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Abstract

Road accidents contribute to many injuries and deaths among the human population. There is
substantial evidence that proves drowsiness is one of the most prominent causes of road accidents
all over the world. This results in fatalities and severe injuries for drivers, passengers, and
pedestrians. These alarming facts are raising the interest in equipping vehicles with robust driver
drowsiness detection systems to minimise accident rates. One of the primary concerns of motor
industries is the safety of passengers and as a consequence they have invested significantly in
research and development to equip vehicles with systems that can help minimise to road accidents.
A number research endeavours have attempted to use Artificial intelligence, and particularly Deep
Neural Networks (DNN), to build intelligent systems that can detect drowsiness automatically.
However, datasets are crucial when training a DNN. When datasets are unrepresentative, trained
models are prone to bias because they are unable to generalise. This is particularly problematic
for models trained in specific cultural contexts, which may not represent a wide range of races,
and thus fail to generalise. This is a specific challenge for driver drowsiness detection task,
where most publicly available datasets are unrepresentative as they cover only certain ethnicity
groups. This thesis investigates the problem of an unrepresentative dataset in the training
phase of Convolutional Neural Networks (CNNs) models. Firstly, CNNs are compared with
several machine learning techniques to establish their superior suitability for the driver drowsiness
detection task. An investigation into the implementation of CNNs was performed and highlighted
that publicly available datasets such as NTHU, DROZY and CEW do not represent a wide
spectrum of ethnicity groups and lead to biased systems. A population bias visualisation technique
was proposed to help identify the regions, or individuals where a model is failing to generalise
on a picture grid. Furthermore, the use of Generative Adversarial Networks (GANs) with
lightweight convolutions called Depthwise Separable Convolutions (DSC) for image translation
to multi-domain outputs was investigated in an attempt to generate synthetic datasets. This
thesis further showed that GANs can be used to generate more realistic images with varied facial
attributes for predicting drowsiness across multiple ethnicity groups. Lastly, a novel framework
was developed to detect bias and correct it using synthetic generated images which are produced
by GANs. Training models using this framework results in a substantial performance boost.
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1 | Introduction

1.1 Motivation

The significant cost of traffic accidents around the world is estimated to be billions of rands, as

reported by the American National Highway Traffic Safety Administration [118]. The World

Health Organization (WHO) reveals that South Africa is among the African countries with

the highest road traffic accident fatality ratio, of about 26.6 per 100 000 of the population

[186]. Arrive Alive reported that the first road collision in South Africa occurred in Maitland,

Cape Town in October 1903 [9]. Since then, there has been a drastic increase in road accident

occurrence.

In 2006, the Road Traffic Management Corporation (RTMC) reported an increase in road

accidents to approximately 12 454 from 8 802 fatal crashes in 2001 [139]. Figure 1.1 shows

the fatality ratio analysis that was carried out by the WHO, highlighting the high rate of car

accidents in Africa.

Figure 1.2 shows numbers of road accidents over a ten year period from 2007 to 2016 in South

Africa. The contribution of each province to the percentage of accidents in South Africa in

the year 2016 is illustrated in Figure 1.3 [157]. This shows that Gauteng and KwaZulu-Natal

provinces had the highest accidents rates in 2016. Moreover, 1 700 people died on South African

roads during festive season of 2016 alone, which is a 5% increase from the previous season [115].

Statistics South Africa has shown that one of the major causes of accidents is driver drowsiness

[182]. In addition, statistics have shown the top three causes of accidents on South African

roads are distracted drivers (for example, a driver using a phone), speeding, or driving under the

influence of alcohol [96].

1
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Figure 1.1: Road traffic fatality rates per 100 000 people per region [139].

Figure 1.2: Numbers of road crashes in South Africa from 2007 to 2016 [157].

As machine learning increasingly becomes a technology that is used across many tasks in

people’s lives, the automobile industry has started to develop systems aimed at reducing the high

rate of road accidents. Deep learning is a sub-field in machine learning that is actively being

investigated, along with techniques that can communicate with car electronics to alert a driver of

any anomalies. Examples of these systems include collision detection, drowsiness detection and

driver skill monitoring [64].

Despite the great success of driver aids in the motor industry, there is evidence to show that

these techniques can fail, which may then lead to accidents. A recent case involved an accident
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Figure 1.3: Percentages of road accidents per province in the 2016 financial year [157].

caused by a Tesla car in the United States of America, where the driver died while the car was

in autopilot mode and crashed into a car-lane divider [13]. Moreover, an Uber self-driving car

collided and killed a pedestrian while in autonomous mode in Tempe, Arizona [50].

As deep learning starts to gain traction in the car industry, accidents arising from poor decision

making by deep learning systems have become a concern. In particular, systems like driver

drowsiness detection could yield incorrect results based on the training data used. This thesis

investigates intersectional accuracy differences in drowsiness detection systems and the bias

implications caused by using unrepresentative training datasets. It further develops a novel

framework that remedies this effect by using synthetic data and a re-sampling technique to

generate fairer training datasets, allowing for more accurate models.

Computer vision is a field of research where there are multiple methods to approach numerous

visual problems such as face recognition using machine learning techniques. However, there

are concerns surrounding the use of people’s faces on training machine learning techniques. In

addition, there are privacy issues and questions surrounding faces such as who will own the

collected image data, how will this data be shared and stored to prevent the misuse. Companies

such as Clearview, have collected data without people’s concerns and that goes further to data-

mine more images on their social networks [78]. In addition, some researchers use machine

learning to train on faces of people to violate their rights by deciding whether a person is gay or
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not [79]. This is a clear indication that there is a need for privacy regulations when dealing with

human data and European United has provided some ethics in artificial intelligence [168]. In this

thesis, images are collected from publicly available channels and blurred to prevent the violation

of using people’s faces.

1.2 Problem Statement

Currently, driver drowsiness detection systems are only available in high-end vehicle models,

which are expensive. However, there is an increased demand for accurate and efficient driver

drowsiness detection systems on all vehicle models to reduce the rate of road accidents. This

has led to the development of deep learning techniques to support this demand. However, deep

learning based drowsiness detection systems can be flawed, due to bias that can be influenced

by many factors including training data, parameters and the choice of the algorithm used. This

work investigates the effects of using publicly available unrepresentative training datasets and

shows how this impacts the performance of drowsiness detection systems when tested in an

African context. An analysis of current drowsiness detection systems and their training datasets

shows that these systems tend to work better on certain ethnicities (light skinned). This poses

a problem in the South African context because imported cars with these systems can fail if

trained on datasets captured in different demographics. This is due to the fact that South Africa

has a diversity of races with different skin complexions. Most individuals in South Africa have

dark skin and there is no drowsiness detection dataset that covers dark skinned drivers. The

aim of this research is to provide an approach that can close this gap in training data for driver

drowsiness detection systems. A novel framework is introduced to remedy the bias in these

training datasets.

1.3 Aims and Objectives

The main aim of this research is to develop a framework that corrects a CNN trained for prediction

using GANs for targeted data augmentation based on a population bias visualisation strategy

that groups faces with similar facial attributes and highlights where the model is failing. The

primary objectives are:
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1. To investigate which machine learning technique should be used for the driver drowsiness

detection task and the availability of training datasets.

2. To develop a CNN model for the detection of driver drowsiness detection.

3. To develop a data augmentation technique for balancing the training dataset where the

CNN model fails to generalise.

4. To develop a framework that remedies generalisation failures in under represented population

groups in the training dataset, and which boosts the performance of drowsiness detection

across all population groups.

1.4 Contributions to knowledge

The contributions in this thesis can be summarised as follows:

• A meta-analysis study reviewing machine learning techniques in the detection of drowsiness

was completed. This study showed that CNNs produce more accurate results when compared

to the other machine learning techniques. This study further showed that there is a lack of

benchmark datasets for driver drowsiness detection.

• A DNN was trained on publicly available datasets for the driver drowsiness detection task

and was used to show that models trained on publicly available datasets exhibit traits of

bias when tested in South African contexts.

• A novel population bias visualisation technique is proposed. The visualisation technique

highlights individuals and population groups where the model fails to generalise.

• The training speed of GANs is improved by incorporating DSC, and findings on the

importance of capacity are provided.

• Synthetic GAN images are used for data augmentation, relying on the translation of

drowsiness facial features.

• A framework is proposed to remediate bias in the training datasets used for driver drowsiness

detection tasks. This framework can also be used in other tasks that have unrepresentative

datasets.
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1.5 Organisation

The structure of this thesis is as follows. It should be noted that each chapter has its own

literature review, that is based on the chapter’s objective, before presenting implementation

details and results. In Chapter 2, fundamental concepts and a review of driver drowsiness

detection systems and techniques used are discussed. For driver drowsiness detection systems

and the techniques used, special attention is paid to those methods reported as yielding the

most accurate results. This is accomplished by conducting a meta-analysis on recent papers.

Behavioural methods for driver drowsiness detection systems are of primary interest in this thesis

as they are vulnerable to intersectional bias.

Chapter 3 introduces the fundamentals of machine learning and also the components that build up

the CNN network. Training techniques are also discussed in an attempt to improve the accuracy

of the network. Transfer learning techniques are also introduced to help where there is limited

training data. Chapter 4 discusses the implementation of CNNs in-depth and introduces publicly

available datasets for the driver drowsiness detection task. A new population bias visualisation

technique that uses Principal Component Analysis (PCA) as a dimensional reduction technique,

to identify bias in deep learning models trained for drowsiness detection, is presented. Here,

trained model accuracy is overlayed on a grid of faces organised by similarity. This allows for the

identification of population groups where the model does not generalise well.

In Chapter 5, a method that can be used to generate multi-domain realistic images from an

input image is introduced. GANs are a generative model that consist of two networks competing

with one another to produce realistic outputs. The generator network was modified by using the

DSC technique to reduce the training time while retaining the quality of the produced synthetic

images. The fundamentals of GANs are discussed and related work is introduced.

In addition, Chapter 6 proposes a novel framework that remedies generalisation failures under

represented population groups in the training dataset, which boosts the performance of drowsiness

detection across all population groups. The framework is composed of a GAN architecture for

generating synthetic data, a CNN model for detecting drowsiness, a population bias visualisation

technique to highlight where the model is failing and a sampler to target these population groups

and search for similar images in the synthetic data.
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Finally, Chapter 7 concludes the thesis by reviewing the results achieved. This is followed by a

discussion on future work and expansion of the research field of road safety, with a particular

focus on human behaviour.
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2 | Background and Context

We all use transportation to reach our final destinations, whether going to school, a workplace

or on vacation. Driving for long hours without taking breaks can be dangerous and leads to

accidents. Most accidents are caused by not only drowsiness, but also distraction, weather

conditions, high speeds, and alcohol usage. To date, the number of road accidents has increased

each year. High-end car models are often manufactured with technologies that can detect whether

the driver is falling asleep and can warn the driver. In addition, the motor industry is rapidly

growing and improving safety features because driver and passenger safety is among their primary

concerns.

This thesis focuses on behavioural methods to measure the level of drowsiness in drivers. Be-

havioural methods extract facial information which can be useful when used with deep learning

techniques. Deep learning techniques are increasingly used to predict the driving state efficiently

using the output from behavioural methods. Other methods are also discussed as they can be

used in combination with behavioural methods to yield more accurate and robust drowsiness

detection systems.

This chapter starts by introducing the fundamental concepts behind drowsiness as these be-

havioural cues are of importance to this research. This is followed by a discussion of signs

and countermeasures that minimise the chances of falling asleep while driving. A number of

commercially available driver drowsiness detection systems are discussed.

This chapter also provides a systematic literature review that was conducted on machine learning

techniques for driver drowsiness detection, along with a meta-analysis on the performance of

these techniques. Importantly, the results from this meta-analysis showed that CNNs yield more

accurate results than alternative machine learning techniques, and are growing in popularity.

9



Background and Context 10

2.1 Fundamental Concepts of Drowsiness

This section briefly explains the fundamentals of driver drowsiness, which play an important role

in identifying the methods investigated in this research.

2.1.1 What is drowsiness ?

Drowsiness or sleepiness are interchangeable terms that define a biological state where the body

is in the transition from a state of wakefulness to a sleeping state [161]. It is a biological process

that has a drastic effect on the body and mind of a person. In this state, the driver can lose

focus on the road because of a lack of concentration. Drowsiness is often circumstantial, with

many aspects of the driver’s state and the environment being potential causes. For example,

driving for long hours without taking breaks or on a highway at night can induce drowsiness.

The body has a biological clock that alerts the person when there is a change in the body such as

being hungry or a change in body temperature [44]. The process of being awake and being asleep

is controlled both by a circadian pacemaker and by homeostatic factors. Homeostatic factors are

those that control circadian rhythms to regulate the timing of states of sleep and wakefulness.

Being awake for long hours builds pressure that triggers the sleeping state, which is difficult to

resist [39]. The circadian pacemaker is the internal clock that completes a cycle every 24-hours.

This allows a person to prepare for changes in the physical environment that are associated

with day or night activities [179]. For people between the ages of 18 and 65 years, normal

sleeping duration ranges between 7 and 9 hours [62]. Sleep deprivation leads to sleep debt, which

accumulates and can be observed through the emotions and mental state of a person [105]. A

driver that drives for 17 hours without taking breaks has abilities that are equivalent to that of

a driver with a Blood Alcohol Concentration (BAC) of 0,05%. After driving for more than 21

hours, the driver’s BAC equivalence is about 0,10% which is above South Africa’s legal level of

0.08% [82].

There are many internal and external factors that can interrupt a sleeping schedule. External

factors that contribute to changing sleeping routines include work shifts, the effects of light, and

driving times [73, 120]. On the other hand, internal factors include lifestyle (such as the intake of

alcohol), effects of medication, and poor sleep quality (including insomnia).
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2.1.2 Causes of drowsiness and its signs

There are many factors that influence the drowsy state of drivers. These effects can be caused by

drivers themselves or by environmental conditions.

Work Shift Schedules

Shift-schedules are often divided into day or night shifts. Shifts vary between different companies

and depend on the type of work being done. Night shifts can interrupt the normal sleep-wake

cycle that is controlled by a circadian pacemaker. This results in a change of sleeping routines

according to the shifts worked. The length and quality of sleep on a night shift is affected by

physiological factors which include body temperature.

Light Effect

Light is an external factor that contributes to the sleep routine changes by influencing the need

for sleep or by making it difficult to sleep [20]. Light influences the circadian cycle through cells

in the retina of the eyes. These cells work together with rods and cones which are responsible for

telling the brain when it is night or day, thereby setting the sleeping pattern. Levels of drowsiness

in most drivers increase at night because there is no light effect and also due to the temperature

inside the car. When driving at night, retina cells send signals to the brain that it is night time

and the body will start to adjust and prepare for a sleeping state.

Lifestyle and Medication

The intake of medication such as over the counter prescriptions can have an impact on cognitive

and driving abilities, which can lead to road accidents [101]. People often do not take serious note

that many medications have side effects. Moreover, every person reacts differently to medication,

for example in some cases medication will cause the body to react, resulting in high blood

pressure or blurred vision [101]. Alcohol is the most commonly used form of drug consumed by

drivers and its side effects include loss of concentration, blurred vision, poor judgement, and

drowsiness [47]. Alcohol also affects sleeping cycles and physiological processes that occur during

the sleeping process. The effects of alcohol in the human body has been extensively studied and

early experiments were performed by Kleitman in 1939 [140].
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2.1.2.1 Signs of drowsiness

There are common signs that can indicate a person is drowsy, and these typically involve facial

expressions. Some of these features are obvious and are not difficult to notice, such as the

following:

• Frequently yawning;

• Being unable to keep eyes open and reduced eye blinking rate;

• Swaying the head forward;

• Eyes start to itch and become red;

• Paying less attention than usual to road markings and signs;

• Crossing of road lanes and a tendency to accelerate; and

• A tendency to stop too close to cars up ahead.

2.1.3 Countermeasures against drowsiness

There are countermeasures that a person can take to prevent drowsiness. If a person needs to

drive for a long distance, or perhaps at night, it is recommended to have sufficient sleep before

the journey.

Consumption of Caffeine

Most people use caffeine products such as coffee, energy drinks, soft drinks, and tablets or capsules

to avoid falling asleep [34, 28]. Although people think this is an effective solution, caffeine has a

short-term effect, which last for only one to two hours and thereafter actually helps to induce

sleep. Furthermore, it takes about thirty minutes to enter the bloodstream and for those who

consume caffeine regularly, its effect can be minimal [65].

Taking Naps

The South African Traffic Department recommends that drivers should take naps during stops

when on a long journey [138]. A nap of about 15- to 20 minutes in duration is enough to energise
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the body, and also has an additional benefit in helping to overcome drowsiness after stretching

your legs. Driving with a passenger on a long drive is also helpful because this person can keep

the driver awake or alert the driver if they notice symptoms of drowsiness. An alarm could be

also used to help alert the driver.

2.1.4 Measurement Methods for Drowsiness Detection

A number of methods used to detect and measure driver drowsiness state are currently being

researched and implemented. These methods are grouped into four categories: physiological,

behavioural, vehicle-based, and hybrid methods. Behavioural methods are of primary interest

to this research and are currently being developed for detection of drowsiness using publicly

available datasets for training and testing. The section below provides a brief survey of drowsiness

detection methods in each of the above-mentioned categories.

2.1.4.1 Physiological Methods

Physiological methods are those that obtain direct information about the driver’s state by

assessing their physical conditions. This can be done by using an electronic device that is

connected to different parts of the body to collect information about a person’s state, such devices

include Electrooculograms (EOG), Electroencephalogram (EEG), Electrocardiogram (ECG), and

Electromyogram (EMG) [55, 89, 155]. Using these devices can yield highly accurate results for

driver drowsiness identification, but these methods are not widely accepted because of practical

implications [36]. Moreover, electro-physical devices use electrodes that are attached to the

driver’s head, chest, or the face. The implementation of a real-time application using such

methods is not acceptable because the electrodes can cause irritations and discomfort to the

driver [171]. A brief discussion on electro-physical devices is discussed below:

EEG – is a device that reads electrical activity generated within the brain by the firing of

neurons [41]. Readings are collected by placing electrodes on the scalp of the driver to find

brain signals at a certain frequency. Figure 2.1 shows a person wearing an electrode headset for

reading EEG signals. Drowsiness levels appear on the EEG spectrum when there is an increase of

activity in the frequency bands that are generated by the parietal and central regions of the brain.

Results are obtained by placing the device on the person and measuring signals. The collected

signals are then converted into a waveform that can be visualised [80]. In much research, EEG is
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Figure 2.1: Readings of EEG signals being captured on a person [80].

used as a reference indicator because it is capable of producing efficient results when detecting

traces of drowsiness in drivers. Belakhdar et al. investigated the use of an Artificial Neural

Network (ANN) on a single EEG channel, to detect drowsiness [14]. Ten people were tested

and nine features were captured from one EEG channel using the Fast Fourier Transform (FFT)

features. These features were used to train the ANN classifier. An accuracy rate of 86.1% and

84.3% was achieved when classifying users as drowsy or alert, respectively. [14].

ECG – is a graphical presentation that depicts electrical activity generated by the heart pulse

[97]. ECG makes use of electrodes that are placed on the skin to detect an electrical change on

the skin caused by heart muscles [122]. It is a portable device which uses a non-invasive method

where waves from the heart are measured with a variation of blood volume in tissues where a

light source is used together with a detector.

EMG – is a device used to record the activity of the muscles when they are at rest and when

there is movement [32]. The primary purpose of EMG is for diagnosis based on information from

muscle and motor neurons [59]. EMG reads and translates signals from the motor neurons into

graphs, numerical values or sounds that can be interrupted by a computer to make a diagnosis.

A needle electrode is inserted into the muscles to measure muscle signals.

EOG – is a technique used for measuring different levels of eye movement through the resting

potential of the retina [151]. The signals produced by EOG record the difference between the

electrical voltage of the front and back of the eye [111]. To obtain recordings, an electrode is

placed on the skin near both eyes. These electrodes are placed in different positions, horizontally

to reflect the horizontal eye movement, with a vertical electrode to reflect the vertical movement.

Signals can be acquired by sampling at a frequency of 256Hz and resolution of 16 bit [23]. Zhu et
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al. presented EOG-based drowsiness detection using CNNs. An unsupervised learning approach

to estimate driver fatigue based on EOG was used [198]. Their results showed that ad-hoc feature

extraction yielded effective results.

2.1.4.2 Subjective Methods

Subjective methods are non-invasive and consist of a series of tasks given to the driver and the

completion of questionnaires. These tasks are monitored by a trained individual to assess and

quantify the sleepiness levels of a driver. There are different subjective methods that can be used

to evaluate the sleepiness levels of the drivers including the Epworth Sleepiness Scale (ESS), the

Karolinska Sleepiness Scale (KSS), the Stanford Sleepiness Scale (SSS), the Sleep-Wake Activity

Inventory (SWAI), and the Multiple Sleep Latency Test (MSLT).

ESS – is an instrument used to measure average daytime sleepiness, in order to differentiate

between normal sleepiness levels and excessive daytime sleepiness. It was introduced by Dr

Murray Johns at Epworth Hospital in 1991 [76] and makes use of questions designed to measure

an individual’s sleepiness levels. These are based around various situations an individual may

find themselves in, including watching television, sitting in a car due to traffic congestion, or

sitting inactive in a public place. The questionnaires consist of eight questions and are rated up

to 4-points containing different weights as follows:

� No chance of dozing (0 points);

� Slight chance of dozing (1 point);

� Moderate chance of dozing (2 points); and

� High chances of dozing (3 points).

Individuals with a score from 0 to 9 are considered to be awake and those with 15 points and

above show traits of severe daytime sleepiness levels.

KSS – is a tool that measures an individual’s level of sleepiness at a particular time of the day

[5]. This consists of a self-report process that takes about five minutes to complete. There are

two versions, where the first version has labels on every other step and the second uses labels on

every step on the 9-point scale. Table 2.1 defines the KSS scores.
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Table 2.1: The KSS Sleepiness Scale

KSS scores
Description Scores
Extremely alert 1
Very alert 2
Alert 3
Rather alert 4
Neither alert nor sleepy 5
Some signs of sleepiness 6
Sleepy, but no difficulty remaining awake 7
Sleepy, some effort to keep alert 8
Extremely sleepy, fighting sleep 9

Table 2.2: The SSS ratings

SSS ratings
Description Scale Rating
Feeling active, vital, alert, or wide awake 1
Functioning at high levels, but not fully alert 2
Awake, but relaxed; responsive but not fully alert 3
Somewhat foggy, let down 4
Foggy; losing interest in remaining awake; slowed
down

5

Sleepy, woozy, fighting sleep; prefer to lie down 6
No longer fighting sleep, sleep onset soon; having
dream-like thoughts

7

Asleep x

SSS – is a self-report questionnaire instrument that was developed by Dement Hoddes and

colleagues in 1972 [63]. This measure uses an hourly test performed to evaluate the level of

sleepiness. It uses a scale from 1 to 7 to determine the level of sleepiness. Table 2.2 defines

the SSS level scale rating. The SSS is a simpler version of the KSS and thus takes less time to

evaluate.

SWAI – is a multidimensional self-report tool used to measure the level of sleepiness in a clinical

setting [142]. This measure contains 59 items which have domain scales for evaluation of sleepiness

levels. The score domains include excessive daytime sleepiness, distress, social desirability, energy

levels, ability to relax, and nighttime sleep. The test takes approximately 10 to 15 minutes to

complete, which is longer than the KSS and SSS tests.

MSLT – is a test for evaluating excessive daytime sleepiness. It is performed by measuring
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Table 2.3: Multiple Sleep Latency Test

MSLT Levels
Minutes before falling
asleep

Sleepiness Levels

0 - 5 Severe
5 - 10 Troublesome
10 - 15 Manageable
15 - 20 Excellent

how quickly an individual falls asleep in a quiet environment [21]. Those taking the MSLT

are given five scheduled naps each lasting 20 minutes, two hours apart. The tests are done in

different environments including a dark room, a quiet room, a comfortable environment without

distractions, or rooms with environmental factors that may prevent them from sleeping. Data can

be collected from brain waves, EEG tools, muscle activities, oxygen levels, and eye movements.

Table 2.3 shows the MSLT scores. The sleepiness levels indicate that if an individual falls asleep

within five minutes of the test, they are considered pathologically sleepy. On the other hand,

individuals that take more than 10 minutes to fall asleep are considered to have normal sleepiness

levels.

Subjective methods are not practical for monitoring driver drowsiness tasks, but they can be

useful when used in combination with other drowsiness measuring methods to produce informed

decisions and to provide ground truth labelling for behavioural detection systems.

2.1.4.3 Vehicle-Based Methods

Vehicle-based methods rely on the vehicle’s control system, which includes steering wheel angle,

braking system indicators, lane position information, and the speed of the vehicle [16]. Together

with behavioural methods, these can be used to create robust and efficient systems.

Lane position monitoring –This technique uses road lanes to detect the position of the car

on the road. The placement of the vehicle in the centre, left or right lane of the road [86,

137], can be used to assist the driver to leave a space between their own and oncoming cars

and to detect if a vehicle crosses the line. Lane departure systems can warn the driver about

collisions, potential distractions, and can flag drowsiness [184]. Zheng et al. proposed a new

system for lane position detection based on Radio Frequency Identification (RFID) and vision

[196]. The system is divided into two processes which include lateral position detection, and the
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detection of the absolute or relative position of other vehicles. Errors from lateral positioning

GPS/DGPS were revised by using a lane judgement subsystem [196]. Furthermore, Zheng et

al. proposed vehicle-infrastructure (V-I) positioning using a single Roadside Unit (RSU), and

Vehicle-Vehicle (V-V) relative positioning algorithms. The system is motivated to be a useful

approach preventing road accidents in dense traffic [196].

Driving at High Speed – In South Africa, the speed limit is 40 to 60km/h in urban areas, 80

to 100km/h in rural areas and 120km/h on freeways[114]. Road accidents that are caused by

excessive speed have a high mortality rate. When a driver falls asleep, they become unaware of

the speed they are driving at and it can be too late to regain control of the vehicle if they wake.

16.5% of accidents between 1999 and 2008 were speed-related accidents caused by drowsy driving

[170]. When a driver is about to fall asleep, they tend to increase speed. The increase in the

speed can lead to accidents since the driver is not paying attention to the road because they are

in a sleepy state.

Steering wheel movement measurements – A number of studies have investigated the use

of steering wheel measurements to detect consciousness by observing steering patterns [121].

This technique uses sensors that are mounted on the steering wheel to collect data that can be

further analysed for drowsiness. When the driver is in a drowsy state, steering wheel correction

is reduced. The combination of steering wheel movement measure and lane departure techniques

can overcome false positive situations where small steering angles are required to follow a road

safely.

2.1.4.4 Behavioural Methods

Faces contain information that can be used to interpret levels of drowsiness. There are many

facial features that can be extracted to infer a driver’s level of drowsiness. Behavioural methods

measure levels of drowsiness through the use of mounted cameras in the car that observe facial

features such as eye state, head movement, blinking rate and the presence of yawning [109].

Eye-state detection – When a driver has been driving for long hours or at night, they tend to

lose focus of the road and control of the vehicle. When a driver is drowsy, their blinking rate

is reduced and their eyes tend to be red. Some researchers track eye movement to detect the

state of the driver [49]. It has been shown that closing the eyes can lead to head-on collisions

and is a significant cause of road accidents [154]. However, drowsiness impacts the eye state and
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can be used as a detection measure. Methods that are used to measure the level of drowsiness

include the Percentage of the Eye Closure (PERCLOS) and the Eye Aspect Ratio (EAR) [30,

173]. The EAR was introduced by Soukupora and Cech in 2016, with the EAR computed as the

ratio between the height and width of the eye [173]. In contrast, PERCLOS is the percentage

of eye closure over a period of time. The difference between these two methods is that EAR

classifies the ratio of the eye as it decreases whereas PERCLOS classifies whether eyes are open

or closed over a period of time.

Yawning – Frequent yawning is a sign that a driver needs to rest. Detection of yawning can

be an early warning sign that can trigger an alarm for a driver to be made aware of their state.

However, yawning alone cannot be used to determine that the driver is drowsy because it can

yield false positive results. Many researchers use yawning with other features to detect and draw

the conclusion that the driver is drowsy [2, 149].

Head Position Detection – The head position tends to sway forward when the driver is drowsy.

This can cause a driver to lose focus on the road and potentially cross the road lanes. A number

of researchers use head tilt angles to determine the state of the driver [145]. The normal angle

of the driver’s head is determined and an alarm is raised when the angle goes beyond a certain

angle.

This thesis focuses on the use of vision-based behavioural methods to measure the level of

drowsiness in drivers. This process typically relies on a mounted camera in the car that is used

to monitor a driver’s facial attributes, as mentioned in Section 2.1.4.4. These facial attributes

can then be used by machine learning techniques such as CNNs, SVMs or HMMs for drowsiness

detection. The process of identifying the driver’s state starts by passing labelled data to a given

machine learning technique, as part of a step termed the training phase. The series of steps that

are followed in figure 2.2 suggests a common process for detection of drowsiness. These steps are

as follows:

Input Video – This is the stage where video frames from a fixed camera or a smartphone are

broken down into a series of images. The video frames are taken in such a manner that only the

face of the driver is captured in the image.

Face Detection – The second stage typically aims to detect the face in the image frames. The

Viola and Jones detector is the most commonly used algorithm to detect the driver’s face from

within the image [177]. However, when CNNs are used, the whole image is typically fed to a
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Figure 2.2: Driver drowsiness detection process.

network that has multiple filters and features are automatically extracted. CNNs combine the

two stages of detecting the face and of feature extraction.

Feature Extraction – If face detection is applied, features are usually extracted using different

methods such as landmark localisation, Histogram of Oriented Gradient (HOG), and Local

Binary Patterns (LBP).

Feature Analysis – Extracted features can then be processed further, as is the case for

PERCLOS or EAR for eye analysis or mouth-based methods for yawning detection.
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Table 2.4: CNN based detection systems

Author/s Year Measure Frame Rate (fps) Accuracy
Dwivedi et al. [36] 2014 Visual features 60 78%

George and Routray [46] 2016 Eye gaze 24 98.32%
Reddy et al. [134] 2017 Eye and mouth state 72 91.6%
Zhang et al. [195] 2017 Eye state N/A 95.18%
Jie Lyu et al. [98] 2018 Eye and mouth state 37 90.05%

Rateb Jabbar et al. [72] 2018 Eye and yawning state 30 87%
Young-Joo Han et al. [56] 2018 Eye state 22 94%

Mohammed Ghazal et al. [48] 2018 Eye state 14 95%
Wang Huan Gu et al. [52] 2018 Yawning state 50 99%

Classification – The classification stage consists of classifiers that are used for decision-making

regarding a driver’s level of drowsiness. If the classifier detects traits of drowsiness based on the

weighted parameters, then an alarm will be activated suggesting that a driver takes a break.

Behavioural methods exhibit various limitations because their performance is affected by lighting

conditions, camera movements, and the frame rate used to capture images of the driver’s face.

Light variation can typically be eliminated by using Infra-red (IR) cameras. Various measures

are used in different studies for detecting a face and extracting features from the video feed.

Unfortunately, most behavioural drowsiness detection studies use different datasets that may

favour their own algorithms. This is due to the lack of standardised datasets that can be used

as a benchmark. As a result, it is hard to compare approaches by simply evaluating reported

accuracies. Machine learning techniques that classify different levels of drowsiness are now

discussed, along with a review of measures that form a driver drowsiness detection system.

CNNs – Consist of interconnected layers of neurons, where data is passed through every layer

and various computations are performed. More detailed information about CNNs is provided in

Chapter 3. CNNs are the most commonly used machine learning techniques for driver drowsiness

detection, as indicated in Table 2.4.

Dwivedi et al. proposed an algorithm for driver drowsiness detection using representation learning

[36]. Here, the popular Viola and Jones algorithm was used to detect the faces. Images were

cropped to 48 x 48 square images and fed into the first layer of the network which consisted

of 20 filters. The whole network contains two layers. The output of the CNNs was passed to

a softmax layer for classification. This system did not allow for a consideration of head pose

changes and as a result can fail. However, Huynh et al. used a 3D DNN to obtain more accurate

results [68]. Here, the face is tracked by a combination of a Kernelized Correlation filter with a
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Table 2.5: SVMs based detection systems

Author/s Year Measure Frame Rate (fps) Accuracy
Sabet et al.[144] 2012 Eye state 25 98.4%

Punitha et al.[130] 2014 Eye state 15 93.5%
Pauly and Sankar[125] 2015 Eye state 5 91.6%

ALAnizy et al.[6] 2015 Eye closure 60 99.74%
Manu [102] 2017 Eye and Mouth state 15 94.58%

Zhuoni Jie et al. [75] 2018 Yawning state 10 94%
Souto et al. [158] 2018 Eye state 15 78%

Kalman filter for robust face tracking. The extracted face regions are then passed to 3D-CNNs

which is followed by a gradient boosting machine for classification. This system works well even

if the driver is changing head position [68].

SVMs – are a group of supervised learning methods for classification and regression problems

based on decision planes to separate a set of training data into their different classes. They were

first introduced by Boser et al. in 1992 in an attempt to find a hyperplane which separates

training data into different classes according to their features [18]. SVMs use labelled data as

inputs and for the driver drowsiness detection problem, SVMs can differentiate whether a driver’s

eyes are open or closed.

A great deal of work has attempted to utilize the capabilities of SVMs in the detection of

drowsiness. Different measures have been used as features to determine a driver’s level of

drowsiness using SVMs. A comparison of these measures is presented in Table 2.5.

AL-Anizy et al. proposed a fully automatic system that is capable of detecting driver drowsiness

[6]. For face detection and eye extraction, the well-known Haar feature matching algorithm was

used. SVMs were then trained to classify when eyes are open or closed and to trigger an alarm.

Similarly, [144] proposed a system that can detect driver drowsiness and distraction. Here, the

Viola and Jones algorithm was used for face detection and colour histograms with LBP applied

to track the face over frames. The system achieved an accuracy of 100% in face detection, but a

potential downfall of this approach is the low frame rate achievable, which could result in missed

facial expressions.

HMMs – are statistical models that use hidden states which are based on observed states

defined by probabilities to make predictions. The first HMM was developed by Leonard Baum

and colleagues in the late 1960s and early 1970s [12]. HMMs are now widely used in other
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Table 2.6: HMM based work related

Author/s Year Measure Frame Rate (fps) Accuracy
Sun et al.[163] 2013 Eye blinks 61 90.99%

Tadesse et al.[167] 2014 Eye closure 20 97.0%
Zhang et al.[194] 2015 Eye state N/A 95.9%
Choi et al. [24] 2016 Eye and head state 16 to 20 92%

fields including facial expression recognition, gene annotation, and computer virus classification

[128, 190]. For the driver drowsiness detection task, Table 2.6 shows the range of features and

approaches used by HMM-based drowsiness detectors, with the exception of Zhang et al. [194]

and Choi et al. [24], who omitted information required for comparing their findings and are

therefore not included in this meta-analysis. Nakamura et al. proposed a new facial feature

measure by using changes in wrinkles detected by calculating the local edge intensity on the face

[112]. They used an IR camera to eliminate illumination changes and allow for operation in both

day and night conditions. Unfortunately, this system can yield false results when used on older

people because they have deeper wrinkles. In contrast, Bagci and Ansari implemented an HMM

for eye tracking based on colour and geometrical features [11]. For illumination elimination,

authors used a two-level Lloyd-max quantization intended to be robust to illumination changes.

Unfortunately, this system is designed for indoor conditions and it fails to detect the face if the

driver is not facing forward.

2.1.4.5 Meta-Analysis

A great amount of work has been conducted in the field of road safety to minimise road accidents.

Industries play a vital role in providing these safety features to detect drowsiness. However,

a challenge identified in the reviewed papers is that most systems used their custom datasets.

This challenge makes it difficult to compare these techniques and to have standard benchmark

datasets. Most of the datasets used to test machine learning techniques are not publicly available

because of issues around privacy and identity security.

In an attempt to provide a fair comparison, a systematic literature review was conducted on

machine learning techniques for driver drowsiness detection, along with a meta-analysis of the

performance of these techniques.
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Figure 2.3: Meta-Analysis Report

This meta-analysis was conducted using 40 papers that were based on the three techniques

described above. From the collected papers, various metrics were extracted for comparison

including datasets, facial expression features, frame rate, and accuracy levels. The meta-analysis

report showed that CNN methods were used most commonly and also yielded more accurate

results than SVMs and HMMs. A non-parametric Skillings-Mack test was conducted and rendered

a Chi-square value of 6.66, which was significant at p = 0.035. This test showed that there is a

difference in performance between the compared techniques. The most common test datasets

were identified from the papers to provide a fair comparison, these datasets include DROZY [104],

Eye-Chimera Database (Eye-Chimera) [136], National Tsing Hua University Dataset (NTHU) [27],

Yawn Detection Dataset (YawnDD) [3], and the Zhejiang University Eyeblink Database (ZJU)

[199]. Figure 2.3 shows the box-plots of the accuracies obtained for each technique along with

the associated dataset for comparison. The CNNs performance and number of uses show a

great interest in this approach. Chapter 4 will show how CNNs are used for driver drowsiness

detection. It is also important to note that the other two techniques were difficult to compare

due to insufficient data.

It should be noted that the datasets that were used for meta-analysis are not representative and
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they cover a limited range of races. This poses challenges in the South African contexts. South

Africa is a diverse country with people of a variety of races with different skin complexions. The

Bantu-speaking races dominate South African demographics at 78.4%, whites make up 10.2% of

the population, Coloureds (people of mixed race) contribute 8.8%, and 2.6% are Asians [183].

The population of people in South Africa is at 57 million, as reported by Statistics South Africa

[187]. The value of cars imported to South Africa was about R59 billion in 2017 [38]. This

represents a high number of vehicle imports and increase the potential for failure if car drowsiness

detection systems are designed and tested on data that excludes a large portion of South African

population groups, especially dark-skinned individuals.

2.1.4.6 Hybrid Methods

All of the previously mentioned methods have advantages and limitations. Limitations in vehicle-

based methods include weather and road conditions. Vehicle-based methods work best on specific

roads that have visible road markings and minimal road defects. In poor road conditions,

vehicle-based methods can yield more false-positive results. On the other hand, physiological

methods yield more accurate results. However, these require that a driver must wear a device

that measures their state of drowsiness, so it is a challenge to implement real-world applications

that incorporate this method.

Hybrid systems combine drowsiness detection methods to produce more robust systems. Combin-

ing two methods can yield better and more accurate results. For example, Veena and Subhashini

used a combination of physiological and behavioural methods to detect driver drowsiness [162].

This system used wireless sensors for eye blink detection and a biomedical sensor placed on the

steering wheel or on the driver’s spectacles. The hybrid method proposed by Veena and Sub-

hashini showed promising results with low-cost sensors [162]. Similarly, Agustin et al. proposed

a hybrid method that combines the information from pulse rate monitoring, eye monitoring,

and head movement resulting in increased the drowsiness detection accuracy [4]. This system

used fuzzy logic for prediction. The pulse rate was measured using a pulse oximeter, while eye

and head movements were tracked using a camera. The correctness was evaluated by using the

number of correct responses over the total number of samples. Pulse rate contributed about

40% towards the final decision of the system, while eye movement accounted for 35% and head

monitoring 25% [4].
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2.2 Commercially Available Systems

Motor industries have been engaged in research and implementation of accurate and increasingly

robust driver drowsiness detection systems. However, companies use different measuring methods

for the implementation of such systems. Driver drowsiness systems are available in different

vehicle model brands. The following section describes a number of systems that are currently

being used.

The rest recommendation system – This is an Audi system that analyses the driver’s be-

haviour by monitoring steering, gear lever, and pedal movements [10]. The system is automatically

activated at a speed between 65 and 200 km/h. The information from all these components is

monitored and if there is a change in the pattern, the driver will hear an audio notification and

receive a visual prompt alerting them. The system also provides an easy to read interface that

recommends if a driver needs to take a break.

Active Driving Assistant – This BMW system includes a camera-based lane departure warning

and collision warning [33]. This system detects lane markings, and if the system detects that the

driver has changed lane unintentionally then the steering wheel will vibrate. Figure 2.4 shows

the BMW active driving assistant system. The system is activated by the car’s speed, at 70km/h

Figure 2.4: BMW active driving assistant [33]

the system starts to collect information on unintentional lane changes and a warning is displayed

on the car’s cluster [17] if this is detected.

Attention Assist – This is a Mercedes-Benz system that is equipped with several sensors which

include EEG sensors that are placed on the steering wheel. The system is activated between
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speeds of 80 and 180 km/h, where it measures steering wheel patterns and combines this with

other information such as duration of the trip and the time of day [107]. If the information

collected shows that the driver is drowsy, a warning (a coffee cup signal) will be displayed in the

car’s cluster, followed by an audible tone. Figure 2.5 shows the visual alert from the system.

Figure 2.5: Mercedes-Benz attention assist [107].

Driver Alert – The Ford system uses small forward-facing and rear view cameras that are

connected to the onboard computer [157]. The rear-view camera is trained to identify lane

markings on both sides of the vehicle. When the driver is crossing road marking lanes, the system

looks at the road ahead and predicts the position of where the vehicle should be relative to lane

markings. Once the driver makes the mistake of crossing the lane markings, an alert will be

displayed as a text message in the car’s cluster. If the driver ignores the message, another alert

will be triggered and the driver has to acknowledge it by pressing an “OK” button. If the driver

continues to ignore the message, the last stage of this system requires that the driver stop the

car and acknowledge the alert by opening the door.

2.3 Conclusion

This chapter has explored fundamental concepts of drowsiness together with measurement

methods used to distinguish different levels of drowsiness. It further discussed available driver

drowsiness detection systems that are currently in use on high-end car models. In particular, this

chapter focused on behavioural methods, which use sensors to track facial features in order to

identify drowsiness. The South African population was also discussed as a potentially problematic

case for behavioural methods, as it is a particularly diverse country. A general approach to driver
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drowsiness detection was highlighted, which clearly shows what is needed for implementing an

effective system.

A literature review was conducted on machine learning techniques for the task of driver drowsiness

detection. A meta-analysis of the performance of the machine learning techniques was conducted.

CNNs were shown to provide more accurate results and were extremely popular, this is due to

their rapid growth since a 2012 breakthrough by Alex Krizhevsky. The following chapter discusses

in more detail the fundamentals of CNNs, while details on how they are used to implement a

driver drowsiness detection system are discussed in Chapter 4.
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3 | Fundamentals of Deep Learning

We are entering an era where data is collected each and every day. This data can be in various

forms such as video, images, and text. There is a need to interpret this data and discover valuable

hidden information. One of the most commonly used techniques to interpret data is by machine

learning. Machine learning consists of methods that can automatically detect patterns in data,

and then use the uncovered patterns to predict future data, or to classify objects in images. In

this thesis, we use deep learning, which is a subclass of machine learning that learns from large

amounts of data, for the driver drowsiness detection task. The fundamentals of deep learning are

described in this chapter.

3.1 Artificial Neural Networks

An artificial neuron is a mathematical model that is inspired by neurons in the human brain.

This artificial model tries to simulate the structure and the functionalities of a biological neural

system in a computerised form. The perceptron [127], relies on three steps, in the first step inputs

xi are accepted and multiplication is performed on each input value with individual weights wi.

The second step involves the summation of all the weighted inputs and the addition of bias to

the neuron, to form the neuron’s pre-activation z.

z = b+
∑
i

wixi, (3.1)

where b is the bias value of the neuron. The final step is the activation stage, where the previously

weighed inputs and bias are passed through an activation function.

30



Fundamentals of Deep Learning 31

3.2 Convolutional Neural Networks

CNNs are multistage mechanisms that learn a data representation in order to fulfil a specific goal.

Data is passed through sequentially stacked layers to learn different features that represent the

data. CNNs have dominated many computer vision tasks since the breakthrough shown by Alex

Krizhevsky in the ImageNet Large Scale Visual Recognition Competition (ILSVRC) in 2012 [87].

However, the history of CNNs goes back to the 1940s, where McCulloch and Pitts introduced

mathematical models that were inspired by human neural activities in 1943 [106]. In 1958, Frank

Rosenblatt showed how a probabilistic model could learn from the observations, and how the

information is stored and remembered [141]. In 1980, Fukushima proposed a neural network

model called neocognitron which is said to be self-organised [45]. His model involved learning

without being taught and recognised stimulus patterns based on geometrical similarity. Since

then, the field had slow improvement until 1989, where LeCun et al. applied backpropagation

to neural networks [91]. Their work was inspired by the experiments conducted by Hubel and

Wiesel in 1962, who studied the visual cortex of animals [67]. The success of Alex Krizhesky in

2012 brought much interest in the computer vision communities and this led to many progressive

works. A brief summary of the highlights of some improvements made thus far is described below,

with reference to the ILSVRC:

ZFNet (2013) –In 2013 the winners of the ILSVRC were Matthew Zeiler and Rob Fergus from

New York University [193]. Their model achieved an 11.2% error rate, improving upon the 2012

error rate of 15.4% obtained by AlexNet. Although ZFNet is similar to AlexNet, ZFNet was

modified by introducing a deconvNet and decreasing filter sizes from 11× 11 pixels to 7× 7 pixels.

GoogleNet (2014) – GoogleNet is a 22 layer CNN that won the 2014 ILSVRC. The novelty

of this work was the introduction of the Inception module [164]. This module aims to reduce

computational costs while increasing the width and depth of the network. The inception module

has been extended several times with recent iterations including Inception-V3 [166] and Inception-

V4 [165] models.

VGG (2014) – The VGG developed by Karen Simonyan and Andrew Zisserman consists of

two versions (VGG-16 and VGG-19 models) and was awarded second place in the ILSVRC 2014

challenge [153]. The two network architectures have depths of 16 and 19 layers respectively. VGG

decreased the filter sizes of ZFNet to 3 x 3 with the motivation that these smaller filter sizes are

capable of gathering more information from input images.
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ResNet (2015) – This network, developed by Microsoft Research Asia, won the 2015 ILSVRC

with an error rate of 3.6% [57]. This model uses a residual learning framework that aims to

simplify the training of deeper networks and yield higher accuracy. This network consists of 152

layers and was extended to 1001 layers on CIFAR-10, achieving an error rate of 4.62% [58].

It is clear that there is a trend of increasing the depth of the network, producing increasing

performance, while reducing computational costs. However, these trends can make CNNs more

vulnerable to over-fitting. Strategies for avoiding over-fitting include Batch Normalization (BN)

[71] and dropout [159].

CNNs consist of multiple different layers. These layers include convolution, BN, activation,

pooling, and fully connected layers. All these layers work together to achieve a specific goal.

These layers are discussed in the following section.

3.2.1 Convolution Layer

Convolutional layers are the most important building blocks of the CNN architecture. They are

linear, shift-invariant operational layers which perform a locally weighted combination of the

inputs. The benefit of this layer is that parameters are shared across the layer which results in

fewer parameters. The second benefit is obtained by restricting each neuron to small localised

regions of the input vector rather than the entire image. The convolution layer starts by accepting

a three-dimensional image tensor, containing three channels if it is a colour image and one

channel if it is black and white, sized pixels with height and the width of the image tensor as

shown in Figure 3.1. These layers extract low-level features from the input tensor I by means of

convolution operations using a two-dimensional kernel K,

c(i, j) = (K ∗ I)(i, j)

=
∑
m

∑
n

I(i−m, i− n)K(m,n) + bm,n
(3.2)

where bm,n is a bias parameter, and i, j denote the coordinates of a feature map pixel. There are

also other parameters needed to be considered in this layer including stride and padding.
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Figure 3.1: The inputs of the convolution layer.

3.2.2 Activation Functions and Non-linearity

Activation functions add non-linearity to the CNN architecture. For this research, we will focus

on a number of activation functions that are most commonly used, including sigmoid, Tanh,

Rectified Linear Units (ReLU), Leaky Rectified Linear Units (Leaky-ReLU), and Parametric

Rectified Linear Units (PReLU).

Sigmoid function

The sigmoid is a logistic activation function which maps the intervals (−∞,∞) onto the bounded

range of (0, 1) values. The sigmoid function is defined as

f(z) =
1

1 + e−z
, (3.3)

with a slope shown in figure 3.2. It is mostly used in models where the output is required to

Figure 3.2: The sigmoid function has a characteristic S-shape curve.

predict the probability of the image class. Even though it is commonly used, the sigmoid function
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treats small gradients as zeros. Furthermore, intervals need a careful selection because they can

lead to saturation. This can bring instability to the network because all gradients can be negative

or all can be positive during backpropagation.

Hyperbolic tangent function

In contrast to the sigmoid function, Tanh maps the intervals (−∞,∞) onto the bounded range of

(−1, 1), as shown in Figure 3.3. The Tanh is a zero-centred function providing stronger gradients

than the sigmoid function when z has very small gradients. The advantage of Tanh is that it

results in faster training convergence for normalised data inputs [92]. The Tanh function is

defined as:

f(z) = Tanh(z) =
ez − e−z

ez + e−z
. (3.4)

Figure 3.3: The tanh function

Rectified linear units

The ReLU is one of the most commonly used functions because it results in faster training

time when compared to the above functions. However, this activation has the disadvantage of

potentially allowing neurons to output only zero values. This is caused if neurons are never

activated, as zero gradients flow through ReLU and the neurons, which causes the weights to

never activate. Furthermore, having higher learning rates can also affect the output values, as
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these are unbounded. The ReLU function is defined as:

f(z) =


z, if z > 0,

0, if z ≤ 0.

(3.5)

For this research, unless otherwise specified, the ReLU activation function is selected because it

is easy to backpropagate the errors and have multiple layers of neurons being activated by the

ReLU function , as will be illustrated in the implementation section.

Leaky-ReLU

In an attempt to improve the ReLU function, the Leaky-ReLU uses a modification to fix the

zero gradient problem. A small positive constant is introduced to multiply the pre-activation

stage. It is defined as follows

f(z) =


z, if z > 0,

αz, if z ≤ 0.

(3.6)

The idea of introducing the constant assumes that there is a small non-zero gradient for negative

pre-activations. The constant can be defined for the entire layer or for each neuron.

PReLU

PReLU was first introduced by He et al. in 2015. These are an extension of Leaky-ReLU that

includes the constant as one of the trainable parameters. It is defined as:

f(α, z) =


z, if z > 0,

αz, if z ≤ 0.

(3.7)

The α constant is a trainable parameter.

3.2.3 Pooling Layers

The pooling layer is also called the down-sampling layer and is used to reduce the dimensionality

of the input. Pooling layers are mostly used between convolution layers depending on the chosen
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parameters for the convolution layer, to prevent overfitting. It has its own filters that contain

untrainable weights, but do not contain bias parameters.

Max-pooling – takes the maximum value in a window of pixels where window size m = (2, 2)

is the most commonly used. For example, given input with a shape X × Y ×N , max pooling

could reduce the size of the input layer by 25%, to
X

2
× Y

2
×N .

3.2.4 Fully-Connected Layers

Fully-connected layers are typically the last layers in the CNNs architecture, which contain

neurons where each neuron is connected to all outputs of the previous layer. The outputs of this

layer are often one-dimensional vectors, the last of which is associated with the predicted class

category. For classification, outputs are reported as probability values of a certain class. The

computation of the fully-connected layer is defined as follows:

Z = Wa + b (3.8)

where W is a weight matrix and a is the input from the previous layer.

3.2.5 Batch normalisation

This technique was first introduced by Sergey and Christian with the aim to normalise the output

distribution of every node in a layer [70]. It is used to prevent internal co-variant problems and

to help in speeding up the training process. The BN process consists of four steps, given values of

x over a mini-batch B = {x1.....xm}; and learned parameters γ, β. The first step is to calculate

the mean of the layer input by:

µB =
1

m

m∑
i=1

xi

The second step is to calculate the mini-batch variance:

σ2B =
1

m

m∑
i=1

xi(xi − µB)

This is followed by normalising the layer inputs:

x̂i =
xi − µB√
σ2B + ε
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The ε is a small constant variable for numerical stability. The final step is the scale and shift

step:

yi = γx̂i + β ≡ BNγ,β(xi)

The γ and β are learned during training along with the original parameters of the network and

the variances are fixed at the testing time.

3.3 Neural Network Training

Given all the above information about the structure of the CNN building blocks and the various

layers required, we now have all the tools required to build a neural network. As mentioned

before, a CNN architecture is built by sequentially stacking multiple layers on top of each other,

where the output of one layer becomes the input of the next layer until the prediction layers.

However, one needs to understand how to train the weights that are contained in the CNN

architecture. The section below first discusses the loss function and the role it plays. This is

followed by a discussion of optimisation techniques and regularisation.

3.3.1 Loss Function

The loss function plays a vital role in the training phase of the neural network model. It evaluates

the performance of the network after every iteration, a lower loss value indicates that the network

is performing better. There are multiple loss functions that are commonly used, but this thesis

only discusses the mean squared error and cross entropy loss functions.

Mean Squared Error

The mean squared error is the most commonly used loss function for regression problems and

calculates the squared error between the output values and the target variables, and then averages

over the number of variables. The mean squared error is defined as

L =
1

M

M∑
i=1

(yi − oi)2, (3.9)
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where M represents the number of training examples passed to a neural network with an output

that contains a single neuron. yi is the target label that is associated with training examples.

The network produces an output of oi.

Cross Entropy

Cross entropy is another commonly used loss function, which is used for classification problems.

This loss can be used with a logistic (binary classification) or softmax activation function on

the output layer. Both of these functions produce a probability output between 0 and 1. In

this research, the binary cross entropy is used because the expected predictions contain only

two states, which are whether the driver is drowsy or alert. Cross entropy error is calculated as

follows:

L = −
M∑
i=1

yi log(oi). (3.10)

Where M is the number of classes, yi is the binary indicator, and o is the predicted probability

observation i.

3.4 Optimisation and Learning Rates

Neural networks are trained by updating trainable parameters of the model using gradient descent

to minimise the loss. Backpropagation is mostly used in the training process because it is an

iterative and recursive technique for calculating the weight updates to improving the network

efficiency. This technique was first introduced in the 1970s and gained popularity through the

paper by Hinton et al. [143]. The backpropagation algorithm calculates the activation of each

node and computes the error of the output to find how much each node contributes to the overall

error of the network. After obtaining the error contributions, the output is used to calculate the

partial derivatives with respect to the trainable parameters. These partial derivatives are then

multiplied by a learning rate to update the network parameters in the direction that reduces the

loss. The full derivation of the backpropagation algorithm is beyond the scope of this thesis, but

readers are referred to [143] for additional details.

The learning rate value is one of the most important hyper-parameters during the training process.

This has an influence on the performance of the neural network. It is a small positive constant,

and poorly chosen learning rates can make the network fail to converge. There should be a
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number of tested learning rates on a particular chosen architecture so as to find the most suitable

rate.

There are a number of optimisation techniques that can be used for gradient descent, including

Root Mean Square Propagation (RMSprop), Adaptive Moment Estimation (Adam), Adaptive

Gradient (ADAGRAD) and Adaptive Learning Rate Method (ADADELTA).

ADAGRAD – This is an optimisation technique that adapts the learning rates of the parameters

by computing smaller updates [35]. ADAGRAD is used for speeding up the learning for slow

learning parameters. It also speeds up the training time based on constant accumulation of

partial derivatives. The update rule of ADAGRAD modifies the general learning rate η at each

time step t for every parameter of θ which is based on past gradients. The ADAGRAD update

rule is as follows:

θt+1,i = θt,i −
η√

Gt,ii + ε
· gt,i, (3.11)

where Gt is the diagonal matrix with i, i diagonal elements the sum of the square of the past

gradients. ε represents a smoothing variable. Since Gt contains the sum of the past gradients

of all θ parameters, it is vectorised by using the vector product � between Gt and gt. The

expression becomes:

θt+1 = θt −
η√

Gt + ε
� gt· (3.12)

ADAGRAD automatically updates learning rates. The disadvantage of ADAGRAD is based on

its accumulation of the squared gradients in the denominator which results in shrinking learning

rates.

ADADELTA – This is an extension of ADAGRAD which tries to reduce the rapid decrease in

its learning rate [192]. This technique restricts past accumulated gradients to a window with a

fixed size instead of storing all past squared gradients. The previous and current gradients are

given by:

E[g2]t = γE[g2]t−1 + (1− γ)g2t · (3.13)

where γ is set to 0.9 which has a similar value as the momentum variable. From equation 3.13,

the update vector 4θt is expressed as follows:

4θt = −η · gt,i

θt+1 = θt +4θt
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This yields the update rule of ADADELTA, which is given by:

4θt = −RMS[4θ]t−1
RMS[g]t

gt

θt+1 = θt +4θt (3.14)

where RMS4θt is the root mean square of previous squared gradients up to time t.
√
E[4θ2]t + ε·

represents the squared gradients, where a constant ε is added for better results. The default

learning rate is not necessary for ADADELTA and has been eliminated from the update rule.

RMSprop – this technique was first introduced by Hinton et al. [61]. The idea was to keep

an exponentially weighted moving average of the magnitude of the recent partial derivatives to

normalise the current partial derivatives. This is similar to the vector of ADADELTA in equation

3.13 where the value of γ is 0.9 and 0.001.

θt+1 = θt −
η√

E[g2]t + ε
gt (3.15)

Hinton recommended that g to be set as 0.9 and the learning rate η to 0.001, using equation

3.13.

Adam – this is used to compute adaptive learning rates for each parameter [83]. The RMSprop

stores previous decaying average squared gradients vt, but Adam also keeps the exponential

decaying averages of the past gradients mt, which is similar to momentum. The past decaying

averages of mt and vt can be computed as follows

mt = β1mt−1 + (1− β1)gt

vt = β2vt−1 + (1− β2)g2t

where vt and mt are the estimates of the first moment (mean) and the second moment (the

uncentred variance) of the gradient. There is a bias when the moments approach zero, which can

be corrected by computing bias of both moment’s estimates as:

m̂t =
mt

1− βt2

v̂t =
vt

1− βt2
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These moments are then used to update the parameters which yield the Adam update rule defined

as:

θt+1 = θ − η√
v̂t + ε

m̂t. (3.16)

3.5 Regularisation

CNN models are vulnerable to the overfitting problem, where the network generalises to a given

training dataset, but fails to generalise on testing data. Regularisation methods try to prevent

this by using techniques such as BN, L1 regularisation, L2 regularisation, and dropout.

L1 regularisation – This method tries to force regularised values close to zero by modifying

the loss function. The loss function is modified by penalising the network weight magnitude:

L1 = L+ λ
M∑
k=1

| wk |= L+ λ ‖ w ‖1, (3.17)

where L is the original loss function, w is the M-dimensional collection of all the connection

weights and λ is the hyper-parameter which controls the level of regularisation [40].

L2 regularisation – This is another method to prevent overfitting by introducing a square term

which pushes the weights towards zero. It is expressed as:

L2 = L+ λ

M∑
k=1

w2
k = L+ λ ‖ w ‖2. (3.18)

Dropout – This is the most commonly used technique to prevent overfitting and is typically

applied to each layer and also after every fully-connected layer. It provides a way to combine

exponentially many different architectures efficiently. This method was introduced by Krizhevsky

et al. and the term “dropout ” refers to dropping some of the hidden or visible units in a network.

This is done by temporarily eliminating the whole connection to a particular unit of the network

and it is random which improves the generalisation of the network. Most commonly used random

choices for the fractions are 0.5 and 0.7, forcing the neurons to learn robust features [87]. It is

used in the training phase and does not affect testing. Unless otherwise specified, dropout in the

primary regularisation method is used in this research.
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Unfortunately, the limitation of publicly available training datasets can expose CNNs to overfitting,

where they fail to generalise well and are considered to be biased when tested on a dataset

that is not covered by the training dataset. The following section briefly discusses visualisation

techniques that can be used to understand what CNNs have learned from the training data.

3.6 CNNs Visualisation

This is a technique that is commonly used to interpret what is learned by trained CNN models,

to improve their performance or identify where the model fails. This section will discuss a number

of visualisation methods.

Layer Activation – Visualising the activations of the network during the forward-pass operation

can be used to see which image features are being used for prediction by the network. The

visualisation is performed layer by layer where the early layers produce activations with around

edges and texture, but as the training progresses, the activation becomes clearer. This method is

illustrated in figure 3.4.

Figure 3.4: The left image shows the first convolution layer and the right image shows the 5th
convolution layer of the AlexNet architecture from a cat image [178].

Conv Filter – This method visualises the output weights of the convolutional filters used at

every layer. Filters can be inspected to see what type of image features they will activate for. 3.5.

Activation Maps – This technique is performed on the output of a particular convolution layer

to produce heatmaps of class activation with respect to input images. The heatmap produced is a

2D grid of the scores associated with a particular output class. The grid represents a computation

of every location from the input image and indicates the importance of each location to the

output class. This technique is illustrated in Figure 3.6.
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Figure 3.5: The AlexNet architecture showing the first (left) and second (right) layers. [178].

Figure 3.6: A modification of the global average pooling using the class activation mapping
(CAM) localisation from GoogleNet-GAP [197].

Saliency maps are also another way of highlighting the activated regions on the input image.

CNN saliency maps were first used by Simonyan et al. [152] and are derived from the concept

of saliency in images. Each feature (pixels) of the image exhibits a unique context and the

visualisation location in the image. The gradients of the class scores with respect to the image

pixels of the final output prediction [148] determine the importance or saliency of each pixel.

Figure 3.7 shows the saliency map overlays from a grid-picture, where the trained model is

overlayed to highlight regions where the model is not generalising well.

Unfortunately, these visualisation techniques only allow us to investigate one image at a time.

This can be employed to verify what the network was learning, but often a more overarching

view is required. The t-Distributed Stochastic Neighbor Embedding (t-SNE) on the other hand

minimises the divergence between two distributions by computing the probability of similarity of
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Figure 3.7: An original image from the left, the saliency map of the image in the middle and
the saliency overlay on the right which represents activated regions on the image. The red colour
represents activated regions where the blue represents the regions that contribute little to the

classification decision of the network.

points in high-dimensional space and the probability of the similarity of points in a corresponding,

learned low-dimensional space [99]. Figure 3.8 shows the t-SNE visualisation technique of the

MNIST dataset.

Figure 3.8: t-SNE visualisation on the MNIST dataset of handwritten digits.

3.7 Transfer Learning

When learning representational information for a classification model on a new dataset for a new

target domain where the size of the training dataset is limited, there is a potential vulnerability

to overfitting problems and poor generalisation performance. Collecting a sufficiently sized of

dataset on a specific domain and manually labelling it is expensive and time consuming. One

possible solution to this problem is the use of transfer learning. Transfer learning aims to address

the generalisation problem by utilising a pre-trained network on a particular dataset. Transfer

learning can be performed in two ways, including transfer learning via feature extraction or
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fine-tuning. In this research, transfer learning via fine-tuning is utilised. Fine-tuning is done by

modifying the final layers of a pre-trained network to suit the task at hand and continuing to

train the network on new data. One of the advantages of using this technique is that most of

the low-level features are already learned from a large datasets such as CIFAR-10 or Imagenet,

which improves the accuracy of the network.

3.8 Conclusion

This chapter has introduced the fundamentals of deep learning methods. The components that

build up the CNNs have been discussed in this chapter and these components are limited to the

scope of this research. Training a CNN model needs special care and careful consideration of the

methods to help in the training process have also been discussed.

Visualisation techniques that help to understand what the CNN is learning were discussed in

this chapter together with transfer learning methods that can be used when there is limited data

available for network training. This chapter forms the basis of the implementation of CNNs in

Chapter 4. In addition, a novel visualisation technique is also implemented in Chapter 4. This

technique is used to gain an understanding of what the network is learning and to identify the

presence of intersectional bias in the network.
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4 | Intersectional accuracy differences

in drowsiness detection systems

This thesis focuses on the investigation of CNNs for vision-based driver drowsiness detection.

This chapter describes work conducted in an attempt to identify a dataset suited to South African

contexts.

Initially, related work using CNNs for drowsiness detection is described. Chapter 2 showed

that CNNs outperformed other techniques against which they were compared. However, this

chapter shows that training a CNN model on a limited and unrepresentative dataset leads to

a model that does not generalise well on the testing dataset. This bias arises from imbalanced

training datasets captured in limited cultural contexts. With respect to the South African

context, this chapter shows that standard driver drowsiness detection datasets do not cover

dark-skinned races. In order to address these concerns, this chapter introduces a visualisation

technique in an attempt to identify population groups where the neural network fails. Here,

Population Bias Visualisation (PBV) is used to group individuals with similar appearance and

an accuracy-based saliency map is used to highlight that CNNs trained on publicly available

datasets fail to successfully classify the wide range of races in South Africa.

4.1 Related Work

CNNs have dominated many computer vision fields with their impressive performance. In the field

of road safety, CNNs have produced outstanding results, particularly when compared with other

state of the art techniques, as mentioned in the Chapter 2. Many driver drowsiness detection

systems have been developed using different facial features to improve road safety by introducing

early warning systems. However, despite improvements to the architecture side, there is a lack of

47
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publicly available datasets for driver drowsiness detection. This is due to the privacy and security

aspects associated with publishing images of people’s faces. As a result, most researchers use

controlled datasets that suit their studies, and publicly available datasets are often limited.

Sanghyuk et al. [123] proposed a deep architecture called Deep Drowsiness Detection (DDD)

in 2016. The architecture has three deep CNNs including AlexNet [87], VGG-Face [124], and

FlowImageNet [31]. The output of these networks is concatenated and fed into a softmax

classification layer for drowsiness detection. The DDD system was tested on the NTHU driver

detection dataset, but the authors noted that the NTHU set lacked reliable ground truth labeling,

which led them to use a substitute evaluation dataset for testing. The authors also noted that

there was a lack of previously benchmarked datasets to compare with the publicly available

NTHU set. Furthermore, Reddy et al. [133] proposed a compressed deep neural network model

that can be deployed on an embedded board. The authors note that for their focus, the NTHU

dataset had an unsuitable capture angle and inappropriate class labels. In addition, the authors

noted that the DROZY dataset was also unsuitable because the images depict sensor patches

attached to a subject’s face, which could interfere with the results obtained. Their solution

was to use a custom dataset and compare the efficacy of their approach to a number of CNNs

architectures, including faster Regions with Convolutional Neural Networks (R-CNN), VGG-16,

and AlexNet.

Lyu et al. [98] proposed a sequential multi-granularity deep framework for detection of driver

drowsiness. The framework consists of two components, a multi-granularity CNN and a Deep

Long-Short-Term Memory Network (Deep-LSTM). A contribution of this work was to utilise

a group of parallel CNN extractors. The Deep-LSTM was applied on facial representations to

identify long-term features of drowsiness over a sequence of frames. The model was evaluated

on the NTHU set in addition to a new dataset named Forward Instant Driver Drowsiness

Detection (FI-DDD). The FI-DDD dataset is a re-labeled NTHU set, as the authors note that

it is difficult to locate drowsy states temporally with high precision using the NTHU labels.

Following a different approach, Dwivedi et al. [37] introduced a more diverse dataset that includes

persons with different skin tones, eye shapes, and eye sizes. This dataset was used to test CNN

with a final softmax classification layer, but unfortunately, the dataset is not publicly available

for comparison.

A recent study by Kim et al. proposed a deep CNN based on the classification of opened and

closed eyes using a visible light camera sensor [81]. They used the ZJU in addition to their own
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dataset collected for performance analysis. Here, the ResNet-50 [57] architecture was adopted,

with a modified fully connected layer. The system outperformed AlexNet [87], GoogleNet [164],

VGG-Face fine-turning [124], and HOG-SVMs [126].

It is clear that many driver drowsiness detection applications rely on CNNs for robust results.

The following section describes potential challenges with these techniques in more detail.

4.2 Bias in Machine Learning

Machine learning algorithms are becoming part of our everyday lives and these algorithms keep

improving. However, there are growing concerns in using these algorithms because they could be

flawed which can lead to be biased. In the field of road safety, it is clear that a number of modern

drowsiness detection systems rely on CNNs. Bias can be present in many forms including sample

bias, prejudice bias, and measurement bias. For this research, the focus is on sample bias which

most likely to affect driver drowsiness detection systems.

Sample Bias – This is a problem that is encountered in the training data used for a particular

task. For the driver drowsiness detection task, bias can be manifested by training a system on

an unrepresentative dataset. Due to security policies regarding publishing people’s faces, many

datasets are not published. Publicly available datasets do not always cover a wide range of

different races and ethnicities with varying facial features. In addition, publicly available datasets

typically only cover cultural contexts in which they are captured [29]. For this research, the

efficiency of the three most common publicly available datasets for driver drowsiness detection is

evaluated, including NTHU, DROZY, CEW in South African contexts, where racial bias is likely

to have a significant impact. However, the road safety community is unfortunately not the only

field that is affected by the bias which is caused by using unrepresentative datasets for training.

A study conducted by Buolamwini [19] has documented extensive algorithmic bias in face

detection systems, which fail on faces with darker skin-tones, while Renda et al. have highlighted

bias in predictive policing [135], by showing that a system called PredoPol, which is used to

dispatch police to crime hotspots tends to send police to areas where there are large numbers

of dark-skinned people or Muslims. Wen et al. [181] analysed a face spoof detection algorithm,

designed to recognise fake faces using image distortion analysis and reported that most current

systems mis-classify individuals with dark-skinned faces as spoof attacks. Furthermore, Jiang

and Nachum provided a mathematical formulation of how bias can arise and be exhibited in the
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training dataset [74]. The authors stated that this bias arises from the labelled dataset and this

can be corrected by re-weighing the data points without changing the labels.

Unfortunately, this bias cannot be seen through training the network alone and needs additional

techniques to visualise what the network is learning from the data. The following section describes

a new visualisation technique, called Population Bias Visualisation (PBV), that can help in

identifying the groups of people on which a model is failing to generalise.

4.3 Population Bias Visualisation

In order to address the limitations described above, a visualisation technique PBV is introduced,

which makes use of PCA as a dimensional reduction method and further identifies races where

trained models fail to generalise because of the lack of sufficient and representative data. This is

done by using PCA to project images into a 2-dimensional grid such that images are located

close to other images having similar features.

For this research, skin complexion is the primary interest, which poses a serious concern when

it comes to training a network. In particular, darker skinned groups of people may fail to be

analysed because of the lack of datasets captured in relevant cultural contexts.

PCA is one of the most common dimension reduction techniques that can be used to compress a

very large number of features to a small number while retaining important information [156]. This

is done by transforming data into an orthogonal subspace where axes (Principal components) align

with the directions of maximum variance in the data. There are two methods that can be used to

perform PCA, the Singular Value Decomposition (SVD) and covariance matrix method. For this

research, the SVD method was used to perform PCA. Other dimension reduction techniques that

are popular include Locally Linear Embedding (LLE), Isometric Mapping (IsoMap), Independent

Components Analysis (ICA), and t-SNE [147, 172, 69, 99], but PCA is used because of its low

computational cost and ability to retain most information on the data.

Let X be the matrix of images, formed by reshaping images xi into row vectors (where i = 1...N,

and N is the number of images in the dataset) and stacking these vertically to form an N x P

matrix. Here, P denotes the number of pixels in each image. PCA starts by mean centering the

matrix of images, which is accomplished by subtracting the mean image µ =
1

N

∑N
i Xi from

each 1 x P dimensional row vector, Xi in the matrix of images, to obtain
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X̂i = Xi − µ

The mean centred matrix N x P dimensional matrix of images X̂ is then decomposed using SVD,

as

X̂ = UΣVT

Here, U is a P ×N unitary matrix, V is a P × P unitary matrix and Σ is a diagonal matrix

comprising the singular values of X̂ in decreasing order [160]. A reduced dimensional representation

of X̂ can be obtained by discarding columns of U and V as follows

X̂ ≈ U0:jΣ0:j,0:jV
T
0:j

Here, j denotes the number of columns retained. As shown above, PCA can project data into

a low dimensional coordinate system, with axes provided by the columns of U0:j , and data

coordinates given by V0:j .

In this research, only two columns (j = 1) were retained, and images projected into a two-

dimensional coordinate system. Figure 4.1 shows the 2D projection (coordinates obtained from

V0:1) of facial images in a test dataset compiled for this work. The grid consists of two features

which are the grid position (represented by blue dots) and PCA projection (represented by red

dots). The PCA projections are then overlayed over grid positions and show the scattering of the

images. This projection was used to construct a grid of images, grouped by similarity. Algorithm

1 describes this process. A uniform coordinate grid was created and searched for the closest

image (in the reduced dimensional coordinate system) to each point in the grid. Each image was

assigned a corresponding point and ensure that no image is duplicated, by removing it from the

list of available images once allocated a grid coordinate in order to produce a grid of images that

groups individuals by facial similarity, as shown in figure 4.2. The process of grouping similar

faces together in a grid is an unsupervised strategy which does not need a subjective classification

stage. It is clear that this process successfully groups faces of similar skin tone together, with

darker skinned individuals located towards the top of the image, and lighter skinned individuals

towards the bottom. In addition, these faces are also sorted based on facial attributes that are

important when classifying drowsiness state. These facial attributes include open or closed eyes

and yawning. Even though the faces are organised by the complexion variation, the bottom right

corner of figure 4.2 shows that the faces are grouped based on closed eyes and moving to the



Intersectional accuracy differences in drowsiness detection systems 52

Figure 4.1: The figure shows 2-dimensional grid projection coordinates obtained after applying
the linear PCA transformation into 2-dimensional subspace. A uniformly spaced grid is placed
over the projected image coordinates, and images are assigned a grid position by finding the
closest image coordinate to each grid position, ensuring each image can only be used once. The

blue dots represent grid position and the red dots represent PCA projections.

bottom left corner. For each image selected, the error in drowsiness prediction was calculated, to

produce a saliency map indicating model quality for the constructed grid of images.

Algorithm 1 Image overlay generation
Let p be the N × 2 matrix V0:1

Input: p, list of images pi, where i = 1 . . . N , labelsi
1: image-grid = [ ][ ] . two-dimensional list of the grid images
2: overlay-grid = [ ][ ] . two-dimensional list of the model
3: for position-x >= x-min to maximum value x-max do
4: for position-y >= y-min to maximum value y-max do
5: set min-distance = 10000
6: best-index = 0
7: for i = 0 to maximum value of N do
8: Compute the similarity distance by dist =

√
(p[i, 0]− j)2 + (p[i, 1]− k)2

9: if distance < minimum-distance then
10: minimum-distance = distance
11: best-index = i
12: end if
13: Plot the images into a grid of images
14: Apply an overlay prediction over grid of images
15: Remove any duplicate images
16: end for
17: end for
18: Output: Returns an overlayed saliency image
19: end for



Intersectional accuracy differences in drowsiness detection systems 53

Figure 4.2: The proposed visualisation strategy uses PCA to sort faces by similarity without
requiring meta-data.

4.4 Datasets

Neural networks rely strongly on the data used to train them, with more data typically resulting

in greater performance. Despite the security constraints for publishing datasets, there has been a

significant effort to build publicly available large-scale driver drowsiness datasets. This section

describes the datasets that were used for training and testing the models in order to investigate

the potential for racial bias to present itself in driver drowsiness detection systems.

NTHU – This dataset was introduced at the 13th Asian Conference on Computer Vision (ACCV)

in 2016 [119]. The dataset is split into test and training sets. For training, there are 18 participants

(10 men and 8 women) pretending to drive, with 5 scene scenarios for each participant including

spectacles, no spectacles, spectacles at night, no spectacles at night, and sunglasses. For evaluation,

there are images of 2 men and 2 women. Videos combining drowsy, normal and sleepy states are

provided. The dataset is primarily comprised of light-skinned Asians, as illustrated in figure 4.3.

DROZY – consists of 14 participants (3 males and 11 females) [104]. Each video is approximately

10 minutes long and is accompanied by the results of Psychomotor Vigilance Tests (PVTs)
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Figure 4.3: A sample of images from the NTHU dataset shows images with the same scenario
but different behaviours like yawning, being awake, and sleeping. It also contains the same

behaviours, but with different scenarios such as with and without spectacles.

Figure 4.4: DROZY was obtained from the Kinect v2 sensor. The images are a sample of
cropped near-infrared intensity images. They only contain people from light-skinned races.

Figure 4.5: This dataset contains a variety of races which are collected from the internet.

regarding the drowsiness state. For each participant, the dataset (Figure 4.4) contains time-

synchronised KSS scores [104].

CEW – is a collection of online images of people of different races (for example Asians and

non-Asians with light-skinned faces) and contains about 2 423 participants [175]. Among the

participants, 1 192 have both eyes closed and 1 231 have their eyes open. These images were

selected from the labeled faces in the wild database and a selection is shown in figure 4.5.

Test Dataset – This was prepared from a collection of online videos of South African faces. It

consists of 30 348 images comprising a variety of different races and ethnicities represented in

South Africa. Images range from dark to light-skinned faces of both genders to provide a diverse

testing dataset as shown in figure 4.6.
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Figure 4.6: This dataset contains a variety of South African races collected over the internet.

4.5 Experiments

This section discusses experiments conducted in order to identify the bias in models trained

with unrepresentative datasets, to illustrate the use of the proposed population bias visualisation

system. The architectures used, together with the tuning parameters are also discussed.

4.5.1 Architectures

Three pre-trained network models are discussed in this chapter. This section will present the

architectures selected, followed by a short discussion on how these architectures are constructed.

These architectures were pre-trained on Imagenet, with the final layers modified to make them

suitable for the driver drowsiness detection task. All experiments were done in the Keras

framework using the python programming language.

ResNet50 Architecture – This architecture was introduced in 2015 and comprises 50 layers

[57], which introduces the residual learning framework for easy optimisation that improves the

accuracy from increased network depth. With the deeper networks, performance tends to degrade

when converging, however, as the depth of the ResNet model increases, accuracy increases. This is

accomplished by learning a direct mapping of the image with a residual function. The architecture

is illustrated in figure 4.7.

VGG-19 Architecture – The VGG-19 architecture contains 19 layers and obtained an 8.0%

error rate on a classification task. The authors also found that adding more layers could improve

the efficiency [153]. The architecture contains three fully connected layers and a softmax layer as

a final layer. Figure 4.8 illustrates VGG-19 architecture.
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Figure 4.7: The RestNet architecture consists of 50 layers with 25 million trainable parameters.

Figure 4.8: The VGG-19 architecture has 19 layers with 144 million trainable parameters.

Figure 4.9: The VGG-Face architecture has 16 layers with 138 million trainable parameters.

VGG-Face Architecture – The VGG-Face architecture is based on the VGG-16 architecture

and was pre-trained on CEW and images of faces from YouTube. The architecture was trained

on 2.6 million faces. Figure 4.9 shows the VGG-Face architecture.

Proposed Architecture – The architectures in section 4.5.1 were chosen because they were

pre-trained on datasets that contain faces of people which makes it more likely to generalise to

drowsiness detection. These architectures were modified by replacing the final layers with BN,

followed by two fully-connected layers, with two dropout layers in between and a sigmoid final

layer as classification layer which is illustrated in figure 4.10.

Pre-trained models (trained for general image classification) were used as feature extractors to

lower the number of parameters to be trained and to reduce training time. In addition, lower

level features are already learned for the pre-trained models, which can prevent overfitting to

smaller datasets. The Adam optimiser and a binary cross entropy loss was used in the training

process. Data augmentation was also used in an attempt to prevent over-fitting. Here, re-scaling,

shearing, zooming, and horizontal flipping was applied to extend the size of datasets used for

training. Furthermore, zooming was applied to images because the face is of greatest interest

in drowsiness detection. Horizontal flipping was also applied to generate different angles of the
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Figure 4.10: Proposed architecture that contains pre-trained layers which are followed by BN
layer, fully-connected layers which contain dropout layers in between.

Figure 4.11: Accuracies obtained by testing the models on the dataset that was kept aside
from the three training datasets.

drivers’ faces. Dropout (α = 0.5) was applied between fully connected layers to reduce the

chances of over-fitting even further.

The drowsiness detection models were trained and evaluated on the three datasets discussed in

Section 4.4, which all consist of two classes (alert and drowsy). Three models were trained on

each dataset (on over 300 000 images) and evaluated on 50 000 of images that were kept aside

from each of the training datasets used. Finally, the South African test dataset was used to test

the three trained models.

All the images were prepared from the three datasets in the same manner for training. All images

were re-sized to 150 x 150 pixels, before applying augmentation and feeding the data in batches

into the model. The Adam optimiser was used to train the model and training was performed for
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Table 4.1: Accuracies in experimentation

Experimentation Accuracy
Pre-trained Models Datasets Training phase Testing phase

CEW 89.00% 83.77%
ResNet NTHU 79.51% 50.08%

DROZY 78.01% 53.23%
CEW 97.43% 81.73%

VGG-19 NTHU 78.08% 52.39%
DROZY 83.86% 52.96%
CEW 98.98% 97.40%

VGG-Face NTHU 82.43% 53.80%
DROZY 81.89% 52.31%

Figure 4.12: Accuracies obtained by testing the models on the dataset that was kept aside
from the three training datasets.

30 epochs. The batch size was kept constant at 32 as it was observed that using a larger batch

size degraded the model’s quality.

4.6 Results

This section presents the results obtained from experiments using the described architectures.

The accuracies of the modified models were tested on the testing data kept aside from the training

datasets. The performance of these models is illustrated in figure 4.11. From the accuracies

presented, it seems evident that all the models were generalising. The facial images are blurred

for confidentiality in the presented results.
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For testing the same models on the South African dataset, all images were prepared in the same

way as the training dataset and used the same parameters for data augmentation. The loss and

accuracy were recorded for both the training and testing phases. Pre-trained models performed

well when tested on data kept aside from training sets. The data that these models were tested on

first represented all the races that the models were trained on and therefore reached their highest

performance. However, all models showed decreased performance when tested on South African

representative dataset, as shown in figure 4.12, although the decrease in performance was marginal

for the CEW. More detailed information about the accuracies of the experiments is provided in

table 4.1. The South African dataset has represents all the races and more specifically targets

the African ethnicities which were not represented in the training datasets. It is clear that the

models trained using NTHU and DROZY completely overfit to these datasets, and failed entirely

when tested on South African dataset. As a result, the NTHU and DROZY were excluded from

further analysis. The dataset from NTHU and DROZY explicitly state that they only cover the

cultural context in which they were captured, while the DROZY dataset was captured in an

laboratory environment which does not represent real-world scenarios. As a result, training on

those datasets and testing in the South African context, meant the accuracy in the training was

high, as illustrated in figure 4.11, but low on the testing set. For the South African group, there is

a variety of skin complexions amongst the population, training the model on more light-skinned

population would lead to problems when testing the system on people with darker complexions.

This is because detecting the face of the driver would be difficult. The first step is to detect the

face and extract useful information and dark faces are difficult to be detected, as it is observed

on the saliency map in figure 4.13. In addition to the complexion differences and the difficulty

for pre-trained models to generalise to the South African context, saliency maps were extracted

to understand what the models were focusing on in selected individual’s faces from different

ethnicities. Figure 4.13 shows a selection of saliency maps obtained when the VGG-Face models

trained using the CEW dataset were tested using both light-skinned individuals (dominant in

the training sets) and dark-skinned individuals (dominant in our test set). Here, red areas denote

image pixels that contributed significantly to the algorithm output. Interestingly, the model

seemed to focus on facial regions for the lighter skinned individuals shown here but failed to do

so for darker skinned individuals, indicating a potential failure case. From the top row in figure

4.13, the model was mostly interested on the driver’s face based on different scenarios (when the

eyes were closed or open) which shows that the models did generalise and learned the important

features to be used to decide on the state of the driver. However, as seen on the bottom row of

the figure 4.13, worse results were obtained. From the bottom left image to bottom right the
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.13: The saliency map overlays highlight pixels in the input image that contribute
to the network’s final output. Areas marked in red contribute significantly, while blue regions
contribute little to the final classification decision. Images (a) to (d) are from the validation
set, and the saliency map highlights facial features, as would be expected for a drowsiness
detector. Images (e) to (h) were sampled from our test dataset. The saliency visualisation failed

to highlight facial features in the images (g) and (h).
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intensity of darkness increases and the performance of the model decreases. In the bottom right

image of figure 4.13, the model was mostly interested in the background of the image and the

useful features from the driver’s faces are not detected. The background of the image is lighter

than the face of the driver which led to miss-detecting the faces and resulted in biased models

for the South African context.

The proposed PBV technique was also applied and is illustrated in figures (4.14, 4.15, and 4.16).

Figure 4.14 shows the PBV on the ResNet model that was trained on the CEW dataset. This

model was able to generalise on the majority of races but was failing on darker faces. The CEW

dataset is more diverse than the NTHU and DROZY datasets. In addition, the Resnet depth

also played a role in the performance. Although the accuracy measures highlighted previously

seemed to show that the models trained on CEW dataset performed well, the proposed PBV

technique shows that the CEW models seemed to struggle to predict drowsiness for darker-skinned

individuals at the top of the image, potentially indicating a population group for whom additional

data is required to train a better model. Furthermore, figure 4.15 shows improved potential

in handling the generalisation problem, but the predictions of drowsiness in the top left lie in

the range from 50.06% to 67.53%, lower than that of other individuals. This shows that the

model is unstable and still potentially biased. Figure 4.16 showed particularly interesting and

unexpected results because the model was pre-trained on faces for the recognition task. The

model’s generalisation level was very low when compared to the two other two models.

The key findings of these experiments are as follows:

• All training experiments performed well when tested on data kept aside from training

datasets (85.3% to 98.7%).

• All three models showed a decrease in performance when tested on our more representative

test dataset, indicating some overfitting.

• Models trained using NTHU and DROZY completely failed to generalise.

• Models trained using the CEW dataset failed to perform well for certain dark-skinned

individuals, indicating a need for additional training data covering these population groups.

One of the main reasons for a drastic decrease in figure 4.12 is based not on the features

contributing to the level of drowsiness but is due to the failed detection of the driver’s face. The

main contributing factor is the complexion difference in these ethnicities, as the training set
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Figure 4.14: The figure shows the results obtained when performing the population bias
visualisation technique on the Resnet model trained on CEW dataset.

Figure 4.15: Visualisation of the VGG model trained on the CEW dataset.



Intersectional accuracy differences in drowsiness detection systems 63

Figure 4.16: VGG-Face model results shows that the model is biased even though it was
previously trained on the face dataset.

contains more light-skinned individuals while in the test set there is a wider range complexions

among the of individuals. In addition, figures 4.13, 4.14, 4.15, and 4.16 showed that with the

publicly available datasets results in biased models for the South African context.

4.7 Conclusion

This chapter implemented CNNs and has shown how these can be applied to the driver drowsiness

detection task. Pre-trained model architectures were identified and the final layers modified to

suit the drowsiness detection task. In addition, publicly available datasets were selected, which

were used to train the pre-trained models.

The problem of bias in the machine learning field was discussed and the influence of sample bias

in the detection of drowsiness task was identified. Sample bias was identified to be the most

important problem in the process. Publicly available datasets do not cover a wide range of races,

and dataset collection is typically limited to specific cultural contexts.

A new visualisation technique which uses PCA and trained model’s predictions was developed

and from the results, it showed that there is bias in models, resulting from the dataset used for
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training. This was observed in all tested models, showing that these models fail when tested on

dark-skinned races. In addition, the VGG-face model which was trained on faces only also failed

to generalise, indicating that the face dataset used for pre-training is also biased.

Furthermore, the saliency map method was applied to support the introduced visualisation

technique and it also showed that dark-skinned faces were not used by the model for prediction.

The following chapter provides a GAN-based data augmentation technique that can be used to

generate synthetic data to populate and balance the dataset. This technique is tested on facial

attributes datasets.
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5 | GAN-based data augmentation

The challenge regarding the availability of driver drowsiness datasets was introduced in Chapter

4. This chapter focuses on generating synthetic data using GANs, in an attempt to motivate

the use of generative models to produce more data for solving the driver drowsiness detection

task. These generative models are powerful, but challenging to train since they are sensitive to

parameter selection for the neural networks used to build them.

Initially, an overview of GANs for synthetic data generation is provided. The history of GANs

is discussed, and this is followed by a discussion on the types of GANs together with the

implementation of a new GAN architecture which extends the knowledge from related work.

Furthermore, methods of comparing generative models to evaluate the efficiency of the models are

provided. The introduction of DSCs and their usage as replacements for the standard convolutions

is also proposed here. This chapter shows that DSCs can be used to reduce the training time

and computational resources by requiring less trainable parameters when compared to standard

convolutions. This technique is only applied to the generator network because this is the network

that is responsible for creating synthetic images. This chapter also investigates the benefits and

trade-offs of using DSC.

5.1 Generative Adversarial Networks (GANs)

GANs were introduced by Goodfellow et al. in 2014, where the goal was to generate synthetic

data [51]. The architecture of GANs makes use of two sub-networks, a generator G and a

discriminator D, which are trained by playing a mini-max game against one another. In the

case of image translation, to learn a generator distribution pg over data x, the generator creates

a mapping function, parameterised by θg, from a prior latent space distribution pz(z) to data

space G(z;θg). The discriminator D(x; θd), on the other hand, learns parameters θd to distinguish

66
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whether data is from the training data or from the generator. These two networks are trained

simultaneously using a gradient-based update rule and loss for the corresponding network. The

mini-max game function V (G,D) is given by

minG maxD V (D,G) = ED + EG

where ED = Exvpdata(x)[logD(x)]

EG = Ezvpz(z)[log(1−D(G(z)))].

(5.1)

Figure 5.1: A simple architecture of GANs.

Figure 5.1 shows a simple graphical representation of the GAN architecture. Equation 5.1 is

optimised by running optimisation on both G and D, but G is optimised once for multiple steps

of D, in order to keep D in its optimal region. Algorithm 2 shows the original training algorithm

that was proposed by Goodfellow et al. [51]. The efficacy of GANs are based on well researched

and understood concepts such as Stochastic Gradient Descent (SGD), activation functions, and

dropout layers. Although GANs are extremely popular and have produced remarkable results,

they suffer from various problems including the instability of the training process, non-convergence,

and diminishing gradients [174, 84, 189]. Mode collapse is a problem where the generator learns

to map multiple latent distributions z input to the same output G(z) which leads the generator

to only create a single mode with the largest discriminator response. Numerous forms of GANs

have been implemented since the original implementation.

DCGAN – This architecture was introduced by Radford et al. in 2016 with the aim to use
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Algorithm 2 GAN original algorithm.
Minibatch stochastic gradient descent training of generative adversarial networks.

1: for number of training iterations do
2: for k steps do
3: Sample minibatch of m noise samples

{
z(1), ..., z(m)

}
from noise prior pg(z).

4: Sample minibatch of m examples
{
x(1), ..., x(m)

}
from data generating distribution

pdata(z).
5: Update the discriminator by ascending its stochastic gradient:

∇θd
1

m

m∑
i=1

[
logD

(
x(i)
)

+ log
(

1−D
(
G
(
z(i)
)))]

6: end for
7: Sample minibatch of m noise samples

{
z(1), ..., z(m)

}
from noise prior pg(z).

8: Update the generator by descending its stochastic gradient:

∇θg
1

m

m∑
i=1

log
(

1−D
(
G
(
z(i)
)))

9: end for

popular CNN techniques [132] for image generation. The architecture consists of a Fully-

Convolutional Neural Network (FCNN), batch normalisation, and activation functions to improve

the stability of the training process. The DCGAN architecture was trained on the Large-scale

Scene Understanding (LSUN) bedroom dataset which contains over 3 million training images

[191]. The authors experimented with the latent distribution input of the generator by using

two random noise vectors which resulted in establishing a representation of the submanifold

spanned by input images. The discriminator was used as a feature extractor on CIFAR10 and

Street View House Numbers (SVHN) [88, 113] datasets and achieved comparative results on

classification tasks when compared with other unsupervised algorithms. Figure 5.2 shows the

DCGAN generator architecture.

Figure 5.2: The DCGAN that was used for LSUN scene modeling.
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Wasserstein Generative Adversarial Networks (WGAN) – introduced a new loss function

for optimising the standard GANs and were developed by Arjovsky et al. in 2017 [8]. They

analysed ways of measuring the distance between the model distribution and a real distribution

and proposed using the Earth-Mover or Wasserstein-1 distance. The WGAN resolved the mode

collapse problem encountered by the original GAN.

Wasserstein Generative Adversarial Networks with Gradient Penalty (WGAN-GP)

– improves the WGAN architecture by introducing a gradient penalty term [53]. Here, the authors

stated that failures that were encountered using the WGAN were due to the way a 1-Lipschitz

constraint is enforced. The weight clipping method that was presented in WGAN exhibited

problems in finding the optimal functions, which lead to vanishing gradients thereby making the

training unstable. This work proposed a soft penalty on the gradient norm of the discriminator

weights to enforce the 1-Lipschitz constraints on WGAN. The new gradient penalty is as follows:

L = Ex∼Pg [D(x̂)]− Ex∼Pr [D(x)]︸ ︷︷ ︸
WGAN critic loss

+λEx̂∼Px̂
[(‖∇x̂D(x̂)‖2 − 1)2]︸ ︷︷ ︸

WGAN-GP gradient penalty

(5.2)

where λ represents the penalty coefficient, with the authors suggesting it to be set equal to

10. They claimed this works well for a multitude of experiments. The WGAN-GP architecture

omitted the use of batch normalisation layer on the discriminator network because the gradient

penalty is invalid with batch normalisation. Instead, they replaced the batch normalisation

with layer normalisation. This architecture was trained on the LSUN bedroom dataset and

experiments showed improved training stability in multiple datasets.

5.2 Conditional Generative Adversarial Networks (CGAN)

CGAN are an extension of the original GANs that introduce additional information in both

the generator and discriminator networks [108]. This allows for the ability to control aspects

of the output image, which results in flexible generated synthetic data. This information, y, is

typically a label applied to the resulting output image, for example, this information can be skin

complexion, age, gender, etc. This information can be used to modify equation 5.1 which results

in the following expression:



GANs-based data augmentation 70

minGmaxDV (D,G) = Exvpdata(x)[logD(x|y)]+

Ezvpz(z)[log(1−D(G(z|y)))]
(5.3)

A number of conditional GANs have been proposed. These are briefly discussed below.

Bayesian Conditional Generative Adversarial Network (BC-GAN) – introduces a frame-

work that extends the traditional GAN by using the framework of a Bayesian semi-supervised

learning problem [1]. Instead of using a random noise variable to generate data, the authors pro-

pose a random function that takes deterministic input. This architecture utilises the uncertainty

in the model rather than the noise as input. The generator’s generated distribution is defined as

follows :

p(S′|fD) ∝
∫
p(ω)

∫
p(fG|ω)

n∏
i=1

p(fD(fG(y′i), y
′
i))dfGdω,

p(S′|ω, fG) =

∫
p(fG|ω)

n∏
i=1

p(fD(fG(y′−), y′i))dfG

(5.4)

where ω is the weight of the generator, and p(ω) is the prior on ω. The fG is the discriminator

function that measures the compatibility of the input x and output y. They experimented

with their framework using MNIST and CIFAR-10 datasets which performed better when using

mapping parameters of Monte Carlo than Langevin dynamics. This was caused by noisy gradients.

Learning to Align Cross-Domain Images with Conditional Generative Adversarial

Networks (AlignGAN) – build upon the conditional GANs by introducing alignment cross-

domain images and also a model that conditions on multiple information with a 2-step alternating

optimisation algorithm [103]. It introduced two rules for achieving more visually appealing results

than with conditional GANs. The first rule is to restrict the generator noise input layer to be

unconditioned by domain vectors. The second rule is that in the discriminator, the image input

layer should be conditioned by the domain vectors. They adopted the Least Squares Generative

Adversarial Networks (LSGAN) architecture for training the models and kept the parameters

the same. The Digits, MNIST and USPS datasets were used to evaluate the performance of

AlignGAN.

Artwork Synthesis with Conditional Categorical GAN (ArtGAN) – was inspired by

the backpropagation of the loss function, and allows feedback from labels given to each generated
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image through the loss function in D to G [169]. The use of cross entropy to back-propagate the

error to the generator allows the generator to learn better. Moreover, this modification speeds

up the training process. Here, the authors used the sigmoid function in the generator and also

employed L2 pixel-wise reconstruction loss. This improves training stability.

5.3 Comparing Performance of GANs

It is difficult to compare different GAN models by visually inspecting the generated images.

There are performance measures that are used to evaluate the quality of the synthetic images.

Among those performance measures, the Inception Score (IS) and FID are discussed in this

research. For experimental results, the FID was used as a performance measurement method.

Inception Score (IS) – was introduced by Salimans et al. in 2016 [146]. It evaluates the quality

of images generated by the GANs by making use of distribution of the samples. The IS uses the

inception-v3 pre-trained network and is computed as:

IS(G) = exp(ExvpgDKL(p(y|x)‖p(y))) (5.5)

where KL is the KL-divergence, p(y|x) is the conditional probability, and p(y) is the marginal

probability which is computed by
∫
z p(y|x = G(z))dz. Having higher scores means better

results, corresponding to a larger KL-divergence between two distributions. This means that

the generated images with meaningful information have low entropy on the conditional label

distribution p(y|x), where the diverse images have high entropy.

Fréchet Inception Distance (FID) – is a method that approximates the image distributions as

multivariate Gaussians over pre-trained bottleneck features. The FID is calculated by computing

the Fréchet distance between multivariate Gaussians fitted to the feature representation of the

Inception model [60]. The FID is computed by:

FID(r, g) =‖ µr − µg ‖2 +Tr(Σr + Σg − 2(ΣrΣg)
1/2), (5.6)

where Xr v N(µr,Σr) and Xg v N(µg,Σg) are the 2048-dimensional activations of the inception-

v3 layer for real and synthetic data [60]. In contrast to the IS, lower FID means better results,

with the activation distributions closer.
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5.4 Depthwise Separable Convolutions

Depthwise Separable Convolutions (DSCs) were introduced by Chollet in 2016 as a replacement

for standard Convolutions [26]. They are a form of factorized convolutions that apply separate

convolution operations to every input channel of a tensor. DSCs have fewer trainable parameters

and have shown improved performance in image classification tasks [150]. DSCs are an extension

to the Xception layer [164] and are composed of two components, namely a depthwise convolution

and a pointwise convolution. The depthwise convolution performs a spatial convolution over

each input channel data while the pointwise convolution layer performs a 1 × 1 convolution

that merges information from the previous step across all channels. The original convolution

layer dimensions can be expressed as H,W,Cin, Cout and K, where H is the height of an

input tensor, W is the width, C is the depth and K is the size of the convolution kernel. A

depthwise separable convolution operation can be expressed using dimensions H,W,Cin,K for

the depthwise convolution and H,W and Cout for the pointwise convolution. This results in an

operation reduction of 1
Cout

+ 1
K2 . Figure 5.3 illustrates the comparison between the standard

convolution and depthwise separable convolution architectures.

Training a GAN, which is based on two deep neural networks takes time because of its large

parameter count, requiring computationally intense processing and significant resource allocation.

Trainable parameters increase as the depth of the network increases. Introduction of the DSC in

the GAN results in a reduction of number of trainable parameters and speeds up the training

time. Trainable parameters are very important for the accuracy of the network but this work

shows that the introduction of DSCs can have limited impact for deeper networks. Reducing the

number of operations required by the network reduces the training time which also eases the

computation needed. As shown below, results indicate that there is a much greater improvement

in the training time when DSCs are compared to standard convolutions.

Depthwise separable convolution has found success in a variety of applications [66, 77, 100, 180].

The work of Nguyen and Ray proposed an adaptive convolution block method that learns the

upsampling algorithm [116]. They replace traditional convolutions with DSC in the generator to

improve the performance of a weak baseline model. Moreover, Wojna et al. have also applied

DSC in GANs architectures, where they introduced a bilinear additive upsampling layer, which

improves performance [185]. However, this research investigates the performance of DSC on the

upsampling, downsampling and bottleneck layers. This is only applied in the generator.
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Figure 5.3: In contrast to traditional convolution operations performed in deep learning, DSC
performs convolutions on subsets of the input tensor and aggregates the information across these

subsets using a single pointwise convolution.

5.5 Experiments

This section describes the proposed modified architecture that was used for experimentation. It

further discusses the datasets that were used for training and testing.

5.5.1 Architectures

For training and testing, three models which were modified from the original Unified Generative

Adversarial Networks for Multi-Domain Image-to-Image Translation (StarGan) architecture in

order to produce lightweight networks with fewer trainable parameters on the generator network

for experimental testing were prepared. The modified architecture used for testing was adapted

from [25] and consists of two networks, where the generator consists of a stride size of two for

downsampling and 11 DSCs (see figure 5.4). Instance normalization is an operation that removes

instance-specific contrast information from the content image, which prevents mean and covariance

shift and simplifies the learning process [176]. Instance normalization and ReLU activations

were applied after each pointwise convolution. For the discriminator network, a Markovian

discriminator (PatchGan) [93] was adopted because it is a fixed-size patch discriminator that is

easily applied to 256 × 256 images.
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Table 5.1: GANsArchitecture information

Detection Accuracy
Parameters DepthwiseDG DepthwiseG DeeperDepthwiseG
Number of layers on the Generator 6 8 11
Number of layers on the Discriminator 8 8 8
Number of trainable parameters 30.8 Million 43.9 Million 46.5 Million
Training time 9 hours 12 hours 48 hours

Figure 5.4: The DepthwiseGAN architecture is composed of two networks (Generator (G) and
Discriminator (D)). DSC was used in the generator coupled with Instance Normalization (IN)

and ReLu activation functions.

The three prepared models are termed DepthwiseDG, DepthwiseG, and DeeperDepthwiseG

models. Architecture information is contained in table 5.1. The DepthwiseDG model replaced

convolution layers with depthwise separable convolutions in both the generator and discriminator,

the DepthwiseG model replaced convolutions in only the generator, while the DeeperDepthwiseG

model is a deeper model with 11 depthwise separable convolution layers in the generator. All

three models were compared to the original StarGan architecture.

5.5.2 Datasets

Models for conditional generation of synthetic facial images were explored using three datasets,

which are discussed below.

CelebA – The CelebFace Attributes dataset contains images of about 200 000 faces of celebrities

[95]. Each image is annotated with 40 attributes and faces cover a relatively large pose variation,

with background clutter included. Images were cropped, with the faces centred and resized to

128 × 128 pixels. Seven facial domains were used that were investigated in [25] to train the

models.
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Stirling 3D Face Database – The Stirling 3D Face dataset consists of 3 339 images collected

from 99 participants (45 males and 54 females) [129]. Each participant made seven facial

expressions and images were captured at four different angles. The images were cropped to

256×256 pixels, with the faces centred and then resized to 128 × 128.

RaFD – The Radboud Face Database (RaFD) consists of 49 people divided into two subsets,

comprising 39 Caucasian Dutch adults (19 female and 20 male) and 10 Caucasian Dutch children

(6 female and 4 male) [90]. The images include eight facial expressions captured from three

different angles. Images were prepared in the same way as the Stirling 3D Face Database.

5.5.3 Training process

The DepthwiseGAN training process is illustrated in algorithm 3 and uses the following adversarial

loss [25]:

Ladv = Ex[logDsrc(x)]+

Ex,c[log(1−Dsrc(G(x,c)))],
(5.7)

where G generates an image G(x, c) which is conditioned on both the input image x and the

target domain label c and Dsrc(x) is a probability distribution over sources given by D. The

modified objective function in [25] is also adapted and used to optimize both the generator G

and discriminator D as follows:

LD = −Ladv + λclsLr
cls,

LG = Ladv + λclsLf
cls + λrecLrec,

(5.8)

where λcls and λrec are hyper-parameters that trade-off domain classification and reconstruction

losses. All the parameters for the training followed the StarGan training procedure and all

training was conducted on a single NVIDIA Tesla K20c GPU. The Adam optimizer was used to

train all the models.

5.6 Results

This section provides the experimental results obtained where the models were compared with

the StarGan model in a multi-domain translation task. Three datasets were used for experiments
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Figure 5.5: The training process of DepthwiseDG shows that the discriminator fails to learn
important information since the number of parameters is reduced.
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Algorithm 3 Model Training
Input: Given a set of real images {x1, x2, .......} v p(x), λcls = 1, λrec = 10

1: for number of training iterations do
2: Sample mini-batch of latent sample {z} from latent prior pz(z)
3: Randomly sample mini-batch of one sample {x1, x2, y} from training set.
4: Update the parameter θd by descending its stochastic gradient with the Adam optimizer:
5: LD = −Ladv + λclsLr

cls

6: Update the generator θg by ascending its stochastic gradient with Adam optimizer:
7: LG = Ladv + λclsLf

cls + λrecLrec
8: end for
9: Output Trained generator G and discriminator D.

and evaluated the quality of the results using the FID. Training the standard StarGan took

approximately three days (8.5 Million parameters for the generator and 44 Million parameters

for the discriminator). In contrast, training DepthwiseGANs was faster. The DepthwiseG

model took one day and 12 hours of training on a model with 1.5 Million parameters for the

generator and 44 Million parameters for the discriminator, while training took two days for

the DeeperDepthwiseG model, with 5.6 Million parameters for the generator and 44 Million

parameters for the discriminator. Nine hours was required for training the DepthwiseDG model

with 1.5 Million parameters for the generator and 32 Million parameters for the discriminator.

5.6.1 Results on CelebA

DepthwiseGANs were compared against the StarGan model. Figure 5.7 shows the results of facial

attribute transfer on the CelebA dataset using the four models. Results indicate that including

depthwise convolutions in the discriminator leads to poor quality image generation. In contrast,

restricting DSCs to the generator and increasing the depth yields results indistinguishable from

StarGan. The figure shows that using DSCs in both networks degraded images, which appear

almost cartoon-like. As a result, it seems that additional learning parameters are required to

distinguish between image domains in the discriminator. Figure 5.5 shows the images after a

set of training iterations when training DepthwiseDG, it struggled to find significant features

in the input data as the discriminator struggled to learn to distinguish between classes. On

the other hand, the training process was more reliable for the DeeperDepthwiseG model as the

discriminator’s parameters were kept from the original architecture, as shown in figure 5.6.

The FID measure in figure 5.8 shows that the convergence of the distribution of images generated

by models using DSCs to the training dataset distribution is faster for StarGan, although similar
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Figure 5.6: The discriminator is kept identical to the original architecture, but the number of
generator DSCs is increased.

performance is obtained after about 175 epochs. It is clear that deeper models perform better,

indicating that the model capacity introduced by additional parameters is important if generated

images are to follow a similar distribution to that of the training set.



GANs-based data augmentation 79

Figure 5.7: Applying StarGan and the three models for image-to-multi domain translation
shows that using DSCs on the discriminator can have a negative effect on the results, as shown
on top. Adding additional DSC layers to the generator results in realistic images, as shown at

the bottom of the figure.

Figure 5.8: Scores for FID on four models that were experimented on and K represents thou-
sands. DeeperDepthwiseG performs similarly to the baseline model. DepthwiseDG performed

poorly against all models.
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5.6.2 Results on RaFD and Stirling

The models were also on RaRD and Stirling datasets for facial expression transfer. Both the

Stirling and RaFD datasets comprise similar facial expressions, captured in different environments.

Results illustrated in figure 5.11 show that the DeeperDepthwiseG model generates high-quality

images when compared to the original StarGan. The FID scores in figures 5.9 and 5.10 show

that the difference between generated and training image distributions is similar for all models.

Qualitatively, images produced by the model with fewer parameters have blurry regions, and

it appears that the model has limited learning capabilities due to the reduced parameter set.

However, the model with more parameters generates better samples, highlighting the importance

of model capacity further.

Figure 5.9: FID scores computed for RaFD dataset. DeeperDepthwiseG obtains similar
performance to StarGan, and all models exhibit similar convergence after 200 epochs.

The results show that DSCs are more effective when only used on the generator, that they reduce

the number of parameters, which speeds up training time, but that deeper models are required

to obtain similar performance to standard convolutions.
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Figure 5.10: The FID scores for the Stirling dataset exhibit similar performance to that
obtained on other sets.

Figure 5.11: Samples generated show that generative models with additional capacity can
perform well. The RaFD and Stirling datasets are similar but captured under different lighting

conditions.

5.7 Conclusions

This chapter has introduced GANs, which can be used for data augmentation, and to potentially

address the intersectional accuracy challenges identified previously. Unfortunately, training

GANs is extremely slow. In order to address this, the replacement of standard convolutions

was introduced by DSCs. These convolutions can reduce the number of training parameters,
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which speeds up the training process. However, this technique also has its downfalls, which

affect the output results. This was observed when using the DSCs in both the generator and the

discriminator, as generated images were blurry. Results presented in this chapter showed that

although the GANs performance depends on the depth of the network, careful implementation of

DSC can be used to speed up training and to maintain the model’s performance.

The generation of a representative dataset for South African contexts could be made possible

using GANs in many applications, but this research will only focus on the drowsiness problem.

In chapter 6, GANs are applied to the driver drowsiness detection dataset in order to produce

a more representative dataset for the South African context. PCA is used as a way to extract

features from the data in support of re-sampling from GAN generated images for re-training

the model. This process is a form of boosting, where model performance is improved in regions

where it fails.
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6 | GAN-based bias correction

In the previous chapter, the GAN architecture was introduced as a means to generate synthetic

data. GAN training is particularly slow, but it showed that replacing the standard convolutions

in the generator with DSCs can improve training speed. The resulting images are very realistic,

which shows the potential for GAN to be used for generating datasets that are representative of

South African contexts, which comprise a very wide range of races and ethnicities.

This chapter introduces a framework that can be used to reduce bias in training data by generating

more realistic images with different facial attributes where the model is failing and for specific

ethnical groups. The framework is composed of four primary components. Firstly, a GAN

architecture produces synthetic images of individuals with facial attributes that can be used

when retraining the network. The second component is the CNN architecture that predicts

the state of the driver, while the third component is a PBV that highlights regions where the

model is performing well and where it is failing to generalise. Lastly, the sampler targets images

where the model is not performing well and searches through the synthetic images to find more

images similar to those, which are used for model retraining. This idea is based on the boosting

technique where a weak classifier is strengthened by re-weighting failing models. Results show

that this framework does reduce bias in the training dataset and improves the performance of

driver drowsiness detection algorithms.

A number of boosting approaches have been used in systems for detecting driver drowsiness,

typically to improve face detection classifiers. Putta et al. used the Adaptive Boosting (AdaBoost)

algorithm as part of the Viola-Jones face detection system for a real-time drowsiness detection

system [131]. The AdaBoost algorithm was used for selecting important features (eyes and mouth

regions) that can be used for training. In addition, Kong et al. in 2015 proposed a system that

aims to improve strategies to detect fatigue in drivers using an improved AdaBoost algorithm

[85]. Here, the authors used the AdaBoost algorithm for training and face regions were detected

84
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using Haar feature extraction. These faces were then forwarded to PERCLOS for analysis of

drowsiness. Li et al. proposed a system that detects driver drowsiness using eye state features

extracted using a Haar classifier and AdaBoost [94]. AdaBoost was used to train the cascade and

to produce a strong classifier based on the Haar features. Furthermore, Bharambe and Mahajan

have also used the AdaBoost algorithm and Haar-like features to detect the driver drowsiness

[15].

Unfortunately, these systems mostly focus on improving algorithmic performance, while this work

focuses on investigating and correcting dataset sampling bias. The unavailability of representative

datasets makes networks generalise poorly on representative test data. This chapter shows that

the use of the DrowsyGAN (DGAN) framework can boost the performance of CNNs in African

contexts.

6.1 Boosting

In machine learning, boosting is a technique where a weak classifier is improved to be a stronger

classifier by using a set of rules. The goal of boosting is to improve a weak classifier by treating

it as a black box with a set of rules containing penalties for weak classifiers. There are different

types of boosting algorithms, which include AdaBoost, Gradient Tree Boosting (GBoost), and A

Scalable Tree Boosting System (XGBoost). These are detailed below.

AdaBoost – is a machine learning approach that was introduced by Freund and Schapire in

1995 [42]. The main idea of the AdaBoost algorithm is to maintain a set of weights over the

training set. This weight distribution for the training set is firstly given the same value, but

on each iteration, the weights of incorrectly classified training points are increased so that the

weak learner is forced to focus on the harder tasks in the training set. The weak classifier is

trained using a distribution Dt and is given a weak hypothesis ht containing an error value. Once

the weak hypothesis is given, the algorithm chooses a parameter αt. The main goal of αt is to

measure the importance that is assigned to ht. The hypothesis is defined as follows :

H(x) = sign
( T∑
t=1

αtht(x)
)
, (6.1)

GBoost – is one of the most powerful machine learning techniques for building predictive models.

This technique was introduced by Friedman in 1999 where the outputs of weak classifiers are
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combined to produce stronger classifiers with the help of decision trees of fixed sizes [43]. The

GBoost algorithm has two primary parameters which are the number of iterations M and the

learning rate.

XGBoost – is a scalable tree boosting technique that was introduced by Chen and Guestrin in

2016 and is widely used by data scientists [22]. It uses a more regularised model formalisation for

the prevention of overfitting. It is a portable and accurate technique for large-scale tree boosting

problems.

6.2 Data Augmentation

Data augmentation is a technique used to increase the size of a training dataset and reduce the

chances of overfitting by a network. In computer vision, image datasets are often artificially

expanded by the inclusion of modified versions of the original training datasets. The most common

way to perform data augmentation is by random parameterised transformations including some

of the popular techniques which are described below.

Rotation – a technique that transforms image dimensions by rotating about the image centre.

The image dimensions do not remain the same after performing this operation.

Flipping – the original images are flipped horizontally and vertically and this can create two

more images per image. Vertical flipping is also the same as 180-degree rotation.

Scaling – this technique is performed on an image by zooming in and out. This method can

result in the los of information in the image.

Cropping – a technique that randomly crops the image in different regions. As scaling, this can

result in lose of the information in the image.

Unfortunately, as shown in Chapter 4, in the case of driver drowsiness detection, most available

datasets are unrepresentative. This makes it hard to test on an African dataset as it contains

individuals with facial features that are not included in the training dataset. Applying common

data augmentation to the available dataset improves the results by a small amount but fails to

address this challenge.

There are advanced data augmentation techniques that can help in the real world scenarios,

which may contain a variety of conditions that can not be solved by using standard techniques.
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For example, in the case of driver drowsiness detection, there are various conditions to look at

such as the complexion of the driver, the time of day, illumination and obstacles. Conditional

GANs are used as an advanced way to augment data when there is a variation of data and some

knowledge of the specific data to be generated.

There is much work which has been done on using GAN architectures as a data augmentation

technique. Rahul Gupta used conditional GANs for a sentiment classification task [54]. He

obtained 1.6% and 1.7% improvement over a baseline model which was only trained on real

data. The conditional GAN was trained using different strategies including pre-training and

noise injection on the training data. Mok and Chung proposed an automatic data augmentation

approach that enables machine learning methods to learn from the available annotated samples

efficiently [110]. Their architecture consists of a coarse-to-fine generator which captures the

manifold of the training sets. Their proposed method was used on Magnetic Resonance Imaging

(MRI) images and achieved improvements of about 3.5% over the traditional augmentation

approaches that they were compared against. In addition, Wu et al. used multi-scale class

conditional GAN to perform contextual in-filling which is used to synthesize lesions onto healthy

screening mammograms [188]. For experimentation, three classifiers were compared using Area

under the ROC Curve (AUC) method of 0.896 which outperformed the baseline model where the

AUC was 0.014. Antoniou et al. used a conditional GAN to augment data to another domain [7].

They named their architecture as DataAugmentation Generative Adversarial Networks (DAGAN),

and evaluated its performance on low-data availablity tasks using standard stochastic gradient

descent neural network training. It is clear that GANs can be used as a substitute for traditional

augmentation techniques, particularly where the data is more sophisticated.

6.3 Proposed Framework

In this section, a novel framework that corrects CNNs trained for prediction using GANs for

targeted data augmentation based on a PBV technique that groups faces with similar attributes

and highlights where the model is failing is introduced. A sampling method selects faces where

the model is not performing well, which are then used to fine-tune the CNNs. Each of these

components is discussed below.
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Figure 6.1: The proposed framework with all the components. The first step is generating
synthetic data using GAN architecture, which is followed by training the CNN to detect driver
state. A population bias visualisation is applied to the testing dataset and highlights where
the model is failing to generalise. Where the model is not generalising, those images are then
sampled and are used to find similar images from the GAN generated images to continue training

the model.

6.3.1 GAN Architecture

The GAN generates realistic images of individuals (drowsy and alert) in these population groups,

which are used for retraining the ResNet model used for drowsiness detection with new parameters

i.e learning rate and epoch sizes to reduce overfitting and improve the detection accuracy.

The generative network from Choi et al. [25] was adapted for the implementation of the GAN

architecture because it has shown impressive results for generating realistic synthetic images

in different domains. The architecture is a conditional GAN that is conditioned to translate

facial attributes between alert and drowsy across multiple ethnicity groups as shown in figure

6.2. This translation of attributes helps in improving the detection model by supplying images

with appropriate features where the drowsiness detector fails to generalise. The generator was

modified by replacing the standard convolutions by DSCs [117]. The benefit of this is to have

fewer trainable parameters while retaining the performance of the network. Furthermore, the

generator consists of a stride size of two for down-sampling and 11 DSCs. Instance normalisation

was used [176] instead of batch normalisation for the generator for all layers except the last
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Figure 6.2: The GAN architecture that translates images from being alert to sleepy and vice
versa.

output layer. For the discriminator network, standard convolutions were retained because the

discriminator acts as a classifier and requires greater capacity in order to distinguish between

real and fake images. In addition, PatchGANs [93] were adapted for the discriminator network

because they make use of a fixed-size patch discriminator that is easily applied to 256 x 256

images.

6.3.2 CNN Architecture

The second component of DGAN framework is the CNN architecture which predicts the state

of the driver. A fine-tuned Resnet model is used for classifying whether the driver is drowsy

or not. This architecture is chosen because of its depth and the dataset that is pre-trained on.

A pre-trained ResNet model which contains 50 layers was used and was originally trained on

Canadian Institute For Advanced Research-10 (CIFAR-10), ILSVRC and Common Objects in

Context (COCO 2) [57]. The pre-trained model was fine-tuned on the last layers where the

prediction function was modified to sigmoid. The ResNet model has about 23 million parameters
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and after adding the fine-tuning layers there were approximately 25 million parameters where

the initial 23 million parameters were frozen and only 2 million were trained.

6.3.3 Population Bias Visualisation

PBV is used to identify the regions where the model is failing to generalise well [156]. This is

done by projecting images into a 2-dimensional grid using the PCA technique which locates

similar images of people in the same state (alert or drowsy) and with similar complexions. The

test dataset is transformed into an orthogonal subspace where axes (Principal Component) align

with the directions of maximum variance in the data. For performing the PCA, SVD was used by

accepting X matrix of images. The details of this process are provided in chapter 4, section 4.3.

6.3.4 Sampler

This step is performed by randomly selecting images according to the error in prediction, termed

the failure probability here. The failure probability

Ci = |yi − yt| (6.2)

is calculated by determining the difference between the CNN sigmoid prediction output, yi and

the true label yt (a binary label encoding drowsy or alert).

This is normalised by the total probability of failure over all N images in the dataset

Ĉj =
(1− Cj)∑N
i=1(1− Cj)

(6.3)

The random selection is performed by categorically sampling images without replacement using

the weights above. This ensures that images with greater probability of failure are more likely to

be sampled and ensures that there are no duplicates of the selected images. For each selected

image in the validation set with a probability of failure, similar images in the GAN generated

dataset are then selected by finding close matching images in the PCA space. The selected images

are then used to continue training the ResNet model to increase classification performance.
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6.4 Experiments and Results

This section describes parameters that are used in DGAN framework, starting from training the

GAN up to the sampling method. Results are also described in this section.

6.4.1 Training

For the training of the GAN architecture, the Adam optimiser [83] was used with β1 = 0.3 and

β2 = 0.6. A batch size of 32 was also used to help in stabilising the training process. These

parameters were chosen because they are widely used. A horizontal flipping data augmentation

was applied with a probability of 0.5. More detailed information about the network architecture

is provided in tables 6.1 and 6.2. For the discriminator network in table 6.2, the Leaky-ReLU

activation function is used, but the generator network uses the ReLU activation function. There

is also notation used to represent some of the variables in the GANs including the number of

domains (nd), number of domain labels (nc), number of of output channels (N), kernel size (K),

stride size (S), padding size (P ) and instance normalisation. To train the model, a learning rate

of 0.0001 for 100 epochs and linearly decayed the learning rate over the next 100 epochs was

used. This strategy was to compensate for the fact that the training data was limited. Images

were cropped to 256 x 256 and three types of losses were applied. The first loss was for domain

classification loss, weighted by 1, the second loss was a reconstruction loss with a default weight

value of 10 and lastly a gradient penalty loss was used with a default weight value of 10. All the

experiments were carried out on a single Nvidia Tesla K20c GPU and the training took 12 hours.

The ResNet pre-trained network was fine-tuned and learning rates were constantly adjusted as

the training continued. Initially, the models were trained on three different datasets (NTHU,

DROZY, and CEW) as discussed in section 4.4 and were compared with DGAN framework, as

illustrated in the results sections 6.4.3 and 6.4.5.

All images were cropped to 150 x 150 size and standard augmentation techniques (rotation

range=60, zoom range=0.6, and horizontal flipping) were performed. The pre-trained ResNet

model used with a learning rate of 0.0001, which was then modified for the rest of the experiments

from 1e−3 to 1e−6, this was performed for each iteration on the framework. The early stopping

training strategy was also used to prevent overfitting of the model. Furthermore, the Adam

optimiser was used with both β1, β2 = 0.99, and a learning rate decay of 0 over each update.
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Table 6.1: Generator network architecture information

Part Input Shape Output Shape Layer Information
(h,w, 3 + nc) (h,w, 64) DSC-(N64,K7x7,S1,P3),IN,ReLU

Down-sampling (h,w, 64) (h2 ,
w
2 , 128) DSC-(N128,K4x4,S2,P1),IN,ReLU

(h2 ,
w
2 , 128) (h4 ,

w
4 , 256) DSC-(N256,K4x4,S2,P1),IN,ReLU

(h4 ,
w
4 , 256) (h4 ,

w
4 , 256) Residual Block:DSC-(N256,K3x3,S1,P1),IN,ReLU

(h4 ,
w
4 , 256) (h4 ,

w
4 , 256) Residual Block:DSC-(N256,K3x3,S1,P1),IN,ReLU

Bottleneck (h4 ,
w
4 , 256) (h4 ,

w
4 , 256) Residual Block:DSC-(N256,K3x3,S1,P1),IN,ReLU

(h4 ,
w
4 , 256) (h4 ,

w
4 , 256) Residual Block:DSC-(N256,K3x3,S1,P1),IN,ReLU

(h4 ,
w
4 , 256) (h4 ,

w
4 , 256) Residual Block:DSC-(N256,K3x3,S1,P1),IN,ReLU

(h4 ,
w
4 , 256) (h4 ,

w
4 , 256) Residual Block:DSC-(N256,K3x3,S1,P1),IN,ReLU

(h4 ,
w
4 , 256) (h2 ,

w
2 , 128) DEDSC-(N128,K4x4,S2,P1),IN,ReLU

Up-sampling (h2 ,
w
2 , 128) (h,w, 64) DEDSC-(N64,K4x4,S2,P1),IN,ReLU

(h,w, 64) (h,w, 3) DSC-(N3,K7x7,S1,P3),Tanh

Table 6.2: Discriminator network architecture information

Part Input Shape Output Shape Layer Information
Input Layer (h,w, 3) (h2 ,

w
2 , 64) CONV-(N64,K4x4,S2,P1),Leaky-ReLU

(h2 ,
w
2 , 64) (h4 ,

w
4 , 128) CONV-(N128,K4x4,S2,P1),Leaky-ReLU

(h4 ,
w
4 , 128) (h8 ,

w
8 , 256) CONV-(N256,K4x4,S2,P1),Leaky-ReLU

Hidden Layer (h8 ,
w
8 , 256) ( h16 ,

w
16 , 512) CONV-(N512,K4x4,S2,P1),Leaky-ReLU

( h16 ,
w
16 , 512) ( h32 ,

w
32 , 1024) CONV-(N1024,K4x4,S2,P1),Leaky-ReLU

( h32 ,
w
32 , 1024) ( h64 ,

w
64 , 2048) CONV-(N2048,K4x4,S2,P1),Leaky-ReLU

Output Layer (Dsrc) ( h64 ,
w
64 , 2048) ( h64 ,

w
64 , 1) CONV-(N1,K3x3,S1,P1)

Output Layer(Dsrc) ( h64 ,
w
64 , 2048) (1,1,nd) CONV-(N(nd),K h

64x
w
64 ,S1,P0)

6.4.2 Results

The first comparison was with the results of the DGAN framework to those obtained by training

on the publicly available dataset using the pre-trained ResNet models. All the parameters were

kept the same for all the first experiments, thereafter the learning rate and training epochs were

modified to prevent overfitting.

6.4.3 GAN Augmentation Results

Figure 6.3 shows the complexion attribute transfer results on the testing dataset. The testing

dataset is comprised of a variety of facial attributes of different ethnicities. This helps to balance

all the testing datasets and to produce a more synthetic dataset that covers most population

groups. The observation was that it was easy to transfer from light complexion to dark complexion

and achieved high-quality images. This was because of the presentation of these attributes in

the light-skinned ethnicities as compared with the dark-skinned ethnicities. On the other hand,
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Table 6.3: Learning rate - accuracy tradeoff

Learning rates with accuracies
Learning Rate Accuracies
1e−3 89.70%
1e−4 96.30%
1e−5 96.91%
1e−6 98.01%

when transferring from dark complexion to light complexion, the images were blurry and the

reason was the balance of the races in the dataset. The orientation, light intensity and poses of

dark skinned people were limited and generating reasonable results was difficult. To overcome

this problem, additional images of the face of the driver in good lighting conditions are required.

The scope of this thesis is limited to daylight conditions and do not consider night conditions as

they would pose other problems and need specialised cameras such as infra-red cameras. The

training time of the GAN model is quite long because there are two networks to be trained and

information is shared between them, but by using DSC on the generator network to ease the

computational resources and reduce the number of parameters in the generator network, were a

reasonable time training time was obtained and retain a reasonable performance quality. In this

case, the performance of the network was kept as high as possible to produce images that could

be used for training. Using blurry or poor quality images on the retraining of the network could

have some influence on the prediction scores. However, these images boosted the performance of

the driver drowsiness detection task.

6.4.4 Learning rate Results

Table 6.3. shows the influence of different learning rates on the performance of the model. A

learning rate of 1e−3 was too high and limited model learning. The best performance was observed

from 1e−4 to 1e−6. The early stopping strategy was also applied to prevent overfitting which

can improve the generalisation on the model. At first, the models were trained with the same

number of epochs. It was observed that using the same number of epochs on different learning

rates showed traits of overfitting. Therefore, early stopping was used when there was no change

in the accuracy.
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Figure 6.3: The GAN generated images by domain transfer across most ethnicity groups. The
generated images show people from different ethnicity groups with eyes open and closed.
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6.4.5 Population Bias Visualisation Results

It is demonstrated that the DGAN framework can improve the driver drowsiness detection task

by providing synthetic generated images with different attributes ( e.g. alert or sleepy) using

GAN architecture. This was followed by using the results of thePBV technique to highlight faces

where the model failed to generalise. The re-sampling strategy that selects images where the

model is failing was performed and PCA was used to extract features and find images with similar

attributes in the synthetic data and to retrain the model. In these experiments, the framework

was compared to models that are trained on CEW, NTHU, and DROZY datasets.

Figure 6.4 shows the PBV on the three datasets. The first image from figure 6.4 is a model

trained on CEW dataset, which provided the most promising results, when compared against

the models trained using the other two datasets, with an accuracy range of 67% to 78%. With

the pre-trained model on DROZY dataset, most of the dark faces were not predicted correctly

and the accuracy rate was between 50.4% to 59.32% which is essentially the same as guessing of

whether the driver is drowsy or alert. This makes it difficult to rely on such a model because it

would raise false alarms. Furthermore, the dataset that was trained on was solely comprised of

light-skinned faces, but it also does not generalise well on light-skinned faces because the images

were captured under a limited set of conditions. In addition, the number of people that the model

was exposed to was limited, which leads to such high failure percentages. The third image in

figure 6.4 shows the results obtained using the model that was pre-trained on the NTHU dataset

which performed better than the model trained on the DROZY. Although both datasets were

captured in similar environments, the NTHU model was trained on more faces and reached about

55.87% to 65.97% accuracy. In all these models, it is clear that they failed to generalise to darker

complexions.

Figure 6.5 shows the results of the DGAN framework which demonstrates the improvement of

the driver drowsiness detection performance using the proposed framework. Given enough data,

the model was able to generalise and the process of achieving these results is recursive. The

left image on figure 6.5 shows the results after a single correction iteration using the framework.

This model still performed worse on dark skinned individuals, but had higher accuracy than the

models trained on the publicly available dataset. In addition, the model was already generalising

on more of the dark-skinned faces. After the seventh iteration, the model reached the highest

accuracy of 98.89%, which indicates that with the re-sampling technique can achieve better

results when incorporating it with GAN generated data.
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(a) ResNet-CEW (b) ResNet-DROZY (c) ResNet-NTHU-DROZY

Figure 6.4: The figure shows images produced using the PBV technique. All the trained
models appear to be failing on the population groups on the upper part of the image. The yellow
shaded parts indicate where the model performs well, while failures are indicated by the purple
shaded parts, which appear mostly on the upper part of the images. The green shaded parts

show that the model is also performing well, but with lower probability (0.50 to 0.65).

Table 6.4: Model classification accuracy

Detection Accuracy
Iteration Original

Data
GAN Augmenta-
tion (validation)

GAN Augmenta-
tion with Sam-
pling (validation)

GAN Augmentation
with Sampling (test)

1 56.40% 74.70% 87.65% 85.28%
2 55.70% 76.86% 89.87% 85.97%
3 57.08% 77.91% 89.43% 86.42%
4 52.00% 77.01% 90.04% 87.02%
5 59.76% 78.80% 93.66% 88.83%
6 60.92% 80.51% 94.54% 89.05%
7 60.54% 80.93% 96.75% 91.62%

The models were further compared with baseline experimental results, where random sampling

from the augmentation data was performed. It was noted that when the sampling technique was

used from the GAN generated images and did not use targeted sampling, the model improvement

was limited. Targeted sampling is clearly more effective. Table 6.4 shows the accuracy results

from the three experiments which indicate how accuracy is improved with additional iterations

of targeted sampling.
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(a) First visualisation (b) Second visualisation (c) Seventh visualisation

Figure 6.5: The figure shows the progressive work of DGAN framework. The models were
fine-tuned and retrained with the images where they failed to generalise. As the models were
fine-tuned and changing the learning rate, there was an improvement and the models reached
higher probabilities (0.70 to 0.99). At the seventh cycle, the best performance of the model was

reached.

6.5 Conclusion

In this chapter, a novel framework that can be used to boost the performance of driver drowsiness

detection models by reducing bias in the training dataset was introduced. Here, a GAN produces

realistic images that are used when retraining a ResNet model on synthetic data generated based

on failure cases in validation data.

Importantly, the proposed approach does not rely on any meta-data or assumptions about the

race or ethnicity of individuals in the datasets, which is a commonly used approach to determine

algorithmic fairness or bias. Requiring this knowledge is potentially problematic as it tends to

rely on subjective and controversial racial classifications.

Furthermore, this chapter has shown that bias in datasets can be addressed by using targeted

sampling and GANs. However, this process still requires that some training data be available for

various population groups, and does not eliminate the need for good, representative datasets.

Rather, the proposed approach is intended to remedy more subtle bias introduced by imbalanced

datasets, where images of people from a particular group may be more numerous than that of

another group.



GAN-based data augmentation 98



7 | Conclusions and future work

7.1 Conclusion

This thesis has focused on highlighting the effects of bias in the training dataset for the task of

driver drowsiness detection task. This was followed by the introduction of a process correcting

the bias using a PBV framework. This framework’s components consist of a GAN architecture

for creating synthetic data for a variety of facial attributes and a wide range of races, which is

followed by the detection of drowsiness using a CNN model. PBV highlights those regions where

the model is failing and the sampler selects those faces and searches for similar faces from the

synthetic generated data to retrain the network. This work has shown that publicly available

datasets for drowsiness detection do not cover all population groups and different facial attributes,

this problem was highlighted when CNNs were trained on a publicly available dataset and tested

in the African context. Bias in datasets is a serious problem, which was addressed here. The

proposed technique to increase the training dataset through the addition of images with different

facial attributes across a wide range of races and ethnicities resulted in a substantial increase

in the CNN performance. The GAN architecture was modified and experiments showed that

replacing the standard convolutions only on the GANs generator network with DSCs can improve

the training time of GANs, while retaining the performance of the network.

The fundamentals around the drowsiness concept and how this can affect driving ability was

provided as the foundation to understand which facial attributes are most important. In

addition, methods of measuring drowsiness using different approaches, including machine learning

techniques were discussed. A meta-analysis was conducted to investigate which machine learning

method can be used for better detection of drowsiness. The limitation of the availability of public

datasets was also highlighted.
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Machine learning, which drives most drowsiness detection systems, fundamentals of machine

learning and the building blocks of CNNs, was introduced, along with a discussion of the training

methods that help in improving the accuracy of the network.

Finally, a DGAN framework was introduced that boosts the performance of the task of driver

drowsiness detection by eliminating bias in the training dataset. This framework corrects the

CNN trained for prediction using augmented GAN based images. Here, PBV is used to monitor

performance and a sampler component selects GAN images for model tuning. This chapter

further highlighted that, with standard augmentation techniques, a model can improve to a

certain degree of performance. Using the GAN generated images boosted the CNN performance.

Targeted sampling was significantly more effective than training with all GAN images.

7.2 Limitations

The efficiency of CNNs in the task of detecting of driver drowsiness depends solely on the quality

and the diversity of the training dataset. There are a number of limitations in this thesis which

need to be addressed. The major limitation is that the training was based on images and not on

videos and that this application was tested offline, not in real-time. The training images were

captured in daylight conditions and nighttime conditions were not tested because this required

additional sophisticated specialised equipment such as infrared cameras to capture images.

More importantly, the bias remediation scheme proposed in this work depended strongly on the

need for a representative dataset for data augmentation. Furthermore, although the proposed

approach can improve on the fairness of a biased classifier the proposed approach provides no

fairness guarantees and more subtle biases may still be present in machine learning models.

7.3 Future work

Bias in a training dataset is one of the most crucial problems encountered when training a

CNN model because it prohibits the development of more generalised models. This research has

focused on behavioural methods to measure the level of drowsiness which were used together

with CNNs to predict drowsiness. The challenge of limited training datasets for driver drowsiness

was identified and a framework for bias remediation was proposed. The proposed framework

showed promising results in eliminating bias in the training dataset.
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It should be noted that the introduced framework is not limited to the drowsiness detection task,

but can be applied to any task that has a limited dataset and which can be demonstrated in

different domains.

Although promising results were obtained, only one strategy was used to measure the level of

drowsiness. Future work on building a hybrid system that combines other non-invasive methods

can be used to allow for more informed decision making. There is a need for exploring the design

of a device to sense levels of drivers drowsiness, which can be placed on the car seat.
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