscaled GCM. The GFDL2.1 and MIROC 

GCMs downscaled by the CSIR represented wet and dry climate change projections 

respectively. The GCMs downscaled by CSAG all represented wet climate change 

projections, with variations in the degrees of change in MAP.  
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All the downscaled GCMs used in this study were originally derived from coupled GCM 

(CGCM) projections that contributed to the Intergovernmental Panel on Climate Change 

(IPCC) Fourth Assessment Report (AR4) (IPCC, 2007).  

 

Table 5.1  Information on selected downscaled GCMs including downscaling institutions 

and record lengths.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The GFDL2.1 and MIROC GCMs were dynamically downscaled by the CSIR using the high-

resolution conformal-cubic atmospheric model (CCAM) developed by the Commonwealth 

Scientific and Industrial Research Organisation (CSIRO) in Australia. This was performed by 

forcing the CCAM model using bias-corrected sea-surface temperatures and sea-ice fields of 

coupled GCMs to produce regional scale climate change projections (Engelbrecht et al., 

2009). The CSAG GCMs were empirically downscaled by using observed data to derive 

relationships between synoptic scale and local climates and applying the resulting 

relationships to GCM output to generate higher resolution local climate change projections 

(Hewitson et al., 2005).   

Downscaled GCM Downscaling 
Institute 

Time Periods 
Considered 

GDFL2.1 CSIR 1971-1990 
  2046-2065 
   
MIROC CSIR 1971-1990 
  2046-2065 
   
CSIRO CSAG-UCT 1971-1990 
  2046-2065 
   
ECHO CSAG-UCT 1971-1990 
  2046-2065 
   
IPSL CSAG-UCT 1971-1990 
  2046-2065 
   
ECH5 CSAG-UCT 1971-1990 
  2046-2065 
   
MRI CSAG-UCT 1971-1990 
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As mentioned in Chapter 4, these projections represent a range in global models (including 

their various sensitivities, parameterizations, etc.), downscaling methodologies and 

institutions and, therefore, reflect the uncertainty that is inherent in climate change 

projections at present. This was considered critical since using projections from a single 

combination of GCM-downscaling institution runs the risk of obtaining a biased view of the 

future. 

 

Changes in mean annual precipitation (MAP), changes in the number of raindays (days with 

rainfall above 0 mm), number of days between defined rainfall depth thresholds and the 

variation in daily rainfall amounts were determined in order to characterise changes in 

rainfall distribution between the present (1971-1990) and the future (2046-2065). These 

criteria give an indication of whether individual rainfall events are increasing or declining 

going into the future and thus provide an indication of the probable changes in the behaviour 

of runoff and NPS pollutants between the present and the future (Lumsden et al., 2009). In 

summary, the rainfall statistics assessed include: 

 

a) mean annual precipitation (MAP), 

b) standard deviation of annual precipitation, 

c) coefficient of variation (CV) of annual precipitation, 

d) number of days in the time series with zero rainfall, 

e) total number of raindays, 

f) number of days in the time series with rainfall events between 1 and 5mm, 

g) number of days in the time series with rainfall events between 5 and 10 mm, 

h) number of days in the time series with rainfall events between 10 and 15mm, 

i) number of days in the time series with rainfall events between 15 mm and 20mm, 

j) number of days in the time series with rainfall events between 20 mm and 30mm, 

k) number of days in the time series with rainfall events between 30 mm and 40mm, 

l) number of days in the time series with rainfall events between 40 mm and 50mm, 

m) number of days in the time series with rainfall events between 50 mm and 100mm and 

finally,  

n) number of days in the time series with rainfall events above 100mm. 
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The disaggregation of rainfall into these event ranges was considered important in the 

isolation and analysis of individual rainfall events that trigger important hydrological 

responses such as stormflow, runoff and, consequently, NPS pollutant generation and 

transport. For instance, the 10mm rainfall depth threshold is considered a typical amount 

required for generating stormflow and, thus, runoff (Lumsden et al., 2009). Similarly, events 

above the 20mm threshold are associated with heavy rainfall events coupled with resultant 

high stormflow.  

 

Detailing rainfall patterns of change under conditions of climate change is, therefore, critical 

in understanding the potential generation and transport characteristics of agricultural NPS 

pollutants from hydrological response units (HRUs). This also facilitates the potential 

improvement of the management of these pollutants under future conditions of change. In 

addition to assessing changes in the frequency of runoff-producing rainfall events, this study 

also includes the less extreme rainfall events represented by the 1-5mm depth threshold and 

the more extreme events above the 20-30mm depth threshold. Event ranges above the 20-

30mm range were included to ensure completeness of the analyses. This was done in order to 

fully detail the rainfall time series of each downscaled GCM. The following section outlines 

the results of these analyses.  

 

5.3 Results and Discussion 

 

The typical rainfall characteristics of the Mkabela Catchment observed for the period 1971-

1990 are presented in Table 5.2 for mean annual precipitation (MAP), standard deviation of 

annual precipitation, CV of annual precipitation, number of days with no rainfall, number of 

raindays and total number of days in the time series. To facilitate easier interpretation, the 

rainfall frequencies have been reported as annual means (i.e. it was considered more relevant 

and more meaningful to report these frequencies as x-number of days per year rather than x-

number of days in the entire time-series). This analysis compares the distribution of observed 

rainfall with the distributions of the two CSIR downscaled present climate GCMs used in the 

IPCC 4th Assessment Report (AR4) (IPCC, 2007). Table 5.2 indicates significant differences 

between the statistics of observed and GCM-derived rainfall in almost all statistical variables 

considered. The GFDL2.1 GCM, for instance, reported an MAP of 1301.6mm for the present 

period; almost 56% higher than the observed MAP.  
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The MIROC GCM also reported a similar trend in terms of MAP under present conditions, 

with a 57% departure from the observed MAP. When compared to the number of raindays in 

the observed record, both GCMs reported a significantly higher number of raindays per year 

with a bias towards low magnitude events over the present period of analysis (compare Table 

5.2 and Figures 5.2 and 5.3). This combination of more raindays per year combined with an 

over-simulation of low magnitude events (and an under-simulation of high magnitude events) 

explains the significantly higher MAP reported by both these downscaled GCMs.  

 

In terms of changes in rainfall inter-annual variability, the GDFL2.1 GCM did not show 

significant changes in the variability of annual rainfall between the present and future periods 

of analysis, whereas the MIROC GCM projects a decrease in inter-annual rainfall variability 

between the future and the present. Both GCMs project a marginal decrease in the annual 

number of raindays and an increase in the annual number of rainless days in the future. The 

difference in these changes between the MIROC and GFDL2.1 GCMs is, however, 

negligible. Regarding changes in MAP, the GDFL2.1 GCM shows only a slight increase in 

annual rainfall between the present and the future. This GCM did not show much change in 

terms of the frequency with which any given depth threshold was met or exceeded between 

the present and the future (Figure 5.2). This indicates minimal change in runoff-producing 

events between the future and the present for this GCM. The MIROC GCM, conversely, 

projects an appreciable decrease in annual rainfall going into the future. With the exception 

of the 10-15mm depth range, which shows an appreciable decline between the present and 

the future, this GCM indicated little change in the frequency of low magnitude events (Figure 

5.3). The larger events, however, in the 15-30mm range, indicate a decline for this GCM, 

signalling a reduced number of days per year with runoff-producing events in the future for 

the MIROC GCM. 
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Table 5.2  Rainfall conservation statistics and rainday distribution analysis results for observed and GCM-derived rainfall data. Also indicated in 

this Table are the relative changes in annual rainfall distribution between present and future time periods for the CSIR downscaled 

GCMs used in the study. 

OBSERVED RAINFALL STATISTICS 

 STATISTICS RAINFALL FREQUENCY (days/annum)   

 MAP (mm) STDEV CV ZERO RAIN RAINDAYS TOTAL DAYS 

PRESENT (1971-1990) 835.01 154 0.19 247.35 117.90 365.25 

       

GFDL2.1 GCM RAINFALL STATISTICS 

 STATISTICS RAINFALL FREQUENCY (days/annum)   

 MAP (mm) STDEV CV ZERO RAIN RAINDAYS TOTAL DAYS 

PRESENT (1971-1990) 1301.6 163.67 0.13 126.45 238.80 365.25 

FUTURE (2046-2065) 1361.3 169.85 0.12 129.40 235.85 365.25 

%CHANGE 4.59 3.78 -0.78 2.33 -1.24 0.00 

MIROC GCM RAINFALL STATISTICS 

 STATISTICS RAINFALL FREQUENCY (days/annum)   

 MAP (mm) STDEV CV ZERO RAIN RAINDAYS TOTAL DAYS 

PRESENT (1971-1990) 1310.45 227.69 0.17 129.2 236.05 365.25 

FUTURE (2046-2065) 1162.38 124.98 0.11 133.25 232.0 365.25 

%CHANGE -11.30 -45.11 -35.29 3.13 -1.72 0.00 
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Figure 5.2   Rainfall event frequencies for observed, present and future climates allowing for the assessment of changes/differences. On a depth-by-

depth basis, thi s figure i ndicates minor increases in projected runoff-producing rainfall events relative to the pr esent period for the 

GFDL2.1 GCM.  
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Figure 5.3  Distribution of rainfall event frequencies for observed, present and future climates for the MIROC downscaled GCM, also allowing for 

the a ssessment of changes/differences. In c ontrast to the GFDL2.1 G CM, the de pth-by-depth a nalysis of  hi ghlights decreases in 

projected runoff-producing events under future and altered climatic conditions.  
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Similar to the GCMs downscaled by the CSIR, the CSAG downscaled GCMs were assessed 

in terms of changes in rainfall statistics between the present (1971-1990) and future (2046-

2065) periods. The results of these analyses are indicated Figures 5.4 to 5.9 (with the 

exception of Figure 5.5). Table 5.3 (a, b) presents conservation statistics of mean annual 

precipitation, CV of annual rainfall and standard deviations of annual rainfall for the 

observed record and for all the CSAG downscaled GCMs considered. Figures 5.4 to 5.9 are 

graphical representations showing the relationships between observed and rainfall threshold 

frequencies for the CSAG downscaled GCMs.    

 

The GCMs downscaled by CSAG appeared to be more representative of the Mkabela 

Catchment with regard to rainfall distribution (Tables 5.3a and 5.3b). Improved correlations 

between observed and GCM-derived rainfall were found for all the statistical variables 

considered. Additionally, very similar trends were observed in terms of the number of annual 

rainless days and annual raindays when the observed and GCM rainfall time series were 

compared. This was attributed to the empirical downscaling technique used by CSAG to 

downscale these particular GCMs, which downscales GCM projections to a scale more suited 

to catchment modelling. In doing so, this technique offers a better representation of local 

scale rainfall distribution (see Chapter 4, Section 4.4.2). On a depth-by-depth basis, however, 

the frequency of runoff-producing events in 10-15mm range was found to be consistently 

over-simulated by the CSAG GCMs for the present period. For instance, the CSIRO, IPSL 

and MRI GCMs respectively reported 184, 273 and 206 days at which events in the 10-15mm 

range occurred, compared to the 170 days found in the observed record (Table 5.4). Similar 

trends were observed for the ECHO and ECH5 GCMs. This was repeated for all other depth 

ranges with the exception of the 1-5mm range, where the observed frequency of events 

exceeded that of the CSAG downscaled GCMs. It is important to note that the skill of a 

downscaled GCM to represent present climates and accurately capture the distribution and 

frequency of rainfall events for a particular region is limited by the choice of predictor 

variables used to reproduce local climates (Hughes, 2012).  
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Table 5.3a       Rainfall conservation and threshold statistics for GCM-derived rainfall data and historical rainfall data. Also indicated in this table          

are the relative changes in annual rainfall distribution between present and future time periods for the CSAG downscaled GCMs used in 

the study. 

OBSERVED RAINFALL STATISTICS 

 STATISTICS RAINDAY THRESHOLDS (days/annum)   

 MAP STDEV CV ZERO RAIN RAINDAYS TOTAL DAYS 

PRESENT (1971-1990) 835.01 154.00 0.19 247.35 117.9 365.25 

CSIRO GCM RAINFALL STATISTICS 

 STATISTICS RAINDAY THRESHOLDS (days/annum)   

 MAP STDEV CV ZERO RAIN RAINDAYS TOTAL DAYS 

PRESENT (1971-1990) 803 125.58 0.16 264.05 101.20 365.25 

FUTURE (2046-2065) 870.93 112.67 0.13 254.00 111.25 365.25 

%CHANGE 8.46 -10.28 -18.75 -3.81 9.93 0.00 

IPSL GCM RAINFALL STATISTICS 

 STATISTICS RAINDAY THRESHOLDS (days/annum)   

 MAP STDEV CV ZERO RAIN RAINDAYS TOTAL DAYS 

PRESENT (1971-1990) 957.92 113.33 0.12 242.05 123.20 365.25 

FUTURE (2046-2065) 1012.21 182.44 0.18 246.05 119.20 365.25 

%CHANGE 5.67 60.98 50.00 1.65 -3.25 0.00 

MRI GCM RAINFALL STATISTICS 

 STATISTICS RAINDAY THRESHOLDS (days/annum)   

 MAP STDEV CV ZERO RAIN RAINDAYS TOTAL DAYS 

PRESENT (1971-1990) 906.06 191.73 0.21 265.15 100.10 365.25 

FUTURE (2046-2065) 984.06 221.78 0.23 258.45 106.80 365.25 

%CHANGE 8.61 15.67 9.52 -2.53 6.69 0.00 
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Table 5.3b     Continued from Table 5.5a, this table indicates rainfall conservation and threshold statistics for the ECH5 and ECHO downscaled 

GCMs. Also indicated in this table are the relative changes in rainfall distribution between present and future time periods for the ECH5 

and ECHO downscaled GCMs used in the study. 

 

ECH5 GCM RAINFALL STATISTICS 

 STATISTICS RAINDAY THRESHOLDS (days/annum)   

 MAP STDEV CV 0 RAIN RAINDAYS TOTAL DAYS 

PRESENT (1971-1990) 842.68 216.18 0.22 268.80 96.45 365.25 

FUTURE (2046-2065) 842.1 170.28 0.17 262.00 103.25 365.25 

%CHANGE -0.07 -21.23 -22.73 -2.53 7.05 0.00 

ECHO GCM RAINFALL STATISTICS 

 STATISTICS RAINDAY THRESHOLDS (days/annum)   

 MAP STDEV CV 0 RAIN RAINDAYS TOTAL DAYS 

PRESENT (1971-1990) 856.65 148.63 0.16 262.70 102.55 365.25 

FUTURE (2046-2065) 891.61 129.23 0.13 254.25 111.00 365.25 

%CHANGE 4.08 -13.05 -18.75 -3.81 9.93 0.00 
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Figure 5.4  Rainfall event frequencies for present and future climates for the CSIRO downscaled GCM. Observed rainfall event frequencies are 

included in this Figure to allow for changes/differences to be assessed. 
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In terms of changes in the frequency distribution of rainfall events between the present and 

the future, nearly all CSAG downscaled GCMs (4 out 5 GCMs) projected increases in the 

annual number of runoff-producing events or raindays. The exception to this trend was the 

IPSL GCM which indicated marginal declines in the 5-10, 10-15 and 15-20mm event ranges. 

Although most of the CSAG downscaled GCMs indicated increasing trends in rainfall, the 

degrees of change vary across these GCMs. The CSIRO, IPSL and ECH5 downscaled GCMs 

indicated the most pronounced changes, particularly in the frequencies of runoff-producing 

rainfall events in 5-10mm and 10-15mm range. The CSIRO GCM reported projected 

increases of 18.35% and 22.83% respectively in the frequency of these events, while the 

ECH5 GCM reported increases of 18.08% in the frequency of events in the 10-15mm range 

(Table 5.4). The IPSL GCM reported projected decreases of 4.93% and 5.49% in the 

frequency of events in the same ranges (Table 5.4). Although the MRI GCM also reported a 

decline in the frequency of events in the 10-15mm range, the overall trend for this GCM was 

an increase in the frequency of all other rainfall event ranges. These projected changes in the 

frequency distribution of rainfall have significant implications for the generation and 

transport of NPS pollutants and, in particular, sediment.      

 

There was little consistency in the frequency of larger events above 20mm across all the 

downscaled GCMs considered (Figure 5.5). Admittedly, the 20-25mm event range indicated 

some consistency (all downscaled GCMs indicate positive changes with variations in the 

degrees or magnitude of these changes); however, there remains a large amount of 

disagreement between the downscaled GCMs as to the changes in the frequency of events 

above 20mm envelope. In terms of the intensity of individual events, most GCMs (with the 

exception of the CSIR GCMs) indicated an increase in large events above 20mm and 30mm 

envelopes (Figure 5.5 and Table 5.4). For instance, some GCMs like the MRI and ECHO 

indicated increases up to 16% and 70% respectively in the 25-30mm range. This conforms to 

the general consensus regarding the effects of climate change on rainfall that more intense 

events with an increased frequency may be anticipated under climate change. This is coupled 

with the increase in rainfall variability also anticipated under climate change, an expectation 

confirmed by the results of these analyses.  
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Figure 5.5  Percentage changes in the frequency distribution of rainfall events for selected downscaled future GCM projections as percentages of 

present. 
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Table 5.4 Comparative analyses between observed and GCM rainfall data including summary of future changes in rainfall event frequencies. 

   RAINFALL INTERVAL FREQUENCY (DAYS)  

  MAP 1-5mm 5-10mm 10-15mm 15-20mm 20-25mm 25-30mm >30mm Institute 
Observed  835.01 974 344 170 111 61 45 105  
           
GDFL2.1 PRESENT 1301.6 1709 1070 491 197 75 27 29 CSIR 
 FUTURE 1361.3 1723 1039 531 225 90 37 29 

 %CHANGE 4.59 0.82 -2.90 8.15 14.21 20.00 37.04 0.00 

          

MIROC PRESENT 1310.45 1699 1073 517 200 85 21 20 

 FUTURE 1162.38 1689 1052 413 175 58 19 14 

 %CHANGE -11.30 -0.59 -1.96 -20.12 -12.50 -31.76 -9.52 -30.00 

           
CSIRO PRESENT 803.00 800 436 184 112 100 72 103 CSAG 
 FUTURE 870.93 862 516 226 114 105 68 111 

 %CHANGE 8.46 7.75 18.35 22.83 1.79 5.00 -5.56 7.77 

          

ECHO PRESENT 856.65 865 415 181 116 95 47 118 

 FUTURE 891.61 895 446 195 137 108 80 124 

 %CHANGE 4.08 3.47 7.47 7.73 18.10 13.68 70.21 5.08 

          

IPSL PRESENT 990.45 970 507 273 157 89 72 132 

 FUTURE 999.42 1197 482 258 135 94 73 145 

 %CHANGE 0.91 23.40 -4.93 -5.49 -14.01 5.62 1.39 9.85 

          

ECH5 PRESENT 842.68 759 426 177 129 75 51 114 

 FUTURE 842.10 823 433 209 136 94 52 112 

 %CHANGE -0.07 8.43 1.64 18.08 5.43 25.33 1.96 -1.75 

          

MRI PRESENT 817.04 801 434 206 111 89 51 94 

 FUTURE 848.08 869 454 177 135 99 59 122 

 %CHANGE 3.80 8.49 4.61 -14.08 21.62 11.24 15.69 29.79 
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Figure 5.6 Rainfall e vent f requencies for p resent and futur e c limates for the IPSL downscaled GCM. Observed rainfall event frequencies are 

included in this Figure to allow for changes/differences to be assessed. 
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Figure 5.7  Rainfall e vent frequencies for pr esent and futur e c limates for the MRI downscaled GCM. Observed r ainfall e vent frequencies are 

included in this Figure to allow for changes/differences to be assessed. 



152 

 
Figure 5.8  Rainfall e vent frequencies for pr esent and futur e c limates for the ECH5 downsc aled GCM. Observed ra infall e vent frequencies a re 

included in this Figure to allow for changes/differences to be assessed. 
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Figure 5.9  Rainfall event frequencies for p resent and futur e c limates for the ECHO downscaled GCM. Observed rainfall event frequencies are 

included in this Figure to allow for changes/differences to be assessed. 
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5.4 Conclusions 

 

Regardless of the projected increases in MAP reported by most of the downscaled GCMs, 

these analyses indicate considerable variations in the frequency of present and projected 

annual rainfall events between the downscaled GCMs assessed (Figure 5.5 and Table 5.4). 

This was particularly true in the so-called runoff-generation rainfall event range of 10-15mm. 

Some consistency was, admittedly, observed below and above certain rainfall range 

envelopes. Most downscaled GCMs indicated increases (positive percentage changes) in 

events below the 5mm envelope and those above the 20- and 30mm envelopes. The degrees 

of change in these ranges, however, were highly inconsistent, with some downscaled GCMs 

like the IPSL GCM projecting 23.40% increases in the 1-5mm threshold and some, like the 

GFDL2.1 downscaled GCM, projecting only a 0.82% increase. Similarly, the ECH5 

downscaled GCM projected an increase of 25.33% in the number of events in the 20-25mm 

range, whereas the CSIRO downscaled GCM projected an increase of only 5.00% in the same 

event range. 

 

To isolate and describe potential changes fully, these analyses looked at daily rainfall 

characteristics. The reason for this was that it is only at this temporal resolution that the 

complete range of potential changes in rainfall can be fully represented. This enables the 

confirmation or dismissal of certain notions regarding the anticipated impacts of climate 

change on hydroclimatic variability. For instance, the limited agreement between the 

downscaled GCMs, regarding projected increases in intense events in the future, does not 

provide a solid basis for making radical changes to current water resources management 

paradigms. That is not to suggest that adaptive measures to potential change do not need to be 

undertaken, rather it is to highlight the need to view these projected changes in a more 

realistic light in order to effect management changes in an equally realistic sense. These 

analyses have highlighted a critical aspect regarding the use of downscaled GCM projections: 

the importance of understanding their uncertainty. The limited agreement between the 

downscaled GCMs highlights the need to focus more on uncertainty and on seeking robust 

patterns of change, rather than on absolute estimates projected by the downscaled GCMs. 

Although there is high uncertainty surrounding the use of GCM-derived data in climate 

change modelling, it should not preclude the development and implementation of pragmatic, 

relevant and realistic adaptive management measures.  
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In conclusion, the analyses presented in this paper have indicated the importance of being 

more critical regarding the application of GCM projections (downscaled or otherwise) in 

developing adaptive water quality and water resources management strategies. Not only will 

this ensure that relevant strategies and policies are formulated, but it will also lend credence 

to climate change predictive modelling. This study has shown that downscaled GCMs, like 

any other model, are uncertain. It would therefore be highly imprudent to place absolute trust 

on quantitative predictions generated by these models as these predictions cannot be verified. 

Rather, as the results of this study have shown, focus should be directed more on robust 

relative changes presented by climate change in the development of adaptive strategies. This 

will also allow adaptation to the projected increased climatic variability and consequently 

increased uncertainty presented by climate change.   
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ABSTRACT  
 

Modelling advances have enabled the application of downscaled Global Circulation Models 

(GCMs) and hydrological models, to describe probable future behaviours of biophysical 

systems and simultaneously improve the understanding of present natural system behaviours. 

The knowledge gained from the output generated by these models is often applied to improve 

water resources management. Using the results from climate and water quality modelling 

exercises conducted within the Mkabela Catchment near Wartburg in KwaZulu-Natal, South 

Africa, in conjunction with an extensive review of the literature,  the aim of this paper is to 

suggest adaptation strategies for water quality management within this and similar 

agricultural catchments. This paper also presents a framework that could be applied in the 

adaptive management of water quality under climate change. The assessment of the links 

between biophysical processes, climate change and adaptation is essential in the pursuit of 

reducing vulnerabilities and building adaptive capacity. Projections from various downscaled 

GCMs indicated increases in rainfall and runoff and associated changes in WQ variable 

generation and migration from upstream sources. However, there was little agreement 

between the projections as to the magnitude and direction of these changes. It was concluded 

that the uncertainty presented by downscaled GCM projections needs to be recognised in 

order to ensure the development of relevant and effective adaptation strategies in water 

quality management and policy development. 

 

Keywords:  Climate Change, Water Quality, Hydrological Modelling, Global Circulation 

Models, Adaptation, Policy Development. 
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6.1 Introduction 

 

Climate change is anticipated to induce pressures on environmental and socio-economic 

aspects such as ecological health and integrity, food security, water security, economic 

stability and socio-economic development (IPCC, 2001; IPCC, 2007; Heltberg et al., 2009). 

This implies that environmental and socio-economic systems will become increasingly 

vulnerable to any natural or anthropogenic disturbances introduced by the additional “layer” 

of impacts presented by climate change. It is widely acknowledged that the impacts of 

climate change will affect all water users (IPCC, 2001; IPCC, 2007; Schulze, 2005; Sadoff 

and Muller, 2007; Bates et al., 2008), with the spectrum of affected users being determined 

by their individual ability to effectively respond to such changes (Paavola, 2008) (see Chapter 

2). In the context of adaptation and vulnerability, the developing world is considered to have 

limited adaptation capacity and to be highly vulnerable to the impacts of climate change 

(Desanker and Magadza, 2001; Paavola and Adger, 2005). This is owing to the high 

dependence on climate-sensitive economic sectors, geographic exposure and low-income 

status characteristic of the developing world (Heltberg et al., 2009). Consequently, the most 

adverse climate change related impacts are anticipated to occur in the developing regions of 

the world, of which South Africa is a part (Bates et al., 2008). This serves to highlight the 

importance of understanding vulnerability and adaptation concepts for application in the most 

sensitive (i.e. highly exposed and least adaptive) regions of the world, including South 

Africa. As alluded to in Chapter 2, Section 2.2.4, the anticipated and potentially 

compounding impacts of climate change on water quality and socio-economic systems, 

accentuate the necessity of developing robust and adaptive management strategies that will 

minimize the vulnerability of environmental, social and economic systems. Therefore, in the 

pursuit of fully representing, understanding and mitigating the impacts of climate change on 

the biophysical processes which influence water quality, it is important to include adaptation 

strategies which have the potential to be translated into policy and, ultimately, into adaptation 

action.  
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In many instances, there is a significant disconnect between adaptive water quality 

management and policy development. This disconnect can be attributed to a number of 

reasons, including: significant time constraints for detailed catchment scale investigations 

which inform policy, information is usually disconnected in time, space and function and 

knowledge cannot be effectively generated from environmental studies owing to the 

disjointed nature of the information collected (Harrison, 2007; Nangia et al., 2008). The 

result of this is usually the development of inadequate policies, redundant water resource 

management instruments, inappropriate or inadequate catchment biophysical process 

knowledge, missing or inadequate monitoring programs and unclear institutional 

responsibilities (Huang and Xia, 2001; Gourbesville, 2008). This creates an environment 

where engagement in adaptation action or adaptive management is limited and the 

vulnerability of socio-economic and biophysical systems to the impacts of climate change is 

enhanced. Such conditions underscore or facilitate the undermining of adaptive capacity. 

Adaptive capacity essentially refers to “the potential or ability of a system, region or 

community to adapt to the effects or impacts of (climate) change” (IPCC, 2001; Gallopìn, 

2006; Smit and Wandel, 2006). If the proper frameworks designed to enhance adaptive 

capacity are not in place, it is highly unlikely that any adaptation action can be undertaken. 

 

As mentioned in Chapter 2, Section 2.1.4, effective policy development and water quality 

management both need to be informed by evidence obtained from well executed 

environmental studies and research. It is therefore critical that the biophysical or catchment 

processes and linkages that describe how agricultural non-point source (NPS) pollution and 

land use changes influence water quality be reconciled with adaptive water resources 

management both in management and in policy development and governance structures. The 

assessment of the links between biophysical processes, climate change and adaptation is of 

significant importance in the pursuit of reducing vulnerabilities to climate change and 

building adaptive capacity. Effective WQ management requires a sound, implementable 

policy framework that is informed by well executed environmental studies and research 

(Brainwood et al., 2004; Nangia et al., 2008), as well as monitoring and evaluation. Thus, the 

primary aim of this paper was to develop or suggest relevant adaptation strategies that can 

facilitate adaptive water quality (WQ) management and policy development, based on 

appropriate scientific investigation.  
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6.2 An Adaptive Water Quality Management Framework       

 

It has been repeatedly noted in this study that as part of the current global change mosaic, 

climate change could aggravate current water quality problems. Indeed, climate change is 

anticipated to introduce added complexities that water quality managers will have to contend 

with. Although decision makers make decisions under uncertainty every day, even in the 

absence of climate change (World Bank, 2010), the extent of changes that are likely under 

climate change means that a paradigm shift is required in which the compounding set of 

uncertainties presented by climate change are recognised and included in the decision-making 

process (Kundzewicz et al., 2007) and that these decisions are reflected upon and revised as 

new information becomes available. This essentially constitutes adaptive management 

(Kundzewicz et al., 2007; Bates et al., 2008). Based on an analysis and synthesis of the 

available literature conducted in Chapters 2 and 3, this study proposes an adaptive water 

quality management framework that, if successfully implemented, could prove beneficial in 

local water quality management (Figure 6.2). This framework, combined with the adaptive 

management framework proposed by Bennet et al., (2005) (Figure 6.1), is intended to be used 

as an effective tool to assist in dealing with the potential impacts of climate and global 

change on water quality management in an adaptive way. This framework is, of course, not 

limited to climate change. It also considers natural variability and socio-economic changes as 

potential “hazards” in the fluctuation of catchment water quality. Adaptive management is a 

cyclic learning, application and review process in which the focus is on action and learning 

and not in preparing to learn (Figure 6.1) (Lee, 1999; Bennet et al., 2005).  

 

According to Bennet et al., (2005), adaptive management can be defined as ‘‘a systematic 

process for continually improving management policies and practices by learning from the 

outcomes of operational programs”. In Figure 6.1, the components are all linked through a 

continuous process of learning and participative action. To summarise (with reference to 

Figure 6.1): Information collation refers to the pooling of information collected from research 

and from stakeholder consultation and is usually the first step in the development of an 

adaptive management framework. This step would essentially be informed by catchment 

process observation and monitoring conducted in operational and experimental catchments. 
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Figure 6.1 Schematic diagram of the Coastal CRC Adaptive Management Framework 

(Bennet et al., 2005). 

 

The core components of process and facilitation and evolving knowledge are essential in the 

planning and management cycle and comprise the establishment of healthy relationships 

amongst catchment stakeholders such that the entire adaptive management cycle proceeds 

efficiently. This step, as shown in Figure 6.2, would be facilitated through the unbiased and 

transparent inclusion of stakeholders in decision-making and in the introduction of incentives 

to promote engagement in adaptation action by the relevant stakeholders. Systems analysis 

and vision focuses on identifying and understanding the most important catchment systems in 

order to clearly define the vision and aspirations for the catchment. This step would need to 

be extended to account for the long-term visions of catchment stakeholders. Plan making 

involves the setting of clearly defined resource management goals such that impacts on 

ecological and socio-economic systems are recognised and strategies are developed. This 

would, essentially, constitute the development of adaptation strategies as outlined in this 

study. 
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Implementation involves the actual execution of the goals created in plan making and systems 

analysis and vision creation. In essence, this step describes the actual practice of adaptive 

water quality management. Unfortunately, it also represents one of the biggest challenges 

faced in South African water resources management. However, the promotion of stakeholder 

participation in catchment water resources management through the introduction of 

incentives and the transparent inclusion of stakeholders in decision-making may ensure that 

implementation proceeds efficiently and with limited complications. The process of 

monitoring and review follows implementation and involves the assessment of the 

effectiveness of the goals set during the initial stages of framework development and of the 

effectiveness of the implementation process (Bennet et al., 2005). It also embodies the 

continuous monitoring of various aspects of the framework, including biophysical processes, 

monitoring and gauging networks, engagement in adaptation action and the literacy of 

stakeholders with respect to the impacts of climate change and water quality management. 

Finally, it includes the re-evaluation of initial adaptation strategies and policies to ensure that 

the natural dynamism of environmental and socio-economic systems is accounted for and any 

changes are incorporated into these strategies and policies. It is apparent from Figures 6.1 and 

6.2 that adaptive (water quality) management is a process that facilitates intervention in the 

face of uncertainty. For instance, catchment monitoring and hydrological modelling serve as 

approaches that water resource managers can use to abstract information about the natural 

environment and synthesise knowledge and make decisions based on that information.  

 

Water quality is influenced by various potential hazards and risks such as climate change, 

population and economic growth and natural variability. The framework presented in Figure 

6.2 recognizes these hazards and risks (summarised in “a”, Figure 6.2) and suggests that a 

better understanding of the impacts these hazards and risks have on catchment processes, 

which influence water quality, should be developed through the continuous process of 

information collation and systems analysis and vision (summarised in “b”, Figure 6.2). 

Information collation and systems analysis and vision need to be followed by comprehensive 

and clearly defined plans or strategies (summarised in “c”, Figure 6.2) designed to mitigate 

the impacts presented by the various hazards and risks on natural and socio-economic 

systems. This, as has been mentioned already, would emerge through the development of 

adaptation strategies (also summarised in “c”).  
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The successful application of these strategies would rely on the participatory and explicit 

involvement of stakeholders (e.g. farmers, extension officers and other water users within the 

catchment) in catchment water quality management. This implies that any knowledge gained 

from modelling exercises, similar to the one presented in this study, should be communicated 

to the various stakeholders in a comprehensive manner. This is to ensure that the literacy of 

stakeholders regarding water quality management is improved. Not only is this a way of 

enhancing adaptive capacity (i.e. by improving access to information and knowledge, thus, 

enhancing awareness) but it also facilitates or improves the potential for the engagement in 

adaptation action. This is summarised in the core components presented in “d” Figure 6.2. 

Implementation, which describes the actual practice of adaptive water quality management, 

would be guided by well-informed policies developed through the use of knowledge gained 

from both modelling results and stakeholder consultations. As already mentioned, 

implementation needs to be followed by the monitoring and review of the effectiveness of the 

adaptation strategies designed during the initial stages of the framework’s development. In 

Figure 6.2, the processes of monitoring and review (highlighted by the feedback loops), 

involves the continuous monitoring and updating of various aspects of the framework, 

including knowledge regarding changes in biophysical processes, deployment and updating 

of monitoring and gauging networks, re-assessing changes in hazards and risks, monitoring 

engagement in adaptation action by stakeholders and the re-evaluation of initial adaptation 

strategies and policies to ensure that the natural dynamism of environmental and socio-

economic systems is accounted for and any changes are incorporated into the development of 

revised strategies and policies. 
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It has already been noted that catchment monitoring and hydrological modelling serve as 

useful tools that water resource managers use to understand the behaviour of the natural 

environment and make decisions based on the knowledge synthesised from these studies. 

However, as will be shown in this Chapter, water quality models are often fraught with input 

data limitations (also refer to Chapters 4 and 5). This does not imply that these models are not 

appropriate to be used as decision support tools by water resource managers; rather it implies 

that water quality models should be used as tools that facilitate explicit learning from 

experiments in order to inform and improve future decisions. This is also highlighted by the 

feedbacks indicated in Figure 6.2 which signify the importance of continually updating the 

knowledge related to biophysical and socio-economic changes.  

 

Adaptive WQ management requires the development of robust strategies that recognize the 

reality of a world of shifting baselines, intermittent disturbances and the uncertainty of future 

projection of change (Adger and Vincent, 2005; World Bank, 2010; Firman et al., 2011). 

This demands a re-think of traditional WQ management practices which assume a predictable 

future based on past experiences. The World Bank (2010) recognizes four management 

strategies that are essential in facilitating adaptive (resource) management under climate 

change. These strategies have been adapted by the authors to be more specific to WQ 

management: 

 

a) Priority should be given to no-regrets options: policy and investment options that 

maximise benefits related to water quality management even in the absence of climate 

change e.g. improving water and wastewater infrastructure to minimize water quality 

degradation in receiving waters (see Novotny, 2003). 

b) Increase resilience of water resource systems by buying “safety margins” in low cost 

long-term investments e.g. increasing water quality awareness education and forming 

social resource protection schemes (see Petermann, 2008). 

c) Reversible and flexible options need to be favoured such that in instances of bad 

decisions being made, the cost of reversing the impacts of decisions is kept as 

minimal as possible e.g. restrictive urban planning due to uncertain flooding trends 

can be reversed easily and is less expensive than retreat and protection options (see 

Heltberg et al., 2008).  
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d) Long term planning should be based on forward-thinking scenario analysis and on the 

assessment of strategies that consider a wide range of possible futures. 

 

A recurring theme in this discussion has been that adaptive water quality management 

requires a risk- or hazard-based decision-making model (Figures 6.1 and 6.2), which favours 

long-term planning and robustness taking into cognisance the dynamic nature of socio-

economic and environmental systems (Figure 6.2). Additionally, the uncertainties presented 

by the use of downscaled GCM projections, as shown in Chapter 5, also suggest that robust 

patters of change and natural variability need to be the primary foci in water quality 

management rather than absolute unverifiable predictions of change. Increasing global 

change pressures on water resources coupled with the potentially compounding effects of 

climate change imply that risks related to water quality management cannot be ignored or 

omitted in the decision-making process. The aforementioned compounding sets of 

uncertainties presented by climate change necessitates the development of robust and 

adaptive management strategies that will minimize the risk and, thus, vulnerability of 

environmental, social, economic and demographic systems as outlined in this section. As 

mentioned in Chapter 2, Section 2.1.2, these strategies have to be based on sound scientific 

principles. Therefore, as an extension of this discussion, the following section presents a case 

study where a water quality modelling exercise was undertaken in the Mkabela Catchment, a 

subcatchment of the Nagle Water Management Unit (WMU) of the Mgeni Catchment in 

South Africa.  The results obtained from this exercises are then used to assess their usefulness 

in the framework presented and the adaptation strategies suggested in this Section. 

 

6.3 Methodology 

 

6.3.1 Study Area 

 

As detailed in Chapter 4, the water quality modelling work in this study was conducted in the 

Mkabela Catchment located approximately 1km east of the town of Wartburg, near 

Pietermaritzburg, South Africa (Figure 6.3). The Mkabela Catchment is a subcatchment of 

the Nagle Water Management Unit (WMU) which forms part of the Mgeni Tertiary 

Catchment in KwaZulu-Natal. Commercial irrigated agriculture is the most dominant land 

use activity in the Mkabela Catchment.  
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Various structures, which act as hydraulic controls to the movement of water and pollutants 

are found in the catchment, including an assortment of farm dams, wetlands and riparian 

buffer strips. Synthetic fertilization occurs in sugar cane, vegetable and dairy (pastures) 

farming systems using nitrogen (N) and phosphorus (P) based fertilizers.  

 

The Mkabela Catchment falls within the summer rainfall region of South Africa and 

experiences a warm subtropical climate with distinct dry and rainy seasons interlaced with 

high inter-seasonal variability. The altitude in the catchment ranges from 965 m.a.s.l from the 

eastern escarpment to 755 m.a.s.l at the catchment outlet. The mean annual precipitation 

(MAP) of the catchment averages 835 mm per annum. The baseline vegetation is classified 

by Acocks (1988) as the Southern Tall Grassveld and the catchment relief ranges from open 

hills, low relief to open hills, high relief.  

 

 

Figure 6.3  Location of the Nagle WMU within the Mgeni Quaternary Catchment in (a) 

and the Mkabela Research Catchment within the Nagle WMU in (b).  
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6.3.2 Input Data Acquisition and Processing 

 

Since the aim of this study was to develop relevant adaptation strategies based on appropriate 

scientific investigation, modelling exercises were used to detail potential changes to selected 

WQ variables under climate change. Two types of climatic data were used as input in the 

ACRU-NPS model: i.e. observed climate data derived from the catchment monitoring 

network and climatic data derived from various downscaled GCMs. Daily observed climate 

data were acquired from two rainfall gauging stations located in and around the Mkabela 

Catchment. These were the Windy Hill Number 2 and Noodsberg-Jaagbaan rainfall stations. 

The records from these stations had rainfall data available over different periods and were 

combined to form a single composite record for the period 1950 to 2011. The reader is 

referred to Chapter 4, Section 4.4 for the full description related to the treatment of the 

observed datasets from these stations and for the creation of the composite rainfall record. 

 

Climate change data used in this study were derived from 7 (seven) downscaled global 

circulation models (GCMs) employed in the Intergovernmental Panel on Climate Change 

Fourth (AR4) Assessment Report (IPCC, 2007). The downscaled climate change projections, 

derived from the downscaled GCMs, were obtained from the Council for Scientific and 

Industrial Research (CSIR) and from the Climate Systems Analysis Group (CSAG) based at 

the University of Cape Town (UCT). The downscaled climate change projections used this 

study were based on the Special Report on Emission Scenarios (SRES) A2 storyline and 

emission scenario (Nakićenović et al., 2000), which assumes that global efforts to reduce 

greenhouse gas emissions are relatively ineffective. The reader is also referred to Chapter 4, 

Section 4.4 for the full description and treatment of these data.  

 

6.3.3 Simulations Performed 

 

Source-pathway-response modelling of the Mkabela Catchment with the intention of 

understanding the impacts of agricultural NPS pollutants on the water quality of hydraulic 

controls across the catchment was conducted in this study. The simulation of runoff processes 

(from rainfall measured within the catchment) was carried out for 3 individual Hydrological 

Response Units (HRUs) located in the headwaters of the Mkabela Catchment (Figure 6.4). 

The general characteristics of each of these HRUs are detailed in Table 6.2.  
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The HRUs are located upstream of a perennial wetland, marked as “wetland1” in Figure 6.4. 

The combined runoff and streamflow from each of these HRUs form the inflow into this 

wetland, as indicated in Figure 6.4.  

 

The ACRU-NPS model was selected as the primary model for use in the study simulations. 

The description of this model and the rationale behind its selection are detailed in Chapter 4, 

Section 4.3. It is important to differentiate between simulations performed based on observed 

climate data and simulations performed based on downscaled GCM climate data in the 

context of this study. Both modes of simulation were performed using the ACRU-NPS model 

for the individual HRUs. However, in one instance observed/historical climate data derived 

from in-situ catchment observations was used and in the other, GCM climate data derived 

from the downscaled GCM projections was used. For instance, the 1950 to 2011 simulations 

(encompassing the 1971-1990 period) in the ACRU-NPS model were based on observed 

climate data whereas the 1961-2100 simulations (encompassing the 1971 to 1990 and 2046 to 

2065 periods), also in the ACRU-NPS model, were based on downscaled GCM-derived 

climate data. 

 

Table 6.2 General characteristics of the 3 Hydrological Response Units located in the 

headwaters of the Mkabela Catchment. 

 

HRU Name Area (km2) Elevation (m.a.s.l) Slope (%) 

Sugar Cane  6.31  965 3.5 

Commercial 

Afforestation  

0.61  965 5.5 

Vegetable Patch  1.06  965 1.5 
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Figure 6.4 Location of the 3 HRUs relative to the wetland. Also indicated in this Figure is 

the flow direction from each HRU in the Mkabela catchment headwaters into 

the wetland and, finally, the catchment outlet. 

 

6.4 Results and Lessons Learnt 

 

This section presents a summary of the results obtained from the simulation exercises 

(Chapter 4) and rainfall frequency analyses (Chapter 5) conducted in this study and outlines 

the lessons learnt from those exercises and how they relate to the development of adaptive 

water quality management strategies as outlined in Section 6.2. For relevance purposes, these 

results have not been entirely repeated and only a synopsis of the main findings is offered.  

 

6.4.1 Verification of the ACRU-NPS Model 

 

A number of verification studies were conducted to ensure that the ACRU-NPS model 

adequately represented the observed behaviour of the Mkabela Catchment with regard to the 

WQ variables of concern i.e. runoff, sediment, nitrogen and phosphorus. Model simulations 

were verified against observed WQ variable data from the Mkabela Catchment and results 

from these exercises indicated that the model was representing the hydrological system 

satisfactorily. The results of these verification studies are detailed in Chapter 4, Section 4.7.    
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6.4.2 Impact of the Wetland on the Transfer of NPS Pollutants 

 

Based on the simulations performed using observed input data, the influence of the wetland 

on runoff and on the transfer of nutrients and sediments was assessed by observing the 

changes between variable amounts entering the wetland (Wetland1-“variable” IN) and 

amounts exiting the wetland (Wetland1-“variable” OUT). These changes are indicated in 

Figure 6.5 for runoff and in Table 6.3 for all WQ variables considered. Table 6.3 presents 

mean annual estimates of the variables entering and exiting the wetland and the percent 

changes between variable amounts entering the wetland and amounts exiting the wetland for 

the period between 1971 and 1990. The graphical representations showing the behaviour of 

nitrogen, phosphorus and sediment before and after the wetland are presented in Chapter 4, 

Section 4.6.2.  

 

Table 6.3 Simulated mean annual estimates of water quality variables entering and 

exiting the wetland based on observed input for the present period. 

 

Mean annual runoff decreases by 70.72% subsequent to being routed through the wetland 

(Table 6.3). This simulation also highlights the high effectiveness of the wetland to mitigate 

floods, judging by the reduction in exit flow in the September 1987 floods by over 97% 

(Figure 6.5). Sediment, being sensitive to runoff, also displays a similar attenuation trend to 

that of runoff as indicated in Table 6.3. A linear relationship exists between runoff, 

streamflow and sediment generation. Following a rainfall event, the amount of sediment 

generated from upstream sources generally increases with an increase in runoff. The sharp 

decline in sediment between wetland entry and exit can be attributed to the settling effect of 

sediment when routed through the wetland. The factors affecting sediment transfers across 

water bodies were outlined in Chapter 3, Section 3.2.8.  

Variable Wetland1-IN         Wetland1-OUT                        %Change 

Runoff (mm) 185.15 54.22 -70.72 

Sediment (t) 297.75 8.69 -97.08 

Nitrogen Loads (kg) 69579.00 19258.27 -72.32 

Phosphorus Loads (kg) 22101.31 6602.58 -70.13 
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Subsequent to we tland routing, a  sim ilar reduction tre nd observed for both runoff a nd 

sediment was also observed for nutrients. The mean annual estimates of both N and P appear 

to follow the runoff trend with regard to being retained in the wetland (Table 6.3). The reason 

for this is that nutrients have been shown (e.g. Donohue et al., 2005; Lorentz et al., 2011) to 

migrate e asily with runoff and thi s was an e xpected trend considering the fact that crop 

fertilization is  a dministered using  pr imarily N - and P -based fertilizers in  the Mkabe la 

Catchment. Chapter 3, S ection 3.2 de tailed the factors a ffecting the behaviour of nutrie nts 

across hydraulic controls and it  was shown that these nutrients have a  high dependency on  

runoff-generating discharge mechanisms such as rainfall events and irrigation. The decline in 

nutrients subsequent to be ing rout ed throu gh the wetland c an b e a ttributed to the 

hydropedological and biochemical characteristics of wetlands, which enable water retention 

for prolonged periods of time, thus promoting anaerobic conditions which facilitate the loss 

of both N and P through volatilisation, mass adsorption and immobilisation. Having detailed 

the im pacts of the we tland on the tra nsfer of WQ va riables under pr esent conditions, the 

following se ction of fers a  summ ary o f the projected impacts of climate c hange on WQ 

variables. 

 

 

Figure 6.5 Simulated daily runoff entering and exiting the wetland for the period 1971 to 

1990 based on observed input data. 
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6.4.3 Projected Impacts of Climate Change 

 

The changes of WQ variables between the present (1971-1990) and the future (2046-2065) 

were presented as ratios of change and percentage changes. Ratio values above 1 indicate an 

increasing trend in the simulated variable, whereas values below 1 indicate a decreasing trend 

in the simulated variables (Table 6.4). The ratios represent qualitative rather than quantitative 

changes in the simulated WQ variables. Quantitative estimates of these variables were 

considered to be less appropriate owing to the uncertainty presented by future GCM 

projections with regard to rainfall changes (see Chapter 5) and the apparent large variations in 

the runoff outputs generated by the ACRU-NPS model using GCM-derived input. Therefore, 

qualitative analyses were deemed more appropriate as they give a holistic representation of 

the potential future changes in simulated variables and highlight relative changes better than 

quantitative assessments which are, admittedly, only as accurate and relevant as the 

modelling assumptions applied.  

 

Percentage changes, calculated by subtracting the future value of a variable from the present 

value of the same variable and dividing by the present value of the variable, were also 

included in these analyses. To summarise: a “positive” percentage change suggests an 

increasing trend in the variable while a “negative” percentage change suggests a declining 

trend in the variable. The potential impacts of climate change on mean annual runoff, nutrient 

loads and sediment yield are indicated as ratios of change in Table 6.4 for all downscaled 

GCMs considered and in Figures 6.6 and 6.7 as percentage changes for the CSIR and CSAG 

downscaled GCMs, respectively. Figures 6.6 and 6.7 show the potential impacts of both 

climate change and the potential impacts of the wetland under climate change (i.e. under 

future conditions) on the generation and transfer of the WQ variables considered. In these 

Figures, the impacts of climate change (“Impact CC”) are represented by the future versus 

present changes in wetland inflows. The combined impacts of climate change and the wetland 

(“Impact CC and Wetland) are represented as future wetland outflows versus present wetland 

inflows. Since the analyses of these results have been outlined in detail in Chapter 4, Section 

4.6.4, only a summary of the main findings will be offered here.  
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Table 6.4 and F igures 6.6-6.7 show that only 4 out the 7 downs caled GCMs  c onsidered 

project increases in runoff, nutrients and sediment going into the wetland (ratios above 1 and 

positive pe rcentage changes). These w ere the GDFL2.1, MR I, IPSL a nd C SIRO GCMs. 

However, 3 of  thes e G CMs viz. the MIROC, ECH5 a nd ECHO GCMs, project decreases 

(albeit small decreases) in runoff, nutrients and sediment going into the wetland. 

 

Figure 6.6 Impact of climate change (as a percentage difference) on mean annual wetland 

inflows and outflows in terms of runof f, sediment yield, nit rogen load  a nd 

phosphorus load for the CSIR downscaled GCMs. 

 

For the GCMs downscaled by the CSIR, the GFDL2.1 GCM projects increased runoff going 

into the we tland and posi tive but minimal change with regard to nutrients and se diment 

incident to the wetland. The  M IROC GCM, conversely, pr ojects decreased runoff and 

decreased nutrients and sediment going into the wetland. In all instances, however, the role of 

the wetland is much greater than the impact of climate change and results in overall decreases 

in nutrients and sediments (Figure 6.6). Although the simulations project increases in runoff 

for most  of the GCMs under climate change and a lso point to  the potential increase in the 

generation of sediment and nutrients, the downstream transfer of these variables is mitigated 

to a high degree by the wetland. 



176 

 

The majority of the CSAG downscaled GCMs indicated positive changes with regard to 

projected runoff, nutrients and sediment (Figure 6.7) under future conditions. The exceptions 

to these trends were the ECHO and ECH5 GCMs which indicated negligible decreases in 

runoff, nutrients and sediment between the future and the present. The various GCMs 

downscaled by CSAG indicated large variations in projected runoff, nutrients and sediment. 

For instance, the IPSL GCM suggested increases in runoff of up to 95%, while the MRI 

GCM suggested increases of only 22%. In the same sense the CSIRO GCM suggested 

increases of up to 71%. This, as it is evident, represents a large amount of disagreement 

between these GCMs. Regardless of these variations, the majority of the CSAG downscaled 

GCMs indicated the same direction of change, which was a generally increasing trend in the 

generation of runoff, nitrogen, phosphorus and sediment under climate change. As mentioned 

in Chapters 4 and 5, GCMs are highly uncertain and they are not always expected to 

explicitly reproduce the exact time series variations of point scale rainfall and, consequently, 

that of local scale runoff. It was, therefore, considered highly critical that the focus of these 

analyses be on the variability and relative changes presented by the downscaled GCM 

projections rather than on the absolute estimates that they project.  

 

It has been noted that there are significant variations between the CSAG downscaled GCMs 

regarding increases in runoff, nutrients and sediment. A closer inspection of mean annual 

precipitation was undertaken in an attempt to isolate and describe these trends (also see 

Chapter 5). MAP changes indicated neutral to slight increases, yet runoff changes range from 

neutral to large increases (Table 6.4). Downscaled GCMs projecting large runoff increases, 

thus, indicate a change in the distribution of rainfall (e.g. at seasonal or daily levels) which 

results in a lot more runoff from the same total rainfall. Some GCMs (e.g. ECHO, ECH5 and 

MRI) show reductions in sediment and nitrogen. These are GCMs that also project minimal 

change in annual runoff (save for the MRI GCM) – again this suggests changes in the 

distribution of the rainfall, this time in the opposite manner (less concentrated/intense 

rainfall). To gain a better understanding of these variations in runoff and WQ variables, it 

was considered important that the nature of the changes in daily rainfall (as the main “driver” 

of these trends) under climate change be fully detailed. The reader is referred to Chapter 5 for 

the complete analysis of rainfall frequency changes between present and future climates. 
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 Table 6.4  Ratios of future to present mean annual precipitation, runoff, nutrients and sediment for all downscaled GCMs. 

 

  RATIOS OF CHANGE* 

 MAP RUNOFF SEDIMENT NITROGEN PHOSPHORUS 
DOWNSCALED GCM      
      
GDFL2.1 1.05 1.29 1.00 1.04 1.05 
      
      
MIROC 0.89 0.89 0.62 0.76 0.73 
      
      
CSIRO 1.08 1.71 1.60 1.10 1.40 
      
      
ECHO 1.04 0.95 0.75 0.91 1.27 
      
      
IPSL 1.01 1.95 2.85 1.34 1.36 
      
      
ECH5 1.00 0.97 0.92 0.73 1.00 
      
      
MRI 1.04 1.22 1.23 0.99 1.24 

 *As ratio of future to present 
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Figure 6.7 Impact of climate change on mean annual wetland inflows and outflows in terms of WQ variables for the CSAG downscaled GCMs.
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6.4.4 Summary of Results 

 

To summarise, the various analyses conducted in this study to detail changes in rainfall, 

runoff, nutrients and sediment between the present and the future, highlighted a few critical 

points: 

 

a) Global Circulation Models, like any other mathematical model, are inherently 

uncertain. 

b) It is more appropriate to focus on relative changes and robust patterns of change 

described by the downscaled GCM projections rather than on absolute quantitative 

estimates which cannot be verified. This is particularly crucial in water resources 

planning under climate change. 

c) The high degrees of variability presented by the downscaled GCM projections 

highlight the need to develop robust and flexible adaptation strategies that take into 

consideration risk and, thus, have realistic safety margins. 

 

Additionally, the uncertainties presented by the various GCM projections need to be taken 

into consideration particularly in the development of adaptation strategies in the highly 

assorted profile of South African agricultural catchments. For instance, South African 

catchments range from relatively simple catchments, such as those in the interior of the 

country, to highly complex catchments, such as those in the Western Cape and KwaZulu-

Natal Midlands. Therefore, any strategies developed need to be transferrable across these 

catchments in order to ensure that they are robust, flexible and relevant. The following 

section details the development of adaptive water quality management strategies as informed 

by the framework suggested in Section 6.2 and by the results obtained from the water quality 

and climate change modelling exercises offered in Section 6.3. Also included in the following 

Section is an assessment of the vulnerability and potential for adaptation characteristic of the 

Mkabela Catchment as informed by the ACRU-NPS simulations.  
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6.5 Adaptive Water Quality Management 

 

An adaptation strategy may be thought of as a plan of action intended to minimise the 

anticipated impacts of change on catchment water resources. The ultimate goal of adaptation 

strategies is, therefore, to build adaptive capacity and reduce vulnerability (Chapter 2, Section 

2.1.2). The development of these strategies is therefore important particularly in developing 

countries. This section presents selected adaptation strategies considered relevant in the 

management of nutrients and sediment and, thus, catchment water quality as observed in the 

Mkabela case study and drawn from a synthesis of other relevant studies (see Chapters 2 and 

3). Before these strategies are outlined, however, it was considered important that the 

vulnerability and potential for adaptation characteristic of the Mkabela Catchment be 

assessed.  

 

6.5.1 Vulnerability and Potential for Adaptation as Informed by the ACRU-NPS 

Model Simulations 

 

Vulnerability was defined in Chapter 2 as the “degree to which a system is likely to 

experience harm due to exposure to a hazard” (Füssel, 2006; Ionescu et al., 2009). 

Vulnerability is, therefore, a relative property denoting the vulnerability of something to 

something (Ionescu et al., 2009). In the context of this study, the vulnerability of the Mkabela 

Catchment was assessed from a perspective of the potential deterioration of catchment water 

quality to the increased introduction of nutrients and sediment into the Mkabela fluvial and 

hydraulic systems (rivers, dams, wetlands etc.), between the present and the future. That is, if 

an assumption is made that climate change will trigger increased runoff (as suggested by the 

ACRU-NPS simulation outputs) for the Mkabela Catchment, and there is an increase in the 

introduction of pollutants into the system for any reason (e.g. increased use of synthetic 

fertilizers to increase yields and meet economic demands for agricultural products), then the 

vulnerability of the fluvial systems and the people/farming communities who depend on them 

in the catchment, may also be expected to increase. It is important to note that this study 

considered changes in the distribution of agricultural NPS pollutants up to one specific 

wetland (termed “wetland1”) downstream of the pollutant contributing sites or HRUs (see 

Figure 6.4).  
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The relative changes in inputs into the wetland between the present and the future were used 

as indices that describe the vulnerability of the catchment fluvial systems or at least the 

headwaters of the catchment where the study was primarily focused. As noted above, all 

simulations based on downscaled GCM projections suggested increases in runoff and in the 

subsequent generation and transfer of nutrients and sediment in the future (ratios above 1, 

Table 6.4). This consequently implies that there will be an increase in the loads of nutrients 

and sediment going into the wetland. This in turn suggests that the wetland will become 

increasingly vulnerable to the increased introduction of NPS pollutants, which may 

potentially lead to the deterioration of the water quality of the wetland. While it is true that 

the increased runoff volumes projected by downscaled GCMs for this catchment will 

potentially result in the increased washout of pollutants from agricultural lands, it is 

important to note that the ability and competency of wetlands to attenuate flow and limit the 

downstream transfer of nutrients or pollutants differs between individual wetlands. The 

wetland assessed in this study, as already mentioned, displayed high competency in retaining 

NPS pollutants and limiting their downstream transfer.  

 

The role and importance of wetlands and other buffers was clearly indicated in the results 

presented. Several authors have noted that numerous factors that determine how well a 

particular wetland prevents the downstream translocation of nutrients and sediment. Some of 

these factors include: 

 

a) the size of wetland relative to the upstream contributing sources of pollutants, 

b) the shape of the wetland (as a determinant of the time of concentration for runoff and 

thus the residence time for pollutants),  

c) the permanence and seasonality of the moisture regime of a wetland (IPCC, 2007; 

Bates et al., 2008), 

d) the physicochemical properties of the wetland (e.g. C:N ratios, bacterial density or 

concentration, suspended sediment concentration) (Novotny, 2003), 

e) the ecological conditioning of the wetland (pristine vs disturbed, flora and fauna 

density) (Braskerud, 2002) and, 

f) anthropogenic influences or pressures on the wetland (e.g. the use of wetlands as 

poplar/Populus tremula plantations) (Braskerud, 2002). 
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Although the Mkabela wetland does not explicitly conform to all the factors presented above, 

simulation results suggested that this wetland demonstrates high competency to limit the 

downstream translocation of nutrients and sediment, regardless of changes in runoff and 

nutrient fluxes between the present and the future (Figures 6.6 and 6.7). This suggests that 

this particular wetland has the potential of not becoming any more vulnerable to future 

conditions of climate change than it is to present conditions. In the context of adaptation, this 

highlights an important finding: the behaviour demonstrated by the wetland suggests that its 

preservation by the local farming community in the Mkabela Catchment would not only be an 

adaptation strategy in itself but it would also potentially build the adaptive capacity of this 

catchment and increase the resilience of this catchment to water quality deterioration 

instigated by the impacts of climate change. This would also prevent or limit the water 

quality deterioration of downstream fluvial and hydraulic systems.  

 

It is important to note that the high competency of the wetland to limit the downstream 

movement of nutrients and sediment both under present and future conditions does not 

suggest that the appropriate and judicious management of these pollutants should not be 

observed. Rather, it serves to highlight the need to recognize the importance of the wetland in 

attenuating nutrients and sediment and the importance of having the appropriate management 

strategies in place to protect the water quality of downstream fluvial systems. The following 

section therefore provides a few of these adaptive management strategies as informed by the 

results of this study, as well as the literature.     

 

6.5.2 Adaptive Management of Nutrients and Sediment Transport 

 

As mentioned before, South African agricultural catchments are a kaleidoscope of relatively 

simple (e.g. the Maize Triangle in the Free State Province) to highly complex (e.g. mixed 

cropping systems in the KwaZulu-Natal Midlands) systems. It is important, therefore, that 

any adaptation strategies developed or suggested with the intention of minimising the 

anticipated impacts of climate change on water quality be transferable across these distinct 

catchments. Providentially, the Mkabela Catchment offers an appropriately large blend of 

cropping systems including vegetables, dairy, commercial afforestation, sugar cane and 

pastures. This provides an opportunity for the development or suggestion of adaptation 

strategies takes into consideration all the various cropping systems and, arguably, allows the 
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transferability of these strategies to other catchments, notwithstanding the limitations of the 

modelling exercise as detailed in Section 6.5.3.  The following strategies based, in part, on 

the work conducted in the Mkabela Catchment and largely on a synthesis of other studies 

(Chapters 2 and 3), were considered generic enough to permit their application on other 

“ungauged” catchments; i.e. catchments in which similar studies have not been conducted as 

yet.   

a) Integrate catchment water quality management, applying principles from 

integrated water resources management (IWRM) (GWP, 2000; Schulze, 2003). 

Recognizing the connectivity that exists between catchment water users and uses 

will construct resilience and facilitate engagement in adaptation action. 

b) Improve irrigation efficiency (Molden, 2007). Prevent the unnecessary increase in 

runoff generation which causes increased washout of nutrients and sediment. 

c) Adjust fire management in forestry and sugar cane plantations. Fire is known to 

create hydrophobicity in soils which can enhance the susceptibility of soils to 

erosion, leading to increased sediment generation. Therefore only burn during low 

rainfall seasons. 

d) Prevent waterlogging, erosion and leaching. The loss of nutrients is considered to 

occur with a high degree when there is an overabundance of water (as shown in 

Chapter 3). This is related to prudent irrigation.    

e) Improve access to information. Implementing seasonal forecasting can be 

beneficial in improving the timing of cropping and fertilizer applications such that 

soil and nutrient losses are minimized. Additionally, communicating modelling 

results to stakeholders can also assist in promoting literacy regarding water quality 

management. 

f) Construct discharge rate conservation structures (McCartney, 2009). This applies 

mainly to catchments where the release of high concentrations of nutrients and 

sediment is prevalent. 

g) Increase public and decision-maker awareness. Cooperation between local water 

resource managers, farmers, local policy makers and the general public is critical 

in reducing anthropogenic impacts on local water quality. 

h) Adopt planned rather than autonomous adaptation (Adger, 2003). In some 

instances, adaptation strategies are already being observed, albeit inadvertently 

(e.g. crop rotation and mixed cropping systems). Under future conditions of 
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change, however, this can facilitate mal-adaptation in the sense that applying fixed 

management practices under altered conditions can undermine the systems 

integrity and potentially create new vulnerabilities and exposures. 

i) “Mainstream climate change adaptation options/strategies in national development 

plans. Strategies and options for climate change adaptation need to be considered 

when preparing national development action plans” (Petermann, 2008). 

j) Improve gauging and monitoring (Lorentz et al., 2011). Having a dense 

monitoring network within a catchment not only improves daily water quality 

management and decision-making but it also facilitates the isolation and effective 

control of problem areas.   

 

It was noted before that adaptation strategies need to be based on well-executed research and 

experimental work based on sound scientific principles. This study presented a case study in 

which the impacts of climate change on water quality constituents were assessed primarily 

through modelling. Admittedly, the case study offered limited scope to allow for the 

inclusion of catchment-wide nutrient and sediment delivery mechanisms that influence 

catchment water quality. This was owing to a variety of limitations, which included time 

constraints, particularly in the verification of the model, the scale at which the study was 

conducted and climate change input data problems (see Chapter 5 for the analyses of climate 

change input data). Strategies to address these limitations in future research will be outlined 

in Chapter 7. The reviews presented in Chapters 2 and 3, however, served as useful guides in 

the development of the adaptive management framework presented in this Chapter (see 

Figures 6.1 and 6.2).    

 

6.5.3 Assessment of the Adaptive Water Quality Management Framework 

 

The framework presented in Figure 6.2 was intentionally designed to be generic in nature. 

The reason for this approach was to allow for the development or suggestion of an adaptive 

water quality management framework that can be applied in any agricultural catchment in 

South Africa. This was owing to the highly diverse nature of local catchments, ranging from 

relatively “simple” (e.g. rural) to highly complex (e.g. peri-urban to urban) catchments. This 

approach, it was found, has its own merits and shortcomings. The advantages of this 

approach were considered to be: 
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a) The transferability of the framework, suggesting that it is not limited to the Mkabela 

Catchment but can be applied in other similar agricultural catchments as well. 

b) The inclusion of all aspects relating to catchment water quality management and 

policy development within the framework (i.e. hazards and risks, plan-making, core 

components and information collation aspects, as outlined in Figure 6.2), based on a 

detailed review of the literature (Chapters 2 and 3). 

c) Highlighting the explicit importance of communicating model applications (or any 

other similar research results) to catchment stakeholders and policy-makers. 

d) The updating of current knowledge relating to climate change and water quality (i.e. 

monitoring and review) to be on par with the natural dynamism of environmental and 

socio-economic systems. 

e) The importance of recognizing the uncertainties presented by the various GCMs used 

in this study is highlighted in the framework.     

 

This approach had some shortcomings which were duly noted: 

 

a) The framework is only applicable up to the local catchment scale (e.g. Mkabela 

Catchment and Nagle WMU). Regional factors (e.g. the incidence of urban areas) 

which would have influenced the development of the adaptive water quality 

management framework could not be addressed.  

b) The results from the case study provided limited scope for the development of 

adaptive catchment water quality management strategies, but rather provide a starting 

point for this. This was owing to the relatively small scale at which the study was 

conducted and time constraints (see Chapter 4 and Section 6.3 of this Chapter). 

 

As mentioned before, the framework presented in Figure 6.2 can be applied in agricultural 

catchments similar to the Mkabela Catchment. However, this framework would need to be 

adapted for these catchments to ensure that it maintains its primary purpose, which is to 

promote adaptive water quality management. To do this, the methodology presented in this 

study would need to be revisited and refined (see Chapter 7). For instance, this study was 

limited to the local catchment scale; a fact which may have potentially precluded the 

identification of geographically extensive biophysical mechanisms that govern the transport 

of nutrients and sediment.  
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Therefore, the extension of this and similar studies to larger catchment scales may ensure that 

a better understanding of these mechanisms is developed and this may, ultimately, assist in 

adaptive decision-making and policy development. Furthermore, the human element, or the 

impact of human activities on catchment water quality, could not be directly addressed in this 

study. That is, consultations with catchment stakeholders to understand their role in 

catchment water quality management could not be carried out owing to time constraints. This 

is an important facet of adaptive water quality management since the successful application 

or implementation of the framework relies on the acquiescence of catchment stakeholders to 

actively engage in adaptation action. Therefore, before this framework is applied in other 

catchments, the opinions and visions of catchment stakeholders would need to be taken into 

account and incorporated into the framework. This would ensure that the framework is as 

comprehensive as possible and includes water quality related issues most pertinent to the 

catchment in question.       

 

This study also highlighted the importance of understanding uncertainty in predictive 

modelling. Models, such as the downscaled GCMs used in this study (Chapter 5), are 

uncertain. In addition, models are mathematical abstractions of reality and they are inherently 

limited by the boundary conditions and assumptions which they assigned. Therefore, the 

output from these models needs to be treated with a certain degree of measured scepticism. 

That is not to imply that the output from these models should not be used to further the 

understanding of natural system behaviour or to isolate and contain anthropogenic impacts on 

the environment, but rather it is to highlight the importance of recognizing the uncertainty of 

the output generated by these models. Decisions, particularly those pertaining to an uncertain 

future under climate change, need to be taken regardless of the uncertain nature of the output 

from these models. The framework presented in this study recognises this uncertainty and 

highlights the need for monitoring and review in order to ensure that these decisions remain 

robust and relevant under a changing biophysical and socio-economic climate. This would be 

applicable to all catchments where this framework may be applied. Having outlined the 

development of an adaptive water quality management framework and various adaptation 

strategies using both a review of the literature (Chapters 2 and 3) and the modelling exercises 

conducted using the Mkabela Catchment as a case study, the following section provides a 

synthesis of the results of this Chapter and the implications it presents for similar studies. 
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6.6 Discussion and Conclusions 

 

This paper has attempted to outline the use of the water quality model ACRU-NPS to suggest 

appropriate and adaptive water quality management strategies. Admittedly, the modelling 

results of this study were relatively limited for use in the development or suggestion of these 

adaptation strategies. The impacts of climate change on water quality could only be assessed 

in terms of the response of a single wetland to projected changes in biophysical process and 

the consequential changes in processes governing the behaviour of nutrients and sediment 

across the Mkabela Catchment. This precluded the identification and assessment of 

geographically extensive mechanisms that control nutrient and sediment transfer dynamics. 

However, the local catchment-scale focus assumed in this study allowed the identification 

and isolation of unique catchment pulses that govern the behaviour of non-point source 

pollutant migration, therefore allowing the identification of the processes that may have the 

greatest impact on catchment water quality under climate change. This also enabled the 

design of management strategies and the adaptive water quality management framework and 

its refinement, which were considered to be both relevant and specific to the Mkabela and 

similar agricultural catchments (Section 6.5).  

 

The reviews conducted in Chapters 2 and 3 to outline the procedures involved in developing 

adaptation strategies, served as important guides in the development of the adaptive water 

quality management framework and adaptation strategies suggested in this paper. This study 

showed that adaptive water quality management requires risk- and hazard-based decision-

making models (Figures 6.1 and 6.2) which favour long-term planning and robustness taking 

into cognisance the dynamic nature of socio-economic and environmental systems. 

Additionally, the uncertainties presented by the use of data derived from downscaled GCM 

projections, as shown in Section 6.4.5, also suggest that natural variability and robust patterns 

of change need to be the primary foci and not absolute unverifiable projections of change.  

 

Increasing global change pressures on water resources coupled with the compounding effects 

of climate change imply that risks related to water quality management cannot be ignored or 

omitted in the decision-making process. The compounding set of uncertainties presented by 

climate change necessitates the development of adaptive management strategies that will 

minimize the vulnerability of environmental and socio-economic systems to climate change. 
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The strategies and frameworks outlined in this study not only have the potential to enhance 

the adaptive capacity of catchment water quality management but they can also serve as 

useful guides in the development of new adaptation strategies in other ungauged South 

African catchments. Limited as the results of study may have been, they still provided insight 

into the complexities and uncertainties involved in both water quality and climate change 

modelling. They showed the absolute importance of exercising caution in the application of 

GCM-derived data in the investigation of point-scale hydrological responses/processes. 

Additionally, they showed the importance of extending such investigations to larger 

catchment scales in order to fully represent source-pathway-response relationships that 

govern nutrients and sediment migration. Furthermore, the review into the probable changes 

in the behaviour of climate-sensitive processes under climate change served as a useful 

reference that allowed the explanation of the results obtained in this study. 

 

In conclusion, this study has attempted to demonstrate the absolute importance of strategic 

and adaptive intervention, even under uncertainty. The framework and adaptation strategies 

that have been suggested take cognisance of the uncertainties surrounding the climate change 

discussion and note the importance of continuous monitoring and review, to ensure that any 

changes in environmental and socio-economic systems are factored into adaptive water 

quality management and policy development. Although this study was limited by scale, the 

adaptation strategies suggested were considered to be holistic and applicable up to local 

catchment scales. It was also noted that such studies need to be extended to regional 

catchment scales to ensure the inclusion of geographically extensive catchment biophysical 

processes.      
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7. SYNTHESIS AND RECOMMENDATIONS FOR FUTURE 

RESEARCH 
 

It is now a well-accepted fact that climate change is going to aggravate water quality (WQ) 

problems by instigating rapid and potentially negative changes in the natural hydrological 

environment. The projected impacts of climate change on water quality and quantity are 

expected to introduce added complexities in an already complex water resources management 

environment. This is going to be especially true in South Africa considering the high risk and 

high variability hydroclimatic environment that characterizes this country. Although the 

impacts of a changing climate on local water resources have been widely studied with a 

marked emphasis on water quantity, minimal effort has been directed towards assessing water 

quality issues under climate change. It is therefore important that the projected impacts of 

climate change on the water quality of local fluvial systems be assessed and detailed fully in 

order to ensure preparedness, secure resilience and reduce the vulnerability of these systems 

to the impacts of climate change. It is critical to also note that very little has been achieved 

with respect to linking the basic catchment processes that drive water quality variability with 

climate change projections, and ultimately, incorporation of that particular research into 

policy development and governance. In an attempt to close this knowledge gap, this study 

sought to:   

 

e) Review processes of sediment yield, nitrogen and phosphorus transport in local 

(agricultural) catchments and highlight the factors that influence the generation and 

transport of these water quality variables within local catchments. 

f) Develop the ability to model the projected impacts of climate change on sediment 

yield, nitrogen and phosphorus in the Mkabela Catchment using the ACRU-NPS water 

quality model by incorporating projected changes in driver variables and, where 

necessary, modifying the variables based on expert opinion. 

g) Assess the vulnerability and potential for adaptation with regard to water quality 

under conditions of climate change for the entire Mkabela Catchment and develop an 

adaptive water quality management framework based in this analysis. 

h) Use the results from the above exercises to develop (or suggest) appropriate 

adaptation strategies relevant to the Mkabela Catchment and make recommendations 

for policy development and governance at local and regional levels.  
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The first objective was considered to be achieved in this study.  Chapters 3 provided a full 

description of the processes and factors that govern the transport of nutrient ts (N and 

P) and sediment across agricultural catchments under “normal” or historical conditions. 

Additionally, since the majority of these processes are climate-sensitive, the potential 

influence of an altered climate on their behaviour was also detailed in Chapter 3. This was 

considered critical since this study had as one of its primary foci, the modelling of the 

potential impacts of climate change on these processes. This review served as a useful guide 

in the subsequent water quality and climate change modelling exercises and strategy 

development conducted in this study.  

 

The second objective was also considered to be achieved, albeit partially owing to the 

limitations and uncertainties presented by the use of projected climate data as input in the 

model. The historical behaviour of water quality variables (runoff, nutrients and sediment), 

however, were considered to be successfully simulated, primarily due to the availability of 

high quality, observed input data and access to expert opinion with regard to input variables. 

In addition to the noted shortcomings of using climate change projections, there were other 

uncertainties in the model inputs, which were duly noted. Certain input variables or 

parameters were kept constant, primarily because it is not currently possible to calculate 

future estimates of these input parameters. An example of this is the XI30 variable which 

influences the generation of peak discharge and sediment yield. Notwithstanding the above 

shortcomings, it was believed that the input variables used in this study were realistic enough 

to permit their application in climate change simulations.    

 

A major limitation related to the use of downscaled GCMs was revealed in this study. These 

GCMs are downscaled to regional scales using either dynamical or statistical approaches 

(Chapters 4 and 5). Assumptions have to be made in order to ensure that the output from 

these downscaled GCMs resembles observed climatic regimes as closely as possible. It was, 

however, noted in this study that downscaled GCMs are not always expected to explicitly or 

faithfully reproduce the exact time series variations of point scale rainfall; although they are 

usually accurate with respect to projected variations in temperature. This was considered to 

be a major limitation of the GCMs considering the point scale resolution at which this study 

was conducted.  
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This scaling or resolution limitation of the downscaled GCMs was revealed when simulations 

of water quality variables were assessed for present (1971-1990) and future (2046-2065) 

climatic conditions. There were inconsistent degrees of variation between WQ variables 

simulated based on observed input data and simulations based on GCM-derived input data 

(Chapter 4, Results). Admittedly, some consistency was observed between downscaled 

GCMs derived from one of the downscaling institutions with respect to simulated water 

quality variables (i.e. the majority of CSAG GCMs). However, when the downscaled GCMs 

were considered together, there was little agreement as to the degrees of change in 

magnitudes simulated for water quality variables for present and future climates. The only 

consistency observed in this regard was that 6 out of the 7 downscaled GCMs projected 

increases in MAP, runoff and all other water quality variables considered (positive 

percentage changes). It was for this variation in magnitude that prompted this study to focus 

only on relative changes between the future and the present in the assessment of potential 

changes in WQ variables as influenced by climate change. This approach also proved more 

relevant and useful in describing potential changes and in the development of relevant 

adaptation strategies.  

         

Owing to the limitations presented by the use of downscaled GCMs outlined above, this 

study went further and performed detailed rainfall analyses at daily resolutions for all the 

downscaled GCMs used in the study in order to identify changes in rainfall distribution 

between the present and the future (Chapter 5). These analyses assessed relative changes in 

raindays, number of days with no rainfall and changes in pre-defined rainfall intervals as 

described by each one of the downscaled GCMs. A host of conservation statistics were also 

considered including MAP changes, standard deviations and coefficient of variations (CV) of 

annual rainfall. Nearly all downscaled GCMs projected increases in the number of raindays 

and days each pre-defined interval (or rainfall event range) will be met or exceed between the 

present and the future. The exceptions to these trends were the MIROC and ECH5 

downscaled GCMs. Similarly, an analysis of MAP changes also indicated increases across 

most downscaled GCMs; the same was true for standard deviation and CV of annual rainfall. 

Consequently, it was expected that there would be differences in rainfall event frequencies at 

the daily level because there were already differences evident at an annual level.  
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The point of the daily analyses was to try to understand the annual differences in rainfall 

frequencies e.g. if a certain downscaled GCM had a very high MAP this could be the result of 

it simulating more large (i.e. daily level) events. 

 

The third objective of this study, which was the assessment of the vulnerability and potential 

for adaptation in the Mkabela Catchment with respect to water quality changes under climate 

change, was considered to be achieved. The vulnerability assessment was carried out by 

assessing the vulnerability of the wetland (termed “wetland1”) to the impacts of climate 

change. This was deemed appropriate since the functioning of a wetland in terms of the 

wetland’s ecological health can be used as a reliable reference to indicate the effectiveness of 

water quality management within a catchment. This is because the functioning of wetlands is 

limited by a host of factors, of which anthropogenic influences (i.e. people) are a part of. (It is 

not unrealistic to assume that the integrity of catchment water quality is directly related to the 

anthropogenic influences and impacts on the fluvial systems of that catchment.) The wetland 

assessed in this study indicated almost no signs of vulnerability to the impacts of climate 

change. Regardless of the increases in runoff, nutrients and sediment incident to the wetland 

as projected by the various downscaled GCMs, the wetland consistently indicated high 

competency in limiting the downstream transfer of all these water quality variables.    

 

Unfortunately, a detailed assessment of the potential for adaptation in this catchment could 

not be carried out due to time constraints. Such an assessment would necessarily require 

stakeholder consultations, workshops that bring together different water users at local and 

regional levels and detailed monitoring and assessment of the tools applied to manage water 

quality in this catchment (e.g. erosion prevention measures and irrigation regimes), activities 

considered to be outside the scope of this study. However, adaptation strategies were 

nonetheless suggested based on lessons learned from the various results obtained in this 

study. This constituted the fourth aim of this study and included the development of an 

adaptive water quality management framework. These strategies were primarily suggested for 

the adaptive management of nutrients and sediment within agricultural catchments and the 

adaptive water quality management framework proposed in this study was considered to be 

generic enough to allow its application across various agricultural catchments in South 

Africa.      
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In conclusion, this study has shown that adaptation to climate change in water quality 

management and policy development is going to require approaches that fully recognise the 

uncertainties presented by climate change. Admittedly, the application of downscaled GCMs 

to assess potential changes in biophysical processes is a useful approach that allows the 

conscientious management of water resources in order to ensure the sustainable use of this 

finite resource. This is particularly true in South Africa, considering the semi-arid nature of 

this country. However, and most critically, these downscaled GCMs are inherently uncertain 

and their application in any water quality management endeavours needs to reflect this. In 

addition to this, this study has shown that the natural climatic variability of local catchments 

should not be overlooked in the development of adaptive water quality management 

strategies. For instance, it has almost become the norm to attribute recent extreme climatic 

events to climate change, when it is possible that some of these extreme events are actually 

entirely natural and are not influenced by climatic change at all. It is therefore crucial that 

equal attention be given to climate change, natural variability and robust patterns of change in 

order to ensure that adaptation strategies remain robust, relevant and effective.    

 

7.1 Recommendations for Future Research 

 

Based on the work conducted in this study and the potential for improvements to the 

methodology that were identified, it was recommended that the following be addressed in 

future research:  

 

a) Similar to the rainfall frequency analyses conducted in this study (Chapter 5), changes 

in temperature as projected by the downscaled GCMs also need to be characterized 

and represented in future modelling methodologies. These analyses also need to be 

extended to other catchments. 

b) The impacts of climate change on selected water quality variables needs to be 

investigated at larger catchment scales (preferably at the tertiary catchment scale and 

under different climatic regimes). 

c) Tailored adaptation strategies that are exclusive and unique to the Mkabela (and the 

Mgeni) catchment need to be developed with the explicit inclusion and consultation of 

the relevant stakeholders within the catchment.  
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d) Develop a method in consultation with expert opinion to calculate the XI30* factor 

which influences peak discharge in ACRU-NPS for future conditions. 

e) The applicability of the adaptive water quality management framework suggested in 

this study needs to be tested over a wide range of South African catchments and under 

different climatic regimes. 

f) Additional dynamically downscaled GCMs (i.e. CSIR downscaled GCMs) need to be 

introduced to ensure a more inclusive and comprehensive view of downscaled climate 

change projections for South Africa.  

 

*The 2-year return period for the 30-minute rainfall intensity, calculated in mm.hr-1. 
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GLOSSARY 

 

Adaptation 

Initiatives and measures to reduce the vulnerability of natural and human systems against 

actual or expected climate change effects.  

 

Adaptive Capacity 

The whole of capabilities, resources and institutions of a country or region to implement 

effective adaptation measures. 

 

Vulnerability 

The degree to which a system is susceptible to, and unable to cope with, adverse effects of 

climate change, including climate variability and extremes.  

 

Exposure 

The fact or condition of being exposed as in the condition of being unprotected from severe 

weather. 

 

Resilience 

The ability of a social or ecological system to absorb disturbances while retaining the same 

basic structure and ways of functioning, the capacity for self-organisation, and the capacity to 

adapt to stress and change.  

 

Sensitivity 
 
Sensitivity is the degree to which a system is affected, either adversely or beneficially, by 

climate variability or climate change. The effect may be direct (e.g., a change in crop yield 

in response to a change in the mean, range, or variability of temperature) or indirect (e.g., 

damages caused by an increase in the frequency of coastal flooding due to sea-level rise). 
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APPENDIX A-EXAMPLE OF AN ACRU-NPS MENU INPUT FILE FOR THE 

SUGAR-CANE HYDROLOGICAL RESPONSE UNIT 

 
1 Rainfall file 
organisation 
IRAINF sugarc_Base.csv 
3 Rainfall information 
FORMAT 4 
PPTCOR 0 
MAP 820. 
12 Monthly rainfall 
adjustment factors, 
CORPPT(i) 
CORPPT(01) 0.76 
CORPPT(02) 0.86 
CORPPT(03) 0.93 
CORPPT(04) 0.80 
CORPPT(05) 0.97 
CORPPT(06) 0.82 
CORPPT(07) 0.72 
CORPPT(08) 0.74 
CORPPT(09) 0.92 
CORPPT(10) 0.83 
CORPPT(11) 0.90 
CORPPT(12) 0.83 
3 Availability of observed 
streamflow data 
IOBSTQ 0 
IOBSPK 0 
IOBOVR 0 
1 Streamflow file 
organisation 
ISTRMF blank 
1 Dynamic file option 
DNAMIC 0 
1 Dynamic file 
organisation 
IDYNFL blank 
2 General Heading of 
simulation 
GENERAL Sugarcane, 
Avalon soil form 
HEADING 1: 
6 Locational information 
0.58km2 
CLAREA 0.58 
ELEV 965. 
ALAT 29.42 
ALONG 30.65 

IHEMI 2 
IQUAD 1 
2 Period of record for 
simulation 
IYSTRT 2006 
IYREND 2012 
2 Simulation printout 
options 
WRIDY 0 
WRIMO 0 
 
2 Statistical output 
options (I) 
SUMMRY 99 
ICOMPR 0 
2 Statistical output 
options (II) 
ICOMPV 0 
LOGVAL 0 
12 Monthly means of 
daily max temperature, 
TMAX(i) 
TMAX(01) 2.0 
TMAX(02) 2.0 
TMAX(03) 2.0 
TMAX(04) 2.0 
TMAX(05) 2.0 
TMAX(06) 2.0 
TMAX(07) 2.0 
TMAX(08) 2.0 
TMAX(09) 2.0 
TMAX(10) 2.0 
TMAX(11) 2.0 
TMAX(12) 2.0 
12 Monthly means of 
daily min temperature, 
TMIN(i) 
TMIN(01) 0.0 
TMIN(02) 0.0 
TMIN(03) 0.0 
TMIN(04) 0.0 
TMIN(05) 0.0 
TMIN(06) 0.0 
TMIN(07) 0.0 
TMIN(08) 0.0 
TMIN(09) 0.0 

TMIN(10) 0.0 
TMIN(11) 0.0 
TMIN(12) 0.0 
1 #     Reference potential 
evaporation control 
variables 
EQPET 106 
7 Evaporation input 
availability control flags 
IEIF 0 
ILRF 0 
IWDF 0 
IRHF 0 
ISNF 0 
IRDF 0 
IPNF 0 
12 Means of monthly 
totals of pan evaporation, 
E(i) 
E(01) 0.0 
E(02) 0.0 
E(03) 0.0 
E(04) 0.0 
E(05) 0.0 
E(06) 0.0 
E(07) 0.0 
E(08) 0.0 
E(09) 0.0 
E(10) 0.0 
E(11) 0.0 
E(12) 0.0 
2 Temperature adjustment 
for altitude 
TELEV 908.5 
LRREG 2 
2 Mean lapse rates for 
min and max 
temperatures 
TMAXLR 0.0 
TMINLR 0.0 
1 Mean daily windspeed 
(m/s) 
WNDSPD 1.6 
1 Windspeed region 
number 
LINWIN 0 
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12 Monthly means of 
daily windrun (km/day), 
WIND(i) 
WIND(01) 11.0 
WIND(02) 11.0 
WIND(03) 11.0 
WIND(04) 11.0 
WIND(05) 11.0 
WIND(06) 11.0 
WIND(07) 11.0 
WIND(08) 11.0 
WIND(09) 11.0 
WIND(10) 11.0 
WIND(11) 11.0 
WIND(12) 11.0 
12 Monthly means of 
daily average relative 
humidity, RH(i) 
RH(01) 55.0 
RH(02) 55.0 
RH(03) 55.0 
RH(04) 55.0 
RH(05) 55.0 
RH(06) 55.0 
RH(07) 55.0 
RH(08) 55.0 
RH(09) 55.0 
RH(10) 55.0 
RH(11) 55.0 
RH(12) 55.0 
12 Monthly means of 
daily hours of sunshine, 
ASSH(i) 
ASSH(01) 2.0 
ASSH(02) 2.0 
ASSH(03) 2.0 
ASSH(04) 2.0 
ASSH(05) 2.0 
ASSH(06) 2.0 
ASSH(07) 2.0 
ASSH(08) 2.0 
ASSH(09) 2.0 
ASSH(10) 2.0 
ASSH(11) 2.0 
ASSH(12) 2.0 
3 Penman equation 
control variables 
ALBEDO .07 
ICONS 0 
ISWAVE 0 

12 "A" coefficient in 
Penman equation, 
ACONS(i) 
ACONS(01) .27 
ACONS(02) .27 
ACONS(03) .28 
ACONS(04) .24 
ACONS(05) .24 
ACONS(06) .25 
ACONS(07) .24 
ACONS(08) .21 
ACONS(09) .23 
ACONS(10) .23 
ACONS(11) .22 
ACONS(12) .24 
12 "B" coefficient in 
Penman equation, 
BCONS(i) 
BCONS(01) .52 
BCONS(02) .49 
BCONS(03) .52 
BCONS(04) .52 
BCONS(05) .51 
BCONS(06) .50 
BCONS(07) .51 
BCONS(08) .55 
BCONS(09) .57 
BCONS(10) .56 
BCONS(11) .58 
BCONS(12) .54 
12 Monthly means of 
daily incoming radiation, 
RADMET(i) 
RADMET(01) 12.0 
RADMET(02) 12.0 
RADMET(03) 12.0 
RADMET(04) 12.0 
RADMET(05) 12.0 
RADMET(06) 12.0 
RADMET(07) 12.0 
RADMET(08) 12.0 
RADMET(09) 12.0 
RADMET(10) 12.0 
RADMET(11) 12.0 
RADMET(12) 12.0 
1 Penman equation option 
for either S-tank (0) or A-
pan (1) equivalent 
evaporation 
SAPANC 0 

12 Smoothed mean 
monthly A-pan/S-pan 
ratios, SARAT(i) 
SARAT(01) 1.26 
SARAT(02) 1.25 
SARAT(03) 1.26 
SARAT(04) 1.27 
SARAT(05) 1.30 
SARAT(06) 1.34 
SARAT(07) 1.36 
SARAT(08) 1.37 
SARAT(09) 1.35 
SARAT(10) 1.32 
SARAT(11) 1.28 
SARAT(12) 1.27 
1 Pan adjustment option 
PANCOR 0 
12 Monthly pan 
adjustment factors, 
CORPAN(i) 
CORPAN(01) 1.26 
CORPAN(02) 1.25 
CORPAN(03) 1.26 
CORPAN(04) 1.27 
CORPAN(05) 1.30 
CORPAN(06) 1.34 
CORPAN(07) 1.36 
CORPAN(08) 1.37 
CORPAN(09) 1.35 
CORPAN(10) 1.32 
CORPAN(11) 1.28 
CORPAN(12) 1.27 
1 #     Level of soils 
information 
PEDINF 1 
1 Soils texture 
information 
ITEXT 5 
1 Soil physics based 
infiltration/soil water 
redistribution option 
REDIST 0 
1 Rainfall intensity 
distribution type 
IRDIST 1 
1 Soil thickness 
information 
PEDDEP 1 
10 Soils information 
(adequate) 
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DEPAHO .30 
DEPBHO .45 
WP1 .110 
WP2 .110 
FC1 .290 
FC2 .290 
PO1 .43 
PO2 .43 
ABRESP 0.60 
BFRESP 0.62 
1 Shrink-swell soils 
option 
ICRACK 0 
2 Initial values of soil 
water retention constants 
SMAINI 0.170 
SMBINI 0.170 
1 Option for statistical 
analysis of soil water 
regime 
SWLOPT 0 
6 Soil water content 
thresholds for A horizon, 
SWLA_M(i) 
SWLA_M(01) .11 
SWLA_M(02) .11 
SWLA_M(03) .12 
SWLA_M(04) .16 
SWLA_M(05) .21 
SWLA_M(06) .34 
6 Soil water content 
thresholds for B horizon, 
SWLBM(i) 
SWLBM(01) .11 
SWLBM(02) .12 
SWLBM(03) .12 
SWLBM(04) .17 
SWLBM(05) .22 
SWLBM(06) .33 
1 #     Level of land cover 
information 
LCOVER 1 
1 Land cover number 
information 
CROPNO 3020700 
1 Determination of 
canopy interception loss 
INTLOS 1 
1 Leaf area index 
information 

LAIND 2 
12 Monthly means of 
crop coefficients, CAY(i) 
CAY(01) .78 
CAY(02) .74 
CAY(03) .72 
CAY(04) .74 
CAY(05) .81 
CAY(06) .85 
CAY(07) .90 
CAY(08) .92 
CAY(09) .93 
CAY(10) .91 
CAY(11) .88 
CAY(12) .82 
12 Monthly means of leaf 
area index, E1M(i) - for 
grown sugarcane 
ELAIM(01) 6.0 
ELAIM(02) 5.5 
ELAIM(03) 5.0 
ELAIM(04) 4.0 
ELAIM(05) 3.0 
ELAIM(06) 2.5 
ELAIM(07) 2.5 
ELAIM(08) 3.0 
ELAIM(09) 4.0 
ELAIM(10) 5.0 
ELAIM(11) 5.5 
ELAIM(12) 6.0 
12 Canopy interception 
loss (mm) per rainday, 
VEGINT(i) 
VEGINT(01) 1.8 
VEGINT(02) 1.8 
VEGINT(03) 1.8 
VEGINT(04) 1.8 
VEGINT(05) 1.8 
VEGINT(06) 1.8 
VEGINT(07) 1.8 
VEGINT(08) 1.8 
VEGINT(09) 1.8 
VEGINT(10) 1.8 
VEGINT(11) 1.8 
VEGINT(12) 1.8 
12 Fraction of active root 
system in topsoil horizon, 
ROOTA(i) 
ROOTA(01) .65 
ROOTA(02) .65 

ROOTA(03) .65 
ROOTA(04) .65 
ROOTA(05) .65 
ROOTA(06) .65 
ROOTA(07) .65 
ROOTA(08) .65 
ROOTA(09) .65 
ROOTA(10) .65 
ROOTA(11) .65 
ROOTA(12) .65 
1 Effective total rooting 
depth 
EFRDEP 0.0 
2 Total evaporation 
control variables 
EVTR 2 
FPAW 0 
1 Fraction of PAW at 
which plant stress sets in 
CONST 0.2 
1 Critical leaf water 
potential 
CRLEPO -1500.0 
1 Option for enhanced 
wet canopy evaporation 
FOREST 0 
1 Option for simulation 
under enhanced 
atmospheric CO2 levels 
CO2TRA 0 
1 Mean temperature 
threshold (øC) for active 
growth to take place 
TMPCUT 10.0 
1 Unsaturated soil 
moisture redistribution 
IUNSAT 0 
1 Option for lysimeter 
routine 
LYSIM 0 
7 Streamflow simulation 
control variables 
QFRESP 0.60 
COFRU  0.001 
SMDDEP 0.18 
IRUN 1 
ADJIMP .000 
DISIMP .000 
STOIMP 1.00 
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12 Coefficient of initial 
abstraction, COIAM(i) 
COIAM(01) .35 
COIAM(02) .35 
COIAM(03) .35 
COIAM(04) .35 
COIAM(05) .30 
COIAM(06) .30 
COIAM(07) .30 
COIAM(08) .30 
COIAM(09) .35 
COIAM(10) .35 
COIAM(11) .35 
COIAM(12) .35 
1 #     Peak discharge : 
option 
PEAK 1 
2 Peak discharge : control 
variables (I) 
LAG 2 
SLOPE 3.5 
2 Peak discharge : control 
variables (II) 
HYLEN 72114. 
CNII 75. 
1 Peak discharge : control 
variables (III) 
XI30 58.4 
1 Peak discharge : control 
variables (IV) 
TCON .00 
1 #     Sediment yield : 
option 
MUSLE 1 
6 Sediment yield : 
variables (I) 
SOIFC1 .5 
SOIFC2 .5 
ELFACT 0.65 
PFACT 0.1 
ICOVRD 0 
SEDIST .45 
2 Sediment yield : 
variables (II) 
ALPHA 8.934 
BETA 0.56 
12 Means of monthly 
cover factors, COVER(i) 
COVER(01) .07 
COVER(02) .07 

COVER(03) .07 
COVER(04) .07 
COVER(05) .07 
COVER(06) .07 
COVER(07) .07 
COVER(08) .07 
COVER(09) .07 
COVER(10) .07 
COVER(11) .07 
COVER(12) .07 
3 #     Hydrograph routing 
input 
XMUSK 0. 
XAK 0. 
FTINC 0.0 
5 Hydrograph routing 
input : channel 
dimensions (I) 
ISHAPE 1 
FDEPTH 0. 
ROUGHN 0. 
CSLOPE .0 
CHLEN 0.0 
1 Hydrograph routing 
input : channel 
dimensions (II) 
BWIDTH .0 
1 Hydrograph routing 
input : channel 
dimensions (III) 
ZSIDE .0 
1 Hydrograph routing 
input : channel 
dimensions (IV) 
TWIDTH .0 
2 Wetland input options 
IVLEI 0 
CAPM3S 1.2 
1 #     Shallow 
groundwater : analysis 
option 
IGWATR 0 
6 Shallow groundwater : 
variables for vertical flow 
IZTEXT 5 
POIZ .466 
FCIZ .276 
WPIZ .127 
DEPIMP 7 
DEPROT 900 

8 Shallow groundwater : 
variables for lateral flux 
VALUEK 250.0000 
ALTIS 1035.0 
ALTIR 1026.0 
ALTH 1044.0 
DISTR 800.0 
DISTA 1600.0 
SIZEHA 58 
OBSWTD 4.659 
2 #     Irrigation : option 
IRRIGN 0 
WRIRR 0 
12 Irrigation : month for 
application, IRRMON(i) 
IRRMON(01) 1 
IRRMON(02) 1 
IRRMON(03) 1 
IRRMON(04) 1 
IRRMON(05) 1 
IRRMON(06) 1 
IRRMON(07) 1 
IRRMON(08) 1 
IRRMON(09) 1 
IRRMON(10) 1 
IRRMON(11) 1 
IRRMON(12) 1 
12 Irrigation : areas, 
HAIRR(i) 
HAIRR(01) 0. 
HAIRR(02) 0. 
HAIRR(03) 0. 
HAIRR(04) 0. 
HAIRR(05) 0. 
HAIRR(06) 0. 
HAIRR(07) 0. 
HAIRR(08) 0. 
HAIRR(09) 0. 
HAIRR(10) 0. 
HAIRR(11) 0. 
HAIRR(12) 0. 
12 Irrigation : catchment 
rainfall adjustment, 
PPTIRR(i) 
PPTIRR(01) 1.00 
PPTIRR(02) 1.00 
PPTIRR(03) 1.00 
PPTIRR(04) 1.00 
PPTIRR(05) 1.00 
PPTIRR(06) 1.00 
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PPTIRR(07) 1.00 
PPTIRR(08) 1.00 
PPTIRR(09) 1.00 
PPTIRR(10) 1.00 
PPTIRR(11) 1.00 
PPTIRR(12) 1.00 
12 Irrigation : coefficient 
of initial abstractions, 
COIAIR(i) 
COIAIR(01) .30 
COIAIR(02) .30 
COIAIR(03) .30 
COIAIR(04) .30 
COIAIR(05) .30 
COIAIR(06) .30 
COIAIR(07) .30 
COIAIR(08) .30 
COIAIR(09) .30 
COIAIR(10) .30 
COIAIR(11) .28 
COIAIR(12) .25 
1 Irrigation : soils 
information (I) 
ITEXTI 8 
1 Irrigation : soil 
information (II) 
IRRPED 0 
3 Irrigation : soil 
information (III) 
WPIR .200 
FCIR .300 
POIR .450 
12 Irrigation : crop 
coefficients, CAYIRR(i) 
CAYIRR(01) .80 
CAYIRR(02) .80 
CAYIRR(03) .80 
CAYIRR(04) .70 
CAYIRR(05) .60 
CAYIRR(06) .50 
CAYIRR(07) .50 
CAYIRR(08) .50 
CAYIRR(09) .60 
CAYIRR(10) .70 
CAYIRR(11) .80 
CAYIRR(12) .80 
12 Irrigation : 
interception loss, 
DINTIR(i) 
DINTIR(01) 1.40 

DINTIR(02) 1.40 
DINTIR(03) 1.40 
DINTIR(04) 1.40 
DINTIR(05) 1.20 
DINTIR(06) 1.00 
DINTIR(07) 1.00 
DINTIR(08) 1.20 
DINTIR(09) 1.30 
DINTIR(10) 1.40 
DINTIR(11) 1.40 
DINTIR(12) 1.40 
2 Irrigation : rooting 
characteristics 
RDMAX 1.00 
RDUP .80 
4 Irrigation : total 
evaporation control 
variables 
CCOV .65 
CCMAX 0.70 
PGRDM 90.0 
CRLW -1200.0 
12 Irrigation : mode of 
scheduling, ISCHED(i) 
ISCHED(01) 1 
ISCHED(02) 1 
ISCHED(03) 1 
ISCHED(04) 2 
ISCHED(05) 2 
ISCHED(06) 2 
ISCHED(07) 2 
ISCHED(08) 2 
ISCHED(09) 2 
ISCHED(10) 1 
ISCHED(11) 1 
ISCHED(12) 1 
12 Irrigation : scheduling 
control variables (I), 
STPRO(i) 
STPRO(01) .50 
STPRO(02) .50 
STPRO(03) .50 
STPRO(04) .50 
STPRO(05) .50 
STPRO(06) .50 
STPRO(07) .50 
STPRO(08) .50 
STPRO(09) .50 
STPRO(10) .50 
STPRO(11) .50 

STPRO(12) .50 
2 Irrigation : scheduling 
control variables (II) 
IRAMT 21 
IRCYC 7 
1 Irrigation : scheduling 
control variables (III) 
RLIM 12.0 
2 Irrigation : application 
control variables 
ILOS 1 
IRUNIT 0 
12 Irrigation : scheduling 
control variables (IV), 
RASTO(i) 
RASTO(01) 16.0 
RASTO(02) 16.0 
RASTO(03) 16.0 
RASTO(04) 16.0 
RASTO(05) 16.0 
RASTO(06) 16.0 
RASTO(07) 16.0 
RASTO(08) 16.0 
RASTO(09) 16.0 
RASTO(10) 16.0 
RASTO(11) 16.0 
RASTO(12) 16.0 
3 Irrigation : supply 
losses 
CONLOS .05 
FAMLOS .05 
EVWIN .15 
1 Irrigation : catchment 
supplying water 
IRSPLY 0 
3 Irrigation : water supply 
information 
IRRAPL 1 
INCELL 1 
UPSTIR 1 
1 Option for domestic 
abstractions 
IDOMR 0 
12 Domestic abstractions 
per day * 1000, 
DOMABS(i) 
DOMABS(01) 1.0 
DOMABS(02) 2.0 
DOMABS(03) 3.0 
DOMABS(04) 3.0 
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DOMABS(05) 3.0 
DOMABS(06) 3.0 
DOMABS(07) 3.0 
DOMABS(08) 3.0 
DOMABS(09) 3.0 
DOMABS(10) 3.0 
DOMABS(11) 3.0 
DOMABS(12) 12.7 
1 #     Reservoir yield 
analysis : option 
RESYLD 0 
8 Reservoir yield analysis 
: control variables (I) 
DAMCAP 0. 
SURFAR 0. 
ARCAP 1 
QNORM .0 
SEEP .0 
PCCDAM 100. 
PERDAM 50.0 
DEDSTO 0.0 
1 Reservoir yield analysis 
: control variables (II) 
WIDTH 1.00 
2 Reservoir yield analysis 
: control variables (III) 
RESCON 7.20 
RESEXP .77 
4 Hydrograph routing : 
options 
SWIDTH 1.00 
CDISCH .50 
RTINC 30.0 
IRESUP 10 
12 Reservoir yield 
analysis : additions and 
abstractions (I), 
PANDAM(i) 
PANDAM(01) .67 
PANDAM(02) .60 
PANDAM(03) .80 
PANDAM(04) .80 
PANDAM(05) .86 
PANDAM(06) .86 
PANDAM(07) .81 
PANDAM(08) .81 
PANDAM(09) .74 
PANDAM(10) .73 
PANDAM(11) .83 
PANDAM(12) .70 

12 Reservoir yield 
analysis : additions and 
abstractions (II), 
PUMPIN(i) 
PUMPIN(01) .00 
PUMPIN(02) .00 
PUMPIN(03) .00 
PUMPIN(04) .00 
PUMPIN(05) .00 
PUMPIN(06) .00 
PUMPIN(07) .00 
PUMPIN(08) .00 
PUMPIN(09) .00 
PUMPIN(10) .00 
PUMPIN(11) .00 
PUMPIN(12) .00 
12 Reservoir yield 
analysis : additions and 
abstractions (III), 
XDRAFT(i) 
XDRAFT(01) .00 
XDRAFT(02) .00 
XDRAFT(03) .00 
XDRAFT(04) .00 
XDRAFT(05) .00 
XDRAFT(06) .00 
XDRAFT(07) .00 
XDRAFT(08) .00 
XDRAFT(09) .00 
XDRAFT(10) .00 
XDRAFT(11) .00 
XDRAFT(12) .00 
1 Off-channel storage : 
option 
IOFCHW 0 
5 Off-channel storage : 
pump & pumping control 
variables 
IPCAP 50 
IPNUM 4 
IPHRS 24 
IPCPMN 25 
IFLDLM 2000 
2 #     Crop yield : option 
CROP 0 
WRTYLD 0 
1 Crop yield : method of 
determining planting 
dates 
PLDATE 1 

2 Crop yield : planting 
dates 
ISTDAY 1 
ISTMO 11 
1 Crop yield : length 
(days) of growing season 
LENGTH 95 
1 Crop yield : ACRU 
maize yield model option 
(I) 
HKSINF 0 
8 Crop yield : ACRU 
maize yield model option 
(II) 
YLDPOT 3.0 
ELAMD1 .5 
ELAMD2 .5 
ELAMD3 .5 
IPRD1 1 
IPRD2 2 
IPRD3 3 
IPRD4 4 
3 Crop yield : ACRU 
sugar cane yield options 
IRRDRY 0 
IREG 1 
NRAT 2 
1 Crop yield : ACRU 
wheat yield option (I) 
RASINF 0 
7 Crop yield : ACRU 
wheat yield option (II) 
WTPOT 3.5 
WLAMD1 .5 
WLAMD2 .5 
WLAMD3 .5 
IWPRD1 10 
IWPRD2 20 
IWPRD3 31 
1 Crop yield : economic 
analysis option 
IEANAL 1 
2 Crop yield : economic 
analysis input variables 
SPRICE 1000. 
BRKEVN 40. 
1 #     Frequency analysis 
: extreme values 
IEVD 0 
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2 Frequency analysis : 
extreme events variable 
selection 
IRANK 1 
IPRTRK 0 
12 Frequency analysis : 
months to be included in 
stats, MOSTAT(i) 
MOSTAT(01) 1 
MOSTAT(02) 1 
MOSTAT(03) 1 
MOSTAT(04) 1 
MOSTAT(05) 1 
MOSTAT(06) 1 
MOSTAT(07) 1 
MOSTAT(08) 1 
MOSTAT(09) 1 
MOSTAT(10) 1 
MOSTAT(11) 1 
MOSTAT(12) 1 
2 Frequency analysis : 
probability distribution 
selection 
SERIES 1 
EVD 1 
1 Land Segment ID 
LSEGID     1_1 
12  Fraction of active root 
system in second soil 
horizon ROOTB(i) 
ROOTB(01)  0.35 
ROOTB(02)  0.35 
ROOTB(03)  0.35 
ROOTB(04)  0.35 
ROOTB(05)  0.35 
ROOTB(06)  0.35 
ROOTB(07)  0.35 
ROOTB(08)  0.35 
ROOTB(09)  0.35 
ROOTB(10)  0.35 
ROOTB(11)  0.35 
ROOTB(12)  0.35 
12  Monthly percentages 
of surface cover (mulch 
etc) PCSUCO(i) 
PCSUCO(01)  100. 
PCSUCO(02)  100. 
PCSUCO(03)  100. 
PCSUCO(04)  100. 
PCSUCO(05)  100. 

PCSUCO(06)  100. 
PCSUCO(07)  100. 
PCSUCO(08)  100. 
PCSUCO(09)  100. 
PCSUCO(10)  100. 
PCSUCO(11)  100. 
PCSUCO(12)  100. 
2  Reservoir ID and initial 
storage volume 
DAMID      Dam_1 
DAMST      0.0 
2  Channel reach options 
CHANL      1 
CHANID     River_1_1 
1  Channel Node ID 
NODEID     
ChannelNode_1_1 
1  Irrigated Area ID 
IRRAID     IrrigArea_1 
1  Irrigated crop number 
information 
IRCROP     1000001 
1  Irrigation soil water 
management depth 
IRMDEP     0.8 
1  Irrigation Water 
Supply Owner 
IRROWN     null 
3  Irrigation Water 
Supply Path 
IRPATH(01) Dam_1 
IRPATH(02) 
WaterTrans_1 
IRPATH(03) IrrigArea_1 
1  Irrigated Area Transfer 
Priority 
IRRTP      1 
2  Channel reach inflow 
file info 
CRINFT     2 
CRINFN     blank 
2  Channel reach natural 
time series flow file info 
NTSFT     2 
NTSFN     blank 
2  Dam reach inflow file 
info 
DRINFT     2 
DRINFN     blank 

3  Eucalyptus Grandis 
growing season 
IEGSTY     1909 
IEGSTM     10 
IEGNO      96 
2  Adjunct impervious 
area 
ADJID      AdjImpArea_1 
ADJIA      0.0 
2  Disjunct impervious 
area 
DISID      DisImpArea_1 
DISIA      0.0 
1  Surface flow option 
SFLOW      1 
1  Nutrient option switch 
variable 
NUTRI 1 
1  Acru_Veld option 
switch variable 
AVELD      0 
1  Andrew Butler's option 
switch variable 
ANDREW     0 
1 Riparian Zone option 
IRIPARIAN  0 
1 % alien infestation in 
the riparian zone 
PcRipInfest  100.0 
1  Salinity option switch 
variable 
SALINITY   0 
2  Channel reach salt 
input file information 
CRINFSAT     2 
CRINFSAN     blank 
2  Reservoir salt input file 
information 
DRINFSAT     2 
DRINFSAN     blank 
1  Andrew Butler's option 
switch variable 
ANDREW     0 
1 Riparian Zone options 
IRIPARIAN  0 
1  Long-term mean temp 
LTMTMP 15.0 
4  Rain and irrigation 
nutrient concentrations 
RNCONC 8.0 
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RPCONC 0.3 
INCONC 0. 
IPCONC 0. 
3  Plant residue initial 
values 
PLRBMAS 9595. 
PLRENS 37.0 
PLREPS 10.0 
2  Soil P sorption 
characteristics 
PSRPCD 2 
SSACLY 20.0 
12  Fraction of active root 
system in soil surface 
layer ROOTSS(i) 
ROOTSS(01) 0.0 
ROOTSS(02) 0.0 
ROOTSS(03) 0.0 
ROOTSS(04) 0.0 
ROOTSS(05) 0.0 
ROOTSS(06) 0.0 
ROOTSS(07) 0.0 
ROOTSS(08) 0.0 
ROOTSS(09) 0.0 
ROOTSS(10) 0.0 
ROOTSS(11) 0.0 
ROOTSS(12) 0.0 
6  Soil surface layer 
characteristics 
smsini0.002035 
DEPSS 0.01 
WPSS 0.123 
FCSS 0.272 
POSS 0.438 
SARESP 1.0 
SMSINI 0.003 
7  Soil surface layer 
characteristics 
OMSS 1.2 
BDSS 1.65 
BSATSS 62.0 
CACOSS 0.5 
PHSS 4.5 
CLSS 11.0 

SLTSS 22.7 
11  Soil surface layer 
initial residue and nutrient 
flux record values 
STNSS 1100.3 
ACNSS 529.4 
STPSS 717.8 
ACPSS 179.5 
OHPSS 1042.3 
AMMNSS 3.3 
NITNSS 16.5 
LABPSS 35.2 
PLBMASS 9595.0 
PLRSNS 37.0 
PLRSPS 10.0 
7  Soil horizon 1 
characteristics 
OM1 1.2 
BD1 1.65 
BSAT1 62.0 
CACO1 0.5 
PH1 4.5 
CL1 11.0 
SLT1 22.7 
11  Soil horizon 1 initial 
residue and nutrient flux 
record values 
STN1 1100.3 
ACN1 529.4 
STP1 717.8 
ACP1 179.5 
OHP1 1042.3 
AMMN1 3.3 
NITN1 16.5 
LABP1 35.2 
PLBMAS1 9595.0 
PLRSN1 37.0 
PLRSP1 10. 
7  Soil horizon 2 
characteristics 
OM2 0.67 
BD2 1.65 
BSAT2 83.0 
CACO2 0.5 

PH2 5.83 
CL2 18.67 
SLT2 24.29 
11  Soil horizon 2 initial 
residue and nutrient flux 
record values 
STN2 653.08 
ACN2 234.6 
STP2 180.37 
ACP2 45.09 
OHP2 1040.67 
AMMN2 3.3 
NITN2 16.43 
LABP2 15.50 
PLBMAS2 9595.0 
PLRSN2 37.0 
PLRSP2 10.0 
3 Acru_NP 0_Vegetation 
variables (EVTR=1&2) 
V0AREA   1.0 
V0DIG    1.0 
V0POTLAI 6.0 
3 Acru_NP 0_Vegetation 
variables (EVTR=2) 
V0COMP 0 
V0DENS 1.0 
V0GLAI 6.0 
2  Acru_NP 0_Vegetation 
growth stress variables 
V0INST 1 
V0IWST 1 
3  Acru_Veld 
0_Vegetation root 
fractions V0ROOT(i) 
V0ROOT(1_1.1_CSoil.1
_CSoilSurfaceLayer) 0.01 
V0ROOT(1_1.1_CSoil.1
_CHorizon) 0.75 
V0ROOT(1_1.1_CSoil.2
_CHorizon) 0.24 
1  At end of file 
STOP       1 

 
 
 
 




