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Abstract

Monitoring of student’s attendance remains the fundamental and vital part of any educational
institution. The attendance of students to classes can have an impact on their academic
performance. With the gradual increase in the number of students, it becomes a challenge
for institutions to manage their attendance. The traditional attendance monitoring system
requires considerable amount of time due to manual recording of names and circulation of the
paper-based attendance sheet for students to sign their names. The paper-based attendance
recording method and some existing automated systems such as mobile applications, Radio
Frequency Identification (RFID), Bluetooth, and fingerprint attendance models are prone to
fake results and time wasting. The limitations of the traditional attendance monitoring system
stimulated the adoption of computer vision to stand in the gap. Student’s attendance can be
monitored with biometric candidate’s systems such as iris recognition system and face recognition
system. Among these, face recognition have a greater potential because of its non-intrusive nature.
Although some automated attendance monitoring systems have been proposed, poor system
modelling negatively affects the systems. In order to improve success of the automated systems,
this research proposes the smart attendance monitoring system that uses facial recognition to
monitor student’s attendance in a classroom. A time integrated model is provided to monitor
student’s attendance throughout the lecture period by registering the attendance information at
regular time intervals. Multi-camera system is also proposed to guarantee an accurate capturing
of students. The proposed multi-camera based system is tested using a real-time database in an
experimental class from the University of KwaZulu-Natal (UKZN). The results show that the
proposed smart attendance monitoring System is reliable, with the average accuracy rate of 98%.
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1 | Introduction

1.1 Background

An Attendance Monitoring System Attendance Monitoring System (AMS) validates whether a

person has attended a meeting/lecture or not. Attendance monitoring system can be used to

confirm that the right people are in the right place at the right time [14].

Recent studies have shown that there is a correlation between student’s academic performance

and punctuality to classes [41, 27]. Therefore, academic institutions need to be equipped with a

proper way of managing attendance in classrooms and examination venues.

Attendance management can be carried out in many ways. This includes lecturers invigilating

students, circulation of attendance register for students to indicate their presence by appending

their signature, or automated attendance management systems. However, many attendance

monitoring systems are prone to problems such as, false results, time wasting, cheat, and use

of expensive materials [87]. As a result computer vision is being explored to build a better

attendance management systems.

Humans are visual creatures [102]. Almost every human depends on sight to interpret the world.

Most information and discoveries are products of the visual faculty. The interpretation of visuals

makes the world to be informative and advances intelligence. Although sight is not the only chan-

nel to acquire information, it is regarded as the greatest source for collecting information and grow

1
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the knowledge. It is for the same reason that scientific instruments such as microscope were cre-

ated, as supplementary tools to view small objects that cannot be seen with the human naked eyes.

In the 1970’s [31, 32], when the concept of computer vision was new, it was defined as the visual

perception of images and videos emulating the human sight and human intelligence [102, 88].

Computer vision can also be defined as the machines that surrogate human vision’s ability. Com-

puter vision provides computers with the vision associated with human perception capabilities,

understanding and interpretation of information [102].

Evidence of the pioneering of computer vision can be traced in the early 1970’s as shown in

Figure 1.1, in which it was believed by only few specialists of artificial intelligence and robotics

when they were trying to solve the visual input problems [102].

Figure 1.1: Computer vision history time-line [102]

The field of computer vision has matured through the years [33, 35]. In 1996 an undergraduate

student, Marvin Linking was assigned a task to connect the camera with the computer and get

the computer to interpret what it saw [16]. Computer Vision attributes and applications such as

surveillance, biometrics, motion and object detection, machine inspection, expression detection,

and object recognition can be integrated to advance the students attendance management system.

In [59], machine learning and computer vision approach was used to adopt facial recognition

system to automatically monitor students attendance in a classroom. Advantages of using these

technologies are: automated system reduces the need for human labour, increases productivity,
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can enable the processing of huge amount of data faster, can generate safe storage, and can be

made more appropriate to real-time [102].

1.2 Overview of Computer Vision Systems and Applications

The major building blocks of computer vision applications are image acquisition, image processing

and image analysis. Most computer vision systems are built from this protocol. Figure 1.2

illustrate the Computer Vision System (CVS) where the training and recognition process are

shown.

Figure 1.2: Generic architecture of computer vision system using face recognition

1.2.1 Image Acquisition

Image acquisition is the process of locating and capturing the desired image. In the case of class

attendance monitoring this process will further to search faces in a given frame. This process is

mainly focused on locating the object of interest. In this project images will be captured using

cameras and converted into a grayscale image for further processing and analysis [100, 113, 31, 106].
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1.2.2 Image Processing

The second phase of computer vision is image enhancement. Most computer vision algorithms

such as computational photography and object recognition require data to be pre-processed in

order to be enhance the phenomenon targeted in the image [102]. Images acquired from the first

stage can contain some defects. Hence, the imperfections in the raw image have to be reduced

for better analysis of the image.

Images can be affected by exposure, color balancing, image noise, unbalanced light, rotations,

low sharpness, and blurriness [100]. Defect can be caused by the quality of the camera or some

environmental effects such as a drastic change in light. The major challenge is that most images

captured always have noise that cannot be analyzed with naked eyes. Therefore, it is important

to always enhance an image before processing [100, 9, 102].

1.2.3 Images Analysis

Image analysis involves feature extraction and feature classification of a given data. In feature

extraction, the best features representing an image are selected [9], while feature classification

clusters homogeneous feature separately [102]. These features can be used to distinguish the

images. Features can also be used for interpretation, classification, recognition and decision

making between images. Object recognition performance heavily depends on feature extraction

and classification algorithms used [100].

1.3 Motivation

Recent studies have shown that students attendance correlates with the academic improvements

[53]. The moment students are in a class listening to a lecturer, writing notes, and participating

on the lecturers lessons, leaves knowledge in their minds. Therefore, developing a reliable and

accurate attendance monitoring system to record student’s presence through the entire lecture,

could be of a great help to enhance the quality of academic deliveries.

The use of facial recognition has the potential to improve the automated attendance management

systems. It is well documented that face recognition has improved significantly [85, 87, 68,

22, 52, 19]. One of the most important characteristics of facial recognition based attendance
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recording is their non-invasive nature. They do not require physical interaction between the user

and the system. Face serves as a human primary identification [59]. The main advantage of a

face recognition model is that it can detect and recognize many faces within a short period of time.

On the other hand, with the advanced and effective feature extraction algorithms and classification

available today, the chances of false positives and negatives results are slim [102]. The nature of

cameras has also advanced significantly in terms of quality for capturing distinctive attributes of

an image [49].

This dissertation leverages facial recognition system to monitor the presence of students in a

classroom. Whilst the students are recognized, the system automatically populates the register

with student’s attendance information. This work adopts multi-camera architecture to effectively

detects faces from different angles and to reduce facial occlusion. The proposed facial recognition

model will use time-interval technique to periodically update the attendance recording information.

1.4 Problem Statement

Students can acquire more information and understand lectures better when they attend classes.

Knowledge is enriched by listening. Engaging in a particular meeting can equip a person with

information pertaining to the theme of the meeting. It has been established that students who

do not punctually attend to their lectures showed a poor academic performance than those who

attend classes [40]. This implies that the chances of students failing are less if they attend their

classes. Hence, there is a need for proper attendance management systems.

One of the key factors about the attendance is the time. A considerable amount of time is

consumed in classes, when teachers call names of students, trying to figure out who is or isn’t

present. Several frauds may go undetected without the use of an efficient system. In addition,

it is disturbing to circulate a register to collect student signature, with an extra risk of some

students signing for the absentees. Also, a dubious student may present a false identification

and write the exam for a friend who may not have prepared for the exam. This renders the

traditional paper-based method inefficient for student’s attendance monitoring [85, 90].
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Existing automated modalities such as mobile application, RFID and Bluetooth based-systems

are also prone to false results, intrinsic models, time wasting, and expensive instruments [21, 90].

Hence, the need to improve the attendance monitoring system is necessary. True authentication

and identification are important features for attendance recording.

Although, facial recognition applications can be susceptible to false positives and false negatives,

invariant lighting, facial occlusion, and drastic change in facial expression [87, 85, 68]. A well-

modeled face recognition system, can improve the attendance management, due to its non-intrinsic

nature [21]. This non-intrisic nature makes facial recognition biometric system to be essentially

preferred when compared to other forms of biometrics.

1.5 Research Aim and Objectives

The main aim of this research is to design and implement an automated smart model that

employs real-time face recognition to monitor student attendance without time wasting and

physical interaction with the system. In order to achieve the main goal, the following specific

objectives must be carried out:

• Propose a conceptual model for a smart attendance monitoring system that uses face

recognition to monitor student’s attendance during their lectures.

• Design a multi-camera system architecture for effective face detection, with reduced effects

of face occlusion.

• Provide time integrated model that can update student’s attendance information using

time intervals, to track the availability of students throughout the attendance period.

• Demonstrate the suitability of the different feature extraction techniques investigated in

this study.

1.6 Scope Of The Study And Limitations

This section elaborates the limitations of the investigations performed in this research.
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The video and images dataset of students in a classroom is very rare online. The proposed model

was tested with a private database of students in a classroom.

1.7 Contributions

The main contributions of this research are:

• Survey on techniques and existing systems for automatic attendance monitoring system.

• Proposition of a real-time smart attendance monitoring model that is able to monitor

students attendance throughout the entire lecture.

• The design of the multi-camera architecture for efficient detection of students in a classroom

and reduction of facial occlusion.

• Experimentation of the real-time attendance monitoring system.

1.8 Overview

Chapter 2 reviews the state-of-art of the facial recognition process. It elaborates on the contextu-

alization of existing attendance management systems. Chapter 3 presents the system model and

the Graphic User Interface (GUI) of the proposed model. In chapter 4, materials, algorithms,

and methods such as face detection, image pre-processing, and feature extraction are presented.

A full discussion on the experimental conditions, the results of the experiments from different

classification algorithms, is presented in chapter 5. Chapter 6 draws the conclusion and presents

recommendations for future work. Consent for the use and publication of images captured in the

classroom is presented as appendix at the end of the dissertation.
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2.1 Introduction

Student attendance to lecture can have an impact on their academic’s results [22]. Monitoring the

attendance of students to classes is an important and challenging task. In fact, absenteeism and

attendance punctuality have always been a problem in meetings. Students randomly miss classes

and without a proper system in place, it is difficult to perform a reliable inventory of the class

attendance. Some students dodge classes and let their friends sign the register on their behalf [27].

Inappropriate attendance monitoring applications can also contribute to attendance management

problems. Unfortunately, most educational institutions are still using paper-based attendance

monitoring method. This method is found tedious, inconvenient, time-wasting, and a waste of

paper material [65, 85].

As the number of students increases throughout the years, it is becoming a challenging task for

institutions to manage the attendance register [85]. Absenteeism has been identified as one of

the roots of poor pass rate in institution of higher learning [30].

Laws and protocols encourage students to change their pattern of attending classes, but not

efficient enough to curb student absenteeism from classes. Several attendance management

systems have been proposed in the literature [85, 87, 68, 22, 52, 19].

8
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2.2 Attendance Monitoring System Technologies

Recently, different automated technologies have been developed to manage attendance of students

[85]. The following section presents some initiatives.

2.2.1 RFID Authentication System

Radio Frequency Identification (RFID) is a wireless technology communication [93], which uses

electronic waves between the reader and the tag to authenticate stored data. It is precisely defined

as the communication between the tags, antenna, and the chip/card, through electromagnetic

signals [96]. Figure 2.1 illustrates the operation of the RFID system.

Figure 2.1: A generic representation of the RFID system [93]

In [96], a RFID system supplemented with fingerprint recognition model was created to monitor

student’s attendance. Students had to click their tags on the RFID reader to be authenticated.

Fingerprint is used on mobile phones application to confirm the availability of students in a

classroom. Subsequently, the register is marked positive when the RFID tag code matches

with fingerprint biometric template. The system sounds robust, especially the fact that it uses

fingerprint to get the identity of students. The problem with the technology is that mobile phones

are unreliable, because they can get lost, lose power and get broken.

2.2.2 Mobile Smart Attendance System

Mobile phone technologies have a significant influence in our lives. A Multi-functional model

system was suggested in [62], to manage the attendance recording of students. The system

consisted of a set of functionalities such as email notification, school grade checking, weather,
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health service, friendship, family affair, and emotion detection. The health attribute was created

for students to express their health information on the App. The social attribute was created

for social information. Students could report school bullying, violence, and any form of abuse.

The system also catered for domestic issues or family matters such as poverty and care, to be

addressed through the application. The application helped students to express their feelings

better without fear and shyness.

Students accessed the mobile application installed on their phones using their identity number

password as verification. The application collected and validated the presence of students in

a classroom using a Global Position System (GPS) tracking [75]. Despite the fact that mobile

phones are expensive and unreliable, the proposed algorithm saved time of calling out student’s

names when recording attendance [52]. It also helped students to express their private matters

confidentially [62].

2.2.3 Bluetooth Based Attendance Monitoring System

A comparison between two monitoring attendance techniques was conducted in [1]. The first

approach was Bluetooth based, to create a communication between a control unit and the cell

phones. The application installed on student’s phones exchanged information with the control

system via Bluetooth. The student ID (Identity number) was detected through Bluetooth when

students got close a certain designed range next to the classrooms. Thus, the identified student

numbers were saved on an excel format as the register.

The second approach was an off-line system, which used data access between card reader and the

card [1]. Identical information about students was saved in a memory card. The availability of

students was captured through the click of the card to the card reader. The second approach was

found better than the first because Bluetooth-based systems can encounter connection problems.

2.2.4 Fingerprint Attendance Monitoring System

The fingerprint model uses the minutiae for identification. It featured with the ridge ending,

bifurcation, and short ridge [8]. These features are unique for everyone. Figure 2.2 presents the
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student management system using fingerprint.

Some discussion about the fingerprint model which operated on a mobile phone to manage

student’s attendance was presented in [8]. Students marked the register by scanning their fingers

on the fingerprint scanner embedded on mobile phones and the results were recorded and stored

in the application database. To validate student’s location, the application operated via a school

Wi-Fi signal which is located within the circumference of the classroom. However, not every

student has a smart phone. Moreover, fingerprint systems in general are regarded expensive

because of installation of hardware and fingerprint reader, and students has to physically enter

their fingerprints on the machine.

Figure 2.2: Example of the student attendance management system using fingerprint [8]

In [98], a payroll salary was determined by using a wireless transmitted data. The system

automatically calculated the overall time workers spent in the working environment. Employees

had to scan their fingerprints when they enter the working premises and when leaving after work.

Unlike the paper-based signing register, the system was made to reduce fraudulent information.

The system computed the difference between time-in and time-out and produced the overall time

workers were on duty.
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2.2.5 Attendance Monitoring Systems Using Face Recognition

The attendance monitoring system models are presented in different ways. In [84], facial

recognition attendance management model was supplemented with audio and gender classification

to validate gender of a student as to whether the recognized student is a male or female. Figure

2.3 shows students detected and recognized in a classroom.

Figure 2.3: The overview of a face detection system [84]

After recognition an audio system is used to read names of available students for cross-checking.

Although the system was real-time, the specific time of recognition was not clearly demonstrated.

Students can go to a classroom just to register their presence, and leave before the end of the

lecture. The efficiency of the attendance monitoring system can depend on the time which the

system recognizes students in a classroom.

Unlike the previous study. Nirmalya et al. [59] modelled the student’s attendance recording

system that collects the attendance information at clock-in and clock-out.

Similarly, Le et al. [7] designed a multi-camera face recognition architecture that can collect

recognition information using a time-slice topology. The topology was designed to capture data

at some pre-defined time fragments.
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Figure 2.4: DBN multi-camera face recognition [7]

Figure 2.4 shows a multi-camera system integrated with the Dynamic Bayesian Network (DBN)

for facial recognition. The architecture and positions of cameras are not demonstrated. Poor

planning of the model can affect the system negatively [109]. However, the DBN technique was

used to create data communication between different connected cameras.

A real-time automated student attendance monitoring system was conceptualized in [65]. Unlike

previously mentioned system, this model is built using a single camera with connected computer

vision algorithms such as face detection and recognition, motion analysis, and behavioral analysis

as shown in Figure 2.5



Literature Review 14

Figure 2.5: The conceptual model of the three-fold attendance management system [65]

Furthermore, Internet of Things(IoT) is implemented for connectivity and data transmission

from stage to stage. Attendance information is acquired from the face recognition results. Motion

detection analysis and behavioral detection is used to analyze movement of students in a classroom

as shown in Figure 2.6

Figure 2.6: Face recognition system and motion detection denoted by red lines [65]

Security and confidentiality must be considered when creating a student’s attendance management

system. An anti-spoofing face recognition algorithm was proposed in [60]. The system tracked

the unique number of eye blinks in a period for each person. The detection and recognition of
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the iris provided strength to identify students. The model obtained a success ratio of 94,8%,

excluded persons with eye glasses. The proposed algorithm was tested on a real time mobile

video and it couldn’t find the pupil centers. Further effort can be directed towards improving eye

location algorithm to get accurate eye points [60].

2.2.6 Multiple-Camera Positioning And Collaboration

Yong et al. [109] mentioned that multi-camera technology is the key to reduce detection and

recognition challenges. Multi-camera architecture provides more comprehensive data in object

tracking and multi-view scenes than a single camera. It can help to reduce occlusion, chaotic

scenes, and can cope in drastic change in light. However, application with many cameras can

introduce more challenges. The systems have to account for collaboration between cameras,

information fusion, and object matching. Nevertheless, a great system model can improve the

computation ability of cameras.

The concept of full-view coverage was proposed in [64]. The basic idea was to detect faces from

different directions. Regardless of the position and direction the face turned, it was always in the

view point. Figure 2.7 shows the calculated camera view angle.

Figure 2.7: Computation of the target-point angle [64]
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The special case of K − coverage is investigated on sensor cameras network. The angle between

the view point of the target object heavily depended on the sensing quality of the cameras.

Cameras moved and detected faces between the calculated view-point range. The idea of a full

camera view coverage ensures efficient detection and recognition of the target object [45, 64].

Harguess et al. [42] presented a solution that can deal with the above limitations for working

with frontal and full-view faces. The proposed multi-camera model detected and recognized

half-face or side-view faces. The system implemented the Cylinder Head Model (CHM) to track

faces in multiple cameras. The system detected half parts of the faces and merge them to identify

a common face as shown in Figure 2.8.

Figure 2.8: Face side detected and fused using a CHM [42]

It can be stated that this system requires enough storage to store the amount of training (full and

half view images) data. The system can also be improved by clearly modelling the architecture

of camera positioning.

Park at el. [83] proposed a technique that used Coaxial-Concentric motion camera and the static

PTZ camera to achieve distance invariant face detection and recognition. The cameras were

connected and were able to exchange information. Figure 2.9 below shows the schematic of the

designed system.
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Figure 2.9: Calibration between two cameras, with measured angles and distance from the
target object [83]

The system was tested by tracking 50 people at different distances ranging from 6 to 12 meters.

The PTZ camera managed to detect good resolution images even from a greater distance.

2.3 Face Recognition

Face recognition has proven to be a good candidate for attendance monitoring and has a room for

improvement [65, 24, 80, 84, 6]. Figure 2.10 shows stages of face recognition from face detection

to classification.

Figure 2.10: The flow diagram of the face recognition system adopted from [72].

2.3.1 Face Detection

Face detection is the first stage of facial recognition [77]. Reliability in face detection remains

an issue, with challenges such as multi-view appearance, illumination invariant system, pose
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estimation, quality of the camera, and resolution of the images. The detection process must be

designed in a manner that the cameras would be able to capture every targeted face.

Algorithms such as multi-view appearance, Viola and Jones algorithm [106], Facial landmarks

detection algorithm [113], histogram face recognition technique [5], were used for face detection.

Yang et al. [111] categorized the detection methods as feature-based, template-based and

appearance [102]. Feature-based technique attempts to locate face features and face components,

such as the nose, mouth, and eyes. It considers the classification of the right position of the face

components [10, 11]. Figure 2.11, shows facial tracking process in image frame and video.

Figure 2.11: Input image or video for face location and detection

Facial Landmark detection technique is used to track facial feature points such as the edges of

the eyes, nose, lips, and the check muscles [10]. In real world, this technique is used in mobile

phones, laptops, security surveillance, and facial expression recognition. Barro et al. [11] proposed

the Head Pose Estimation (HPE) technique. The algorithm was applied for facial landmark

alignment, to locate the angle of the head pose. The head motion was tracked using the Kalman

filter. The HPE algorithm uses an assembled regression trees to align the facial landmarks

components in both two and three dimensions. Facial features were detected even in partially

occluded environment.

Unlike facial detection algorithms which do not classify the detected frames as to whether they

contain faces or not, the Artificial Neural Network ANN used strong classification layers to

classify face images in the frames [88]. ANN also applied multiple retinal connected networks to

examine small windows of the image, and decided whether faces exist in each window or not.
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Figure 2.12: The ANN in face detection classification algorithms [88]

Similarly, in [107] boosting model has been used to examine false positive images and classified

them separately. The Boosting technique is an attribute of the Viola-Jones face detection algorithm

and it can detect faces fast and in real-time. Figure 2.13 shows the boosting classification process.

Figure 2.13: The series of Boosting stages [102]

The Viola and Jones face classification struggles to detect face images in an environment concen-

trated with light. Therefore, it is important to observe constant light environment.

Olegs et al. [78] used the local binary pattern based on face localization with the neural net-

work to locate the position of the face. Detecting more features and multiple face components

simultaneously helped to strengthen the model and to reduce false positive detection. ANN was

employed to classify the face detected in frames.

Hashen [43] presented the technique that combined HSV (hue, saturation, value) color space

and backpropagation artificial neural networks to detect faces. A high detection rate with less

non-face images was achieved.
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Detecting faces from a distance can affect the performance of detection algorithm and the

recognition accuracy significantly [83]. Moreover, faces detected from a distance can experience

low resolution which can negatively affect the pre-processing and recognition accuracy [71].

Jesorsky et al. [56] implemented the Hausdorff distance technique to locate and detect human

faces. The method employed the shape comparison approach to detect the quality of image

resolution. Edge-based and gray-scaled images were produced and were invariant to drastic

change in light.

2.3.2 Image Pre-Processing

Face recognition can perform badly when poor quality data is used. Images have to be enhanced

to prepare them for feature extraction and classification. Image enhancement accounts for im-

age processing algorithms, such as image segmentation, smoothing, cropping and gray-scaling [28].

Dharavath et al. [28] proposed a processing strategy to modify images before feature extraction.

Histogram Equalization was applied to normalize non-uniform contrast on the images. The

Cumulative Distribution Function (CDF) was also used at each image pixel value to equalize the

pixel values over gray levels. The contrast before and after processing was improved. Since the his-

togram equalizer can add great noise on the images [9], to de-noise the Gaussian noise; a Low Pass

Filter (LPF) was applied to reduce high frequency information. After feature extraction the recog-

nition results for processed data was 92.62% compared to 62.77% recognition accuracy of raw data.

Galigekere et al. [37] proposed an interpolation based approach to equalize variation of the

illumination in the images . The adopted approach allowed for both synthesis and analysis of

images in different light conditions.

In [112], a model used the Spare Low-rank Component Base Representation (SLCR) to solve

uniform light images was proposed. The spares representation classification (SRC) struggled with

low quality data and noise. The SLCR model was designed to solve the problems of SRC and

CFR classification by creating a dictionary of low-rank images with non-low-rank images. The

features extracted from the dictionary was normalized, it contained features from the low-rank

component and the non-low-rank images.



Literature Review 21

The facial recognition process is usually done through two dimensional faces. This can limit the

system because the whole face, which is the blue print of the face cannot be entirely analyzed [67].

Lu and Jain proposed a 3D face recognition model in [67]. The 3d face structure was achieved

from different poses through facial segmentation, face masking and pose angle quantization [67].

Figure 2.14 illustrates face detection from different dimensions.

Figure 2.14: Pose angle estimation [67].

The model focuses on automatic points feature extraction and Head Pose Estimation (HPE)

in the presence of large pose variation. The extracted features are used for face alignment in

the three-dimensional space. Thus, the fully automated three 3D facial recognition model was

developed and evaluated [67].

2.3.3 Feature Extraction And Classification

Feature extraction is the process of extracting image characteristics for further classification,

analysis and identification. There are two types face feature extraction techniques, global and

the local feature extraction methods. Both techniques work well depending on the state of data

used and the type of experiment conducted [2].

2.3.4 Global Feature Extraction And Classification Methods

The global features such as Principle Component Analysis Principle Component Analysis (PCA)

[104], Linear Discriminant Analysis Linear Discriminant Analysis (LDA) [12], Independent Com-

ponent Analysis Independent Component Analysis (ICA), Discrete Random Transformation

DRT, and the Gabor Wavelets are among the most used feature extraction techniques used in

the field of computer vision and image processing. Global descriptors can speculate the whole
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image with a vector, and include shape descriptors, texture features and contour representation [2].

Face recognition based on Independent Component Analysis ICA [101] deals with generalization

of high-order statistic, because information can be found in high-order interrelation than in the

second- order. The ICS produced feature vectors that has a high statistical independence [15].

Guoyi et al. [115] applied the matrix analysis technique proposed in [63] to model facial recogni-

tion and facial expression detection. The techque is not different from the PCA and LDA feature

extraction methods. It uses non-negative constraints [63] to perform facial expression recognition

with an accuracy of 66.2%.

In [70], a Neural Network for Sammons Projection [91], a nonlinear discriminant analysis (NDA)

network, Linear Discriminant Analysis LDA network, nonlinear projection (NP-SOM) based on

the Kohonens Self-Organizing Map, and Principle component analysis PCA were applied. The

Sammons algorithm lacked the ability to project new dimensional data from the old training set.

Hence, the unsupervised backpropagation model has been adopted to train the feedback neural

network to overcome the limitation of the Sammons algorithm. The behavioral results of each

model were studied and recorded according to the dataset used. The common rhythm about the

models was that they all used an adaptive learning model technique, which enabled the system

to adapt to change in environment [70].

Instead of using the distance classifier, Agarwal et al.[4] applied artificial neural network because

of its ability to learn from observed data. PCA was used to extract the Eigen features and was

also used as a dimensionality reduction tool [104]. The data was expressed as feature vectors,

known as eigenvectors [4]. The ANN clustered faces that belong together (of the same person),

as the positive examples for a person’s network. Faces were trained by being fed into the ANN

network layers. The number of networks used were equal to the number of entities used to train

the model i.e. 30 layers for 30 different people (faces). The results in [4], outperformed the

compared k-means method, and the Fuzzy C-means method. A recognition rate of 97, 18% was

achieved using the ORL face database [4].
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LDA is the statistical technique, which performs the class specific dimensional reductions. LDA

maximizes the ratio between the between-class matrix and within-class scatter [2, 12, 81]. The

technique is feasible; some classes cluster tightly together, while different classes are as far away

as possible, from each other in the lower dimensional representation [12, 81]. LDA is the most

robust and dominant algorithm for feature extraction in appearance-based methods [101, 55].

Large dataset is recommended for extraction of good feature [58]. The LDA method also uses

PCA for obtaining the tolerable data dimension [12]. Drastic change in light, different pose,

image occlusion, and trivial change expression, are factors that limit the recognition accuracy of

the face recognition process. Hence, this can cause the process of face recognition to perform

poorly. Although, there is a need to thoroughly pre-process the data before using it, LDA can

cope with unpreprocessed data [12].

2.3.5 Local Feature Extraction And Classification Methods.

Local features is robust against monotonic shadows and drastic change in light [2]. The LBP and

the histogram features were the common local features types used.

Nazari and Mahammad [76] designed the model that combines the global and local Gabor feature

types. The face image was divided into the four equal sub-regions. Due to the trivial change of

the face structure, the local Gabor feature was used to each sub-region and to obtain invariant

features. Contrarily, the global Gabor features were extracted from the whole face as a unit. The

features were then combined to form a single feature vector. PCA was used to reduce the data

dimension, while the KNN and the multi-SVM were applied to perform feature classification.

Positive results were observed against independent global Gabor feature extraction method and

the G-2DFD feature-fusion face recognition [76].

Gabor filter is one of the high performing methods in for texture segmentation [108, 26]. Wang

et al. [108], applied the multi-channel Gabor filter to extract the feature vectors which represents

the texture features. This generates data with huge dimentionality. To deal with this, Pulse

Couple Neural Network (PCNN) was used to classify images and eventually segment the texture

images. The multi-PCNN increased the processing speed and lowered the dimensional space.
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The common problem in image processing is that extracted features are vulnerable to change in

light and expression [9]. Therefore, it is important to use a strong edge and structured features

to reduce the effects of change in facial structures, and illumination conditions. HOG and the

SURF features were applied to the AT and T [73] database, for face recognition [108]. The

texture features extracted with the two algorithms were robust against monotonic light. As with

the LBP, the HOG features have large inter-class variance and a small intra-class variance [97].

The combination of the HOG, Spatial Histogram, and the normalized SIFT techniques produced

the invariant key-point descriptor [29, 26]. The histogram provided the local feature that is

translation invariant, and thus the texture analysis became robust against change in light.

The LBP model is a simple model to compute. It is recommended because of the texture detection

ability. It expresses the texture information including the light and dark points, the edges and

the distribution results [66]. LBP is invariant to rotation and light reflection, meaning that

the features are less affected by bad lighting changes [66]. LBP has tolerance to monotonic

illumination, which makes it invariant to monotonic gray changes [66, 5, 79].

A comparative study between the combination of the local and global features has been proposed

in [39]. The local features were computed using the Multi-Scale Block Local Binary Pattern

(MB-LBP). The global features were constructed with PCA. Global features were integrated

using the lower dimensional algorithm. Different classification models such as the Mahalonobis

cosine distance, Euclidean distance, and the cosine distance were used to predict the similarity

between the trained and the testing data [39]. The MB-LBP produced high recognition accuracy

using the Mahalonobis cosine distance. The recognition accuracy of MB-LBP increased with an

increase in training images.

2.4 Summary

The literature evidences that the solution to the traditional paper-based attendance management

procedure is the automated attendance monitoring systems. The afore-mentioned problems of

the paper-based methods can be addressed by different technologies such as mobile technology,

Radio Frequency Identification (RFID), card system, and biometrics systems such as fingerprint,
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iris, and voice recognition. Automated attendance monitoring algorithms can collect information

easily and at the faster pace. Among the automated attendance monitoring algorithms, facial

recognition biometric provided a better attendance management system [85, 61].
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3.1 Introduction

In this research, a multi-camera system has been chosen to enable a large-scale view. Three

cameras are installed in a classroom with a fixed/observed light. Detected images are stored as

the training dataset for face recognition. An administrator operates the graphic user interface of

the system. Figure 3.1 shows the system architecture of the attendance monitoring system.

Figure 3.1: The interaction of cameras with the system

Cameras are connected to a computer, as shown in Figure 3.1, and exchange data through the

system using wireless connection. Scenes of the classroom are captured at different time intervals

and sent to the recognition system where faces are extracted.

26
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3.1.1 Collection the Training Dataset

Cameras are positioned from three different positions, the right front, left front and the middle

front in a classroom as shown in Figure 3.2. The cameras are static and focused on the positioned

area. Each area is represented with respect to angles β, α, θ and each angle enclose an area of 90.

Figure 3.2: The conceptual area-coverage view enclosed by three static cameras

The overall view of the three cameras C(x) can be computed with the equation ?? below;

C(x) =
∑

(βx + αx + θx) = 270eq3k1 (3.1)

During the stage of image registration, for each student, collected face images differs from each

other with pixels, pose, expression and light condition [9, 38]. In Figure 3.3 the cameras capture

frames of images and save them to the system directory where faces are detected. Multiple faces

detected from the same person are recorded with differences to a certain degree with respect to a

chosen threshold τ . Pictures are stored only when the resolution Φ is above a chosen threshold.

D(x, Y ) represents the difference between image x and image Y .



System Modelling And Design 28

Figure 3.3: Collection of data during registration of faces. Student faces are registered once by
a system Administrator

The performance of the facial recognition system depends heavily on the type of data being

collected. Therefore, it is crucial to collect reliable data to build the training dataset. It is a good

practice to train the system with different data of the same person [9] e.g. pose and different

facial expression. If limited variety of data is used to train the system, this can deteriorate the

recognition accuracy. Figure 3.3 is further explained in Algorithm 1.
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Algorithm 1 Collecting training images of the students
Input: :Database of enrolled images Y; Threshold τ .

Output: : Y plus 15 different training images of learned student.

1: NbrImages = 0 // Number of images learned

2: for NbrImages ≤ 15 do

3: Capture an image(x)

4: Similarity = D(x,Y)

5: if similarity ≥ τ then

6: Y = Y + {x}

7: SNbrImages = NbrImages+1

8: end if

9: end for

There are many strategies that can be employed to get a good training image such as, sliding and

rotating the image a bit, shifting the images by few pixels, and adding the mirror faces to the

training faces. To manage data from multiple cameras, object matching and data fusion fusion

technique is adopted.

3.1.2 System Architecture

The architecture of the proposed system comprises of three components; the front end, face

recognition software and the back end. The front end part is made of cameras and the GUI. The

engine of the system that performs task such as adding students, viewing results, managing data,

and storage components (Database, and other information system) can be accessed through the

graphic user interface. All the three components of the system are connected and share data as

shown in Figure 3.4.
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Figure 3.4: The three components of the Smart Attendance Monitoring System connected to
one another

Figure 3.5 explains the functionality of the smart attendance monitoring system from the user’s

perspective. It demonstrates how users interact with the system. Students do not operate with

the system physically. Faces of students are detected and recognized from a distance. The

administrator is responsible to interact with the GUI. Lecturers and students can view attendance

information when it is sent to them via email.
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Figure 3.5: The use case diagram of the system

In Figure 3.6 the effectiveness of multiple cameras is measured by counting the number of

students detected and recognized by each camera. Cameras capture snapshots of images at

a particular time, and faces are detected from the captured frames. Extracted faces are la-

beled, and saved respectively in directories according to cameras. For each camera, there is a

representative directory with detected face images imgi1, imgi2, ..., imgip from camera one and

imgn1, imgn2, ..., imgnq from camera two. Before counting detected images from each camera,

detected faces are pre-processed and features are extracted. A training data is loaded and

detected faces from different database are recognized. Recognized results of images from each

directory are saved separately. The detection rate for each camera is judged by the number of

images detected and recognized. Since the training images are saved by labels, the system can

validate when one person is recognized twice, from different cameras and database.
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Figure 3.6: Detention and recognition of faces captured from multiple camera

3.1.2.1 The Graphic User Interface (GUI)

The first page of the GUI comprises interface to all important features of the system such as face

detection, adding students in a database, face recognition as displayed in Figure 3.7. Time and

date are synchronized with the attendance registration of students.

Figure 3.7: The system user interface

Figure 3.8 shows the student registration window. Student details such as student number,

student name and surname and the student images are uploaded through the window. The

process of adding students to the system is deployed only at the beginning when students register.

Otherwise, it is done to update data and when adding new students.
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Figure 3.8: Form to register students information

Another important feature from the GUI is the email window, (See Figure 3.9). The system

is designed to automatically send messages to students who are not punctual to their lectures.

The system automatically calculates the attendance percentage of students. If the percentage

is lower than expected attendance threshold, an email is generated, and sent to students and

course coordinator to inform them about the attendance status of students.

Figure 3.9: Email Window

3.1.2.2 Face Recognition-Components

Figure 3.10 illustrates the flow diagram of activities of the system.
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Figure 3.10: The flow diagram of the smart attendance monitoring system

Functions of Figure 3.10 are presented below;

• Face detection: Student faces are detected using the cameras and the adopted face detection

algorithm.

• Pre-precessing: Faces are enhanced to remove the image distortions and prepares them for

feature extraction and classification. Training and the testing images go through the same

pre-processing technique. Enhanced data can improve the recognition accuracy [9].

• Features extraction: Three feature extraction algorithms are adopted to extract features

from images. Features extracted are then used in combination with data in the knowledge

base for recognition and identification of images.

• Database: Training images and information about the students is saved in the database.

• Time intervals: Information recording is timely and sequentially performed via predefined

time intervals ∆t. If the starting of the lecture time is t0 and the lecture lasts T time,

information will then be recorded at each ti defined as;

ti = t0 + ∆t× i (3.2)
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where i = 0, 1, .., n− 1 and n = T/∆t. At each ti(i = 0, 1, .., n− 1) the register is updated

with attendance information from the beginning to the end of the lecture, as show in Figure

3.11

Figure 3.11: The internal Work flow of our smart attendance monitoring system

Recording student’s attendance information in time intervals can be used to check late

coming, dodging classes, and hence improving students punctuality to the classroom.

3.1.2.3 Back End

The system and the GUI is connected to the database and data can be entered to and accessed

from the database. Training images for each student are saved in a database. To collect informa-

tion for the first time, student images are captured by an administrator.
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Figure 3.12 summarizes the designed database for the attendance management application. For

each student, the department, school, lecturer, classroom, time and the student information such

as student number, names and course enrolled is extracted to provide a reliable information for

the students register.

Figure 3.12: The Relational Entity Diagram

After identification of students faces the results are saved in a database as a register. The system

is equipped with warning module that calculates the average attendance time for each student.
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Figure 3.13: Background model behind attendance computation

If the overall time of attendance is less than the threshold τ , warning is generated and sent to

lecturers and students, otherwise it is sent to students to view and confirm with results on the

register (See Figure 3.13 and Algorithm 2). Let λT be the number of occurrence/times students

has attended lectures out of total lectures allocated for a module for a specific period (T). The

total attendance is denoted by (A) as shown in Algorithm 2.

Algorithm 2 Computing email address to inform about results
Input: τ threshold, T Time

Output: Rates of attendance (A)

1: for all λT ∈ θT do

2: A = λT
(θT ) × 100 //attendance score

3: if A ≤ τ then

4: ← Generate Warning

5: else

6: ← Email : Generate attendance confirmation

7: end if

8: end for

The database consists of 12 relational tables linked together to achieve data communication.

Unified Modelling Language (UML) class diagram in Figure 3.14 gives the structure of the
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database used in the system. Lecturetime() and LectureDate() are the functions that returns

time and date of the module for the class classroom, CouresName() provides the name of the

course and module attended.

Figure 3.14: The UML class diagram for the smart attendance monitoring system

It can also be seen from Figure 3.14 that the administrator has control over the functions of

the system. The department, course, classroom and lecturer give additional information about

students and they make it easy to track the module students have attended. Students and

lectures pictures are stored in a database as the training data.
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3.2 Summary

A system architecture that comprises of three components; the front end, face recognition software

and the back end, was proposed in this chapter. The conceptual area-coverage view enclosed

by three static cameras has also been designed to capture the facial images for the system. A

Multi-camera model has been presented to illustrate how cameras captures images of student

from different positions. The next chapter entails the process of face detection, feature extraction

and feature classification algorithms.



4 | Methods and Techniques

4.1 Introduction

This chapter presents the processes and algorithms used to build the smart attendance monitoring

system, the face detection algorithm, pre-processing techniques, three feature extraction algo-

rithms and four classification techniques adopted to achieve the student’s attendance monitoring

system.

4.2 Face Detection

The Viola- Jones object detection technique has been adopted for detection of faces in real-time

[54, 102, 9] (See Figure4.3). The detection algorithm comprises of the Haar-features, Adaboost,

Integral image, and the cascading classifier [50, 107, 106].

Figure 4.1: Rectangular red mark showing the detected faces. The faces are extracted and
cropped

• Haar –like rectangle features

Haar-like features can be classified in three categories: edge features, linear feature, and

central and diagonal features. The eigenvalues of the template are defined by the difference

40
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of the black matrices from the white matrices. The Haar eigenvalues reflects the change of

the grayscale image [48], as shown in Figure 4.2 (a).

Figure 4.2: (a) Haar-features are represented with a rectangle pattern. (b) The sum of the
pixels inside the rectangle D can be calculated as : 4 + 1− (2 + 3) [50].

• Integral Image

The computation of the integral image at the location (x, y), is equal to the sum of all the

pixel in the upper left corner of the point (x, y) as shown in Figure 4.2 (b). Let Γ(x, y) be

the integral image of a point (x, y) and I(x, y) be the grayscale value of any pixel (x′, y′) in

the integral image [48], then:

Γ(x,y) =
∑

x′≤x,y′≤y
I(x′, y′) (4.1)

• AdaBoost

The core idea of the AdaBoost algorithm is to train different weak classifiers and assemble

these weak classifies to form a strong classifier. The algorithm judges whether an object is

face or not by comparing the eigenvalues of the input image with the threshold obtained

from trained optimal weak classifiers [48]. Algorithm 3 presents face detection using the

Viola Jones Adaboost algorithm.
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Algorithm 3 Detecting faces with an Adaboost trained cascade classifier [50]
Input: : An M ×N grayscale I and L-layer cascade of shift

Output: : ρ, set of windows declared positive by the cascade.

1: Parameter: a window scale multiply by c

2: Set ρ [i, i+ e− 1]× [j, j + e− 1] ⊂ I : e = 24ckK, k ∈ N

3: for l = 1 to L do

4: for every window in ρ do

5: Remove the windowed image’s mean and compute its standard deviation σ

6: if σ > 1 then

7: Divide image by σ

8: Compute image features required by the shifted classifier at layer l

9: if Cascade’s l − th layer predict negative then

10: Discard this windows from ρ

11: end if

12: else

13: Discard this windows from ρ

14: end if

15: end for

16: end for

17: Return ρ

Haar face detection algorithm is susceptible to false positives and false negatives. It can detect

face-like objects as faces, and thus providing false detection as shown in Figure 4.3 . The

combination of face detection algorithm with eye detection algorithm has been employed to make

face detection effective. It is rare that both eye and face detection can miss-detect faces.
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Figure 4.3: Face detection with Haar cascade without eye dection

Figure 4.4 shows some face miss-detected boxes around the detected face. As shown in Figure

4.4 in order to validate face detection it is necessary to combine it with eye detection. Therefore,

the frame is rejected. Haar cascade eye detection algorithm has been implemented to validate

whether the object detected has eyes or not. This strengthen the detection technique, and reduces

the chances of false detection.

Figure 4.4: Validation of face detection with eye detection

The combination of face and eye detection is robust and effective. The method that was

implemented in this work detects faces with no chance of false positives. All the bounding boxes

with no faces detected are discarded as show in Figure 4.4.

In Algorithm 4, quality of the image resolution (Φ) is checked before images could be used. If

image resolution is less than the threshold (τ), the image is not considered. The Mean Square

Error (MSE) is adopted to calculate the distance between the eye region and compared to a given

threshold [25]. Algorithm 4 is uses the MSE to check whether both eyes are detected and it also

checks the quality of the image resolution.
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Algorithm 4 Eye detection
Input: : Image I of size M ×M , τ = Threshold, Φ = Image Resolution

Output: : Region of eyes detected in the face image.

1: Left eye:EyL, Right eye: EyR

2: for all I detected do

3: if Φi ≥ τ then //check resilution of each image i.

4: Initialize : classifier (Haar cascade)

5: if EyL > 0 then //Get the left eye center

6: Left eye detected

7: end if

8: if EyR > 0 then //Get the right eye center

9: right eye detected

10: end if

11: if ( MSEs(EyL, EyR) ≤ τ) then

12: Face : eyes detected

13: end if

14: end if

15: else

16: Discard image

17: end for

Including the eye detection to confirm whether the detected object is a face or not can decrease

detection rate. This is because the person can arbitrarily close one eye or two eyes. Detection

reliability drops when eyes are closed, and when the person has worn eyeglasses. Nevertheless,

the use of eye detection algorithm in face detection cannot be ignored in this research, as it helps

to scale and align the face upright, also reduces the problem of face rotation. The Haar left and

right eye detection and the Haar eye-glass detection algorithm is used to locate eyes in a face.
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Figure 4.5: Dataset without false detection images. The data is enhanced with histogram
equalizer, bilateral filter, and elliptical cropping [73]

Figure 4.5 shows images detected with the adopted technique in Algorithm 4. Eye detection can

also help to scale images upright and provides the system with non-rotating images.

4.2.1 Multi-camera Architecture

A multi-camera architecture system is adopted in this study. Cameras are installed in a classroom

to create a multi-view environment and to reduce occlusion [7]. The designed system can detect

frontal images from different directions. Three cameras were used to collect face images from

the front, from the left, and from the right as shown in Figures 3.2 and 4.6. This is important

because it can enhance the detection of faces. The effective detection of faces can thus improve

facial recognition accuracy rate [7].
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Figure 4.6: Live scenarios captured from the UKZN classroom. The scenes shows the
importance of positioning multiple cameras in a classroom to create a multi-view environment

On Figure 4.6 (a), it can be seen that the left camera is able to detect faces that are on the left

side, and Figure 4.6 (c) shows students detected from the right hand side by a camera focused

on the right. The frontal camera Figure 4.6 (b), is capable of detecting faces that are directly

positioned on the front. The frontal camera always detects most faces as the students spend

most of their time focusing on the lecturer or the projector.

4.3 Image Pre-processing

Image pre-processing in this study entails performing geometrical and photo-metrical enhancement

of the image [102, 9]. The main operators used are cropping, gray-scaling, rotation, Histogram

Equalizing, smoothing, and elliptical cropping.
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• Cropping and grayscale transformation: The process of face recognition using the eigen fea-

tures works with the gray-scaled images. After detecting the images, they are cropped to the

size of the face. This helps to reduce the foreign features that can be extracted with the face

characteristics around the frame. The frame is reduced to the size of the face perspective [9].

• Rotation: Computing the distance between the two detected eyes and the angle of 180

degrees, helps to align and scale the image upright. To prepare the recognition process,

images have to be scaled and aligned upright as shown in Figure 4.7.

Figure 4.7: Pre-processing stages

• Histogram equalization ; Histogram equalizer is applied to balance contrast on the images.

The entire image contrast has to be uniform for the effective feature extraction and image

recognition. The algorithm is first applied to the left part of the face, then to the right

part of the face, and lastly to the entire face image. It helps to reduce the light variation of

the images (See Algorithm 5 and Figure 4.8) [9].
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Algorithm 5 Histogram Equalization [100]
Input: : I of size J ×W with K grayscale

Output: : Image with equalized contrast, IE

1: for all i = 0, ..., k − 1 do

2: H[k] = 0

3: end for

4: for all pixels p ∈ I do //compute histogram

5: H[p]+ = 1

6: end for

7: Hc[0] = H[0]

8: for p = 1, ..., k − 1 do //Compute CDF

9: Hc[p] = Hc[p− 1] +H[p]

10: end for

11: for p = 1, ..., k − 1 do //Normalize CDF and remap pixels

12: T [p] = roundk−1JW ×Hc[p]

13: end for

14: return IE = T [kp]

In Figure 4.8 , (a) presents the whole image. The left and right-parts of the face can

experience invariant light balances. Figure 4.8 (b) and (c) are the results histogram equalizer

to each part separately standardizes the brightness and makes the image edges to become

visible. Subsequently in Figure 4.8 (d) contrast is adjusted on the combined parts of the

image.

Figure 4.8: The three phases of histogram equalizer adopted in this work

• Smoothing : Bilateral filter is applied to reduce noise on the images. Bilateral filter is good

at smoothing and reducing noise on the image while keeping the edges sharp. The filter is
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used to overcome the heavy pixel noise. [9].

• Elliptical mask: Figure 4.9, (a) shows a cropped image that contains the part of the neck

and other non-face portions . Figure 4.9 (b) shows the corners of the frame with masks

used to remove the overlapping features around the face. Figure 4.9 (c) displays the results

of the application of elliptical mask that has removed some hair, neck and some remaining

background on the image. To mask an image, the black-filled or gray-filled ellipse is created

around the cropped image to shade the corners [9].

Figure 4.9: Normal cropped image to elliptical cropped image.

4.4 Feature Extraction

A relational database to systematically store the training database has been created using PCA,

LDA and LBP. Features are extracted from images saved in the database. Face recognition

algorithms are applied to select optimal features from each sample [103, 114].

4.4.1 Principle Component Analysis (PCA) for Eigen Features

PCA is used to extract eigen feature vectors in the in the face images. A face image is represented

in terms of linear combination of eigenfaces. Faces are then approximated by selecting the best

M-eigenfaces, which has the large eigenvalues. The best M-eigenfaces span an M-dimensional

subspace which is called “face space” of possible images. The algorithm is valuable because of its

speed, simplicity, learning capacity, and relative insensitivity to small gradient changes in the face

images [9, 103, 13, 17, 2, 39]. High dimensional is the primary problem in image representation.

For example, two images j and z with 100 pixels each spans a dimensional m = j × z, 100× 100

which is 10000 dimensional pixels space. What amount of dimensions would suffice for large

dataset? To resolve the problem, PCA accounts for the useful information by making a decision
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based on the variance in data. The process of calculating eigen features using PCA to perform

face recognition is illustrated in Figure 4.10 and subsequent steps.

Figure 4.10: Summary of the PCA process

Let k = x,x2, ..., xn, be a set of the random vector as shown in Figure 4.11

Figure 4.11: The training images consisting of n of images represented in the form of a vector

The average image K is calculated as;

K =
1

N

N∑
i=1

Xi (4.2)



Methods and Techniques 51

Figure 4.12: a) Normal images, and b) average mean images

then normalize each face X as

Q = X −K (4.3)

The covariance between two sets of data reveals how much sets correlates [4]. Now, compute the

eigenvector uZ and the eigenvalue λz of the covariance matrix C as

C =
1

N

N∑
i=1

QiQ
T (4.4)

= AAT

where A = [Q1, Q2, ...., QN ]

The number of eigenvectors for covariance matrix can be reduced. The M-eigenfaces of the

highest eigenvalue are selected to produce a complete basis for the face space. A new face J is

transformed into its eigenface components [4], as

WJ = UTK(J −X) (4.5)

for J = 1, ..........., N

Figure 4.13: P Selected eigenfaces such that P < M feature. The selected feature represents
the entire training data
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The weight from a vector ZT = [W1,W2, ....,WN ′ ] describes the contribution of each eigenface

in the representation of the input face image, treating eigenfaces as basis set.

Figure 4.14: Each face in the training set can be represented by a weighted sum of k eigenfaces
and the mean face.

4.4.2 Fisherface Features

The PCA eigenvector method has almost similar computation method as the LDA technique [13].

However, LDA method shows a high error rate . In face recognition, LDA is used to perform the

Fisherfaces features and for dimensionality reduction via the linear projection while preserving

linear variation. In order to find the most discriminant features, that distinguish the best between

classes, the Fisherface technique maximizes the ratio of the within-class to between-class scatter

[13, 34]. In addition, the computation of projecting data from the high-dimensional space to the

low-dimensional feature space makes the features to be robust against change in light direction

and facial expression [44, 17].

The optimal projection Wopt maximizes the ratio of the determinant of the between-class scatter

matrix of the projected sample to the determinant of the within-class scatter matrix of the

projected sample [13], and can be define as,

Wopt = argmax
|W TSBW |
|W TSWW |

(4.6)

a) where SB is the between-class scatter,

SB =
c∑
i=1

|Ni|(µi − µ)(µi − µ)T (4.7)
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b) Sw represents the within-class scatter,

SW =
c∑
i=1

∑
xi∈Xi

(xj − µi)(xj − µi)T (4.8)

where c is the total number of the training and testing samples, µi defines the mean of the class

xi, and Ni denote the number of the sample in the class xi. If Sw not singular, the optimal

projection Wopt is chosen as the matrix with orthonarmal columns. Therefore, wi|i = 1, 2, ...,m

is the set of generalized eigenvectors of SB and Sw corresponding to the m largest generalized

eigenvalues λi|i = 1, 2, ...,m, i.e. SBwi = λiSwwi, i = 1, 2, ...m [13].

4.4.3 The Local Binary Patterns

The local features are less prone to the drastic change in light effect and image rotation [47].

LBP summarizes the local structure in an image by comparing each pixel with its neighborhood.

Let Γ be a neighborhood of grayscale image of the size 3× 3 pixels with a center pixel Pc(x, y)

having intensity Pc as threshold. Each Pixel in the neighborhood is then compared with the

threshold Pc so that a binary code of Pc(x, y) can be generated sequentially. If the intensity pixel

in the neighborhood Pi(x, y) is greater than Pc, the corresponding code is assigned 1, otherwise 0

as shown in Equation 4.9 and Figure Figure 4.15 [51, 46].

Γ(xc,yc) =

7∑
i=0

S(Pi − Pc)2i (4.9)

where S� is defined as,

S(ξ) =


1 ξ > 0

0 ξ ≤ 0

(4.10)

The decimal number generated forms the Local Binary code and is used to label the given pixel

[5]. Figure 4.15 shows an example of the generation of such code.
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Figure 4.15: General computation of the LBP [5]

The LBP operator can be extended from the 3× 3 block to any neighborhood with a circle having

a radius R and k samples equally spaced on it, as shown in Figure 4.16. The other pixels in

the neighborhood can be denoted with intensities Pi ∈ {P0, P1, ..., Pk−1} and the intensity of the

center pixels is denoted as Pc;

Figure 4.16: LBP with different neighborhood radius [46]

After calculating LBP for each pixel, the feature vector of the image can be calculated. A

modified LBP operator called uniform pattern is used. The number of bit-wise transitions from

1 to 0 or 0 to 1 defines the pattern. The LBP is called uniform if its uniformity measure is

less or equal to 2. For example, patterns 11111111 (0 transition), 01111100 (1 transition) and

110000111 (2 transitions) are uniform, while 10001000 (3 transitions) and 11010011 (4 transitions)

are not uniform. For dimesionality reduction, histogram equalizer is used to reduce the image

features from 256-dimensional decimal to 59-dimensional histogram. The reduced histogram

feature contains information about the local pattern. Each uniform pattern of a histogram uses a

separate bin, and one separate bin for all non-uniform patterns. The 8-bit binary number consists

of 58 uniform patterns, therefore 58 bins is used and one bin for all non-uniform patterns. The

global description of the face image is obtained by linking together all the regional histogram.

The overall value of the LBPH H(k) can be presented in histogram as
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H(k) =
n∑
i=0

m∑
j=1

f(LBPP,R(i, j), k), k ∈ [0, k] (4.11)

where P is the sample points and R is the radius. Figure 4.17 shows the transformation from the

original image to the a feature histogram.

Figure 4.17: Face divided into regions with histogram for every region

4.5 Classification

A classifier is a function that distinguish data patterns [100]. Different classifiers such as Euclidean

distance ED, Support Vector Machine (SVM), Naive Bayesian (NB) and backpropagation neural

network (BPNN) are adopted in this research.

4.5.1 Euclidean Distance ED

Let X = (x1, x2, ..., xn) and Y = (y1, y2, ..., yn) be two feature points, theED between (X,Y ) is

given by

D(X,Y ) =

√√√√({
n∑
i=1

|xi − yi|)}2 (4.12)

where i = 1...n are n corresponding eigenvalues. A face is identified when D(X,Y ) is less than a

certain threshold value [69].
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4.5.2 Support Vector Machine

SVM aims to discover the ideal hyperplane separating classes by focusing on the training instances

positioned at the bottom of the class descriptors. These instances of training are called vectors

of assistance. Training instances are discarded other than support vectors [46, 105, 92]. For a

binary classification problem. Let {xi, yi}, i = 1, 2, ...N be the training data, and yi ∈ {−1,+1},

where N denotes the number of training samples yi = +1 for class w1 and yj = −1 for class w2.

Suppose the two classes can be separated linearly. This implies that at least one hyperplane

defined by a vector w with a bias b can be found that can separate classes without error:

f(x) = wx+ b = 0 (4.13)

To find a hyperline, w and b can be estimated in a way that yi(w.xi + b) ≥ +1 for yi = +1 and

yj(w.xj + b) ≤ +1 for yj = −1. The two class equations can be combined to give Equation 4.14

yi(w.xi + b)− 1 ≥ 0 (4.14)

The purpose of SVM is to obtain a hyperline that produce the maximum margin between classes.

Therefore support vectors must be defined [105]. The support vectors are found between the two

hyperplanes which are parallel to the optimal and are given by

(w.xi + b) = ±1 (4.15)

If the hyperline parameters w and b are re-scaled, the margin can be given as 2
||w|| . The optimal

hyperline can be found by solving the following optimization problem: Minimize 1
2 ||w||

2. Subject

to yi(w.xi + b)− 1 ≥ 0, i = 0, 1, ...M

The Langrangian formulation can be applied to translate the above problem:

Maximize
N∑
i=1

σi − 1
2

N∑
i,j=1

σiσjyiyj(xi, xj). Subject to
N∑
i=1

σiyi and σi ≥ 0, i = 1, 2, ...N . where σi

are Langrange multipliers. The ideal hyperline discriminant function becomes:

f(x) =
∑
i∈s

σiyi(xxi) + b (4.16)
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where s is a subset of training samples that related to the non-zero Langange multipliers.

The Support Vector Machine maps the input vector x into a high dimensional feature space to

generalize the above technique to non-linear discriminating features and then builds the ideal

separating hyperplane in that space. The optimal hyperlane can be calculated as a decision

surface [46, 105, 92].

f(x) = sign(
∑
i

σiyik(xxi) + b) (4.17)

where k(x, xi) = Φ(xi)
TΦ(x) is the predefined kernel function. Radial basis function is adopted

and defined as follows;

k(x, xi) = exp(−γi||xi − x||2), γ > 0 (4.18)

where γ = 0.125. The coefficients σi and b in Equation 4.18, can be derived as

max[
∑
i

σi −
1

2

∑
i,j

σiσjyiyjk(xi, xj)] (4.19)

s.t
∑

i σiyi = 0

0 < σi < C, for all i

The parameter C = 2 represents the trade off between minimizing the training set error and

maximizing the margin, and σ is assigned different values from 0.1 to 0.8. Since SVM is a binary

classifier, one-against-one approach, which is a pairwise method was used to extend for m-class

face recognition. Hence, m(m− 1)/2 SVM classes are needed for training [46]. Figure 4.18 shows

the non-linear separable data mapped into a feature using the RBF function [92].
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Figure 4.18: RBF function used to separate non-linear separable data mapped in to feature
[92]

4.5.3 Naive Bayes Classifier

Naive Bayes classifier is one of the popular and simplest classifier [36, 94]. It can be used for

feature classification in the process of face recognition. A given face is assigned to one of the

k subjects, namely w1, w2, . . . , wk, on the basis of a vector V = [v1, v2, . . . , vT ] associated with

the face image. Feature vectors V is a T-dimension observation drawn arbitrarily from the class

conditional PDF p(v, wl), where wl is the class to which the feature vector belongs [86]. Naive

Bayes decision can minimize the Bayes risk, which is expected value of the loss function [86]. The

Bayes computation assigns a face to the subject wl for which the conditional risk is minimum.

R(wl|V ) =
k∑

m=1

L(wl, wm)p(wm|V ) (4.20)

where L(wl, wm) is the loss caused in choosing the subject wl, when a real subject iswm , and

where p(wm|V ) is the subsequent function. The Bayes decision rule can simplify the MAP

decision rule to the loss function [86, 57, 20], by assigning the input face denoted by F to the

subject if

P (wl|V ) > P (Wm|V )∀ 6= e (4.21)

Bayes Theorem can be used to compute the posterior PDF as
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p(wl, V ) =
p(V |wm)p(wm)

p(V )
(4.22)

Since features extracted from the class images are acquired from the orthogonal polynomial

functions. Considering the given class, features can be regarded as independent. Therefore, the

PDF of features given the class of face images can be written as [86];

p(V |wm) = ΠT
r=1p(vr, wm) (4.23)

From the training face images, the class conditional mean (µ) of the feature elements can be

estimated as

µrm =
1

λtr

λtr∑
k=1

vmrk (4.24)

4.5.4 Backpropagation Neural Network

Backpropagation neural network compares the output of the network and calculates an er-

ror measure based on sum of square differences [100]. Figure 4.19 shows a schematic of the

backpropagation network consisting of three layers: input layer, hidden layer and output layer.

Figure 4.19: Schematic of a three layered neural network [82]

The input layer is fed with sample V = v1, v2, ..., vn. Each layer has a weighted connections, wij

represents the weight from a unit j in one layer to a unit i in the first layer [82, 110, 18]. The

input layer i consists of the input nodes and the output layer y consists of the output nodes. The

hidden layer j creates an intersection between the input layer and the output layer. Each node



Methods and Techniques 60

in the network is connected to another node, and each link has a weight associated with it. The

weighted sum of all the input values forms an output value [82, 100, 89]. The output is expected

to correspond with the associated images from the database.

Let vi be the training set, yi be an actual outputs and wi be the desired output. The algorithm

can be summarized with the following steps [110, 89, 3].

1) The weights w[l]
ij and the threshold γlj are randomly initialized.

2) After feeding the training dataset IP and the output dataset Op use Equation 4.25 to compute

the output of all layers

yjp = f(
N1∑
i=1

w
[l+1]
ij y

[l]
ip + γl+1

j ) (4.25)

3) Calculate the square error in each layer as follows;

Err
[l]
jp = f ′(y

[L]
jp )(dp − y[L]jp ) (4.26)

in the i’th hidden layer (i = L− 1, L− 2, ..., i)

Err
[l]
jp = f ′(y

[l]
j )

∑
k=1

NL+1Err
l+1
kp w

l+1
ij (4.27)

4) Use Equations 4.28 and 4.29 to calculate change in the weights between the output and the

input

γ
[l]
ij (n+ 1) = γ

[l]
i (n) + n.Errljp (4.28)

γ
[l]
ij (n+ 1) = wij[l](n) + n.Errljp.y

[l−1]
ip (4.29)

5) If the mean –square error is more than the threshold, go back to step 2 and repeat the process,

otherwise stop and print the weights value. In our experiment, the sigmoid function was used as

the activation function.

f(x) =
1

1 + e−1
(4.30)
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4.6 Summary

This chapter discussed different static multi-camera architecture used for effective detection of

the faces. It also discussed the facial detection techniques, feature extraction algorithms, and

classification methods used in this study. The next chapter presents the experimental result and

discussion.



5 | Experimental Results And Discus-

sion

5.1 Introduction

In order to validate the system, it is important to measure the performance. This chapter

validates the detection accuracy of multi-camera system. It discusses the relevant factors in

choosing systems parameters and testing the feature classification algorithms against different

feature dimension.

5.2 Experimental Setup

A sample of 35 students with 40 face images each were produced from University of kwaZulu

Natal (UKZN) classroom. The system detects and recognizes face images from students of

different skin tone (Blacks, Whites, and Indians) in a classroom. The data produced was under

a homogeneous background with a constant lighting. Three static cameras placed in different

positions are used for detection of images. Features are extracted with PCA, LDA, and Local

Binary Patterns (LBP), and classified using Euclidean Distance ED, Support Vector Machine

SVM, Naive Bayes Naive Bayes (NB) and Backpropagation Neural Network BPNN.

Figure 5.1 presents a sample of photos from the database produced from students in a classroom.

62
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Figure 5.1: The sample of training images.

Figure 5.2 and Figure 5.3 show scenes of students in a classroom detected from different angles

and positions. Each camera was positioned according to the structure presented in Figure 3.2.

However, faces that faced/focused down were hardly detected. It shows that the multi-camera

system can helps to detect many faces from different angles.

Figure 5.2: Detection and recognition of students in a classroom.

Figure 5.3 shows students sitting in different positions with arbitrary arrangements while focusing

on the lecturer. Therefore, the multi-camera provides efficient face detection despite the sitting

positions of students. Some students in Figure 5.2 were not detected, yet in Figure 5.3 were

able to be capture. This shows that students trivially focus their faces everywhere around the
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classroom, hence multiple positioned cameras helps for detection of faces from any angle in a

classroom.

Figure 5.3: Students faces are recognized from a different position in a classroom

The recognition results of student’s face detected by each camera are presented in Figure 5.4. As

described in Figure 3.6, detected faces from captured frames are saved in respective directories

according to the cameras. Cameras captured snaps of frames from different positions at the

same time. The results for each camera are compared with all the testing images of 35 students

available in a classroom. The made up testing images are called “virtual camera”.

Figure 5.4: Recognition results from different cameras
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The recognition accuracy of 76% is obtained using testing images from camera 1, and 15% from

camera 2 and camera 3. The results shows that the combination of the cameras positioned

according to the proposed architecture can capture students in a greater view.

In Table 5.1, facial detection was evaluated from the recognition results in Figure 5.4. From the

recognized faces we ware able to track number of faces detected by each camera. Detected face

were respectively saved in different databases and label according to the cameras. Camera 1 is

directly positioned to the front of the classroom, it detected more images than other two cameras

with a score of 85%. Camera 2 and 3 each scored the same average of 25% the combination of all

cameras were able to detect all the faces available.

Table 5.1: Face detection rate from differently positioned cameras at a fixed time

Camera Detection rate %

Cam1 85

Cam2 25

Cam3 25

Cam1,2, and 3 100

In Figure 5.5, facial detection was evaluated from different positions with different combination

of cameras. Results from different cameras were fused to investigate the effect of multi-camera

positions.

Figure 5.5: Detection rate in the Multi-camera
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A high detection rate of 100% was achieved from the combination of all cameras. Camera 2

and camera 3 have less detection rate because they only can detect images when students faces

are subjected sideways, or when students look sideways in the class room as shown in Figure

4.6. The use of multiple cameras creates multiple views and thus increases the detection and

recognition accuracy.

Pre-processing methods such as, gray-scaling, cropping, re-sizing, elliptical masking, median filter,

bilateral filter and histogram equalization, were applied to modify the face images. Images were

cropped to the face perspective and re-sized to 128× 128, which makes the total feature of 16384.

Subsequently features were extracted and classified using the adopted classification algorithms.

images were labeled and divided into the training and the testing data.

Figure 5.6 presents the results of PCA,LDA, and LBP using Euclidean distance as a classification

technique. The performance is judged based on the number sample dimensions used. Results

show that accuracy increase with an increase in the number of samples, with LBP algorithm

score of 91%, 88% was obtained from LDA, and 85% from PCA.

Figure 5.6: Classification of feature using ED

In Figure 5.7, PCA, LDA and LBP were used as feature extraction algorithms and the Radial

Basis function as the kernel function to train the SVM classifier. The parameter value σ of the

RBF can affect the classification accuracy significantly. Different values for σ were selected from

0.1 – 0.8 with a scale of 0.2 to test the RBF. The experiment obtained high accuracy when the
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value of sigma was selected to be 0.1, with the accuracy of 90% for LBP, 87% for LDA and 85%

for PCA as shown in Figure 5.7. The results shows that when the RBF kernel value increases

the classification accuracy is constantly decreasing.

Figure 5.7: The RBF kernel value

The recognition accuracy produced can be affected by the number of the training samples and

the type of classification method used. Different size of training dataset was used with the SVM

classification algorithm. Figure 5.8 shows that LBP produced high recognition accuracy of 96%

and PCA obtained 95% with SVM, which is higher than the accuracy of LBP and PCA with

ED classifier in Figure 5.6.
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Figure 5.8: Classification of feature using Support Vector Machine SVM

The dimension of the features space grows and becomes sparse when we keep adding training

data. It becomes much more easy to find a separable hyper-line because the likelihood that a

training sample lies on the wrong side becomes infinitely small with an increase in number of

samples [23].

The classification of features has been performed using the Naive Bayes. The NB classifier is

simple, fast and known to perform remarkably well with a huge size dataset. The experiment is

based on the effect of increasing the number of features to examine the classification of the naive

Bayes technique. The experiment conducted produced results shown in Figure 5.9.
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Figure 5.9: Classification of feature using Naive Bayes (NB)

As with SVM and ED the classification accuracy increased as the size of the training dataset

increases, when using NB classifier. The accuracy of LBP with NB, and PCA with NB remained

constant from 30 to 35 training sample with the score of 96% for LBP, 89% for PCA. The

accuracy of LDA is increasing with a score of 90% at 90 number of sample. Naive Bayes produced

the same classification accuracy with SVM using LBP features and over performed SVM and ED

when using PCA and LDA.

An experiment was carried using Back-Propagation Neural Network (BPNN) Classifier. Images

were pre-processed and resized to 68× 68 and cropped to a face perspective magnitude as shown

in Figure 4.5. Training data consists of 35 images from each student, and 5 images from each class

were used for testing. The layered BPNN consists of 30 neurons in the input layer, 10 neurons in

the output layer, and different number of neurons in the hidden layer [82]. The back propagation

error is distributed along the network to rearrange and correct weights of the training data [82,

3, 99]. To improve the training speed and classification accuracy the momentum of 0.5 and the

learning rate of 0.001. Table 5.3 present the results of the experiment.
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Table 5.2: The trained results of the BPNN with different number of neurons in the middle
layer

Number of

nuerons in

the hidden layer

Execution

Time

(In seconds)

Number of iterations

(Number of times the

BPNN trained)

PCA +

BPNN

LBP +

BPNN

15 10.78 27651 80% 89%

20 10.65 25342 85% 89%

25 10.01 24123 89% 96%

30 9.88 23324 96% 98%

35 9.72 23211 93% 97,5%

40 9.5 20991 91.5% 96%

45 8.9 20623 91% 95%

50 8.5 20113 90% 94%

The network produced less outcomes when the neurons were below 35. When dealing with large

dataset, small number of neurons in hidden layer struggle to convey the correct information

from the input layer to the out layer [95]. The accuracy of 98% for LBP and 96% for PCA was

produced when number of neurons were 35. The results gradually deteriorate as the number

of neurons was increasing after above 35. The iterations of training the model reduce with an

increase in the number of neurons and less time was also considered.

Table 5.3 shows that the back propagation neural network can be influenced by parameters used,

such as the learning rate and error rate. Smaller learning rate can allow the model to learn

optimal set of weights. However small learning rate costs the model with a significantly longer

time to train.

Varying learning rate from 0.3 to 0.9 and error rate from 0.5 to 3.5 have been used to test to

train the model. Increasing the learning rate can decrease the training period, however high error

rate can stabilize the model. Table 5.3 suggests that effective value for learning rate and error

rate are 0.4 and 0.5 respectively with a high recognition accuracy of 98%. The predictions of

the model improves with the decreasing value of error and training cycles also reduces when the

mean square error decreases.
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Table 5.3: Learning rate against error rate of the BPNN

Error Rate

Learning

Rate
3.5 3 2.5 2 1.5 1 0.5

0.9 69% 67% 67% 63% 69% 53% 56%

0.8 65% 65% 63% 57% 73% 53% 55%

0.7 67% 66% 67% 63% 66% 51% 53%

0.6 65% 65% 65% 63% 67% 51.3% 67%

0.5 65% 66% 65% 69% 69% 50% 85%

0.4 69.5% 70% 76% 86% 96.9% 97.5% 98%

0.3 66% 67% 67.5% 69.6% 78% 81% 97%

Table 5.4 presents the comparison between the existing studies and the proposed system. Although

different databases have been used, the experiments were conducted with similar algorithms.

False positive rates that were encountered during the experiments are presented. The proposed

system produced better results especially through the classification of the LBP features.
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Table 5.4: Comparison of the performance of the proposed method to existing methods using
similar feature extraction and classification algorithms

Reference Year Method Database Accuracy

False

Positive

rate

[21] 2013
LBP+ED,

and PCA + SVM

NITW -

Database
95% , 95% 25%, 51%

[21] 2013 PCA + Bayes
NITW -

Database
94% 52%

[85] 2017 PCA, LDA +ED ORL [73] 66%, 83.57% Refer to [85]

[74] 2015 LDA ORL[73] 88% NA

[74] 2015 PCA + BNN ORL [73] 89.5% NA

[3] 2018
LBPH, multi-KNN,

and BPNN
ORL [73] 98% NA

Proposed 2019
PCA, LDA,

and LBP + ED
Independent 85%, 88%, 91%

25% , 15%,

10%

2019
PCA, LDA,

and LBP + Bayes
Independent 89%, 90%, 96% 21%, 10%

2019
PCA,

LBP+ SVM
Independent 95%, 96% 15%, 10%

2019
PCA,

LBP + BPNN
Independent 96%, 98% 0%

The effect of false recognition from multiple cameras and feature extraction algorithms does not

degrade the positive results significantly.

This work emphasized the approach to effectively detect faces so that there could be an improved

periodical facial recognition results during the lecture as presented in Table 5.5.

Table 5.5 shows the register with three time intervals, early minutes, second tier of the lecture,

and the last minutes of the lecture. Each time fragment lasts 15 minutes. P on the register

denotes present/available and A denotes absent. The Code of the module and date is shown at

the top of the register. A complete attendance register for the whole lecture period from first

15 minutes of the lecture to last 15 minutes. The register report when the students has come

late to class and when they left early. If the students does not attend the lecture at all, the

register report NO for late come and NO left early, and marks the student absent. It can be seen
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that student Dube KJ left the classroom early because he was not present after the first tier

0− 15 minutes as shown in Table 5.5. Ramasila J and Kundi P were not present for the first 15

minutes and they were recorded as late comers. If a student does not attend or miss two tiers

(30 minutes) and only attendant for 15 minutes, the student is regarded as absent (See student

Hendri P on the register). The importance of this attendance monitoring system is to monitor

student’s attendance throughout the lecture classroom.

Table 5.5: Example of register of students attendance for the whole lecture period

Module: ENEL2CA H1 Date: 22/02/2017

Student

Number
Names Time (m)

Late

Come

Left

Early

Status

(0-45)

0-15 16-30 31-45

217080041 Muzzi L P P P NO NO P

217080042 Smith K P P P NO NO P

217080143 Jones K P P P NO NO P

217087044 Dube KJ P A A NO YES A

217180442 Kundi P A P P YES NO P

217180542 Lanka C A A A NO NO A

217084542 Mohamed k A A A NO NO A

217188849 Naido K P P P NO NO P

217180148 Zulu N P P P NO NO P

217181142 Don P P P P NO NO P

217180042 Zitha B P P P NO NO P

217182142 Ramasila J A P P YES NO P

217180542 Hendri P P A A NO YES A

217185642 Nevar T A A A NO NO A

217185842 Kane J P P P NO NO P

217185942 Faroh BP P P P NO NO P

217184142 Smith G P P P NO NO P

217185142 Mac M P P P NO NO P

217185442 Jobs F P P P NO NO P

217185542 Dlomo D P P P NO NO P
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5.3 Conclusion

We have proposed a system that ensures a face detection and recognition model that guarantee

accurate class attendance monitoring. The multi-camera system has demonstrated ability of the

system to efficiently capture students in a classroom. Detection of face images were performed

from different cameras positioned at different angles. The experiment shows that increasing

the size of the training samples and choosing the right parameters values can improve the

classification accuracy. As shown in the comparison with other existing classification techniques,

BPNN outperformed other classification techniques with the recognition accuracy of 98%. The

periodical recording of student’s presence enables the proposed system to manage the availability

of student’s in a classroom from the beginning of the lecture till the end of the lecture.



6 | Conclusions and future work

6.1 Summary of the Work

This research has been centered on the development of the smart attendance monitoring system.

A need for such arises from challenges schools and institutions are facing, to efficiently monitor

students attendance throughout the entire lecture.

The proposed approach presents a unique face recognition architecture and combines several com-

puter vision methodologies to achieve the smart attendance monitoring system. Face recognition

process is inherently a challenge due to factors such as the dynamic structure, including face

detection, feature extraction, and data classification.

The research proposed a multi-camera architecture supports the detection of faces by locating

face images from different directions in a classroom. The multi-camera application helps to

reduce occlusion; as frontal images were efficiently detected from different angles. Furthermore,

an algorithm for collecting images was designed by computing the difference between the prior

image and the saved image. This helped to collect various training data to make the feature

learning process robust. Additionally, eye detection has been designed to reduce false positive

detection and data redundancy.

In order to validate the presented algorithms, features were extracted using PCA, LDA, and the

LBP. Different classifiers such as, SVM, Euclidean distance, Naive Bayesian and back propagation

neural network were implemented and compared to improve the recognition accuracy. The

75
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algorithms used were tested against different dataset sizes. The maximum recognition accuracy

of 98% was obtained using the LBP and back propagation neural network classifier.

Time integration was proposed to periodically populate the register with attendance informa-

tion. The recognition process took place at each interval and the results were recorded in the

attendance register. The system collected attendance of each student from the beginning of the

lecture till the end. The system also calculated the amount of time each student has attended,

and if the attendance is below a certain threshold the student and his/ her lecturer will be informed.

The results showed that the presented system has an ability to capture and recognize students

from different positions in a lecture, and therefore liable to be adopted as a robust students

attendance monitoring system.

6.2 Limitations of the System

The capturing ability of cameras used in this experiment decreases as the distances increases,

cameras with good lens and megapixels can be used to optimize the capturing and detection

performance.

6.3 Future Works

Some future works that can be considered are the following:

1. Tracking the attendance of students during the course of the whole module and analyze the

correlation between student’s attendance and their academic performance, can be important

to inform policies.

2. The system can be extended to detect and recognize mood/expression to analyze concen-

tration of students during the classroom, and correlate them with the final results.
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Appendix

This section gives the consent of students for use and publication of images capture in classroom

scenario experiments.
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