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ABSTRACT 

 

Nature provides essential services to humans, including climate regulation, water 

provisioning and regulation. These so-called ecosystem services have economical, societal 

and environmental value. This research aims at improving the knowledge on the linkages 

between selected hydrological ecosystem services and current and proposed land uses within 

the water-limited Mpushini/Mkhondeni Catchments in South Africa. The research contributes 

to the recognition of feedback and linkages within the complex ecological-human system, so 

that informed land use decisions can be made. The research aim is achieved by first 

reviewing the literature on hydrological ecosystem services, land use in an ecosystem 

services context and the links between the two. The study area is then sub-delineated into 

land use determined hydrological response units for baseline natural land cover, as well as for 

current and proposed land use scenarios. Using an appropriate model, selected hydrological 

processes are simulated in order to isolate the effects of individual land uses on hydrological 

responses, both on a local and a more catchment-wide scale.  

 

Various land uses were found to affect hydrological responses, such as runoff and its 

components of stormflows and baseflows, as well as transpiration and sediment yields, 

differently. These responses were found to be suitable indicators of selected ecosystem 

services such as water provisioning or flow regulation. Irrigation and high biomass crops, 

such as sugarcane and wattle plantations were found to reduce downstream water 

provisioning services. Degraded lands were found to reduce physical water quality through 

increased sediment yield, to reduce water provisioning during low flow periods, while the 

degraded lands increased stormflows, thereby reducing regulation of high flows. Urban land 

uses were found to significantly increase runoff, with increased impervious areas causing a 

shift from evaporation and transpiration towards runoff. Stormflows increased, with high 

flow regulation being reduced. Baseflows increased as well, as a result of a spill-over of 

runoff from impervious to pervious urban areas, which led to increased low flow regulation. 

In addition, in this study area urban return flows are generated from externally sourced water, 

further increasing streamflows and especially low flows. While urban areas showed an 

increase in downstream water quantity provision, the water quality was reduced. The 

combined effects of the current land use mosaic on the annual streamflows partially cancel 

each other out, while the proposed urbanisation dominated hydrological responses. Influences 
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of various land uses on hydrological ecosystem services were thereby shown, which 

contributes to a better understanding of the linkages between the two. 
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1. INTRODUCTION 

 

The natural environment provides services to humans in the form of climate regulation, water 

provisioning and regulation, biodiversity-related and other services. These so-called 

ecosystem services have economical, societal, as well as environmental value. At this point in 

time, decisions about changes in land use are often made without taking into account what the 

impacts of those changes would be on the ecosystem services which this land provides to 

both individuals and to society. However, increasing tracts of land are being transformed 

from their natural state to human-influenced land uses (Foley et al., 2005). This can also be 

observed in the province of KwaZulu-Natal, South Africa (Jewitt, 2012), where the 

Mpushini/Mkhondeni study catchments are situated. These water-limited study catchments, 

which form part of the larger uMgeni Catchment, have to date experienced a degree of 

transformation through agricultural development and urban sprawl and there are currently 

various proposals for land use change, from natural and agricultural, to more concentrated 

urban land uses. The current and proposed land use influences on ecosystem services should 

be recognised and accounted for and should include feedback and links within the complex 

ecological-human system, in order to make informed land use decisions for a sustainable 

future.  

 

This research aims at improving the knowledge on linkages between hydrological ecosystem 

services, which Brauman et al. (2007) define as the benefits to humans produced by 

terrestrial ecosystem effects on freshwater, and the current and proposed land uses within the 

study area. The objectives are to model changes in hydrological responses as a result of land 

use modification and then to relate these response changes to changes in ecosystem services. 

 

In this document, a literature review on ecosystem services, hydrological ecosystem services, 

land use and the links amongst these, is presented in Chapter 2. A need for improved 

knowledge on the links between land use change, hydrological responses and ecosystem 

services is established from the literature, and this research aims to contribute towards these 

links. In Chapter 3 background information is given on the water-limited study catchment, on 

the scenarios of baseline natural land cover, of current and of proposed land uses. Methods of 

analysis are described in Chapter 4, starting with the hydrological implications of the 

scenarios, a description of the delineation of the study area into catchment units and further 
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into hydrological response units, a description of the hydrological model that was used and of 

the relevant hydrological model inputs, as well as the outputs of hydrological responses. 

Results are presented in Chapter 5, starting with the results of hydrological analyses from the 

baseline, i.e. pre-human, untransformed land cover, which is used as a reference. Thereafter, 

an interpretation of changes in hydrological responses between current land uses and the 

baseline land cover follows, as well as an interpretation of differences in hydrological 

responses between proposed urbanisation and current land uses. The hydrological responses 

are used as indicators for selected provisioning, regulating and supporting hydrological 

ecosystem services. The land use changes are then linked with those selected ecosystem 

services. Finally, in Chapter 6, the significance of the results is discussed, conclusions are 

drawn and further research is recommended. 

 

An overview of the outline of the dissertation, as presented above, is provided in Figure 1. 

This overview will be used to introduce each chapter, with emphasis on where a respective 

chapter fits into the overall objectives of this research. 

 

 

Figure 1 Overview of the objective of this study, the approach adopted and the sections 

making up the dissertation 

  

Sections

Objective: To evaluate changes to selected hydrological responses and

associated selected ecosystem services provided by the study area, as a result

of current and proposed land use modifications

Approach: The objective is to be achieved by identifying the scenarios of

baseline land cover as well as current and proposed land uses; sub-delineating

the study area into land use determined hydrological response units; applying

an appropriate hydrological simulation model to assess changes in hydrological

responses from baseline land cover as well as current and proposed land uses;

and relating these changes in hydrological responses to changes in selected

ecosystem services

Chapter 2

Literature 

Review

Chapter 3

Background 

Information

Chapter 4

Methods

Chapter 5

Results

Chapter 6

Discussion

Chapter 1

Introduction
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2. LITERATURE REVIEW 

 

2.1 Research Overview and Introduction 

The literature review fits into the overall research objective and approach adopted, as shown 

in the overview provided in Figure 2.1. 

 

 

Figure 2.1 The literature review within the context of this dissertation 

 

The state of relevant existing knowledge, as reviewed in the literature, will be presented in 

this chapter. Ecosystem services will be explained first, followed by a description of 

hydrological ecosystem services. An overview of land use within an ecosystem services 

context will then be given, as will the links between land use and hydrological ecosystem 

services. 

 

2.2 Ecosystem Services  

Ecosystems, their functioning and resilience and associated ecosystem services will be 

introduced first. After this, declining ecosystem services and their consequences, as well as 

ecosystem services assessments for decision-making will be described, with examples of 

investments in ecosystem services. The section will conclude with an assessment of 

ecosystem services in the South African context. 

 

  

Sections

Objective: To evaluate changes to selected hydrological responses and

associated selected ecosystem services provided by the study area, as a result

of current and proposed land use modifications

Approach: The objective is to be achieved by identifying the scenarios of

baseline land cover as well as current and proposed land uses; sub-delineating

the study area into land use determined hydrological response units; applying

an appropriate hydrological simulation model to assess changes in hydrological

responses from baseline land cover as well as current and proposed land uses;

and relating these changes in hydrological responses to changes in selected

ecosystem services

Chapter Outline:

• Ecosystem Services

• Hydrological Ecosystem Services

• Land Use within an Ecosystem Services Context
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2.2.1 Ecosystems functioning and resilience 

Ecosystems may be defined as a dynamic complex of plant, animal and micro-organism 

communities and the non-living environment, interacting as a functional unit (MEA, 2005). 

Ecosystems are variable, dynamic and self-organising systems (MEA, 2005). When 

considering the earth as an ecosystem, the term biosphere is often used. The diversity and 

structure of the ecosystem are important for its functioning. There are feedbacks and links 

within an ecosystem, and these are generally complex adaptive systems. These feedbacks 

might be linear, but more often take place in increments or even lead to sudden shifts in 

ecosystem composition or functioning (Scheffer et al., 2001). Such changes may result in a 

permanent reduction or loss of associated ecosystem services (Jewitt, 2002) and will be 

explained in more detail in Section 2.2.3. 

 

Maintaining the diversity and connectedness of ecosystems fosters resilience against 

disturbances. Resilience determines the scale of disturbance that can be absorbed, before 

irreversible changes, within the structure of the system, take place. Slow resistance loss sets 

the stage for larger changes if the ecosystem is subjected to a random event, such as a major 

climate fluctuation or when the ecosystem crosses a threshold (Scheffer et al., 2001; 

Carpenter et al., 2006). Scheffer et al. (2001) gives examples of ecosystem shifts, including:  

 

a) the sudden eutrophication in a shallow lake as a result of increased nutrient load 

reaching a threshold;  

b) the alternate stable states of moist vegetated and dry desert states of the Sahel region, 

caused by feedback between vegetation and climate; or 

c) desertification through local soil–plant interactions, with reduced vegetation in certain 

dryland regions leading to reduced water infiltration which, in turn, renders the 

establishment of new plants more difficult or impossible.  

 

Humans are an integral component of ecosystems. However, anthropogenic (man-made) 

influences have added increased complexity and are continually altering ecosystems, while 

natural habitats are declining (MEA, 2005). In 2007, the human ecological footprint, which is 

an indicator of the ecological capacity necessary to meet human needs, exceeded the earth’s 

actual capacity to produce renewable resources and absorb CO2 by 50 % (WWF, 2012). Since 
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1966, humanity’s ecological footprint has doubled (WWF, 2012) and humanity is thus living 

in a so-called “ecological overshoot” (Wackernagel et al., 2002). 

 

2.2.2 Ecosystem services defined 

Healthy ecosystems have the ability to provide a variety of ecosystem services which are 

essential to human existence, are complex and not yet fully understood. Most ecosystem 

services cannot be replaced by technology (Daily, 1997; MEA, 2005). Human health, the 

economy and security are tied to ecosystem services (MEA, 2005; Adger, 2006). They are 

understood to be benefits that humans obtain from ecosystems (MEA, 2005), either directly 

or indirectly (TEEB, 2010). Ecosystem services may be divided into provisioning services 

(e.g. providing food and water), regulating services (e.g. flood and drought regulation, 

climate regulation), cultural services (e.g. providing aesthetic, spiritual or educational 

services), as well as supporting services (e.g. soil formation or water purification) which are 

needed to maintain the other services (MEA, 2005). Further examples of ecosystem services 

are provided in Figure 2.2.  

 

 

Figure 2.2 Components of ecosystem services (adapted from Millennium Ecosystem 

Assessment, 2005) 

 

Often ecosystem services have been provided free of charge by nature to society and they can 

thus be classified as public goods or “commons” (Daily, 1997). Although ecosystem services 

often do not have “price tags” to them, they have value and might be expensive to replace, if 

Supporting

• Nutrient cycling • Soil formation •  Primary production

• Waste decomposition  •   Crop pollination  • …

Cultural

 Aesthetic

 Spiritual

 Educational

 Recreational

 Religious

 Intellectual

 Scientific 

discovery

 …

Regulating

 Climate regulation

 Flood regulation

 Disease regulation

 Water purification 

 ...

Provisioning

 Food

 Fresh water

 Wood and fibre

 Minerals, 

 Energy from 

hydropower or fuels 

such as coal, gas 

 …



Page 6 

 

this is at all possible (Turner and Daily, 2008). Valuing ecosystem services, and thereby 

internalising previously external costs, helps to channel behaviour “toward a future in which 

nature is no longer seen as a luxury we cannot afford, but as something essential for 

sustaining and improving human well-being everywhere” (Daily et al., 2009, p. 27).  

 

An ecosystem management approach should allow society to harness ecosystem services 

sustainably. Ecologists emphasise the importance of conserving natural areas for their 

ecological processes and functions within a landscape which, next to preserving biodiversity, 

also give rise to other ecosystem services and, therefore, ensure sustainability (Daily, 1997). 

However, not only natural areas, but to a certain extent also landscapes with multi-functional 

uses, give rise to various ecosystem services. 

 

The emerging science of ecosystem services is interdisciplinary, attempting to bring together 

knowledge from ecology, economics, engineering, earth sciences, landscape architecture and 

land use planning, for an improved and integrated understanding for decision-making that 

includes the maintenance of ecosystem services. To translate the benefits of ecosystem 

services into an economist’s language, the term “natural capital” is sometimes used. Natural 

capital provides benefits, inter alia, from soil, climate, topography, flora and fauna and their 

interaction in a thermodynamically closed system, powered almost exclusively by solar 

energy (Daly and Farley, 2003). In economists’ terms, natural capital is the stock of natural 

ecosystems that yield a flow of valuable ecosystems goods or services into the future, 

comparable to the interest of financial capital (Wackernagel and Rees, 1997; Daly and Farley, 

2003). It has a relationship with the economic and social capital and is supported by good 

governance, as shown in Figure 2.3. Natural capital has been identified as increasingly 

becoming the limiting factor in economic growth, development and well-being (Daly and 

Farley, 2003; Aronson et al., 2006). Farley and Daly (2006) explicitly distinguish between 

economic growth, which they understand as the physical increase in the rate at which the 

economy transforms natural resources into economic output and waste, and economic 

development, which is an increase in human welfare for a given level of resource use. 
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Figure 2.3 Natural capital within a context with the economy and social capital (du Plooy, 

2012) 

 

Severe and irreversible declines in ecosystem services and human well-being may occur if 

not enough emphasis is placed on enhancing natural capital at the same time as human, social 

and manufactured capital (Carpenter et al., 2006). There are strong arguments for a re-

investment into natural capital, either via payment for ecosystem services provision, or via 

other means (Jewitt, 2002; FAO, 2007; Turner and Daily, 2008). The ecosystem, as a whole, 

provides multiple associated services. Therefore, there might be multiple benefits to investing 

in natural capital (de Groot, 2006).  

 

The stock of natural capital has decreased from the pre-industrial era to the present human- 

dominated era (Aronson et al., 2006), with an associated reduction in overall ecosystem 

services. At the same time, the stock of manufactured capital has increased. The human use 

of energy, matter and waste material has grown, while the size of the biosphere has stayed the 

same (Figure 2.4). There were also trade-offs between ecosystem services, e.g. a worldwide 

increase of food production, but a decrease of other services. 
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Figure 2.4 A pre-industrial and anthropogenic biosphere diagram (Aronson et al., 2006), in 

which NC is natural capital, MC is manufactured capital and RNC is restoring 

natural capital  

 

Owing to the loss of natural capital from past development and the associated deterioration of 

ecosystem services, there is now a need for any further development to be sustainable. The 

aim of sustainable development is to meet current needs, while not compromising of future 

generations’ ability to meet their own needs (Brundtland, 1987). Therefore, the development 

of a resource should be such that the resource’s resilience, integrity and characteristics are 

sustained (Jewitt, 2002). Social and economic development requires the use of natural 

resources and is thereby impacting on the natural system. A trade-off is likely between 

certain benefits gained and certain benefits lost, as human influence impacts negatively on 

some ecosystem services which benefit society (Foley et al., 2005; Brauman et al., 2007). 

The ideal would be an optimised mix of different ecosystem services and overall maximum 

benefits from natural and human (artificial) derived services (Figure 2.5). However, there are 

also views that development cannot be sustainable, if it involves the transformation of natural 

land (Balmford et al., 2002; Lovelock, 2009). Adopting a sustainability paradigm means 
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rethinking the meaning of development and questioning the adequacy of impact mitigation 

(Crane and Swilling, 2007). 

 

 

Figure 2.5 Maximising of the provisioning of natural and human-made services (after 

McCartney et al., 2000) 

 

2.2.3 Declining ecosystem services  

In the Millennium Ecosystem Assessment (MEA, 2005), compiled from inputs of over 1300 

scientists from 95 countries, 15 of the 24 global ecosystem services were found to be 

declining. When ecosystems are over-utilised, their ability to provide services reduces 

(Jewitt, 2002). The societal responses to declining ecosystem services may be passive and 

include falling ill from polluted drinking water or food, famine as a result of land fertility 

degradation, disputes due to controversies over water and land use, or active responses, for 

example, when individuals migrate or reduce fallows during crop rotation (Falkenmark et al., 

1999). A worst-case scenario of reducing ecosystem services would be that after reaching a 

threshold the services might be irreversibly lost. Depending on the services lost or reduced, 

the quality of life for society would then decline, first affecting the poor and resulting in a 

lowering of average living standards (MEA, 2005). A large-scale reduction in essential 

ecosystem services would reduce the carrying capacity of a habitat, i.e. the population that 

can be sustained by that habitat, in this case the earth, leading to increased species extinctions 

and human mortality (Pimentel et al., 1999). To reduce the chances of this happening, a 

number of planetary boundaries for a safe operating space for humanity have been suggested 

(Rockström et al., 2009) for the total amount of land system change, as well as biodiversity 

loss, climate change, ocean acidification, stratospheric ozone depletion, the nitrogen cycle, 

the phosphorus cycle, global freshwater use, atmospheric aerosol loading and chemical 
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pollution (Figure 2.6). These planetary boundaries create an environmental ceiling for human 

well-being, while a social foundation is required on the inside, thus figuratively creating a 

“doughnut” of a safe and just place for humanity to thrive (Raworth, 2012).  

 

 

Figure 2.6 Planetary boundaries (after Rockström et al., 2009). The inner (green) shaded 

area represents the safe operating space, with proposed boundary levels at its 

outer contour, where the extent of the wedges for each boundary shows the 

estimate of current (i.e. 2009) position of the control variable and points show 

the estimated recent time trajectory (1950–present) of each control variable 

 

The question arises why humans nevertheless allow ecosystem and the associated services to 

decline, especially because it is usually cheaper to avoid degradation than it is to pay for 

ecological restoration (TEEB, 2010). Explanations for this can be found in the literature and 

include the following: 

  

a) Intrinsic value alone does not signify the dependence of humans on natural capital 

(Wackernagel and Rees, 1997); 

b) scientific information about ecosystem services and changes to these are not available 

(Turner and Daily, 2008); 
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c) decision-makers (governments or individuals) continue to discount inappropriately 

when deciding between ecosystem conservation and conversion (Pearce, 2007); 

d) markets often reward short-term exploitation values of natural capital and greed, to the 

detriment of sustainable ecological health and associated human welfare (Ostrum, 

1990; Balmford et al., 2002; Turner and Daily, 2008); 

e) beneficiaries and producers might not be linked (van Jaarsveld et al., 2005); 

f) multiple services across a range of competing land uses are not evaluated, so decision-

makers have not got all the facts (Balmford et al., 2002); 

g) the decision horizon is not long enough (Turner and Daily 2008); 

h) the future is discounted for the present (Wackernagel and Rees, 1997);  

i) there might be a blocking effect to change through strong stakeholder’s interest 

(Falkenmark et al., 1999); 

j) where environmental legislation is in place, there might be lack of enforcement 

mechanisms or a fragmented administration or bureaucracy (Falkenmark et al., 1999); 

k) there might be a “global deficit of care” (Pearce, 2007); 

l) various psychological barriers exist to environmental action (Wackernagel and Rees, 

1997; Gifford, 2011); 

m) a consumer-driven, human-controlled world seems to be the goalpost for many (Daly, 

1991); and/or 

n) the perceptions of environmental baselines keep shifting from generation to generation, 

thus masking change (Sáenz-Arroyo et al., 2005).  

 

2.2.4 Ecosystem services assessments for decision-making 

An ecosystem approach is about a new way of thinking and working, by shifting the focus 

away from looking at natural environmental policies separately e.g. air, water, soil and 

biodiversity, towards a more integrated approach based on whole ecosystems (DEFRA, 

2007). However, measuring and valuing services does not directly lead to an increased use of 

this knowledge. To see knowledge about multiple ecosystem services generated from a 

landscape implemented into planning and development tools, communication across 

ecosystem and sector boundaries is required, including the identification of a range of 

services, as well as cross- comparison and trade-off analysis (Primmer and Furman, 2012). 
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Any management approaches to ecosystems require dealing with uncertainty because, as 

already stated, ecosystems are complex adaptive systems (Jewitt, 2002). Various studies have 

been undertaken where ecologists and economists have valued the social benefits and costs of 

conserving biodiversity and ecosystem services (e.g. Balmford et al., 2002; Chan et al., 

2006). Most conclusions were that conserved ecosystems generally generate net benefits. For 

the purpose of decision-making, it might not be so important to know the total value of 

specific ecosystem services. Of greater importance, when a certain area is transformed, is 

often the change or margin to the flow of ecological services. Therefore, a change assessment 

(also called a marginal assessment) can be used, comparing the changes in ecosystem 

services before and after a scenario (Daily, 1997). An example is the recent TEEB project, 

which is a study commissioned by the United Nations to assess the global economic costs of 

ecosystem degradation and biodiversity loss. The TEEB project concentrates on assessing the 

consequences of changes resulting from alternative ecosystem management options, 

including best practice examples from around the world, rather than attempting to estimate 

the total value of ecosystems (TEEB, 2010).  

 

It is recognised, however, that ecosystems often do not follow linear feedbacks. There might 

also be sudden consequences, e.g. when a critical threshold has been exceeded, as was 

explained in Section 2.2.1. A change analysis can be made, as long as the threshold is not 

exceeded, which means that the lowest functioning point of the specific ecosystem function is 

not reached. It is acknowledged, however, that this information is often not available and that 

it is then safer to err on the side of caution.  

 

If only one ecosystem service is taken into the equation of deciding on ecosystem 

degradation, conservation or restoration, then the benefits might be different to when various 

ecosystem services are considered simultaneously. There might also be a trade-off between 

different ecosystem services and their respective value might, in turn, be perceived differently 

by the various beneficiaries (Lowe et al., 2009). The over-exploitation of provisioning 

ecosystem services usually leads to a reduction in regulating ecosystem services. This might 

reduce future yields of provisioning services and it may increase the vulnerability of people 

to environmental variability (Carpenter et al., 2006).  
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If in doubt, a complete ecological assessment should be undertaken before ecosystem 

transformation is allowed. The science of ecosystem services is still evolving, including an 

integrative framework. Important components for capturing the benefits of ecosystem 

services are, inter alia, property rights (Carpenter et al., 2006), as well as stakeholder 

perceptions and institutional arrangements (Turner and Daily, 2008). Turner and Daily (2008) 

suggested an ‘Ecosystem Services Framework’, i.e. an environmental change process which 

starts with identifying the ecosystem services and the relevant spatial and time scales. 

Thereafter, suitable models and mapping approaches need to be identified (Turner and Daily, 

2008), followed by an environmental change scenario analysis for the relevant different 

resource uses, policies or choices; an ecosystem services ‘benefit capture’ via payments; 

capacity building and monitoring; and lastly, a post-policy appraisal and possible re-

evaluation (Turner and Daily, 2008). There is a need for further research to improve the 

implementation of the ecosystem services concept into decision-making, for example, in 

landscape planning (Hermann et al., 2011).  

 

Various approaches and means of implementing the ecosystem concept have been used, as 

well as different classifications regarding ecosystem services, values, benefits, functions, 

processes and indicators (Hermann et al., 2011). A widely accepted definition of ecosystem 

processes is the complex interactions among biotic and abiotic elements of ecosystems 

(Hermann et al., 2011). Most authors agree that goods and services are generated by 

ecological functions (Hermann et al., 2011) and that ecosystem processes, functions and 

services are interlinked (de Groot, 2006). Lowe et al. (2009) emphasise the importance of 

modelling trade-offs for different scenarios, while Hermann et al. (2011) recommend local 

scale, model-based research activities as significant tools in aiding decision-making. Cowling 

et al. (2008) see the biophysical quantification of ecosystem services as an essential step 

towards successful implementation actions in order to safeguard them and Egoh et al. (2012a) 

call for a robust biophysical quantification of ecosystem services. 

 

Ecosystem services assessments are, however, not without challenges, including the fact that 

the assessment of the full range of ecosystem services seems to be impossible (Hermann et 

al., 2011; Primmer and Furman, 2012). Further challenges include the fact that it is still an 

evolving concept, without universal standards on what to measure and how, and these are 

important requirements to be able to compare studies (Hermann et al, 2011). Various 
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investigations have found that human-induced change to ecosystems might benefit the 

landowner and individuals, while disadvantaging the community locally and globally. Multi-

functionality and sustainability might often not be in the individual owner/manager’s interest 

(Hubacek et al., 2009). Therefore, the total benefit to society needs to be considered in 

ecosystem services assessments. Furthermore, different scenarios might yield trade-offs 

between different ecosystem services. Payment for ecosystem services is a possible way of 

transferring benefits from users to producers and thereby attaining sustainability (Turner and 

Daily, 2008). The time-frame considered in an assessment might also give different results (a 

five-year view vs. a 50-year view), as will the aim. For example, if the aim is the “highest 

possible quality of life compatible with the conservation of resilient, healthy ecosystems” 

(Farley, 2012, p. 40) or an increase in total sustainable social welfare or happiness per capita, 

compared to the current approach of increase in Gross Domestic Product (GDP), the 

outcomes would be different (Heinberg, 2011). When an ordinary economic approach is 

used, discount rates to the present are applied, which assumes the possibility of unlimited 

growth, which is an enigma (Heinberg, 2011). The current economic approach seems to fail 

to protect ecosystem services and to internalise previous external costs (Daly, 1991; 

Wackernagel and Rees, 1997; Heinberg, 2011). 

 

2.2.5 Examples of benefits from investments into ecosystem services 

Examples abound of successful investments into ecosystem services (e.g. Daily et al., 1997; 

Balmford et al., 2002; Foley et al., 2005; Turner and Daily, 2008). Some are mentioned 

below. 

  

a) In the 1990s, New York City officials invested in restoring the natural asset, viz. the 

watershed, rather than building a water filtration plant and saved over $6 billion 

(National Research Council, 2000; Turner and Daily, 2008).  

b) Decision-makers in Napa, California invested in a “living river”, which included the 

restoration of floodplains, rather than building physical concrete barriers. The 

restoration of wildlife, fish and scenic beauty led to a revitalisation of the town and 

major private capital investment followed (Turner and Daily, 2008). 

c) Costa Rica launched a payment scheme for the provision of a suite of ecosystem 

services, including water quality and quantity, carbon sequestration, biodiversity and 
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scenic beauty, funded by a diversity of sources, thereby giving farmers an additional 

income (Turner and Daily, 2008). 

d) South Africa has invested in the “Working for Water” programme, the aim of which is 

to increase water availability by clearing water-thirsty alien invasive plants and, at the 

same time, create employment (Mander et al., 2011).  

 

2.2.6 Ecosystem services in the South African context 

South Africa is a developing country, with a population of over 50 million (Statistics SA, 

2011). An emphasis of the post-apartheid government is on economic growth and the 

upliftment of previously disadvantaged communities (The Government of South Africa, 

2010b). There is a drive for economic development, including the mining of natural resources 

and industrialisation. The population trends are moving towards an urbanised population. 

There is a desperate drive to generate economic growth and deliver income, jobs and basic 

services to poor people, who form the country’s majority, which politically means 

development at all costs (Mander et al., 2011). Biodiversity conservation and environmental 

protection is perceived as a threat to welfare improvement and an obstacle to development. 

This simple jobs-versus-the-environment paradigm needs to be changed (Mander et al., 

2011). The South African development assumptions largely fail to consider the limits of key 

ecological resources. When it comes to local government, the development drive is informed 

by two paradigms: the municipal integrated local area development frameworks (IDPs) and 

the environmental impact assessments (EIAs), which are ‘development-plus-impact-

assessment’ (Crane and Swilling, 2007). 

 

Enabling laws for the beneficial use of environmental resources are in place in South Africa, 

in order to serve the public interest and to protect the environment as the peoples’ common 

heritage (NEMA, 1998; Stuart-Hill and Schulze, 2010). However, the link between natural 

capital and poverty reduction has yet to be made by many with decision-making power 

(Shackleton et al., 2011).  

 

Ecosystem services are vital for environmental performance. In recent studies, the 

environmental performance index and South African ecosystem vitality (Yale Center for 

Environmental Law and Policy, 2012; Standard Chartered, 2013) was extremely poor in 

absolute terms, amongst the poorest performing countries, out of the assessed, and with a 
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declining trend. The ecosystem effect on water resources showed a very strong decline over 

the past decade (Yale Center for Environmental Law and Policy, 2012).  

 

With regard to studies about ecosystem services provision, however, South Africa is leading 

the way in Africa (Egoh et al., 2012b). Water, tourism and grazing are found to be important 

ecosystem services in Africa and have been included in assessments. A big attraction to 

tourists in South Africa is the landscape, high biodiversity, flowers and scenery, and Africa 

remains one of the world’s most pristine continents. The role of water flow regulation, as 

well as water filtration to provide clean water, is found to be important in poverty alleviation 

in South Africa (Egoh et al., 2012 b).  

 

Rouget et al. (2010) conducted a partial sectorial analysis for ecological goods and services 

in South Africa, specialising in carbon sequestration, surface water supply, water flow 

retention and soil retention. The study found that it is possible to find economic benefit in 

restoring or conserving natural capital. The potential market was found to be considerable. 

The challenge, however, is to create the appropriate institutions to develop such markets 

(Blignaut and Moolman, 2006; Rouget et al., 2010). 

 

2.3 Hydrological Ecosystem Services  

Hydrological ecosystem services cover the benefits to people produced by terrestrial 

ecosystem effects on freshwater (Brauman et al., 2007). Water and associated hydrological 

ecosystem services are fundamental to life. Constraints in providing sufficient, fresh, good 

quality water are a limiting factor to development in many parts of the world. This is 

projected to get worse (FAO, 2000) as a result of rising demand, especially because 

freshwater comprises only 0.26 % of global water. In the 20
th

 century alone, the freshwater 

extraction increased seven-fold from that before. The major drivers have been population 

growth, the rising standards of living, the expansion of irrigated agriculture (Gleick, 1998), as 

well as increased meat consumption (Hoekstra and Chapagain, 2007; WWF, 2012). 

Resources are limited, and if more resources are needed to cure past and present ills, then less 

will be available to prevent future degradation (Falkenmark et al., 1999). Freshwater 

ecosystems are the focus of this study (Section 3ff) and will be introduced next. 
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2.3.1 Freshwater ecosystems 

Freshwater ecosystems are often understood to consist mainly of rivers and riverine areas. A 

more inclusive view, which is taken here, and is in line with those of McCartney et al. (2000) 

and Jewitt (2002), is that freshwater ecosystems can be understood as landscape elements that 

link and affect the passage of water from the land to the sea and water as evapotranspiration 

from the land to the atmosphere. This definition includes the whole terrestrial catchment area. 

When examining freshwater ecosystems, the entire hydrological cycle needs to be examined, 

starting from rainfall over the catchment and not only the water in a river or in other water 

bodies (NWA, 1998; McCartney et al., 2000; Jewitt, 2002; FAO, 2007). The hydrological 

cycle, therefore, will be examined next. 

 

2.3.2 The hydrological cycle with the partitioning of precipitation into blue, green and 

white water flows 

The total amount of water on earth is unchangeable and finite. This unchangeable amount of 

water moves within the hydrological cycle, albeit differently in different parts of the world 

and differently from season to season (L’vovitch, 1979). In the hydrological cycle, 

precipitation is partitioned into runoff flows, through ground and water bodies, and into water 

vapour flows back into the atmosphere, through evaporation and transpiration processes. This 

partitioning of precipitation into the evapotranspiration output (also called total transpiration), 

is often termed “green water”, while “blue water” represents the water flows through ground 

and water bodies (Falkenmark et al., 1999; Falkenmark, 2000; FAO, 2000; Jewitt, 2002; 

2006). There is a dynamic interrelationship between evapotranspiration and ‘‘blue’’ water 

(Falkenmark et al., 1999; FAO, 2000; Jewitt, 2002). Savenije (2004) and Newman et al. 

(2006) request a further separation of evapotranspiration into evaporation and transpiration, 

which Savenije (1998) outlined as white and green water flows. For the purpose of this study, 

the approach of Schulze and Maharaj (2008) is followed, where green water is understood to 

be the soil water taken up by plants to create biomass and transpired by the vegetation to the 

atmosphere, excluding evaporation. White water is the portion that is evaporated to the 

atmosphere from intercepted rainfall by plants or buildings, as well as directly from the soil. 

Blue water is understood to be water flows through ground and water bodies, in this case 

streams, rivers, groundwater, wetlands, as well as abstracted water. In other words, it is the 

runoff coming from the partitioning of precipitation at the land surface, which forms 
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streamflow, and the partitioning of soil water, which forms baseflow and the recharge of 

groundwater.  

 

The hydrological cycle, showing landscape–hydrological ecosystem–atmosphere interactions, 

is illustrated in Figure 2.7. 

 

 

Figure 2.7 The hydrological cycle, showing landscape–hydrological ecosystem–

atmosphere interactions (after Brauman et al., 2007) 

 

Humans have influenced the hydrological processes and transformed the landscape to provide 

freshwater for irrigation, industrial and domestic use. This, in turn, has influenced the 

hydrological cycle (Foley et al., 2003).  

 

2.3.3 Hydrological terminology, processes and responses  

Flows through landscape and water stores generally transform high frequency precipitation 

variability into low frequency modes of hydrological variations (Bounoua et al., 2002). These 

hydrological processes are influenced by climate and land characteristics. The climate 

influence on hydrological processes are, for example, precipitation and temperature 

parameters, in as much as they influence evaporative processes and plant growth rates, as 

well as changes in CO2 concentrations regarding transpiration feedbacks. Hydrological 

processes are further influenced by land characteristics such as soil properties, soil water 

saturation rates, slope, land use, land cover and land management characteristics, which 
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influence soil water evaporation, the infiltration of rainwater and soil erodibility, as well as 

changes in soil surface properties. While the whole landscape has a role to play in influencing 

hydrological processes, wetlands and floodplains are often singled out in the literature (e.g. 

Aylward et al., 2005). They act as natural sponges; expanding by absorbing excess water in 

times of heavy rain and contracting as they release water slowly throughout the dry season to 

maintain streamflow (Aylward et al., 2005).  

 

Environmental processes on approximately half of the global land mass are limited by water 

availability. These so-called water-limited environments include arid, semi-arid and sub-

humid regions, and may be understood as areas where the annual precipitation is less than the 

potential evapotranspiration, with often extreme temporal variability resulting from extended 

periods with little or no precipitation (Newman et al., 2006). Low flows may be understood 

as flows of water in a stream during prolonged dry weather and are usually a seasonal 

phenomenon, while drought is a natural occurrence resulting from less than normal 

precipitation for an extended period of time (Smakhtin, 2000). The hydrological processes 

over the catchment control the ability to absorb and store water during precipitation events 

for later release as low flows, while the processes in the river channel zone are the most 

relevant for the discharge of stored water into the channel (Smakhtin, 2000). The spatial and 

temporal components of low flow hydrology are related to physiographic factors, as well as 

to various man-induced effects (Smakhtin, 2000). 

 

Human demand for water in certain areas might be met the transfer of water from other 

catchments and within catchments (NWRS, 2004). However, apart from such transfers being 

expensive, they may also lead to consequences within the receiving, as well as the donating, 

catchment (WWF, 2009). 

 

Hydrological processes which are relevant for water quantity and pathways through the 

landscape (Falkenmark, 2000) thus give rise to various hydrological responses e.g. to 

streamflows, to runoff and its components of stormflow and baseflow, as well as to 

transpiration, evaporation and sediment yield. The terminology used in this dissertation to 

describe these hydrological responses is explained next. 
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a) Streamflows have magnitudes, are variable and are spatially distributed. They are made 

up of runoff accumulated from the entire catchment upstream of a point of interest 

(Schulze and Maharaj, 2008).  

b) Runoff is defined here as having been generated from a specific sub-catchment and it 

may be divided into its components of stormflow and baseflow (Schulze and Maharaj, 

2008).  

c) Stormflows are generated from a specific rainfall event and have unique attributes of 

magnitudes, rates and carrying capacity of soil particles. They are the main runoff 

contributors during times of floods (Schulze and Maharaj, 2008).  

d) Baseflows derive from groundwater storage or other delayed sources and also have 

unique attributes of magnitudes and rates of release into a stream (Brauman et al., 

2007; Schulze and Maharaj, 2008) and  are typically the biggest contributor to 

streamflow during dry season low flow conditions (Smakhtin, 2000).  

e) Transpiration is understood to be the soil water taken up by plants and transpired by the 

vegetation to the atmosphere, and in the process they create biomass (Schulze and 

Maharaj, 2008).  

f) Sediment yields consist of the soil detached from a landscape after a rainfall runoff 

event. The soil reaches the stream and results from the interaction of slope, vegetation 

cover and management characteristics, with the peak discharge of an event as the 

detaching agent and stormflow as the sediment transporting agent. Sediment yields 

reduce storage capacity in water bodies and slow down streamflows (Schulze, 1995).  

 

Cilliers et al. (2013) call for an understanding of land–water interactions based on processes 

and links between different components, an understanding of their function and structure, as 

well as the temporal and spatial scales at which they are dominant or dormant. Hydrological 

processes give rise to hydrological ecosystem services, which will be examined next.  

 

2.3.4 Hydrological ecosystem services and their importance, with examples and 

categorisations 

Hydrological ecosystem services can be understood as the benefits to people produced by 

terrestrial ecosystem effects on freshwater (Brauman et al., 2007). Precipitation is the 

ultimate source of water on earth (Mirza and Patwardhan, 2005) and therefore the source of 

associated hydrological ecosystem services. The understanding is that a certain amount of 
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water can be utilised before the ecosystem loses resilience. However, a level of ecological 

functioning and integrity is required for maintaining resilience (MacKay, 2000; 2001). It 

needs to be understood that both ecosystems and the hydrological cycle require adequate 

multi-level functioning. Failure on one system level will ultimately result in the failure of the 

entire system. To sustain ecosystem functions, as well as to maintain sustainable water 

supplies, the amount of water that can be abstracted from a stream system is limited (FAO, 

2000; Jewitt, 2002). 

 

Hydrological ecosystem services contain more than just freshwater provisioning services. 

The hydrological cycle plays many roles in the earth’s systems of climate, chemistry and 

biology and it is difficult to define distinct supporting, regulating, cultural or provisioning 

service categories (Mirza and Patwardhan, 2005). An attempt to divide hydrological 

ecosystem services into such provisioning, supporting, cultural and regulating services was 

compiled by Aylward et al. (2005), where provisioning services include sustained quantities 

and an acceptable quality of water from inland water ecosystems, the variability and 

seasonality of flows and whether flows are perennial or ephemeral. They make this water 

available for consumptive uses, e.g. for drinking, domestic, agricultural (dry land and 

irrigation) and industrial purposes, as well as for non-consumptive uses such as power 

generation and transportation/navigation. Supporting services include soil water essential for 

primary production, nutrient cycling and the resilience of the natural hydrological system to 

extreme events. Cultural services contribute to human well-being through, for example, 

recreational activities, tourism and scenic values and existence values, such as the satisfaction 

gained from free-flowing rivers (Aylward et al., 2005). Regulating services include the 

maintenance of water quality through natural filtration and natural water treatment, the 

buffering of flood flows and erosion control by floodplains and wetlands. (Aylward et al., 

2005; Le Maitre et al., 2014).  

 

Different approaches in classifying hydrological ecosystem services, or trying to link them 

with functions, processes and attributes, were found in the literature (e.g. Aylward et al., 

2005; de Groot, 2006; Brauman et al., 2007). These various approaches regarding 

hydrological ecosystem services, with an emphasis on provisioning, regulating and 

supporting services relevant for this study, have been combined and are shown in Table 2.1. 



Page 22 

 

This table is not meant to be an exhaustive list of hydrological ecosystem services and the 

processes that give rise to them, but serves to derive an approach suitable for this dissertation.  

 

Table 2.1 A summary of relevant ecosystem functions, processes, hydrological attributes 

and services as found in the literature (Sources: Aylward et al., 2005; de Groot, 

2006; Brauman et al., 2007) 

Ecosystem Functions Ecosystem processes and 

components 

Hydrological 

attribute 

Example of services Author 

Provisioning   Water (quality and quantity) for consumptive use (for 

drinking, domestic, agricultural or  industrial uses) 

Aylward 

et al., 

(2005) Water for non-consumptive use (for generating power and 

transport/navigation) 

Aquatic organisms for food and medicines 

Regulation function: 

Disturbance prevention 

Influence of ecosystem structure 

on dampening environmental 

disturbances 

 Flood prevention de Groot 

(2006) 

Regulation function: 

Water regulation 

Role of land cover in regulating 

runoff and river discharge 

 Drainage and natural irrigation de Groot 

(2006) 

Regulation function: 

Water supply 

Filtering, retention and storage of 

fresh water 

 Provisioning of water for consumptive use (e.g. drinking, 

irrigation, industrial uses) 

de Groot 

(2006) 

Regulation Natural filtration and water 

treatment 

 Maintenance of water quality  Aylward 

et al., 

(2005) 
Water/land interactions and flood 

control infrastructures 

Buffering of flood flows and erosion control  

Regulation function: Soil 

retention 

Role of vegetation root matrix 

and soil biota in soil retention 

  Maintenance of arable land 

 Prevention of damage from erosion/siltation 

de Groot 

(2006) 

Supporting     Role in nutrient cycling (role in maintenance of floodplain 

fertility), primary production 

 Predator/prey relationships and ecosystem resilience 

Aylward 

et al., 

2005) 

Habitat functions: 

Refugium and nursery 

function 

Providing suitable living and 

reproduction habitat  

  Maintenance of biological and genetic diversity (basis of 

most other functions) 

 Maintenance of commercially harvested species 

de Groot 

(2006) 

Production functions: 

Food,  

Provision of natural resources, 

Conversion of solar energy into 

edible plants and animals 

  Hunting of fish or game 

 Small-scale subsistence farming 

 Aquaculture 

de Groot 

(2006) 

Production functions: e.g. 

Raw materials 

Provision of natural resources, 

Conversion of solar energy into 

biomass for human construction 

and other uses 

  Building and manufacturing 

 Fuel and energy 

 Fodder and fertilizer 

de Groot 

(2006) 

Functions supporting 

cultural services 

  Cultural services:  

 Recreation (river rafting, kayaking, hiking, fishing as a 

sport) 

 Tourism (river viewing) 

Existing values (personal satisfaction from free-flowing 

rivers) 

Aylward 

et al., 

(2005) 

 Local climate 

interactions 

 Water use by plants 

 Quantity (surface 

and ground water 

storage and flow) 

 

Diverted water supply: 

 Water for municipal, agricultural, commercial, industrial, 

thermoelectric power generation uses 

In situ water supply: 

 Water for hydropower, recreation, transportation, supply of 

fish and other freshwater products 

Water damage mitigation: 

  flood damage reduction 

 dryland salinization 

 saltwater intrusion 

 sedimentation 

Brauman 

et al., 

2007 

 Environmental filtration 

 Soil stabilisation 

Chemical and biological 

additions or subtractions 

Quality (pathogens, 

nutrients, salinity, 

sediment) 

 Soil development 

 Ground surface 

modification 

 Surface flow path 

alteration 

 River bank development 

 

Location 

(ground/surfaces, 

up/downstream, 

in/out of channel 

 Control of flow speed 

 Short and long-term 

water storage 

 Seasonality of water use 

Timing (peak 

flows, baseflows, 

velocity) 

 

Hydrological ecosystem services are essential, inter alia, for terrestrial production and 

biological diversity. The availability of hydrological ecosystem services is influenced by the 

condition of the hydrological ecosystem and the water allocated to sustain its functioning (cf. 
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Figure 2.6 for hydrological cycle–ecosystem interactions). Water and hydrological ecosystem 

services are essential to life and have common, or public, goods characteristics. Services that 

are based on freshwater ecosystems are often taken for granted, because they become 

available with no, or minimal, investment. It is, therefore, difficult to account for their full 

economic value, which often becomes evident only once lost (Daily, 1997). One way to place 

a value on hydrological ecosystem services is to compare them to the cost of new 

infrastructural projects that are required to replace them, if this is possible (Gleick, 2000). 

 

The serious consequences of reduced hydrological ecosystem services are, inter alia, an 

increase in the occurrence and magnitude of flood and drought events. Drought and flood 

disasters are statistically the most reported natural disaster events, with millions of people 

being affected (UN, 2007). To reduce the potential damage from droughts, floods and 

alterations related to habitat functions, hydrological ecosystem services need to be sustained 

and invested in. To be able to monitor changes to hydrological ecosystem services, suitable 

indicators are often required, which will be examined next. 

 

2.3.5 Relevant indicators 

Changes to hydrological ecosystem services often cannot be measured directly. This is 

especially so for case studies with different scenarios, and for some provisioning and many 

regulating, supporting and cultural services. Frequently, indicators or proxy information are 

used in practice to measure ecosystem services (Egoh et al., 2012a). Those indicators are a 

measure of an attribute that can provide the required information. The quantity and quality of 

water integrates many processes occurring within the catchment. Some of these processes can 

be measured directly or indirectly by measuring an attribute that can provide information on 

those processes (Jewitt, 2002).  

 

Streamflow, as well as runoff and its components, are often considered useful indicators of 

the health of the hydrological ecosystem services (Brauman et al., 2007). Blue water 

indicators are, however, a delayed response to events within the ecosystem (Jewitt, 2002). 

Furthermore, the magnitude and duration of low flows and high flows, rather than mean 

flows, might be more important to ecosystem services in water-limited environments (Nilsson 

et al., 2003; Jewitt, 2006; Schulze and Horan, 2007). Sediment yield, conversely, is an 
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indicator of water quality, along with E. coli bacteria counts and nutrient concentrations, e.g. 

of nitrates, phosphates, heavy metal.  

 

Owing to the complex processes related to the biophysical sciences behind regulating 

services, e.g. the regulation of water flows, or erosion prevention and/or the moderation of 

extreme events, single indicators are often not adequate and process-based modelling often 

becomes the best option (Egoh et al., 2012a). In their review of 67 scientific papers 

concerned with practical ecosystem services quantification, Egoh et al. (2012a) found that 

runoff was frequently used as a proxy for surface water availability, followed by land cover 

(Figure 2.8.). For mapping water regulating services, the main indicators used were nutrient 

retention, land use and soil characteristics (Figure 2.9), with their definition being that water 

provisioning services relate to the water that is already available, while regulating services 

relate to a process through which clean water becomes available. For the ecosystem service 

of the control of soil erosion, the main indicators used were the type of vegetation cover and 

the soil erosion potential.   

 

 

Figure 2.8 Indicators used in practice for mapping the ecosystem service of water 

provisioning (after Egoh et al., 2012a) 
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Figure 2.9 Indicators used in practice for mapping the ecosystem service of water 

regulation (after Egoh et al., 2012a) 

 

For the purpose of this study a hydrological process model is used with measured biophysical 

data as input and hydrological responses, e.g. runoff and its components of stormflow and 

baseflow, accumulated streamflow, extreme runoff events, sediment yield and transpiration, 

as modelled outputs. These hydrological responses are seen as proxy information, or 

indicators, for the ecosystem services of water provision, water regulation (e.g. flood 

attenuation and erosion control) as well as supporting services (e.g. the supply of green water 

for primary production), as described in Sections 4.4 and 5.7. 

 

2.3.6 Hydrological ecosystem services in a South African context 

Overall, South Africa faces shortages in water and these affect hydrological ecosystem 

services. South Africa is generally a water-limited country, with major spatial and temporal 

variations in rainfall and hence runoff. Within semi-arid environments, the green (and white) 

water flows dominate over blue water flows (Jewitt, 2006).  

 

Its natural hydrology creates a high–risk natural environment (Schulze, 2003). A low mean 

annual precipitation, as well as a low rainfall-to-runoff rate of conversion is exacerbated by 

high inter-annual rainfall variability. This inter-annual variability is amplified in the 
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responses of the hydrological system (Schulze, 2003). Over much of South Africa, terrestrial 

and freshwater ecosystems are not in pristine condition, but rather in a modified and often 

damaged state, usually through unsustainable human exploitation and often linked with the 

failure to enforce policy together with a lack of structured and effective governance (Maloti 

Drakensberg Transfrontier Project, 2007; Lankford et al., 2011). 

 

Many catchments in South Africa are water stressed. Total water availability, including 

requirements for food production, is expected to decline to below 1700 m
3
/person/year, 

which makes the country vulnerable to serious water shortages by 2030 (Scholes and Biggs, 

2004). New big dam infrastructures, inter-basin transfer schemes, high levels of assurance of 

supply to key sectors of the economy, as well as widespread local reticulation networks, 

requiring extensive pumping and associated energy use, are expensive and the cost of water 

provisioning is set to rise (The Government of South Africa, 2010a). Just a 10 % decline in 

runoff is estimated to double the cost of new water schemes (The Government of South 

Africa, 2010a). Like most of the rest of the world South Africa has, historically, focused its 

water resource management approach on controlling part of the hydrological cycle, mainly 

through building water infrastructures, including dams, to provide sustained water supplies 

and to reduce threats of water shortages and to thus produce less variable flows. Inevitably, 

this natural resources management approach resulted in a reduction in the natural diversity of 

ecosystem functions, associated ecosystem services, as well as ecosystem resilience. In the 

decision-making process, ecological functioning may have often been ignored, owing to a 

lack of scientific understanding, as well as the difficulties faced by planners and policy-

makers to feature the uncertainties within the ecosystem functions and dynamics (Jewitt, 

2002).  

 

2.3.7 South African water legislation related to hydrological ecosystem services 

Progressive new water laws came into effect at the end of the 1990s (Water Services Act 

(WSA), 1997; National Water Act (NWA), 1998). Healthy aquatic ecosystems are considered 

to be the cornerstone of water resources and are required for equitable access to water as well 

as for development. The water resource can, therefore, be seen as an ecosystem which 

includes water, aquatic habitats, as well as the ecological, physical and chemical processes 

linking habitats, water and all organisms in the given area (MacKay, 2000). Legislation 

stipulates that a “reserve” will be determined on all river systems. This reserve is defined as 
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the assurance of the quantity and quality of water required to meet basic human needs, as 

well as to protect aquatic ecosystems, in order to secure sustainable utilisation and 

development (NWA, 1998). 

 

However, the implementation of laws and policies has been difficult and slow (Schreiner, 

2013). At the time of writing this in 2013, 15 years after the NWA came into effect, only few 

ecological reserves have been determined and implemented. A number of misunderstandings 

and gaps exist concerning the intention of the law and its implementation (Jewitt, 2002; van 

Wyk et al., 2006). There are warnings that the land-water link has been neglected and that 

that ill-considered responses to rising freshwater demands could sever ecological connections 

within the hydrological cycle (Jewitt, 2002; Gifford, 2011). Van Wyk et al. (2006) state that 

South Africa’s water law acknowledges not only water, but the entire ecosystem, as a life 

support system. This realisation is not widely appreciated because no common understanding 

exists in South Africa of the reserve being an ecological means to achieving socio-economic 

ends.  

 

This may be seen in a recent South African policy document (DWAF, 2009) in which it is 

unclear on the link between water and ecosystem services, yet acknowledging that natural 

resource management is essential for ensuring water supply for growth and development. The 

public works natural resource management programmes, e.g. Working for Water, for 

Wetlands, on Fire, for Woodlands and Working for Energy, are seen as very important to the 

management of South African water quantity and quality and essential to growth and 

development (DWAF, 2009). Resource management is understood to yield the best returns on 

investment for water management, but with the added benefits of other ecosystem services, as 

well as job creation. On the other hand, the same policy document states, for example, that 

“developed rivers, such as the uMgeni, are today no more than ‘workhorse rivers’ and should 

be managed as such”, with no clear indication of what that implies (DWAF, 2009, p. 46).  

 

Based on the above, the implementations of the water laws have been slow and not without 

problems and misunderstandings, which, amongst other things, lead to reducing hydrological 

ecosystem services in South Africa. While investigating hydrological ecosystem services in 

the section above, land use in an ecosystem services context will be examined next. 
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2.4 Land Use within an Ecosystem Services Context 

In this section, land as a physical resource, including the roles of land function, land cover 

and land uses, will be explored, and followed by a general perspective on the links of land 

use changes and ecosystem services. Finally, land use in a South African context will be 

examined.  

 

2.4.1 Land cover and land use 

Land may be viewed as a physical resource. Land cover describes the biophysical state of the 

earth’s surface and immediate subsurface in broad classifications, such as grasslands, natural 

forest, cropland, water bodies or mining (Turner et al., 1995). Land use frequently involves 

the conversion or modification of natural land cover as a result of human actions, for the 

primary purpose of agricultural production and settlement (Turner et al., 1995). The term 

land use can be further broken down into land utilisation, land treatment and land 

management, which include the specific crops, conservation structures (contours, terraces), 

grazing control, crop rotation or the intensification of production, different modes of tillage 

practices, burning regimes, as well as the application of fertilizers and herbicides (Schulze, 

2004).  

 

Although land has many uses, it is often zoned, based on a single purpose in planning 

frameworks (Hubacek et al., 2009). The multi-functionality of land provides several potential 

ecosystem services (Hubacek et al., 2009). There are many studies illustrating the economic, 

ecological and socio-culturally benefits of multi-functional landscapes, compared to 

landscapes that only provide few ecosystem services (e.g. Balmford et al., 2002; Turner et 

al., 2003; Naidoo and Adamowicz, 2005, Hermann, et al., 2011).  

 

Many forms of land uses alter or degrade ecosystems. Ecosystem services thus respond to 

land use and the changes thereof (Foley et al., 2005).  

 

2.4.2 Land use and ecosystem services 

Land use, in an ecosystem services context, is all about coordinating the long-term and the 

short-term, the small-scale and the large-scale, the public interest and the private interests, the 
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economy and the environment (Lowe et al., 2009). Ecosystem services provided by a 

landscape, e.g. the availability of water, will often determine the land use and, thereby, 

influence land use change. For example, agriculture and forestry require a certain level of 

water availability. Conversely, land uses influence ecosystem services, with property rights 

often being unclear on the rights or duties of the land user in respect to the ecosystem 

services that this land provides (Carpenter et al., 2006; Lowe et al., 2009).  

 

The effects of land use on ecosystem services are complex and interdependent. Land use 

change from natural land cover often leads to ecosystem degradation, which may be slow or 

abrupt (Carpenter et al., 2006). Impacts might not be observable on a larger spatial scale, 

because of the self-cancelling effects and therefore no action may be taken. Land use impacts 

depend on the type of use, their intensity and spatial extent (Hobbs, 2000; Schulze, 2004). 

Land use changes may lead to utilised, replaced or completely removed ecosystems vs. 

conserved ecosystems (Hobbs, 2000).  

 

Human activities, including various uses of land, are driven by several factors, generally 

placing increasing demands on resources. These factors include a growing population and 

their basic life support needs, including wants above the level of mere life support needs, and 

economic growth aspirations, which include both the needs and wants of people (Falkenmark 

et al., 1999). Winter and Lobley (2009) perceive a strong link between the importance of land 

and the survival of the human species.  

 

Land use is often changed to satisfy immediate human needs and usually leads to a reduction 

in ecosystem functions and, therefore, to trade-offs (Foley et al., 2005). When taking trade-

offs into account, a scenario of big gains for immediate human needs, but small losses for 

ecosystem functions, should be aimed at (Foley et al., 2005). Large-scale development 

schemes that require major changes in land use often turn out to be less profitable than 

improving the sustainable management of the unaltered ecosystem (de Groot, 2006). 

Furthermore, modern agricultural land uses may be trading short-term increases in food 

production for long-term ecosystem services losses, including those that are important for 

agriculture (Foley et al., 2005). In addition, whilst there is a current worldwide trend towards 

urbanisation, the resulting land use change is likely to lead to a reduction in the potential 
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local supply of ecosystem services, while the amount available per capita is further decreased 

through a locally increasing human population (Eigenbrod et al., 2011).  

 

Whilst most environmental problems surface on a regional or global scale, the solutions are at 

the local and individual levels (Mouratiadou and Moran, 2007; Cowling et al., 2008). Local 

conservation, land management and stewardship determine local ecosystem responses that 

make up regional, national and, eventually, global ecosystem responses. Land use planning 

provides an opportunity for mainstreaming ecosystem services. Land use decisions should be 

made on the basis of ecological validation studies and the persistence of ecosystem services, 

including scenarios of alternative futures, with the goal of achieving social and ecological 

resilience in an uncertain world (Cowling et al., 2008).  

 

2.4.3 Land use and land use change in the South African context 

Land use in South Africa is highly varied. In 2010 almost 20 % of the land area had been 

transformed, with the main land uses being crop cultivation (12.1 %), forestry (1.5 %), urban 

built up (1.1 %) and land degradation (5 %; DEA, 2010). Only 6 % of land is under formal 

protection in 1999 (Barnard and Newby, 1999). The recent tendency has been an increased 

rate of transformation from natural land cover to various land uses (Gbetibouo and Ringler, 

2009). Projections in some provinces are that if the current trends are followed, there will be 

no natural land cover left by 2050 outside of protected areas (Jewitt, 2012). Another 

development is that South Africa’s population is urbanising. Despite many policy statements 

favouring compact cities, the trend seems to be towards low density urban sprawl along road 

transportation routes (Crane and Swilling, 2007). To try to reduce the amount of natural land 

cover lost, the South African conservation authorities have initiated a stewardship programme 

with landowners to help them manage their land in a sustainable way and thereby also 

maintain ecosystem services that this land provides. Private landowners can voluntarily be 

part of stewardship programmes (Egoh et al., 2012b). 

 

From a legislative perspective, recent South African land use classifications aim at unifying 

land uses and give a broad list of scheduled land use purposes (The Government of South 

Africa, 2011). The term land use management is further defined to include the regulation of 

land use changes. Land use changes include the rezoning of a property from residential to 

commercial use, the regulation of the development of previously undeveloped land, termed 
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'green fields', as well as the regulation of the consolidation and subdivision of land parcels 

(The Government of South Africa, 2001). Furthermore, legislation stipulates that every 

municipality requires a land use management system, with certain minimum requirements 

having to be met. While land use is varied globally and in South Africa, it is linked to 

hydrological ecosystem services and vice versa. This link will be presented next.  

 

2.5 The Link between Land Use, Hydrological Responses and Hydrological 

Ecosystem Services  

Ecosystem services, which include hydrological ecosystem services, as well as land use and 

climate, form a complex and interdependent system with feedbacks and linkages (Turner et 

al., 1995. They are further influenced by human population pressures (Figure 2.10).  

 

 

Figure 2.10 A schematic of the climate–land use–population–water interactions (adapted 

from Schulze, 2007)  

 

Land uses, being water-related, are often dependent on hydrological ecosystem services, 

while they might, at the same time, impact those (Brauman et al., 2007). This relationship is 

thus interdependent and, therefore, complex (Falkenmark et al., 1999). Forecasting the effects 

of land use change on stream ecosystems is a challenge, with interdisciplinary approaches 

being important for future ecosystem management (Nilsson et al., 2003). Especially in water-

limited environments, Newman et al. (2006) postulate that an interdisciplinary, collaborative 

approach of ecohydrology is required for the effective management of environmental 
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problems in the critical zone of those environments. It is widely acknowledged that land uses 

influence hydrological responses, and these influences are discussed next.  

 

2.5.1 Selected land uses and their influence on hydrological responses 

Land uses influence hydrological responses of a catchment by influencing the partitioning of 

rainfall between returns to the atmosphere, as evaporation or transpiration, and flows to rivers 

and aquifers (Falkenmark et al., 2000; Hope et al., 2004, Foley et al., 2005). Multiple 

processes control the quantity, quality and water flow regime. This poses a significant 

challenge to both management and scientific understanding. The pattern and extent of cities, 

transport routes, agricultural and natural areas within a catchment influences runoff patterns, 

infiltration properties and evapotranspiration rates. This, in turn, affects water quantity and 

quality (Vörösmarty et al., 2005). The impact of land use change on hydrological responses is 

further complicated by changing climates, as well as the changing dominance of different 

factors at different spatial and temporal scales. 

 

Several effects of relevant land use types on hydrological responses have been identified by 

various authors and are described next. More examples may be found, for example, in 

Falkenmark et al. (1999). Most rivers today are altered (Ricciardi and Rasmussen, 1999) and 

so are the low flow regimes and the origin of water in a stream during low flow conditions 

(Smakhtin (2001). Anthropogenic impacts on low flow generating processes include 

groundwater abstraction within the sub-surface drainage area, the artificial drainage of valley 

bottom soils, changes in the vegetation regime, afforestation and deforestation (Smakhtin 

2001). Commercial plantation afforestation leads to a reduction of stormflows (up to a point), 

as well as to reduced groundwater recharge (Gush et al., 2002). Agricultural practices, such 

as ploughing and tillage, alter the partitioning of rainfall into stormflow and baseflow 

components, depending on whether conventional or conservation practices are followed 

(Lumsden et al., 2003). Smakhtin (2001) hypothesises that conservation strategies, including 

contouring, terracing and mulching, are expected to reduce runoff volumes. Grazing, 

depending on conditions and management, might increase or decrease stormflows, soil losses 

and groundwater recharge (Schulze and Horan, 2007). Land use changes resulting in 

degradation often increase flow variability (Schulze, 2003; Maloti Drakensberg Transfrontier 

Project, 2007), and are thought to reduce soil water retention, water infiltration and as a result 

groundwater recharge and increase overland flow, while invasive vegetation, which replaces 
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indigenous vegetation, might increase water use (Le Maitre et al., 2007). Land infested by 

alien invasive plants that spread, often as a result of poor land management, especially in 

riparian zones, is often associated with reductions in streamflows (Jewitt et al., 2003). 

Intensive agriculture often increases erosion and hence the sediment load, thereby degrading 

water quality (Foley et al., 2005). Dams can cause changes in natural flooding regimes, 

which impact on the various provisioning, regulating, supplying and cultural hydrological 

services to downstream communities (Lankford et al., 2011) and directly influence low flows 

(Smakhtin, 2001). Irrigation water use reduces freshwater supplies downstream of the 

abstraction point and is globally the biggest water user (Gleick, 1998; Foley, et al., 2005). 

Urbanisation substantially degrades water quality (Foley et al., 2005). Urbanisation also leads 

to a reduction of the ecosystem service of flood mitigation, because reduced permeable areas 

lead to larger floods and more frequent small floods, while more people are being affected by 

these floods, because of denser settlements and/or settlements on floodplains (Eigenbrod et 

al., 2011). Human settlements, with high proportions of impervious areas, are predicted to 

lead to higher stormflows, higher peak discharges, lower baseflows and frequently to a 

deterioration of water quality (Schulze, 2004). Nilsson et al. (2003) postulate that the urban 

impervious urban surfaces limit infiltration and should therefore lead to reduced groundwater 

levels and low flows; however, leaking urban water supply networks and the irrigation of 

gardens might lead to greater complexity in the system. Falkenmark et al. (1999) found 

increased streamflows as a result of urban growth and an increase of ground water levels, 

thought to be from leaking water and sewerage pipes, septic tanks and excessive garden 

irrigation. Smakhtin (2001) found that low flows in urban areas usually decrease as a result of 

the effects of impervious areas on runoff, infiltration and evapotranspiration, while direct 

effluent flows into river channels can significantly reduce the water quality and therefore 

limit its availability for downstream users. The relative quantitative impacts of anthropogenic 

influences vary substantially in different river catchments (Smakhtin, 2001).  

 

While the above examples mostly refer to the hydrological responses pertaining to the blue 

water portion of the hydrological cycle, the evaporation or transpiration portion is also of 

importance. For urban areas, reduced vegetation cover, impervious surface areas and the 

morphology of buildings contribute to lower cooling through reduced evapotranspiration, 

compared to surrounding rural areas, which leads to storage of heat and the warming of the 

surface air, thereby creating urban “heat islands” (Arnfield, 2003; Foley et al., 2005). 
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Furthermore, the conversion of vegetation cover is an important contributor to climate 

change, which is a major driver of hydrological responses, not only on a global scale due to 

release of carbon from the soil, but also regionally (Foley, et al., 2005), because changes in 

vegetation type, reduction in density and increase in albedo can cause changes in the active 

regulation of water and energy fluxes and might even result in lower local rainfall in certain 

places (Hutjes et al., 1998). Land cover changes (from forest to agriculture) in the tropics 

have been found to affect local climate through water balance changes, while boreal 

vegetation changes have been found to have a big effect on local climate through changes in 

surface radiation balance (Bounoua et al., 2002; Foley, et al., 2005). The effects of land cover 

conversion on climate can be seen on a regional scale, rather than on a global scale (Bounoua 

et al., 2002). The author could not find studies on the influence of land use change on 

microclimate within the sub-tropics or semi-arid environments, which seems to be a 

knowledge gap.  

 

The following is a summary of the key influences of various land uses on hydrological 

responses and effects, as found in the literature:  

 

a) Runoff generally increases when natural vegetation is cleared (Foley et al., 2005).  

b) Land use change upstream might lead to negative external impacts downstream (Hope 

et al., 2004).  

c) The influence of land use change on hydrological ecosystem services can vary from 

being negligible to being severe, with possible major hydrological changes in respect of 

total streamflows, the seasonality and responses of flows, e.g. higher peaks and shorter 

peak lag times, as well as the partitioning of flows into baseflow and/or stormflow 

(Brauman et al., 2007; Schulze and Horan, 2007).  

d) The impact of land use often depends on its intensity and may result in a considerable 

hydrological lag time. Depending on the land use change, a change in annual runoff 

may be severe and either increase or decrease, with the land use change also 

influencing total evaporation and water quality (Schulze, 2003; Warburton et al, 2012).  

e) The evidence of land use change on a small scale is often diminished on a larger scale 

(Schulze et al., 1998).  

f) Urban areas were generally found to increase stormflows; however, some authors found 

increases and others decreases of low flows or baseflows. 
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In general, the land use in the catchment is critical for hydrological responses and associated 

ecosystem services (Jewitt, 2002; Schulze, 2003). The impact of land use within a water-

limited South Africa is most significant during periods of low flow, when natural land use is 

often dormant, and it thus has the highest relative impact on streamflow. This is also the time 

when people and natural systems most require water (Jewitt, 2006). Low flows are, therefore, 

better indicator of impacts of land use than mean annual flows (Jewitt, 2006). 

 

The integration of land use planning and management with water resources planning and 

management is crucial (Falkenmark et al., 1999; Jewitt, 2006; Warburton et al., 2010). Water 

pathways, flows and quality are determinants of land use practices (Falkenmark et al., 1999). 

The manner and extent to which freshwater ecosystems and their catchments are either well-

managed or misused by humans, largely determines the attributes of the water resource over 

an area. To maintain the water supply in a stressed system, considerations about land use and 

management, therefore, become critical. Innovative smaller-scale, locally-managed, water-

conserving land management methods are often more cost-effective and less disruptive to 

local communities than major new water infrastructure projects, as has been found 

internationally (Gleick, 2000) and in South Africa (Maloti Drakensberg Transfrontier Project, 

2007). It is critical to encourage and develop water-sensitive, resilient land use planning, 

including urbanisation, because of the impact of urban areas on their wider hinterland, as well 

as considering the vulnerability of poor urban communities to land use change. Urban areas 

should be considered as ‘problem sheds’ within catchments. Human-transformed systems 

need to be seen as part of ecosystems and be managed to contribute to ecosystem services 

(FAO, 2007).  

 

2.5.2 The link between land use and hydrological ecosystem services 

This dissertation aims at contributing towards filling knowledge gaps regarding the links 

between land use and hydrological ecosystem services. The reader is referred to Section 2.3.4 

on various links between hydrological ecosystems and functions, processes and attributes as 

found by different authors. 

 

Case studies in South Africa, using scenario modelling, found that upstream land use change, 

e.g. the conversion of natural vegetation to commercial afforestation and/or irrigated 
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agriculture, has the potential for increased production and employment, but the 

apportionment of the catchment water has negative impacts for downstream communities. 

The rural poor are the most vulnerable because their livelihood is more dependent on local 

natural resource use, which is a frequently undervalued ecosystem service that might occur in 

addition to benefits from dryland rangeland agriculture (Hope et al., 2004). 

 

Various findings exist in the literature regarding links between land use and ecosystem 

services related to freshwater habitat functions. Human activity has been a primary factor in 

the modification of the eco-hydrological system (Newman et al., 2006), with flow 

modification, water pollution and habitat degradation being amongst the main drivers of 

freshwater biodiversity reduction (Dudgeon et al., 2006). Land use change is associated with 

altered flood regimes and increased sediment channel input, affecting particle size, particle 

distribution, bed mobility and suspended sediment loads (Nilsson et al., 2006). Increased 

river sediment loads can lead to habitat alterations, such as the clogging of river bottoms, 

shoreline erosion, the smothering of shoreline habitats or floodplain degradation (Dudgeon et 

al., 2006). For example, in some places freshwater fauna extinction was found to be four 

times as high as terrestrial fauna extinction. The increased extinction rate is linked to 

extensive habitat deterioration, resulting from sediment loading, pollution and flow regulation 

resulting from land use activities (Ricciardi and Rasmussen, 1999). River flow is a major 

determinant of physical habitat in streams, also determining biotic composition (Bunn and 

Arthington, 2002; Nilsson et al., 2006). Aquatic species have evolved primarily to the local 

natural flow regime. Catchment land use change and associated water resource development 

inevitably lead to changes in the flow regime, e.g. to the increased stability of baseflow and 

reduction of flow variability, erratic patterns in flow below dams and the conversion of 

flowing stream habitat to standing lake habitat. These influence the habitat function, resulting 

in an alteration of the biology, a decline in aquatic biodiversity, while there is an increased 

invasion of alien invasive species (Bunn and Arthington, 2002). Newman et al. (2006) call 

for the potential rapid advance in understanding environmental processes by linking the more 

reductionist approaches of hydrology, with the more complex approaches of ecology into 

‘ecohydrology’, especially in water-limited environments. Richter et al. (1997) suggest that 

near natural flow variation is required to sustain ecological processed and proposed a ‘range 

of variability approach’ for setting streamflow-based river ecosystem management targets. 
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A more in depth discussion on the links between the supporting ecosystem services of 

biodiversity, and river flows can be found e.g. in Baron et al. (2002). 

 

2.5.3 Trade-offs within and between ecosystem services resulting from land use change 

To be able to support an increased number of people with an accessible, reliable water 

supply, substantial stabilisation of flows and increased withdrawals over all regions of the 

world have occurred (Vörösmarty et al., 2005). This has led to trade-offs between human and 

natural system requirements for services from freshwater. These trade-offs are made both 

explicitly and inadvertently. The challenge now is to manage fresh water so that the needs of 

both people and ecosystems are balanced and that ecosystems can continue to provide other 

services which are essential for human well-being (Mirza and Patwardhan, 2005; Vörösmarty 

et al., 2005).  

 

Some examples of trade-offs caused by humans include natural flow regime alterations in 

rivers and waterways, the loss and fragmentation of aquatic habitat, extinction of species, 

pollution of water, groundwater aquifer depletions, as well as aquatic systems deprived of 

oxygen (so-called ‘dead zones’) found in many inland and coastal waters (Mirza and 

Patwardhan, 2005; Vörösmarty et al., 2005). 

 

Human drivers and their links with ecosystem services (Aylward et al., 2005) are presented in 

Table 2.2, while selected land use change types and their consequences on freshwater 

provisioning services (Vörösmarty, et al., 2005) are shown in Table 2.3. 

 

Table 2.2 Direct drivers as appearing in the Millennium Assessment (Aylward et al., 

2005, after Postel and Richter, 2003) 
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Table 2.3 The type of land use change and its consequences on freshwater provisioning 

services (Vörösmarty, et al., 2005) 

 

 

In South Africa and elsewhere, it is importance of invest in water, which is a resource which 

can limit development. An efficient and relatively cheap method of investing in water 

security is to protect it through prudent land management. In a South African case study, the 

value accruing from ecosystem services, as a result of the restoration and maintenance of 

natural capital, was found to be sufficient to be converted into incentives to induce land use 

management change for the better, for land users and buyers of ecosystem services, e.g. water 

and carbon (Maloti Drakensberg Transfrontier Project, 2007; Mander et al., 2010). Therefore, 

payment for ecosystem services is seen as a cost savings option for consumers in future water 

supply augmentation. Payment for water related ecosystem services, especially if it includes 

other services such as carbon sequestration, was found to be ecologically, hydrologically, 

economically and institutionally feasible (Maloti Drakensberg Transfrontier Project, 2007; 

Mander et al., 2010).  

 

The above section has showcased several trade-offs in ecosystem services, resulting from 

actual or proposed land uses. Modelling trade-offs are an important tool and cannot be 

emphasised enough (Hubacek et al., 2009) 
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2.5.4 Determining changes in hydrological ecosystem services as a result of land use 

change, using hydrological models 

Some ecosystem services, e.g. water provisioning, may be measured directly by utilising a 

weir in a river, or dam levels. However, often indicators need to be used, especially when 

comparing scenarios (cf. Section 2.3.5). Hydrological models may be used to determine 

hydrological responses as a result of land use change. Models represent a simplified 

understanding of a system and are especially suitable for what-if analysis. A model is a tool 

for transferring knowledge from a research plot or catchment to other areas (Schulze, 1995). 

Process simulation models are suitable for representing complex systems, with interaction 

between the system’s components, and for establishing patterns and trends. Models, however, 

are limited, as they cannot represent every process in the hydrological cycle explicitly, and 

thereby also introduce uncertainties. The results thus need to be critically evaluated, to evolve 

the complex system thinking behind the assumptions and processes within a model (Cilliers 

et al., 2013).  

 

Hydrological models suitable for the simulation of the interactions between land use and 

hydrological responses should model the hydrological cycle within the atmosphere-soil-plant-

water continuum on the landscape, as well as modelling river flow and its components 

(Schulze, 2012). The model ideally needs to distinguish between stormflow events, baseflows 

and sediment yields, generated on an event-by-event basis. Nilsson et al. (2003) stress the 

importance of estimating the magnitude, duration and future changes in flows, including low 

flows, based on an understanding of the components and processes of the hydrological 

system, in order to be able to make forecasts of running water ecosystems. Smakhtin (2001) 

mentions that to model low flow conditions, the model would require regional information 

for model parameter values which, especially in the case of a daily time step model, is a very 

difficult task. A model further needs to distinguish explicitly how different land use scenarios 

are accounted for in their hydrological response (Warburton et al., 2010). The model needs to 

simulate at appropriately fine time and spatial scales. A daily time step, physical-conceptual 

hydrological process model such as the ACRU model could be considered as suitable for the 

above (Schulze, 2010). The ACRU hydrological model has been verified in South Africa and 

abroad, and has been used to account for land use change influence on hydrological responses 

(e.g. Schulze, 1995; Jewitt and Schulze, 1999; Hope et al., 2004; Warburton et al., 2010).  
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While modelling appears a viable option to assess the linkages between hydrological 

ecosystem services and land use, various uncertainties revolving around land use-related (and 

other) process representations will be introduced if a modelling approach is used. Further 

uncertainties include unknown future land use scenarios. However, land use change decisions 

are continually being made. Therefore, simulations of hydrological responses to plausible 

scenarios of land use are required (Nilsson et al., 2003). Associated uncertainties should be 

recognised and, where possible, be constrained (Beven, 2006), rather than used as a reason 

for not to proceeding with studies of projected future changes (Schulze, 2003; Warburton et 

al., 2010).  

 

The next section synthesises the above literature review and identifies some knowledge gaps. 

 

2.6 Synthesis and Discussion of the Literature Review, Including Knowledge Gaps 

Natural capital and the associated ecosystem services are essential for human existence and 

need to be sustained and invested in, in order to ensure sustainable development (Daily, 1997; 

MEA, 2005; Adger, 2006). Because of rapid population growth and higher living standards, 

resulting in higher resource use, humanity is now at a threshold where future losses may not 

be able to be compensated for. However, social and economic development, while providing 

crucial benefits (Foley et al., 2005), results in a trade-off between additional benefits gained 

from ecosystem services and potential services lost to society (Jewitt, 2002). Trade-offs will 

always exist and have to be dealt with (Foley et al., 2005). This calls for an in-depth 

understanding of the value of ecosystem services, their potential benefits and losses, 

feedbacks and linkages, as well as communication of results to decision-makers. A paradigm 

shift is required by decision-makers, from considering the environment to be an unlimited 

resource supplier, to valuing and conserving natural capital for sustainable development. The 

value of the gross domestic product (GDP) as a measure of development must be looked at 

critically and discount rates to the present need to be assessed, in order to halt a decline in the 

services that healthy ecosystems provide. Alternative assessments, such as the ecosystem 

services approach, need to be considered for decision-making. A schematic of a possible 

ecosystem services approach, with the links between decision-making, planning and 

management, ecosystem structure, processes and functions, ecosystem services and values, is 

shown in Figure 2.11 (de Groot, 2006), with the area of focus within this study highlighted. 
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Figure 2.11 A schematic of a possible ecosystem services approach, showing the links 

between decision-making, planning and management, ecosystem structure, 

processes and functions, ecosystem services and values (adapted from de Groot, 

2006), with the area of focus within this study highlighted 

 

Hydrological ecosystem services form part of services provided by ecosystems. Hydrological 

ecosystem services were found to be much more than simply freshwater abstraction (Aylward 

et al., 2005; de Groot, 2006; Brauman et al., 2007). The exact categorisation and naming of 

hydrological ecosystem services, functions, processes and values varies in the literature. In 

this study, however, it is not that important in which respective service it is categorised, but 

rather that a link between land use change, hydrological responses and a beneficial ecosystem 

service is made, irrelevant of whether it is a direct or indirect ecosystem service to benefit 

humans.  
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Changes to hydrological ecosystem services often cannot be measured directly. This is 

especially valid for case studies with different scenarios as well as for some provisioning and 

many regulating, supporting and cultural services. Frequently, indicators, i.e. proxy 

information, are used in practice to quantify ecosystem services, with selected hydrological 

responses, e.g. runoff, used in practice as indicators for some hydrological ecosystem services 

(Egoh et al., 2012a). Owing to the complex hydrological processes, modelling often becomes 

the most adequate option (Egoh et al., 2012a). It needs to be borne in mind that outputs from 

a model are not absolute representations of reality.  

 

Land cover and land use can have a major influence on hydrological responses (e.g. 

Falkenmark et al., 1999; Brauman et al., 2007). Land cover affects interception, infiltration, 

overland flow, groundwater recharge and evapotranspiration, all of which affect streamflow. 

Examples of the land use influencing hydrological flows abound (e.g. Falkenmark et al., 

1999; Smakhtin, 2001; Gush et al., 2002; Lumsden et al., 2003; Nilsson et al., 2003; Schulze, 

2004; Foley et al., 2005; Vörösmarty et al., 2005; Eigenbrod et al., 2011, Le Maitre et. al., 

2014).  

 

In the South African context, many environmentally sound laws and policies are in place. 

However, their implementation and enforcement is often slow (Stuart-Hill and Schulze, 2010; 

Schreiner, 2013). South Africa is experiencing significant land use changes (Gbetibouo and 

Ringler, 2009; Jewitt, 2012). Environmental considerations seem to be frequently overridden 

by a drive towards mining and industrial development, based partially on the assumption that 

this would create jobs and result in the upliftment of the poor. However, a focus on poverty 

reduction that erodes the supply of ecosystem services can make poverty reduction 

increasingly difficult (Carpenter et al., 2006). Ecosystem services are vital for environmental 

performance. In recent studies (Yale Center for Environmental Law and Policy, 2012; 

Standard Chartered, 2013), the environmental performance index and South African 

ecosystem vitality were extremely poor in absolute terms, amongst the poorest performing 

countries out of the countries assessed, and with a declining trend. Unsustainable 

development will result in expenditure for compensation to lost ecosystem services and it will 

endanger sustainable development. This may result in an increase of poverty now, as well as 

for future generations.  
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Payment for ecosystem services may provide many opportunities in South Africa, given that 

a large part of the land is currently still in a natural state and/or can be rehabilitated. 

Conservation, as well as adaptation to adverse conditions, including water stress, needs to be 

undertaken at a local level.  

 

If land use changes are considered, an assessment should show potential ecosystem services 

trade-offs, and these should be compared to land use that conserves and rehabilitates natural 

capital. An individual environmental impact assessment (EIA), often required for an 

application for land use change, will not take accumulative impacts of other proposed land 

use changes into account, nor does it consider all ecosystems services.  

 

On the basis of the above literature review and discussion, the aims, objectives and 

methodology of the proposed case study are outlined in Section 3.  
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 3. BACKGROUND INFORMATION 

 

3.1 Research Overview 

The background information on the study catchment fits into the overall research objective 

and approach adopted as shown in the overview provided in Figure 3.1. 

 

 
 

Figure 3.1 Background information on the study area, within the context of this dissertation 

 

In this chapter the study area is introduced first, followed by a description of the study 

catchment from a biophysical perspective. Thereafter, various land cover- and land use-

related scenarios will be described, starting with baseline land cover, then current land uses, 

and finally proposed future land use change scenario.  

 

3.2 Introduction 

The area under relatively undisturbed natural land cover in South Africa, which provides the 

benchmark for hydrological ecosystem services, is reducing. Land use change, including 

degradation and land transformation, can result in changes to hydrological ecosystem 

services. Individual smaller catchments by themselves might be seen as having relatively 

insignificant effects on overall ecosystem services at the exit of a larger catchment. It, 

however, needs to be understood that changes might have a significant local impact at sub-

catchment level and also that total ecosystem services within a larger catchment are made up 

of the services from the smaller catchments which make up the larger catchment.  

Objective: To evaluate changes to selected hydrological responses and 

associated selected ecosystem services provided by the study area, as a result of 

current and proposed land use modifications

Approach: The objective is to be achieved by identifying the scenarios of

baseline land cover as well as current and proposed land uses; sub-delineating

the study area into land use determined hydrological response units; applying an

appropriate hydrological simulation model to assess changes in hydrological

responses from baseline land cover as well as current and proposed land uses;

and relating these changes in hydrological responses to changes in selected

ecosystem services
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Changes in ecosystem services are frequently not taken into consideration during decision-

making. This also appears to be the case in the study area of the Mpushini/Mkhondeni 

Catchments (Figure 3.2) of the already water-stressed uMgeni system in KwaZulu-Natal, 

South Africa (Figure 3.3).  

 

 

Figure 3.2 The Mpushini/Mkhondeni Catchments and surrounding areas 

 

 
Figure 3.3 The Mpushini/Mkhondeni Catchments and their location within South Africa 

and the larger uMgeni Catchment 

Not to scale 

The Mpushini/Mkhondeni 

Catchments 
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At the time of writing (October 2013) the applications for land use change for the area had 

reached various stages in the approval process. A local area development plan is currently 

absent and the effects of proposed land use changes on hydrological services have not been 

taken into account, especially in an uncertain future which includes projected changes in 

climate drivers. There is also an initiative by active conservancy associations situated within 

the area, for a conservation corridor within this generally bio-diverse area, supported by a 

formal protected environment declaration by the province (Mpushini Protected Environment, 

2011). Future land use changes could result in various possible changes in hydrological 

ecosystem services.  

 

The aim of this study is to better understand the linkages between current land uses, as well 

as envisaged future land use changes and hydrological responses, and their related 

hydrological ecosystem services. This, when applied to the Mpushini/Mkhondeni study area, 

should help to better understand the impacts of potential changes to selected hydrological 

ecosystem services in order to help make informed, science-based decisions when it comes to 

land use changes and land management on a local scale. The already water-stressed 

Mpushini/Mkhondeni Catchments were chosen for this research as this area is presently a 

relatively undeveloped rural area with limited development and a rich biodiversity, but it is 

under threat of major changes to current land uses because of the concerted attempt to 

achieve economic growth and create jobs within the area. This area will be described from a 

biophysical perspective in the next section, followed by descriptions of the scenarios of 

baseline land cover, current land uses and proposed land uses. 

 

3.3 The Study Area from a Biophysical Perspective  

In order to place the study area in its biophysical context, an overview of its geography is 

presented. The Mpushini and Mkhondeni Catchments lie within the eastern Msunduzi Local 

Municipality and the western Mkhambathini Local Municipality, both of which form part of 

the larger uMgungundlovu District Municipality in KwaZulu-Natal. The two selected 

catchments are headwater catchments, with no major rivers flowing into them. Both 

catchments flow into the Msunduzi River which, in turn, is a tributary of the uMgeni River 

(cf. Figure 3.2). The average altitude is 759 m. The area of the catchments covers 116 km
2
, of 

which the Mpushini Catchment makes up 84 km
2
. The two catchments are ungauged. The 

catchments fall within the Quaternary U20J, with 74 % of the area being in Quinary 
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Catchment U20J2, 7 % in Quinary Catchment U20J1 and 19 % in U20J3 (Schulze and 

Horan, 2010). Because the majority of the area lies within U20J2, the climate and soil types 

of that quinary were used to represent the entire study area. Monthly averages of key climate 

variables are given in Figure 3.4. The mean annual precipitation for the area is 830 mm, with 

predominantly summer rainfall. The inter-annual coefficient of variation of rainfall is 22 %. 

The incidence of frost is low. The considerable monthly and annual differences between the 

rainfall in 1:10 year dry, median and 1:10 year wet conditions, are shown in Figure 3.5 (cf. 

Section 4.4.12) 

 

 

Figure 3.4 Monthly means of key climate variables of the study area, represented by the 

climate of Quinary Catchment U20J2, with blue bars showing monthly 

precipitation, red and purple lines showing, respectively, the monthly means of 

daily maximum and minimum temperature, MAP being the Mean Annual 

Precipitation and APCV being the Inter-Annual Coefficient of Variation of 

Precipitation, with data sourced from the Quinary catchment database (Schulze 

and Horan, 2010) 

 

Description J F M A M J J A S O N D Annual

Monthly means of daily maximum temperatures (◦ C) 26.5 26.8 26.1 24.4 22.5 20.4 20.6 21.8 23 23.6 24.5 26.3

Monthly means of daily minimum temperatures (◦ C) 16.1 16.2 15.1 12.2 8.8 5.7 5.6 7.5 10.2 11.9 13.6 15.2

Monthly total of A-pan equiv evap (mm) 176 154 149 120 103 91 99 125 143 157 161 180

Monthly Mean Precipitation (mm) 122 119 109 50 28 11 13 20 50 88 97 122 830

Precipitation Coefficient of Variation 48 60 64 84 159 138 196 99 151 56 55 54 22
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Figure 3.5 Monthly and annual precipitation in Quinary Catchment U20J2 in 1:10 dry, 1:10 

wet and median years, with data sourced from the Quinary catchment database 

(Schulze and Horan, 2010) 

 

3.4 Descriptions of Baseline, Current and Proposed Land Use Scenarios 

For the purpose of this study a change in land use is defined as any change in use, including 

changes in cover, utilisation, treatment or management, for example, from natural to 

agricultural, or from extensive agricultural to intensive agricultural or to industrial uses. 

 

Four land use scenarios which are important for their differing hydrological ecosystem 

services are described below. The scenarios to be assessed are the land cover of the area 

under natural conditions as a baseline, the land uses under current practices, the scenario of 

rehabilitation of degraded areas and the proposed future land use scenario of increased 

urbanisation.  

 

Because this dissertation focusses on the impacts of land use within a relatively small 

catchment, the soil types have been set to remain the same within the study area for all land 

uses.   

 

3.4.1 Land cover under natural conditions as a baseline 

In this scenario, the land cover before human transformation is used as a reference from 

which baseline hydrological responses and services will be modelled (cf. Chapter 4). 

Information on baseline land cover was obtained for Ezemvelo KZN Wildlife (Ezemvelo, 

2011a), the provincial conservation agency, and land cover classes shown in Figure 3.6.  
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Figure 3.6 The baseline land cover classes within the Mpushini/Mkhondeni Catchments 

(Ezemvelo, 2011a), with rivers superimposed 

 

The study area lies within the Savanna biome, and more specifically the Sub-Escarpment 

Savanna Bioregion (Mucina and Rutherford, 2006). The main pre-transformation vegetation  

types of the study area were found to be “Dry Coast Hinterland Grassland”, “KwaZulu-Natal 

Hinterland Thornveld” and “Eastern Valley Bushveld”, characteristics of which are described 

below. In essence, the main vegetation types vary between grasslands which are to a varying 

degree dominated by Acacia thorn trees and shrubs. Ezemvelo KZN Wildlife land cover 

descriptions are based on those of Mucina and Rutherford (2006), but with some additional 

information. 
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 Dry Coast Hinterland Grassland  

This is a new classification type (Gs 19) added by Ezemvelo KZN Wildlife (Ezemvelo, 

2011a) and is grassland generally dominated by wiry unpalatable Ngongoni grass (Aristida 

junciformis), a mono-dominance associated with low species diversity. However, when in a 

well-managed condition it can be dominated by palatable red grass (Themeda triandra) and 

trident grass (Tristachya leucothrix). Dry Coastal Hinterland Grassland in the study area 

usually occurs on the ridges between river valleys. 

 

 KwaZulu-Natal Hinterland Thornveld (Mucina and Rutherford classification SVs 3) 

This vegetation class is made up of open thornveld dominated by Acacia species, and in the 

study catchments is found on the mid-slopes between river valleys and ridges. 

 

 Eastern Valley Bushveld (Mucina and Rutherford classification SVs 6) 

This consists of semi-deciduous savanna woodlands in a mosaic with thickets, which are 

often succulent and dominated by Euphobia and Aloe species and usually found in the 

warmer, lower altitude valley areas of the study area. North-facing slopes receive greater 

amounts of insolation, sometimes resulting in xerophilous conditions on these slopes.  

 

The delineation of the baseline vegetation will be explained later in Section 4.3.2. The 

baseline vegetation-related attributes that influence hydrological responses and related 

ecosystem services will be outlined later in Section 4.4.4. The current land uses will be 

described next. 

 

3.4.2 Current land uses 

The current land uses were identified from the Ezemvelo (2011b) database, using 2008 

satellite imagery. The identified land uses are shown in Figure 3.7 and will henceforth be 

termed current land uses. Of the 46 land use classes identified by Ezemvelo in KwaZulu-

Natal, 26 occur within the study area. The largest grouping of current land uses is natural 

vegetation (Classes #18 to #24 in Figure 3.7), made up of grasslands and bush of varying 

densities of bush covers. This area is used mainly for cattle, game and horse grazing. More 

details regarding the delineation will be provided later in Section 4.3. 
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Figure 3.7 Current (2008) land uses within the Mpushini/Mkhondeni Catchments 

(Ezemvelo, 2011b), with rivers superimposed  

 

Hydrologically important land uses are considered to be those with impervious areas such as 

urban areas (#12, #14, #30, #34, #35), as well as quarries (#11), dams (#36), land under 

irrigation (#17), dryland cropland (#18) and degraded areas (#25-29). Their hydrological 

attributes will be explained later in Section 4.4. 
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A special emphasis was placed on areas that could be rehabilitated, viz. all areas currently 

classified as being degraded (Figure 3.8), including old fields. This would allow hydrological 

services to return to a state similar to those under baseline conditions. More hydrologically-

related information on degraded areas is given in Section 4.2.4. 

 

 

Figure 3.8 Areas within the Mpushini/Mkhondeni Catchments which are degraded 

(Ezemvelo, 2011b), including roads and rivers superimposed 
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3.4.3 Proposed future land use change scenario: Increased urbanisation 

A significant increase in urbanisation is proposed for the study area (KZN Investor Network. 

2011). The information for proposed future land uses was taken from various land use change 

proposals that in August 2012 were in various stages of completion with regard to the 

environmental authorisation process and/or the rezoning process. The proposed new land uses 

included light industrial, residential, commercial and mixed use developments, and they 

would constitute a significant increase in impervious areas. The proposed developments were 

superimposed over the study area (Figure 3.9). This scenario will henceforth be termed 

“proposed land uses”. The proposed developments’ hydrological attributes will be described 

in Section 4.4.  

 

After having described the catchment in this chapter, and the scenarios of baseline land cover, 

current land uses, rehabilitation of degraded areas and proposed future land uses, the methods 

used in subsequent analyses are described in the next chapter. 
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Figure 3.9 Areas demarcated for proposed new developments within the 

Mpushini/Mkhondeni Catchments, as per August 2012  
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4. METHODS 

 

In this chapter, following the Literature Review and the Background Information, the 

methods and approaches used will be described. 

   

4.1 Research Overview and Introduction 

This chapter on methods fits into the overall research objective and the approach as shown in 

the overview provided in Figure 4.1. 

 

 

 

Figure 4.1 Methodology and outline of Chapter 4 within the context of this dissertation 

 

In this chapter, the expected hydrological implications of the land cover and land use 

scenarios outlined in Section 3.4 are first described. This is followed by a description of the 

sub-delineation of the study area, based on land uses and the river network, using natural 

vegetation and present land use databases (Mucina and Rutherford, 2006; Ezemvelo, 2011a, 

b), as well as added information from proposed land use change applications and site visits. 

Next, the reasons for selecting the ACRU hydrological model are outlined followed by a brief 

description of the ACRU model with the inputs and outputs relevant to this study. Linkages 

between model outputs and hydrological ecosystem services are then described with a 

conceptual framework presented, and, finally, conclusions on this chapter are drawn. 

  

Chapter Outline:

• Scenarios and Land Use Implications from a Hydrological Perspective

• Catchment Sub-Delineation

• The Hydrological Model Used, Hydrological Processes and Responses

• From Hydrological Responses to Hydrological Ecosystem Services

• Chapter Conclusions
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Objective: To evaluate changes to selected hydrological responses and

associated selected ecosystem services provided by the study area, as a result of

current and proposed land use modifications

Approach: The objective is to be achieved by identifying the scenarios of baseline

land cover as well as current and proposed land uses; sub-delineating the study

area into land use determined hydrological response units; applying an appropriate

hydrological simulation model to assess changes in hydrological responses from

baseline land cover as well as current and proposed land uses; and relating these

changes in hydrological responses to changes in selected ecosystem services
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4.2 Scenarios and Land Use Implications from a Hydrological Perspective  

In this section, qualitative descriptions are given of the influences of baseline land cover, as 

well as of current and proposed future land use scenarios, from a hydrological perspective. 

Environmental factors such as climate, geology, soil textures and related properties, the 

presence of impervious layers, vegetation density, root density and root depth all have an 

influence on hydrological processes. For the entire study area the soil and climate inputs were 

taken from Quinary Catchment U20J2 (Schulze and Horan, 2010). It could be argued that 

more detailed soil and climate information could have been sourced. However, to be able to 

isolate the land use influences, this was decided against. These hydrological processes 

include interception, infiltration, soil water redistribution and storage which, in turn, will 

influence hydrological responses such as stormflow, baseflow, total runoff, sediment yield, 

evaporation and transpiration. These hydrological responses, in turn, influence the associated 

hydrological ecosystem services. These hydrological responses will be further explained in 

Section 4.4.12, while the associated hydrological ecosystem services form part of the results 

and discussion (Section 5 and 6). In addition to the environmental factors mentioned above, 

conversions from natural land cover to various land uses also influence hydrological 

responses and associated hydrological ecosystem services. In order to isolate those land use-

related impacts, the influences of the various land use scenarios (cf. Section 3.4) on 

hydrological processes will be described below.  

 

4.2.1 Baseline land cover from a hydrological perspective 

The baseline land cover scenario (cf. Section 3.4.1) serves as a reference for comparing the 

hydrological changes resulting from different land uses. The climate input variables, 

especially rainfall, temperature and evaporation, are expected to influence hydrological 

responses differently during the course of the year. Most rain within the study area falls 

during the summer months (October to March) and considerably less within the winter 

months (April to September). Major differences in climate are also expected from year to 

year and, therefore, hydrological responses for dry, median and wet years need to be 

examined. The study areas’ baseline vegetation cover consists of three main natural 

vegetation types, viz., “Eastern Valley Bushveld”, “KwaZulu-Natal Hinterland Thornveld” 

and “Dry Coast Hinterland Grassland”. The higher tree and bush cover and, therefore, a 

higher biomass and deeper root system of the first vegetation type results in more interception 
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and infiltration compared to the “KwaZulu-Natal Hinterland Thornveld” and even more so 

compared to “Dry Coast Hinterland Grassland”. This, in turn, is expected to influence 

hydrological responses, which will be modelled in the next chapter.  

 

4.2.2 Current land uses from a hydrological perspective 

Humans have transformed the natural land cover by, for example, dryland cropping, 

irrigating crops, grazing of livestock, different grassland burning regimes, constructing 

settlements and roads. These influence hydrological responses further, in addition to the 

responses from natural climate variability. Land uses that are especially relevant from a 

hydrological perspective within the study area are certain agricultural and urban land uses. 

These include dams (cf. Section 4.4.7) and water abstractions for irrigation (cf. Section 4.4.8) 

or livestock, the types of crops and cropping practices (cf. Section 4.4.6) and land 

degradation (cf. Section 4.4.5), on which a special emphasis was placed. Rehabilitating 

degraded areas leads to an increase in basal vegetation cover and therefore has an influence 

on hydrological processes and responses and this on ecosystem services. It is expected that 

the enhanced infiltration from rehabilitated areas would increase baseflows and decrease 

stormflows and sediment yield. Also hydrologically important are land uses that increase 

impervious areas (cf. Section 4.4.9) and consist of settlements of various densities, roads, as 

well as quarries. Another important point is that water from outside the catchments is 

supplied for household, commercial and industrial uses and therefore, in part, adds to the 

water budget of the study area and thus will be modelled as return flows (cf. Section 4.4.10).  

 

4.2.3 Proposed land uses from a hydrological perspective 

The proposed land uses (cf. Section 3.4.3), consisting of substantial increases in residential 

and industrial areas when compared to current land uses, will have further implications, with 

expected significant increases in impervious areas adding to stormflow, and the patterns of 

flows further complicated by externally derived water adding to return flows from urban 

areas.  

 

4.3 Catchment Delineation and Sub-Delineation  

In order to isolate the hydrological effects of different current and proposed land uses and the 

changes in ecosystem services associated with them, the study area was delineated into 
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catchment units (CUs) with those then further subdivided into smaller land use based 

hydrological response units (HRUs). The delineation into CUs is described in Section 4.3.1 

and the sub-delineation into HRUs is described in Section 4.3.4. The areas of the various land 

uses areas were obtained by using Geographic Information System (GIS) data bases (e.g. 

Ezemvelo, 2011 a, b). The relevant areas for baseline land cover for the study area were 

determined first, followed by the areas for current and proposed land uses, which were 

simplified into land use clusters by aggregating land uses with similar hydrological 

responses. This allowed catchment units to then be further broken down into hydrological 

response unit classes, required for the detailed modelling envisaged. 

 

4.3.1 Catchment units 

The study area was first delineated following a catchment delineations approach and 

informed by river networks and topography derived from 1:10 000 orthophoto maps and GIS 

information obtained from the Chief Directorate: National Geo-spatial Information (2012). 

The study area was then delineated into 10 catchment units, based again on the river network 

and topography, but considering also the location of dams, as well as major current and 

proposed land uses. These 10 delineated units will henceforth be called “catchment units”, 

with the abbreviation CU, and they are shown in Figure 4.2. The hydrological flow between 

the catchment units making up the study area is shown in schematic form in Figure 4.3. 

 

4.3.2 Applications of geographical information and GIS analyses to determine land 

use areas 

Geographical data and maps for the area were utilised and analysed in order to compare past, 

current and future scenarios. For the baseline scenario, vegetation maps were used 

(Ezemvelo, 2011a), showing pre-human disturbance natural vegetation land cover in the 

province of KwaZulu-Natal. This vegetation land cover map is abbreviated as KZN-LC. 

KZN-LC is based on previous research by Mucina and Rutherford (2006), but with a number 

of updates by Ezemvelo. The vegetation land cover maps were established on the 

understanding that natural vegetation properties respond to the dynamic and nature of the 

environment (Mucina and Rutherford, 2006). Data layers used to obtain the vegetation zones 

were spatial images, altitude, temperature, rainfall, geology and soil types (Mucina and  
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Figure 4.2 Delineation of the Mpushini/Mkhondeni Catchments into 10 catchment units  

 

 

 

Figure 4.3 Schematic of the hydrological flow paths between the 10 catchment units 

making up the Mpushini and Mkhondeni Catchments  
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Rutherford, 2006). Because these factors also influence hydrological responses, vegetation 

zones can be taken as zones of similar hydrological responses. 

  

The baseline cover was found to consist mainly of the vegetation types Eastern Valley 

Bushveld, KwaZulu-Natal Hinterland Thornveld and Dry Coast Hinterland Grassland, as 

explained in Section 3.3.1. The delineated study area was used to clip the vegetation zones 

from the KZN-LC. This clip (cf. Figure 3.5) is overlaid onto the catchment units and shown 

in Figure 4.4. 

 

 

Figure 4.4 The Mpushini/Mkhondeni study area under baseline land cover (Ezemvelo, 

2011a), with the 10 catchment units overlaid 
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The dominant land cover within each catchment unit was selected, following the rules 

outlined by Schulze (2012). This narrowed the land cover types within the study area down to 

two, viz. KZN Hinterland Thornveld in CUs 1 to 3, 5, 6, 8, 9 and Eastern Valley Bushveld in 

CUs 4, 7 and 10. The areas of these land cover types within each of the 10 CUs are assigned 

to equal the size of the CU areas.  

 

For the current land use scenario, land use maps and information from Ezemvelo (2011b) 

were utilised. This information is based on satellite imagery for the province of KwaZulu-

Natal from 2008, as well as previous land use map versions, and is henceforth abbreviated 

KZN-LU. The KZN-LU provides 47 land use classes, of which 26 are found within the study 

area. The current land use scenario was evaluated by clipping the study area from KZN-LU 

(Ezemvelo, 2011b), as was illustrated previously in Figure 3.6. The catchment units were 

then intersected and the areas per CU and per land use class determined (cf. Chapter 5). It is 

acknowledged, however, that there are limitations to this approach, as the land use 

classifications do not specify land management and, for example, conservation agriculture 

might have different hydrological model inputs, compared to those for conventional 

agriculture. 

 

For the proposed land use scenario, the delineated study area was clipped from a cadastral 

map for the region (Chief Directorate: National Geo-spatial Information, 2012) and overlaid 

with cadastral information for proposed land uses, obtained from various land use change 

applications (PMMB Trust, 2012; shown previously in Figure 3.9). The delineated catchment 

units are then overlaid in order to place the proposed developments into the catchment units.  

 

For the rehabilitation scenario (cf. Figure 3.8) the degraded areas, inclusive of old cultivated 

fields within the study area, need to be analysed. Therefore the relevant degraded land use 

classes were isolated from the information of current land use, the catchment units were 

overlaid and the relevant areas per CU determined (cf. Chapter 5). 

 

The KZN-LU land use classification was found to be very detailed. For hydrological 

modelling purposes, it was therefore necessary to simplify the classification by aggregating 

land uses with similar hydrological responses.  
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4.3.3 Aggregating land uses with similar hydrological responses into relatively 

homogeneous hydrological units 

The various land use classes were aggregated into fewer clusters, each of which shows 

similar hydrological responses for all the scenarios, first for the current land uses, then for the 

baseline land cover, the proposed land uses and rehabilitation scenario.  

 

 Current land use 

The 26 land use classes found within the study area were aggregated into eight hydrological 

clusters which are later used for hydrological modelling (cf. Section 4.4). All natural 

vegetation types (Ezemvelo Classes #18-23), including “wetlands” (#4) which however make 

up less than 0.2 per cent of the overall area, are aggregated into “natural vegetation”. The 

various urban land uses (#12, 14, 34, 35, 42), together with mines and quarries (#11), are 

aggregated into “Urban land uses”. However, more detailed information regarding fractions 

of impervious areas (cf. 4.5.7) and return flows (cf. 4.5.8) is given later. Various 

agriculturally-related classes (#13, 16 and 30) are aggregated into “Dryland agriculture, 

improved pasture”. “Natural vegetation, in degraded condition” is aggregated from land use 

classes #25-29.  Land use classes relating to water (dams, #36 and natural, #1) are aggregated 

into “Open water bodies”. The agricultural land uses of sugarcane (#9); (tree) plantations (#2) 

and cultivated irrigated crops (#17) remain as separate hydrological classes. The aggregation 

of the land use classes into land use clusters is shown in Table 4.1, with the information in the 

third column to be used in a later section. 

 

 Baseline land cover 

All CUs were further sub-delineated into HRUs (cf. Section 4.3.4), as per current land use, 

however, all were with the model inputs for baseline land cover, to allow for the comparison 

of individual HRUs. 

 

 Proposed land use 

The proposed urban development falls within the hydrological land use cluster of “Urban 

land uses”. The HRUs were taken from the current land use scenario; however, additional 

information is required on the fractions of impervious areas (cf. Section 4.4.9) and return 

flows (cf. Section 4.4.10). 
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Table 4.1 Aggregation of Ezemvelo land use classes for the study area into land use 

clusters for hydrological modelling, with cc standing for canopy cover and CU 

for catchment unit 

Ezemvelo Land Cover Class  Hydrological Cluster Rules for Hydrological Modelling (cf. Section 4.4) 

Land Use 
Class # Land Use Class Description 

 
  

18 Forest (indigenous) Natural vegetation Use baseline vegetation of CU 

19 
Dense thicket & bush (70-100 
% cc) Natural vegetation Use baseline vegetation of CU 

20 Medium bush (< 70cc) Natural vegetation Use baseline vegetation of CU 

21 
Woodland & Wooded 
Grassland Natural vegetation Use baseline vegetation of CU 

22 Bush clumps / Grassland  Natural vegetation Use baseline vegetation of CU 

23 Grassland Natural vegetation Use baseline vegetation of CU 

4 Wetlands Natural vegetation Use baseline vegetation of CU 

12 Build-up / dense settlement Urban land uses 
Use baseline vegetation of CU, but calculate impervious 
areas and return flows 

14 Low density settlements Urban land uses 
Use baseline vegetation of CU, but calculate impervious 
areas and return flows 

34 KZN national roads Urban land uses 
Use baseline vegetation of CU, but calculate impervious 
areas  

35 KZN main & district roads Urban land uses 
Use baseline vegetation of CU, but calculate impervious 
areas  

42 KZN Railways Urban land uses 
Use baseline vegetation of CU, but calculate impervious 
areas  

11 Mines and quarries Urban land uses 
Use baseline vegetation of CU, but calculate impervious 
areas  

16 
Cultivation, commercial, 
annual crops, dryland 

Dryland agriculture, 
improved pasture  

Use the hydrological attributes of the main crop, which 
was found to be improved pasture 

13 Golf courses (Race Course) 
Dryland agriculture, 
improved pasture  

Use the hydrological attributes of the main crop, which 
was found to be improved pasture 

30 Smallholdings 
Dryland agriculture, 
improved pasture  

Use the hydrological attributes of improved pasture, but 
also calculate impervious areas 

9 Sugarcane Sugarcane Use hydrological attributes of inland cane 

2 Plantation Tree plantation Use hydrological attributes of wattle 

25 Degraded forest 
Natural vegetation, in 
degraded condition 

Use Baseline vegetation, but adjust hydrological attributes 
for degradation 

26 Degraded bushland (all types) 
Natural vegetation, in 
degraded condition 

Use Baseline vegetation, but adjust hydrological attributes 
for degradation 

27 Degraded grassland 
Natural vegetation, in 
degraded condition 

Use Baseline vegetation, but adjust hydrological attributes 
for degradation 

28 
Old fields - previously 
grassland 

Natural vegetation, in 
degraded condition 

Use Baseline vegetation, but adjust hydrological attributes 
for degradation 

29 
Old fields - previously 
bushland 

Natural vegetation, in 
degraded condition 

Use Baseline vegetation, but adjust hydrological attributes 
for degradation 

17 
Cultivation, commercial, 
annual crops, irrigated Irrigated crops Choose main crop and obtain irrigation data 

36 Water (Dams) Open water body Obtain dam data 

1 Water (natural) Open water body Treat as shallow dam with a height as per river height 

 

4.3.4 Further catchment unit sub-delineations into hydrological response units 

(HRUs), based on identified hydrologically sensitive land uses 

Hydrologically sensitive land uses have different hydrological responses to those of the 

natural baseline land cover which they replace. The responses can differ by generating either 

less total runoff than the baseline land cover (e.g. from production tree plantations and in 
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some areas, sugarcane plantations) or by generating more total runoff than the replaced 

baseline land cover (e.g. from urban land uses with high fractions of impervious areas) or by 

producing significant changes in the contribution of stormflows vs. baseflows (e.g. from 

degraded areas or certain types of urban areas) or by generating significantly more sediment 

yield (e.g. from degraded areas). 

 

In order to account for the hydrological differences of the aggregated land uses (cf. Section 

4.3.3) in each catchment unit, each of the 10 catchment units was further sub-divided into a 

basic configuration of five hydrological response units (HRUs). The soil and climate data 

were taken from Quinary Catchment U20J2 (Schulze and Horan, 2010), because 74 % of the 

area falls within that Quinary Catchment and because this study focussed on the effects of 

different land uses within a relatively small catchment, rather than climate and soil 

differences within the catchment.  

 

The five, essentially land use determined, HRUs consist of:  

 

a) HRU 1, made up of the CU’s natural vegetation, but also including wetlands and urban 

areas. The reason for two is that the ACRU model can distinguish between the effects of 

all three of the above separately, but in a single simulation (cf. Section 4.4); 

b) HRU 2, consisting of the dryland agricultural cluster which, in the case of this study 

area, is represented by improved pasture (the dominant dryland agricultural land use); 

c) HRU 3, which designates so-called “special case land uses”, in this study either 

sugarcane or tree plantations, whichever is dominant in a given CU; 

d) HRU 4, which accounts for a second set of special case land uses, in this instance the 

degraded land use cluster; and  

e) HRU 5, in which hydrological effects of natural watercourses, dams and irrigated areas 

are simulated.  

 

In case HRU 2 to HRU 5 does not exist within a catchment unit, they take on the attributes of 

the natural vegetation, but require a minimum area to be simulated with the ACRU model (cf. 

Section 4.4.). Note that HRUs are not of equal area, but make up the total area of the CU 

when added together. Each HRU is modelled individually. The concept of this delineation 

follows the method developed by Schulze (2012) and is shown in Figure 4.5. The HRUs are 
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then hydrologically interconnected, as shown in Figure 4.6. The above delineation of each of 

the 10 catchment units into five HRUs, gives a total number of HRUs in the 

Mpushini/Mkhondeni study area of 50. 

 

 

Figure 4.5 Schematic of the sub-delineation of a catchment unit into hydrological response 

units (HRUs) based on land use (after Schulze, 2012)  

 

 

Figure 4.6 Schematic of the flow path between the five hydrological response units of a 

catchment unit and the flow path between catchment units (after Schulze, 2012) 
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4.4 The ACRU Hydrological Model with Hydrological Processes as Inputs and 

Hydrological Responses as Outputs 

It is not feasible to undertake long-term observations in every catchment of hydrological 

responses such as stormflow, baseflow, sediment yield, transpiration from plants or 

evaporation losses from the soil surface. Therefore an appropriately structured and 

conceptualised hydrological simulation model has to be used when examining changes to 

hydrological responses and associated hydrological ecosystem services resulting from to land 

use changes.  

 

4.4.1 Hydrological model selection 

The ACRU model (Schulze 1995; Smithers and Schulze, 2004; and updates) is a suitable 

hydrological model as per requirements outlined in Section 2.5.4, in that it takes into account 

the effects of land uses by modelling the hydrological cycle within the atmosphere-soil-plant-

water continuum of the landscape, as well as simulating river flow and its components 

(Schulze, 2012). This model was chosen over other suitable models, as its output has been 

widely verified within the uMgeni Catchment (Kienzle et al., 1997; Smithers and Schulze, 

1995 and updates; Warburton, et al. 2010) and elsewhere (cf. reviews of ACRU verification 

studies by Schulze, 1995; Schulze, 2008). Furthermore, it has existing links to a spatial and 

temporal hydrological database called the “Quinary Catchments Database”, in which 5838 

catchments covering the entire South Africa, Lesotho and Swaziland have already been 

delineated and are linked to climate, soils and other databases (Schulze et al., 2010). In 

addition, expert support on the model is available at the University of KwaZulu-Natal.  

 

4.4.2 A short description of the ACRU hydrological model 

ACRU is a daily time step, physical-conceptual and multi-purpose model (Figure 4.7) with 

options to output, inter alia, the hydrological responses of daily values of stormflows, 

baseflows, runoff, total streamflow accumulated from all upstream catchments, transpiration, 

soil water evaporation, peak discharge, sediment yields, reservoir levels and irrigation water 

supply at a specific location or for a catchment. The model is designed around multi-layer 

soil water budgeting (Figure 4.8) and is structured to be hydrologically sensitive to 
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Figure 4.7 Concepts of the ACRU modelling system (after Schulze, 1995) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.8 Structure of the ACRU model (after Schulze, 1995) 
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The ACRU model was run with the relevant land use-related variables for baseline land cover 

conditions, current land use conditions and proposed future land use change scenarios (cf. 

Section 3.4). No verification of the current flows was possible, because the streams are 

ungauged. However previous verifications within the uMgeni Catchment (Kienzle et al., 

1997; Schulze, 2008; Warburton, et al. 2010) have given highly acceptable results. The 

selected outputs were the magnitudes and durations of hydrological responses and their 

variability, broken down into changes to baseflows and stormflows, total runoff, accumulated 

streamflows, both with and without impacts of dams and irrigation, extreme events, as well as 

soil water, available to plants (cf. Section 4.4.12). However, the ACRU model, like every 

model, also has limitations. For example, river sediment yield can be simulated, but not bed 

mobility or particle size distribution of the sediments, which is an important indicator for the 

stream ecology. It needs to be borne in mind that outputs from a model are not absolute 

representations of reality, but can rather represent relative changes in hydrological responses 

if certain inputs, e.g. on land use, are changed. 

 

4.4.3 ACRU model inputs 

The ACRU model requires input of observed or derived data and information on, inter alia, 

climate data (daily rainfall, maximum and minimum temperature and potential evaporation), 

physiographic data (mean catchment altitude and slope), as well as soil information 

(thickness of soil horizons, soil water retention constants, drainage rates and soil erodibility). 

For this study these inputs were derived from existing databases, e.g. climate from the time 

period 1950 to 1999, soil properties, altitude, slope are all available within the Quinary 

Catchments Database (Schulze et al., 2010). These inputs remained constant for the various 

model runs within this study, while the scenario land use-related inputs were changed. The 

land use-related inputs were vegetation-related (such as vegetation and/or crop attributes), 

dam-related (e.g. full supply capacities, surface areas, evaporation rates and releases), 

irrigation-related, impervious area- related, as well as water transfer- related.  
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4.4.4 Hydrological processes and model inputs related to natural vegetation 

The hydrological inputs related to baseline land cover were obtained from previous research 

with the ACRU model (Schulze 2004; 2008). In the ACRU model, baseline land covers 

according to Adcock’s’ (1988) Veld Types have been assigned a so-called “land use number” 

(ACRU variable CROPNO) and for each land use number the relevant month-by-month 

ACRU input variables have been determined (Schulze and Pike, 2004). Because this study 

uses the more detailed Ezemvelo classifications of baseline land cover rather than Adcock’s’ 

Veld Types per se, the Acocks land use number for the Veld Types equivalent to Ezemvelo’s 

classes were selected to represent hydrological inputs for the baseline land cover scenario 

(Table 4.2).  

 

The baseline land cover-related ACRU inputs are month-by-month values of:  

  

a) CAY: the so-called crop coefficient, an index of above ground biomass, which 

expresses the fraction of water evapotranspired by the vegetation type, compared with a 

reference potential evaporation, in this case that of the Class A evaporation pan; 

b) VEGINT: the canopy interception of rainfall by a plant on a rainday (in mm); 

c) ROOTA: the fraction of root mass distribution in the topsoil; 

d) COIAM: the coefficient of initial abstraction, which is an index of infiltrability and is 

dependent on rainfall intensity and above-ground biomass (Schulze, 1995); 

e) COVER: the vegetation cover factor, made up of aerial and ground cover, which 

expresses the fraction of soil loss compared with that from a tilled bare soil; 

f) PCSUCO: the per cent surface cover, e.g. of litter or mulch, which affects soil water 

evaporation; 

g) COLON: the percentage of roots colonising the subsoil horizon, which affects soil 

water extraction rates in that horizon. 
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Table 4.2 Month-by-month ACRU land cover-related inputs for the baseline land cover 

representing natural vegetation in the Mpushini/Mkhondeni study are (Source: 

Schulze et al., 2010) 

LAND COVER ACRU Variable Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

KwaZulu-Natal Hinterland 
Thornveld, hydrologically 
represented by Acocks 
#65: Southern Tall 
Grassveld ACRU CROPNO 
2030322 
  

CAY 0.75 0.75 0.75 0.50 0.40 0.20 0.20 0.20 0.55 0.70 0.75 0.75 

VEGINT 1.60 1.60 1.60 1.60 1.50 1.40 1.40 1.40 1.50 1.60 1.60 1.60 

ROOTA 0.90 0.90 0.90 0.95 0.95 1.00 1.00 1.00 0.95 0.90 0.90 0.90 

COIAM 0.15 0.15 0.20 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.20 0.15 

COVER 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 

PCSUCO 82.3 82.3 82.3 82.3 82.3 82.3 82.3 82.3 82.3 82.3 82.3 82.3 

COLON 70 70 70 70 70 70 70 70 70 70 70 70 

                            

Eastern Valley Bushveld,  
hydrologically represented 
by Acocks #23: Valley 
Bushveld ACRU CROPNO 
2040101 
  
  

CAY 0.75 0.75 0.75 0.65 0.55 0.20 0.20 0.40 0.60 0.75 0.75 0.75 

VEGINT 2.50 2.50 2.50 2.20 2.00 2.00 1.90 1.90 2.20 2.50 2.50 2.50 

ROOTA 0.80 0.80 0.80 0.85 0.90 1.00 1.00 0.95 0.90 0.80 0.80 0.80 

COIAM 0.20 0.20 0.25 0.30 0.30 0.30 0.30 0.30 0.30 0.25 0.20 0.20 

COVER 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 

PCSUCO 82.3 82.3 82.3 82.3 82.3 82.3 82.3 82.3 82.3 82.3 82.3 82.3 

COLON 80 80 80 80 80 80 80 80 80 80 80 80 

 

The above inputs were also used for the HRU 1 of the current land use scenario. Any 

subsequent deviations from the baseline land cover through, for example, bush encroachment 

or alien invasive plant infestation have not been taken into account, as no detailed scientific 

databases of the respective areas usable at the spatial resolution of this modelling exercise 

exist, to the author’s knowledge. 

 

For land uses other than the baseline land cover, the following inputs were considered for 

changing in the model: the soil water content at saturation for tilled land; the monthly crop 

coefficients; the month-by-month canopy interception of rainfall by a plant on a rainday; the 

fraction of the root mass distribution in the topsoil horizon; the per cent surface cover; the 

fraction of the catchment occupied by adjunct impervious areas, i.e. areas joined directly to a 

water course, from which precipitation contributes directly to stormflow, as well as the 

fraction of a catchment occupied by impervious areas which are not adjacent to a 

watercourse. Within the current land use scenario, some areas have been degraded, and the 

processed and inputs of these will be examined next.  

 

4.4.5 Hydrological processes and model inputs related to degraded areas 

Some parts of the study area have been identified as degraded within the KZN-LU 

(Ezemvelo, 2011b) classification. Degraded areas are hypothesised to potentially partition 

rainfall into higher proportions of stormflow and lower proportions of baseflow, compared to 
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non-degraded conditions. The conditions of degradation may include a reduction of above-

ground biomass, which reduces transpiration, canopy interception and the canopy’s protective 

properties. It also may include a reduction to surface litter/mulch, which would increase soil 

water evaporation and enhance the drying out of the topsoil horizon while also reducing the 

protective surface layer, which, in turn, increases soil erosion. Degraded conditions are also 

hypothesised to include a compaction of the soil surface and thereby a reduction in soil 

infiltration properties.  

 

Following the rules given in Schulze (2013), the following input variables were adjusted, 

compared to those of the natural vegetation input: 

 

a) CAY (I=1,12): The monthly crop coefficient, an index of above-ground biomass, is 

divided by 1.4, but in the ACRU model may not be less than 0.2 in any month; 

b) VEGINT: the interception loss per rainday is reduced by 50 %; 

c) COIAM: the coefficient of initial abstraction is reduced to 0.10 for November to March 

which represents the season of convective rainfall, 0.15 for April, May and October, 

and 0.20 for June to September, resulting in reduced rates of infiltration; 

d) PCSUCO: the percentage litter/mulch is reduced to 10 % as a consequence of reduced 

surface cover under degraded conditions; 

e) COVER: the canopy and surface variable representing soil loss, compared to that of a 

bare tilled soil, is increased to 0.24; and 

f) COLON: the roots colonising the subsoil horizon is reduced to 60 %, because of poor 

root development. 

 

The ACRU model inputs are shown in Table 4.3. Following the above assessment of model 

inputs for degraded areas, model inputs for agricultural land uses will be examined next.   

 

4.4.6 Hydrological processes and model inputs related to dryland agricultural land 

uses, inclusive of sugarcane and tree plantations 

With the exception of sugarcane and tree plantations, the land use data from Ezemvelo (2011) 

does not distinguish between different types of annual commercially-grown dryland crops. 

From field visits, however, improved pasture was found to be by far the dominant crop, 

although small areas of maize fields were found as well. For the HRU of each catchment unit 
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which represents dryland crops, i.e. HRU 2, the dominant land use was therefore chosen and 

the land use-related ACRU inputs assigned as in Table 4.4. 

 

Table 4.3 Month-by-month ACRU input for degraded areas, obtained by adjusting 

baseline land cover inputs, as per the rules laid out by Schulze (2013) 

LAND USE  
ACRU 
Variable Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

KZN Hinterland Thornveld -  
Degraded 
  
  
  
  
  

CAY 0.54 0.54 0.54 0.36 0.29 0.20 0.20 0.20 0.39 0.50 0.54 0.54 

VEGINT 0.80 0.80 0.80 0.80 0.75 0.70 0.70 0.70 0.75 0.80 0.80 0.80 

ROOTA 0.90 0.90 0.90 0.95 0.95 1.00 1.00 1.00 0.95 0.90 0.90 0.90 

COIAM 0.10 0.10 0.10 0.15 0.15 0.20 0.20 0.20 0.20 0.15 0.10 0.10 

COVER 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 

PCSUCO 10 10 10 10 10 10 10 10 10 10 10 10 

COLON 60 60 60 60 60 60 60 60 60 60 60 60 

                            

Eastern Valley Bushveld - 
Degraded 
  
  
  
  
  

CAY 0.54 0.54 0.54 0.46 0.39 0.20 0.20 0.29 0.43 0.54 0.54 0.54 

VEGINT 1.25 1.25 1.25 1.10 1.00 1.00 0.95 0.95 1.10 1.25 1.25 1.25 

ROOTA 0.80 0.80 0.80 0.85 0.90 1.00 1.00 0.95 0.90 0.80 0.80 0.80 

COIAM 0.10 0.10 0.10 0.15 0.15 0.20 0.20 0.20 0.20 0.15 0.10 0.10 

COVER 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 

PCSUCO 10 10 10 10 10 10 10 10 10 10 10 10 

COLON 60 60 60 60 60 60 60 60 60 60 60 60 

 

Table 4.4 Month-by-month ACRU input variables for improved pastures, representing 

dryland crops other than sugarcane and tree plantations (Schulze, 2004) 

LAND USE 
ACRU 
Variable Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Dryland agriculture: 
Improved Pastures 
hydrologically represented  
by ACRU CROPNO 2030107 
  
  

CAY 0.65 0.65 0.65 0.55 0.40 0.20 0.20 0.20 0.40 0.50 0.65 0.65 

VEGINT 1.20 1.20 1.20 1.20 1.10 1.00 1.00 1.00 1.00 1.10 1.20 1.20 

ROOTA 0.90 0.90 0.90 0.95 0.95 1.00 1.00 1.00 0.95 0.90 0.90 0.90 

COIAM 0.15 0.15 0.25 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.20 0.15 

COVER 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 

PCSUCO 64.5 64.5 64.5 64.5 64.5 64.5 64.5 64.5 64.5 64.5 64.5 64.5 

COLON 60 60 60 60 60 60 60 60 60 60 60 60 

 

The land use class “plantations”, which in the Ezemvelo description are production tree 

plantations, was observed during site visits to consist of unmanaged black wattle (Acacia 

mearnsii) patches, and appear to be partly planted, but mainly self-propagated, as this alien 

invasive species is known to do. The trees that were found are of varying heights and ages. 

The inputs related to tree plantations were adjusted, to account for the observed conditions. 

Should both land uses, sugarcane and tree plantations, be present in a CU, the areas were then 

added and the land use-related inputs from the dominant one were used (cf. Table 4.5). 
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Table 4.5 Month-by-month ACRU input variables for sugarcane and unmanaged wattle 

tree plantations (Sources: Schulze, 1995; 2013) 

LAND USE 
ACRU 
Variable Jan Feb March April May  June July Aug Sept Oct Nov Dec 

Sugarcane: Inland Areas 
hydrologically represented 
by ACRU CROPNO 5200704 
  
  
  

CAY 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83 

VEGINT 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 

ROOTA 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 

COIAM 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 

COVER 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 

PCSUCO 90 90 90 90 90 90 90 90 90 90 90 90 

COLON 70 70 70 70 70 70 70 70 70 70 70 70 

                            

Wattle Plantations, 
hydrologically represented 
by Wattle with no specific 
site preparation and  of 
intermediate age 
  
  

CAY 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 

VEGINT 1.85 1.85 1.85 1.85 1.85 1.85 1.85 1.85 1.85 1.85 1.85 1.85 

ROOTA 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83 

COIAM 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 

COVER 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 

PCSUCO 95 95 95 95 95 95 95 95 95 95 95 95 

COLON 60 60 60 60 60 60 60 60 60 60 60 60 

 

Other hydrologically important land uses include dams, the model inputs of which are 

examined next.  

 

4.4.7 Hydrological processes and model inputs related to dams 

The presence of dams influence streamflows by storing water, by abstractions of stored water 

for agricultural (irrigation or livestock), municipal and industrial uses and by releases (or the 

absence of releases) for environmental purposes. Dams also have an attenuating effect on 

floods, as well as reducing downstream flow variability. Evaporation losses occur from dams 

and they may or may not incur losses as a result of seepage. 

 

Multiple dams within a CU are modelled in ACRU by aggregating the dam surface areas at 

the outlet of the CU. In this study, data for the surface areas at full supply capacity were 

obtained from KZN-LU (Ezemvelo, 2011) land cover Class # 36 “Water dams”, rather than 

from the DWA’s (2013) WARMS database, because that was found not to contain all the 

dams within the Mpushini/Mkhondeni Catchment. The aggregated dam surface areas of each 

CU are rounded to the nearest hectare. This is represented by the ACRU input variable 

SURFAR, which is the sum of all dam surfaces at full supply capacity (FSC). The 

computation of dam volumes at FSC is more complex, however, when multiple dams are 

considered within a CU and when the volume is not given in DWA databases. In such cases, 
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the volume of each individual dam is first calculated, using the Tarboton and Schulze (1992) 

formula: 

 V = 0.07702 * A 
1.2987

, 

where   

 A is the dam surface area at FSC in m
2
, 

 V is the volume of the individual dam at FSA in m
3
.  

 

Because of the non-linear form of the above equation, the individual capacities of all dams 

within each CU are then aggregated to produce the ACRU input variable DAMCAP, which is 

defined as the sum of all dam capacities, in m
3
, at FCS. Information on dams is given in 

Table 4.6. Further relevant model inputs, with the modelled values in brackets, are: 

 

a) ARCAP: an identifier to specify whether or not a relationship between a predetermined 

surface area to storage volume exists (6 = no area to volume relationship is available); 

b) SEEP: seepage (m
3
 per day) through the reservoir wall or base (taken to be 1/1500 of 

full supply capacity for earth walled dams; Smithers and Schulze, 1995); 

c) PERDAM, which is the initial reservoir storage at the beginning of the simulation, 

expressed as a percentage of the full supply capacity (assessed to be 50 %);  

d) PANDAM(I), which is the monthly coefficient to adjust A-pan equivalent evaporation 

losses to those of extensive water bodies, with the monthly values previously 

determined for Zone 3, which is the zone within South Africa in which the 

Mpushini/Mkhondeni Catchments are located (0.68 for January, 0.69, 0.71, 0.69, 0.67, 

0.65, 0.60, 0.59, 0.60, 0.62, 0.63, 0.63 for December; Smithers and Schulze, 1995). 

 

To account for the influence of dams under current land use conditions, as well as for 

irrigation, which will be discussed next, a model run can be performed with the relevant 

inputs either switched off or switched on, and the model outputs can then be compared.   
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Table 4.6 The number of dams per CU and values of ACRU input variables SURFAR and 

DAMCAP 

CU No. of Dams SURFAR (ha) DAMCAP (m3) 

1 23 34 614 366 

2 5 3 30 609 

3 12 4 38 312 

4 12 7 75 519 

5 4 2 22 297 

6 13 6 64 004 

7 0 0 0 

8 7 8 109 793 

9 5 2 24 569 

10 3 2 15 039 

 

4.4.8 Hydrological processes and model inputs for irrigation 

Irrigation is a major user of stored water in South Africa and is considered a hydrologically 

critical land use. Within the KZN-LU coverage (Ezemvelo, 2011b), 386 ha of “#17, annual 

commercial crops, irrigated” were identified within the study area. However, according to the 

WARMS database (DWA, 2013), for the same catchment the registered area under irrigation 

is only 64 ha. This is a significant discrepancy. Neither of the databases is considered entirely 

accurate. On the one hand, it seems difficult to identify irrigated areas from satellite imagery 

as used for the KZN-LU because the images are taken at a specific point in time when the 

irrigation areas might or might not show up. On the other hand, there are numerous smaller-

scale irrigated fields that are not identified in the DWA (2013) WARMS database, which 

only has three registered users within the study area. The dominant irrigated crop registered 

in the WARMS database is ryegrass. From field visits, ryegrass, along with irrigated kikuyu 

pasture, was confirmed as the dominant irrigated crop. The main mode of irrigation water 

application for the study area is by overhead sprinklers (field observations and DWA, 2013). 

In light of the above uncertainties, the area under irrigation as determined from KZN-LU 

(Ezemvelo, 2011b) was taken as the more correct one. Ryegrass was chosen as the 

representative crop. As observed from fieldwork, irrigation was input to take place 

throughout the year, with application throughout by sprinklers. The irrigation water was 

abstracted out of a dam and it was found from field visits that the irrigation and the reservoir 

were situated within the same CU. Based on the above observations and assumptions, the 

relevant ACRU inputs were determined from Schulze (1995), Smithers and Schulze (1995), 

KZN-LU (Ezemvelo, 2011b) and DWA (2013). Explanations of the irrigation input variables 
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follow, with the inputs used for the model run given in brackets, in the case of default values 

these being taken from Smithers and Schulze (1995).  

 

a) IRRIGN: switch to specify whether or not an irrigation simulation is to be performed (1 

= Yes); 

b) IRRMON(I): option to specify those months in which irrigation will be applied (1 = 

Yes, for every month); 

c) HAIRR(I): the area (in ha) to be irrigated in a given month (CU 1 = 49 ha, CU 2 = 34, 

CU 3 = 24, CU 6 = 7, CU 8 = 15 ha); 

d) COIAIR(I): coefficient of initial abstraction for the irrigated area input, on a month-by-

month basis (0.3 for every month); 

e) IRRPED: option to specify that, in addition to soil textural information, soil water 

retention values for the drained upper limit, permanent wilting point and saturation are 

available (1 = Yes); 

f) WPIR: soil water content (m/m) at permanent wilting point for the soil being irrigated 

(0.16 m/m); 

g) FCIR: soil water content (m/m) at the drained upper limit for the soil being irrigated 

(0.26 m/m); 

h) POIR: soil water content (m/m) at saturation for the soil being irrigated (0.5 m/m); 

i) CAYIRR(I): the area-weighted average monthly crop coefficient for the irrigated crop. 

CAYIRR is the proportion of water evaporated and transpired by the soil/plant complex 

under conditions of maximum evaporation in relation to the evaporation by an A-pan 

for the month under consideration (0.7 for every month); 

j) DINTIR(I): the canopy interception loss, either from rain or an irrigation application for 

the crop under irrigation (1.5 mm); 

k) RDMAX: the potential maximum rooting depth (m) of the irrigated crop (0.6 m); 

l) RDUP: soil depth (m) to which the majority of soil water extraction takes place for a 

fully grown irrigated crop (0.3 m); 

m) CCOV: the crop coefficient of the irrigated crop when it is at full canopy (0.7); 

n) CCMAX: the crop coefficient of the irrigated crop when the rooting depth reaches a 

maximum (0.7); 

o) ISCHED(I): the mode of irrigation scheduling input on a month-by-month basis (1 = 

Yes, demand irrigation in all months); 
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p) STPRO(I): the proportion of plant available water at which irrigation water applications 

are initiated (0.5); 

q) CONLOS: the conveyance losses (fraction) between source of water supply and the 

application point (0.15, assuming highly efficient systems); 

r) EVWIN: the spray evaporation and wind drift losses (fraction) after leaving the 

irrigation nozzle (0.11, a typical value for sprinkler); 

s) IRSPLY: variable to specify from which catchment number (ICELLN) irrigation water 

is supplied (1 = Yes, from the same catchment as that of the dam); 

t) IRRAPL: the source of water supply e.g. from a dam or run-of river (1 = Irrigation 

from dams); 

u) INCELL: variable to specify whether irrigation is applied within the CU under 

consideration (1 = Yes, within the CU);  and 

v) UPSTIR: the location of the irrigated field relative to the reservoir, i.e. whether the 

irrigation is upstream or downstream of the dam supplying water (1 = upstream). 

 

In the modelling setup, should irrigation occur within a CU, the area under irrigation is 

assigned to the fifth HRU (cf. Section 4.3.4). To account for the influence of dams and 

irrigation, a model run can be undertaken with the relevant inputs either switched off or 

switched on, and the model outputs then compared.   

 

After having discussed the inputs for irrigation, the inputs relating to hydrologically critical 

land uses with impervious areas follow. 

 

4.4.9 Hydrological processes, model inputs and calculations related to impervious 

areas  

Urban land uses have various degrees of impervious areas in the form of roofs, roads, parking 

lots and other hardened surfaces. These result in increases in stormflow, which can discharge 

directly into receiving streams, while baseflows from those areas are generally depleted 

through decreased pervious areas (cf. Section 4.4.12; Schulze, 2013). The fractions of 

impervious surfaces within the area under consideration therefore need to be determined. A 

distinction has to be made between impervious areas that discharge water directly to a stream, 

these being classed as adjunct impervious areas, with the fraction expressed by the ACRU 

variable ADJIMP, and impervious surfaces that discharge any water into surrounding 
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pervious areas which are not linked directly to a stream, these being classed as disjunct 

impervious areas, with the fraction expressed by the ACRU variable DISIMP. A small initial 

amount of rainfall is abstracted from impervious areas before surface runoff from them 

commences (ACRU variable STOIMP). This is set at 1 mm, following Tarboton and Schulze 

(1992). KZN-LU Class # 12, “built up - dense settlement” (Ezemvelo, 2011) was assessed 

within the study area by using Google Earth images and were found to be dense industrial 

areas, found only in CU 9. For these dense industrial areas, the impervious fractions were set 

after making a visual assessment from Google Earth and from fieldwork, while for the 

remainder of Class # 12, as well as for “low density settlements” (Class #14) and for 

smallholdings grassland (Class #30), the rules determined by Schulze (2013) for urban areas 

were followed when assigning fractions. Impervious fractions of the transport routes (Classes 

#34-36) and the quarry (Class #11) within the were assessed from fieldwork. The fractions 

for impervious areas for the relevant land uses are shown in Table 4.7. 

 

Table 4.7 Fractions of adjunct and disjunct impervious areas for relevant KZN-LU 

classes, with the sources of fractions from Schulze (1995), Google Earth and 

from field observations  

KZN-LU 
Class KZN-LU Description Observations from Fieldwork 

Fraction of Adjunct 
Impervious Area 

Fraction of Disjunct 
Impervious Area 

11 Mines and quarries Quarry only, near river 0.50 0.30 

12 Built up dense settlement  (industrial) High density 0.50 0.30 

12 Built up dense settlement (residential) Formal residential, high density 0.50 0.15 

14 Low density settlements Formal residential, low density 0.00 0.10 

30 Smallholdings – Grassland Very low density 0.00 0.05 

34 KZN national roads With grass strip between lanes 0.10 0.60 

35 KZN main & district roads No grass strip 0.10 0.70 

42 KZN railways Assume all rainfall  infiltrates 0.00 0.00 

 

Every HRU for every CU is modelled individually. Therefore, the impervious fractions for 

every applicable HRU (i.e. the first HRU per CU) needed to be calculated separately for 

adjunct and disjunct impervious areas, by following the steps below: 

 

a) The impervious area of each land use class within HRU 1 of the respective CU is 

calculated by the product of the impervious fractions of each class in Table 4.7 and the 

respective area (km
2
) of HRU 1.  

b) The impervious area (in km
2
) of the respective catchment unit (CU) is calculated by the 

sum of the impervious areas of the various land use classes found in that CU. 
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c) The area (km
2
) under impervious land uses is then assigned to HRU 1 of a CU (cf. 

Section 4.3.4)  

d) Within HRU 1 the impervious fraction is then calculated as the quotient of the 

impervious area and the total area of the HRU.  

 

Using the rules and assumptions above, the impervious fractions were calculated and are 

shown in Table 4.8. 

 

Table 4.8 Calculated fractions of adjunct and disjunct impervious areas (ACRU variables 

ADJIMP and DISIMP) within HRU 1 of each catchment unit (CU), for current 

and proposed land use scenarios, with the CUs affected by proposed land uses 

shaded  

HRU 1 of CU Current Land Use Current Land Use Including Proposed Development Including Proposed Development 

 
ADJIMP DISIMP ADJIMP DISIMP 

1 0.018 0.045 0.018 0.047 

2 0.018 0.043 0.076 0.088 

3 0.033 0.130 0.316 0.341 

4 0.080 0.167 0.126 0.180 

5 0.019 0.032 0.064 0.183 

6 0.054 0.093 0.072 0.155 

7 0.018 0.049 0.018 0.049 

8 0.008 0.048 0.227 0.632 

9 0.042 0.051 0.093 0.190 

10 0.037 0.015 0.037 0.015 

  

In the section above, the methods of identifying and calculating impervious fractions were 

described. Another important consideration for modelling is that of return flows of water used 

for industrial and domestic purposes, where the water used may come from sources either 

external to the study catchment or from within the catchment. This will be discussed next. 

 

4.4.10 Hydrological processes and model inputs related to return flows 

This particular study catchment receives all its treated water for residential and industrial 

purposes from sources outside of the study area. This water becomes part of the study area’s 

water budget and has to be considered when return flows are calculated, as this adds to 

downstream streamflow. It needs to be borne in mind that this water is removed from the 

water budget of another catchment of the uMgeni Catchment, outside of the study area. It is 
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likely that this might have negative effects in the supply catchment, similar to the ones of 

inter-catchment transfers (WWF, 2009; cf. Section 2.3.3).   

The study catchment’s treated water is supplied by different municipalities and other service 

providers. It has proven difficult to obtain figures of the amount of externally sourced water 

supplied to the study area. For the current land use scenario, the following was therefore 

assumed: 

 

a) For the dense industrial area of Mkhondeni (situated within CU 9), the effluent and 

grey water is pumped towards a wastewater works situated outside the study area. 

Therefore no return flows into the study area are applicable.  

b) The bulk of the remaining area operates on septic tank systems or conservancy tank 

systems. Any water contributing from these sources was disregarded, as the return 

flows from these are very low and no scientific data on tank systems are available for 

this area.  

c) The only area that has a centralised sewerage treatment system is Lynnfield Park, 

situated within CU 4. The Lynnfield Park wastewater treatment works currently runs at 

a capacity of 6000 kl/month, and this figure was used as the return flow for CU 4 (cf. 

Table 4.10). 

 

The proposed land uses are likely to significantly increase downstream return flows. In order 

to determine the return flow values, the individual proposed developments are first allocated 

into the respective catchment units (cf. Section 3.4.3). The return flows per development 

application were then established, using the following rules:  

 

a) Where the return flows were given in an application, this value was used.  

b) Where this was not available, a water supply of 200 l per person per day was assumed, 

of which 50 % was assumed to become return flows (Schulze, 2013). This equals return 

flows of 100 l per person per day or 0.3 kl per person per month. 

c) For residential developments, four people were assumed to occupy a dwelling. This 

generates a return flow of 1.2 kl per dwelling per month. This figure was multiplied by 

the number of proposed dwellings determined from the various development 

applications. 
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d) For current industrial/commercial developments, no return flows were found to enter 

the channels within the study area. For the proposed industrial and commercial 

developments, return flows of 400 l per 100 m
2
 floor space per day are assumed, 

following the CSIR (2005) guidelines, i.e. 120 000 kl per month per km
2 

floor space. 

This figure was multiplied by the proposed development footprint (in km
2
), rather than 

the size of the property, where the industrial footprint was obtained from the various 

development applications (PMMB Trust, 2012).  

 

Using the rules and assumptions above, the return flows for each of the development 

applications were determined and are shown in Table 4.9. The return flows per catchment 

unit were then aggregated for current, as well as for proposed, land uses (Table 4.10).  

 

Table 4.9 Determination of return flows for the proposed land uses per catchment unit and 

per development application, either determined (*) directly from the 

development application, or (**) based on the number of houses and calculated, 

or (***)
 
based on the development footprint and then calculated, with all 

information sourced from the development applications 

Development Name 
 

CU Location Application* Number of 
Dwellings 

Flow from 
Dwellings** 

Development 
Footprint 

Industrial/Commercial 
*** 

Total Return Flow 

  
   

kl km2 kl/month kl/month 

Ashb_Res_Dev 1 
 

25 300 
  

300 

Hutton 2 
   

0.50 60000 60000 

Tanglethorn 2 
 

18 216 
  

216 

Umlaas Gates 2 
   

0.26 31200 31200 

 Phoenix 3 
   

0.19 22800 22800 

Composting 3 
   

0.10 12000 12000 

Hutton 3 
   

0.50 60000 60000 

Ibhubezi Industrial 
Park 3 

   
0.73 87600 87600 

Lion 3 
   

0.25 30000 30000 

Rita 3 
   

0.19 22800 22800 

Mpushini Business 
Park 4 

   
0.43 51600 51600 

Kingthorpe 5 
 

800 9600 
  

9600 

Mkhonto 6 
 

20 240 
  

240 

  7 
     

0 

Foxhill 8 
 

500 6000 
  

6000 

Ithaba Ridge 8 
 

200 2400 
  

2400 

Ashburton Shopping 
Centre 9 

   
0.15 18000 18000 

Burton Heights 9 
 

490 5880 
  

5880 

Hillcove Hills 9 57000 
  

2.53 303600 57000 

Shorts Retreat 
Industrial Zoning 9 

   
0.18 21600 21600 

 
10 

     
0 
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Table 4.10 Return flows per CU for current land uses as well as for proposed land uses, in 

kl/month and in 10
6
 kl/month for the ACRU variable PUMPIN 

CU Current LU Proposed LU Current LU PUMPIN Proposed LU PUMPIN 

 
(kl/month) (kl/month) (106 kl/month) (106 kl/month) 

1 
 

300  0.000 

2 
 

91416  0.091 

3 
 

235200  0.235 

4 6000 57600 0.006 0.058 

5 
 

9600  0.010 

6 
 

240  0.000 

7 
 

0  0.000 

8 
 

8400  0.008 

9 
 

102480  0.102 

10 
 

0  0.000 

 

In order to model return flows with the ACRU model, a so-called “dummy dam” was created 

at the outlet of HRU 1 of the required CU, in order to capture the return flow by assuming 

them to be conveyed to the dummy dam (ACRU variable PUMPIN). The model variables 

relating to dams have been explained previously in Section 4.4.7. The dummy dam was 

assumed to have a very small surface area (SURFA = 0.1 ha) and a small capacity 

(DAMCAP = 10000 m
3
), in order to constantly spill over return flows. Standard PANDAM 

values for the dam’s surface area, were applied. The dummy dam was assumed to be full at 

the commencement of a simulation (PERDAM = 100 %). From the return flows (Table 4.10), 

the ACRU input PUMPIN (in 10
6
 kl/month) was calculated. On the assumption that return 

flows from domestic and industrial areas do not vary seasonally, it was assumed that the 

PUMPIN inputs from January to December remain constant.  

 

In addition to the land use-related ACRU model inputs discussed in the previous sections, it is 

also necessary to configure and interlink the CUs and HRUs within the model, to be able to 

distinguish between accumulated effects and local effects. This requires model inputs relating 

to catchment configurations.  

 

4.4.11 Hydrological processes and model inputs related to catchment configurations 

Water flows from higher altitude CUs into CUs of lower altitudes, and flows are thus 

accumulated downstream. The interlinked flow path between upstream and downstream CUs 

needs to be specified, as shown previously in Figure 4.3, as do the configurations between the 

HRUs within each CU, as shown previously in Figure 4.5. Within the ACRU model, the 

variable IDSTRM represents the flow path between the HRUs within a CU and flow paths 
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from one CU to the next one downstream. After having discussed inputs relating to various 

land uses and configurations, the relevant outputs from the ACRU model will be examined 

next. 

 

4.4.12 Hydrological responses, represented by the ACRU model outputs  

The above established input information is transformed by the ACRU model by considering 

the interactions between climate, soil, vegetative, hydrological and management subsystems. 

These include thresholds, lag rates and feedbacks. The model then computes the selected 

outputs, which are simulated, unmeasured hydrological responses. These include “blue 

water” flows (cf. Section 2.3.2) of daily streamflows (including contributions from upstream 

HRUs and CUs, runoff from the individual HRU within the CU, and its components of 

stormflows and baseflows, high and low flows and extreme events). The outputs also include 

“green water” flows of evaporative losses, made up of plant transpiration, and “white water” 

flows, made up of soil water evaporation and canopy interception losses. Further to the 

above, sediment yields are also calculated (Schulze, 1995 and updates; Smithers and Schulze, 

1995 and updates; Schulze, 2013). All the above outputs are available as daily, monthly or 

annual averages and as a frequency analysis. For this study the primary output from the 

model was on an individual HRU basis, with the ability to then aggregate results to a 

catchment unit or to the entire catchment, and with the streamflows generated per HRU 

cascading downstream, according to hydrological flow paths (Figure 4.3) and eventually to 

the outlets of the Mpushini and Mkhondeni Catchments into the Msunduzi River.  

 

A detailed explanation of the internal computation of the ACRU model is beyond the scope of 

this dissertation and the reader is referred to general ACRU literature (e.g. Schulze, 1995 and 

updates; Smithers and Schulze, 1995 and updates).  

 

The relevant ACRU outputs in this study are stormflow, baseflow, runoff, accumulated 

streamflow, sediment yield and total transpiration, together with extreme runoff events.  

 

Stormflow (ACRU output variable QUICKF, in mm equivalent) is defined as water which is 

generated from a specific rainfall event, either at or near the surface, to contribute to flows in 

the channel of the HRU. Stormflow is a response to climatic and biophysical inputs, e.g. the 

magnitude of the rainfall event, how wet the soil is just prior to the rainfall event, slope, soil 
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properties, as well as land cover-related variables affecting infiltration, for example, canopy 

and soil cover and impervious fractions. Not all the stormflow generated by a specific rainfall 

event exits the HRU or CU on the same day as the rainfall event, and it can be lagged by a 

response coefficient QFRESP to yield the stormflow fraction on a specific day. The 

stormflow exiting a catchment on a specific day is termed “quickflow”.  

 

Baseflow (ACRU variable RUN, in mm equivalent) is defined as the delayed water from 

rainfall that has percolated through the soil horizons into the intermediate and groundwater 

zones and which then contributes as a delayed flow to the streams within a HRU.  

 

Runoff (ACRU variable SIMSQ, in mm equivalent) is the water yield from an individual 

HRU and consists of stormflow plus baseflow. The land use-related variables that influence 

the partitioning of runoff into stormflow or baseflow are, inter alia, the infiltration rate, 

canopy and soil cover, as well as the fractions of impervious areas.  

 

Streamflow (ACRU variable CELRUN, in mm equivalent) consists of runoff from the HRU 

under consideration plus the runoff contribution from all upstream HRUs. 

 

Sediment yield (ACRU variable SEDYLD, in t) consists of the soil detached from a landscape 

after a rainfall runoff event, which reaches the stream and results from the interaction of 

slope, vegetation cover and management characteristics, with the peak discharge of an event 

as the detaching agent and stormflow as the sediment transporting agent.   

 

Extreme runoff events: In the case of this study, frequency distributions of extreme runoff 

events were computed by modelling the annual maximum series of daily runoff with the log 

Pearson Type 3 extreme value distribution, to yield statistically expected maximum runoff 

and accumulated streamflows for the 2-, 5-, 10-, 20- and 50-year return periods. 

 

Total transpiration: This is water that has actually flowed from the soil via a plant into the 

atmosphere. This water is used by the plant to produce biomass. The total transpiration is 

calculated by adding the transpiration from the topsoil horizon (ACRU variable ATRAN1, in 

mm) to the transpiration from the subsoil horizon (ATRAN2 in mm). Note that these ACRU 
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outputs are for the pervious areas only. If impervious areas are present, the result needs to be 

multiplied with the fraction of the pervious area, which is calculated by 1-ADJIMP-DISIMP.  

 

The ACRU outputs relevant for this study have been described above. In the analyses which 

follow in Chapter 5, numerous monthly and annual statistics of these outputs are presented. 

These statistics might be arithmetic mean values, while median values, e.g. of flows, 

sediment yields, rainfall, etc., denote the 50
th

 percentile of a frequency analysis of the 

variable being analysed, and a median value of a time series will be exceeded as often as it 

will not be exceeded. A 1:10 high value (e.g. 1:10 high flow year, or 1:10 wet year) denotes 

the 90
th

 percentile of a time series, and it implies that statistically that value will be exceeded 

only in 1 year in 10. Similarly, the 1:10 low value (e.g. 1:10 low flow year, or 1:10 dry year) 

implies that that value is exceeded in 90 % or more of years. Furthermore, in the hydraulic 

design of, for example, stormwater systems or spillways from dams, the statistically expected 

runoff for a given recurrence interval, i.e. the return period, is termed design runoff. This is 

an ACRU model output and in this study the 2, 5, 10, 20 and 50 year return periods were 

evaluated. 

 

4.5 From hydrological responses to hydrological ecosystem services 

To be able to evaluate changes to hydrological ecosystem services (cf. Section 2.3), a link has 

to be established between the hydrological responses (cf. Section 4.4.12) and ecosystem 

services. Ecosystem services often cannot be measured directly. They can, however, be 

measured by suitable indicators or by proxy information. In the case of hydrological 

ecosystem services, frequently modelled process responses are used in practice (Egoh et al., 

2012a; Section 2.3.5). Building on the hydrological ecosystem frameworks of Aylward et al. 

(2005), de Groot (2006) and Brauman et al. (2007), outlined in Table 2.1, and trying to 

reduce the identified gap in the literature (Section 2.6), an approach for linking these 

frameworks to modelled hydrological responses as indicators with the ACRU model is shown 

in the conceptual framework in Table 4.11. The relevant process model outputs relating to 

hydrological flows, representing the hydrological responses and functions, are used in this 

study as indicators of relevant ecosystem services. Changes in these indicators, resulting from 

land use changes, serve as proxy information for changes in associated hydrological 

ecosystem services. These will be shown in Section 5.7 and discussed in Section 6.3 of this 

dissertation. 
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Table 4.11 Links between hydrological ecosystem functions, hydrological responses and 

ACRU model outputs 

Hydrological 

Ecosystem 

Functions 

Ecosystem 

Processes and 

Components 

Examples of Hydrological 

Ecosystem Services 

Hydrological 

Attributes 

Suggested 

Hydrological Indicator  

ACRU 3.1. 

Output 

Change in Response 

Provisioning 

function 

The role of the 

landscape to 

collect and 

influence 

precipitation 

Water quantity for consumptive 

use (for drinking, domestic, 

agricultural or  industrial uses) 

and non-consumptive use (for 

generating power and 

transport/navigation)  

Quantity (surface 

and groundwater 

storage and flow) 

Low flow periods 

Timing 

Runoff and/or 

accumulated streamflow 

SIMSQ 

and/or 

CELRUN 

 Annual and monthly 

magnitudes 

 Low flow seasonality 

 Low flow duration 

Water quality for consumptive or 

non-consumptive use ) 

Quality (sediment) Sediment yield  SEDYLD Magnitude 

Quality 

(pathogens, 

nutrients, salinity) 

Other indicators 

required, e.g. chemical 

analyses of sediments 

for e.g. nutrient load and 

bacteria, etc. 

N and P 

outputs 

Annual loads 

 

 

Provision of 

natural 

resources  

Conversion of 

solar energy 

into biomass 

for food, 

construction 

and other uses 

Primary production: 

 Fuel and energy 

 Fodder 

 Building and manufacturing 

The amount of 

water flowing 

through a plant 

 

Transpiration ATRANS1 

+ 

ATRANS2 

Magnitudes and low 

transpiration during dry 

season  

Others, e.g. soil 

moisture, harvested 

yield 

Net Above-Ground 

Primary Production 

e.g. STO1, 

STO2,  

Annual Magnitude and Inter-

Annual Variability 

 Hunting of fish or game 

 Small-scale subsistence 

farming 

 Aquaculture 

Others    

Regulation 

function: 

Disturbance 

prevention:  

Control of 

flow speed 

Influence of 

ecological 

infrastructure 

in  regulating 

runoff, river 

discharge and 

flood control, 

thereby 

attenuating 

environmental 

disturbances 

 

Flood prevention, buffering of 

flood flows  

 

High flow periods, 

peak flow 

magnitudes, as 

well as its timing, 

duration and  

velocity 

 

One day design runoff 

(for selected return 

periods) (extreme value 

analyses) 

EVD Magnitude  

Stormflow component 

of runoff 

QUICKF Magnitude 

Runoff and/or 

accumulated stormflow 

for high flow periods 

SIMSQ 

and/or 

CELRUN 

Magnitude 

Erosion control  Sediment yield SEDYLD Magnitude  

Regulation 

function: 

Water 

regulation  

Role of land 

cover and 

ecological 

infrastructure 

in regulating 

runoff and river 

discharge  

Drainage and natural runoff 

attenuation  

Infiltration and 

sustained soil 

moisture 

Runoff and/or 

accumulated streamflow  

SIMSQ 

and/or 

CELRUN 

Changes in annual 

magnitudes and monthly 

magnitudes, duration and 

seasonality of months with 

low flows 

Baseflow component of 

runoff 

RUN Changes in annual 

magnitudes and monthly 

magnitudes, duration and 

seasonality of months with 

low flows 

Regulation 

function: 

Water supply 

Natural 

filtration and 

treatment of 

fresh water 

Provisioning of water for 

consumptive use (e.g. drinking, 

domestic, agricultural or 

industrial uses). 

Maintenance of water quality. 

Natural filtration 

and water 

treatment to 

maintain or 

improve water 

quality 

Sediment yield SEDYLD Magnitude 

And other indicators   

Retention of  

fresh water 

Infiltration and 

retention of water 

for slow release  

Baseflow component of 

runoff 

RUN  

Others related to 

wetlands, groundwater 

recharge, soil moisture 

SUR2, 

STO1, 

STO2 

 

Short and long 

term storage of 

fresh water 

Capacity within the 

natural system and 

in dams 

Sediment yield SEDYLD Magnitude 

Others   

Regulation 

function: Soil 

retention 

Role of 

vegetation root 

matrix and soil 

biota in soil 

retention 

 Maintenance of arable land 

 Prevention of damage from 

erosion/siltation 

Infiltration Sediment yield SEDYLD Magnitude 

Others   

Supporting 

function 

  Predator/prey relationships and 

ecosystem resilience 

  Others     

Supporting 

function:  

Habitat 

functions: 

Habitat and 

nursery 

function 

Providing 

suitable living 

and 

reproduction 

habitat 

 Maintenance of biological and 

genetic diversity (basis of most 

other functions) 

 Maintenance of commercially 

harvested species 

Natural flow 

paradigm and 

boundary approach 

(e.g. Richter et al., 

1997) 

Streamflows, peakflows, 

and others 

CELRUN 

QPEAK 
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4.6 Chapter Conclusions 

In this chapter, the expected hydrological implications of the various land cover and land use 

scenarios were described, followed by the method of sub-delineation of the study area. The 

concept of hydrological modelling was explained, with an account of why the ACRU 

hydrological model was selected. The model inputs were described, with an emphasis on the 

land use or land cover influenced hydrological variables and processes, followed by an 

explanation of the relevant hydrological responses, represented by their modelled outputs and 

their statistics. A conceptual framework was presented to link hydrological responses with 

hydrological ecosystem services. 
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5. RESULTS 

 

Following the chapters on the Literature Review, the Background Information and on the 

Methods, the results of simulations will be described in this chapter. 

   

5.1 Research Overview and Introduction 

This chapter on results fits into the overall research objective and approach as shown in the 

overview provided in Figure 5.1. 

 

 

Figure 5.1 Results and outline of Chapter 5 within the context of this dissertation 

 

In this chapter a summary of the catchment’s division into CUs and HRUs and a dissection of 

land uses per CU will be presented first. Thereafter, various hypotheses on hydrological 

responses are proposed. These hypotheses are tested within the Mpushini/Mkhondeni study 

area, using the hydrological responses represented by the outputs of the ACRU hydrological 

model for baseline land cover conditions and thereafter for the effects of current land uses 

and proposed developments on the hydrological responses. Conceptual links between model 

outputs and hydrological ecosystem services are then discussed and the changes in 

hydrological responses found for the study catchment are thereafter linked to changes in 

hydrological ecosystem services. 

  

Chapter Outline:

• Introduction

• Baseline Land Cover Hydrology

• Understanding Impacts of Current Land Uses on Hydrological Responses

• Understanding Impacts of Proposed Land Uses on Hydrological Responses

• Linking Changes of Hydrological Responses and Ecosystem Services

Sections

Objective: To evaluate changes to selected hydrological responses and associated

selected ecosystem services provided by the study area, as a result of current and

proposed land use modifications

Approach: The objective is to be achieved by identifying the scenarios of baseline

land cover as well as current and proposed land uses; sub-delineating the study

area into land use determined hydrological response units; applying an appropriate

hydrological simulation model to assess changes in hydrological responses from

baseline land cover as well as current and proposed land uses; and relating these

changes in hydrological responses to changes in selected ecosystem services

Chapter 2

Literature 

Review

Chapter 3

Catchment 

Description

Chapter 4

Methods

Chapter 5

Results

Chapter 6

Discussion

Chapter 1

Introduction
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5.2 The Delineation of the Study Area into Catchment Units (CUs) and Hydrological 

Response Units (HRUs), Based on Land Use 

The areas of the CUs and HRUs were determined, based on the methodology explained in 

Section 4.3. A summary is shown in Table 5.1 and the detailed breakdown in Table 5.2. 

 

Table 5.1 A summary for the Mpushini/Mkhondeni study area, of the areas per catchment 

unit (CU), made up of areas of hydrological response units (HRUs)  

Area (km2) CU 1 CU 2 CU 3 CU 4 CU 5 CU 6 CU 7 CU 8 CU 9 CU 10 

Total area HRU 1 18.00 5.23 2.73 4.65 5.01 2.19 5.51 3.30 13.60 1.28 

Total area HRU 2 1.84 1.61 2.38 1.75 1.55 2.10 0.30 2.13 1.25 0.14 

Total area HRU 3 5.07 0.41 0.05 0.00 0.10 0.00 0.00 0.07 0.03 0.00 

Total area HRU 4 10.45 0.96 1.76 1.79 3.56 0.85 1.50 4.28 3.45 1.06 

Total area HRU 5 2.21 0.33 0.28 0.07 0.02 0.14 0.00 0.73 0.03 0.05 

TOTAL 37.57 8.54 7.21 8.26 10.24 5.28 7.32 10.51 18.36 2.53 

 

Table 5.2 A detailed breakdown of the determined areas per CU, HRU and aggregated 

land use class, making up the Mpushini/Mkhondeni study area 

Ezemvelo Land Use Class CU 1 CU 2 CU 3 CU 4 CU 5 CU 6 CU 7 CU 8 CU 9 CU 10 CU 1-10 

Number Description 
           

 

HRU 1 Natural vegetation and 
urban land uses 

           

 
NATURAL VEGETATION 

           18 Forest (indigenous) 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.04 

19 Dense thicket & bush (70-100 % cc) 2.95 1.41 0.30 0.40 0.90 0.22 1.64 0.55 1.74 0.38 10.49 

20 Medium bush (< 70cc) 5.13 1.55 0.44 0.48 0.78 0.31 1.20 1.25 3.73 0.43 15.31 

21 Woodland & Wooded Grassland 0.15 0.00 0.01 0.09 0.02 0.02 0.06 0.01 0.03 0.03 0.42 

22 Bush clumps / Grassland 2.32 0.88 0.65 0.66 1.50 0.70 0.85 0.60 1.39 0.26 9.82 

23 Grassland 4.71 0.55 0.29 0.26 1.32 0.19 1.10 0.43 4.24 0.06 13.14 

4 Wetlands 0.00 0.00 0.05 0.00 0.00 0.04 0.00 0.00 0.01 0.00 0.10 

 
URBAN LAND USES 

           12 Build-up / dense settlement 0.47 0.15 0.10 0.60 0.16 0.19 0.02 0.02 1.00 0.09 2.81 

14 Low density settlements 1.11 0.44 0.39 1.37 0.19 0.31 0.24 0.21 0.70 0.02 4.99 

34 KZN national roads 0.00 0.00 0.08 0.46 0.00 0.15 0.00 0.00 0.38 0.00 1.07 

35 KZN main & district roads 0.85 0.16 0.31 0.27 0.14 0.08 0.27 0.19 0.27 0.00 2.54 

42 KZN Railways 0.29 0.08 0.09 0.05 0.00 0.00 0.00 0.04 0.09 0.00 0.65 

11 Mines and quarries 0.00 0.00 0.00 0.00 0.00 0.00 0.13 0.00 0.00 0.00 0.13 

 
Total area HRU1 18.00 5.23 2.73 4.65 5.01 2.19 5.51 3.30 13.60 1.28 61.50 

             

 

HRU 2 Agriculture, dryland, 
improved pasture 

           

16 
Cultivation, commercial, annual 
crops, dryland 1.16 0.66 1.70 0.17 1.19 2.07 0.00 2.09 0.30 0.00 9.32 

30 Smallholdings 0.68 0.95 0.68 1.59 0.36 0.03 0.30 0.04 0.94 0.00 5.58 

13 Golf courses (Race Course) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.14 0.15 

 
Total area HRU2 1.84 1.61 2.38 1.75 1.55 2.10 0.30 2.13 1.25 0.14 15.06 

 

HRU 3 Special cases: Sugarcane or 
plantations 

           9 Sugarcane, commercial, dryland 4.51 0.31 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4.83 

2 Plantation 0.56 0.10 0.04 0.00 0.10 0.00 0.00 0.07 0.03 0.00 0.89 

 
Total area HRU3 5.07 0.41 0.05 0.00 0.10 0.00 0.00 0.07 0.03 0.00 5.72 

             

 

HRU 4 Special cases: Degraded 
areas 

           25 Degraded forest 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 

26 Degraded bushland (all types) 1.45 0.23 0.07 0.18 0.64 0.10 0.54 0.54 1.53 0.05 5.34 

27 Degraded grassland 1.05 0.29 0.02 0.49 0.95 0.24 0.85 0.06 0.56 1.01 5.52 

28 Old fields - previously grassland 0.68 0.27 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.95 

29 Old fields - previously bushland 7.24 0.17 1.67 1.11 1.97 0.51 0.12 3.69 1.36 0.00 17.84 

 
Total area HRU4 10.45 0.96 1.76 1.79 3.56 0.85 1.50 4.28 3.45 1.06 29.67 

             

 
HRU 5 Dams and irrigated areas 

           

17 
Cultivation, commercial, annual 
crops, irrigated 1.87 0.31 0.24 0.00 0.00 0.07 0.00 0.66 0.00 0.00 3.14 

36 Water (Dams) 0.34 0.03 0.04 0.07 0.02 0.06 0.00 0.08 0.02 0.02 0.68 

1 Water (natural) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.03 0.04 

 
Total area HRU5 2.21 0.33 0.28 0.07 0.02 0.14 0.00 0.73 0.03 0.05 3.82 

 
TOTAL AREA 37.57 8.54 7.21 8.26 10.24 5.28 7.32 10.51 18.36 2.53 115.77 
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5.3 Hydrological Responses under Baseline Land Cover Conditions 

In this section the results of hydrological modelling under the baseline land cover conditions 

(cf. Table 4.4) are presented. Bearing in mind the rainfall and temperature characteristics 

already discussed in Section 3.3, various hypotheses on hydrological responses are proposed. 

For each hypothesis, a catchment unit and a component HRU are then selected, to illustrate 

the localised and/or accumulated effects of the modelled hydrological responses for that 

particular hypothesis. The findings are then interpreted and the significance of the findings 

highlighted. The modelled runoff and its components of stormflow and baseflow are 

examined first. “Green”, “blue” and “white water” flows are then assessed, followed by an 

examination of sediment yield. Thereafter, relevant higher order hydrological responses, such 

as wet and dry year runoff, will be compared to equivalent frequencies of rainfall. The 

section concludes with a summary of the results of hydrological responses, and finally, the 

significance for linked hydrological ecosystem services will be highlighted.  

 

5.3.1 Understanding the blue water flow responses 

The blue water flows of the study area are made up of the runoff of individual HRUs, which 

are then aggregated into accumulated streamflow. The total runoff from a catchment is 

dependent on interactions of climatic, bio-geological and land use-related factors. The 

influence of various factors on runoff and its components of stormflow and baseflow will be 

explored next, by first stating a hypothesis and then testing it against modelled results. 

 

 Hypothesis: Runoff varies seasonally as well as between years with median and high 

and low flows   

The runoff under baseline land cover conditions was modelled and is shown in Figure 5.2 for 

a selected catchment unit, in this case HRU 1 of CU 1. The monthly and annual values are 

shown under conditions of the 1:10 year low flows, median and the 1:10 year high flows.  
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Figure 5.2 Monthly and annual runoff under baseline land cover conditions within HRU 1 

of CU 1 of the Mpushini/Mkhondeni study area for years with median and 1:10 

high and low flows 

 

Interpretation of Figure 5.2: Most of the runoff occurs during the summer months, which is 

the wet season (October to March). The runoff can vary significantly from month to month. 

There are, furthermore, wide discrepancies between the wet and dry years, with a factor 

difference of 2.5 between years with median flows and 1:10 high flows. Similarly, there are 

wide discrepancies, by a factor of 2.7, between years with 1:10 low flows and median flows. 

For individual months, the differences are even greater than for annual statistics, e.g. 

February displays a factor difference of 4.3 between median and wet years and a factor of 8.5 

between low flow and median years. This illustrates that the runoff can be significantly 

different between months and between years. During a year with 1:10 low flows, especially 

between April and November, the runoff is very low and can even be zero. 

 

Significance: The above results show that the runoff in this catchment is highly variable 

within a year and between years, even without any added effects of current land use.   

 

 Hypothesis: Runoff is made up of stormflow and baseflow, but the contributions to 

runoff are not equal and vary during the year 

In order to explore the above hypothesis, the annual and monthly stormflows and baseflows 

are shown for a year of median flows in Figure 5.3 for HRU 1 of CU 1. The relative 

contributions of stormflows and baseflows are shown for HRU 1 of CU 1 in Figure 5.4 for a 

year with mean flows. 

0

50

100

150

200

250

300

350

0

20

40

60

80

100

JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC ANN

A
n

n
u

al
 r

u
n

o
ff

 (
m

m
 e

q
u

iv
al

e
n

t)
 

M
o

n
th

ly
 r

u
n

o
ff

 (
m

m
 e

q
u

iv
al

e
n

t)
 

Baseline Land Cover 
Runoff  

Example: HRU 1 1:10
Year Low
Flows

Median
Year
Flows

1:10
Year
High
Flows



Page 92 

 

 

Figure 5.3 Monthly and annual stormflows and baseflows from HRU 1 of CU 1 under 

baseline land cover conditions, for median monthly and annual flows 

 

Interpretation of Figure 5.3: The annual runoff is dominated by stormflow by a factor of 3.7, 

when compared with baseflow. While the summer (wet season) runoff is dominated by 

stormflow, the winter (dry season) runoff is dominated by baseflow. Note a build-up of 

baseflow in late summer and autumn (February to May), with baseflow recession evident in 

winter and spring months, thus displaying a lag. 

 

 

Figure 5.4 Relative contributions of stormflows and baseflows to runoff under baseline 

land cover conditions, using HRU 1 of CU 1 as an example, with the analysis 

considering a year with mean flows 

 

0

20

40

60

80

100

0

2

4

6

8

10

12

14

JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC ANN

A
n

n
u

al
 f

lo
w

s 
(m

m
 e

q
u

iv
.)

 

M
o

n
th

ly
 f

lo
w

s 
(m

m
 e

q
u

iv
.)

 
Baseline Land Cover 

Contribution of Stormflows and Baseflows to Runoff 
Example: HRU 1 of CU 1, Year with Median Flows 

Stormflow

Baseflow

0

20

40

60

80

100

JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC ANN

P
e

rc
e

n
ta

ge
 o

f 
ru

n
o

ff
 

Baseline Land Cover 
Relative Contributions of Stormflow and Baseflow to Runoff 

Example: HRU 1 of CU 1, Year with Mean Flows 

Stromflow

Baseflow



Page 93 

 

Interpretation of Figure 5.4: The annual contribution of stormflows to runoff in a mean year 

is 72 %, with baseflow contributing 28 %. Stormflow dominates in the higher rainfall months 

from September to March, while baseflow is dominant during the dry months from June to 

August. The stormflow in February contributes 88 % of the runoff, compared to only 6 % 

during June, when baseflow dominates with a 94 % contribution. 

 

Significance: Annually, stormflow contributes more to runoff than baseflow, but baseflow is 

vital to maintaining some runoff during the dry season and thereby some of the ecosystem 

services of water provisioning, as well as some supporting services to the ecological 

functioning of streams. 

 

 Hypothesis: The relative contributions of stormflows and baseflows vary between 

years with low and high flow  

The relative annual contributions of stormflow to runoff for years with median flows, as well 

as for 1:10 high and low flows, are shown in Figure 5.5. 

  

 

Figure 5.5 The relative contributions of stormflow to runoff during a year of median flows 

as well as years of 1:10 high and low flows, for HRU 1 of CU 1 

 

Interpretation: The relative annual relative of stormflow to runoff is especially high in years 

with low flows, at 87.8 % for HRU 1 of CU 1, while years with median and high flows show 

reductions of the stormflow contribution at 74.2 and 73.8 %.  
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Significance: The contribution of stormflows to total runoff varies and displays major 

differences between years with high, median and low flows. During dry years when the 

contribution of stormflows is higher than in other years, the implication is that baseflows, in 

situations of already low overall runoff, are markedly reduced. This can have major impacts 

on provisioning of water to domestic users who are reliant on run-of-river water sources.  

 

In addition to the dependence of runoff and its components to climatic variability, runoff is 

also affected by different types of baseline land cover. This will be explored in the next 

section. 

 

 Hypothesis: Different baseline land covers result in different hydrological responses 

In order to illustrate the influences of natural land cover types on certain hydrological 

responses, responses from CUs with different baseline land covers within the 

Mpushini/Mkhondeni study area will be compared. The stormflow and baseflow responses of 

two catchment units with different baseline land covers were modelled. Median year 

stormflows and baseflows from HRU 1 of CU 1, the land cover of which is classified as 

“KwaZulu-Natal Hinterland Thornveld”, and HRU 1 of CU 5, the land cover of which is 

classified as “Eastern Valley Bushveld”, were compared and results are shown in Figure 5.6. 

  

 

Figure 5.6 Influence of baseline land cover types on the runoff components of stormflows 

and baseflows for a year with median flows 
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Interpretation: Baseline land cover can have a significant influence on the partitioning of 

rainfall into stormflows and baseflows. In this study area, however, the differences are 

relatively small. The land cover classes “KwaZulu-Natal Hinterland Thornveld” versus 

“Eastern Valley Bushveld” have above-ground characteristics that are not all that different 

(cf. Table 4.4, values of CAY), and annual stormflow differences between the two vegetation 

types are only about 13 %, while baseflow differences are 21 %. The differences are slightly 

higher in the high flow season, e.g. the differences in February stormflows are about 22 % 

and in baseflows about 24 %, with the dominant land cover “KwaZulu-Natal Hinterland 

Thornveld” used as the reference. The two land cover classes of “KwaZulu-Natal Hinterland 

Thornveld” and “Eastern Valley Bushveld” are relatively similar, with a varied amount of 

tree cover. The differences are expected to be considerably larger with more distinctly 

different land cover types, e.g. when hydrological responses are compared between short 

grassland versus natural forest baseline land covers. 

 

Significance: Baseline land cover impacts on hydrological responses are important and their 

impacts depend, inter alia, on the classes of baseline land cover. Whenever impacts of 

current land uses on hydrological responses are assessed, they need to be modelled against 

the baseline land cover as a reference. 

 

Different land cover classes were found to result in different hydrological responses. In the 

next section, the study area’s water budget will be explored in the light of so-called “green”, 

“blue” and “white water” flows, assuming baseline land cover. 

  

5.3.2 Green, blue and white water components of the water budget of the study area 

A water budget can be partitioned into green, blue and white water (cf. Section 2.3.2). As 

already mentioned, green water is the soil water taken up by plant to create biomass and is 

transpired by the vegetation into the atmosphere. White water is defined here as the portion 

that is evaporated to the atmosphere from the soil, plants or other surfaces. Blue water is 

water contained in water bodies, in this case, streams, rivers, groundwater, wetlands, as well 

as abstracted water. In the following section, a hypothesis regarding the relationship between 

the study area’s green, blue and white water flows will be explored, followed by a further and 

more detailed evaluation of green water flows.  
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 Hypothesis: In the catchment’s water budget, green water flows dominate over blue 

and white water flows, but they vary from season to season 

The components of the water budget, partitioned for a baseline cover into blue, green and 

white water flows for a year of mean flows, are shown in Figure 5.7. The relative 

contributions of the above to the water budget are shown in Figure 5.8. 

  

 

Figure 5.7 Partitioning of the study area’s water budget, in a year with mean flows, into 

green, blue and white water flows under baseline land cover conditions, using 

HRU 1 of CU 1 as an example 

 

 

Figure 5.8 Relative contributions of the study area’s green, blue and white water flows, 

using HRU 1 of CU 1 as an example, shown for a year with mean flows and 

assuming baseline land cover conditions 
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Interpretation: The green water portion with 45 % has the biggest share in the annual water 

budget in this example. The white water portion is also significant at 35 %. The blue water 

portion is only 20 %. Seasonal changes can be seen. Within the dry season, the green water 

flow contributions are lower, e.g. in July the green water flows are simulated to be zero, the 

blue water flows make up 39 % and the biggest share is white water, at 61 %.  

 

Significance: Green water makes up a proportionally higher fraction of the water budget than 

the visible blue water. The white water portion is also fairly high, this being the water not 

generally put to direct use within the catchment. Therefore only a small portion of the 

partitioned precipitation contributes to runoff and to services related to blue water flows. 

 

The intra-seasonal variability of green, blue and white water flows are shown above. In the 

next section the green water flows will be explored further, which was found to be the biggest 

share in the water budget. 

 

 Hypothesis: Magnitudes of green water flows are influenced by intra- and inter-

annual rainfall variability 

Green water flows are essential for plant growth and therefore for primary and secondary 

agricultural production. Green water is the water that is transpired by plants from the topsoil 

and subsoil horizons. In order to explore the dependency of green water flows on water 

availability, the aggregated transpiration from the top- and subsoil horizons is shown in 

Figure 5.9 for a year with median flows and for years with 1:10 high and low flows, with the 

example taken from HRU 1 of CU 1. 

 

 

Figure 5.9 Transpiration, i.e. green water flows, within years of median and 1:10 high and 

low flows, under baseline land cover, using HRU 1 of CU 1 as the example 
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Interpretation: Compared with year of median flow conditions, from which transpiration is 

370 mm, a year with 1:10 low flows for HRU 1 of CU 1 is modelled to have a transpiration 

component of 283 mm, thus showing 23 % less plant transpiration, while transpiration in a 

year with 1:10 high flows is 456 mm, i.e. showing 23 % more plant transpiration. 

Transpiration in the dry season (June to August) is minimal, partially because of senescence 

of plants and partially because no soil water accessible to plant roots is left in the soil profile. 

On a monthly basis the differences in transpiration between years with high and low flows 

are very pronounced during the wet season. 

  

Significance: Differences in green water flows (transpiration) as a result of soil water 

availability vary seasonally and from year to year, largely depending on rainfall. 

Furthermore, transpiration ceases during the dry season. Primary production, which is a 

supporting ecosystem service, is highly dependent on transpiration and hence rainfall 

availability; alternatively, it is dependent on stored water available for irrigation.  

 

In the above section, variations in green water flows were examined. Another hydrological 

response from the catchment is the sediment yield, which will be assessed next.  

 

5.3.3 Sediment yield of the study area 

Sediments are soil particles that are removed from the surrounding landscape as a result of 

erosion by rain or wind, and which are then deposited into the water bodies of that landscape. 

High sediment loads in rivers impact upon physical water quality and reduce the potability of 

that water, as well as reducing storage capacity in both natural and man-made water bodies 

and therefore reducing provisioning of water. In summary, high sediment yield therefore 

reduces the provisioning of clean water, due to its quality and quantity. Sediment yield is the 

only indicator of water quality that will be assessed in this study. 

 

 Hypothesis: Even under baseline land cover conditions, the catchment’s climate 

results in sediment yields, which are especially high in years of high rainfall. 

The annual sediment yield of the entire study area is shown in Figure 5.10. 

 



Page 99 

 

 

Figure 5.10 Annual sediment yields of the entire study area within a year of median and 

1:10 high and low flows, assuming baseline land cover conditions 

 

Interpretation: The modelled annual sediment yields are equivalent to 0.85 t/ha in a dry year, 

2.16 t/ha in a median year and 5.39 t//ha in a wet year. The increases in the annual sediment 

yields of the catchment between years with 1: 10 low and median flows, as well as between 

years with median flows and 1: 10 high flows, are by a factor of approximately 2.5.  

 

Significance: Sediment yields are especially high during years with high flows. Sediments 

reduce the storage capacity of impoundments, with the added effect of potentially increasing 

flood risks, because the attenuating effects of the impoundments are reduced. Sediment yields 

in rivers are also an indicator of the amount of soil lost from the surrounding land and 

therefore indicate reduced productivity of that land, also because of carbon released into the 

atmosphere. From a hydrological ecosystem services perspective, both of the previously 

mentioned effects are, however, beyond the scope of this study.  

 

The annual sediment yields of the Mpushini/Mkhondeni study area were examined in this 

section. In the next section, changes to hydrological responses are compared with 

corresponding changes in rainfall. 
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5.3.4 Changes in hydrological responses in comparison to corresponding rainfall 

changes 

Hydrological responses include sediment yield, as well as runoff and its components of 

stormflow and baseflow. One of the main drivers of those responses is rainfall. In this 

section, the relationships between changes in rainfall and corresponding changes in selected 

hydrological responses within the Mpushini/Mkhondeni study area, will be examined. 

  

 Hypothesis: Changes in hydrological responses, such as stormflow, baseflow and 

sediment yield are amplified in both directions in dry and wet years, when compared 

with corresponding changes in rainfall. 

Relative changes of rainfall and corresponding relevant hydrological responses within dry 

and wet years are compared to responses in median years, with results shown in Figure 5.11. 

 

 

Figure 5.11 Rainfall and hydrological responses of stormflow, baseflow and sediment yield 

for years of 1: 10 high and low flows, relative to years with median flows, under 

baseline land cover conditions 

 

Interpretation: Annual rainfall shows a decrease of 22 % in 1:10 dry years and an increase of 

34 % in 1:10 wet years. The annual sediment yield shows a decrease of 60 % in years of 

corresponding low flows and an increase of 138 % in years of high flows. Stormflows show a 

decrease of 63 % for a year with 1:10 low flows and an increase of 148 % for a year with 

1:10 high flows. The biggest change, however, is in the annual baseflows, with a decrease of 

78 100 
134 

37 

100 

248 

2 

100 

496 

40 

100 

238 

0

100

200

300

400

500

Year with 1:10 low flows Year with median flows Year with 1:10 high
flows

P
e

rc
e

n
ta

ge
   

Baseline Land Cover 
Hydrological Responses in Dry and Wet Years, compared to 

Responses in Years with Median Flows 
Example: HRU 1 of CU 1 

Rainfall

Stormflow

Baseflow

Sediment Yield



Page 101 

 

98 % in years with low flows and an increase of 247 % in years with high flows. This implies 

that hydrological responses in years with low and high flows are vastly amplified in both 

directions, but particularly in high flow years, when compared with corresponding changes in 

rainfall.  

 

Significance: Hydrological responses such as sediment yields, stormflows and especially 

baseflows, are highly sensitive to changes in rainfall. This is significant where there is a 

dependence on sustained baseflows, e.g. in environmental flows, or where the streamflow is 

the only source of water for poor communities, who are particularly vulnerable to insecure 

water supplies in the dry years. The amplification also has to be borne in mind for adaptation 

to climate change, which is projected to result in changes in rainfall patterns. This is, 

however, beyond the scope of this study. 

 

5.3.5 Summary of the results of the hydrological responses examined under baseline 

land cover conditions 

In assessing various influences under baseline land cover, with no land use factors included 

yet, the following findings were made for the various hydrological responses within the study 

area:  

 

a) Both annual and monthly runoff, and therefore the hydrological ecosystem service of 

water provisioning in this catchment, are highly variable within a year and between 

years, even without any added effects of land use, with dry season runoff and even 

annual totals of runoff often extremely low (Figure 5.2)  

b) Annually, stormflow contributes more to runoff than baseflow. However, baseflow is 

vital in maintaining some runoff during the dry season and thereby some of the 

ecosystem service of water provisioning, as well as some supporting services to the 

ecological functioning of streams (cf. Figure 5.3 and 5.4)  

c) The contributions of stormflows to total runoff display major differences between years 

of high, median and low flows, adding to the complexities of water provisioning and 

supporting services from this catchment (cf. Figure 5.5) 
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d) Differences in baseline land cover can have a significant influence on components of 

runoff components, although these differences are relative small within this particular 

study area (cf. Figure 5.6)  

e) Of the blue, green and white water flows that make up the water budget, green water 

constitutes a proportionally higher fraction of the water budget than the other two. The 

white water fraction is also higher than that of blue water (Figures 5.7 and 5.8).   

f) Differences in green water flows, i.e. transpiration, in this study area vary from month 

to month and from year to year, depending on soil water availability. Transpiration is 

modelled to cease during the dry season. Plant growth during this time would require 

either irrigation (Figure 5.9) or unseasonal rains. 

g) Sediment yields are especially high during years with high flows. Sediments reduce the 

storage capacity of impoundments, with the added effect of potentially increasing flood 

risks because the attenuating effects of the impoundments are reduced. Sediment yields 

in rivers are also an indicator of the amount of soil lost from the surrounding land and 

therefore indicate reduced productivity of that land, as well as being an indicator for 

carbon released into the atmosphere. From a hydrological ecosystem services 

perspective, further analysis of both of the previously mentioned effects, however, is 

beyond the scope of this study. In addition, a high sediment yield in rivers impacts upon 

physical water quality and reduces the potability of that water. High sediment yield 

therefore reduces the provisioning of clean water (cf. Figure 5.10)  

h) Hydrological responses such as sediment yields, stormflows and especially baseflows, 

are highly sensitive to changes in rainfall (cf. Figure 5.11). This sensitivity is 

significant where there is a dependence on sustained baseflows, e.g. for environmental 

flows, or where the streamflow is the only source of water for poor communities which 

may then become particularly vulnerable to water shortages in the dry season. This 

amplification of hydrological responses also has to be borne in mind for adaptation 

measures to climate change, which is projected to result in changes in rainfall patterns. 

Effects of projected climate change are, however, beyond the scope of this study. 

 

5.4 Understanding Impacts of Current Land Uses on Hydrological Responses 

In this section the modelled hydrological responses of certain land uses which are considered 

to be hydrologically significant in influencing water flows within the hydrological cycle are 

compared to those hydrological responses under baseline land cover conditions. Dryland 
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agriculture, effects of dams and irrigated agriculture, degraded land, urban areas with 

impervious surfaces and return flows, all of which can be isolated within a HRU of a selected 

CU of the Mpushini/Mkhondeni study area, will be examined. This is followed by some 

hydrological responses modelled for the entire catchment. In each case, the influences on 

selected hydrological ecosystem services, indicated by the changes of the hydrological 

responses, will be highlighted.  

 

5.4.1 Effects of dryland agricultural land uses on hydrological responses 

The influences of certain dryland agricultural land uses in this study area, viz. sugarcane 

plantations and wattle plantations, will be examined and compared to responses under 

baseline land cover. 

 

 Hypothesis: Sugarcane and wattle plantations can reduce runoff significantly 

The influences of sugarcane and wattle on runoff are modelled (cf. Table 4.7) and are 

compared to those of the baseline land cover they replace. This is examined for years with 

low, median and high flows and results are shown in Figure 5.12 for sugarcane and Figure 

5.13 for wattle plantations. 

 

 

Figure 5.12 Impacts of sugarcane compared to those of baseline land cover during years 

with median and 1:10 high and 1:10 low flows, using results from HRU 3 of CU 

1 as an example 
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Interpretation of Figure 5.12: Sugarcane plantations have been modelled in HRU 3 of CU 1 

to reduce runoff compared to the runoff from baseline land cover. For years with 1:10 low 

flow conditions the annual runoff was found to be reduced by 24.3 mm, or 51 %. For years 

with median flows the annual runoff was found to be reduced by 30.8 mm, or 24 % and in 

years with 1:10 high flows reduced again by 30.8 mm, which is in this case equivalent to 10 

%. 

 

 

Figure 5.13 Impacts of wattle plantations compared to those of baseline land cover during 

years with median and 1:10 high and 1:10 low flows, using results from HRU 3 

of CU 8 as an example 

 

Interpretation of Figure 5.13: Wattle plantations have been modelled in HRU 3 of CU 8 to 

reduce runoff compared to the runoff from baseline land cover. For years with low flow 

conditions the annual runoff was found to be reduced by 11.0 mm, or 23 %. For years with 

median flows the annual runoff was found to be reduced by 13.3 mm, or 10 % and in years 

with high flows reduced by 19.6 mm, or 6 %. 

 

Significance: Certain land uses, in this case sugarcane and wattle plantations, are modelled to 

reduce runoff compared to those from baseline land cover conditions. Those land uses 

therefore impact upon ecosystem services related to blue water flows. For sugarcane, wattle 

and other high biomass crops this reduction is particularly high in relative terms during dry 

years, and relatively less so in wet years. Tree plantations have been recognised as a 
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streamflow reduction activity (SFRA), and, as such, require a water use licence. It is 

interesting to note that in this catchment the reduction of runoff from the sugarcane 

plantations exceeds that of wattle plantations. Such a result could possibly prompt a re-look 

by authorities to have sugarcane classified as a streamflow reduction activity (SFRA). 

Currently, no SFRAs are registered within the catchment. 

 

5.4.2 Effects of irrigation on hydrological responses 

Irrigation from dams is expected to have significant influences on streamflows downstream 

of such dams. 

 Hypothesis: Irrigation from farm dams significantly reduce flows downstream  

The comparison of streamflows when irrigation from dams is considered versus not 

considered was modelled (cf. Sections 4.4.7 and 4.4.8) and results are shown in Figure 5.14. 

 

 

Figure 5.14 Influences of irrigation on streamflows downstream of a dam for years with 

median as well as 1:10 high and 1:10 low flows, using results from HRU 5 of 

CU 1 as an example 
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Interpretation: Irrigation from dams in HRU 5 of CU 1 have decreased downstream 

streamflows by 63 % from 58 to 22 mm for years with 1:10 low flows, by 33 % from 136 to 

91 mm for years with median flows and by 11 % from 320 to 286 mm for years with high 

flows. The sensitivity of downstream flows to irrigation is thus particularly severe in dry 

years, and least sensitive in wet years, when irrigation demands are also lower. When the 

rainy season commences again and dam levels are low because of high dry season irrigation 

abstractions, there is a lag in the increase of flows downstream because the dam first has to be 

filled, as is shown from October to December in Figure 5.14. 

 

Significance: Irrigation abstractions from dams can result in significant local decreases in 

downstream flows, especially in years with low flows. After the dry season (May to 

September) when dam levels are low, there is a lag in increased streamflow at the start of the 

wet season, because a depleted dam first has to be filled before overflows commence. This 

implies that even farm dams which are used for irrigation water supplies should release water 

for maintaining downstream aquatic ecosystems.  

 

In the above section the localised effects of irrigation on downstream flows were presented. 

These effects might not be as high if one considers a catchment as a whole. 

 

 Hypothesis: The strong influence of irrigation on local streamflows is reduced on a 

more regional scale 

The effects of all irrigation from all dams within the Mpushini catchment, with its various 

other land uses, are examined at the outlet of the Mpushini catchment, with results shown in 

Figure 5.15. 
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Figure 5.15 Influences of dams and irrigation on streamflows at the Mpushini outlet for 

years with median as well as 1:10 high and 1:10 low flows 

 

Interpretation: At the outlet of the Mpushini catchment, irrigation has decreased the 

streamflow by 32 % from 64 to 43 mm in years with low flows (compared with 63 % in 

Figure 5.14), by 18 % from 146 to 121 mm in years with median flows (compared with 33 % 

in Figure 5.14), and by 6 % from 334 to 315 mm in years with high flows (compared with 11 

% in Figure 5.14). 

 

Significance: Irrigation has reduced the streamflow at the Mpushini outlet significantly, 

especially during years with low flows. The impact is, however, considerably less than that 

immediately below an individual dam from which water is abstracted for irrigation.  

Irrigation results in a decrease in streamflow, which is locally more pronounced, but 

relatively less so at the outlet of the catchment. The relative decrease is higher in years with 

low flows. 

 

Hydrological ecosystem significance: Although farm dams have a vital role to play as an 

engineered water reservoir to provide a reliable local supply of water, the water provisioning 

and ecological support immediately downstream of dams can be reduced considerably, but 

less so further downstream. Ecological stream functioning might therefore be critically 
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reduced locally. This study shows that, ideally, even from farm dams, environmental flows 

should be released especially in times of low flows, in order to better mimic natural flow 

conditions which might be vital for ecological stream functioning.  

 

5.4.3 Effects of degraded areas on hydrological responses 

Degraded areas are expected to have significant influences on hydrological responses, 

especially on runoff and sediment yield. The impacts of degraded areas are modelled (cf. 

Table 4.3 for model inputs) and the results are shown in Figures 5.16 and 5.17. It needs to be 

borne in mind that degraded land can be rehabilitated to a state that would allow hydrological 

responses to once resemble those under natural conditions. 

 

 Hypothesis: Runoff is expected to increase from degraded areas, when compared to 

that from baseline land cover 

Runoff from degraded areas was modelled and compared to runoff from baseline land cover, 

using outputs from HRU 4 of CU 7 as an example, with results shown in Figure 5.16. 

 

 

Figure 5.16 Impacts of degraded areas on runoff for years with median and 1:10 high and 

low flows, using results from HRU 4 of CU 7 as an example 
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Interpretation of Figure 5.16: Assuming the model inputs in Table 4.3, the degraded areas for 

this HRU have increased the annual runoff in years with 1:10 low flows by 30.8 mm or 84 %, 

in years with median flows by 24.5 mm or 22 % and in years with 1:10 high flows by 14.7 

mm or 5 %. The significance of the above results is discussed at the end of Section 5.3.4. 

 

 Hypothesis: Baseflows are expected to be reduced from degraded areas, compared to 

those from baseline land cover 

Baseflows, which are a component of runoff, were modelled for degraded areas and 

compared to those from baseline land cover, again using outputs from HRU 4 of CU 7 as an 

example, with results shown in Figure 5.17. 

 

 

Figure 5.17 Impacts of degraded areas on baseflows for years with median as well as 1:10 

high and low flows, using results from HRU 4 of CU 7 as an example 

 

Interpretation of Figure 5.17: For years with 1:10 low flows the annual baseflows of 

degraded areas were modelled to be 0.0 mm, compared to the annual baseflows from baseline 

land cover of 0.3 mm. The degraded areas for this HRU have decreased the annual baseflows 

in years with median flows from 20.0 to 3.7 mm, or by 82 %, and in years with 1:10 high 

flows from 120.3 to 67.8 mm or 44 %. The significance of the above results is discussed at 

the end of Section 5.3.4. 
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 Hypothesis: The magnitudes of one day design runoff for selected return periods are 

expected to increase from degraded areas, compared to those from baseline land cover 

The concept of design runoff has been explained in Section 4.4.12. One day design runoff for 

selected return periods were modelled for degraded areas and compared to those from 

baseline land cover, again using outputs from HRU 4 of CU 7 as an example, with results 

shown in Figure 5.18. 

 

Figure 5.18 Influences of degraded areas on magnitudes of one day design runoffs for 

selected return periods compared to those from baseline land cover conditions, 

using results from HRU 4 of CU 7 as an example 

 

Interpretation of Figure 5.18: Degradation has resulted in a general increase in the magnitude 

of one day design runoff for selected return periods. The one day design runoff for a 2 year 

return period from degraded land and baseline land cover were modelled to have increased 

from 8.7 to 9.4 mm, or 8 %. For a 5 year return period the one day design runoff increased 

from 18.0 to 20.7 mm, i.e. by 15 %, while for a 50 year return period the increase was from 

67.5 to 72.8 mm, or 8 %. The significance of the above results is discussed at the end of 

Section 5.3.4. 

 

 Hypothesis: Sediment yields from degraded areas are expected to increase when 

compared to those from baseline land cover  

Using the ACRU model input from Table 4.3, sediment yields were modelled for degraded 

areas and results compared to those from baseline land cover conditions, again using HRU 4 

of CU 7 as an example and with results shown in Figure 5.19, while those from the entire 

study area are shown in Figure 5.20. 
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Figure 5.19 Annual sediment yields (in t/ha) from degraded areas and baseline land cover 

for years of median as well as 1:10 high flows and 1:10 low flows, using results 

from HRU 4 of CU 7 as an example 

 

Interpretation of Figure 5.19: Sediment yields from degraded areas have increased 

significantly when compared to those from baseline land cover conditions. For years with 

1:10 low flows, the increase has been from 0.7 to 11.2 t/h/annum (i.e. by a factor of 16), in 

years with median flows from 2.0 to 22.8 t/ha/annum (i.e. a factor of 11.4), and for years with 

1:10 high flows from 5.7 to 52.6 t/ha/annum (i.e. a factor of 9.2). The significance of the 

above results is discussed at the end of Section 5.3.4. 

 

 

Figure 5.20 Annual sediment yields (in t) from degraded areas and baseline land cover for 

years of median as well as 1:10 high flows and 1:10 low flows, for the entire 

study area 
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Interpretation: Using the inputs from Table 4.3, the degraded areas identified in the entire 

study area, which total 5 934 ha, have increased the annual sediment yield by 29 Mt, or 

12.55-fold, in years with 1:10 low flows, by 57 Mt, or 9.84-fold, in years with median flows 

and by 130 Mt or 9.02-fold, in years with 1:10 high flows. It is hypothesised that much of this 

enhanced sediment yield could be reduced to near baseline levels if the degraded area 

sections within the study area were to be rehabilitated.   

 

Significance of Figures 5.16 to 5.20: As a consequence of assumed reduced above-ground 

biomass, interception losses, reduced ground surface cover and reduced infiltrability under 

degraded conditions (cf. Section 4.4.5; Table 4.5), the impacts of degradation were modelled 

to result in an increase of runoff, but a decrease in baseflow and an increase in the magnitude 

of one day design runoff for selected return periods, as well as a significant increase in 

sediment yield, especially in years with high flows. For ecosystem services, this implies that 

degradation leads to a reduction in the ecosystem service of flow attenuation, a reduction of 

water provisioning during low flow periods, as well as to a reduction in water quality due to 

increased sediments in the stream. The land under degraded conditions holds potential to be 

rehabilitated to a state that would allow hydrological responses to resemble those under 

natural conditions, reducing sediment yield and stormflows, while increasing baseflows. 

 

5.4.4 Impacts of urban areas on hydrological responses 

Urbanisation, because of increases in impervious surfaces, enhances surface runoff and 

influences the partitioning of runoff into its components of stormflow and baseflow. The 

return flow from treated water, brought in from sources external to a catchment, is also 

hypothesised to have an influence on hydrological responses. Increases in runoff are likely to 

contribute to the incidence of higher flooding and more severe design runoff events. 

 

 Hypothesis: Urban landscapes, because of increased impervious areas, lead to 

increased surface runoff 

The current level of urbanisation in the study area is relatively low. The area with the highest 

level of urbanisation, HRU 1 of CU 4, is used as an example to illustrate effects of 

urbanisation. The runoff of current urban areas was modelled and compared to that from 

baseline land cover conditions for years of 1:10 low flows, median flows and 1:10 high 
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flows, with results shown in Figure 5.21. This HRU consists of natural vegetation and urban, 

mainly residential areas and covers 4.65 km
2 

(cf. Table 5.2). The fractions of impervious 

surfaces were determined to be 0.08 for disjunct and 0.17 for adjunct impervious areas, thus 

leaving 75 % of the HRU as pervious areas (cf. Table 4.8).  

 

 

Figure 5.21 Impacts of urbanisation on runoff, for years with median, as well as 1:10 high 

and low flows, using HRU 1 of CU 4 as an example 

 

Interpretation: The conversion to urban uses, in this example consisting mainly of a 

conversion to residential areas, increased the annual runoff by a factor of 2.8 in years with 

low flows, a factor of 2.1 in years with median flows and a factor of 1.6 in years with high 

flows. The significance of these increases will be discussed later. 

 

 Hypothesis: Urban areas, because of impervious surfaces, have an influence on the 

partitioning of runoff into stormflow and baseflow 

The partitioning of runoff into stormflow and baseflow was modelled, again for HRU 1 of 

CU 4, and results are shown in Figure 5.22.  
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Figure 5.22 Influences of impervious urban areas on the partitioning of runoff into 

stormflows and baseflows in a year with median flows, using HRU 1 of CU 4 as 

an example  

 

Interpretation: The impervious portions of the urban areas in HRU 1 of CU 4 have increased 

the annual stormflows from 82 to 169 mm, i.e. by 87 mm or 106 %, and the baseflows from 

20 to 48 mm, i.e. by 140 %. Most of the increased runoff is as a result of increased 

stormflows. However, even baseflows increased. The increase in stormflows was expected, 

while the increase in baseflow was unexpected, but in this case is the result of the impervious 

fraction which is not connected directly to a stormwater system and drains onto the pervious 

areas (ACRU variable DISIMP), wetting those soils and on occasion producing deep 

percolation and thus baseflow. The significance of these increases will be discussed later.  

 Hypothesis: Urban landscapes, because of their increased impervious areas, increase 

the magnitudes of one day design runoffs for selected return periods 

The effects of impervious urban areas on one day design runoffs of selected return periods 

are compared to those under baseline land cover conditions, with results shown in Figure 

5.23. 
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Figure 5.23 Comparison of magnitudes of one day design runoff for selected return periods 

between current urban land use and baseline land cover, using results from HRU 

1 of CU 4 as an example 

 

Interpretation: The impervious urban areas, in this example consisting mainly of residential 

areas, increased the magnitudes of one day design runoff of selected return periods. For 

example, for the 2-year return period a runoff increase from 8 to 14 mm is shown, equivalent 

to a 76 % increase, while for the 50-year return period the increase of 16 mm from 67 to 83 

mm was higher than for lower return periods, but was equivalent to only a 24 % relative 

increase. Thus, while magnitudes of changes increased with return periods, the relative 

increase declined. The significance of these increases will be discussed later. 

 

 Hypothesis: Urban landscapes, as a consequence of impervious areas, result in 

increases in blue water flows, but decreases in green and white water flows 

Components of the water budget, when partitioned into blue, green and white water flows, 

are compared between urban land uses and baseline land cover, with results from HRU 1 of 

CU 4 shown in Figure 5.24. 
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Figure 5.24 Impacts of impervious urban areas on mean annual blue, green and white water 

flows, using HRU 1 of CU 4 as an example 

 

Interpretation of Figure 5.24: The impervious urban areas resulted in a modelled increase in 

runoff by 105 % which represents an increase of the portion of blue water flows from 110.0 

to 225.6 mm. With a reduction of pervious areas, transpiration (i.e. green water flows), as 

well as evaporation from surfaces and from intercepted rainfall (i.e. white water flows), 

decreased. The evaporation from impervious areas is calculated by using the ACRU variable 

STOIMP, with an assigned value of 1 mm according to Tarboton and Schulze (1992).  

 

Significance of findings shown in Figures 5.21 to 5.24: Urban landscapes, because of their 

increased impervious areas, were modelled to 

 

a) show significantly more monthly and annual runoff than that from baseline land cover 

(Figure 5.20), implying that blue water flows and, therefore, accumulated streamflows, 

are increased, with this increase thought to be mainly because of the high frequency of 

smaller  rainfall events which result in runoff from impervious urban areas, where on 

pervious surfaces less or no runoff would have been generated; 

b) increase stormflows, and in this case even baseflows, the latter depending on the 

disjunct (unconnected) impervious areas from which water spills on adjacent pervious 

areas; 
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c) increase magnitudes of one day design runoff for selected return periods, which have a 

relatively higher effect in smaller flood events, but not such a pronounced effect on less 

frequent, higher return period flood events; and to 

d) correspondingly reduce green water (transpiration) and white water flows (evaporation) 

with the increase in blue water flows.  

 

Because urban landscapes do not only display an increase in impervious areas, but in the case 

of this particular study catchments also have the added effects as a result of  receiving 

domestic/industrial water from outside of the study area, this impact is examined next. 

 

 Hypothesis: Because certain urban areas within the study catchment are serviced with 

domestic/industrial water from external sources, the return flows into streams increase 

total flows, which is evident especially during the low flow period 

The effects of urban return flows from external water sources (cf. Table 4.10) on the 

streamflow contribution were modelled and the results are shown in Figures 5.25 and 5.26. 

 

 

Figure 5.25 Influences of urban return flows on streamflow contribution during years with 

median and 1: 10 high and low flows, using results from HRU 1 of CU 4 as an 

example 
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Interpretation: The streamflow contributions increase as a result of urban return flows. The 

current return flows in this particular HRU have increased the streamflow contribution in 

years with low flows by 23 %, from 104 mm to 128 mm, in years with median flows by 11 % 

from 226 to 250 mm, and in years with high flows by 5 % from 449 to 473 mm. The impact 

is therefore particularly high in years with low flows. However, irrespective of wet or dry 

years, the additional urban return flows remain constant, in this particular HRU the 

equivalent of 24 mm per annum.  

 

 

Figure 5.26 Influences of impervious areas and return flows of a more highly urbanised area 

on the streamflow contribution (excluding upstream contributions) in a year 

with median flows, as well as in years with 1:10 high and low flows, using 

results from HRU 1 of CU 4 as the example  

 

Interpretation: The streamflow contributions increase as a result of impervious urban areas 

and urban return flows. In this particular HRU, the combined influences of impervious urban 

areas and urban return flows have increased the streamflow contribution in years with low 

flows by 91 mm, or 251 %, from 37 mm to 128 mm, in years with median flows by 140 mm, 

i.e. by 127 %, from 110 to 250 mm and in years with high flows by 84 mm, i.e. by 64 %, 

from 289 to 473 mm. The impact in relative terms is therefore particularly high in years with 

low flows, but in absolute terms is highest in years with high flows. 
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Significance: Based on the assumptions made on modelling urban return flows, they 

contribute to a consistent increase in flows, irrespective of the month of the year or whether 

years are wet or dry. Return flows of water from external sources increase the streamflow, 

and they are relatively more significant in dry periods. This increase in low flows contributes 

to maintaining flows above a minimum threshold, which may be important for certain aquatic 

species and processes, while on the other hand this may possibly have negative consequences 

for certain species which require low flow periods. It is expected that the much higher 

increases in return flow for the proposed land uses scenario will show greater effects. 

Furthermore, return flows are likely to be of lower water quality than natural flows. 

Additional to the above ecosystem effects from return flows, the increase in annual blue 

water flows from impervious areas also possibly change the ecological functioning of 

streams, as explained above. However, owing to a likely reduced water quality generated 

from urban areas (which does not form part of this study), any positive effects might be 

negated. While the biomass production on the pervious areas increases where there is a spill-

over from impervious onto pervious areas (when ACRU variable DISIMP is > 0), the overall 

biomass production of an urbanised area may decrease (as in the case of HRU 1 of CU 4), 

because the pervious areas have been reduced.  

 

The influences of urban land uses on various hydrological responses have been examined in 

the above section. The combined influences of the mosaic of current land uses on 

hydrological responses will be examined next. 

 

5.4.5 Combined effects of current land uses on hydrological responses 

The effects of individual current land uses described in the previous sections can either 

accentuate or attenuate hydrological impacts, both locally and on an entire catchment basis, 

when the entire ‘land use mosaic’ of the Mpushini/Mkhondeni study area is considered. In 

this section, the combined effects of current land uses on two relevant hydrological 

responses, viz. streamflow and sediment yields, will be examined with regard to the larger 

area of the study catchment.  

 Hypothesis: To a certain extent, the influence of the combined effects of current land 

uses on streamflow cancel each other out 
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The total streamflow at the Mpushini Catchment outlet, as well as the total streamflow of the 

entire Mpushini/Mkhondeni study area outlet into the Msunduzi River, were examined to 

assess the combined effects of current land uses, compared to streamflows from baseline land 

cover conditions. The results are shown in Figure 5.27 for the Mpushini catchment outlet and 

in Figure 5.28 for the entire Mpushini/Mkhondeni study area. 

 

 

Figure 5.27 Streamflow from the Mpushini Catchment into the Msunduzi, for years of 

median flows and 1:10 high and low flows, using results from HRU 5 of CU 7 

as the example 

 

Interpretation: Figure 5.27 shows very similar overall streamflows for the mosaic of 

upstream land uses and baseline land cover conditions from the Mpushini catchment into the 

Msunduzi. The current land uses have reduced the streamflow by 5.4 mm or 14 % in years 

with 1:10 low flows, and by 7.8 mm or 6 % in years with median flows, but they hardly 

influence the streamflow in years with 1:10 high flows. 
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Figure 5.28 Streamflow from the entire Mpushini/Mkhondeni study area into the Msunduzi, 

for years of median flows and 1:10 high and low flows 

 

Interpretation: As was the case from the Mpushini Catchment (Figure 5.27), Figure 5.28 

shows very similar overall streamflows from the mosaic of upstream land uses versus 

baseline land cover conditions for the entire Mpushini/Mkhondeni study area into the 

Msunduzi. The current land uses have reduced the streamflow at the outlets by 2.6 mm or 6 

% in years with 1:10 low flows, and by 4.4 mm or 4 % in years with median flows. The 

current land uses hardly influence the streamflow in years with 1:10 high flows, which show 

a slight increase by 2.3 mm, or less than 1 %, from 312.5 to 314.8 mm. 

 

Having previously shown that the local effects of specific land use changes can have 

significant impacts on streamflow, and having now shown that overall effects for the larger 

catchment are relatively small, some of the key differences between local and overall effects 

on runoff and streamflow contributions are summarised in Table 5.3. 

 

Table 5.3 Comparative influences (%) of selected current land uses on local scale 

streamflows versus influences of the mosaic of current land uses for the entire 

study area on streamflow 

 Sugarcane, 

HRU 3 of CU 1 

Irrigation, 

HRU 5 of CU 1 

Degradation, 

HRU 4 of CU 7 

Urban Areas, 

HRU 1 of CU 4 

Overall, for the 

Entire Study Area 

Year with 1:10 low flows -51 % -63 % 84 % 251 % -6 % 

Year with median flows -24 % -33 % 22 % 127 % -4 % 

Year with 1:10 high flows -10 % -11 % 5 % 64 % <1 % 
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Interpretation of Table 5.3: The individual current land uses can have significant local 

hydrological effects. Overall, the agricultural land uses with increased biomass (e.g. 

sugarcane) or local water use (e.g. irrigation) have reduced the streamflow contributions in 

their specific HRUs, while degraded areas, and especially urban areas, have increased 

streamflow contributions. At the study areas’ outlet the overall effects approximately cancel 

the respective negative and positive influences, with a decrease of 6 % in years with 1:10 low 

flows, when a decrease is most significant, a smaller decrease of 4 % in years with median 

flows, but hardly any change in years with high flows, with an increase of less than 1 %. 

 

Significance: The current land uses have decreased streamflow at the catchment outlet 

slightly during average years and dry years. In wet years, the influences at the stream outlet 

are hardly discernible. The increase in runoff from urban areas as a result of increased 

impervious areas, as well as the added return flow from externally sourced water, has 

partially compensated for any reductions in downstream streamflows resulting from upstream 

land uses such as irrigation or high biomass crops such as sugarcane. From an ecosystem 

services perspective, this implies that water provisioning from the Mpushini/Mkhondeni 

study area has been reduced in years of median and low flows, but less so for the entire study 

catchment, than immediately downstream of an irrigation dam. In years with high flows, the 

current land uses cancel each other out on the scale of the study catchments. Overall, 

ecosystem services such as stream biodiversity and genetics are thus not likely to be affected 

too much by current land uses, although this might be very different locally. It is likely, 

however, that the relative contribution of stormflows to accumulated streamflows has 

increased as a result of current land uses. An increase of stormflows can be implied to 

increase sediment yields. Whether or not combined effects of current land uses impact 

sediment yields is tested in the section which follows. 

 

 Hypotheses: The combined effects of current land uses increase sediment yields for 

the entire study area, probably as a consequence of higher overall stormflows 

Sediment yields for the entire study area were modelled under current land use conditions, 

and results are compared in Figure 5.2.9 to those modelled under baseline land cover 

conditions.  
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Figure 5.29 Annual sediment yields for the study area under current land uses compared to 

baseline land cover conditions, for years with median and 1:10 high and low 

flows  

 

Interpretation: The current land uses have increased the sediment yields. The sediment yields 

increased by 311 % or 2.6 t/ha, from 0.9 t/ha to 3.5 t/ha, in years with low flows, by 241 % or 

5.2 t/ha, from 2.2 to 7.4 t/ha, in years with median flows and by 221 % or 11.9 t/ha from 5.4 

to 17.3 in years with high flows. 

 

Significance: The current land uses have very significantly increased the total sediment yield 

from the study area, this being especially so, in absolute terms, during years with high flows. 

Relative increases (%) are, however, larger during years with low flows. This is likely to be 

the result of an overall increase in stormflows. From an ecosystem services perspective an 

increased sediment yield implies a reduction in physical water quality and reduced storage in 

water reservoirs, as well as a decrease in the soil fertility from the surrounding landscape 

component of the catchment.  
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5.4.6 Summary of results of hydrological responses influenced by the current land 

uses, compared to those from baseline land cover 

This section summarises the results of influences of current land uses on hydrological 

responses and some of the effects on ecosystem services. A more detailed assessment of the 

effects of changed hydrological responses on ecosystem services is given in Sections 5.7 and 

5.8. 

  

a) Certain land uses, e.g. sugarcane and wattle plantations, reduce runoff compared to that 

from baseline land cover conditions (cf. Figure 5.12 and 5.13). For sugarcane and 

wattle (and other high biomass crops) this reduction in runoff is particularly high, in 

relative terms, during dry years and relatively less so in wet years. The agricultural land 

uses of grazing under natural vegetation versus improved pastures, while not modelled 

explicitly, are unlikely to affect runoff significantly, because the pasture’s hydrological 

attributes are similar to those of the baseline land cover they replace. 

b) Irrigation from farm dams lead to marked local decrease in streamflow, which is 

especially significant in years with low flows (cf. Figure 5.14). It also leads to a lag in 

downstream flow increases at the start of the wet season because a depleted dam first 

has to be filled before overflows commence. Although dams have a vital role to play in 

water storage to provide a reliable local water source, the streamflow immediately 

downstream of the dam is reduced, with the impact being most pronounced 

immediately below an individual dam used for irrigation. This reduction is 

comparatively lower further downstream at the outlet of the stream (cf. Figure 5.15). 

Therefore, ecological stream functioning might be critically reduced immediately 

downstream of a dam. Ecological flow releases, even from farm dams, are therefore 

vital for downstream ecological stream functioning, as well as for water provisioning 

for downstream users. 

c) Land degradation is modelled to result in an increase of runoff (cf. Figure 5.16), but a 

reduction in the runoff component of baseflow (cf. Figure 5.17) and therefore a 

reduction of water availability during low flow periods. Land degradation is also 

modelled to increase magnitudes of one day design runoff for selected return periods 

(cf. Figure 5.18). Furthermore, land degradation was modelled to increase sediment 

yields (cf. Figure 5.19 and 5.20) and therefore to decrease the physical water quality, as 

well as to reducing water storage in reservoirs. The effects of degradation could be 
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reversed with rehabilitation, and if all degraded areas within the catchment were to be 

rehabilitated, this would reduce the sediment yield in years with median flows by 57 

Mt/year and in years with 1:10 high flows by 130 Mt/year.  

d) Urban areas contain impervious urban surfaces that result in an increase in runoff (cf. 

Figure 5.21) and affect the runoff components of stormflow and baseflow differently, 

with most of the increase runoff (in absolute terms) consisting of increased stormflows 

(cf. Figure 5.22). The magnitudes of one day design runoff were increased (Figure 

5.23). The increased runoff generated from the impervious portions of urban areas is 

likely to be of reduced water quality because of the wash-off effects from roofs and 

roads. The urban impervious areas resulted in a shift from green and white water flows 

towards blue water flows (cf. Figure 5.24). While the biomass production on the 

pervious portions of urban areas was modelled to increase where there is a spill-over 

from impervious onto pervious areas (when ACRU variable DISIMP is > 0), the total 

catchment biomass production is likely to decrease (as in the case of HRU 1 of CU 4), 

because the pervious areas on which plants can grow have been reduced in size.  

e) Urban areas in the study catchment produced return flows, the water from which was 

derived from external sources. These urban return flows have a hydrological influence 

in addition to those of urban impervious areas. Based on assumptions made on 

modelling urban return flows, they contribute to a consistent increase in downstream 

flows, irrespective of the month of the year or whether years are wet or dry. These 

return flows are relatively more significant in dry periods (cf. Figure 5.25 and Figure 

5.26). Furthermore, return flows are likely to be of lower water quality than natural 

flows because they are derived from domestic and/or industrial areas.  

f) The combined effects of the current land use mosaic within this particular study area on 

annual streamflow are relatively small and individual land use impacts cancel each 

other out partially during years of low and median flows. In wet years, the influences of 

current land uses on the overall streamflow at the outlets are even smaller (cf. Figure 

5.27 and Figure 5.28). When the effects of various land uses and the land use mosaic 

within the study area are compared, some land uses result in a runoff increase, some in 

a decrease but overall, the effects on annual streamflow under the current land uses are 

found to be small (cf. Table 5.3). However, note that alien invasive plants, other than 

identified wattle plantations, have not been taken into account in this study, and they 

might have an additional reduction effect on streamflow. 
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g) The combined effects of the current land uses show a marked increase in aggregated 

sediment yields with, this being especially significant, in absolute terms, during years 

with high flows, while the relative increase is bigger during years with low flows (cf. 

Figure 5.29). This increase in sediment yields is likely because of an overall increased 

stormflow component to runoff. 

 

The influences of current land uses on hydrological responses were illustrated in this section. 

The study area is currently relatively rural, is still dominated by natural land cover and is 

used mainly for extensive grazing and hay baling. However, degraded areas were also found, 

as were transformed dryland agricultural land uses, mainly sugarcane and unmanaged wattle 

plantations. Some irrigated agriculture and numerous dams supplying the irrigated areas with 

water were found to influence streamflows, as did relatively small urban areas. The various 

proposed future developments (cf. Section 3.4.3) are projected to significantly increase the 

urban landscape in the form of increased residential and industrial areas. This will lead to 

increased impervious areas as well as urban return flows, with the latter derived from water 

from external sources. These proposed land uses can significantly influence the water flows 

within the hydrological cycle and their effects will be examined in the next section.  

 

5.5 Understanding Impacts of Proposed Land Uses on Catchment Hydrological 

Responses 

In order to understand possible changes in hydrological responses under future proposed land 

uses, the hydrology of proposed land uses is compared with that of current land uses, the 

effects of which were examined in the previous section. For this purpose, the model inputs 

related to increases in impervious areas, either adjunct or disconnected to a stream (as 

calculated in Section 4.4.9), and those impacts related to projected increases of urban return 

flows from water sources external to the study area (as was calculated in Section 4.4.10), 

were adjusted. The climate inputs were assumed to remain unchanged, with no climate 

change projections taken into account. Modelled changes in runoff, as well as its components 

of stormflow and baseflow, will be shown, followed by simulated changes in magnitudes in 

one day design runoff for selected return periods. HRU 1 of CU 3 and HRU 1 of CU9, the 

two HRUs with the highest degree of proposed urban change, are used as examples to model 

hydrological responses. HRU 1 of CU 3 is currently rural, with a low aggregated impervious 



Page 127 

 

fraction of only 0.16 (ADJIMP = 0.03, DISIMP = 0.13). Its impervious area fraction is 

calculated to increase to 0.66 (ADJIMP = 0.32, DISIMP = 0.34) as a result of proposed dense 

industrial developments (cf. Section 4.4.9; Table 4.8). The other example used is HRU 1 of 

CU 9, which is mainly proposed for increased residential areas. The model inputs would 

change from a low aggregated impervious fraction of 0.09 (ADJIMP = 0.04, DISIMP = 0.05) 

to a higher impervious fraction of 0.28 (ADJIMP = 0.09, DISIMP = 0.19; Table 4.8). In 

addition to the more local effects, the overall effects on the entire study area were modelled 

for the proposed land use scenario. 

 

 Hypothesis: Runoff is further increased by enhanced urbanisation, with its increased 

impervious areas and return flows, the latter in this case with water from external 

sources  

The influence of increased impervious areas on runoff, with the effects of urban return flows 

excluded, is modelled for HRU1 of CU 3 and results are compared in Figure 5.30 to the 

runoff under current urban land uses.  

 

 

Figure 5.30 Impacts of increased impervious areas on runoff from proposed urbanisation 

compared to the runoff from current urbanisation, using results from HRU 1 of 

CU 3 as the example  
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Interpretation: Proposed changes for HRU 1 of CU 3 were modelled to lead to a significant 

annual increase of runoff. In years with 1:10 low flows, the annual runoff was modelled to 

increase by 251 mm or 312 % from 81 to 332 mm, in median flow years by 303 mm or 157 

% from 193 to 496 mm and in years with 1:10 high flows by 335 mm or 81 %, from 415 to 

750 mm. The increase in runoff is pronounced during the wet summer months, from October 

to March, when most rainfall events occur.    

 

The significance of these results will be discussed after the next set of figures. The impact of 

the proposed urbanisation on the runoff components of stormflow and baseflows were 

modelled and the absolute impacts are shown in Figure 5.31, while the relative contribution 

of baseflows and stormflows to runoff is shown in Figure 5.32.  

 

 

Figure 5.31 Influences of current and proposed urban impervious areas on the stormflow 

and baseflow components of runoff for a year with mean flows, using results 

from HRU 1 of CU 3 as an example,  

 

Interpretation: The annual stormflows increased by 156 % from 162.4 to 416.4 mm, while 

the annual baseflows increased by 43 % from 63.9 to 162.4 mm. The increases in baseflows 

are higher in absolute terms, during the rainy season (October to May), but lower during the 

dry season from June to September. 
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Table 5.4 Influence of urban impervious areas on the baseflow component of runoff, using 

results from HRU 1 of CU 3 as an example, showing the monthly and annual 

baseflows (mm), as well as standard deviations and coefficients of variation (%) 

Proposed versus current urbanisation  

HRU 1 of CU3 Baseflows  JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC ANN 

Current urbanisation Mean (mm) 5.2 6.4 8.3 8.5 7.5 5.6 4.6 3.5 2.7 3.2 3.8 4.6 63.9 

Proposed urbanisation Mean (mm) 9.1 10.1 11.9 11.6 10 7 5.3 4 3.4 4.4 6.2 8.3 91.4 

Current urbanisation St. dev 7.1 6.6 8.6 8.4 6.6 4.9 4.1 3.2 2.4 3.8 4.8 5.2 53.2 

Proposed urbanisation St. dev 6.4 6.1 6.7 6.7 6.0 3.8 2.5 1.9 1.6 3.7 4.8 5.7 42.4 

Current urbanisation C.V. (%) 135.1 104.2 103.5 99.1 88.3 87.4 89.0 91.5 89.6 121.3 125.0 114.3 83.2 

Proposed urbanisation C.V (%) 70.1 61.0 56.2 57.6 60.4 54.7 47.6 46.0 46.5 84.6 77.9 68.9 46.4 

 

Interpretation: The proposed urbanisation was modelled to lead to increased monthly and 

annual baseflows but reduced variability in baseflows, both absolute (standard deviation) and 

relative (coefficient of variation).   

 

 

Figure 5.32 Influences of urban impervious areas on the relative contributions of stormflows 

and baseflows to runoff for a year with mean flows, using results from HRU 1 

of CU 3 as an example 
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Interpretation: With the proposed increases in urbanisation in HRU 1 of CU 3 the relative 

contribution of stormflows to runoff increases from 72 % to 82 %, while correspondingly the 

relative baseflow contribution decreases from 28 % to 18 %.  

 

Significance of Figures 5.30 to 5.32 and Table 5.4: The proposed urbanisation would lead to  

a very much increased runoff. The increase in runoff is made up of increases in stormflows, 

as well as baseflows, with the stormflow contributing the most in absolute values. The 

increases in baseflows are more significant, in absolute terms, during the rainy season but the 

increases are less (in absolute terms) when there is little rain during the dry season. The 

relative contribution of stormflow is increased with increased urbanisation, while that of 

baseflows decreased.  

 

Next, the effects of the combined influences of urban return flows and increased urban 

impervious urban areas are modelled, with results shown for HRU 1 of CU 3 in Figure 5.33 

and for HRU 1 of CU 9 in Figure 5.34. 

 

Figure 5.33 Impacts on streamflows of proposed increases in urban areas, including 

impervious areas and urban return flows from externally sourced water, 

compared to current levels of urbanisation using results from HRU 1 of CU 3 as 

an example 
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Interpretation: For this HRU’s very high level of increase in proposed urbanisation the 

annual runoff in a year with 1:10 low flows has increased by 1 294 mm or 1 607 % from 81 

to 1 374 mm, by 1 341 mm or 695 %, from 193 to 1 534 mm in a year with median flows and 

in a year with 1:10 high flows, by 1 376 mm or 332 %, from 415 to 1 790 mm. These extreme 

increases reflect the combined effects of return flows derived from water which is sourced 

from outside the catchment and increased runoff from urban impervious areas. 

 

 

Figure 5.34 Impacts on streamflows of proposed increased impervious urban areas and 

urban return flows from externally sourced water compared to current levels of 

urbanisation, using results from HRU 1 of CU 9 as the example 

 

Interpretation: With this HRU’s somewhat lower level of increase in urbanised areas than in 

the previous example, the annual runoff in a year with 1:10 low flows has increased by 140 

mm or 188 % from 75 to 214 mm, in a year with median flows by 181 mm or 109 %, from 

166 to 347 mm, and in a year with 1:10 high flows by 207 mm or 56 % from 372 to 579 mm. 

While the increases are still high, they nevertheless are considerably lower than those for the 

more highly urbanised HRU 1 of CU 3.  

 

In order to be able to compare the impacts of only urban impervious areas with those of only 

urban return flows the annual runoff from current urban land uses are compared with the 

annual runoff of proposed urban land uses and the annual streamflow contributions, made up 
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of runoff and urban return flows, are compared by assessing results from simulations on HRU 

1 of CU 3. The results are presented in Figure 5.35.  

 

 

Figure 5.35 Impacts of proposed urban land uses compared to those of current urban land 

uses, with and without urban return flows, modelled for years of median flows, 

as well as for years of 1:10 low and high flows, using results from HRU 1 of CU 

3 as an example 

 

Interpretation: The proposed land uses were modelled for the highly increased urbanisation 

(mainly industrial) in HRU 1 of CU 3. Results for years with 1:10 low flows showed 

increases in the annual streamflow contribution for this HRU of 241 mm or 299 % without 

return flows and of 1 294 mm or 1 607 % with return flows. For years with median flows, the 

increase was 289 mm or 150 % without return flows and 1 341 mm or 695 % with return 

flows. For years with 1:10 high flows, the increases were 322 mm or 78 % without return 

flows and 1 376 mm or 332 % with return flows. Those increases are already very large for 

the effect of increased urban impervious areas alone, while when the urban return flows were 

added, these had an even greater impact, with the return flows being the major contributor. 

Note again that return flows are derived from externally sourced water. 

 

In the above section, streamflows from individual HRUs which were proposed for major 

urbanisation were modelled for the current (mostly rural) land uses and the proposed (highly 
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urbanised) land uses and the hydrological responses of runoff and streamflows were 

compared. To examine the influence of all proposed new urbanisation on streamflow on a 

catchment scale, the volume increases in streamflow that flow into the Msunduzi River from 

the study area are examined next.  

 

 Hypothesis: The proposed urbanisation in the Mpushini/Mkhondeni Catchments 

significantly increases the streamflow volumes that the study area contributes to the 

Msunduzi River. 

The overall effects of proposed developments on the volume of streamflow from the 

catchment is examined and results shown in Figure 5.36. Because the return flows from urban 

areas for the entire study area are calculated in mega litre (ML = million litre), the units will 

be shown in Ml instead of in mm equivalent. 

 

 

Figure 5.36 Influences of the proposed urbanisation in the Mpushini/Mkhondeni study area, 

with and without urban return flows, on the streamflow at the catchment outlets, 

for years of median flows and 1:10 low and high flows   

 

Interpretation: At the study area’s outlets the proposed upstream urbanisation was modelled 

to increase the streamflow by 38 % in years with 1:10 low flows without return flows, and by 

176 % to 13.8 Ml with return flows included. For years with median flows the increase was 

29 % from 14.0 to 17.9 Ml without return flows and 78 % from 14.0 to 24.8 Ml. In years with 

1:10 high flows, the increases were 14 %, from 36.4 to 41.6 Ml without return flows and 33 

% from 36.4 to 48.5 Ml when the urban return flows were included. This is a very large 
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overall increase. However, it is less than at the individual development nodes, as was shown 

in Figures 5.29 and 5.32. 

 

Having shown previously that the local effects of specific land use changes can have 

significant impacts on local streamflows, some of the key differences between local and 

overall effects on streamflow for current and proposed land uses are summarised in Table 5.5. 

 

Table 5.5 Comparative influences (%) of selected proposed and current land uses on local 

scale streamflows versus influences of the mosaic of current land uses for the 

entire study on streamflows  

 Sugarcane, 

HRU 3 of CU 1 

Irrigation, 

HRU 5 of CU 

1 

Degradation, 

HRU 4 of CU 7 

Current 

Urban 

Areas, 

HRU 1 of 

CU 4 

Streamflow, for 

all Current Land 

Uses for the 

Entire Study 

Area 

Proposed 

Urban 

Areas, HRU 

1 of CU 3 

Streamflow, 

including Proposed 

Land Uses for the 

Entire Study Area 

Year with 1:10 low 

flows 

-51 % -63 % 84 % 251 % -6 % 1 607 % 176 % 

Year with median 

flows 

-24 % -33 % 22 % 127 % -4 % 695 % 78 % 

Year with 1:10 

high flows 

-10 % -11 % 5 % 64 % <1 % 332 % 33 % 

 

Interpretation: Columns 2-5 illustrate the local effects of specific land uses, with some 

reducing and others enhancing flows and the impacts being relatively more sensitive in low 

flow years. However, the overall effects of the specific land uses examined in this study area 

are largely self-cancelling. Note, however, that alien invasive plants other than identified 

wattle plantations have not been taken into account, and their inclusion might have had an 

additional reduction effect on streamflow. The effects of proposed urbanisation in this study 

area entirely dominate those of current land uses.  

 

5.6  Summary of Results of the Influences of Land Use Change on Hydrological 

Responses 

Selected hydrological responses under baseline land cover were modelled and assessed first. 

Thereafter selected hydrological responses from current land use conditions were modelled 

and compared to those from baseline land cover conditions. Following this, selected 
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hydrological responses under proposed urbanisation were modelled and compared to those 

under current land uses. 

 

In assessing various influences under baseline land cover, with no current land use influences 

included yet, the following findings were made for the various hydrological responses within 

the study area:  

 

a) The annual, as well as monthly, runoff is highly variable between years, with monthly 

and annual dry season runoff often extremely low.  

b) Annually, stormflow contributes more to runoff than baseflow and the contribution of 

stormflows to total runoff displays major differences between years of high, median 

and low flows.  

c) Differences in baseline land cover can have significant influences on runoff, although 

these differences are relative small within this particular study area.  

d) Blue water flows make up proportionally the lowest fraction of the study area’s water 

budget, when compared to green and white water flows. 

e) Differences in green water flows, i.e. transpiration, vary from month to month and from 

year to year in this study area, depending on available soil water. 

f) Sediment yields are increased markedly during years with high flows.  

g) Hydrological responses such as sediment yields, stormflows and especially baseflows, 

amplify any changes in the rainfall regime.  

 

Changes to hydrological responses from the various current land uses, compared to those 

from baseline land cover, are summarised below: 

 

a) Certain land uses, in this case sugarcane and wattle plantations, reduce runoff, 

compared to that from baseline land cover conditions.  

b) Irrigation from dams lead to a significant local decrease in streamflow, which is 

especially significant in years with low flows. It also leads to a lag in streamflows when 

these increase again at the start of the wet season, because a depleted dam first has to be 

filled before overflows commence. The decrease in streamflow is more pronounced 

immediately below an individual dam.  
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c) Land degradation is modelled to result in increases in runoff and sediment yield, but in 

reductions in baseflows when results are compared to those from baseline land cover 

conditions. The effects of degradation could be largely reversed through rehabilitation, 

and if all degraded areas within the catchment were to be rehabilitated, this would 

reduce the sediment yield in years with median flows by 57 Mt/year and in years with 

1:10 high flows by 130 Mt/year. 

d) Urban areas in this study area have their return flows generated from externally-sourced 

water. Based on assumptions made on modelling urban return flows, these contribute to 

a consistent increase in flows, irrespective of the month of the year or whether years are 

wet or dry. Return flows of water from external sources increase the overall 

streamflow, and they are relatively more significant in dry periods.  

e) In addition to the above effects from return flows, impervious urban areas were found 

to increase the runoff and thus blue water flows. The increases are made up of 

increased stormflows as well as increased baseflows. The magnitudes of one day design 

runoff for selected return periods also increased when compared to those from baseline 

land cover conditions.  

f) Where there is a spill-over from impervious onto pervious urban areas, the biomass 

production (as measured by transpiration) from the pervious areas increases. However, 

the overall biomass production decreases, because the pervious areas have been 

reduced through urbanisation.  

g) The combined effects of the current land use mosaic on annual streamflows for the 

entire study area at the catchment outlet of this particular catchment, partially cancel 

out the effects of individual land uses.. For this study area, during average and dry 

years, the current land uses result in a small reduction in flows. In wet years, the 

combined influences of current land uses result in essentially the same streamflow at 

the catchment outlet as under baseline land cover conditions. 

h) In contrast to the above, however, the combined effects of the current land uses show a 

marked increase in sediment yields, which is especially significant, in absolute terms, 

during years with high flows, while the relative increase is bigger during years with low 

flows. This is likely as a result of an overall increased stormflow component of runoff, 

especially for high flow events. 
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The proposed land uses, consisting mainly of industrial and residential uses, would urbanise 

and thereby transform the presently mainly rural study area. This proposed urbanisation, with 

markedly increased impervious urban areas, was found to lead to significantly increased 

runoff, in absolute terms made up of mainly increases in stormflows, while the often fairly 

low baseflows would also increase markedly, in relative terms. The increases in baseflows 

are more significant, in absolute terms, during the rainy season but they increase less (in 

absolute terms) when there is little rain during the dry season. The relative contribution of 

stormflows to total runoff increases, while that of baseflows decreases. The increased runoff 

is modelled to significantly increase streamflows. In addition, urban return flows from water 

sourced externally to this catchment lead to drastically increased, but less variable, 

streamflows. Overall, the effect of the proposed urban land uses would be the dominant one 

on annual streamflow, which at the catchment outlets was modelled to increase by 176 % in 

years with 1:10 low flows, by 78 % in years with median flows and by 33 % in years with 

1:10 high flows, compared with flows from current land uses. 

 

5.7 Linking Hydrological Functions and Responses to Hydrological Ecosystem 

Services 

The theoretical links between the modelled hydrological responses and ecosystem services 

are explained below. Only selected provisioning, regulating, and supporting hydrological 

ecosystem services, have been evaluated and it should be noted that this does not include all 

services. The ecosystem service of water provisioning will be described first (Section 5.7.1), 

followed by regulating ecosystem services relating to hydrological flow regulations (Section 

5.7.2) and thirdly, supporting ecosystem services related to stream biodiversity and genetic 

diversity, as well as soil fertility affected by sediment yield (Section 5.7.2). 

 

5.7.1 The ecosystem service of water provisioning, separated into “blue” and “green” 

water flows and their indicators  

The ecosystem service of water provisioning includes not only the “blue water” flows, which 

are visible to the naked eye. In this study area the “green water” flow component makes up a 

bigger portion of the water budget. Therefore, any available water, whether in the form of 

blue or green water flows, is classified as an ecosystem service of water provisioning, 
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irrespective of whether the provided water is used directly by humans for consumption, or 

indirectly, for example for irrigation or industrial purposes. 

 

For the purpose of this study, green water is soil water used by plants to produce biomass 

which can directly or indirectly be of use to humans. Changes to the ecosystem service of 

water provisioning through green water flows in this study are indicated by changes in the 

hydrological response of transpiration, which excludes evaporation from the soil surface or 

from intercepted water.  

 

Changes to water provisioning through blue water flows can be indicated by changes in the 

hydrological response’s streamflow or on an individual HRU level in the changes to runoff 

and its components of stormflow and baseflows.  

 

5.7.2 Hydrological regulating services and their indicators 

An important ecosystem function is the regulation of catchment flow. When it rains onto an 

intact landscape, the water in a simple water budget is partitioned into water intercepted, 

water infiltrated into the soil and stormflows and baseflows making up runoff into streams 

(Section 2.3.2). The entire catchment ecosystem, including its vegetation and soils, its 

topography, channel network and water engineered systems, therefore regulates the flow and 

not only wetlands and floodplains, as is often highlighted in the literature (e.g. Aylward et al., 

2005). In contrast, on a concrete parking lot, the same rainfall would result in rapid runoff of 

almost all the water and therefore cause a spike in the streamflow response. A regulating 

hydrological ecosystem service, which is of indirect use to humans, would be a reduction of 

the impacts of high flows (e.g. reducing flood damage), or an increase in low flows.  

 

Changes in flow regulation resulting from land use changes might be as a result of total 

increases (or decreases) of the number, and/or the severity, and/or the duration of individual 

flood events, or alternatively a shift in the seasonality of those occurrences. The model output 

of daily stormflow is a measure of blue water that could contribute to flooding and is, 

therefore, an indicator of a regulating service. Changes in stormflows relate directly to 

changes in flood regimes. The model output of daily baseflows, on the other hand, is a 

measure of contribution of blue water availability in the non-rainy period and thus regulates 

dry season flows. Changes in the relation between stormflows and baseflows are an indicator 
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of changes to regulating hydrological ecosystem services, with flow regulation increasing if 

the relative contribution of baseflows to runoff increases and the relative contribution of 

stormflows to runoff decreases, and vice versa. A good indicator pertaining to changes in 

extreme floods, which are normally the events that result in damage, are changes to one day 

design runoff magnitudes for varying return periods.  

 

Another regulating ecosystem service is related to the filtration of water to obtain water of 

acceptable quality. The only indicator for physical water quality from this particular 

modelling approach has been sediment yield. To account for chemical and biological water 

quality, other indicators, the modelling of which falls beyond the scope of this study, need to 

be used. In addition to the ecosystem service of regulating water quality, sediment yield is 

also an indicator of soil erosion from the landscape, with associated impacts on, for example, 

nutrient levels of soils and biomass yield from plants. However, to describe those impacts 

adequately, additional information is required, which again is beyond the scope of this 

dissertation. 

 

5.7.3 Supporting ecosystem services 

There are various supporting ecosystem services pertaining to water flows and variability, 

e.g. water to support stream ecology or vital estuaries and other habitats. Many ecological 

functions rely on a certain minimum flow and stability or seasonal variability and the absence 

or presence of extreme events of certain magnitudes and frequencies. Indirectly, the 

indicators of provisioning and regulating services described above are also indicators of such 

supporting services. However, the indicators of supporting services are not quite as 

straightforward as those of provisioning and regulating ecosystem services and require 

research based on biological methods, which are beyond the scope of this dissertation. The 

Literature Review (Chapter 2) has, however, shown that the ecology in streams has evolved 

to local conditions and both biodiversity and genetic diversity are negatively affected through 

streamflow regime changes, physical water quality deterioration and habitat alteration 

through increased sediment yields (Bunn and Arthington, 2002; Dudgeon et al., 2006) . 

Therefore, a reduction in the ecosystem service of biodiversity and genetic diversity can be 

indicated through alterations in streamflow, and these could be the increases, decreases or 

changes in timing of streamflows, low flows, the runoff components of baseflow and 

stormflow, or increases in magnitudes of one day design runoffs. In addition, increased 
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sediment yield causes a decrease in physical water quality, as well as a modification of the 

stream habitat, and therefore also indicates a reduction in bio- and genetic diversity. This 

might, however, also imply that some aquatic species benefit from the altered landscape 

conditions.  

 

5.7.4 Cultural ecosystem services 

There are undoubtedly cultural services related to water quantity and flow, including, but not 

limited to, the enjoyment of scenery, increased property values, travel to places for eco-

tourism or outdoor sports, as well as spiritual or scientific research. The indicators used 

within this study, however, cannot be used as sole indicators to describe changes to cultural 

ecosystem services. Therefore, research beyond this dissertation would be required to 

determine these services with any accuracy. 

 

5.7.5 Summary of the links between selected hydrological responses and selected 

ecosystem services 

A change in flow regimes usually reduces the habitat function which leads to biodiversity as 

well as the genetic diversity in streams and adjoining edges, as the habitat is altered. A non-

exhaustive summary of the changes to modelled hydrological responses, as well as associated 

provisioning and regulating ecosystem functions, but excluding the just mentioned services 

related to habitat functions and selected affected ecosystem services, is provided in Table 5.6, 

which is based on the findings of this study, the Literature Review and the author’s 

understanding of hydrological processes.  

 

5.8 The Link between Land Use Changes and Ecosystem Services, as indicated by 

Hydrological Responses 

From Sections 5.3 to 5.6, links between land use change and modelled hydrological responses 

were evaluated. In Section 5.7 links between changes in hydrological responses and selected 

ecosystem services were assessed. The links between the examined land use change and 

selected ecosystem services will be discussed next, under the broad categories of agricultural 

land uses and urbanisation. 
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Table 5.6 A non-exhaustive list of the modelled hydrological responses and their changes, 

ecosystem functions (excluding habitat functions) and the affected ecosystem 

services 

Hydrological 

Response   

Changes (as 

a result of  

land use 

change)  

Affected Ecosystem 

Function / Process 

Affected Ecosystem Service (examples) 

Runoff and/or 

streamflow 

Decrease  

 

Provisioning  Less blue water provisioning 

Possibly more green water provisioning 

Increase Provisioning  More blue water provisioning (but possibly of poorer quality) 

Possibly less green water provisioning 

Regulating  Potentially higher flood damage (through increased blue water) 

Change in 

seasonality/ 

frequency 

of events 

Provisioning Changes in seasonal water provisioning 

Regulating Changes in seasonal flow regulating services 

Baseflow 

component of 

runoff 

Increase  

 

Provisioning, 

Regulating 

Increase in water provisioning during low flow periods 

Increase in low flow regulations 

Steading Regulating, Increase in low flow regulations 

Stormflow 

component of 

runoff 

Increase Regulating Ecosystem service of flow regulation might not be enough, potentially 

higher flood damage 

Relative 

relationship of 

stormflows to 

baseflows 

Increase Regulating Decrease in flow regulation 

Decrease Increase in flow regulation 

One day design 

runoff (for selected 

return periods) 

Increased 

magnitudes 

Regulating Ecosystem service of flow regulation might not be enough, potentially  

increased flood damage 

Sediment yield Increase Provisioning Decreased blue water provisioning (through a reduction in reservoir capacity 

and a reduction in physical water quality )  

Regulating Possibly higher flood damage (through a reduction in reservoir capacity)  

Production Reduced fertility of  surrounding lands and thus a reduction of biomass for 

food, feed, energy or building materials 

Transpiration Increase Provisioning,  / 

Production 

Increase of biomass for food, feed, energy or building materials (through 

more green water availability) 

Decrease Reduction of biomass for food, feed, energy or building materials (through 

less green water availability) 

 

5.8.1 Agricultural land uses 

The production of high biomass crops, as well as irrigated areas, were found to reduce 

downstream water provisioning. On the other hand, extensive agricultural activities, when 

well-managed, were found to maintain downstream water provisioning, as well as flow 

regulation and, if natural vegetation cover is maintained, to contribute towards biodiversity 
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and genetic diversity. The use of farm dams was found to modify streamflow and reduce 

especially locally important downstream ecosystem services of water provision and stream-

related bio- and genetic diversity. However, the dams do provide flow regulating services, 

with both positive and negative effects. Land degradation, often the result of poor veld 

management caused by overgrazing or unsuitable burning regimes, was modelled to reduce 

flow regulation by increasing incidences of stormflows, and to reduce biodiversity and 

genetic diversity by increasing sediment yields and thereby reducing water quality. While the 

overall blue water provisioning from degraded areas was modelled to increase over a year, 

the water availability was shown to decrease during times of low flows, when it is most 

needed. 

 

5.8.2 Urban land uses 

Urban land uses, depending on density, size and type, with their increased impervious areas, 

compared to natural vegetation and agricultural land uses, and in this study area with water 

making up the return flows sourced externally to the catchment, were modelled to increase 

downstream flows. However, these are likely of reduced water quality. With regard to 

regulating services, urban areas, on the one hand, decrease regulation by increasing the 

“flashiness” of flows resulting from the enhanced stormflows off the impervious areas. 

Conversely, in this catchment, there is a greater low flow regulation by steadying the 

contribution of return flows, as well as increased water off the unconnected impervious areas 

spilling over onto adjoining pervious areas and wetting these. Both processes led mainly to an 

increase in low flows. The overall biomass production of urban areas will be reduced, as 

impervious areas replace green spaces, while the biomass production on those green spaces is 

modelled to increase, where there is increased water availability from runoff spill-overs from 

impervious areas. The increased annual blue water flows from urban areas are also likely to 

change the ecological functioning of streams. The increase in low flows has consequences of 

maintaining flows above a minimum threshold, which may be important for particular 

processes and certain aquatic species and processes. However, stream ecology evolves under 

local conditions and certain species require drier periods. In addition, a reduced water quality 

is generated from urban areas. Overall, the impact of urban area on biodiversity and genetic 

diversity is likely to be negative. 
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6.  DISCUSSION  

 

This chapter fits into the overall research objective and the approach as shown in the 

overview provided in Figure 6.1. 

 

 

Figure 6.1 Discussion and recommendations within the context of this dissertation 

 

6.1 An Overview of the Approach Adopted 

In this dissertation, after an introduction (Chapter 1), a literature review was undertaken 

(Chapter 2) covering ecosystem services and, in particular, hydrological ecosystem services, 

as well as the impact of land use within an ecosystem services context and the links and 

interactions between hydrological ecosystem services and land use. A special emphasis was 

placed on the South African context.  

 

It was found that markets worldwide and in South Africa do not protect ecosystem services 

sufficiently. Individual landowners might often profit more from degrading ecosystems, 

because environmental and social costs are distributed to society while profits occur to the 

individual or company. Conversely, often no or little monetary benefit occurs to the 

landowner or company that sustains land, thus contributing toward ecosystem services which 

benefit others. Therefore, all tiers of government need to play a role in safeguarding 

ecosystem services.  
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A need was found to improve the knowledge base between land use change and the 

influences on hydrological responses and associated ecosystem services, to which this study 

has endeavoured to contribute by using a hydrological modelling approach for a real case 

study area, viz. the Mpushini/Mkhondeni Catchment..  

 

Following the literature review, background information on the Mpushini/Mkhondeni study 

catchment was given (Chapter 3), which included a biophysical outline that placed the study 

area in a water-limited environment with strong seasonal variances. Different land use 

scenarios, used for subsequent work within the study were then described. These scenarios 

were the baseline land cover scenario, which represents the pre-human influenced natural 

land cover, as well as the current (2008) land use scenario with a mix of land uses, including 

various agricultural and urban land uses, degraded areas and a large portion of remaining 

natural land cover. Thirdly, a possible future land use scenario was examined, consisting of 

submitted proposed land use change applications, which would increase urban areas in the 

study area considerably.  

 

The methodology used to set up hydrological simulations was then explained in Chapter 4. 

The methodology was based on a modelling approach, even if this can never be an absolute 

representation of the natural world. The daily time step and process based ACRU 

hydrological simulation model, which had previously been verified within the uMgeni 

Catchment was used. In order to set up the model to be able to undertake simulations, the 

relevant land use-related hydrological inputs were explained first, followed by the catchment 

delineation into 10 linked smaller catchment units (CUs), based on river networks, 

topography, location of dams and major current and proposed land uses. The delineation of 

these CUs remained constant for all three scenarios of baseline land cover, current land uses 

and proposed land uses, with the various land uses of the three scenarios being identified by 

using GIS analyses of land cover and land use maps.  

 

Every catchment unit was then further subdivided into a basic configuration of five linked 

land use determined hydrological response units (HRUs) to facilitate the isolation of local 

effects of the particular land use in question, with land uses with expected similar 

hydrological responses being aggregated into relatively homogeneous hydrological units. 
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This approach allows for each HRU to be modelled individually, thereby isolating the 

particular local land use influence on hydrological responses. 

 

Various hydrological model inputs were obtained from research previously undertaken in the 

School of Agriculture, Earth and Environmental Sciences at the University of KwaZulu-

Natal. These inputs included the study area’s climate data (e.g. daily rainfall, maximum and 

minimum temperature and potential evaporation), physiographic data (e.g. altitude and 

slope), as well as soil information (e.g. thickness of soil horizons, soil water retention 

constants, drainage rates and soil erodibility). These climate and physiographic data and most 

of the soil information inputs remained constant for all three land use scenarios. The 

hydrological model inputs related to the respective land use determined HRUs were outlined 

next. These inputs were taken either from previous research on similar land cover, or were 

based on expert advice, or were calculated where necessary. This included vegetation-related 

inputs such as biomass indices, root distribution and colonisation, vegetation cover factor 

(Sections 4.4.4 to 4.4.6), as well as dam- and irrigation-related inputs (Sections 4.4.7 and 

4.4.8), impervious urban areas calculations (Section 4.4.9), urban return flow calculations 

(Section 4.4.10), as well as inputs related to the catchment configuration (Section 4.4.11).  

 

The ACRU model’s selected relevant outputs of hydrological responses were then described 

(Section 4.4.12). These modelled outputs included (a) stormflow, i.e. the water which is 

generated from a specific rainfall event, either at or near the surface, to contribute to flows in 

the channel of the HRU; (b) baseflows, i.e. the delayed water from rainfall that has percolated 

through the soil horizons into the intermediate and groundwater zones and then contributes as 

a delayed slow flow to the streams within a HRU; (c) runoff, i.e. the water yield from an 

individual HRU, consisting of stormflow plus baseflow; and (d) streamflow, i.e. the runoff 

from an HRU under consideration plus the runoff contributions from all upstream HRUs. 

Further relevant outputs were (e) sediment yield, which consists of the soil detached from a 

landscape and which then reaches the stream after a runoff event; and (f) design one day 

runoff, which is the statistically expected daily runoff from an annual maximum series of 

flows for the 2-, 5-, 10-, 20- and 50-year return periods. Also important is the modelled 

output of total transpiration, which is water that is modelled to have flowed from the soil via 

a plant into the atmosphere, but excluding direct evaporation from intercepted rainfall or from 

the soil surfaces. The above output variables of modelled hydrological responses were 
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presented in numerous daily, monthly and annual statistics (Chapter 4 and 5). These statistics 

included arithmetic mean values, median values (e.g. of rainfall, flows, sediment yields, etc.), 

the 1:10 year high value implying that statistically only in 1 year in 10 that value would be 

exceeded, and the 1:10 low value signifying that the value would be exceeded in 90% of 

years. 

 

6.2 Summary of the Main Results 

In Chapter 5 the results were presented. Selected hydrological responses under baseline land 

cover were modelled and assessed first. Thereafter, selected hydrological responses from 

current land use conditions were modelled and compared to those from baseline land cover 

conditions. Following this, selected hydrological responses under proposed urbanisation were 

modelled and compared to those under current land uses. 

 

6.2.1 Results assuming baseline land cover 

In assessing various influences under baseline land cover, with no current land use influences 

included yet, the following findings were made for the various hydrological responses which 

were considered within the study area:  

 

a) Monthly runoff is highly variable within a year and between years while annual runoff 

is, similarly, highly variable from one year to the next, with monthly and annual dry 

season runoff often extremely low.  

b) Differences in baseline land cover can have significant influences on runoff, although 

these differences are relative small within this particular study area.  

c) Annually, stormflow contributes more to runoff than baseflow in this catchment and the 

contributions of stormflows to total runoff display major differences between years of 

high, median and low flows.  

d) Blue water flows proportionally make up the lowest fraction of the study area’s water 

budget, when compared to green and white water flows.  

e) The differences in green water flows, i.e. transpiration, vary from month to month and 

from year to year in this study area, depending on soil water content.  

f) Sediment yields are increased markedly during years with high flows.  
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g) Hydrological responses such as sediment yields, stormflows and especially baseflows 

amplify any changes in the rainfall regime.  

 

6.2.2 Results assuming current land uses 

Changes to hydrological responses from the various current land uses in the 

Mpushini/Mkhondeni Catchments were compared to those from baseline land cover and the 

following findings were made:  

 

a) Certain land uses, in the case of this catchment sugarcane and wattle plantations, were 

modelled to reduce runoff, compared to that from baseline land cover conditions.  

b) Irrigation from farm dams was modelled to lead to significant local decreases in 

streamflows, with the decreases especially significant in years with low flows. The 

presence of dams from which water is abstracted for irrigation also leads to a lag in 

streamflows when these increase again at the start of the wet season, because a depleted 

dam first has to be filled before overflows commence. The decrease in streamflow is 

most pronounced immediately below an individual dam.  

c) Degraded lands were modelled to result in increases in runoff and sediment yield, but 

reductions in baseflows when results were compared to those from baseline land cover 

conditions. The effects of degradation could be partially to largely reversed with 

rehabilitation, and if all degraded areas within the catchment were to be rehabilitated it 

would reduce the sediment yield in years with median flows by 57 Mt/year and in years 

with 1:10 high flows by 130 Mt/year, along with producing reduced stormflows and 

increased baseflows. 

d) Urban areas in this study area have their return flows generated from externally sourced 

water. Based on assumptions made on modelling urban return flows, these contribute to 

a consistent increase in flows, irrespective of the month of the year or whether years are 

wet or dry. Return flows of water from external sources increase the overall streamflow 

and they are relatively more significant in dry periods.  

e) Additional to the above effects from return flows, impervious urban areas were 

modelled to increase the runoff and, thus, blue water flows. The increases were 

modelled to be made up of increased stormflows, as well as increased baseflows.  

f) The magnitudes of one day design runoff for selected return periods also increased with 

urbanisation, when results were compared to those from baseline land cover conditions. 
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g) Where there is a spill-over from impervious urban onto pervious areas, the biomass 

production (computed from modelled transpiration) from the pervious areas increases. 

However, the overall biomass production of that HRU decreases because the pervious 

areas have been reduced. 

h) The combined effects of the current land use mosaic on annual streamflows for the 

entire study area at the catchment outlet in this particular catchment partially cancel 

each other out. For this study area during average and dry years the current land uses 

result in a small reduction in flows. In wet years the combined influences of current 

land uses result in essentially the same streamflow at the catchment outlet as under 

baseline land cover conditions. In contrast to the above, however, the combined effects 

of the current land uses show a marked increase in sediment yields over the whole 

catchment, which is especially significant in absolute terms during years with high 

flows, while the relative increase is higher during years with low flows. This modelled 

result is as a result of an overall increased stormflow component of runoff and high 

flow events. 

 

6.2.3 Results assuming proposed land uses 

The proposed land uses in the Mpushini/Mkhondeni Catchments, consisting mainly of 

envisaged industrial and residential uses, would further urbanise and thereby transform the 

presently mainly rural study area. This proposed urbanisation, with markedly increased 

impervious urban areas, was modelled to lead to significantly increased runoff. In absolute 

terms, this is made up especially of increases in stormflows, while the often fairly low 

baseflows would also increase markedly in relative terms. The increases in baseflows are 

more significant in absolute terms during the rainy season and less important (in absolute 

terms) when there is very little rain during the dry season. The relative contribution of 

stormflows to total runoff increases, while that of baseflows decreases. The increased runoff 

is modelled to increase streamflows significantly. In addition, urban return flows from water 

sourced externally to this catchment lead to markedly increased, but less variable, 

streamflows. Overall, the effect of the proposed urban land uses would be the dominant one 

on annual streamflow, which at the catchment outlets was modelled to increase by 176% in 

years with 1:10 low flows, by 78% in years with median flows and by 33% in years with high 

flows, compared with flows from current land uses. 
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6.3 Relating Hydrological Responses to Ecosystem Services 

Changes in hydrological responses were proposed as being suitable indicators for changes in 

selected ecosystem services. The ecosystem service of water provisioning was, for this study, 

defined as arising from blue or green water flows. Changes to water provisioning through 

blue water flows were indicated by changes in the hydrological responses of accumulated 

streamflow or by changes in runoff and its components of stormflow and baseflows, the latter 

from an individual HRU. In this study, changes to the ecosystem service of water 

provisioning through green water flows were indicated by changes in the hydrological 

response of transpiration. In considering changes to regulating services relating to flow 

regulation, in regard to regulation of high flows these were indicated by changes to stormflow 

responses, by changes to the relative contribution of stormflows to runoff, as well as by 

changes to one day design runoff magnitudes for selected return periods. In contrast, changes 

in low flow regulation were be indicated by changes to baseflows. Changes in physical water 

quality were indicated by changes in sediment yield. Selected supporting ecosystem services 

were also found to be affected by changes in the hydrological responses described above. The 

ecology in streams has evolved to local conditions and both biodiversity and genetic diversity 

are negatively affected by streamflow regime changes, by physical water quality deterioration 

and habitat alteration through increased sediment yields. Therefore, a reduction in the 

ecosystem service of biodiversity and genetic diversity can be indicated (together with other 

biotic and chemical indicators) through alterations in streamflow characteristics, and these 

could be either increases or decreases or changes in the timing of streamflows, as well as low 

flows, the runoff components of baseflow and stormflow, or increases in one day design 

runoff and changes in sediment yield. The changes to flows and sediment yield described 

above might, however, also imply that some aquatic species benefit from the altered 

landscape conditions.  

 

6.4 Linking Land Use Change to Changes in Ecosystem Services 

As already stated in Section 6.1, it was found in the literature study that markets worldwide 

and in South Africa do not protect ecosystem services sufficiently. It is reiterated that 

landowners might profit from land use transformation which might reduce ecosystem 

services, because environmental costs are distributed to society or future generations, while 

benefits might occur mainly to the current land owners. Conversely, often no or little 
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monetary benefit occurs to the landowner or company that maintain land, thus the sustenance 

of ecosystem services that benefit others might not be rewarded. Therefore, to be able to 

make informed land use change decisions the changes in ecosystem services need to be 

assessed, including changes to hydrological ecosystem services.  

 

The modelled land use changes in the study area were linked with changes in ecosystem 

services by using the modelled hydrological responses as indicators, as outlined in Chapter 4 

and specifically in Table 4.11. The type of land use was found to have a highly significant 

influence on hydrological responses and associated ecosystem services.  

 

Land uses that conserve land, as well as those that maintain near natural vegetation, e.g. 

extensive cattle or game farming, if managed correctly would essentially maintain the 

ecosystem services that natural vegetation provides. Such activities should therefore be 

encouraged and even incentivised through rebates or payments for ecosystem services, 

because they add benefit without really altering ecosystem services.  

 

Modelling revealed that high biomass crops such as sugarcane and wattle plantations reduce 

streamflows. The benefits of sugarcane plantations, for example to food security, job 

creation, foreign exchange earnings and other economic benefits, therefore need to be 

weighed up against the reduced ecosystem services to downstream users. In this catchment 

the wattle plantations do not consist of managed production plantations, but rather of 

unmanaged areas of invaded alien wattle (Acacia mearnsii). Therefore, the small economic 

benefit of these alien wattles is likely to be over-ridden by the reduction in water 

provisioning. It would therefore be beneficial to eradicate this alien vegetation to the benefit 

of downstream water users.  

 

The greatest relative impact of a reduction in downstream blue water provisioning was 

modelled as a result of irrigation. Irrigation should, therefore, be applied as efficiently as  

possible and the benefits of agricultural production be weighed up against the needs of 

downstream water users. 

 

Degraded lands were found to increase stormflows, decrease low flows and increase sediment 

yields. This implies that the physical water quality is reduced and the water supply during 
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low flow periods, when most needed, is reduced. On the other hand, degraded areas hold the 

potential to be rehabilitated, so that increased flow regulation and water provisioning during 

low flow periods might be re-established. The rehabilitation of degraded land within the 

study area, therefore, holds potential to increase ecosystem services, and should be 

incentivised. 

 

Urban land uses were modelled to significantly increase runoff, thereby increasing the 

quantity of total blue water provisioning, as well as reducing physical water quality and while 

not simulated in this study, urban land uses are considered to reduce other types of water 

quality as well (e.g. through wash off of oil or pathogens). The stormflow component of 

runoff in urbanised areas was found to be increased most markedly, and together with the 

rapid runoff responses therefore reduce the regulation of high flows. It was modelled that not 

only stormflows, but also baseflows, increased, the latter through a spill-over of water from 

impervious onto pervious areas, with the result that variability of baseflows decreased (cf. 

Table 5.4). This implies that there is an increase in flow regulation for baseflows during 

periods of rainfall. The increased blue water flows, however, reduce green and white water 

flows. The conversion of pervious vegetated areas into impervious areas shifts most of the 

water portion that would have transpired via the vegetation, as well as part of the portion of 

water that would have evaporated, towards the blue water flows, which is the water that runs 

off. In addition, the urban return flows generated from water that is imported into the study 

area, were modelled to increase the blue water flows as well as steadying the flows, thereby 

increasing low flow regulation. Potential leaking water pipes and outlets from septic tanks 

were not taken into account in this study, but might increase this effect. While an increase in 

low flows from urban areas has positive effects in terms of increased water provisioning 

during low flow periods, it needs to be borne in mind that this water is likely to be of lower 

water quality and, therefore, an overall negative water provisioning service is likely.  

 

Nevertheless, the increased urban impervious areas and urban return flows create 

opportunities, which include 

 

a) rainwater harvesting from roofs; 

b) water collection from stormwater drains into dams and artificial wetlands; 

c) use of treated water from waste water treatment works; 
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d) use of grey water from households; 

e) spill-over from impervious areas onto pervious ones, and thereby slowing flows, 

resulting in additional infiltration; and hence 

f) the production of more biomass on the remaining pervious areas.  

 

If utilised, these positive factors partially mitigate the negative impacts of urban areas, by 

 

a) augmenting the urban water requirements and, therefore, reducing the amount of water 

brought into the catchment;  

b) increasing biomass production in urban areas and thereby creating green areas with 

possible benefits for recreation, relaxation, biodiversity and food production; and by 

c) reducing the downstream ecosystem impacts of upstream urbanisation.  

 

Having evaluated the impacts of individual land uses above, it needs to be emphasised that 

from a biodiversity and genetic diversity perspective in streams and in adjoining areas, the 

ecology has evolved according to natural local conditions. The resulting streamflow 

alterations, and reduced water quality and altered habitat function are, therefore, likely to 

reduce the biodiversity in streams and in areas adjoining them. 

 

The methodology was found to be suitable for assessing certain changes to hydrological 

ecosystem services as a result of land use changes. This is assuming that the relevant input 

variables are available, with regard to climate, soils, geography and land use. For a detailed 

EIA project, more detailed information is likely to be required than is obtainable from a 

national database. However, the methodology can be adjusted by using model inputs that 

were obtained from more detailed local data. 

 

6.5 The Contribution of this Research to Knowledge Creation 

An assessment of the contribution of this research to a better understanding of land use 

change impacts on hydrological responses and associated ecosystem services include the 

following, in no particular sequence:  

 

a) a case study of an actual impacted area, the results from which are contributing to 

knowledge that can be used in local decision-making; 
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b) a better understanding of land use and hydrological responses, by isolating the impacts 

of individual land uses and the effects of these land uses on hydrological responses, 

such as the total flows or runoff components of stormflow and baseflow, both locally 

and on a wider  catchment level;   

c) the vast potential effects of the proposed urbanisation in the study catchment on 

hydrological responses; 

d) the different effects that various land uses, individually and in combination, have on 

hydrological responses;  

e) the different effects and responses between wet and dry years; 

f) a better appreciation of critical land use influences in water-limited areas during low 

flow periods; 

g) an improved understanding of blue and green water flows in water-limited 

environments;  

h) a focus on the diverse land uses of the entire catchment and their contribution to 

ecosystem services, not only on wetlands and flood plains, as is often the case in the 

literature; 

i) the ecosystem services which are related to water flows, by attempting to link 

hydrological responses to ecosystem services science and suggesting suitable 

indicators;  

j) an approach to a methodology using hydrological studies and, therefore, to link them to 

ecosystem services, to be able to form part of an ecosystem services change assessment, 

where scenarios of alternate futures with changes to multiple key ecosystem services 

are evaluated; and 

k) the suitability of a daily hydrological process based simulation model, such as the 

ACRU model, to model land use impacts on hydrological responses and associated 

ecosystem services, even in the light of uncertainties being introduced when a 

modelling approach is used. 

 

6.6 Recommendations for Future Research 

During this study, several knowledge gaps became evident to the candidate. These gaps 

would be beneficial subjects for further research.  
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a) Only selected hydrological ecosystem services were examined in this study. There is 

still considerable knowledge to be gained in this field by adding more hydrological 

ecosystem services, particularly those related to water quality, ecological functioning 

and cultural services. A more complete assessment of hydrological ecosystem services 

would be of benefit to integrated assessments, as well as a more in-depth assessment of 

the suitability of hydrological responses as indicators of hydrological ecosystem 

services.  

b) The climate input used in this study was based on historical records. We are, however, 

living in a world of changing climates which are projected to have major influences on 

hydrological responses and associated ecosystem services in the future. It would be 

beneficial to use climate output from downscaled global circulation models, which 

project climate change, and then to examine how this could change the hydrological 

responses and associated ecosystem services in this study area.  

c) While the interaction of water and landscape was modelled within this study, the on-

going monitoring of these interactions is recommended, so that more information 

becomes available, particularly also the inclusion of already available results on the 

water use of natural vegetation and of alien invasive vegetation in operational models.  

d) Urban areas and their water flows pose certain challenges. One of these challenges is to 

find better information about potable water requirement projections of existing and new 

urban areas. While the potable water requirements of an urban area will differ, 

depending on type and density, those predictions are essential to be able to plan future 

water service requirements and the effects on downstream ecosystem services. 

e) Another challenge concerns the evaporation levels from urban areas. Urban areas, in 

reality, consist of various different vertical, horizontal and sloped surfaces, which can 

create wind channels, change evaporation rates and create urban heat island effects. 

More research in this field would be beneficial, to improve knowledge regarding the 

hydrological modelling of urban areas.  

f) There was very little information available on the effect of land use change in South 

Africa on microclimate, which can be a major driver of local hydrological responses.  

g) It would be beneficial to study the property laws of South Africa regarding the rights or 

duties of property owners to destroy, alter or maintain certain ecosystem services 

resulting from that land.  
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h) Knowledge gained regarding the links between land use and ecosystem services is only 

beneficial if this information informs agencies of planning and land use enforcement. 

More studies are required on how to merge scientific findings on links between land 

use change and hydrological ecosystem services into practice in South Africa and 

elsewhere.  
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