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Abstract

Many recent studies have shown that the initiation of human cancer is due to the malfunction

of some genes at the R-checkpoint during the G1-to-S transition of the cell cycle. Identifying

and modeling the dynamics of these genes has a paramount advantage in controlling and, pos-

sibly, treating human cancer. In this study, a new mathematical model for the dynamics of a

cancer sub-network concentration is developed. Positive equilibrium points are determined and

rigorously analyzed. We have found a condition for the existence of the positive equilibrium

points from the activation, inhibition and degradation parameter values of the dynamical sys-

tem. Numerical simulations have also been carried out. These results confirm analyses in the

literature.
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Chapter 1

Introduction

In this chapter, first we define systems biology and present some of the key biological concepts

necessary to motivate and develop our mathematical model. We then introduce the human body

cell and its cell cycle. We continue further to briefly discuss how the tumor cell progresses. We

also discuss the types of genes, their corresponding network and functions at the R-checkpoint

in the literature review section. We then finally discuss about the new cancer subnetwork and

the objective of the study.

1.1 Background to Systems Biology

Systems biology is an approach by which biological questions are addressed through integrating

experiments, mathematical modeling and simulations [33]. The objective of systems biology

is the understanding of the dynamical interactions between components of a living system,

between living systems and their interactions with the environment. Systems biology deals

with the network of interacting proteins including (i) the reception and emission of chemical

signals within and between cells, (ii) the modulation and integration of signals which control

gene expression and ultimately cell function, and (iii) the control and coordination of metabolic

processes responsible for the intracellular bioenergetics and the biosynthesis. Modeling is not

the final goal of systems biology, but is a tool to enhance the understanding of the system, to
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Figure 1.1: Typical tissue microarchitecture showing epithelium separated from the stroma by

a basement membrane [10].

develop more directed experiments and finally to allow predictions [33]. Cell functions such as

cell differentiation, apoptosis, and the cell cycle are a prototypical focus of systems biology.

1.2 Human Body Cells and the Cell Cycle

The mammalian tissue structure is mainly composed of epithelial cells, the stroma, and the

mesenchymal cells [10]. The epithelium is composed of sheets of tightly adhered epithelial

cells which are separated by the basement membrane from the stroma. The stroma is a loose

connective tissue, which is interlaced by blood vessels, nerves, and lymphatic vessels. The

stroma includes the extracellular matrix (ECM) and the fibroblast of the cell which have a

vital role in the progression of the cancer cell. The mesenchymal cell is a combination of the

stroma and the muscle as shown in Figure 1.1. This complex structure of a cell is maintained

and regulated by a signal network that integrates genetic and proteomic information with

extracellular signals received through membrane-bound receptors [10].

1.2.1 Cell Population Dynamics

Each cell type population is regulated by balancing proliferation and apoptosis (we discuss

proliferation and apoptosis of a cell in the next section). When a differentiated cell dies, then a
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Figure 1.2: Phases in mammalian cell cycle [6].

somatic cell divides either symmetrically or asymmetrically. The division will give two new stem

cells in the first case while a stem cell and a progenitor cell in the latter case. The progenitor

cell either further divides or terminates its differentiation and is pushed to the correct position

to assume its normal function. All these processes are controlled and organized by intercellular

communication through biochemical signals and mechanics [10].

1.2.2 Cell Cycle, Proliferation and Apoptosis

The Eukaryotic cell cycle is a repeated sequence of events that enable the division of a cell into

two daughter cells. The cell cycle is classically divided into four phases: gap 1 (G1), synthesis

(S), gap 2 (G2), and mitosis (M). The diagramatic representation of the cell cycle is given in

Figure 1.2. There are specific activities which are carried out in each phase of the cell cycle

while the cell undergoes cell division. In the G1 phase of the cell cycle, the cell physically

grows, proteins are synthesized, new organelles are constructed, and the cell prepares for DNA

replication. In the following S phase the DNA is copied while in the G2 phase final preparations
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for cell division are made within the nucleus of the cell. In the last phase, M, the cell divides

into two daughter cells, which then begin a new cycle of division [5, 10, 18, 42].

The cell cycle contains numerous checkpoints that allow the cell to check for and repair DNA

damage, as well as to control or halt cell progression. At the R-checkpoint either the cell

commits to division and then progresses to the S phase or exits the cell cycle and enters the

quiescent state (G0). There are also checkpoints in between the G2 and the M phases to

detect and repair DNA damage. Cells that fail to repair DNA damage at such checkpoints

induce apoptosis (a cellular program which results in cell death) [10]. The cell cycle process

is orchestrated by production and balance of chemical signals (principally Cyclins and Cyclin-

dependent kinases (Cdks)) that activate and inhibit the cell cycle progression genes, which

form a complex and highly integrated network [10]. Basically, the cyclins (Cyclin E, cyclin D)

activate the signals while Cdks inhibits the cell cycle progression in the early stage of G1 by

forming the inactive form of Cyclin/Cdk complex. In this network, activating and inhibitory

signal molecules interact, forming positive feedback loop (when the signal transduction of one

step in the network facilitates the effect of the other signal transduction steps in the network)

and negative feedback loops (when the signal transduction of one step in the network hinders

effect on the other signal transduction steps in the network), which ultimately control the

dynamics of the cell cycle. The correct interpretation of growth and inhibitory signals is key

to maintaining the normal cell cycle process. The two types of genes which are particularly

important in regulating cell proliferation are oncogenes (which respond to or create growth

signals and promote cell cycle progression such as Cyclins and Cdks) and tumor suppressor

genes (TSGs) (which respond to inhibitory signals, retard or halt the cell cycle, or to ensure

DNA repair such as Cdk inhibitor families (P27Kip1, INK4)). If either of these genes or both

malfunction, then cancer initiation (carcinogenesis) will occur.
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1.3 The Biology of Cancer

Cancer occurs when defective genes cause cells to malfunction and interact with the body in an

aberrant manner by either increasing cell proliferation or decreasing cell apoptosis [2, 3, 10, 18].

The initiation of cancer may require the accumulation of multiple mutations which allow cells

to break out of the regulatory networks which ensure cooperation. Once a cancerous cell has

been created, it can undergo a process known as clonal expansion (gives rise to descendants by

cell division). This enables it to ignore growth-inhibiting signals from its neighbors, bypass its

internal controls and checkpoints, and form a colony of hyperproliferative aberrant cells.

1.3.1 Avascular, Vascular Growth and Metastasis

Once a tumor has established a foothold in its host tissue, in its early stage, it depends upon

the host vasculature for crucial substrates [10]. Substrates (such as oxygen, nutrient, and

growth factors) diffuse from the surrounding vascularized host tissue to the tumor and are

uptaken by proliferating tumor cells. The tumor cell interacts with the microenvironment of

the body cell both mechanically and chemically. It interacts with the body cell mechanically

by displacing and compressing the surrounding tissue including the basement membrane. It

also interacts chemically by secreting enzymes such as matrix metallo proteinases (MMPs) that

degrade ECM.

Many studies have reported that acidosis (a decreased microenvironmental pH level resulting

from anaerobic glycosis in hypoxic tumor cells) plays a role in tumor invasion by inducing

apoptosis in the surrounding epithelium and contributing to the ECM degradation [10, 21].

The ultimate result of cancer development is angiogenesis, where the tumor induces endothelial

cells to form a new vasculature that directly supplies the tumor cell. This supply of substrate

allows tumor cells to enter the blood supply, travel to a different site, and start growing in

different organs of the body. This process is referred to as metastasis [10].
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1.4 Literature Review

In mammals, entry into DNA replication is guarded by a cell cycle checkpoint called Restriction

(R)-checkpoint; a name proposed by Pardee [31]. Pardee conducted experiments to demonstrate

the R-checkpoint as a unique switching point between quiescent and proliferative states of

normal animal cells. A series of time-lapse video analyses has also been carried out by Zetterberg

and Larsson [41] to determine the precise location of the R-checkpoint. It occurs in the mid-

to-late G1 phase and marks the transition from mitogen-dependant to mitogen-independent

progression of the cell cycle [3]. The suggestion of Pardee [30, 31] that the R-checkpoint

has a vital importance in preventing malignant transformation has gained substantial support

from detailed genetic and molecular studies reported in recent years [3]. As a result, it has

been reported that the cell cycle is suspended at the R-checkpoint if the cell has not grown

sufficiently or possesses damaged DNA [2]. Once the cell does not qualify to progress to the S

phase, it resides in the quiescent state (G0 state) and is induced to re–enter the cell cycle by

mitogenic stimulation.

Many human cancers are known to originate from the malfunction of some genes at the R-

checkpoint such as transcriptional factors (E2F, C-Myc), cyclins (D, E), cyclin-dependent ki-

nases (Cdks), retinoblastoma protein (Rb), phosphatase Cdc25A and cyclin-dependent kinases

inhibitor P27Kip1 [2, 3, 18, 42]. D-type cyclins (D1, D2, D3) serve as targets of growth factors to

integrate extracellular signals into the core cell cycle regulators [18]. These cyclins are induced

to express in response to a variety of mitogenic signals and function as a regulatory subunit of

cyclin-dependent kinases (Cdk2, Cdk4, Cdk5, Cdk6). On the other hand, cyclin E (CycE) and

transcription factor E2F, are directly involved in the initiation of chromosomal DNA replication

[5, 18]. It has been claimed that almost all cancers are associated with one or more mutations

of genes at the R-checkpoint [29]. Examples include the following: (i) inactivation of Rb in

breast and cervical cancers and CML carcinoma, (ii) loss of cyclin-dependent kinase inhibitor

P16INK4a in pancreatic cancer, (iii) overexpression of CycD, CycE or Cdk4 in breast, head and

neck cancers, and (iv) loss of P27Kip1 in breast, prostate, colon, lung, and esophagus cancers

[39].
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Figure 1.3: Schematic model of part of the molecular signaling involved in the regulation of the

G1-to-S transition [3].

Given the complexity of the cell cycle, a logical approach is to model the G1-to-S and the

G2-to-M transitions separately. The biological reason for this approach is the existence of two

strong checkpoints: the R-checkpoint between the G1 and S phases and the G2/M-checkpoint

between the G2 and M phases. Mathematical models of regulation of the G1-to-S transition

have been developed and simulated [3, 15, 42], where the most detailed was developed by Aguda

and Tang [3].

Figure 1.3 summarizes the key interaction between the molecular signaling involved among

CycE/Cdk2, phosphatase Cdc25A, and Cdk inhibitor P27Kip1 during the G1-to-S transition,

which have been identified experimentally over the last two decades. All the solid arrows

(curves) which are numbered, represent the processes of transcriptional stimulations or activa-
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tions while the dashed arrows (curves) which are not numbered, represent the catalytic effect

of the regulators on the target processes. To give the general overview of the network and the

individual reaction in the network, we discuss each process as follows:

Process 1 represents the expression of P27Kip1 by mitogenic signals [16] which downregulation

is given by process 2 which is independent of the Cdk2 kinase activity and process 3 which

is dependent of the Cdk2 kinase activity [35]. Processes 4 and 5 represent the binding na-

ture of P27Kip1 with CycE/Cdk2 complex to form trimeric complex and its phosphorylation

respectively. In our model, to simplify the complexity, we assume that P27Kip1 binds only with

active CycE/Cdk2 (aCycE/Cdk2) and aCycE/Cdk2 is activated by only the active Cdc25A

(aCdc25A). The transcription factor E2F members (E2F1, E2F2, E2F3) have several impor-

tant target genes that drive cells into the S phase. Some of these are Cyclin E, C-Myc and

phosphatase Cdc25A [28]. Process 6 represents the E2F family dependent induction of inactive

CycE/Cdk2 complex while processes 7 and 8 represent the transcriptional induction of E2F

on C-Myc and the mitogenic stimulation of C-Myc on Cdc25A respectively [11]. Processes 9

and 11 represent the degradation of CycE/Cdk2 complex. Furthermore, it is also shown that

aCycE/Cdk2 complex induces its own degradation (curved dashed arrow in process 9) [32].

Process −10 represents the binding nature of CycE and Cdk2, which form an inactive complex

with Cdk2 phosphorylate at threonine 14 (Thr14) and tyrosine 15 (Tyr15). The activation of

CycE/Cdk2 complex by the catalytic effect (dephosphorylating of Thr14 and Tyr15) of Cdc25A

is represented by process 10. Process 12 and −12 represent the activation and inactivation

activity of phosphatase Cdc25A respectively. In the early G1 phase, PRb is in a hypophospho-

rylated (active) form and is able to bind the members of the E2F family of transcription factors.

The dashed arrow from aCycE/Cdk2 impinging on process 13 represents PRb phosphorylation.

In this process, PRb becomes hyperphosphorylated which leads to its activation and then the

release of E2F.

An important feature of the network in Figure 1.3 is the presence of positive feedback loops

such as the loop consisting of E2F, process 6, process 10 and the PRb-phosphorylation by

aCycE/Cdk2 complex. The other positive feedback loop in the network is composed of the

CycE/Cdk2 complex, phosphatase Cdc25A along with the dashed arrows impinging on process

8
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Figure 1.4: A cancer sub-network: All solid arrows represent either gene expression, or activa-

tion, or catalytic effect, or degradation effect by itself. The hammerheads refer to inhibition of

translation.

12 and process 10, which are reactions that catalyze process 12 and process 10 respectively

[17, 35]. These feedback loops account for the sudden increase in CycE/Cdk2 activity which is

assumed to stimulate entry into the S phase.

1.5 Cancer Sub-Network Considered in Our Model

Over the last two decades, mathematical models that provide insights into the dynamical

mechanisms underlying the cell cycle have been developed [1, 3, 13, 14, 15, 26, 27, 38, 42].

Cell cycle dynamics have been modeled as limit cycles [14, 15, 26, 42], bistable and excitable

systems [38, 42], and transient processes [1, 3, 42].

In our study, we have taken the approach of breaking down the regulatory network of the

G1-to-S transition into individual signaling modules, with components active cyclin E-Cdk2

(CycE/Cdk2) complex, active phosphatase protein Cdc25A, and Cdk inhibitor P27Kip1. To

simplify the network given in Figure 1.3, we merge the active and the inactive form as one

module. As a result we obtain the cancer subnetwork in Figure 1.4. The key components

of the network that generate a dynamic switching behavior associated with the R-checkpoint

include a positive feedback loop between CycE/Cdk2 complex and Cdc25A phosphates, along
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with a mutual negative interaction between the cyclin dependent kinases inhibitor P27Kip1 and

CycE/Cdk2 complex has been identified.

To the best of our knowledge, although the dynamics of the cell cycle during the G1-to-S

transition has been modeled and simulated, the search for a particular type of gene that needs

to be manipulated to treat cancer has yet to be concluded. Identifying the key regulatory

components during this process and finding out the parameters that need to be manipulated has

a vital importance in treating human cancer. In this study, we identify the crucial components

(phosphatase Cdc25A, CycE/Cdk2 complex, and P27Kip1) during the G1-to-S transition of the

cell cycle and the key parameters that need to be manipulated to retard the overexpression of

Cdc25A or CycE/Cdk2 complex or to reverse the downregulation of P27Kip1 level.

1.6 Objectives of the Study

The objectives of this study are (i) to identify some key regulatory components at the R-

checkpoint during the G1-to-S transition of the cell cycle, (ii) modeling the dynamics of their

concentrations, and (iii) to identify the parameter(s) need to be manipulated to hinder the

overexpression or to reverse the downregulation of the components during the cell cycle process.
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Chapter 2

An Overview of Dynamical Systems

In this chapter we discuss some model reaction mechanisms, which mirror a large number of real

reactions, and some general types of reaction phenomena with their corresponding mathematical

analyses. Understanding these reaction mechanisms is essential in constructing and analysing

our cancer sub-network model. We introduce the concept of nondimensionalisation and phase

plane analysis to obtain the qualitative behavior of the solution of both linear and nonlinear

systems. We further discuss the nonlinear (2-dimensional) systems of differential equations

along with the conditions for stability of their equilibrium points. We also discuss the Routh-

Hurwitz criteria to determine the stability nature of the equilibrium points for a nonlinear

system in higher dimensional space. Finally, we introduce the Bendixson condition to check

the existence of a limit cycle solution for a given system.

2.1 Basic Enzyme Reaction

Cells live in a complex environment and can sense different signals, including physical param-

eters (such as temperature, osmotic pressure), biological signaling from extracellular medium,

beneficial nutrients, and harmful chemicals. Cells respond to the information about damage

to DNA, membrane, or protein by producing appropriate proteins that act upon the internal

or external environment. This information-processing function, which determines the rate of

11



Signal 1 Signal 2 Signal 3 Signal N

m

Gene 3 Gene 4 Gene kGene 2Gene 1

.   .   ..  .  .

.  .  .

.  .  .

Environment

Transcription
factor

Genes

x1 x2 xx3

Figure 2.1: The mapping between environment signals, transcription factors inside the cell,

and the genes that they regulate. The environmental signals activate the specific transcription

factor proteins. An activated transcription factor bind to specific target genes to change the

transcription rate at which mRNA is produced. The mRNA is then translated into protein

[33].

production of each protein is mainly carried out by transcription networks. Transcription fac-

tors are designed to transit rapidly between active and inactive molecular states, at a rate that

is modulated by a specific environment signal (input). Each active transcription factor can

bind the DNA to regulate the rate at which specific genes are transcribed. The genes which

are transcribed into mRNA is then translated into protein to act on the internal and external

environment of a cell.

Biochemical reactions are continually taking place in all living organisms and most of them

involve proteins called enzymes. Enzymes react selectively on definite compounds called sub-

strates. The enzymes are particularly important in regulating biochemical processes such as

activation or inhibition of chemical reactions. To understand their role we have to study the

kinetics, which is mainly the study of rates of reactions, the temporal behavior of various

reactants and the conditions which govern them [25].

One of the most basic enzymatic reactions, first proposed by Michaelis and Menten [24], involves

a substrate (S) reacting with an enzyme (E) to form a complex (SE) which in turn is converted

12



into a product (P) and an enzyme. The representation of this reaction is

S + E
k1

//

SE
k−1

oo

k2
// P + E (2.1)

where k1, k−1 and k2 are nonnegative constant parameters associated with the rates of reaction.

The double arrow symbol ⇆ indicates that the reaction is reversible while the single arrow →
indicates that the reaction is only one way. Reaction (2.1) states that when one molecule of S

combines with one molecule of E, it forms one molecule of SE which eventually produces one

molecule of P and one molecule of E again. We denote the concentration of the reactants in

reaction (2.1) as follows:

[S] = s, [E] = e, [SE] = c, [P ] = p, (2.2)

where [ ] represents concentration of the substrate.

Definition 2.1.1. The Law of Mass Action states that the rate of a reaction is proportional

to the product of the concentrations of reactants [25]. �

The law of mass action applied to reaction (2.1) leads to the system of nonlinear differential

equations

ds

dt
= −k1es + k−1c, (2.3)

de

dt
= −k1es + (k−1 + k2)c, (2.4)

dc

dt
= k1es− (k−1 + k2)c, (2.5)

dp

dt
= k2c. (2.6)

To make the mathematical formulation complete, we impose initial conditions on the system

of differential equations (2.3)–(2.6) which are given by

s(0) = s0, e(0) = e0, c(0) = 0, p(0) = 0. (2.7)

Now, (2.6) can be decoupled from the system and can be solved as
∫ t

0

dp

dt′
dt′ =

∫ t

0

k2c(t
′)dt′ (2.8)
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which gives

p(t) = k2

∫ t

0

c(t′)dt′, (2.9)

once c(t) has been determined.

Moreover, in reaction (2.1), the enzyme E is a catalyst, which only facilitates the reaction, so

the total concentration of the enzyme (free and combined with substrate), is constant. This

conservation of enzyme is obtained by adding (2.4) and (2.5). Thus

de

dt
+

dc

dt
= 0 for all t ≥ 0, (2.10)

which implies

e(t) + c(t) ≡ K for all t ≥ 0, (2.11)

where K is a constant real number. In particular,

e(0) + c(0) = K = e0. (2.12)

Therefore,

e(t) + c(t) = e0 for all t ≥ 0. (2.13)

Using the initial conditions in (2.7) and (2.13) we obtain the system of ordinary differential

equations

ds

dt
= −k1e0s+ (k1s+ k−1)c, (2.14)

dc

dt
= k1e0s− (k1s+ k−1 + k2)c, (2.15)

with initial conditions

s(0) = s0, c(0) = 0. (2.16)

The standard approach to solve these equations is to assume that at the initial stage of the

reaction, formation of c is very fast and then after some time it reaches equilibrium, i.e.

dc

dt
≈ 0. (2.17)

Now, c can be expressed in terms of s from (2.15) as

c(t) =
k1e0s(t)

k1s(t) + k−1 + k2
, (2.18)
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which implies

c(t) =
e0s(t)

s(t) +Km

, (2.19)

where

Km =
k−1 + k2

k1
(2.20)

is called theMichaelis constant. Here, even though the assumption is reasonable, the expression

for c(t) does not satisfy the initial condition in (2.16). However, in many real reactions this

approximation is taken as a good approximation for c(t). We therefore continue to solve for

s(t) by substituting (2.19) into (2.14) and we obtain

ds

dt
= −k1e0s+ (k1s+ k−1)

( e0s

s+Km

)

, (2.21)

=
−k1e0s

2 − k1e0Kms+ k1e0s
2 + k−1e0s

s+Km

. (2.22)

Therefore
ds

dt
=

−k2e0s

s+Km

. (2.23)

Now, using the initial condition s(0) = s0 and (2.23) we can solve for s(t) implicitly as

s(t) +Km log(s(t)) = s0 +Km log(s0)− k2e0t. (2.24)

Substituting (2.24) into (2.19) we obtain an expression for the complex c(t). Nonetheless this

raises a few important questions: i) how fast is the initial transient; ii) for what range of the

parameters does the approximation (2.19) and (2.24) hold; and iii) if the enzyme concentration

is not small compared to the concentration of the substrate, how do we deal with it?

In fact, there are two types of time scales in this system: one is the initial transient timescale

near t = 0 and the other is the longer time scale when the substrate changes significantly

during which the approximations (2.19) and (2.24) are reasonable. To analyze this problem

further, we need to nondimensionalise the system. To this end, we first introduce the concept

of nondimensionalisation in the next section.
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2.2 Nondimensionalisation

The form of a solution of a differential equation or a system of differential equations can depend

critically on the units one chooses for the various quantities involved. These choices can lead

to substantial problems when numerical approximation techniques such as Euler’s method are

applied. These difficulties can be controlled or overcome by a proper nondimensionalisation

procedure [40].

Definition 2.2.1. Nondimensionalisation is the partial or the full removal of units from an

equation involving physical quantities by suitable substitution of variables [40]. �

Though there are no fixed steps to be followed to nondimensionalise a given system, the fol-

lowing steps are useful [40]:

1) Identify all the independent and dependent variables;

2) Replace each of them with a quantity scaled relative to a characteristic unit of measure

to be determined;

3) Divide through by the coefficient of the highest order polynomial or by the coefficient of

the highest order derivative term;

4) Choose the characteristic unit for each variable so that the coefficients of as many terms

as possible become unity;

5) Rewrite the system of equations in terms of their new dimensionless quantities.

The last three steps are usually specific to the problem where nondimensionalisation is applied.

However, almost all systems require the first two steps to be performed.

Example 2.2.2. Here we nondimensionalise the first order differential equation with constant

coefficients [40, p 10]

a
dx

dt
+ bx = Af(x). (2.25)
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In this equation the independent variable is t, and the dependent variable is x. Setting x = x̃xc,

t = τtc, and then substituting these into (2.25) we obtain

a
xc

tc

dx̃

dτ
+ bxcx̃ = Af(τtc) = AF (τ). (2.26)

Now, dividing by the coefficient of the highest order derivative term, we obtain

dx̃

dτ
+

btc
a
x̃ =

Atc
axc

F (τ). (2.27)

Thus, the coefficient of x̃ only contains one characteristic variable tc, and hence it is easier to

choose to set this to unity first as
btc
a

= 1 (2.28)

which implies

tc =
a

b
. (2.29)

Subsequently,
Atc
axc

=
A

bxc

, (2.30)

which we set to unity to obtain

xc =
A

b
. (2.31)

Therefore, the final dimensionless equation in this case becomes completely independent of any

parameters with units and is given by

dx̃

dτ
+ x̃ = F (τ). (2.32)

�

Example 2.2.3. We now consider a model of an outbreak of the Spruce budworm [25, p 7]

dp

dt
= kp(1− p

N
)− Bp2

A2 + p2
, p(0) = p0. (2.33)

We give a step by step approach to nondimensionalise this initial value problem. In this model

p is the dependent and t is the independent variables. We take each variable and create a new

variable by dividing the combination of parameters that has the same dimension in order to

create a dimensionless variable. To this end, we set

u =
p

A
, τ =

Bt

A
, (2.34)
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and obtain
dp

dt
=

dp

du

du

dτ

dτ

dt
= B

du

dτ
. (2.35)

Thus, substituting (2.34) and (2.35) into (2.33) and dividing both sides by B we obtain

du

dτ
=

kA

B
u
(

1− A

N
u
)

− u2

1 + u2
. (2.36)

Introducing two new dimensionless parameters

α =
kA

B
, β =

N

A
, (2.37)

we obtain
du

dτ
= αu

(

1− u

β

)

− u2

1 + u2
, (2.38)

with u(0) = p0
A
. Thus, if we introduce another new parameter γ = p0

A
, then the initial condition

becomes u(0) = γ.

Therefore, (2.33) has two dimensionless variables u, τ and three dimensionless parameters α,

β, γ which are combinations of original parameters. This simplified form of the equation has

reduced the number of parameters from five to three, which makes the analysis of the equation

simpler. �

Now, to analyze the quasi-steady state of the system (2.14)–(2.15), the standard way of nondi-

mensionalising the system is to set

τ = k1e0t, u(τ) =
s(t)

s0
, v(τ) =

c(t)

e0
, (2.39)

and introducing new parameters by combining the original parameters as in (2.40)

λ =
k2
k1s0

, k =
k2 + k−1

k1s0
=

km
s0

, ǫ =
e0
s0
, (2.40)

which is a reasonable nondimensionalisation if ǫ ≪ 1. Substituting (2.39) and (2.40) into

(2.14)–(2.15) together with (2.16) gives the dimensionless system

du

dτ
= −u+ (u+ k − λ)v, (2.41)

ǫ
dv

dτ
= u− (u+ k)v, (2.42)
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1
e
e0

= 1− v

u

v

0
τ

Figure 2.2: Schematic behavior of the solution of the system for dimensionless substrate (u),

substrate-enzyme complex (v) and free enzyme (e/e0 = 1 − v) concentrations as functions of

dimensionless time τ [25].

with

u(0) = 1, v(0) = 0. (2.43)

With the solutions u(τ), v(τ) we immediately obtain e and p from (2.13) and (2.9) respectively.

Moreover, from the reaction (2.1), which converts S into a product P , we obtain the steady state

u = 0 and v = 0; that is, both the substrate and the substrate-enzyme complex concentrations

are zero. We can also see that the time evolution of the nonlinear system (2.41)–(2.42) near

τ = 0 is governed by du
dτ

< 0 and dv
dτ

> 0 (because v ≈ 0). As a result u decreases from u = 1

and v increases from v = 0 to v = u
u+k

(where dv
dτ

= 0). From (2.41), u is still decreasing at the

point v = u
u+k

. After v has reached its maximum then it decreases ultimately to zero as u does

for all t. The dimensional enzyme concentration e(t) first decreases from e0 and then increases

again to e0 as t → ∞. Typical solutions of the system (2.41)–(2.42) are illustrated in Figure

2.2.
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2.3 Phase Diagrams and Linear Systems

In this section, we define the phase diagram and discuss some basic concepts pertinent to an

analysis of linear systems.

2.3.1 Definitions

Consider a system of autonomous ordinary differential equations

ẋ = f(x) (2.44)

with x : ℜ → ℜn and f : ℜn → ℜn. The space of all possible values of x is called the phase

space of the system (2.44) [19].

In this brief introduction to the phase space, we shall only concentrate on the cases ℜ and ℜ2.

In general, the phase space could be a subset of ℜn, or a differentiable manifold. The velocity

field f(x) is equal to the velocity ẋ of any solution curve x(t), and is therefore called the phase

velocity vector field associated to the system (2.44). The trajectory of a solution x of (2.44) is

the set of all points reached by x(t) for some value of t.

Definition 2.3.1. A phase diagram of (2.44) is the phase space ℜn with trajectories of (2.44)

drawn through each point [19]. �

Thus the phase diagram shows all the possible trajectories of an autonomous differential equa-

tion. However, in practice we only sketch a few trajectories. Points where the vector field f

vanishes play an important role in understanding the qualitative behavior of solutions of the

system (2.44).

Definition 2.3.2. An equilibrium point is a point where the vector field f vanishes [19]. �

Note that every equilibrium point (also called fixed point or the steady state) x∗ is itself a

trajectory of a constant solution

x(t) ≡ x∗ (2.45)
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since

ẋ = f(x) = 0. (2.46)

Definition 2.3.3. An equilibrium point x∗ is called stable if for every ǫ > 0 there exist a δ > 0

so that [20]

|x0 − x∗| < δ ⇒ |x(t)− x∗| < ǫ, t ≥ 0 (2.47)

for every solution x of (2.44) with x(0)=x0. �

Intuitively, an equilibrium point is called stable if, when we start close enough to it, we stay

close to it. An equilibrium point is called unstable if it is not stable.

Definition 2.3.4. An equilibrium point x∗ is called attracting if there is a δ > 0 so that [20]

|x0 − x∗| < δ ⇒ x(t) → x∗, as t → ∞ (2.48)

for every solution x of (2.44) with x(0)=x0. �

In one-dimensional systems attracting points are stable, but there exist attracting points which

are not stable in higher dimensional systems.

Definition 2.3.5. An equilibrium point x∗ is called asymptotically stable if it is stable and

attracting [20]. �

Example 2.3.6. Consider the equation [37, p 39]

ẋ = k1ax− k2x
2, (2.49)

where k1 and k2 are positive rate constants and a and x are some chemical concentrations. The

equilibrium points of (2.49) are obtained by setting

k1ax− k2x
2 = 0, (2.50)

which implies

x = 0 or x =
k1a

k2
. (2.51)

To identify the stability of these equilibrium points, we sketch ẋ versus x in Figure 2.3.

Therefore, x = 0 is an unstable equilibrium point whereas x = k1a
k2

, which is positive, is a

stable equilibrium point. �
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Figure 2.3: The phase diagram of the system (2.49).

2.3.2 Linear Systems

In this section, we briefly introduce linear homogeneous n−dimensional systems and then we

investigate the properties of the equilibrium point using linear homogeneous two dimensional

systems.

Consider a linear homogeneous system [19, p 164]

ẋ = Ax, (2.52)

where

x =

















x1

x2

...

xn

















, (2.53)

and A is a real constant n × n matrix. Notice that x = 0 is a solution of the system of

differential equations (2.52). In fact, x = 0 is the only equilibrium solution for the system

where A is assumed to be a nonsingular matrix. The eigenvalues of the n×n matrix A are the

roots of the characteristic polynomial

|A− λI| = 0, (2.54)

where I is the identity matrix of order n.

To explore the type of equilibrium points and their associated phase diagrams, we consider
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linear homogeneous two dimensional systems

dx

dt
= ax(t) + by(t), (2.55)

dy

dt
= cx(t) + dy(t), (2.56)

which can be written in the form
dx

dt
= Ax(t), (2.57)

with

A =





a b

c d



 . (2.58)

Let λ1 and λ2 be the eigenvalues of the real matrix A defined in (2.58). Then, the general

solution of (2.57) is




x

y



 = c1v1 exp(λ1t) + c2v2 exp(λ2t), (2.59)

where c1 and c2 are arbitrary constants and v1, v2 are eigenvectors of A corresponding to λ1

and λ2 respectively. We consider the different possibilities of λ1 and λ2 case by case as follows

[20, p 226]:

Case 1: λ1, λ2 are real and distinct:

(a) λ1 < λ2 < 0: Suppose we have c1 > 0, c2 = 0. Then the trajectory corresponding to this

solution will point along the ray in the direction of v1, with the arrow pointing towards to

the origin. If c1 < 0, c2 = 0, the trajectory will point along the ray in the direction of −v1

with arrow pointing towards the origin. Similarly, if c1 = 0, c2 > 0 (< 0), the trajectory

will point along the ray in the direction of v2, (−v2) with the arrow pointing towards

to the origin. For t ≫ 0 and both c1 and c2 different from zero, the c2v2 exp(λ2t) term

will dominate and so the direction of approach to (0, 0) will be parallel to the direction

of v2. Similarly, when t → −∞ the first term c1v1 exp(λ1t) dominates, and the direction

of the trajectory will approach that of v1. The phase diagram will have the form shown

in Figure 2.4a. In this case the equilibrium point (0, 0) is called a stable node.
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(a) Phase diagram when λ1 < λ2 < 0. (b) Phase diagram when 0 < λ1 < λ2.

Figure 2.4: Phase diagram of the system (2.57) for cases (a) and case (b).

(b) 0 < λ1 < λ2: In this case all the trajectories will move out from the equilibrium point

(0, 0). As t → ∞ the c2v2 exp(λ2t) term will dominate and so the direction of any

trajectory will approach that of v2. As t → −∞ the c1v1 exp(λ1t) term will dominate

and so the direction of any trajectory will approach that of v1. The phase diagram will

have the form shown in Figure 2.4b. In this case the equilibrium point (0, 0) is called

unstable node.

Example 2.3.7. For the system [19, p 201]

ẋ = −2x+ y, (2.60)

ẏ = x− 2y, (2.61)

(0, 0) is the only equilibrium point. The system (2.60)–(2.61) can be rewritten as

ẋ =





−2 1

1 −2



x = Ax. (2.62)

λ is an eigenvalue of A if and only if

(−2− λ)2 − 1 = 0. (2.63)

24



Figure 2.5: Phase diagram of the system (2.60)–(2.61).

Therefore, the eigenvalues are

λ1 = −3 and λ2 = −1. (2.64)

Thus, (0, 0) is a stable node. The eigenvectors corresponding to λ1 and λ2 are

v1 =





1

−1



 and v2 =





1

1



 , (2.65)

respectively. Therefore, the general solution is

x(t) = c1





1

−1



 exp(−3t) + c2





1

1



 exp(−t). (2.66)

The phase diagram of the system (2.60)–(2.61) is shown in Figure 2.5. �

(c) λ1 < 0 < λ2: In this case, if c1 = 0, the trajectory is outward along the ray in the

direction of c2v2. If c2 = 0, the trajectory is inward along the ray in the direction of c1v1.

As t → ∞ the solution is dominated by c2v2 exp(λ2t) and when t → −∞ the solution is

dominated by c1v1 exp(λ1t). Thus the phase diagram has the form shown in Figure 2.6.

In this case the equilibrium point (0, 0) is called a saddle point. It is always unstable

(except strictly along v1) because any perturbation from (0, 0) grows exponentially.
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Figure 2.6: Phase diagram of the system (2.57) when λ1 < 0 < λ2.

y

x

(a) Stable spiral

y

x

(b) Unstable spiral

Figure 2.7: Phase diagram of the system (2.57) when α 6= 0.

Case 2: λ1, λ2 are complex: λ1= λ̄2 = α + iβ, β 6= 0.

In this case the general solution (2.59) involves exp(αt) and exp(±iβt) which implies an oscil-

latory approach to (0, 0).

(a) α 6= 0: In this case we have a spiral which is stable if α < 0 and unstable if α > 0 (see

Figure 2.7).

(b) α = 0: In this case the phase curves are circles. This equilibrium point is called a centre

and it is illustrated in Figure 2.8. The equilibrium point (0, 0) is stable. However, since

the trajectories stay at a fixed distance from the equilibrium point, it is not asymptotically

stable.
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y

x

Figure 2.8: Phase diagram of the system (2.57) when α = 0.

Example 2.3.8. For the system [19, p 203]

ẋ = x+ y, (2.67)

ẏ = 4x+ y, (2.68)

(0, 0) is the only equilibrium point of the given system. Furthermore, the system (2.67)–(2.68)

can be rewritten as

ẋ =





1 1

4 1



x = Ax. (2.69)

Then λ is eigenvalue of A if and only if

(1− λ)2 − 4 = 0. (2.70)

Thus,

λ1 = −1 and λ2 = 3. (2.71)

Eigenvectors corresponding to λ1 and λ2 are

v1 =





1

−2



 and v2 =





1

2



 , (2.72)

respectively. Thus the general solution is

x(t) = c1





1

−2



 exp(−t) + c2





1

2



 exp(3t). (2.73)

The possible phase diagram of the system (2.67)–(2.68) is shown in Figure 2.9. �
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Figure 2.9: Phase diagram of the system (2.67)–(2.68).

2.4 Nonlinear Systems, Routh-Hurwitz and Bendixson

Conditions

In this section, we first briefly introduce a nonlinear autonomous system of differential equa-

tions and discuss how to use the phase plane method to obtain qualitative information about

the behaviour of a nonlinear system without actually solving the system. We then introduce

Routh-Hurwitz conditions for stability of equilibrium points in higher dimensional space. We

further discuss the Bendixson negative criterion for the existence of limit cycle solutions for the

dynamical system in the specified domain.

2.4.1 Linearization

Consider a nonlinear system of differential equations

ẋ = f(x), (2.74)

where f : ℜn → ℜn is nonlinear map and continuously differentiable on its domain. Such

systems can not in general, be solved exactly. Hence, one can learn much about the qualitative

behavior of the solutions by linearizing about the equilibrium points [20, p 219]. Unlike the

linear homogeneous systems we discussed in section 2.3, the nonlinear autonomous system of

28



differential equations (2.74) may have several equilibrium points. We specifically discuss how

to linearise the nonlinear system at the equilibrium point different from the origin later in our

discussion in two dimensional space. We first focus on the linearisation of our system (2.74)

about the equilibrium point

x∗ =

















x∗

1

x∗

2

...

x∗

n

















. (2.75)

Let

x = x∗ + h, (2.76)

where h is a small perturbation from the equilibrium point x∗. Then we approximate f by the

linear term in the Taylor expansion

f(x∗ + h) = f(x∗) +Df(x∗)h+O(h2), (2.77)

where Df(x∗) is the Jacobian matrix evaluated at the steady state x = x∗ and Df is given by

Df =













∂f1
∂x1

. . .
∂f1
∂xn

...
...

∂fn
∂x1

. . .
∂fn
∂xn













. (2.78)

Since ḣ = ẋ− ẋ∗ = ẋ, (2.74) has the linear approximation

ḣ = Df(x∗)h. (2.79)

Thus, the nature of equilibrium points of a linear system of differential equations can be applied

to equilibrium points in a nonlinear system.

We consider the following nonlinear system of differential equations in two dimensional space

ẋ(t) = f
(

x(t), y(t)
)

, (2.80)

ẏ(t) = g
(

x(t), y(t)
)

, (2.81)
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where

x =





x

y



 , (2.82)

and f and g are smooth functions such that f(a, b) = 0 = g(a, b) with (a, b) an equilibrium

point. To linearize the system (2.80)–(2.81), we approximate the system close to the equilibrium

point (a, b). Setting x = a + ξ, y = b + η and taking a Taylor expansion of f(x, y) and g(x, y)

we obtain

f(x, y) = f(a, b) + ξ
∂f

∂x
(a, b) + η

∂f

∂y
(a, b) +

1

2!

[

ξ2
∂2f

∂2x
(a, b) + 2ξη

∂2f

∂x∂y
(a, b)

+η2
∂2f

∂2y
(a, b)

]

+O(ξ2, η2),

≈ ξ
∂f

∂x
(a, b) + η

∂f

∂y
(a, b), (2.83)

and similarly

g(x, y) ≈ ξ
∂g

∂x
(a, b) + η

∂g

∂y
(a, b), (2.84)

if ξ and η are very small. Noting that

ẋ = ξ̇ and ẏ = η̇, (2.85)

we deduce for (x, y) close to (a, b), the nonlinear system (2.80)–(2.81) is approximated by the

linear system

ξ̇(t) =
∂f

∂x
(a, b)ξ +

∂f

∂y
(a, b)η, (2.86)

η̇(t) =
∂g

∂x
(a, b)ξ +

∂g

∂y
(a, b)η. (2.87)

The system (2.86)–(2.87) is called the linearized form of the system (2.80)–(2.81). The phase

diagram of the linearized system close to (0, 0) gives a good approximation to the phase dia-

gram of the nonlinear system. Furthermore, the solutions of the system (2.80)–(2.81) and the

solutions of the system (2.86)–(2.87) behave similarly close to the equilibrium point (a, b).

Theorem 2.4.1. (Linearization/Hartman-Grobman Theorem) [20] Let λ and µ be eigenvalues

of








∂f

∂x

∂f

∂y

∂g

∂x

∂g

∂y









(a, b). (2.88)
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If Re(λ), Re(µ) 6= 0 and λ 6= µ, then (a, b) is the same type of equilibrium point for both systems

(2.80)–(2.81) and (2.86)–(2.87). �

Possible types of equilibrium points are stable (or unstable) nodes, stable (or unstable) spirals,

or saddle points.

Remark 2.4.2. For those cases which are not included in Theorem 2.4.1, we have the following

remarks.

a) If λ = iω, then (a, b) is a centre for the linearised system but may become a stable or

unstable spiral for the nonlinear system.

b) If λ = µ with λ, µ < 0, then (a, b) is a stable improper node or stable star for the linearised

system, but it may be either the same or a stable node or a stable spiral point for the

nonlinear system.

c) If λ = µ with λ, µ > 0, then (a, b) is unstable improper node or unstable star for the

linearised system, but may be either the same or an unstable node or an unstable spiral

point for the nonlinear system [20]. �

Example 2.4.3. Consider the nonlinear system [19, p 206]

ẋ = 2y + xy, (2.89)

ẏ = x+ y. (2.90)

The equilibrium points of the system (2.89)–(2.90) are (0, 0) and (−2, 2). The linearized system

at (0, 0) is

ẋ =





0 2

1 1



x = Ax. (2.91)

The eigenvalues of A are λ1 = −1 and λ2 = 2 with corresponding eigenvectors

v1 =





−2

1



 and v2 =





1

1



 , (2.92)
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Figure 2.10: Phase diagram of the system (2.89)–(2.90).

respectively. Hence using Theorem 2.4.1, the equilibrium point (0, 0) is a saddle point for both

systems (2.89)–(2.90) and (2.91). The linearized system at (−2, 2) is

ẋ =





0 2

1 1



x = Ax. (2.93)

The eigenvalues of A are λ1 = 1 and λ2 = 2 with corresponding eigenvectors

v1 =





0

1



 and v2 =





1

1



 , (2.94)

respectively. Now using Theorem 2.4.1, (−2, 2) is an unstable node for the system (2.93) and

the system (2.89)–(2.89). A possible phase diagram for the system (2.89)–(2.90) is given in

Figure 2.10.

2.4.2 Routh-Hurwitz Conditions and Bendixson Negative Criterion

Linear stability of the systems of ordinary differential equations which arise in reaction kinetics

systems are determined by the nature of the roots of the characteristic polynomial. The stability

analysis that we are concerned with involves systems of the form

dx

dt
= Ax, (2.95)
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where A is the matrix of the linearized form of the nonlinear reaction system. However, the

techniques we developed so far are restricted only to 2-dimensional space systems. As a result,

we further discuss the Routh-Hurwitz conditions for stability analysis in higher dimensional

systems.

The Routh-Hurwitz conditions give the necessary and sufficient conditions for all roots of the

characteristic polynomial (with real coefficients) to lie in the left half of the complex plane.

These criteria are used to determine the asymptotic stability of the equilibrium point for a

nonlinear system of differential equations. There are many equivalent forms of stating these

criteria, one of which is stated in Theorem 2.4.4.

Theorem 2.4.4. (Routh-Hurwitz Criteria) [12] Given the polynomial

P (λ) = λn + a1λ
n−1 + · · ·+ an,

where the coefficients ai, i = 0, 1, 2, . . . n are real constants, define the n Hurwitz matrices as

H1 = (a1), H2 =





a1 a3

1 a2



 , H3 =











a1 a3 a5

1 a2 a4

0 a1 a3











, (2.96)

and

Hn =























a1 a3 a5 . . .

1 a2 a4 . . .

0 a1 a3 . . .

. . . . . . . . .

0 0 . . . an























, (2.97)

with aj = 0 if j > n. All the roots of the polynomial P (λ) are negative or have negative real

parts if and only if the determinant of all Hurwitz matrices, denoted by

D1 = a1 > 0, D2 =

∣

∣

∣

∣

∣

∣

a1 a3

1 a2

∣

∣

∣

∣

∣

∣

> 0, D3 =

∣

∣

∣

∣

∣

∣

∣

∣

∣

a1 a3 a5

1 a2 a4

0 a1 a3

∣

∣

∣

∣

∣

∣

∣

∣

∣

> 0, (2.98)
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and

Dk =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

a1 a3 a5 . . .

1 a2 a4 . . .

0 a1 a3 . . .

. . . . . . . . .

0 0 . . . ak

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

> 0, (2.99)

where k = 1, 2, . . . , n, are positive. �

When n = 2, the Routh-Hurwitz criteria simplify to

D1 = a1 > 0, D2 =

∣

∣

∣

∣

∣

∣

a1 0

1 a2

∣

∣

∣

∣

∣

∣

= a1a2 > 0, (2.100)

or equivalently a1 > 0 and a2 > 0. For characteristic polynomials of degree n = 3, 4 and 5, the

Routh-Hurwitz criteria are summarized as

n = 3 : a1 > 0, a3 > 0, and a1a2 > a3. (2.101)

n = 4 : a1 > 0, a3 > 0, a4 > 0, and a1a2a3 > a23 + a21a4. (2.102)

n = 5 : ai > 0, i = 1, 2, . . . , 5, a1a2a3 > a23 + a21a4, and

(a1a4 − a5)(a1a2a3 − a23 − a21a4) > a5(a1a2 − a3)
2 + a1a

2
5. (2.103)

In the analysis of nonlinear systems, equilibrium points are not the only interesting points for

which one may want to search. Limit cycles of the systems are also of interest.

Definition 2.4.5. A limit cycle is an isolated closed trajectory in the phase plane of the given

system [19, 20, 37]. �

If all neighbouring trajectories approach the limit cycle, we say the limit cycle is stable (Figure

2.11a); otherwise the limit cycle is unstable (Figure 2.11b), or in some cases, half-stable (Figure

2.11c). Stable limit cycles are very important scientifically– they model systems that exhibit self

sustained oscillations. There are many examples that could be given, we mention only a few:

the beating of the heart; daily rhythms in human body temperature and hormone secretion;

and chemical reactions that oscillate spontaneously.
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Figure 2.11: Different types of limit cycles.

Figure 2.12: Equilibrium points and their stability nature of the system (2.104).

Example 2.4.6. Consider the system (in polar coordinate form) [37, p 143]

ṙ = r(1− r2), (2.104)

θ̇ = 1, (2.105)

where r ≥ 0. The radial and angular dynamics are uncoupled and so can be analyzed separately.

From (2.104), we obtain r = 0 is an unstable equilibrium point and r = 1 is a stable as shown

in Figure 2.12. Hence, in the phase plane, all trajectories (except r = 0) approach the unit

circle r = 1 monotonically. Since the motion in the θ-direction is simply rotation at a constant

angular velocity, we see that all trajectories spiral asymptotically toward the limit r = 1 as

shown in Figure 2.13. �

The criterion to identify the nonexistence of a limit cycle for a given dynamical system is stated

as follows:
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Figure 2.13: Limit Cycle of the system (2.104)–(2.105).

Theorem 2.4.7. (Bendixson Negative Criterion) [20] Consider a nonlinear dynamical system

dx

dt
= F (x, y), (2.106)

dy

dt
= G(x, y), (2.107)

where F and G are continuously differentiable functions on some simply connected domain,

D ⊆ ℜ2. If

▽ · (F,G) =
∂F

∂x
+

∂G

∂y
, (2.108)

is of one sign in D, there cannot be a limit cycle (closed orbit) contained within D. �

36



Chapter 3

Mathematical Analysis of the Cancer

Sub-Network Model

In this chapter, we discuss the formulation of the cancer subnetwork model, which is shown in

Figure 1.4 and the nondimensionalization of the model. We further discuss the steady states

and their stability behavior.

3.1 Key Assumptions

Based on the experimental evidence summarized in the introduction chapter, we make assump-

tions upon which our mathematical model is based in Table 3.1. Some assumptions are well

grounded in the literature (such as assumptions 1− 5) while others remain to be tested.

3.2 Formulation of the Model

As we described in the introduction chapter, human cancers occur due to the dysfunction of

some genes at the R-checkpoint during the cell cycle. Among these genes CycD, CycE, Cdk2,

Cdk4, Cdk6, phosphatase Cdc25A, E2F, Rb, and P27Kip1 are the key regulators in the control
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Table 3.1: Key assumptions in our model

1 Constant stimulation rate of phosphatase Cdc25A and [3]

merging iCdc25A and aCdc25A

2 Constant stimulation rate of Cdk inhibitor P27Kip1 [3, 36, 42]

3 Constant stimulation rate of CycE/Cdk2 and [9, 42]

merging iCycE/Cdk2 and aCycE/Cdk2

4 Mutual activation between Cdc25A and CycE/Cdk2 [2, 3, 34, 42]

5 Mutual inhibition between CycE/Cdk2 and P27Kip1 [2, 3, 42]

[9, 18, 36]

6 Only CycE/Cdk2 inhibits P27Kip1 to be tested

7 First order degradation rates of Cdc25A, CycE/Cdk2, and P27Kip1 to be tested

8 Negligible effect of multisite phosphorylation of Cdc25A and CycE/Cdk2 to be tested

9 Negligible effect of free and inactive form of CycE, Cdk2, and CycE/Cdk2 to be tested

of the G1-to-S transition. It has been also experimentally shown that there is mutual acti-

vation between phosphatase Cdc25A and CycE/Cdk2 complex while mutual inhibition occurs

between CycE/Cdk2 complex and Cdk inhibitor P27Kip1 [1, 2]. To understand the dynamics

of these gene concentrations, a mathematical model of a hypothetical molecular mechanism

for the regulation of CycE/Cdk2 activity, phosphatase Cdc25A and Cdk inhibitor P27Kip1 is

developed as given in (3.3)–(3.5). This is done by translating the interaction mechanisms in

Figure 1.4 into a set of autonomous nonlinear ordinary differential equations (ODEs) using

the standard principles of biochemical kinetics [24, 38]. For the sake of simplicity we denote

the concentration of each gene as [Cdc25A] = x, [CycE/Cdk2] = y, and [P27Kip1] = z. We

first discuss the nature of the degradation rate of the concentrations of the components. We

assume each concentration degrades at a rate proportional to its concentration. For instance,

the concentration of phosphatase Cdc25A degrades at a rate a proportional to its concentration

given by
dx

dt
= −ax, (3.1)

as shown in Figure 3.1. We also assume the inhibition relationship between CycE/Cdk2 complex
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Figure 3.1: The degradation effect on the dynamics of Cdc25A with different initial conditions.

and CDK inhibitor P27Kip1 can be expressed via a Hill function as defined in [33] as follows:

dy

dt
=

ρkn

kn + zn
:= h(z), (3.2)

where k is the inhibition coefficient of z to y, and has units of concentration, ρ is production

rate and n a parameter which measures the steepness of the function h(z). In our study we will

use the values (ρ = 1µM/min and n = 1) unless otherwise indicated. Depending on the values

of k and z, the dynamics of the CycE/Cdk2 complex could be different as shown in Figure 3.2.

We then generate our cancer sub-network model as
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Figure 3.2: The inhibition effect on the dynamics of CyE/Cdk2 complex for different values of

k and z.

dx

dt
= α+ k1y − ax, (3.3)

dy

dt
= β + k2x− by +

ρk3
k3 + z

, (3.4)

dz

dt
= γ − cz +

σk4
k4 + y

, (3.5)

where α and β are the constitutive protein expressions for the Cdc25A and CycE/Cdk2 complex

due to signal transduction pathways stimulated by growth factors present in the extracellular

medium (such as transcriptional factors E2F and C-Myc) respectively. The parameter γ rep-

resents the y independent constitutive transcription of z such as mitogenic signal stimulation.

Parameters k1 and k2 are positive constant parameters which measure the efficiency of acti-

vation of y by x and x by y respectively (i.e. the mutual activation phenomenon). On the
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other hand, k3 and k4 are positive inhibition coefficients and have unit of concentrations which

measure the efficiency of the inhibition of z to y and y to z respectively (the mutual inhibition

phenomenon) where as ρ and σ are the production rates of y by z and z by y respectively. For

instance, the terms ρk3
k3+z

and σk4
k4+y

regulate the inhibition nature of z to y and y to z respec-

tively, whereas the terms k2x and k1y are rates of x-induced transcription of y and y-induced

transcription of x respectively. They are assumed to be first order in x and in y for the sake of

simplicity; otherwise the transcription rate could be ϕx

k2+x
and φy

k1+y
, where ϕ and φ are produc-

tion rates. The terms −ax, −by, and −cz are a first order protein degradation with fixed rate

coefficients a, b, and c due to ubiquitin-proteasome pathways.

3.3 Nondimensionalisation of the Model

Before analyzing the model, it is essential to express it in nondimensional terms. Doing so has

some advantages. For example, the units used in the analysis are then unimportant and helps

to reduce the number of parameters in dimensionless groups which determine the dynamics of

the model. In any model there are usually different ways of nondimensionalisation possible and

this model is no different. Consider the model (3.3)–(3.5) with nonnegative initial conditions

x(0) = x0, y(0) = y0, z(0) = z0. (3.6)

Setting

u(τ) =
k2x

β
, v(τ) =

k1y

α
, w(τ) =

z

k3
, τ = ct, (3.7)

we obtain

dx

dt
=

(

βc

k2

)(

du

dτ

)

,
dy

dt
=

(

αc

k1

)(

dv

dτ

)

, and
dz

dt
= (ck3)

(

dw

dτ

)

. (3.8)
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Substituting (3.7) and (3.8) into (3.3)–(3.5) we obtain

βc

k2

du

dτ
= α + k1

(

αv

k1

)

− a

(

βu

k2

)

, (3.9)

αc

k1

dv

dτ
= β + k2

(

βu

k2

)

− b

(

αv

k1

)

+
ρk3

k3 + k3w
, (3.10)

ck3
dw

dτ
= γ − ck3w +

σk4
k4 + (αv

k1
)
. (3.11)

Then (3.9)–(3.11) can be further simplified and give us

du

dτ
=

αk2
βc

(1 + v)− a

c
u, (3.12)

dv

dτ
=

βk1
αc

(1 + u)− b

c
v +

(ρk1
αc

)

1 + w
, (3.13)

dw

dτ
=

γ

ck3
− w +

(k1k4
α

)( σ
ck3

)
k1k4
α

+ v
. (3.14)

Setting

(

k2
βc

)

α = α′,

(

k1
αc

)

β = β ′,

(

1

ck3

)

γ = γ′,
ρk1
αc

= k′

1,

a

c
= a′,

b

c
= b′,

(

k1
α

)

k4 = k′

4, k′

4

(

σ

ck3

)

= q, (3.15)

we obtain the nondimensionalised form of the model (3.3)–(3.5) as

du

dτ
= α′(1 + v)− a′u = f(u, v, w), (3.16)

dv

dτ
= β ′(1 + u)− b′v +

k′

1

1 + w
= g(u, v, w), (3.17)

dw

dτ
= γ′ − w +

q

k′

4 + v
= h(u, v, w), (3.18)

with nonnegative initial conditions u(0) = u0, v(0) = v0 and w(0) = w0.
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3.4 Steady State of the Model

The steady state(s), (u∗, v∗, w∗), are obtained by equating the right hand side of each equation

(3.16)–(3.18) to zero. From (3.18) we obtain

w∗ =
γ′v∗ + (γ′k′

4 + q)

v∗ + k′

4

. (3.19)

From (3.16) we obtain

u∗ =
α′v∗ + α′

a′
, (3.20)

and then substituting (3.19) and (3.20) into (3.17) give us

β ′(1 +
α′v∗ + α′

a′
)− b′v∗ +

k′

1

1 + (
γ′v∗+(γ′k′

4
+q)

v∗+k′
4

)
= 0, (3.21)

or equivalently

(β ′a′ + β ′α′) + β ′α′v∗ − a′b′v∗

a′
+

k′

1v
∗ + k′

1k
′

4

(1 + γ′)v∗ + (1 + γ′)k′

4 + q
= 0, (3.22)

which implies

[(1 + γ′)v∗ + (k′

4 + k′

4γ
′ + q)][(α′β ′ − a′b′)v∗ + (β ′a′ + β ′α′)] + a′k′

1v
∗ + a′k′

1k
′

4 = 0. (3.23)

Thus

[(α′β ′ − a′b′)(1 + γ′)](v∗)2 + [(k′

4 + k′

4γ
′ + q)(α′β ′ − a′b′) + (β ′a′ + β ′α′)(1 + γ′)

+ a′k′

1]v
∗ + (β ′a′ + β ′α′)(k′

4 + k′

4γ
′ + q) + a′k′

1k
′

4 = 0. (3.24)

Setting

k = (α′β ′ − a′b′)(1 + γ′), (3.25)

l = (α′β ′ − a′b′)(k′

4 + k′

4γ
′ + q) + (β ′a′ + β ′α′)(1 + γ′) + a′k′

1, (3.26)

m = (β ′a′ + β ′α′)(k′

4 + k′

4γ
′ + q) + a′k′

1k
′

4, (3.27)

we can rewrite (3.24) as

k(v∗)2 + lv∗ +m = 0. (3.28)
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Since all the parameter values are positive (to be biologically meaningful), the constant term

m in (3.28) is always positive. Hence the two solutions of (3.28) are given by

v∗1 =
−l +

√
l2 − 4km

2k
, (3.29)

and

v∗2 =
−l −

√
l2 − 4km

2k
. (3.30)

However, we are only interested in the positive solution of v∗. Thus we need to identify the

condition(s) for which (3.28) has positive solutions. To do this we first calculate l2 and 4km:

l2 = [(α′β ′ − a′b′)(k′

4 + k′

4γ
′ + q) + (β ′a′ + β ′α′)(1 + γ′) + a′k′

1]
2,

= [(α′β ′ − a′b′)(k′

4 + k′

4γ
′ + q)]2 + [(β ′a′ + β ′α′)(1 + γ′)]2 + [a′k′

1]
2

+ 2(α′β ′ − a′b′)(k′

4 + k′

4γ
′ + q)(β ′a′ + β ′α′)(1 + γ′)

+ 2(α′β ′ − a′b′)(k′

4 + k′

4γ
′ + q)(a′k′

1) + 2(β ′a′ + β ′α′)(1 + γ′)(a′k′

1), (3.31)

and

4km = 4[(α′β ′ − a′b′)(1 + γ′)][(β ′a′ + β ′α′)(k′

4 + k′

4γ
′ + q) + a′k′

1k
′

4],

= 4(α′β ′ − a′b′)(1 + γ′)(β ′a′ + β ′α′)(k′

4 + k′

4γ
′ + q) + 4(α′β ′ − a′b′)(1 + γ′)

(a′k′

1k
′

4),

= 4(α′β ′ − a′b′)(1 + γ′)(β ′a′ + β ′α′)(k′

4 + k′

4γ
′ + q) + 4(α′β ′ − a′b′)(k′

4 + k′

4γ
′)

(a′k′

1). (3.32)

Then

l2 − 4km = [(α′β ′ − a′b′)(k′

4 + k′

4γ
′ + q)]2 + [(β ′a′ + β ′α′)(1 + γ′)]2 + [a′k′

1]
2

− 2(α′β ′ − a′b′)(1 + γ′)(β ′a′ + β ′α′)(k′

4 + k′

4γ
′ + q)

− 2(α′β ′ − a′b′)(k′

4 + k′

4γ
′)a′k′

1 + 2(α′β ′ − a′b′)(a′k′

1q)

+ 2(β ′a′ + β ′α′)(1 + γ′)(a′k′

1). (3.33)

By adding

2(α′β ′ − a′b′)(1 + γ′)(β ′a′ + β ′α′)(k′

4 + k′

4γ
′ + q), (3.34)
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and

2(α′β ′ − a′b′)(k′

4 + k′

4γ
′ + q)(a′k′

1), (3.35)

into (3.33) and subtracting the same term from it we obtain a new expression for l2 − 4km

given by

l2 − 4km = l2 + 4(a′b′ − α′β ′)[∆], (3.36)

where

∆ = (k′

4 + k′

4γ
′ + q)(β ′a′ + β ′α′)(1 + γ′) + (k′

4 + k′

4γ
′)(a′k′

1), (3.37)

which is always positive. Therefore, substituting (3.36) into (3.29) and (3.30) we obatin

v∗1 =
−l +

√

l2 + 4(a′b′ − α′β ′)[∆]

2k
, (3.38)

and

v∗2 =
−l −

√

l2 + 4(a′b′ − α′β ′)[∆]

2k
. (3.39)

For v∗ to be a real solution,

l2 + 4(a′b′ − α′β ′)[∆] ≥ 0. (3.40)

Furthermore, for v∗ to be real and positive it also depends on the value of

a′b′ − α′β ′. (3.41)

We consider different cases to identify the condition(s) for the existence of positive values of

v∗.

Case 1: a′b′ − α′β ′ > 0

This forces k < 0. Therefore, the only positive value of v∗ is

v∗ =
−l −

√

l2 + 4(a′b′ − α′β ′)[∆]

2k
. (3.42)
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Case 2: a′b′ − α′β ′ < 0

This time k > 0. Therefore, there is no positive solution for v∗.

As a result we obtain

v∗ =
−l −

√

l2 + 4(a′b′ − α′β ′)[∆]

2k
, (3.43)

as the only positive solution provided that

a′b′ − α′β ′ > 0. (3.44)

To express this condition in terms of the original parameters, we use (3.15) and after substitution

we obtain

a′b′ − α′β ′ =
ab

c2
−

(

k2
βc

)

α

(

k1
αc

)

β > 0, (3.45)

which implies

ab > k1k2. (3.46)

Therefore, the positive steady state(s), (u∗, v∗, w∗), can be calculated from

w∗ =
γ′v∗ + (γ′k′

4 + q)

v∗ + k′

4

, (3.47)

u∗ =
α′v∗ + α′

a′
, (3.48)

v∗ =
−l −

√

l2 + 4(a′b′ − α′β ′)[∆]

2k
, (3.49)

where

a′b′ − α′β ′ > 0. (3.50)

Theorem 3.4.1. If a′b′ − α′β ′ > 0, then there is a positive steady state (u∗, v∗, w∗) given by

(3.47)–(3.49) for all τ > 0.

Biologically, the condition a′b′ − α′β ′ > 0 (or equivalently ab − k1k2 > 0) means that the

concentration of each component in the system (3.3)–(3.5) stabilizes at the positive values of

(u∗, v∗, w∗) as given in (3.47)–(3.49) provided the combined degradation rate of Cdc25A and

CycE/Cdk2 complex is greater than their combined activation rate. The model also produces

46



some of the fundamental features of CycE/Cdk2 complex and phosphatase Cdc25A. According

to (3.48), the steady state of phosphatase Cdc25A and CycE/Cdk2 complex increases or de-

creases in the same direction. This model prediction agrees with the observations that the levels

of Cdc25A and CycE are both increased in various tumors [8, 21, 39]. The model also clarifies

the interpretation of Aguda and Tang [3], Kato [18], and Zhilin et al.[42] that an increase in

CycE/Cdk2 level correlates with an increase in the level of Myc and E2F, both of which induce

transcriptional signals to Cdc25A and results in promoting cell proliferation.

3.5 Stability Analysis of the Model

To determine the stability of the steady state (u∗, v∗, w∗), we need to calculate the eigenvalues

of the Jacobian matrix of the system (3.16)–(3.18)

J =











fu fv fw

gu gv gw

hu hv hw











∣

∣

∣

∣

∣

∣

∣

∣

∣

(u,v,w)=(u∗,v∗,w∗)

(3.51)

where

fu =
∂f

∂u
. (3.52)

Thus,

J =













−a′ α′ 0

β ′ −b′
−k′

1

(1 + w∗)2

0
−q

(k′

4 + v∗)2
−1













. (3.53)

The eigenvalue of the Jacobian matrix, J , is the value of λ such that

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

−a′ − λ α′ 0

β ′ −b′ − λ
−k′

1

(1 + w∗)2

0
−q

(k′

4 + v∗)2
−1− λ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0. (3.54)
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This gives us

(−a′ − λ)
[

(−b′ − λ)(−1− λ)− k′

1q

(1 + w∗)2(k′

4 + v∗)2

]

−α′β ′(−1− λ) = 0, (3.55)

or equivalently

−
[

a′λ2 + a′(b′ + 1)λ+ a′b′ − a′k′

1q

(1 + w∗)2(k′

4 + v∗)2
+ λ3 + (b′ + 1)λ2 + b′λ

− k′

1qλ

(1 + w∗)2(k′

4 + v∗)2)

]

+ α′β ′ + α′β ′λ = 0, (3.56)

which implies

λ3 + (a′ + b′ + 1)λ2 +
[

b′ + a′(b′ + 1)− α′β ′ − k′

1q

(1 + w∗)2(k′

4 + v∗)2

]

λ+ a′b′ − α′β ′

− a′k′

1q

(1 + w∗)2(k′

4 + v∗)2
= 0. (3.57)

Setting

a1 = a′ + b′ + 1, (3.58)

a2 = b′ + a′(b′ + 1)− α′β ′ − k′

1q

(1 + w∗)2(k′

4 + v∗)2
, (3.59)

a3 = a′b′ − α′β ′ − a′k′

1q

(1 + w∗)2(k′

4 + v∗)2
, (3.60)

we obtain the characteristic polynomial

λ3 + a1λ
2 + a2λ+ a3 = 0. (3.61)

To analyze the stability of the steady states (as our model is higher than 2-dimensional space),

we use the Routh-Hurwitz conditions in the next section.

3.5.1 Asymptotic Stability

Using the Routh-Hurwitz conditions for stability, the steady state (u∗, v∗, w∗) is asymptotically

stable (which means Re(λ) < 0 for all roots λ of (3.61)) if the following conditions are satisfied:
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Condition 1:

D1 = a1 = a′ + b′ + 1 > 0, (3.62)

(which is always true because all the terms in this expression are positive constants).

Condition 2:

D2 =

∣

∣

∣

∣

∣

∣

a1 a3

1 a2

∣

∣

∣

∣

∣

∣

> 0, (3.63)

which implies

(a′ + b′ + 1)(b′ + a′(b′ + 1)− α′β ′ − k′

1q

(1 + w∗)2(k′

4 + v∗)2
)− a′b′ + α′β ′

+
a′k′

1q

(1 + w∗)2(k′

4 + v∗)2
> 0. (3.64)

This can be written as

(a′ + b′ + 1)(a′ + b′) + (a′ + b′)(a′b′) + (a′ + b′)(−α′β ′) +
(−b′ − 1)k′

1q

(1 + w∗)2(k′

4 + v∗)2
> 0, (3.65)

which is also equivalent to

(a′ + b′)(a′ + b′ + a′b′ + 1) > (a′ + b′)(α′β ′) +
(b′ + 1)k′

1q

(1 + w∗)2(k′

4 + v∗)2
, (3.66)

and implies

(a′ + b′)(a′ + b′ + a′b′ + 1) > (a′ + b′)(α′β ′) +
(b′ + 1)k′

1q

[(1 + γ′)(k′

4 + v∗) + q]2
, (3.67)

as

(1 + w∗)2(k′

4 + v∗)2 = [(1 + γ′)(k′

4 + v∗) + q]2. (3.68)

Condition 3:

D3 = a3 > 0, (3.69)

which implies

a′b′ > α′β ′ +
a′k′

1q

(1 + w∗)2(k′

4 + v∗)2
, (3.70)
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or equivalently

a′b′ > α′β ′ +
a′k′

1q

[(1 + γ′)(k′

4 + v∗) + q]2
. (3.71)

Therefore, for the steady state (u∗, v∗, w∗) to be asymptotically stable the conditions (3.62),

(3.67) and (3.71) must hold.

3.5.2 Limit Cycles

Since periodicity is an inherent phenomenon in cell division cycle, we examine the existence of

a limit cycle for our model using the Bendixson criterion. To this end, we take an arbitrary

but fixed concentration of P27Kip1, say P , and using (3.3)–(3.4) we obtain

dx

dt
= α + k1y − ax = F (x, y), (3.72)

dy

dt
= β + k2x− by +

k3
k3 + P

= G(x, y). (3.73)

Now, applying Theorem 2.4.7 we obtain

∂F

∂x
+

∂G

∂y
= −(a+ b) < 0, (3.74)

for all t > 0.

Therefore, our model predicts that we cannot have a limit cycle solution for the molecular

network containg CycE/Cdk2 complex and phosphatase Cdc25A if we keep the concentration

of P27Kip1 constant (which could be maintained by adjusting the mitogenic stimulation and

the degradation rate of P27Kip1).
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Chapter 4

Numerical Simulations and Results of

the Model

In this chapter, we discuss the various results we obtained from the mathematical analysis

along with the numerical results. The ODEs in the model (3.3)–(3.5) are provided as input

to MatLab [23] (a simulation software) using the package Ode45 to carry out the numerical

simulations (refer to the appendix for the details of the MatLab code). Our results from

the numerical simulations also confirm analyses in the literature. Many parameter values are

obtained from the literature while a few are chosen by trial and error to fit the basic physiological

behavior of the cell cycle process. However, in all our numerical simulation we use the value of

ρ = σ = 1µM/min unless otherwise indicated in the respective figure.

4.1 The Role of Phosphatase Cdc25A

Phosphatase Cdc25A is a key regulator of the G1-to-S transition and is highly expressed in

several types of cancers [21]. Overexpression of Cdc25A accelerates the G1-to-S transition while

its downregulation delays the G1-to-S transition. In this section we examine only the dynamics

of Cdc25A by keeping the concentration of the CycE/Cdk2 complex constant (because the
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P27Kip1 equation can be decoupled from the Cdc25A equation). We identify the important

parameters that need to be controlled to keep the protein concentration of phosphatase Cdc25A

at normal levels.

Using an arbitrary but fixed value of y, say K, and (3.3) we obtain the positive stable equilib-

rium point for Cdc25A

x∗ =
α + k1K

a
. (4.1)

Since we assume that Cdc25A has only one phosphorylation site, regardless of the parameter

choices the steady state is always stable as shown in Figure 4.1. This result agrees with the

result of Zhilin et al. [42] under only one site for Cdc25A phosphorylation. The results in

Figure 4.1 (a)-(d) show the effect of the Cdc25A degradation rate on the equilibrium point. As

the degradation rate decreases, the value of the equilibrium point increases. Overexpression of

phosphatase Cdc25A such as in Figure 4.1(d) leads to a quicker entry into S phase, geonomic

instability, and tumorigenesis [21, 36, 42]. Our model also shows that downregulation of Cdc25A

can be obtained by changing the synthesis rate, α, of Cdc25A as shown in Figure 4.2. To adjust

the synthesis rate, α, one can adjust the concentrations of the transcriptional factors Myc and

E2F using therapeutic drugs that target these transcription factors.

4.2 The Regulation of CycE/Cdk2 Complex

Proper CycE/Cdk2 regulation is important for the normal cell division cycle. Insufficient

CycE/Cdk2 complex results in cell arrest in the G1 phase, whereas overexpression of CycE/Cdk2

leads to premature entry into the S phase. When the CycE/Cdk2 expression increases, it may

stay high. However, unless the concentration of CycE/Cdk2 is downregulated for normal DNA

replication, the overexpression of CycE/Cdk2 (though it is stable) might be the cause for ge-

nomic instability and then for tumorigenesis [8, 18, 42]. The subnetwork in our model generates

an abrupt change in the activity of CycE/Cdk2 for a certain choice of parameter values. In

fact, the core of this sharp spike is the positive feedback loop between the Cdc25A and the

CycE/Cdk2 complex, along with the mutual negative interaction between CycE/Cdk2 and
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Figure 4.1: The effect of degradation rate on the dynamics of Cdc25A concentration taking

y = 10−6. In all cases, the solution curves converge to the equilibrium points. Equilibrium

points: x∗ = 0.0500, 0.10000, 1.0000, 10.0000 for Figures 4.1(a), (b), (c), and (d) respectively.

Initial Conditions: x(0) = 2× 10−5, 0.25, 0.75, 2.55.

P27Kip1 as shown in Figure 4.3. A distinctly sharp pulse of CycE/Cdk2 activity is generated

at lower levels of P27Kip1 and then regulated by the higher level of P27Kip1 which confirms the

results in [3, 18, 42]. We further examine the dynamics of CycE/Cdk2 and P27Kip1 by keeping

Cdc25A constant. The timing of the increase in CycE/Cdk2 activity coincides with the decay

of P27Kip1 as shown in Figure 4.4. Our simulation result agrees with the results of Aguda and
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Figure 4.2: The effect of synthesis rate of Cdc25A on the value of equilibrium point. Initial

values: x(0) = 2× 10−5, 0.25, 0.75, 2.55, and y = 0.06. Equilibrium point: x∗ = 0.0620

Tang [3] and Zhilin et al. [42].

4.3 The role of P27Kip1

Generating a pulse of CycE/Cdk2 activity before the S phase entry requires more components

of the network in Figure 1.3 to be included as well as choosing appropriate parameter values

(especially for CycE and E2F degradation rates) which will affect the Cdc25A degradation

rate. However, in our model, the cancer subnetwork (Figure 1.4) and the nonlinear system of

differential equations (3.3)–(3.5) are used to carry out a series of simulations to see the effect of

different levels of P27Kip1. The results are shown in Figure 4.5. The simulations show that the

initial P27Kip1 level influences the switch on time (the time required by the CycE/Cdk2 solution
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Figure 4.3: The effect of constantly stimulating P27Kip1 on the dynamics of CycE/Cdk2 with

different initial conditions. Initial conditions: y(0) = 10−6, 0.1, 5 and x = 2× 10−5. Parameter

values: k2 = 0.2, k3 = 0.1, k4 = 0.2, b = 0.001, c = 0.001.

curve to cross and to remain above the solution curve of P27Kip1) for CycE/Cdk2 activity. The

lower the P27Kip1 level, the shorter the time needed to activate CycE/Cdk2. However, in this

particular simulation we also observed that Cdc25A and CycE/Cdk2 complex seem increasing

indefinitely as long as we keep P27Kip1 level below some threshold value.
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Figure 4.4: The effects of P27Kip1 on the peak activity of CycE/Cdk2 with different initial

conditions. y(0) = 0.06, z(0) = 10−6, 5, x = 0.01. Parameter values: k2 = 0.2, k3 = 0.1,

k4 = 0.2, b = 0.1, c = 0.01.

In this simulation, the positive feedback loop between CycE/Cdk2 and Cdc25A is also reflected.

When the concentration level of CycE/Cdk2 rises (because of the lower level of P27Kip1), the

concentration level of phosphatase Cdc25A starts to rise and requires a shorter time to reach

the switch on time.
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4.4 The Dynamics of the Model

In the simulation of the model that takes into account all the molecular concentrations of

Cdc25A, CycE/Cdk2 and P27Kip1, we obtain results that support our analytical solutions. In

this simulation, as long as we keep the condition (3.46) (which is the condition for the existence

of a positive equilibrium point as shown (3.47)–(3.49)), all the solution curves converge to

the equilibrium point (Figures 4.6a–b). Moreover, our model shows that the downregulation

of P27Kip1 can be achieved through either cutting off (reducing) the mitogenic stimulation of

P27Kip1 or increasing its degradation rate (Figure 4.6b). In these simulations (Figures 4.6a–b),

even though we have three different initial conditions for each concentration, the solution curves

of CycE/Cdk2 complex and Cdc25A coincides immediately from the beginning. Moreover, in

Figure 4.6b the concentration of P27Kip1 is almost identical to zero (z∗ = 0.0198).
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Figure 4.5: The effect of P27Kip1 levels on the activity of Cdc25A and CycE/Cdk2. Initial levels

of P27Kip1: a) 10−3 b) 4.5 c) 10. Parameter values: k1 = 0.01, a = 0.1, k2 = 0.2, b = 0.002,

k3 = 0.1, c = 10−3, k4 = 0.3. Initial conditions: x = 0.01, y = 10−4.
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(a) Parameter value: c = 10−2
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(b) Parameter value: c = 1

Figure 4.6: Model dynamics for different initial conditions. Common parameter values for

(a) and (b): k1 = 0.01, a = 0.06, k2 = 0.02, b = 0.08, k3 = 0.1, k4 = 0.3. Initial condi-

tions: (x(0), y(0), z(0))=(10−2, 10−5, 10−3), (0.02, 0.06, 1.2),(0.7, 0.27, 2.5). Equilibrium points:

(x∗, y∗, z∗) = (0.7841, 4.6550, 16.2100) and (2.4040, 15.4410, 0.0198) for Figures 4.6(a) and (b)

respectively. 59



Chapter 5

Conclusions

5.1 Summary of the Results

The cancer subnetwork presented in our study is grossly simplified from what is currently

known about the molecular and the gene interactions of oncogenes and tumor suppressor genes.

However, the full cancer network during the cell cycle process is too complex to be modeled

computationally at once. To model the cancer network we started with a simple model that

captured the basic features of the network. This model can be later made more realistic.

In this study, a core cancer subnetwork consisting of Cdc25A, CycE/Cdk2 complex and P27Kip1

was identified and a new mathematical model was also developed. Mathematical analyses and

numerical simulations were carried out and the results are consistent with various results in

the literature. One of the aims of this study was to see whether there is a critical parameter

of this subnetwork which is responsible for the sudden increase of the CycE/Cdk2 complex

concentration. Indeed, our model simulation result showed that (keeping the other parameter

values fixed) the subnetwork generates a peak value of CycE/Cdk2 activity when the degrada-

tion rate of the complex is generally less than 0.001 min−1 (Figure 4.3). Our model results also

suggest that CycE/Cdk2 regulates P27Kip1. The CycE/Cdk2 activity reverses the inhibitory

effect that P27Kip1 has on cell cycle progression at the R checkpoint and initiates a pathway
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that leads to the elimination of P27Kip1 from the cell (Figure 4.6b). On the other hand, we also

show that the downregulation of P27Kip1 is prevented by decreasing the catalytic activity of

the CycE/Cdk2 complex which could be adjusted by changing the E2F transcription rate, by

increasing the degradation rate of CycE/Cdk2 or by decreasing the constant simulation rates of

Cdc25A and CycE/Cdk2 (Figure 4.6a). A recent study [42] showed that the failure to degrade

CycE stabilized the CycE/Cdk2 complex at high level which led to tumorigenesis, similar to

the overexpression of Cdc25A. The regulation of CycE/Cdk2 is essential to prevent cells from

becoming cancerous. Our model results show that the high degradation rate of CycE/Cdk2

makes the concentration of CycE/Cdk2 very low and a low degradation rate keeps the con-

centration of CycE/Cdk2 complex high. This could be taken as a therapeutic target gene for

cancer treatment.

Phosphatase Cdc25A promotes cell cycle progression and is overexpressed in numerous rapidly

dividing cancer cells. An increasing number of studies have shown a positive correlation be-

tween overexpression of Cdc25A and cancer [21, 29]. Our model results also suggest that the

overexpression of Cdc25A leads to the increase in the activity of CycE/Cdk2 (Figure 4.6b)

which subsequently lead to an uncontrolled proliferation of cells.

5.2 Remarks and Future Work

Although our results are consistent with many experimental results and confirm results from

the literature, there are some limitations in our study. The first limitation is that no clear data

on the rate parameters are available which makes the investigation of the numerical simulation

difficult. Secondly, there are more regulatory interaction components such as PRb, E2F family,

CycD/Cdk4 and their multisite phosphorylation properties which highly influence the activity

of Cdc25A and CycE/Cdk2 complex. These were not incorporated directly into our model.

Nevertheless, we obtained promising results that motivate us to modify our model so as to

further explore the dynamics of the cell cycle and to identify some therapeutic strategy to treat

cancer.
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In our model, we used linear degradation terms. We wish to modify these terms of our model

using functions such as
−ax

A+ x
,

−bx

B + y
,

−cx

C + z
, (5.1)

which may express the real biological protein concentration degradation phenomenon more

accurately. We also used a reciprocal function to express the inhibition relationship between

CycE/Cdk2 and P27Kip1. It is our intention to modify the inhibition relationship using a

function of the form
k

q + zm
, (5.2)

where k, q and m are Hill coefficients [33]. We hope the oscillatory nature of the solution can

be achieved by choosing an appropriate value of the Hill exponent m along with adding some

more key regulatory components (such as PRb, E2F, and/or the INK4 CDK inhibitor family)

into our cancer sub-network. This is the subject of future work.
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Appendix A

MatLab Codes Used in our Numerical

Simulations

A.1 The Dynamics of Phosphotase Cdc25A

This MatLab code illustrates the evolution of the phosphotase Cdc25A concentration

keeping CycE/Cdk2 constant.

Clear up the previous definitions.

clear all;

close all;

Codes that define the input parameters.

%%tmax=input(tmax);

%%alpha=input(alpha);

%%k1=input(k1);

%%a=input(a);

Codes that solve the system numerically using the package Ode45.

%%disp(’The problem is being solved using ode45...’)

%%[tt,xx]=ode45(@(t,x)cdc25a,[tmin,tmax],initial conditions);

Codes that solve the system graphically.
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%%disp(’plotting solution is being carried out...’)

%%plot(tt,xx(:,1))

Codes that describe the graphical solution.

%%title_cdc25a=[’Cdc25A Concentration; $\alpha$=’,num2str(alpha),’;

%%k$_{1}$=’,num2str(k1),’; a=’,num2str(a)];

%%title(title_cdc25a)

Codes that label axes and produce multiple plots.

%%xlabel(Time [min])

%%ylabel(Cdc25A concentration [$\mu$M])

%%hold on, hold off

Published with MATLAB 7.11

A.2 Effect of P27Kip1 on the Dynamics of CycE/Cdk2

complex

The MatLab code that simulates the effect of continous stimulation of P27$^{Kip1}$

on the CycE/Cdk2 complex.

Codes that clear up the previous definition.

clear all % clear previously defined variable

close all % close previously opened figure window

Input codes

%%zmax=input(zmax);

%%beta=input(beta);

%%k2=input(k2);

%%b=input(b);

%%k3=input(k3);

%%gamma=input(gamma);

%%c=input(c);
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%%k4=input(k4);

Codes that solves numerically.

%%disp(’Solving using ode45...’)

%%tic;

%%[zz,yy]=ode45(@(z,y)CyEp27,[zmin,zmax],initial condition);

Codes for plotting.

%%disp(’plotting solution...’)

%%clf

%%plot(zz,yy(:,1))

%%title(title)

%%xlabel(’P27$^{Kip1}$ concentration [$\mu$M]’)

%%ylabel(’CycE/Cdk2 concentration [$\mu$M]’)

%%axis([zmin zmax 0 20])

%%hold on and hold off

%%disp(’Finished’)

Published with MATLAB 7.11

A.3 Dynamics of CycE/Cdk2 complex and P27Kip1 Con-

centrations

MatLab code that illustrates the dynamics of CycE/Cdk2 complex and P27$^{Kip1}$.

Clear up previous definitions.

clear all;

close all;

Input codes.

%%tmax=input(tmax); beta=input(beta);

%%k2=input(k2); b=input(b);

%%k3=input(k3); gamma=input(gamma);
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%%c=input(c); k4=input(k4);

Codes for solving numerically and plotting.

%%disp(’Solving using ode45...’)

%tic;

%%[TT,YY]=ode45(@(t,y)CyEP27n,[tmin,tmax],[initial conditions]);

%%disp(’plotting solution...’)

%clf

%%plot(TT,YY(:,1),TT,YY(:,2))

%%hold on

%%hold off

%%title_str=[’CycE/Cdk2 and P27$^{Kip1}$ concentrations,’,

%%’ $\beta$=’,num2str(beta),’, $\gamma$=’,num2str(gamma)];

%%title(title_str);

%%xlabel(’Time [min]’);

%%ylabel(’Concentration [$\mu$M]’)

%%axis([0 tmax 0 20])

%%legend(’CycE/Cdk2’,’P27$^{Kip1}$’)

%disp(’Finished’)

Published with MATLAB 7.11

A.4 The Dynamics of the Model

The MatLab code that illustrates the dynamics of the model (3.3)-(3.5).

Clear up commands.

clear all;

close all;

Input codes.

%%tmax=input(input simulation time);

%%alpha=input(alpha);
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%%k1=input(k1);

%%a=input(a);

%%beta=input(beta);

%%k2=input(k2);

%%b=input(b);

%%k3=input(k3);

%%gamma=input(gamma);

%%c=input(c);

%%k4=input(k4);

Codes for solving numerically and plotting the solution.

%%disp(’Solving using ode45...’)

%%tic;

%%[TT,YY]=ode45(@(t,y)mod1,[tmin,tmax],[initial conditions]);

%disp(’plotting solution...’)

%clf

%%plot(TT,YY(:,1),TT,YY(:,2),TT,YY(:,3))

%%hold on and hold off

Codes for string and numeric changing.

%%title_str=[’Cdc25A, CycE/Cdk2 and P27$^{Kip1}$ concentrations,’,

%%’ $\alpha$=’,num2str(alpha),’, $\beta$=’,num2str(beta),’,

%%$\gamma$=’,num2str(gamma)];

%%title(title_str)

%%xlabel; ylabel;

%%axis([0 tmax 0 50]);

%%legend(’Cdc25A’,’CycE/Cdk2’,’P27$^{Kip1}$’)

%%disp(’Finished’)

Published with MATLAB 7.11
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