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ABSTRACT

This thesis describes a new method of constructing a real-time
interactive software system for a minicomputer to enable the
interactive facilities to be extended and improved in a multi-
tasking enviromment which supports structuréd programming
concepts. A memory management technique called Software Virtual
Memory Management, which is implemented entirely in software, is
used to extend the concept of hardware virtual memory management.
Thié extension unifies the concepts of memory space allocation
and control and of file system management, resulting in a system
which is simple and safe for the application oriented user. The
memory management structures are also used to providé exceptional
protection facilities. A number of users can work interactively,
using a high-level structured language in a multi-tasking environ=
ment, with very secure access to shared data bases. A system is -
described which illustrates these concepts. This system is
.implemented using an interpreter and significant improvements in
the performance of interpretive systems are shown to be possible
using the structures presented. The system has been implemented
on a Varian minicomputer as well as on a microprogrammable micro=
processor. The virtual memory technique has been shown to work
with a variety of bulk storage devices and should be particularly
suitable for use with recent bulk storage developmehts such as
bubble memory and charge coupled devices. A detailed comparison
of the performance of the system vis—a-vis that of a FORTRAN based
system executing in-line code with swapping has been performed by
means of a process control case study. These measurements show that
an interpretive system using this new memory management technique can

have a performance which is comparable to or better than a compiler

oriented system.

INDEX TERMS
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PREFACE

STATEMENT OF ORIGINALITY

A1l the work reported in this thesis is the candidate's own original work

except where specifically stated to the contrary.

BACKGROUND

During 1974 1 was involved in three small process control projécts which used

a simple real-time BASIC for data acquisition and some simple control fuﬁctions.
The system used, called PROSIC, was an extension of the Varian computer BASIC
(GOUWS, 1973)., The BASIC implementation had replaced earlier applications which
had been coded in assembler, enabling an order of magnitude reduction in program=
ming effort to be achieved in the process. Despite this successful use, it
became apparent during the course of the projects, that PROSIC (and all other
real-time BASIC's available at that time) had a number of limitations. Some‘of
these were overcome in an upgraded version, called PROSIC 2, which was prodﬁced
in early 1975 (HEHER, 1975, 1976a, 1976b) but serious defects remained which
limited the scope of PROSIC.

In 1975 a new medium-scale process control project was commenced (HEHER,
1977b). On examining the requirements for the project, it was clear that a simple
real-time BASIC such as PROSIC would not be adequate, primarily because of the
lack of multiprogramming facilities. FORTRAN IV was therefore used as an applica=
tions programming language for this project, running under the control of the
Hewlett Packard Real-time Executive RTE II. 1In the course of this project
considerable experiénce was gained in the use of a non-interactive compiler-
oriented system., The FORTRAN/RTE combination worked satisfactorily, but in various
instances it was noted that programming tasks were considerably more difficult to
perform in the compiler-oriented system than they would have been in an interactive
system. A general purpose real-time operating system like RTE is also relatively

difficult for the application oriented user to operate.

The experience gained on this project, together with the experience of
using a real-time BASIC on the previous projects, indicated a definite need for
an interactive multiprogramming system. The widespread acceptance of étructufed

programming techniques over the last few years also pointed towards the in=

corporation ...../ii
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corporation of these concepts in an interactive program development system.
Examination of the current literature indicated that this need was being felt
elsewhere as well, but that there were no systems available which met all

the desired requirements.

The design of a mﬁltiprogramming'system, which had commenced in 1974, was
therefore continued in earnest in 1975. 1In attempting to design the system it
was soon apparent that serious memory management problems existed in the
construction of a multiprogrammable system. A variety of techniques for solving
the problem were considered and discarded before the concept of 'Software Virtual
Memory Management' was evolved early in 1976. This new system was originally called
PROSIC 3 but in 1977 the name was changed to VIPER (Virtual Interactive Process
Executive for Real-time control)‘to reflect the totally different structure of the

new system.

SCOPE AND CLAIMS

This thesis therefore presents a new method of constructing real-time interactive
operating systems for a mini- or microcomputer. The primary claim of this thesis
is that to construct such systems fundamental memory management problems must be
solved. The concept of software virtual memory management is proposed as a
solution which does not require the use of any special purpose hardware, the memory

management functions being implemented entirely in software.

The additional claims of this thesis are that:

1. The interactive facilities found in simple monoprqgrammed systems

can be extended and improved in mdltitasking systems.

2. Structured programming concepts can be efficiently supported in an

interactive multiprogramming environment.

3. An interpretive system can be constructed which has a performance
comparable to that of a system executing in-line code with swapping,

without requiring an electromechanical storage device for the time-

critical tasks.

4o .../ (i1)
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4. A simple user interface can be provided which facilitates the use

of the system by application oriented users.

5. New and improved protection facilities can be provided to permit

safe multi-user multi-programming by the application oriented user.

A system incorporating the facilities presented above provides a unique and
powerful set of software tools which makes a marked contribution toward the goal
of producing more reliable software efficiently and economically. Many of the
facilities listed above are not new or original concebts and have been discussed
and proposed in various contexts, as referenced in the body of the thesis. It is
claimed, however, that they have not or could not be implemented on small mini-
or microcomputer systems which use a high-level user oriented language for process

control word.

The concepts presented are demonstrated in the experimental operating system
VIPER which operates in an interpretive mode. It is claimed that.the performance
of interpretive systems can be significantly improved using the memory management
technique, to the extent where they are competitive with conventional compiler
‘based real-time executives, for a range of applications where interactive systems
could not be previously used. The system described in the thesis was developed
primarily for experimental process control wofk, but a further claim of this thesis
is that an operating system using software virtual memory management could be
extended and its performance improved to an extent where it competes with a wider

class of applications.

VIPER has been used in an industrial application. Frbm the results of this
case study it is claimed that compared to the original FORTRAN implementation,-the
VIPER implementation required less memory and bulk storage space; was easier to
write and generated more readable code; took less time to debug; could be more

thoroughly tested; was far safer; and executed faster.

ORGANIZATION

Chapter 1 opens with a review of the problems facing the real-time programmer
and of the techniques which have been proposed for the production of cheaper and
more reliable software. The properties required of an interactivé system are
then discussed followed by a brief review of existing real-time interactive
operating systems and languages. The chapter concludes with an explanation of

the requirement for Software Virtual Memory Management (SVMM).

An ...../(@v)
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An overview of the operating system VIPER is presented in Chapter 2. This
system has been constructed both to demonstrate the facilities which can be
implemented using SVMM and to assist in their development. In Chapter 3, the
" memory management algorithms themselves are described in more detail together
with some comments on alternative structufes and the reasons for selecting

particular mechanisms in the VIPER implementation.

A detailed description of all the important features supported by SVMM
is given in Chapter 4 under the headings of structured programming, interactionm,
protection and error handling, synchronization and documentation. In Chapter 5
some figures on the performance of the system are given, both in absolute
terms and in comparison with VIPER's monoprogrammed predecessor PROSIC.
Information on the performance of other interpretive and interactive'systems

which has been reported in the literature is also presented.

The performance of the SVMM system in comparison with compiler-~oriented
systems executing in-line code, is made in Chapter 6 By means of a case étudy.
This case study draws upon my>experience with the FORTRAN-based process control
system mentioned in the opening paragraphs of this preface. The difficulty of

performing more precise performance evaluations is also noted.

The conecluding chapter discusses the limitations of, and possible
extensions to the SVMM system. Some interesting extensions are examined which
can be used to improve the perforﬁahce of the SVMM system and extend its range
of application. These extensions relate both to work which is in progress,

but which has not been completed, as well as to more fundamental aspects.

DOCUMENTATION OF VIPER

Within this thesis only a brief functional outline is given of the construction
and operation of the operating systems VIPER. The primary documentation for
this system is the source listing. The source has been written with extensive
comments and cross-indexing, so that although it is written in Varian Assembler
it is intended to be a readable document even for readers unfamiliar with the
Varian code. No flow charts are used in the documentation of VIPER nor were any

used in its design. This is in accordance with modern documentation practice.

This ...../(v)
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This approach was also adopted with PROSIC and this proved to be an
adequate wéy to diseminate information on the internal structure and operation
of the system. The advantage of using the source listing as the primary
descripti?e.document is that up-to-date copies can be easily produced for the
interested worker. The excessive bulk of the listing of VIPER (approximately
500 pages), and the cost of duplication, precluded its inclusion as an appendix

to this thesis; but, as noted above, copies are readily available if required.
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1.1

CHAPTER 1

INTRODUCTION

THE SOFTWARE PROBLEM

The cost of software has been rising rapidly over the past decade
and in nearly all applications the software cost now exceeds that
of the hardware. Within the next decade it is estimated that the
disparity between hardware and software cost will continue to

grow to a ratio of 907 for software and 107 for hardware. Two
factors contribute to this disparity: the first is the steadily
declining cost of the hardware and the second the increasing
sophistication which is expected of software. To permit low cost
computer hardware to be exploited in new applications there is a
pressing need for the software cost to be reduced in every possible

way,

There are four components to the total cost of a software
project (SMEDEMA, 1977):

1. specification and design;

2. coding;
3. comnissioning (testing and debugging);
4, maintenance and upgrades.

To reduce the cost of software, attention must be given to all
aspects, but particular attention must be paid to commissioning as
this 'can often be the most tiresome, expensive and unpredictable
phase of program development' (HOARE, 1975a). Hoare has further
noted three principles which are of importance in the production

of reliable software:

'If a programming language is regarded as a tool to aid the
programmer, it should give him the greatest assistance in the
most difficult aspects of his art, namely program design,

documentation and debugging.

.« /12
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1. Design. The first, and very difficult, aspect of
design is deciding what the program is to do, and
formulating this as a clear, precise and acceptable
specification. Oftén just as difficult is deciding
how to do it: how to divide a complex task into
simpler subtasks ..... A good progrémming language
should give assistance in expressing not only how a

program is to rum, but what it is intended to accomplish ...

2. Documentation ..... must be regarded as an integral part
of the process of design and coding. A good programming
language will encourage and assist the programmer to
write ciear éelf—documentary code ..... The readability
of programs is immeasurably more important than their

writability.

3. Debugging ..... even the best-designed and best-—documented
programs will contain errors and inadequacies, which the

computer itself can help to eliminate .....

A necessary condition for the achievement of any of these ob=
jectives is the utmost simplicity in the design of the language'
(HOARE, 1975a)

It is also recognized (KERNIGHAN, 1977; HOARE, 1975a) that real
programs are subject to a steady flow of changes and improvements and
that both the language and the operating system should make provision
for this dynamic characteristic of software. Maintenance and upgrades
together with testing and debugging can constitute 50 to 80% of the
cost of a software project and a system which makes specific
provision for these tasks can have a significant impact on the total

cost of the software.

Although many of the concepts presented in this thesis are of
general applicability, the thesis is concerned primarily with soft=
ware for real-time applications and for process control systems in

particular. KOPETZ (1976) has made some pertinent comments on this

class of applicationms.

'The user group concerned is that of process control and, in

particular ...../1.3



particular, the direct control of heavy industrial plant by

computer. Many types of industries are involved, such as

chemical, petroleum, steel and public utilities (e.g. water,

gas and sewage).

A number of user requirements combine to place major

constraints on the design of a suitable system. Some of the

most significant points are indicated below, though not all

of these are applicable to each user:

The programming expertise available to a user varies

from virtually none to an extensive and expert team.

Frequently, the process being controlled, or the control
techniques being applied, are secret. In such cases, the
user will normally prefer to utilise his own resources

to program the most confidential areas.

Often, it is not practical to fully define all the functions
of the system prior to installation. It is, therefore,
necessary for the user to enhance his system as experience

and resources permit.

It is normal for the system to have to function for 24

hours a day and five or seven days each week. Further,

~ any development work must utilise-the process control

computer,

Because of reliability and maintenance problems, the system
must not be dependent upon mechanical devices such as
discs and magnetic tapes. These devices are often used,

but only for non-critical functions.

Man-machine interfaces represent a major proportion of the

functions of the system.

The market is often conservative, preferring well established
techniques to potentially more effective but unproven
approaches. Indeed, it is only in recent years that the

use of high-level languages have become widely accepted.

The cost of a system may vary from around £20K to greater

than £300K, but each has the same basic characteristics.'

KOPETZ ...../1.4
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"KOPETZ notes further that no suitable systems were available
to meet these requirements and goes on to describe the development
of a multitasking BASIC system (the system is described in more
 detai1-in section 1.4.3). More extensive survey papers (DIEHL, 1976:
GERTLER, 1975; WILLIAMS, 1976) make similar comments on the

characteristics of process control systems.

In addition to the points made above there are three additional,
related factors which have motivated and influenced the work under=

taken in this thesis.

1. Large, complex and costly plants can afford large, complex and
costly computer systems, but there are a very 1arge_number of
smaller plants which can benefit from automation provided it is
available at reasonable cost. In other words, deéreasing the
cost of computer control systems will open up new areas of
application rather than merely reducing the cost of present

applications.

2. Many applications are in new areas which require extensive

experimental work before control strategies can be evolved.

3. The users of the systems are technically well qualified and
generally have a good understanding of their plants and how
they would like them to perform, even if uncertain of how to

attain this performance,

As a result of ﬁhese factors it is claimed that there is a
definite need for improved interactive computing systems which can be
used by the process oriented user., The systems should be simple and
safe to use and provide flexible multiprogramming facilities to‘permit
new tasks to be written and commissioned concurrently with tasks which

are performing on-line control.

In this introductory chapter some factors which can simplify and
reduce the cost of writing software are discussed next, followed by
an examination of the requirements for a real-time interactive multi=

programming system. In the fourth section of the.chapter a few

existing ,..../1.5
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existing software systems are briefly reviewed to illustrate the
problems encountered in constructing interactive systems. In the
fifth and final section the importance of memory management is dis=
cussed and a new memory management technique is proposed which can

be used to overcome a number of the difficulties reported.

Techniques for reducing the cost of software

Since the "software crisis" was first identified nearly a decade ago,
(NAUR, 1968) there have’been a number of developments which have
improved the reliability of softwaré and decreased the cost of
production, Seven factprs which are of relevance to the class of

application with which this thesis is concerned are discussed below:

Structured Programming

Undoubtedly the most important advance in recent years has been the
development of "Structured Programming" (DAHL, 1972; WILKES, 1976).
The methods and discipline associated with this concept have
assisted in reducing the cost of all four components listed abowve.
The "top~down design' or "stepwize refinement" (WIRTH, 1971) used,
unifies the specification, design and coding phases, while the
modularity and structural integrity of segments of cdde have been
widely reported to reduce the number of logicél erfors which occur,
thereby simplifying the commissioning of software. Structured
programs are also easier to maintain and upgrade. Aithough aspects of
structured progrémming are still under development, sufficient
evidence has been accummulated to indicate that the concepts should

be incorporated in all future languages and operating systems.

Interactive operation

The testing and debugging phase can be further simplified if they
are combined with the -coding phase by use of an interactive software
development system. The interaction is to permit software modules

to be tested as, or as soon as possible after, they are written,

as well as to allow iterations in the software development cycle

with the rapid testing of previously developed modules as additional
modules are added, Interactive testing and debugging is particularly

important in real-time systems where a complex set of programs co-

operate ...../1.6
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operate to perform a given task in response to real-time events.
If a task need be stopped or taken off-line before 'test' or
'debugging' functions can be included, the commissioning task is

made considerably more difficult and time consuming.

WILKES (1976) made some pertinent comments in this connection:
"There has, to my mind, been too little interest in deyising efficient
methods for locating the errors that do get introduced. Most
debugging procedures in current use are crude and depend on
examination by the programmer of a static picture of his program
when it has stopped. Methods of obtaining a trace of what was
happening during the running of a program haye been successfully used
in the past and I suggest that the time has come to re~examine these
ﬁethdds with the object of developing them into serious tools that

can be used by the software engineer.".

User programming

The function of software is to perform a service for some user.

If the user is able to perform the programming task himself, the
program is far more likely to meet his specific.requirements. This
need for the programming to be undertaken by those who understand

the problem has been emphasised by DRIESTROWSKI, 1975; GORDON CLARK,
‘1975; DIEHL, 1976; ZEH, 1976 and others. To enable the aﬁplication
oriented user to perform the task himself, however, excellent
software tools must be available so as to "improve software reliability
by reducing the opportunity for error" (GRIEM, 1975). The user does
not wish to, and should have no need to learn the intricaciés of a
real-time operating system. There are four essential requirements

to enable a user to perform the real-time programming task himself:

1. The system should be simple and safe to use and should inspire

confidence in the user.

2. The user's previous experience should be built upon and extended
without attempting to force him to adjust to radically new
concepts. Many process engineers; for example, are familiar
with FORTRAN and BASIC and any new system should draw upon this

experience wherever possible.

3. v 1T
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3. The system should guide the user gently and naturally into
the use of new programming techniques such as structured
programming and should give him every possible assistance

in preparing and maintaining good documentation.

4, Good error reporting and recovery facilities should be
provided and adequate protection mechanism must be implemented
to protect the user against his own errors and against his

errors affecting any other users.

Documentation

Documentation is an important aspect of any software system, as

was noted in section !.1. In an interactive experimental environ=
ment, where the programming task is evolving on-line, documentation
is even more important, and commensurately more difficult to
maintain. The language and operating system should provide every
assistance to the programme in maintaining clear, readable
documentation. An important point is that documentation is related
not only to the description of a particular piece of code or
program module. Of equal or even greater importance is the
documentation of the overall structure of the system and the
relationships amongst the various code and data modules out of which
a task is constructed. As these relationships can vary dynamically,
it is desirable for this aspect of documentation to be automated,

so that the information represents the actual state of the system
rather than an assumed state as may occur with manually produced

documentation.

Synchronization

An essential requirement of any multiprogramming system is the
provision of synchronization functions to control access to shared
resources. A wide variety of techniques have been developed for
synchronization (BRINCH HANSEN, 1973; DIJKSTRA, 1968; HOARE, 1974,
WETTSTEIN, 1977) many of which are designed primarily for the more
complex‘synchronization problems which oceur in the construction of

real-time operating systems. Only the simpler functions are needed

for ...../1.8
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for the user-oriented system under consideration. Suitable functioms
are available and can be readily implemented, as discussed in section

A

Protection and reliability

The ideal program is one which is known with absolute certainty to be
correct. This can be established for certain classes of software by
using formal proofs of correctness, but as BRINCH HANSEN (1973) has
pointed out "a proof is merely another formal statement of the same
size as the program it refers to, and as such it is also subject to
human errors. This means that some other form of progrém verification

is still needed"”.

The next best thing to absolute correctness is immediate
detection of errors when they occur. This can be done at compile time
or at run time. (In the case of an interpreter using as incremental
compiler, compile time implies any time before execution.) In either
case reliance is placed in a certain amount of redundancy‘in programs
which makes it possible to check automatically whether operations
are consistent with their types of variables and whether they preserve
certain relations among those variables. Error detection at compile
time is possible only by restricting the language construction e.g.
by using a "structured" language; error detection at run time is
possible only by éxecuting redundant statements e.g. subscript bounds
on array variables. In interactive systems, which frequently use an
incremental compiler, greater reliance may need to be placed oh run
time checks, but compile time checking should still be used wherever

possible.

This still leaves a class of errors that is caught neither at
compile time nor at run time. This implies that a secure and reliable
system must protect both the data and physical resources of each com=

putation against unintended interference by other computations.

A further class of errors are those arising from time depen=
dences. These are in fact the most difficult to trace and fix as
they are frequently non reproducible. The synchronization functions
mentioned in the previous section are an important safeguard in this

respect. Although they cannot prevent all errors, if correctly used

they ...../1.9
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they can ensure that the results of each computation is independent
of the speed with which the computation is carried out. In other
words the result of a computation is unaffected by concurrent

processes which may be running simultaneously.

All four types of verification and protection, namely compile
time checking, run time checking, data and resource protection and
time dependence error protection, should be implemented in a secure

system.

High-level languages

The use of a high—~level language has been more or less taken for
granted in the discussion up to now as no user-oriented system should
ever descend to the level of Assembler coding. High-level

languages are in fact now being increasingly used even for system
programming functions (SMEDEMA, 1977) and are also reportedly in=
vading the small program microprocessor domain (CLAGGETT, 1977;
MAPLES, 1977). While certain system programming (and microprocessor)
applications will continue to be programmed in Assembler code,

purely due to the lack of a suitable high-level language on a
particular machine, there is a no justification for the typical
process control application to do so. A high~levyel language should
be used in all but the most exceptional circumstances, such as low-
level functions with very fast responée time requirements; but

even these functions should be controlled from high-level routines.

PROPERTIES REQUIRED OF A REAL-TIME INTERACTIVE MULTIPROGRAMMING SYSTEM

The facilities required in interactive computing systems havebbeen
studied in some detail by a number of workers (ARDEN, 1975a; CHU,
19765 GOULD, 1975; HILDEN, 1976; PALME, 1975). Chu in particular
presents a list of desirable properties of an interactive program

development system:

"1. The interactive language is symbol-executable, expression-—
executable, and statement-executable as each symbol is
being entered; the degree of interactiveness can be

made under the user's command.
2. ... /1410
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2, The declaration statement is permitted to be entered at any
point of the source program for the user's convenience in
making program entry and program composition. In order to
obtain program clarity, a "declaration collector' could be
included in the interpreter in much the same way that a

BASIC interpreter allows the resequencing of its lines.

3. The syntax allows left-to-right, nonbacking-up, symbol-by-

symbol syntax checking and execution.

4. The values of the user's data structures should be inspect=
able at any point during the program execution without

affecting the source program.

5. The precedence relation of. the operators allow left-to-right

statement execution and top-to-bottom program execution.

6. There should be a language construct which permits a "pro=
grammatical pause" so that the user may examine and modify

the values in his data structures.

7. There should be language constructs for program entry, program
editing, program execution, program debugging, and program
documentation. There should be uniformity in the syntax of
these language constructs in order that the interactive

language becomes easier to learn". (CHU, 1976)

Some of the properties are only directly applicable to the
particular single user direct execution system described in his paper,

but the concepts are extendable to more general interactive systems.

The facilities required in real-time languages and operating
systems have also been examined by a number of authors (BARNES, 1975;
BIANCHTI, 1976; BRISTOL, 1975; ELZER, 1972; = ELZER, 1977;

HAASE, 1972; KOPETZ, 1976; KYLSTRA, 1977). From these papers

and from the author's experience with various process control systems
and applications (HEHER, 1975, 1976a, 1976b, 1977a, 1977b) a
definitive list of the attributes required fdr a real-time inter=

active multiprogramming system can be specified.
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The system must:

1. . support structured programming concepts with independent
named procedures and subroutines, together with multi-

tasking facilities;

2. provide controlled access to shared data bases (synchroni=

zation and protection);
3. be simple and safe to use;

4, provide flexible interactive operations which facilitate
the on-line writing, testing debugging, maintenance and

documentation of real-time tasks.

REVIEW OF EXISTING INTERACTIVE OPERATING SYSTEMS

In this section a number of existing interactive systems are reviewed

and their successes and shortcomings discussed.

Real-time BASIC and derivatives

Real-time versions of BASIC are the simplest form of interactive
operating systems and they have been widély and successfully used
in a variety of applications. Their primary advantage is that they
permit a high-level language to be used without recourse to an
expensive bulk storage device and a complex real-time operating
system., The systems are simple to operate and program and have
been used to a large extent directly by the users, but three

fundamental restrictions have limited the more widespread use of
BASIC systems.

1. BASIC is essentially a monoprogrammed system supporting one
single monolithic task. No provision is made within the

language nor in many implementations for multiple independent

tasks.

R The language has very poor structure which together with the

limited variable naming conventions results in large programs

being ...../1.12
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being unwieldy and difficult to read or change.

3. Even where multiple programs can be used using techniques
such as overlays, the shared data facilities are limited

and unsafe.

A further disadvantage of BASIC is the execution time penalty
which results from the interpretive mode of operation. On the
other hand, if a compiler is used the interactive facilities are

sacrificed to a greater or lesser extent.

Compiler—oriented disc-based real-time operating systems

In more complex applications where BASIC cannot be used, the next
"step~up" in computing power is to use a real-time operating system
which supports an on-line compiler for a high-level language. Owing
to the size of the compilers and the associated loader, editor and
library, these systems must be disc-based and generally use some form
of foreground/background memory partition with swapping of programs

to and from disc storage. An éxample of such a system is the Hewlett-
Packard RTE-II operating systems which supports FORTRAN, ALGOL and
BASIC. (This system is described in more detail in Chapter 6 where

it appears in a Case Study.)

These executives which support on-line compilation are
frequentiy called interactive in that a program can be edited com=
piled and link-loaded in a few minutes without disturbing other tasks
in the system. This type of interaction is considerably different
conceptually from that offered by BASIC however, and requires a far
greater level of experience and training to utilize effectively.

Some other disadvantages of these systems are mentioned below. Be=
fore listing these, it should be noted that these operating systems
are generally very successful in their intended function and represent
a3 major advance in the state of minicomputer real-time software.

They are powerful 'general purpose' systems which will continue to be
used for a variety of applications which require the speed and

generality of multi-language systems.
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The disadvantages of using this type of executive for inter=

active process control software development are as follows:

1. The complexity of the systems makes them difficult to
operate and easy to 'crash' (some commercial systems are
known to be particularly unstable and susceptible to operator

error).

2. True interactive program development is not possible and real-
time programs can be extremely difficult to debug because of
the difficulty of prdviding suitable high-level debugging
facilities. The only facilities available are generally memory
dumps and limited utilities for monitoring the operating of

programs at the assembler code level.

3. Error handling and reporting is rudimentary and is usually in

machine level terms e.g. memory protect at location xxx.

4. Tasks and data areas are afforded little protection and can
be turned on or off or overwritten by other users whether

authorized or not.

The primary purpose of these real-time executives is in fact
to provide the support necessary for writing more special purpose
user-oriented software rather than for users to use the system
directly. The software system VIPER described in this thesis, could
for example, be developed, and run, under the control of a real-time
executive as well as in a stand alone mode. To this extent user-
oriented interactive software systems like VIPER and general purpose
real-time executives may be considered complementary rather than |

competitive.

Multi-~user and multiprogrammable BASICs

In recognition of the gap that exists between compiler-oriented
real-time executives and simple real-time BASIC, various attempts
have been made to extend the facilities of BASIC into a multi=

programmed mode. As it is difficult to generalize about these systems,

four ...../1.14
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four particular systems will be briefly reviewed. The first two
retain the interpretivé mode of operation while the second two use

a combined compiled/interpreted mode.

1.  HP real-time multi-user BASIC (HEWLETT-PACKARD, 1976)

This system runs under the HP RTE II or III executive and
supports up to four users each of whom has his own copy of
the entire BASIC subsystem. If sufficient memory is avail=
able, a user may be memory resident, but in typical instai=
lations the users will share a memory portion with other‘
tasks, In this situation the entire BASIC program and the
BASIC subsystem are swapped to and from the disc with an
overhead of 100 to 250 ms per swap. The users have limited
shared data facilities and each user can only have one main
program which is partitioned into subtasks by line numbers.
All tasks have a global (common) symbol table. A flexible
subroutine calling mechanism is provided, but subroutines can
only be coded in ASSEMBLER or FORTRAN. (The BASIC GOSUB
function is not a subroutine call in the accepted definition of
a subroutine). In summary, although the system has a limited

multi-user capability, it is not a multiprogrammable system.

2. NOVA Multex-BASIC (PERSEUS, 1976)

This system uses a single re-entrant copy of an interpreter to

~ execute a set of independent tasks which are located in user
specified memory partitions. A maximum of 32 tasks are per=
mitted each of which is a single monolithic BASIC program.
Only ASSEMBLER subroutines can be called from BASIC programs.
The size of a memory partition can be changed with user commands
only, the system performing no memory management butside of a
memory partition. A single global common area, which is not
protected in any way, is used for all tasks. A notable feature
of the system is the ability to provide some degree of protection
by prohibiting a partition from using specified commands.
A major disadvantage is the necessity to have a physiéai I/0

device connected permanently to a partition if that partition
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performs any input or output. Only the system console can
be switched from one partition to another with operator

commands.

KENT K90 BASIC (KENT, 1974; KOPETZ, 1976)

This BASIC system operates in twé disjoint modes. The one is

a development mode where normal BASIC type interactive

operations are permitted and the other is a‘multiprogrammed
mode. Only compiled programs can exist in the multiprogrammed
mode and no interactive operations are permitted on these
procedures. The development mode is similar to a time sharing
BASIC in that up to three terminals can be active simultaneously,
but no communication is possible between a user at a terminal
and any other task in the system. Access to the plant data-
base is also restricted in the development mode in that no

output operations are permitted.

In the multiprogrammed mode programs are compiled either
into resident memory areas or into user specified partitions.
Programs resident in one partition are swapped to and from
bulk storage devices as required by the scheduler. Only a
limited number of resident programs can be added or deleted
without performing a system regeneration. Hardware memory
mapping devides are used to provide the necessary access to
partitions. (The system operates only on PDP-11 computers.)
No memory resident shared data facilities are provided and
task to task communication beyond a single word must be per=
formed via shared files which are resident on a bulk storage

device.

A notable feature of the K90 system is the comprehensive
treatment of error handling. A variety of modes are possible
ranging from full system control and reporting of errors to full
user control and reporting. A major drawback of the system
however is the complete separation of the program development

and multi-programming modes, each of which uses its own set of
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keyboard commands and program directives. This lack of
uniformity of presentation is a serious handicap to process-

oriented users.

SWEPSPEED (WILKINS, 1976)

SWEPSPEED is a multiprogrammed BASIC system similar in many
respects to the KENT K90 BASIC. All procedures must be com=

piled before execution but a limited set of interactive facilities

are available for use on executing programs. (The symbol
table is retained in the compiled version permitting symbolic
examination of variable values when in a special mode.) The
various procedures within the multiprogrammed system are
identified by number only and no named subroutines are permitted

either.

It is a single-user system with only one console being
supported where program development can be performed. All
commands to the command job which controls the system, all
editing and listing and all error messages are transmitted
through this terminal.A single global data area is provided
for access to shared data. A certain degree of protection is
provided for this data area in that programs below a certain
priority can only read and not modify global variables, while
other priority levels can read and write to globals, but
cannot create them. This restriction is necessary because
globals can only be deleted with difficulty once created, re=
quiring either a system generation or a temporary shut down of
the system to enable the 'system manager' to clean up memory.
Deleting statements and certain other operations also result in

wasted memory which can only be recovered with difficulty.

A notable feature of the system is the ability to back-
list (decompile) a program from its compiled code. (This is
another reason for retaining the symbol table.) The advantages
of only a single copy of a program without the need for a
separate copy of the source are therefore retained together

with the advantages of high-speed execution.
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SOFTWARE VIRTUAL MEMORY MANAGEMENT

Comparing the requirements stipulated in section 1.3 with the pro=
perties of the systems described in section 1.4, it can be seen
that no existing systems are satisfactory in all aspects. Their

major shortcomings are:

1. The lack of independent named procedures and subroutines which

is essential for a structured programming approach.

2, The poor shared data facilities and a lack of protection for

any facilities that are provided.

3. Restricted interactive facilities, in that none of the
systems listed, nor any system known to the author, permit

the interactive operations to be used on executing tasks.

These shortcomings can all be traced to a single problem: memory
management. The implementation of interactive facilities requires
that the code defining a task and its associated data areas, be
expanded and contracted as the interaction proceeds, 1In a multi=
programmed system the difficulty occurs in attempting to allow
multiple tasks or procedures to simultaneously undergo this dynamic
change in size and structure. The addition of a multi-user
capability further complicates the memory management task, as does

the requirement for flexible access to shared data areas.

Hardware virtual memory mapping devices were considered as a
possible solution to this memory management problem, but were rejected
because of the desire to maintain processor independence, Suitable
mapping systems are in any event only available on medium to large
scale machines, whereas the system described in this thesis is
designed for use on mini- or microcomputer systems. A memory
management technique was required which would permit the operating

system to be as transportable as BASIC.

These considerations led to the development of a new memory
management technique. This management system is implemented entirely

in software, but has many of the characteristics of a system using
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hardware virtual memory management. It is for this reason that the
technique used has been called 'Software Virtual Memory Management'

(svmM) .

The term 'virtual memory' has two connotations in the context
of this thesis: the first is related to the usual concept of
addressing a logical space which is larger than the physical space;
the second is related to the security of, and access to, both tasks
and data structures which are operated upon as if they were located
in a file system. 3Both executable (and executing) tasks and data
structures are afforded protection in a hierarchy of security levels.
The user therefore creates, modifies and executes tasks as if he
were working on a set of files which may.in fact be memory-resident;
and conversely, he operates within a task as if all tasks and data
structures were memory-resident, when in fact they may be resident
on some external device. This file-system analogy is an éxtension
of the usual concept of virtual memory in that it is associated
with the reverse mapping of memory onto a mass—storage device, as
opposed to the mapping of mass-storage onto memory, which is the
- property of the extended logical space. The imﬁortance of this
reciprocity is that the properties of the memory management system
can be utilized to construct an operating system with the attributes

required of a real-time interactive multiprogramﬁing system.



CHAPTER 2

AN OVERVIEW OF VIPER

In this chapter the operation of VIPER (Virtual Interactive Process Executive for
Real-time control) is briefly described to provide a background fqr the detailed
discussion of the construction of SVMM and other facilities in chapters 3 and 4.

The overview deals with seven topics:

1. Interpretive operation.

2. Multiprogramming.

3. Interactive 6perations.
4, Protection.

5. Shared data.

6. Bulk storage devices.
7. Limitations.

VIPER was constructed both to demonstrate the facilities which can be im=
plemented using Software Virtual Memory Management (SVMM) and to assist in their
development. The level of development was such as to enable VIPER to be used in
an industrial application to permit a realistic assessment of its performance to
be made, as discussed in chapters 5 and 6. Some of the specific limitations
and omissions that resulted from this approach are listed in section 7 of this
chapter, while some of the more fundamental limitations of Software Virtual

Memory Management (SVMM) are discussed in chapter 7.

VIPER is an interpretive system which evolved from an earlier monoprogrammed
real-time BASIC called PROSIC (HEHER, 1975, 1976a, 1976b). PROSIC in turn was
a development from the original VARIAN BASIC (GOUWS, 1973). VIPER is coded in
VARIAN Assembler and like BASIC is a stand-alone system containing all its own
operating system functions. Further information on the hardware systems and

software techniques used in the development of VIPER are given in Appendix A3.
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INTERPRETIVE OPERATION

The interpretive mode of operation of thevoriginal BASIC has not
been changed significantly in VIPER. The language processing
modules and the operating system functions are all resident in
memory, and it is only the reﬁaining memory which is manipulated
in the SVMM system. Figure 2.1 shows this basic division of

memory as well as the approximate size of the partitions.

The basic mode of operation of the system is shown in Figure
2.2. Between the interpretive execution of each statement a single
flag is tested to determine whether any system work is pending. The
various categories of work which may need to be performed are listed

in Figure 2.3. This procedures ensures that no asynchronous events

are handled during the interpretive phase and the evaluator is therfore

not re—entrant. (This would in any case have been difficult to
achieve on the VARIAN 620i.) The response time to asynchronoﬁs
events is therefore limited by the time to execute a statement
interpretively, which may be as much as 10 to 20 ms. This was

acceptable for the range of work envisaged for VIPER.

In the evaluator section of the interpreter shown in Figures
2.4 and 2.5, two modes of operation are possible, depending on
whether the internal meta-codes are stored in infix or Polish forms.
Examples of these two types of internal representations are given
in Figures 2.8. The infix form was enherited from the original
BASIC. 1In this form, precedence is only determined as a statement
is executed, requiring an operator stack as well as an operand stack.
The Polish mode of operation is mentioned here even although it
has been only briefly tested, as this is the way in which the inter=

preter should be operating. This aspect is commented on in more

detail in sections 5.1 and 7.2.

A program in VIPER consists of a three-part module, as shown
in figure 2,6. The symbol table consists of a list of descriptors
containing both the ASCII characters of all identifiers and their

values. The ASCII representation is required for the backlisting
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(decompilétion) and interactive operations. The structure of the
descriptors on this table is closely related to the memory
management functions and this aspect is therefore described in
chapter 3.and Figures 3.2, 3.3 and 3.4 illustrate the descriptors
~used in VIPER. The statement pool consists of elements as shown

in Figure 2.7, while the structure of individual code words is
shown in Figure 2.8. The major difference between VIPER and its
forerunners is that all operand references (variable addresses)

are values relative to the start of the symbol table. An absolute
address is therefore computed from the relative operand address and

the current position of a segment.

As a result of using these relative pointers, the address
field is comparatively small and can be packed into one 16 bit word
together with an operator code. Used together with the Polish form,
this structure results in a compact representation, as shownAin an
example in Figure 2.8. HELPS (1974) and BROWN (1977) have commented
on the advantages of this compaction property of interpretive systems

which can be used to achieve significant savings in memory space.

MULTIPROGRAMMING

VIPER permits independent, named segments of code and data to be
executed and manipulated concurrently. Each of the codé segments is
a self-contained procedure as shown in Figure 2.6, which is similar
in many respects to a stand-alone BASIC program. The data segments
are used for shared data as well as for input/output buffering and
other system activities. These segments all exist in an area of
memory which is reserved for SVMM operations, the remainder of the
memory being used for the fixed, resident operating system nucleus.
The resident code is VARIAN machine code, while the code segmentsv
which are manipulated in the SVMM space can consist only of the
special high level language meta-codes which are executed which are
executed interpretively. Figure 2.1 shows this basic division of

memory as well as the approximate size of the partitioms.

The procedures (= code segments) are created and manipulated
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interactively from an input device. More than one keyboard can be
active at once as VIPER has a multi-user, multi-terminal capability,
as well as multiprogramming facilities. Other tasks in the system
vcan also run concurrently while program development is proceeding.
At any given time an input device is associated with a particular
procedure and all commands and statements are executed within the
scope of that procedure. The association of a device and procedure

can be changed with simple commands.

Table 2.1 illustrates some of these interactive operations,
while a complete description of all commands and their syntax is

given in Appendices Al and A2.

All statements have the same syntax, irrespective of whether
they are executed as commands or as program statements. In other words
the command and programming languages are synonymous. This duality
not only simplifies the user interface but also results in the protec=
tion and data manipulation facilities being applied equally to the
command and programming languages. Statements are differentiated

from commands by the presence or absence of a line number.

~ As each line is entered it is incrementally compiled into the
internal meta-code format., If it is a command it is executed
immediately,whereas if it is a statement it is stored in the
appropriate position in the segment. As the line of code is being
entered, the segment with which it is going to be associated may be
memory resident or it may have been swapped out onto a bulk storage
device. In the latter case, the segment will be swapped back into
memory under control of SVMM for the compilation and storing operations.
Immediately after compilation the segment may be swapped out again
if the space is required for other tasks, or it may remain resident.
When the segment is swapped back in, it can be positioned at any
location in memory where there is space i.e. it does not have to
return to the same location. If there is sufficient memory available,
all segments may be memory resident all the time even with two.or
more users working simultaneously. In addition to being swapped,

segments can also be dynamically relocated (moved) in memory to make
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space for additions to a segment or to make space for a new segment.
The movement of segments to and from a bulk storage device is in=
visible to the user and results in pefceptible delays in keybord
response only when the segment size approaches the size of

availablable memory.

INTERACTIVE OPERATIONS

One of the most important properties of VIPER and SVMM is that inter=

‘active operations, including the execution of commands and the

addition of statements, can continue while a procedure is executing.
Operations of this type were illustrated in Table 2.1. This facility
is an invaluable aid in the debugging of process control software,
where a number of tasks are executing concurrently. Typical tasks

of this type execute cyclically, obtaining data from a piant data
base, calculating a control algorithm and then outputting a command

to an actuator. As the control algorithm is invariably time dependent,
stopping the task from executing in order to examine the values of a
variable (as would be necessary with all but one real-time BASIC which
is known to the author) destroys the time dependent characteristics
of the data. A FORTRAN-based system is in an even worse position

as the task must not only be stopped but edited, compiled, link-
loaded and executed afresh before the required data can be monitored
(assuming that this can be done). Besides being extremely cumbersome,
by the time this re-loading is complete, the condition which it was
desired to monitor will quite likely have been destroyed, requiring
that the task be re-edited, compiled and line-loaded once more to re=
move the write statements ... ! (or suffer voluminous printout for

the next few hours while waiting for the event to repeat itself). The
alternative to the above procedure is to place all the variables of
interest in a common area and monitor their value from another program.
The difficulty with the approach is that the allocation of common areas
must be carefully performed when the control programs are first planned
and usually cannot be expanded at will. By the very nature of program
bugs and typical real-processes, it is also very difficult to foresee
all the possible states in which a task may execute and hence'equally
difficult to decide which task variables must be allocated to common

areas.
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These problems are compounded by the fact that control algo=
rithms frequently have special coding to cater for transient or
unusual plant conditions which may occur relatively infrequently.
Off-line testing and simulation can be used for testing these
conditions in.some cases (and should be used wherever possible)_but
on-line real-time testing is still an essential requirement in most

process control systems.

The provision of interactive debugging operations on executing
real-time tasks is therefore not merely a convenient feature, but
a powerful tool for the testing and debugging of real-time software.
As noted in section 1.1, this commissioning phase can be '"the most
tiresome, expensive and unpredictable phase' (HOARE, 1975) .and any
tool which can simplify and shorten this phase can make an important
contribution towards the goal of producing more economical and

reliable software.

PROTECTION

The basic philosophy underlying the protection functions in VIPER was-
to extend the concept of protection to executing tasks and their
associated data structures. DProtection facilities are provided in

most operating systems but usually only to bulk-storage (disc)

resident files. Executing tasks and shared data elements are frequently

afforded no protection whatsoever.

A specific goal of VIPER was therefore to provide file-system-
like protection measures (and additional facilities) to executing
tasks-as well as to the shared data structures. It should be possible
for a user to grant a range of access rights ranging from virtually
unrestricted access to completely restricted access to all accept
holders of the appropriate password. Reasonable protection facilities
should be (and are) applied at all times without specific user action

but a user can be expected to expend a modicum of effort to obtain

the highest degree of security.

The actual protection facilities implemeﬁted in VIPER and
additional facilities which could be implemented if required, are

described in section 4.3.
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SHARED DATA

‘Shared data areas are an important resource in a real-time environ=

ment. They are used to pass information on the process state from
one procedure to another and hence require protection from inadver=
tent or illegal modification if the system is to be secure. Simple
read or "read/write" access attributes, together with password
protection on who may change the access state, are adequate in many
instances. Additional facilities are required for synchronization
purposes however, and to this endra semaphore has been included as
an integral part of the data structures used in VIPER. This can be
used either directly with independent LOCK-FREE commands or in as

a structured-pair in the form REGION-ENDREGION.

Shared data segments in VIPER are referenced and defined in
a manner analogous to that of named COMMON in FORTRAN IV, with the
significant difference that the segments can be created and deleted
dynamically like files, protected like files and moved to and from
input/output devices. Table 2.2 illustrates some of the commands
and statements available for manipulating these shared data elements.
A more complete description is given in Appendices Al and A2 as well

as in sections 4.3 and 4.4. ‘

BULK STORAGE DEVICES

VIPER was originally developed with the intention of operating it
primarily in a memory resident mode, with only infrequent access to
bulk storage devices being required. If a computer with 32 K words
of memory is used the assumption is valid for a wide class of
applications. Due to hardware delivery problems, however, only a

16 K machine was available for nearly all development work on VIPER,
including the entering and initial debugging of all the 25 programs
written for the Case Study. Working in this restricted space wheré
only one or two of the programs could fit into memory at once, forced
more attention to be paid to the use of bulk storage devices at

higher swapping rates.

Table 2.3 lists the devices which have been used in VIPER and

their characteristics. A typical configuration consists of the
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use of a cassette unit for program storage and transportation

together with either the cartridge disc or CAMAC Bulk Memory for

the tempofary storage of programs which are swapped out. (The cassette
unit was used for program storage as there was a unit available for

use on eadh of the two computers used in testing VIPER, whereas

there was only one disc unit. The bulk memory'is volatile and there=

fore cannot be used for storage.)

The management of these bulk storage devices is described in

section 3.3.

LIMITATIONS

In its present from VIPER is an experimental operating system con=
structed to develop and demonstrate the concepts discussed in this
thesis. Due to the lack of suitable hardware and software tools
which would have permitted a more sophisticated implementation, the
development of VIPER has been halted at a point where it is adequate
to perform'the operations required for the case study described

in chapter 6. Certain limitations and omissions are mentioned in the
text where applicable while some of the more fundamental ones are

listed below.

1. VIPER is coded in VARIAN Assembler code as no. high-level
language was available on the VARIAN ¢omputers which were Qsed.
As the source listing comprises 22 000 lines (code and comments)
the system has become too large to be easily maintained and
developed., This problem is aggravated by the lack of an
underlying operating system. A system like VIPER should be
written around a compact operating system kernel with a high

level language being used to write the outer shells of the

overall system.

2. The I/0 structure of VIPER is ad hoc and all drivers are hard-
coded into the total system. Input is interrupt-driven under

software control but output operations have been left unbuffered

and are sense-loop driven.

3. ... /2.9
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3. Overlapped execution with swapping'is not implemented. The
CAMAC bulk memory module is accessed under program control due
to the lack of suitable hardware for DMA operations. The
cassette units are also not set up for DMA operations and in
any event they are not suitable for use as swapping devices.
The cartridge disc is driven via DMA and overlapped execution
and swapping is theoretically possible when using this device,
but as the unit used was essentially on loan, the simplest
driver was used which would merely enable the system to run
using a disc. (The same block transfer oriented driver is in
fact used for both the disc and the CAMAC bulk memory unit

except for the final block read and write routines.)

4, Executive-controlled swapping of data segments has not been
implemented.
5. Not all protection modes and checks were incorporated to control

access to shared data segments. Segments can be individually
read and write protected, but can also be accessed by other than
the password holder. Procedures are fully protected, however.
The facilities which have been implemented are considered

adequate to demonstrate the concepts presented.

6. The interpretive meta codes are stored in infix form as in the
original BASIC rather than in the Polish form which is
recommended. This latter format would have a marked effect
on the performance of the system as the Polish code form takes
less space and executes faster. This ommission does, however,
enable a direct comparison to be made between the monoprogrammed
PROSIC and the multiprogrammed VIPER. Some measurements haﬁe

also been made to illustrate the difference between the two

representations.

A research program is underway which is aimed at producing an
improved version of VIPER which will overcome or eliminate many of

these limitations. The specific steps which have been taken or are

proposed are outlined in chapter 7.

TABLE ...../2.10
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BASE PAGE (0,7K) A
LANGUAGE
PROCESSOR
(2.5K)
RESIDENT
INTERPRETER OPERATING SYSTEM
o (2.3K) NUCLEUS
SCHEDULER |
AND MEMORY MAN-
AGEMENT (2.7K)
REAL — TIME
INPUT / OUTPUT
CONTROL  (3.3K)
FLOATING POINT
LIBRARY AND
FORMATTER (2.0K) FIRST WORD
—] OF AVAILABLE
MEMORY
SPACE CONTROLLED
MASS BY MEMORY MANAGER
STORAGE <50FTWARE> VIRTUAL — SEE FIGURE 3.1
DEVICE MAPPING MEMORY
LAST WORD
UP TO 19K ,
(P TO 19K] OF AVAILABLE
MEMORY

FIGURE 2.1 VIPER MEMORY MAP



(a) FLOW CHART

< START (INITIALISE)>

‘__—-———

, YES
< SYSTEM WORK ? >
NO {
FIND WORK (FIG. 2.3)
YES
< STATEMENT 7 > S
NO
EVALUATE STATEMENT (FIG.2.4)
.
: YES
< INPUT 7 >
NO
SERVICE SOFTWARE INTERRUPT
e m L»
{b) ASSEMBLER CODE
MAIN LDA WORK WORK FLAG
JAPM FWORK FIND WORK (SEE FIGURE 2.3)
LDA CNXP CURRENT NEXT STATEMENT POINTER
JAPM EVAL EVALUATE STATEMENT (SETS NEXT CNXP)
CALL TESTI TEST FOR INPUT (SOFTWARE INTERRUPT)
JMP MAIN LOOP

‘FIGURE 2.2 INTERPRETIVE CONTROL
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w(]m/

YES
< POWER FAIL 1 ?\ < !

‘ "~ | POWER FAIL MESSAGE AND RESET

YES
CLOCK ? . ‘
l- , SCAN TIME LIST
DISPATCHER ?\ YES - *
L TEST READY LIST
LINE COMPLETE ? YES
/ 1
PERFORM LEXICAL AND SYNTACTICAL SCANS
=
! N
INPUT REQUEST ?
< / K,

SET UP INPUT BUFFER

RESET WORK FLAG

RETURN

FIGURE 2.3 FIND SYSTEM WORK



EVAL

INITIALIZE

- OPERATOR
OPERAND —(INPUT ITEM ?  p——

r (POLISH) T (INFIX)

PUSH ONTO ' —— : AL

OPERAND

STACK | | , LOWER
I < ? _
| CERFORM : PRECEDENCE f
| OPERATION
| : HIGHER
| | 'PUSH ONTO
I | OPERATOR 'STACK
: |
| : Y
| | PERFORM OPERATION
| | AT - TOP OF
| I OPERATOR STACK
| | D
|

| |
| 1
b _d - _

INCREMENT INPUT POINTER

DETERMINE NEXT STATEMENT TO
EXECUTE AND SET IN CNXP

RETURN

FIGURE 2.4 EVALUATOR



OPERATOR STACK

OPERAND STACK (INFIX ONLY)
OPERAND | OPERATOR |

2 | 2

N M

OPERATION TABLE

OPERATOR (INDEX ) |—#~

POINTER TO ROUTINE &

PERFORM OPERATION
ON TOP O,1 OR 2
OPERANDS ON STACK

FIGURE 2.5 PERFORM OPERATION
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SYMBOL TABLE
(DESCRIPTORS)
- {FG.3.2,3.3,3.4)

STATEMENT POOL
(F1G.2.7)

ARRAY VARIABLES

FIGURE 2.6 PROGRAM STRUCTURE

STATEMENT NUMBER

LENGTH LEVEL

STATEMENT TYPE CODE

1

| OPERATOR CODES

| AND

| OPERAND ADDRESSES
| (FIG. 2.8)

|

Y

END OF STATEMENT CODE

FIGURE 2.7 STATEMENT POOL ELEMENT
STRUCTURE
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15 8 7 0

— (CODE- CODE TYPE) — | ) = 1's COMPLIMENT

CODE TYPE USED TO DETERMINE PRECEDENCE,NEGATIVE
(COMPLIMENTED) VALUE DISTINGUISHES CODE FROM ADDRESS

EXAMPLE : LET A =B + C

(a) INTERNAL FORM USED IN VARIAN BASIC AND VIPER

—( 27 il ) LET
AIjDRESS A A (LOCATION IN SYMBOL TABLE)
- (67 8 ) =
ADDRESS B B
- (55. 3) +
ADDRESS C C
-(0 15) END OF STATEMENT

(b) SUGGESTED POLISH FORM

5 98 0
0 (B) (B) = ADDRESS OF B
+ (C) |
: (A)

NOTE : ALL ADDRESSES ARE RELATIVE TO SYMBOL TABLE START

FIGURE 2.8 INTERNAL META-CODE FORMAT
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TABLE 2.1

A SHORT EXAMPLE ILLUSTRATING SOME INTERACTIVE OPERATIONS

INPUT DEVICE

COMMENT
. IneuT ASSOCTIATION

(Output not shown)

LOGON USERI MASTER USER] = password (echo of input is suppressed
during LOGON)

Creates a procedure called USERI.

PROC ABC USERI Create a procedure called ABC and associate
input device with it. ABC has default
password USERI.

10 ... ABC Enter statement into ABC
(in any order)

20 ... : '

PROC XYZ ABC Create XYZ (Input now associated with XYZ)

100 .... XYZ _ Enter statements

50 ... : Enter statements

CHANGE ABC XYZ Return to make a change to ABC
(only permitted to password holder USERI)

200 ... ABC Change a statement in ABC

RUN XYZ EVERY 5 SECS  ABC Set XYZ to execute periodically

RUN (ABC)- ABC Execute ABC-(ABC) optional (defaulted)
because of input device association

PRINT X ABC Examine variable X in ABC while ABC is running

MONITOR XYZ XYZ Monitor operation of XYZ (restricted rights)

PRINT Y XYZ Examine variable Y in XYZ while XYZ is

‘ running

DEBUG ABC XYz Enter restricted mode (no changes to
existing statements permitted)

100 PRINT X ABC Insert statement to examine X at line 100
(ABC still executing)

CHANGE (ABC) ABC Move to CHANGE mode to permit alterations.

110 ... ABC Make a change.

PRINT X ABC Examine X now

STOP (ABC) ABC Terminate execution immediately.

TURNOFF XYZ ABC Remove XYZ from time list.

SAVE ABC Save copy of ABC on external device.

SAVE XYZ ARBRC Save XYZ

LOGOFF - MASTER End of session, return to Master

Deletes procedure USERI.

TABLE 2.2 ...../2.18
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TABLE 2.2

SOME EXAMPLES OF SHARED DATA MANIPULATION

CONSOLE INPUT

LOGON USERI.

- COMMON SIZES, N1, N2
ACCESS (SIZES) = WRITEA
NI = 100; N2 = 120
PROC XYZ

10 COMMON SIZES, N1, N2

20 COMMON COM1, A(N1), B(N2)

30 COMMON COM2

40 ACCESS (A) = READA+
WRITEA; ACCESS (B) = 0

100 REGION COMI

160 A( ...) = ...

180 SAVE COMI
200 ENDREGION COMI

210 FREE COM2

250 DELETE COM1

280 COMMON COM1, A(NI1%2)

PROC ABC

10 COMMON COM2

100 LOCK COM2

LOGOFF

Password USERI will be associatéd with all
commons created.

Construct a data area (thié is a command).
Permit write operation.

Initialise this COMMON.

Create procedure XYZ

Link to SIZES to pick up N1 and N2
Default access is read only.

Set up variable size data area.
No data area, semaphore only.

A: read and write;
B: not used here (no access)

Start of a critical region
(Mutually exclusive access to COMI)

Perform some operation on A

Save current values on bulk storage device.
End of critical region.

Unlock semaphore associated with COM2
(see ABC line 100 below)

Delete COMI
and allocate new size.

Create procedure ABC

Declare semaphore

ABC will suspend until FREE COMI in line 210
of XYZ
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TABLE 2.3

CHARACTERISTICS OF BULK STORAGE DEVICES USED

Transfer rate

Block size

Typical segment

Device Accegs times words/sec words swap time*

Random access cassette:

SYKES Compucorder 100 1 to 45 secs 330 Variable 2 to 6 secs

SYKES Compucorder 120 0,5 to 30 secs 660 (= segment size) 1 to 3 secs
Cartridge disc 40 ms/revolution 92 K 120 55 ms
PERTEC Model 36 10 ms track to track (= 1 sector)
Bulk semiconductor 1 us 25 K Variable 30 ms
Memory (RAM) 30 us first word (Program Control) 64 typical 15 ms +

(CAMAC resident)

(software 1imited)b

580 K +
(DMA hardware)

1"

(1,5 ms with hard-
ware error
detection)

Notes:

*Segment size 600 words (= average program size in Case Study)

+Not implemented in VIPER, data given for information only.

61°C
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CHAPTER 3

MEMORY MANAGEMENT

THE MEMORY MANAGEMENT PROBLEM IN INTERACTIVE SYSTEMS

Interactive programming systems require that any statement in a

task can be changed, deleted or added in some sort of incremental
compilation mode i.e. the entire task or procedure need not be re=
compiled and link-loaded. A good interactive system should also
support interaction during the execution of the task with monitoring
and debugging facilities that do not require the suspension of the
task before they are activated. In PROSIC, the forerunner of VIPER,
it was demonstrated that even more general interactive facilities
cén be provided in a mono-programmed system (HEHER, 1976 a, b) which

it would be desirable to extend to the multi-tasking environment.

The implementation of interactive facilities requires that
the code (which is usually an interpretive meta-code form, but may be
compiled machine code) defining a task be expanded and contracted
as the interaction proceeds. In a multi-programmed system the
difficulty occurs in attempting to allow multiple tasks or pro=
cedures to simultaneously undergo this dynamic change in size and
structure. Various ad hoc solutions to the problem have been pro=
posed and implemented, resulting in equally ad hoc restrictions.
For example, two of the real-time interactive systems described in
section 1.4.,3 which do support multi-programming, restrict inter=
active operations to one particular task which must be compiled be=
fore operating on any other task. Virtually no interactive operations
are permitted on a task once the task is executing. The other two
BASICs described in the introduction which have multi-user capability
require a fixed memory partition to be assigned to a given task or
user and also do not permit any interaction with the running task.even
though interpretive rather than compiled code is executed. A further
equally serious problem, is that all four of these'systems have
limited (and dangerous) global areas which can be accessed by all
users. Nor do any of them support a structured language with nested
named procedures, an essential requirement for any modern programming

language.

To v..../3.2
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To permit interactive multi-programming using a block structured
'language, it is necessary to allow the segments of code to dynamically
expand and contract while maintaining the linking between the various
segments of code and data that co-exist in the system. The essential

requirement>is then that the segments of code used in the system

must be dynamically relocatable i.e. it must be possible to move the
segment while it is executing. As the performance of the memory
'manégement technique is dependent on the efficiency with which segments
can be moved, extensive, or slow relinking of segments to perform
relocation is undesirable. These requirements can be fulfilled most
simply by segments of meta-code which are executed interpretively,

and software virtual memory management is of particular relevance to
this class of software. An important point is that the memory
management features required, could not be implemented using simple
base registers, which is a common method of achieving dynamic relocation.
The reason is the real-time interactive nature of the software system,
.as will be clear from the structures described in the following section.
The structures employed are superficially similar to an earlier

memory management system described by RIETER (]967) but this system
was designed for operations of a time-sharing type and would not

permit the flexible access to shared data and code segments thét

is an essential feature of the real-time interactive system VIPER.
Hardware virtual memory mapping devices are also not suitable for

this type of relocation and they were in any event specifically
excluded because of the desire to maintain processor independence.

This was specified in order to permit the operating system to be
transported to other mini or microcomputer systems in the future. The
operating system MERT for example, (BAYER, 1975) which manipulates
segments of code and data in a manner roughly analogous to VIPER, is
constructed specifically to run only on a PDP 11/45 or 11/70

computer using particular hardware features of that machine for

memory mapping and protection functions.

The use of interpretive meta-codes to provide the basic means
of relocating segments has other advantages also. The interpretive
structure can be utilized by the memory management system to imple=

ment a variety of unique features which considerably enhance the

attractiveness ...../3.3
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attractiveness of an interpreter. Furthermore, a number of recent
implementations have shown that interpretive systems possess some
important advantages over systems executing in-line code (OTTO, 1974;
HELPS, 1974; ADIX, 1975; BERCHE, 1976; ZEH, 1976). Their only
disadvantage, that of increased execution time, can frequently be
overcome or reduced by various techniques such as mixed code

(DAKIN, 1973; DAWSON, 1973; ZEH, 1976) or micro-coding (HELPS,
1974; REIGEL, 1972). Alternatively, initial development can be
performed interactively with later compilation into in-line code.

The desirability of this route for software development as opposed

to batch compilation has been emphasized by CAINE and GORDON (1975).
As the interpretive execution time of the meta-codes currently used
in VIPER were acceptable for a range of experimental process control
work undertaken in the past (and foreseen in the future) none of
these techniques have been implemehted in the current system. As the
miked code approach may cause relocation difficulties, micro coding
would appear to be the most promising technique for overcoming any
speed problems that may occur in future applications. It should also
be noted that the execution time penalty of interpretive systems

has also not prevented their being used successfully in a wide variety
of applications (ADIX, 1975; AGRAWALA, 1976; BIANCHI, 1976;

BERCHE, 1976; CAINE, 1975; DIEHL, 1975; TFULTON, 1976 GAINES,
1976; HAASE, 1976; HELPS, 1976; NELSON, 1976; PURDUE, 1975;
RIAMONDI,  1976).

STRUCTURES USED IN THE IMPLEMENTATION OF SOFTWARE VIRTUAL MEMORY
MANAGEMENT

While developing thg concept of Software Virtual Memory Management
(SVMM) it became apparent that there were a variety of different
techniques that could be employed. In many cases these invoived
trade-offs in space and time which were difficult to evaluate at the
time the system was being developed. One of the major assumptions,
for example, was that most of the important segments of a real-timé
task would fit into memory simultaneously and that the swapping of
segments to and from input/output devices would occur with a
relatively low frequency. (This assumption was validated by the

results of the case study (chapter 6) where all tasks can fit into a
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32 K memory system). In retrbspect howéﬁer, it is felt that some
alternative structures could have been used which would not serlously
have affected the performance of a resident system and which would
improve the performance of a system where a higher rate of input/

output transfers was necessary.

The four sub-sections that follow consist primarily of a de=
scription of the actual structures used in VIPER as it is felt that
this approach contributes to a clearer understanding of some of the
alternatives which are discussed in section 3.4. It must be em=
phasised at thlS point, however, that although better structures may
exist, the ones that have been used are adequate for many applications

and for the application presented in the case study in particular.

The software system utilized divides memory into two main
partitions, as was shown in Fig. 2.1. The resident area consists
of the various operating system and language processor modules, while
the remainder of the memory is available for virtual storage
operations. It is the management of this latter memory area as shown
in Fig. 3.1 that is the subject of this chapter. The language pro=
cessor is placed permanently in the resident area because of the
uniformity of command and programming languages, i.e. it is also used
as the command interpreter. The information manipulated in virtual

memory consists of segments of both code and data.

To control the division of the available memory into segments,
two basic structures are employed: one to perform the physical linking
of segments, and the other the logical linking. The physical par=
titioning is performed in a straightforward manner by means of a
doubly-linked circular list, as ghown in Fig. 3.1. Each partition
has forward and backward printers to the next and previous segments,
and also a pointer to the end of the partition. Each partition,
called a segment, is of arbitrary size but must be smaller than the
physically available memory. A segment is in fact similar to a
page in the hardware virtual memory analogy in that it is an in=
divisible unit, with the difference that the segment size can vary

dynamically. A task could, however, consist of a set of segments

whose ...../3.5
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whose total size is larger than the physical memory. The advantage
of this structure over that of a hardware-mapped page is that there
is always a 1 : 1 correspondence between the page size and the
segment size, as they are physically identical elements. This is
of particular advantage in the structured programming language used
where there is a natural emphasis on partitioning a task into a set

of independent but co-operating procedures.

Segments may nof only vary dynamically in size, but can also
be created, deleted or moved to and from peripheral devices. Both
the first and the last and all segments between them can be dynamically
relocated. The position of the first and last segments can be
adjusted to allocate memory for use by certain fixed segments which
cannot be relocated, as shown in Fig. 3.1, These fixed segments
are used for assembly language subroutines and could also be used
for in-line code produced by compilation of interpretive code, as
discussed in section 3.5. (A notable difference between this resident
area and the resident area found in many commercial real-time
operating systems for minicomputers, is that it can be expanded on-
line.) Some examples of the segments used in VIPER are shown in
Figs. 3.5 and 3.6.

Segment and variable descriptors

Each segment in the system is headed by a table consisting of one or
more descriptors which describe both the internal structure of the

segment and the external resources which it uses.

The first descriptor on the table is the segment descriptor
which contains elements describing that segment as well as the list
linking pointers. The general format of all descriptors and that
of the segment descriptor are depicted in Figs. 3.2 (a) and 3.2 (b)
respectively. The first word of the segment descriptor identifies
the segment type and the length of the segment descriptor; while
the NEXT, PREVIOUS and END pointers are used for list linking and free
space control. The fifth element of the segment descriptor EXTERNAL
is used for the logical linking of segments as opposed to the
physical linking of the forward and backward pointers. The de=

scriptors form in effect a "local name space" (LNS) similar to the

LNS ...../3.6
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LNS of HYDRA (WULF, 1974; JONES, 1975). The capabilities defined
within these descriptors are used to controi access to both data
areas and other procedures. As in HYDRA, the capabilities are
manipulated only by the operating system and so cannot be témpered
with by the user. 1In VIPER however, the descriptor table is also
used for a variety of other purposes, as described in the following

sections.

Each segment is identified either by a name or by its association
with an event or device. Procedure segments and shared data segments
for instance, are named, while segments used for imput/output
buffering are identified by the device with which they are currently
associated. All segment (and variable) identifiers can be an
arbitrary number of characters in length. Within the segment de=
scriptor a segment normally, but not necessarily, contains additional
information which describes the structure of that segment. The
descriptor of a procedure segment, for example, (Fig. 3.5) contains
an additional 12 words containing information on the access rights
and sub-structure of the segment, in addition to scheduler parameters
if it is a segment which is known to the scheduler. The same structure
is used for all segments containing executable code, whether they are
'main' programs scheduled by a scheduler or sub-routines or co-

routines.

In addition to the segment descriptor at the head of the segment,
a procedure segment has a table of descriptors, which contains entries
describing the data structures used by that segmént, both internal
and external, i.e. the symbol table plus space for variable values
and pointers. Examples of the descriptor types used in VIPER are
given in Figs. 3.3 and 3.4. Additional types for which provision
has been made but which have not been used in VIPER as yet, are bit
and string variables, function references and multi-precision |
variables. The various descriptors are of different sizes and can
appear on the descriptor table in any order. The numeric value of
a variable (if any) is contained in its descriptor as are the ASCII
characters of the identifier. The ASCII identifier must be retained
for the purposes of decompilation in an interpretive system, but is

also very useful for a variety of other interactive features. Even

if ...../3.7
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if compiled code were used, DASAI, ]977;.-PIERCE, 1974 and others
have shown that there are good reasons for retaining the symbol
table for symbolic debugging purposes. Each element of the
descriptor table has a structure identical to that of the segment
descriptor: a descriptor head, an information section of variable
length (typically one to four wordé) and an identifier or arbitrary
length. The variable-length information and identifier fields of
the descriptor are specified by fields within the descriptor head.
The descriptor head also contains a field which defines the type

of descriptor. Within a 16-bit word these fields result in certain
limitations, viz. a maximum descriptor length of 64 words, 32
descriptor types and identifiers up to 16 characters in length.
Within many of the descriptors of both pfocedure and data segmeﬁts

are capability entries which protect the segment and define the right

of access to the segment from other segments.

This organization of the descriptor table or local name space
is very efficient, not only in terms of bit packing density, but
also in terms of the accessing and manipulation routines, which are
identical for all types of descriptor table elements. In the 25
procedures of the Case Study the average length of the descriptor
table is 178 words which is 287 of the average segment size of 638
words. The space required is considered well spent in view of the

uses and benefits of the table.

3.2.2 Father/son relationship*

The logical structure of the SVMM determines the hierarchical
relationship between segments. The basic element is the father/

son relationship that results from one segment invoking another, as
shown in Fig. 3.7. The father contains external reference descriptors
in its variable table which define the externai procedures (sons)

used by itself. If this pr&cedure is currently a segment residing

in physical memory, the descriptor in the father will contain an
absolute pointer to the location of the procedure, which is now his
son. Simultaneously with the establishment of this pointer, the

external pointer is set up in the son to point back to the father.

This ...../3.8
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seemed singularly inappropriate in view of the fact that these fathers lend,
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This double linking is essential if segméﬁts’are to be moved

efficiently, but is also useful for a number of additional functions.

The simple father/son relationship is similar, in the FORTRAN
sense, to a main program (the father) calling a sub-routine (the
son), but in SVMM this is not the only means whereby a father can
acquire or create sons. All segments are in fact spawned fron one
original master segment which is created when the system is generated.
The logical structure is not static, however, and the relationship
between segments changes dynamically. Segments may be assigned to
new fathers or they may temporarily acquire a 'stepfather' as would
occur during the re-entrant execution of a procedure. An example
of this type of access is shown in Fig. 3.8. (Note: Provision for
this re-entrant access has been made in VIPER but as it was not
required for the Case Study experiment, it has not been implemented
in the current version of VIPER.) Segments may also be permanently
or temporarily fatherless if this defining segment was deleted or
swapped out, for example. Fathers can also voluntarily release their
sons if they are no longer required, with the links to the son and

the return link from son to father being zeroed in this case.

If a segment is moved, two adjustments must be made, each re=
quiring a search of a descriptor table. First, the descriptor table
of the segment to be moved must be searched to find any active sons.
The back pointers from these sons to the.fathers are then adjusted
appropriately. If the segment is being deleted or swapped out,
the pointers are zeroed. Secondly the descriptor table of the father
of this segment (if there is one) must be searched for references
to the segment which is to be moved and the pointer in the external
reference descriptor which refers to this son muét be adjusted (or
zeroed). The overhead involved in adjusting the externals when moving
segments is therefore not negligible (2-3 millisecs on the VARIAN),
Without a firmware move instruction, however, the time taken to.perform
the actual physical move is far more serious - 14 millisecs for
500 words. If a known procedure is referenced, i.e. one which is a
son, negligible overhead is incurred because an absolute pointer to
the segment exists. If, however, an unknown procedure is invoked a
search of the resident segments must be made for the required segment.

(If ...../3.9
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(If the segment is not found, a directory segment obtained from

an external device should be searched.) A simple linear search

is adequate because even with a hundred segments the maximum

search time is of the order of 5 to 6 millisecs. Certain memory
allocation algorithms are used, however, to reduce the typical
search time to 1 to 2 millisecs and as even this occurs only the
first time the procedure is referenced there is no need to maintain

any associative or hash tables.

If the segment is resident, the mean search range will generally
be far less than half the resident segments duée to a locality of
reference that results from the virtual memory operation. When a
segment is created or obtained from a peripheral device the memory
allocation algorithm tends to place the segment within the locality
of the originating segment, i.e. the father (see 3.5). The search
is therefore first made within the locality of the requesting segment,
and continues until either the required segment is found or the
search ends on a return to the original segment via the circular list.
One example of father/son interaction may'serve to illustrate the

general nature of the strategy.

If a segment is spawned by a father within some locality of its
father, but is later released by its original father and adopted by
a new father (this may be either a new 'true' father or a stepfather)
the locality of reference will quite likely have been destroyed, but
only for the first reference. Thereafter the new father will enjoy
direct access to his son until such time as he releases him. The |
worst case is therefore that of two or more fathers, who are not
ﬁithin the same locality, competing for ownership of the same son.
As explained above the overhead associated with even this (uniikely)
worst-case condition is not severe, being of the order of 2 to 3

millisecs, each time the son is transferred.

If a segment must be swapped out, the segment descriptor is
left in memory and becomes a directory element containing information
about the location of the body of the segment on the external device.

As the remainder of the descriptor table is swapped out with the

segment, ...../3.10
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segment, including the external reference descriptors containing
pointers from father to sons, the father/son links cannot be pre=
served when the father is swapped out. (Conversely the links can
be preserved when a son is swapped out because the pointer from son
to father is maintained within the segment descriptor.) When a
father is swapped back in and needs to reference a son again, a
search for the son must therefore be made, taking typically 1 to

2 millisecs as described above. This overhead is one of the dis=
advantages of using absolute memory pointers instead of indirect
pointers via a resident directory. Preliminary investigations had
shown, however, that in the typical applications envisaged most of
the critical real-time tasks would be memory-resident and only the
less frequenfly executed tasks would be swapped to and from a bulk
storage device, The results of the case study (chapter 6) indicate
that this assumption is valid. In an environment where the swapping
rate is higher there may well be an advantage in using indirect

pointers via a directory segment - as discussed in section 3.4.

Although superficially cumbersome, this maintenance of father/
son linking is in fact quite simple and provides a powerful tool for
determining the structural dependencies of the system and a means of

constructing a hierarchical error-reporting and recovery mechanism.

3.2.3 Access to data shared between procedure segments

Another important type of logical linking is that used to gain access
to data segments. A number of different structures were analysed in
some detail for this linking and the one that is presented here is
considered a reasonably good compromise between the opposing factors
of access time and relinking overhead. At the simplest level, segments
are defined and accessed in a manner roughly analogous to that of
named COMMON in the FORTRAN sense as was illustrated in Table 2.2.
Fig. 3.9 shows the linking used for segments of this sort. As a
result of the virtual memory strucfure however, the segments can be
operated upon as if they were files, thus they are conceptually

quite different from the static COMMON block of FORTRAN. Furthermore;

the structure of the data segments permits a semaphore to be incorporated
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in the data segment descriptor which is used for synchronizing
procedures which access the data segment. In addition to being
available for manipulation directly by synchronization primitives,
_this semaphore has also been used to implement the "REGION"
construct (HANSEN, 1973). The synchronization functions are
described in more detail in section 4.4.

Other daéa area protection and synchronizing techniques such
as "KNOWS clauses" GORD (1976) could also be implemented using the
SVMM structures, but are not included in VIPER,

References to shared data items are performed as follows:

Each procedure which accesses the shared data contains a
declaration descriptor (A). (The capital letters in parentheses
refer to the labelled elements of Fig. 3.9.) This descriptor contains
a pointer (H) to the data segment, an access code G) definihg the
current access rights of this procedure, and the name of the data
segment, as shown in Fig. 3.4 (e). Within the access code (G) is
also an identity field which is used to identify variable descriptors

associated with this declaration.

The data segment is headed by a defining descriptor (B),
Fig. 3.5 (b), which contains the name of the segment, a pointer to
the start of the data area (I), a password pointer, the location of
this segment on a mass storage device and a semaphore. The descriptor
head identifies the type of segment. The external reference element
(C) of the defining descriptor is used to point to the procedure
which is currently locking this data segment as a result of a sema=
phore operation. (Procedures which are suspended waiting for access

are kept on another list maintained by the dispatcher.)

In addition to the external reference pointer which defines
ownership of the segment, the data segment has a descriptor table
(J) which contains an external reference descriptor (D) and Fig. 3.4
(£f), for each procedure which references it. This double 1inking of
data and procedure segments is an extremely powerfui tool for
analysing the overall structure and data relationships of a set of

tasks and enables many of the pitfalls of the strictly FORTRAN-type
labelled COMMON to be avoided.
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Within each referencing procedure, each reference to the
data segment is defined by a variable descriptor (E), Fig. 3.4 (a)
and (c¢). The descriptor contains either an absolute (FA) or
relative (FR) pointer to the location of that element in the data
segment, as well as a copy of the identity word that occurs in the
declaration descriptor (A). This identity is copied to all referencing
variable descriptors which reference a. given data‘segment, to
enable the absolute pointer to be adjusted if the data segment is
moved. The access field (G) in the defining descriptors (E) can be
set independently to protect any particular element of the shared

data segment.

The pointers (F) in the referencing descriptors (E) can be of

two types:

1. Absolute.

2. Relative to the start of the data area in the shared data

segment.

The relative pointers are used in order to preserve the location
of data items in the shared data segment when either a procedure or
shared data segment is swapped out. When a procedure segment is to
be swapped, for example, the descriptor table is searchgd for all
references to shared data segments and the corresponding pointers
converted from absolute to relative by subtracting the position of
the data segment (H) and the size of the data segment descriptor
table (I) from the absolute pointer (FA). (Relative pointers are
flagged by being complemented i.e. a negative value represents a
relative pointer.) No action is taken when a segment is swapped
back in until the first reference to a shared data item occurs. At
this point, the relative pointer (FR) is converted back to an absolute
pointer. This is performed by using the identity field (G) to
index up to declaration descriptor (A) which contains (or can obtain)
a pointer (H) to the data segment. In the data segment is a pointer

(I) to the start of the data area which is then used to construct

the absolute pointer (FA).
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This algorithm ensures that the more critical tasks and data
areas which are likely to remain memory-resident have fast, direct
access to the common areas, while the less critical tasks which may
have been swapped out will have to re-establish their links (but
with increased overhead only on the first access - thereafter they:

too will have direct pointers).

All references to items in data segments are checked for access
violations. The overhead associated with this mapping and checking
is of the order of 5% compared with local variable references, i.e.

a procedure using only shared data would take approximately 57

longer to execute than the same program using only local variables.
This overhead is considered minimal in view of the importance of
preserving the integrity of shared data at all times. Furthermore
typical tasks use a mix of data types. In the programs of the case
study, for example, the average increase in execution time is less
than 0,5%, with a maximum of 2% on one procedure (ENGUNITS) which
makes many references to common elements. Table 5.1 shows the result

of various measurements or shared data access times.

If a procedure segment which references a common area is moved,
the descriptor table of the procedure must be searched for the common
declaration descriptors (A) to find the data segﬁents referenced by
this procedure.. The descriptor table of the data segment (J) must
then be seafched to find the pointer (K) in the descripfor (D) S0
that its value can be adjusted appropriately. The pointer (C) may

also need to be adjusted.

If the data segment is moved the following operations must be
performed. The descriptor table of the data segment (J) is searched
for procedure references (D) (K). For each procedure found, the
procedure descriptor table must be searched for the corresponding
declaration descriptor (A). Having found this descriptor, the de=
scriptor table must be searched once more to fiﬁd all reference
descriptqrs (E) which have a matching identity (G). The absolute
pointer (FA) in the descriptor can then be adjuéted. (If the pointers
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in (E) had been set relative as a result of a swapping operation,
pointers (K) and (H) would have been zero and therefore no

searching would have taken place.)

If a new descriptor is added to the data segment as a result
of a new procedure referencing this data area (this can occur
dynamically), then the procedure described above must be performed
to adjust the pointers (F) in the reference descriptors, The
pointers (K) in the procedure reference descriptors, need not be
adjusted however. The value (I) in the data segment descriptor must:
also be updated to reflect the increased size of the data segment

descriptor table.

One of the limitations of this method of accessing shared data
is that the data itself cannot contain pointers to other data segments
i.e. an indirect address within a data element. All addressing must
be performed via the descriptors in order to allow the operating system
to perform the necessary adjustments as segments are moved. This is
not a serious limitation, however, as the interactive language elements
of VIPER are intended for applications programming where pointer
manipulation is both undesirable and seldom required. HOARE (1975b)
has pointed out the dangers of using pointers within data areas and
emphasised the importance of data reliability. Pointers are far
better handled within the protected capability lists (COSSERAT, 1975)
which are manipulated only by the operating system. Routines which
do require pointer manipulation are coded in Assembler and located in
the fixed segment areas - Fig. 3.1. (They could aiso be coded in a
high level language for compilation into in-line code but this is not

implemented on the current system. See also the comment in section
3.5.)

Parameter passing

Parameters are passed between segments by passing addresses. Parameter
types are matched, and must agree. The actual structures used for
parameter passing are illustrated in Fig. 3.10. When a fathef paéses

a parameter to a son, the relative address of the actual pafameter
descriptor (B) is copied into the corresponding formal parameter
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descriptor of the son (C), a single bit being set in the head of
this descriptor to indicate that it is an externmal reference. A
further bit is set in an access word (D) of the formal paramter to
distinguish between formal parameters and external references to
data items. To complete the uniformity of access mechanisms
between parameters and shared data items, an additional bit field is
established in the formal parameter access word as for shared data
references (Element (G) of Fig. 3.9). This access subfield defines

the type of operations permitted on this parameter.

Protection of parameter passing is performed with a capability-
like mechanism with the access attributes. of a parameter being passed
(copied) from segment to segment. As in other capability-based systems
(COSSERAT, 1975) the access attributes can be decreased but never
increased in the copying operation. The VIPER implementation does not
have the generality of other capability-based systems (FABRY, 1973;
WULF, 1974; JONES, 1975; COSSERAT, 1975) which are intended
primarily for the writing of operating systems, but the restricted
set of operations permitted is adequate for the application-oriented

software for which it is intended.

In VIPER the types of parameter passing allowed have been
intentionally restricted to provide security. Table 3.1 lists these

types and their default access states. All other mappings are illegal.

The detection of illegal mappings is performed at the CALL~SUB
set~-up time while access violations are checked on each reference
to a formal. When passing array variables, only whole arrays can be
passed i.e. no equivalencing can be performed and the dimensions of
the actual array are used in double subscript references. Code or
data outside of the array therefore cannot be overwritten. The
checking that is applied by default is sufficient to detect the
majority of programming errors, but if this is insufficient, additional
checking can be added under program control. The default access
states of the formals shown above, for example, can be changed from
read and write access to read only if this is required (but not from

read to write!)
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Setting of the access states of the actual parameters can also
be exercised to affect control of parameter passing. By forcing the
state of an actual array variable to read only, for example, before
passing it as a parameter, it can be ensured that it will not be
written into. Conversely by setting its state to write-only until
after the subroutine call will ensure that it is not used before
beihg written into by the subroutine. Control in this way is performed
with explicit program sfatements, as illustrated in Table 3.2.
Although syntactically somewhat cumbersome, the infrequency with
which the default states need be overridden makes the provision of

more sophisticated syntactic structures unnecessary.

Parameter passing is in effect a form of 'domain crossing' in
HYDRA (WULF, 1974) terminology, with templates specifying the
capabilities of the formal to actual parameter translation. In
VIPER however fhe template does not need to be passed as an actual
parameter, as the system has access to the descriptor tables and
extracts the information required for template matching. While more
restrictive than the generalised HYDRA capability mechanism, this
implementation is adequate for the simple high level language used.
The template matching technique can also be used in Assembler Coded
routines, however, with some restrictions on the permissible forms

of parameter access.

Although there is a certain overhead involved in this detailed
verification of parameter passing, the checking is considered essential
in view of the fact that this interface is one of the most troublesome
and error-prone areas in programming, as has been stressed by
COSSERAT, (1975), HOARE (1975a), GORD and MAHON (1976), ZEH (1976) and
others. The overhead involved must also be viewed in the context
of the interpretive system, as the time required to establish linking
between formal parameters and actual parameters, is roughly equivalent

to the execution time of a single statement with a similar number

of operands.

On the VARIAN 620i, for example, (4 us cycle time), the time
to perform a CALL-SUB-RETURN sequence passing five parameters is
6,9 millisecs, (which compares favourably with the 6,25 millisecs
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taken to perform a GOSUB with parameteré.in the original BASIC
where no access checking is performed). Once the formal to actual
parameter translation has occurred however, references to formals
are handled very efficiently. An operation involving two formals
such as X = Y+ Z, for example, executes in 2,4 millisecs in VIPER
compared with 8,8 millisecs in the original BASIC. The same operation
on local variables takes 2,3 millisecs so that mapping and accessing
checking performed on each reference takes only 47 longer, an
entirely reasonable overhead in view of the importance of this type
of checking. (These absolute times can also be reduced by a re=
organization of the interpretive meta-code, as discussed in chapters
5 and 7.)

BULK STORAGE MANAGEMENT

The three bulk storage units which have been used in testing VIPER

were described in section 2.6 and listed in table 2.4. They are:

1. Random access cassette.
2. Cartridge disc.
3. Semiconductor bulk memory (CAMAC resident RAM).

The management of these three devices is described briefly
here in order to clarify the need for and usefulness of alternative

SVMM structures.

The use of bulk storage devices for program swapping in VIPER is
complicated by the fact that the segments of code can change dynami=
cally in size. It is therefore not possible to allocate a fixed area
of a unit for storage of a particular module and to swap it to and

from the same area each time. This is analogous to the problems of

file system management where the size of files may expand and

contract dynamically. There is a wide variety of bulk storage memory
allocation algorithms in use, which can be broadly classified into
sequential and block allocation strategies. The essential characte=

ristics of these two strategies are described briefly below.
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Sequential allocation. In these schemes the expected size of a

module (file) is estimated and space allocated accordingly. If
the module is shortef than expected, space is wasted, while if
longer than expected, additional non-continuous space, an
Yextent", must be allocated on some other area of the device.
Only a finite and relatively small (10 to 20) number of extents
is typically permitted. Various heuristics are used to deter=
mine.how much additional space to allocate when the first
allocation is filled. When a module is deleted it may or may
not be possible to recover the space released. 1In the Hewlett
Packard RTE File Manager,'for example, this free space can only
be recovefed by a packing operation Which literally moves all
files on the disc to close up any gaps. This compaction operation
is lengthy and can only be performed in special circumstances
viz. no file on that unit must be currently open. This re=
striction ma& prohibit any disc packing operations during times
when the system is active and they would have to be scheduled
during system maintenance periods. (In the system used in the
Casy Study, chapter 6, a special utility was written to perform
a disc pack at 12 pm, every night. At that time certain open
files can be closed at the shift change to permit the pack to
be performed. Two to three minutes of recorded data can be lost

while the packing operation is in progress, however.)

Block allocation. The bulk storage device is divided into equal

size blocks typically 64 to 256 words in size. A table is then
maintained which has one bit to represent the availability of
each block. When space is required blocks are allocated
according to some algorithm and the appropriate bit set in the
free block table. The directory entry for the file points to
the first block while the remaining blocks are link-listed i.e.
each block contains a pointer to the next block. Any number of
additional blocks can be simply allocated if the file expands

in size. When a file is deleted all the blocks it was using can
be de-allocated and returned to the free block table. No packing
operations are ever required and all the storage space 1s used

efficiently. The disadvantage of the block structure is the
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speed with which files can be storéd or retrieved. Due to the
block linking and other system-related factors, the bloéks
must invariably be moved into a buffer first. This overhead
typically takes a time equivalent to the time to transfer
more than one block, so that when working with a rotating
device like a disc, the writing operating can only use every
third block. Transfers to and from bulk memory therefore take

at least three times as long as in the sequential case.

Both algorithms, therefore, have certain disadvantages which
it seems will not be overcome until a measure of intelligence is
provided in the bulk storage unit itself. (It could then, for
example, be treated as a sequential device externally even if
organizing itself on a block algorithm internally. This aspect is

discussed further in chapter 7.)

The cassette unit is used in a sequential mode only, i.e. an
entire segment is written out sequentially. Under certain circum=
stances a record can be overwritten with a new version of a segment
and this has been used to operate a system with only a cassette for
bulk storage. (With limited memory this configuration has of course
a very poor performance,) The disc and CAMAC (RAM) bulk memory units
are operated in a block mode, the block sizes used being 120 and 64
words respectively. A free-block-bit-table is kept in memory and this
is used to allocate blocks of storage to requesting routines. When a
segment is read back out of bulk storage (disc or RAM) the blocks are
automatically de—allocated as no permanent directory is maintained
of segments stored on these devices. The current address of a segment,
if it is on a bulk storage device, 1s contained within its segment
descriptor (see section 3.2.1 and fig. 3.5 (a)). This algorithm
ensures that when using bulk RAM theé combined space of the local
(computer) memory (e.g. 18 or 19 K in a 32 K system) and the bulk RAM
(typically 16 K to 64 K) are available for program storage. The
bulk storage therefore provides in effect an extended local memory

space which is the characteristic of virtual memory management.

None ...../3.20



3.4

3.20

None of the three devices used for bulk storage can be considered
ideal: the bulk RAM because it is volatile, the cartridge disc
because it is too big and too expensive and the cassette because it
is too slow. The object of using these devices was to demonstrate
the operation of VIPER with devices having a range of access times
as well as to overcome the immediate memory space problems on a 16 K
machine. Devices which would appear particularly suited for soft=
ware virtual memory management operations are bubble memory for the
fast access, non-volatile extension of local memory space and a
floppy disc unit for storage and back-up. An important point is that
these two devices are bracketed in terms of access times and transfer
rates by the three devices which have been used, thus ensuring that
they can effectively be used in a software virtual memory management

enviromment.

ALTERNATIVE STRUCTURES

The primary disadvantage of the structures chosen is the need to
release (zero) the links between father and son and between procedure
and data segments when a éegment is swapped.out. When the procedure
is swapped back in again,rit must search by name for any external
segments which it references before it can once more establish the
direct links. (Once in memory, the direct links between segments

are maintained even if a segment moves.) As mentioned in the
introduction to this chapter, this algorithm was initially selected
because it was anticipated that most of the time criticgl tasks
would be memory-resident and only the less frequent tasks would find
themselves being swapped out. Experience with the use of both disc
and bulk semiconductor memories, however, indicates that SVMM is
capable of supporting a much higher swapping rate, or equivalently,

of running real-time tasks of a size which cannot fit into the local

computer memory.

Although the existing structures work satisfactorily with the
higher swapping rate, there is an overhead of 2 to 3 millisecs involved
in this re-establishment of links to external segments. This is small
compared with the swapping time of 30 to 70 millisecs, i.e. the

overhead is of the order of 107 of the swapping time. As noted in
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table 2.4, however, if altermative bulk méﬁory control hafdware was
used, the swapping time could be reduced to less than 2 millisecs, at
which point the relinking overhead is substantial. An analysis of
alternative organizations is therefore of interest in order to
determine the efficiency of SVMM when using such high speed devices.
The overhead incurred in establishing and deleting the links to
segments can be reduced by maintaining a segment directory which

is kept in memory. Entries in the directory would then point to

the segment. Each segment would have an identity number associated
with it from which the segments' position in the directory could be
quickly computed. (The identity number could simply be the relative
or absolute position of the entry in the directory.) The absolute
pointer in a descriptor to another procedure would then be replaced
by the identity number éf that segment permitting the segment to

be found by indexing via the directory. This identity number would
be left intact when the segment was swapped out to a bulk storage
device and would not need be zeroed as is the case when an absolute

pointer is used. If a segment were moved, only the directory entry

would have to be updated.

This mode of operation is proposed in an extension of VIPER
which is discussed in chapter 7. To illustrate the problems that
must be solved in formulating new structures, some of the difficulties
involved with this approach are noted below. (Solutions to all these

difficulties have not yet been found!)

1. Segments are dynamically created, and must be allocated an
identity number and the corresponding directory entry. Over the
lifetime of a system, which may extend over several months,
as old segments are deleted and new ones created, the directory

will grow steadily larger with no direct means of re-using old

entries, for the reasons given below.

2, Before an old entry can be deleted or re-used, it must be ensured
that no segment currently in the system or which is likely to
become known to the system, references this particular identity
number. As there are nc direct links to inform the system

which .....3.22



3.22

which segments are referenced by anbfher segment, every

segment in memory and on the bulk storage devices will have

to be searched to find and deleéete references to the segment
which it is required to delete. As segments which have been
stored on removable devices, such as disc cartridges or

cassette tapes, may not be accessible, they will have to have
had all the ID elements in their descriptors deleted before
being stored, i.e. the same as is done with absolute descriptors.
This searching operation will be lengthy but as it may ohly be
necessary infrequently, this may be acceptable. It is in effect
a form of garbage collection, a process which is usually performed

either when the system is idle or when space is short.

The alternative to this searching operation is to perform a
check each time a segment is swapped in to verify that the ID
element held in some descriptor does in fact match the name of
the corresponding segment i.e. no search is involved, merely a
test whether the name of the segment does match the expected
name held in the descriptor. The test must either be done for
every external descriptor on the table, which requires a search
of the segment descriptor table (which may be even longer than
the search for the segment directly!) or it can be performed on
the first reference to the segment (as is done in the case of
absolute pointers). In this latter case a flag must be set

indicating that the test has been done. A possibly attractive
solution is to change the relative ID value at this stage to an

absolute value in a manner similar to the existing method of
handling references to shared data segments (see section 3.2.3).
These absolute pointers would then of course have to be converted
back to relative pointers before the segment was swapped out -

once more requiring a search of the descriptor table to reset all

external descriptors.

One of the objectives in the development of VIPER was to plan
towards its use in a multiprocessor environment. The relocatable
segments of meta-code are particularly attractive in this
environment as they can be sent to any processor in the network
and executed in any available memory space. The information
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carried in their external descriptdfs specifies all the resources
which may be required by that segment in its new environment.

A bulk storage module (either RAM or possibly bubble memory)

ié an ideal element for shared storage in this enviromment and
segments stored there could be swapped in and executed on any
processor using current structures. If the identity element

plus indexing were used instead, then either the directories
ﬁould have to be identical in all processors, or it would have to
be noted when a segment changes processors and’the ID elements
adjusted (zeroed) at that time; or the ID elements must be
deleted in segments which are stored in the shared module

(which contradicts point 2); or the checking technique in 3

above must be used.

From the various points which are made above, it is clear that
there are no simple, clear-cut alternatives to the structures.which
have been used in VIPER. The VIPER structures were arrived at after
many months of careful thought and it could seem that they are the
best under the assumptions that were made viz. most time critical
tasks reside in memory. In other environments the factors affecting
parameters such as swapping rates, segment size, the number of
segments in the system and multiprocessor operation, must be known
before optimally efficient structures can be synthesised. In instances
where these factors are not known or vary unpredictably, the simplest
most straightforward structures may be if not the best, at least
not significantly worse than the best. This difficulty of selecting

efficient algorithms in an ill-conditioned environment has been
observed by SPANG (1974).

MEMORY ALLOCATION

There are three events which the memory allocator must handle:

1. A request by an existing segment for more space.

This space must be obtained adjacent to (i.e. at the end of) the

segment.

‘2. A new segment is to be created. The space can be obtained

anywhere in memory.
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3. A segment must be swapped out to make space for either a

new segment or an increase in size of an existing segment.

Additional space

Four events can cause an existing segment to require additional

space.

1.  The addition of new lines of code to the statement pool of a

procedure descriptor.

2. The addition of new descriptors to the descriptor table of

either procedure or data segments.
3. The allocation of space for a local array variable.

4, An entry is added to one of the system segments.

(Scheduler segment, password segment or syntax recursion list.)

5. The body of a segment is swapped back in from bulk storage.

All these operations can occur dynamically i.e. while a
procedure segment is executing or between successive references to a

data or system segment.

In general, segments are scattered over memory and are not
necessarily contiguous. Bits of free space may exist between segments.
If a segment requires more space, a test is first made to see if
sufficient free space exists between the segment and the next. If
there is, the segment merely expands into the free space and no
movement of segments is required. If there is insufficient spacé, then
a compaction operation is performed in the vicinity of the segment
requiring space such that the minimum number of segments is moved to
obtain the necessary space. In situations where only a few words
of space are requested e.g; adding a descriptor to a table, more than
the requested space is obtained, if compaction is required. The extra
space obtained is left as free space at the end of the segment so
that if another request for space is made shortly thereafter (as is

quite likely) it can be satisfied immediately without moving any
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segments. If the required space cannot be obtained by compaction

then a segment must be swapped out, as described in section 3.5.3.

New Segments

New segments are created when:

1. A new procedure is started.

2. A new shared data segment is formed.

3. An I1/0 buffer is required.

4. A reentrant data block is required for decompilation (back
listing).

5. An old procedure is restored from an input device.

The allocation strategy adopted for new segments is essentially
first fit i.e. the first free space area which is large enough is
used. In a detailed study of memory scheduling AGRAWALA (1975) has
commented on this allocation strategy: 'In a swapping system,
determining where to place the next arrival in memory can be a very
complex task. Heuristics are usually employed to help solve the
problem. Quantitatively, now much better are such strategies than

first fit, which KNUTH (1968) endorses."

ROBSON (1977) has also shown that the worst case fragmentation
is serious for all sytems, but is much worse for best fit than for
first fit systems, In addition, fragmentation is not nearly as
serious in VIPER because free space can also be collected easily by
moving segments. In fact, due to the dynamic properties of segments

a certain amount of fragmentation may be quite desirable.

The only heuristic employed in VIPER is to attempt to separate
the temporary and permanent segments. Procedure and shared data seg=
ments, for example, are likely to settle down to a fixed size after
debugging is complete, and are likely to remain in memory permanently

if they are associated with time critical tasks.
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These segments are therefore allocated from the 'bottom'
(first segment of fig. 2.1 and 3.1) end of memory upwards, while
the temporary segments, such as I/0 buffers, reentrant data blocks
and scheduler lists which change frequently in.size, are allocated
from the "top' (last segment) of memory downwards. This.process is
simplified by the doubly linked list of segments which permits

searches for free space to be made with equal ease in either direction.

If first fit is not possible, i.e. no free space of the

required size 1s available, then one of two actions can be taken:

1. If the total free space in memory (i.e. the sum of all the
pieces) is larger than the required. area, the space can be
obtained by compaction, a process which requires the relocation

of one or more segments.

2. One or more segments can be swapped out of memory to obtain the

required space.

The decision on which of these actions to perform is even more
difficult and complex than the free space selection problem mentioned
by AGRAWALA. On the VARIAN which lacks a firmware move instruction,
the time taken to move a segment is typically 20 to 25 ms depending
on its size and structure. If more than two or three segments must
be moved it may therefore be quicker to swap a segment out (30 -

60 ms) than to perform a compaction operation. (If a firmware move
instruction was available the movement time could be reduced to 5 or

6 ms, but there would still be some point at which it would be faster

to swap than to move.)

In the initial design of VIPER there was no experience to draw
upon so the simplest strategy was adopted: 1if there is sufficient
free space it is obtained by compaction, otherwise a segment is swapped
out. With a little care in the placement of segments this has been
found to work surprisingly well, for the following reasons. The

compaction and allocation algorithms tend to cause all the segments
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which are more or less fixed on size to be packed one after each other
from the bottom of memory upwards, with most of the free space occur=
ring between the end of this pile and the top of memory, with only

a few segments being scattered in this free space. The compaction
operation therefore very often involves only a few of these segments.,
Occasionally free space will occur in amongst the pile of fixed
segments, as a result of some interactive operation for example, but
the time taken to recover this space is then of little consequence. If
frequent movements are taking place these are most probably due to
extensive interactive operations by a number of users working simul=
taneously, in which case one can be expected to pay some overhead

for the facilities one is using. In any event, in process control
applications, which usually run 24 hours per day, it is almost
impossible to perform such operations more than a small proportion of
the time, so that as far as the system is concerned it operates most

of the time in a quasi-static environment.

In the latter respect the memory management problem in real-time
systems is significantly different from that occurring in Batch or
time sharing applications (AGRAWALA, 1975; ARDEN, 1975). SPANG (1974)
has clearly demonstrated this point by showing that a slight change
in the characteristics of one task in a set of 17 repetitively

executing programs could change the number of swapping requests by
507%.

De-allocation (swapping out) ‘

When insufficient free space is available a segment in memory must be
swapped out to provide the necessary space. Chosing the best segment
to swap out i.e. the one which is least likely to be needed in the
near future, is as difficult as a "best—fit" strategy when swapping in.
Unless the characteristicsof the tasks are known and the algorithm is
designed accordingly, nearly any algorithm will degrade under certain

conditions and will end up swapping out segments unnecessarily
(SPANG, 1974; AGRAWALA, 1975).

The algorithm adopted in VIPER swaps out procedure segments in
the following order:
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1. Segments which are dormant, i.e. which are not on any scheduler
list. These segments may have been swapped in to perform either
syntactic or editing operations (e.g. the addition of a new
line) 'or for an interactive operation (e.g. examination of the

.value of a variéble in the descriptor table).

2. Segments which are on any suspension list (operator, I/0,

seméphore, unit lock or memory).

3.  Segments which are on the time list; longest next-time-to-run
first.
4, Segments which are on the ready list waiting to rum; lowest

priority first.

Provision had also been made in the design of VIPER to permit
shared data segments.to be swgpped out, but this has not been
implemented as yet. They can be moved to and from bulk storage devices,
but only under user control i.e. with program statements or commands.
One difficulty with swapping of these segments is the determination
of which segment to swap out. A sufficient condition is when all’
pointers (K) in the procedure reference descriptions (D), Fig. 3.9,
are zero, as this implies that all the referencing procedures have
been swapped out. User commands can also be used to explicitly release
a common area which would also zero the pointers in the reference
descriptor. Simple and efficient algorithms can be devised to

implement this strategy which would appear adequate for the use in
VIPER.

A comment on memory allocation algorithms

No detailed theoretical studies have been undertaken to determine
whether the memory allocation and scheduling algorithms are optimal,

In general, optimal memory management is of somewhat more concern to
large multi-environment real-time operating systems (BAYER, 1975;
SPANG, 1974) than it is to a small specialized system like VIPER,

The time taken to obtain space for a new segment in SVMM, for ekample,
can be compared with the time taken to recompile a program segment
from source code. This recompilation method is used in many disc-based
"extended" BASICs to p;ovide an overlay facility; user designated
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lines of code being discarded to allow new lines to be loaded into

the same space. A complex BASIC system using this kind of overlaying
has been described by CARY (1976). It should be noted that this
technique not only incurs a significant'time penalty but also requires

care on the part of the user in constructing the overlay modules.

Even if extensive compaction is required to find space, the
time taken to load a new segment in VIPER is an order of magnitude less
than the time taken to recompile an overlay module. If no compaction
is required, the time to perform the loading operation is at least
two orders of magnitude faster. Furthermore,if the segment is already
resident in memory, as is more likely to occur when using SVMM than
when using overlays, the SVMM 'loading" oberation can be said to be

three to four orders of magnitude faster.

Having achieved a gain of this magnitude there is little
incentive to expend effort on optimal management, even if it were
possible to achieve a further 50 or 60% improvement. This is
particularly true in VIPER where many if not all of the time critical
tasks are likely to remain memory resident. Only if the SVMM
operations were to be improved to support a higher swapping réte, as
is discussed in chapter 7, would a more detailed and thorough

examination of memory management be required.

A further point in favour of simple algorithms is their compact=
ness and efficiency. MADNICK (1974) has pointed out how complex
scheduling algorithms can become self-defeating due to their time
and space overheads. Due to the 32K wofd direct addressing constraint
of the VARIAN (and of nearly all current mini and micro computers),
space consumed in the resident operating system nucleus is space lost
‘for use in the local portion of the virtual memory space. This
factor, together with the difficulty of deciding in many cases what
is a better algorithm, is sufficient reason for using the simplest

possible algorithms which perform with reasonable efficiency.

3.5.5 Memory allocation extensions

An interesting aspect of memory allocation occurs if on-line compilation
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is possible, i.e. if relocatable interpretive code can be converted
to fixed in-line code. These in-line code segments would be placed
in the fixed segment area shown in Fig, 3.1 and would therefore
reduce the memory available for virtual memory operations. They
cannot be relocated once placed in a fixed segment. Assuming some
ratio between the execution times of interpretive code and in-line
code, it is clear that given a set of tasks, the advantage of faster
execution time as a result of executing in-line code must be weighed
against the slower effective execution time that results from
reducing the memory available for virtual memory operations. The
optimum allocation will vary with the task demands and hence with
time, so that an estimation of the optimal memory allocation strategy
is a non-trivial problem. In many instances, however, a few tasks
can be identified which consume a large proportion of the available
processing time (particularly in real-time systems with some
repetitive tasks) and in this event a significant increase in overall
efficiency could be gained by compiling these tasks into in-line
(resident) code. The operating system can be used to identify which
tasks are consuming the most overhead, and the most time-consuming
operations can be compiled either automatically or under operator

control.

An important feature of SVMM is that tasks can be added in-line
into the fixed-segment-resident areas showﬁ in Fig. 3.1, This is in
strong contrast to many commercial real-time executives, where the
tasks must be partitioned into memory-resident and bulk-storage-
resident tasks atvgeneration time, and no more tasks (or at best
only a very limited number) can be added later. In addition, in
SVMM the most recently-added resident task can be deleted and the space
used by this task recovered for virtual memory operations. This
possibility of executing in-line code must however be balanced against
the loss of interactive capability which results when a procedure
is not interpretive. As this ability to interact on-line with any
procedure is one of the major advantages of SVMM, restraint should
be exercised to ensure that this advantage is not sacrificed to

obtain marginal gains in throughput.
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The technique of 'throw-away' compiling developed by BROWN
(1976) which is a middle path between interpretation and compilation,
may also be a useful tool for optimization the memory allocation
and throughput of the system. Using this technique, a relocatable
segment (or portions of it) would be dynamically compiled into in-line
code in the fixed segment area. When either additional space is
required or interactive operations are required on the segment, the
entire compiled segment is thrown away, to be compiled again when
next executed. If the interpretive meta-codes are kept in
reverse-polish form (which is in any event a desirable representation)
‘this dynamic compilation is fast and efficient as only the code

generation portion of the compilation must be performed.
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TABLE 3.1 : DEFAULT ACCESS STATES OF PERMISSIBLE

ACTUAL TO FORMAL

PARAMETER MAPPINGS

Actual parameter
type

Formal parameter
type

Default access
applied in son

Local simple variable
External simple
variable (common or

a formal)

Array variable (local

Simple variable

Simple variable

Array variable

Read and write

Copy formal access
actual

Copy formal access

or external) actual
Constant Simple variable Read only
Expression Simple variable Read only
TABLE 3.2 : SOME EXAMPLES OF EXPLICIT ACCESS OPERATIONS 1IN VIPER
Statement Comment
DIM A(N) Local array, access = read and

ACCESS (A) = READA
CALL SUBX (A,B)

SUBROUTINE SUBX (X,Y)

ACCESS (Y) = READA

CALL SUBY (X,Y)

ACCESS (A) = READA+WRITEA

write

and back to

Drop access

Pass access
access of Y

Force to read only for call

write for local use

of Y

of X unchanged
is modified.
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CHAPTER 4

INTERACTIVE MULTIPROGRAMMING FAC ILITIES

In this chapter the techniques for producing better software which were listed in
section 1.2 are discussed in more detail. The discussion is in two interrelated
(and intermixed) parts: the first deals with the more abstract concepts with
reference to current literature and the second deals with the implementation of the

facilities in VIPER. The five topics covered are: .

1. . Structured programming.

2. Interactive operations.
3. Protection and error control.
4f Synchronization.
5. Documentation,
4.1 STRUCTURED PROGRAMMING

"I take structured programming to be a term of art signifying a sty1e
of programming in which the flow of control is determined by procedure
calls and by statements of the type IF ... THEN ,.. ELSE ...,

rather than by the indiscriminate use of GOTO statements. Further,

it is usually advocated that the program should be written in a
top~down manner. These recommendations, it is claimed, lead to a

disciplined method of programming with the following advantages.

1. The program, being modular in nature is easy to understand and
check.

2. There is a possibility of proving it correct.

3. It is easier to maintain and modify."

(WILKES, 1976)

The term structured programming has acquired a variety of meanings,
but this concise statement by WILKES captures the essential properties
of this programming discipline. The development of structured program=
ming techniques is a current topic of research and a wide variety of
control structures have been proposed and discussed (DAHL, 1972;

MEISSNER, ...../ /4.2
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MEISSNER, 1976; BARTH, 1974; NEELY, 1976).

Because of this fluidity, only the simplest and most widely used
structures are used in VIPER and no attempt was made to either

develop or expand new structures.
The two essential requirements for structured programming are:

1. Modularity of program modules, permitting top down design

and step-wise refinement.

2. Suitable control structures which permit indiscriminate use of

GOTO statements to be naturally.avoided.'

A claim of this thesis is that the SVMM facilities complement
the goals of structured programming and contribute towards the

construction of an efficient software system.

Modularity

In VIPER each named code module, which may be either a procedure or
subroutine, exists as a separate segment which can be independently
moved to and from bulk storage devices. One of the goals of structured
programming is to break-up a task into modules each of which is no
more than one to two pages in size (30 to 70 lines of code). In SVMM,
therefore, a well-structured program is naturally divided into blocks

a few hundred words in size, each of which represents a natural “page"
which can be swapped to and from a bulk storage device. This 1 : 1
correspondenée between pages and segments is in marked contrast with
hardware virtual memory mapping devices where the page boundaries are
randomly scattered over the procedures constituting a task. (DENNING,
1970; AGRAWALA, 1975). Only the segments which are currently required
(or which are being used frequently) are likely to remain in memory

and the other segments will tend to be moved out of memory. Together
with the fact that the meta-code segments are émaller than their
machine code counterparts, with the result that more of them can fit
into memory, this correspondance between pages and segments is

likely to’result in less time being spent in swapping segments and in
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a reduction in the probability of pages "thrashing" in and out of

memory.

An equally contentious aspect of structured programming is that
related to the use of block structure (as in ALGOL type languages)
as opposed to Main-subroutine structure (as in FORTRAN). One of
the advantages of block structured languages is the Better organization
of variable referencing which avoids either long parameter strings on
subroutine calls or excessive use of COMMON. The use of blank (global)
COMMON has, in particular, been pointed out to be most undesirable
(NEELY, 1976; HOARE, 1975). The primary criticism of the use of
COMMON concerns the fact that it imports variables into a procedure
which may not be required there and which may be accidently over=

written. These errors can be very difficult to locate.

The main - subroutine - labelled common approach was adopted for

VIPER, however, for the following reasons:

1. In a real-time process control enviromment the use of a

COMMON areafor the plant data base is unavoidable.

2, Block structured languages are conceptually more difficult
to understand for the process oriented user who is familiar

with FORTRAN and BASIC.

3. The ease of using labelled COMMON in VIPER and the protection
facilities which are provided, overcome the objections which

have been voiced at the use of shared data areas of this type.

4. When synchronization problems are taken into account, the
labelled COMMON area is a natual structure for the use of the
REGION construct (HANSEN, 1973) thereby simplifying access

contention problems.

5. Debugging operations are more difficult in a block structured
language because of the need to identify the scope of
variables (PIERCE, 1974).
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One of the claims of this thesis is therefore that the data
structuring and protection facilities provided by SVMM enable
structured programming techniques to be used in a simple, easy to

learn, FORTRAN type environment.

In the programs of the Case Study presented in chapter 6,
the FORTRAN programs were already modular in nature. In the VIPER
implementation, even further modularization was possible. The
program SERVO (Appendix B page B3.18 and B2.5, B2.20) and the error
message handling facilities (B3.6 and B2.17, B2.24) illustrate how

this modular decomposition can be used to simplify the programs.

The modularity of programs in VIPER, together with the inter=
active, operations, also permits an informal, but flexible, top-down
or step-wise refinement design strategy to be used. This aspect is

commented on in section 4.2.4.

~

Structures

The control structures incorporated in VIPER are as follows:

1. IF -~ THEN - ELSE - ENDIF

2. FOR - NEXT

3. DO WHILE - END DO
4, CASE - ENDCASE
5. GOTO

This restricted set of relatively simple structures was chosen
as they were considered adequate for the type of software likely
to be written in VIPER, Examples of the use of these structures are
given in Table 4.1 and in Appendix B.2. To simplify the incremental
compilation of lines of code, lines containing a control structure
must appear on their own in VIPER. Although a little cumbersome
at times, this restriction does ensure that the control statements
are highly visible and cannot be obscurred by surrounding code; This

is particular true of multiple rested IF — THEN - ELSE - ENDIF clauses

and ...../4.5
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and .the enforced simplicity that occurs in these nested structures
is an open invitation for the insertion of end-of-line comments.
This has the double advantage that the pfogrammér is more likely
to insert comments in this naturally occuring space, and secondly,
that this‘is the very point at which comments are most likely to

be needed to explain the program flow.

The one control structure.included which is slightly more complex
is that of the CASE — ENDCASE. This statement can assume many
different forms (BARTH, 1974; MEISSNER, 1976). In its most general
form Meissner claims that "at the advanced level, an extended CASE
form is introduced that provides the oppoptunity to remove the last
vestiges of undisciplined GOTO statements from FORTRAN programming”.

A slightly restricted form of this advanced CASE is implemented in
VIPER which sacrifices some of the power of the most general form for
syntactical simplicity. Examples of the use of the CASE are given in

Table 4.1 and in Appendix B.2.

The simple GOTO was retained in VIPER as it has quite clearly
been shown (KNUTH, 1974; DEMILLO, 1976) that it is sometimes required
even in well-structured programs to avoid awkward and clumsy con=-
structions. An interesting observation arose, however, from the Case
Study presented in chapter 6. In the translation of approximately
1 300 lines of FORTRAN code into VIPER not a single GOTO was required
whereas the FORTRAN code contained nearly 100 of them. This observation
indicates that the control structures chosen are adequate for the

relatively simple logic structures that generally occur in process

control work.

Despite the simplicity of the structures they have a markedly
beneficial effect on both the clarity and ease of understanding of the
control programs. The VIPER programs are generally considerd far more

readable than their FORTRAN counterparts. (See Appendix B).

One of the most important aspects of structured programming in an
interpretive system is that it can be used to automatically perform
the indenting that provides the invaluable visual aid to program
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structure. An example illustrating this facility is given in Table
4.1. The manual insertion of indenting is a tiresome and frequently
overlooked chore which is especially difficult when programs are
changed or updated. Furthermore, real-progréms are subject to a
steady flow of changes and improvements over their lifetimes

(HOARE, 1975; KERNIGHAN, 1977) so this problem is mot just a
development phenomena. In VIPER the automatic indenting is coupled
with a proof of the structural correctness of the program. This proof
is not only an assurance that the program is correctly structured,
but is also a useful teaching aid in that it gently prompts the user
to use the correct constructions, pointing out the cause of the error
and where it occurs. With this interactiye assistance users un=

familiar with structured programming can rapidly learn the rules.

In addition to the control structure indenting there is another
aspect of program layout which is of importance in real time programming.
Programs which execute cyclically nearly always require an
initialization section where control loop variables and items in
common areas are given initial values. The static initialization
performed by FORTRAN type DATA statements is only a partial solution
as the initialization requirements can encompass all programming
functions, including input/output operations and computations based
or process variables. 1In a FORTRAN enviromnment this function éan be
performed by using a flag in a common area for each program. This
flag is tested in the program to enable a jump around the initialization
section to be performed on subsequent cyclic executions of the program.
In a real-time language oriented system this flag testing and setting
should be provided in the language to enable this function to be
implemented naturally. This is achieved in VIPER by providing a
statement START which indicates the end of the initialization section
and the start of the repetitively executed code. The initialization
code is indented to distinguish it from the body of the program.
Examples of the use of the facility can be found in neariy every

program of the case study listed in Appendix B.2 as well as in table
4.1.
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INTERACTIVE OPERATIONS

The term "interactive" has acquired a variety of meanings in computer

applications. Two basic divisions which can be identified are:
1. Interactive program development.

2. Interactive dialogue in an applications enviromment (e.g.

data-base management and information systems).

The send category is important in process control applications
as part of the interface between the computer system and the process
engineers and operators, but it is the first category which is of
primary concern to this thesis. Similar ergonomic principles apply
to both divisions (PALME, 1976) and in the development of interactive
dialogue systems using interactive programming systems, GAINES (1975,

1976) has shown that the two topics can be closely related.

Even the term interactive program development is not well-defined.
It is used by some authors to mean time-sharing type computing
services (ARDEN, 1975) and by others to mean incremental compilation
and direct execution such as is possible with BASIC (BERCHE, 1976;
CHU, 1976; GAINES, 1975; HILDEN, 1976; WILCOX, 1976). Another
context in which the term interactive is used is in mini-computer
operating systems where the user drives the system directly from a
keyboard to edit, compile, load and test programs in a rapid development
cycle. The term interactive arises from the fact that on modern disc-
based operating systems these operations can be performed in one or
two minutes as opposed to 15 to 30 minutes on older magnetic tapes
or paper tape oriented operating systems. Although a great improvement
on past systems, this type of operation is not considered interactive

in the context of this thesis.

Although the primary aim of VIPER is to provide excellent program
development_tools in a real-time interactive multiprogramming
environment, the provision of dialogue facilities which can be used
by process engineers and operators is also an important.property. No
explicit process dialogue functions are provided in VIPER, however,
and the facilities which exist arise from the generalised interactive

programming and debugging operations.
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The interactive facilities which are provided in VIPER fall

into four interrelated and overlapping categories.
1. Symbolic debugging of programs on-line and in real-time.

2. Monitoring of on-line real-time programs; examination of

plant variables and perturbation of outputs.
3. Creation of new programs and editing of old program.

4, Testing the modules of a task as they are developed. (Top-

down design and step-wise refinement.)

Only two functions need to be implemented to enable these

facilities to be provided:

1, The ability to add (or delete) a statement to a procedure at

any time whether it is executing or dormant.

2. The unification of the command and programming languages.

These functions unify the language elements, the debugging and
‘monitoring commands and the file manipulation commands into a single
coherent set with a common syntax and enable the interactive mode of
operation to remain active on executing tasks. The operation of a
process can therefore be dynamically monitored and symbolically
debugged using the same command and programming language that is used
to write the program. In PROSIC, the monoprogrammed predecessor of
VIPER, the essential simplicity and naturalness of this on-line real-
time debugging and monitoring facility proved to be an extremely
powerful tool which was readily accepted by the process oriented
users. To enable these facilities to be extended to VIPER, however,
the properties of SVMM are essential, as this level of interaction
could not otherwise be supported in a multi-user multi-tasking

" environment.

4.2.1 ..... /4.9
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Debugging

"probably the most overlooked area of programming from the point of
view of development and system'effort spent versus computer and
programming time involved, is debugging."

(GLASS, 1968)

"It is now common practice to use a high-level lahguage for develop=.
ment of both systems and applications software, even on small
computers. However, it is unfortunately true that while compilers
abound the same cannot be said of good runtime diagnostic and
debugging aids.”" o

(PIERCE, 1974)

"program debugging can often be the most tiresome, expensive and

"unpredictable phase of program development ...even the best-designed

and best-documented programs will contain errors and inadequacies
which the computer itself will help to eliminate. A good programming
language will give maximum assistance in this."

(HOARE, 1975)

These three comments together with the perspicuous comments by
WILKES (1976) quoted in section 1.2.2 emphasise the importance of

the program debugging and the extent to which it has been neglected.

There are four basic functions of any debugging operation:

1. Examination of the process state i.e. display of current values

of local and global data items.

2. Insertion of breakpoints: A breakpoint is a point up to which
a program executes before passing control to the system with a
suitable message to indicate that a breakpoint has been reached,

together with an indication of which breakpoint has been hit.
3. Selective execution of blocks of code (usually coupled with 2).

4, Insertion of new code either to assist with the debugging or

to fix any bug which has been found.

A L..../4.10
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A typical debugging session consists of the interactive
application of above four functioms to trace, detect, locate and

fix errors in the code.

In the majority of operating systems, and even on small stand
alone minicomputer systems, a variety of facilities are provided for
performing the above operations in machine level terms: to determine
the state of a variable for example, a memory location is examined;
to insert a breakpoint, a trap or jump is inserted at the required
memory location; execution of a code sequence is pérformed with a
simple jump to the start of the code with a breakpoint at the end of it;
patching of new code is permitted by the ability to alter memory

locations (i.e. machine code patch).

On a minicomputer these operations can usually be performed
interactively, but on larger systems they aré often severely re=
stricted and can only be used in a batch mode. The examination function,
for example, typically consists only of a dump of the entire memory

space of the process.

The implementation of these debugging aids in machine level terms
is adequate for assembler programming (which is what they are intended
for) but is totally inadequate for the debugging of high level
language modules which are written by application programmers. Without
other help, these (and many other) programmers are reduced to using
WRITE statements imbedded in the code to examine variables at various
points. The frustrations and inadequacies of this procedure for

debugging real-time software was noted in section 2.2.

In addition to the obviouskdisadvéntages of such techniques I
have encountefed at least one situation where even as crude a tool as a
WRITE statement could not be used. This pathological case is worth
documenting as it illustrates the dilemnas which frustrate users in

their debugging operations.
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A pathological debugging problem

The problem occurred in the course of using the Hewlett Packard
RTE-2 Executive on the Huletts Refinery Project. (This project
is described as the case study.) In RTE-2 the memory is divided
into two partitions, foreground and background with other memory
areas being reserved for system operations, (in addition to the
resident operating system). In the configuration used for the
project the maximum size of the foreground partition was 6K
words out of a total of 32K. This size was adequate for nearly all
the control programs, provided they did not contéin any formatted
input-output statements, as the formatter routines immediately
increase the size of a program by BK words. Many of the programs
could therefore no longer run in the foregrdund partition if
WRITE statements were added. As a background program was not
permitted to write into foreground COMMON, a program could mnot

be temporarily debugged in the background partition. Nor could
the system supplied assembler debug routines be used as they
applied only to background programs which did not reference
COMMON at all. The only solution to the dilemma was to tempo=
rarily place certain variables in COMMON and to provide special
message functions which could pass a few integer values from

the program in question to another program from where they

could be printed.

As if program debugging is not difficult enough as it is!

The object of high level, user oriented debugging systems is
therefore to avoid the use of machine level concepts and to apply the
four debugging operations listed above directly to high level
language modules. Debugging systems which operate in this way are
frequently called symbolic debugging systems. The basic requirements
for symbolic debugging are runtime access to the symbol table of a
procedure and the ability to associate statement line numbers with
memory locations at run time. In compiler based systems this
requires passing information from both the compiler and link-loading

stages through to the debugging package.
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Systems which use symbolic debugging techniques have been
described by DANIERI (1976), DASAI (1977), GLASS (1968),
GOULD (1977), ITOH (1973) and PIERCE (1974). In all the systems
which they describe, however, the debugging operation must be
decided upon before the program is compiled and run and even then
only in some cases (PIERCE, 1974; DASAI, 1977) are the debugging
commands interactive in the sense that they can be turned on or
off during the execution of the program. In only one instance are
the debugging commands closely related to the programming language;
PIERCE (1974) uses a subset of CORAL for the debugging process.
These systems are, however, a considerable improvement on the

machine level debugging which must otherwise be used.

The size of the debugging system or package is also of particular
importance. The very powerful PL/I checkout compiler (CUFF, 1972)
for example, requires several hundred kilobytes., Even a compact
"interpreter emphasising debugging capability" GLASS (1968) uses
50K words and the system described by PIERCE (1974) which uses a
"greatly restricted subset of CORAL" requires 3K words for the
debugging section. In VIPER, on the other hand, where the total
executive occupies only 13K words, all the debugging facilities are
estimafed to occupy only a few hundred words. (An exact estimate is
difficult to obtain because the facility is closely related and in=
tegrated with the normal mode of operation.) In the earlier mono=
programmed PROSIC (HEHER, 1976a) it took less than 150 lines of

assembler code to provide similar facilities.

The simplicity, economy and versatility of the debugging

facilities in VIPER results from four factors.

1. The symbol table is always available as it must be retained to

permit programs to be backlisted (decompiled).

2. Associating a trap or other debug operation with a source
statement line number is straightforward because the line
numbers are also stored in memory with the program code.

3. The unified command and programming languages.
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4, The ability to enter a statement into a procedure at any

time whether it is executing or dormant.

The use of the same language for programming and debugging, and
the unification of the command and programming languages can therefore
be regarded as an essential feature of a software system for a small
computer and not as an expensive luxury. The savings in code which
result from using a common command and language processor have also

been noted in an implementation of POP-2 (BURSTALL, 1971).

As an e#ample of a debugging operation in VIPER consider the
use of a simple PRINT statement to monitor the operation of a re=
petitive real-time task. The statement can be issued either as a
command to examine the current value of any variable known to the
procedure, or as a statement which is entered on-line into the
procedure at a specified position. The procedure may be executing
or dormant, memory-resident or bulk-storage resident. (Thé SVMM
will perform the necessary seek and swapping-in in the latter case.)
By adding and deleting PRINT statements within the procedure as it
is executing, the program flow can be traced dynamically using what
is in effect a software probe which selectively displays the required
data at any point in the procedure. This procedure is considerably
more flexible and general and easier to use than the shotgun "trace"
command which has been implemented in many debugging systems (e.g.
GLASS, 1968). (A trace operation was tried in VIPER ' and was rapidly

discarded as being far too unweildy.)

Any legal statement can be used as a probe, or any sequence of
statements. (A little care must of course be exercised when using
structured statements which are always paired e.g. FOR-NEXT.) As
another example, consider the use of some sequence of statements
which constitute some debug or monitoring operation, such as printing
a table or checking a table for consistency. If these statements

were coded as a subroutine, called SUBX for example, they could be

invoked directly with a command

CALL ...../4.14
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CALL SUBX (<parameter list>)

or inserted at any place, or at any number of places in the executing

procedure by
<line no> CALL SUBX (<parameter list>)

The parameter list is optional, and if it was too cumbersome
the necessary data required by the debugging subroutine could be
temporarily placed in a shared (common) data segment. When the
debugging operation is complete both SUBX and the data segment can
be deleted.

Example

The subroutine MESSAGE in the Case Study (page B2.17), has a
local array PM which contains a record of the previous messages
that have occurred in the applications software. This array
need normally only be known locally to MESSAGE, but if a record
was required of these previous messages, a call to a subroutine

executed as a command, thus
CALL PRINT.PM (PM,CPM)

within the context of MESSAGE (which could have been established
with a DEBUG MESSAGE command) would permit this array to be
printed out. This ability to examine the interior data

structures of procedures is a unique property of SVMM.

The interactive mode of operation together with the SVMM permits
the entire language to be used as an extended set of debugging
facilities which can be apﬁlied to any segment which is known to the

system.

Monitoring

Closely related to the debugging mode of operation is the monitoring

of values of variables in the plant data base., In addition to the

direct readings which are obtained from plant instruments and trans=

ducers, there are usually a number of derived variables which contain

information which is of interest to operating staff. A selection of

these ...../4.15



4,15

these variables is usually placed in a particular common area and
made available for examination by means of special keyboard or

display devices. These specialised display devices and their
associated software are an expensive component, however, and may

not be justified in small or experimental installations. In VIPER,

by using the flexible interactive commands and the shared data areas
(if necessary) the value of any variable in the system can be

quickly and simply displayed. While not intended as a substitute

for process operators' display pannels, the facility is an invaluable
aid to the process engineer who invariably needs more data and
information than the process operator, particularly when investigating
a particular process problem or proposed change in processing strategy.
The facility can also be used in the design phase by helping to
determine what facilities are reqﬁired in any proposed hardware
display panels. In VIPER a restricted subset of the debug-mode-

. operations has been provided which has special access attributes
tailored for thése monitoring operations - as described in

section 4.3.2.

Another aspect of monitoring is the direct measurement or
adjustment of process input and output devides. In the case study
for example the routines CDAC (Control Digital Analog Conmverter)
and WCOUT (Write Contact Output) are used to output control values

to particular devices, appearing in the form -
<line no> CALL CDAC (CHAN,VOLTS)
or

<line no> CALL WCOUT (CHAN,STATUS) (STATUS=0 or 1)

and which will write a voltage or set a contact respectively on the

specific channel,

The same statements can be used as commands, however, by
ommitting the line numbers, and will then directly perturb the value

of the designated channel. Together with others, commands of this

form ...../4.16
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form constitute a direct method of monitoring and commissioning
plant instrumentation on-line with a minimum of disturbance to

the system. Used incorrectly, these output commands could of
course cause unwanted disturbances. In VIPER this is prevented by
.permitting a password to be associated with the commands which can

be used to prohibit access to all but authorised users.

Text creation and editing

The methods whereby new program text is created were described in
sections 2.2 and 2.3 and illustrated in tables 2.1 and 2.2. Line
numbers from the basis of editing operations. It has been pointed
out that in a structured language line numbers are not strictly
necessary (CHU, 1976; LAWRENCE, 1975). In VIPER the only statement
which requires a label is the GOTO, which is seldom used in any
event, as was noted in section 4.1.2, If a label (possibly non
numeric) was provided for the target of a GOTO, no line numbers

would be required from a structural point of view. Although super=
ficially minor there is in fact a profound difference in operating
philosophy between line numbered and non-line numbered systems.

In my experience, editing operations are significantly easier and the
overall operating commands simpler when line numbers are used. There
are also good reasons for retaiﬁing line numbers for labels if labels
are required. A GOTO is an undisciplined traﬁsfer of control which
can go anywhere; but if the target is a sequentially numbered line
identifier, it is far easier quickly to follbw the program flow,
particularly when working with a limited display of text onm a CRT
screen, GAINES (1976) has emphasised this latter point and has

stressed the desirability of using line numbers in interactive systems.

Module testing

One of the recommended practices associated with the art of structured

programming, is the independent testing of individual modules of a
task as they are written. Some sophisticatéd software tools have

been developed for this type of operation (e.g. CUNNINGHAM, 1976;
HENDERSON, 1974) particularly when top-down design or stepwise refine=

ment strategies are being used. VIPER makes no specific provision
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for this design procedure but the ease with which modules can be
individually tested, together with the flexible data structures which

simplify the generation and linking of test data, enables this

practice to be carried out using the standard interactive facilities.

Of more importance than a formal design procedure, (which is
possibly of relevance only to large software problems which would
most probably not be coded in VIPER anyway) is the informal
flexibility of being able to test and examine the operétion of a
procedure in a variety of ways before it is finally integrated into

an overall task.

.This type of testing was used extensively in the development of
the software for the case study. All these programs were entered and
tested in Pretoria before being used in the factory in Durban. This
required numerous test programs to provide dummy inputs, outputs and
simulated process data to emable both the scan and control programs

to be exercised.

PROTECTION AND ERROR CONTROL

The most important property of the protection facilities is that they
are applied to executable code (and data) segments and remain in
force on active tasks. The ability of users to modify procedures,
access data areas or execute tasks can therefore be controlled
dynamically. The application of file-system~like protection

facilities to active segments in the system is a unique property of
SVMM, |

The protection mechanisms have two goals - the first is to
provide facilities which are easy to use and the second is to ensure
that they are impossible to circumvent. These two goals conflict
at times so that in practice a modicum of effort must be expended
to achieve the highest level of protection; on the other hand good

protection facilities are always applied by default without any

explicit user action.

There are three aspects of protection and error handling which

are of importance in VIPER:

1. «v.../4.18
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1. The inherent protection provided by the interpreter.

2, Explicit protection provided by the SVMM structures.
3. rEfror control and recovery.

Inherent protection

The protection facilities which are usually provided in most

interpretive systems are as follows:
1. Detection of undefined variables.
2, Array bounds checking.

3. Subroutine call parameter list matching (number of parameters

only).

Checking of arithmetic operations for underflow, overflow and
other illegal states is also usually performed, which, although not

strictly a protection operation, is a useful monitoring function.

Despite the limitation of these three facilities they do perform
a useful service which can save a great deal of time during program

debugging. A short example may help to illustrate this point.

During the commissioning of the FORTRAN version of one of the
control programs of the Casy Study, it was observed that the program
sometimes malfunctioned during override conditions. The fault had
appeared only three times in 6 weeks of continuous running. Attempts
to trace the source of the error required that the program be re=
compiled and loaded with debugging statements added, but each time
this was done, the fault cleared itself. The error was eventually
traced to an undefined variable; the random number that resulted
sometimes being within a suitable range so as not to cause an error,
and which always ended up being reset (cleared) when tﬁe program was
reloaded. An interpretive system would have pinpointed the exact

line and variable which caused the fault on the very first execution

~of the override condition.
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A compiler which notes variables which have not been assigned
values would have helped in this case, but this is not always
possible as a variable may be assigned a value on one path through

a program and not in another.

The point to be noted in connection with this example is not
the length of time that it took to locate the error, nor that the
error was eventually found, but the fact that other errors of this
type may exist in programs which could go undected for long periods
of time (perhaps forever) and yet still be causing a program to

compute incorrectly some of the time.

Array bounds checking is also an important protection function
as it ensures that neither code nor data can be overwritten. Un=
fortunately the checks are sometimes bypassed once an array is
passed as a parameter to a subroutine. This is particularly un=
desirable property, as errors which are propogated across module
boundaries are always more difficult to detect. The comment made
above in connection with undefined variables also applies here: that
the serious problem is not so much the occurrence of the error but
the possibility that it may go undetected. This is a particular
possibility when another data area is overwritten, but can occur

even when code is damaged.

The time consumed by these run—-time checks has been criticised.
The use of a check-out or debugging compiler has been suggested which
introduces overhead only while testing; the debug or checking code
being removed in the production version of the software*. Alternative
methods of reducing the run-time overheads are possible (e.g. BROWN,

1976(c)), but additional work is required in this area. In VIPER

where ...../4.20
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where run—time overhead is not of particular concern, a check 1is

always made for undefined variables and for array bounds overflow.

The testing of subroutine parameter strings for matching
lengths is of limited usefulness, and far more rigorous checking
is required here in order to produce reliable software. The
facilities provided in VIPER for teéting this interface were

described in sectiomn 3.2.4.

Explicit protection

The explicit protection functions provided in VIPER can be divided

into two classes:

1. Segment access, including the control of source text

modifications.

2, The protection of shared and local data areas and of parameter

passing.

Similar mechanisms are used for both classes, but the environ=

ments in which protection is applied are different.

Procedure segment. access

The basic means of controlling access to procedure segments is by
using a password. Before any input is accepted from a hser at a key=
board he must LOGON with an appropriate password. (The LOGON command
is also used by the system manager — known as the MASTER - to

introduce new users. These functions are described in Appendix A2).

A password is not necessarily associated only with a particular
user. Its primary function is to logically partition tasks into sets
of co-operating procedures. The set of procedures and their associated
data elements controlling a particular section of a plant, for example,
could be associated with a particular password, while the modules
of an operator interface could be given another. In this context the
LOGON command identifies a logical subset of procedures which the user

wishes to access. It also serves the usual protection function,

however, ...../4.21
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however, in that if the appropriate password is not specified, no

modifications can be made to a procedure.

There are seven access states and substates of procedures for

which provision has been made:

CHANGE - Password holder only

DEBUG - Password holder only
MONITOR ~ Free — Default mode
~ Password - .Substate specified by ACCESS
command
EXECUTE - Free
- Password
- None - No access

CHANGE, DEBUG and Free-MONITOR modes are entered by typing the name

as a command, e.g.
CHANGE <procedure name>

whereas entry into the substates of EXECUTE and Password-MONITOR

is controlled by ACCESS commands. If the input is already associated
with a particular procedure the procedure name can be omitted. To
move from DEBUG to CHANGE mode, for example, within the same procedure,
the command CHANGE on its own is sufficient. The states DEBUG and
CHANGE are available only to password holders, provided that password
has been validated for these modes. A password has attributes
associa;ed with it which can restrict the states which a user is
allowed to enter, The substates of EXECUTE and MONITOR may permit non-

password holders to perform an operation but the state can only be

changed by the password holder.

1.  CHANGE

In this mode any alteration can be made to a program, even if
the program is executing. It is the basic mode used for
editing programs and with a little care is also useful as

a debugging mode in that permanent changes to the program can

be made immediately.
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DEBUG

This mode possesses a restricted set of the CHANGE mode

access rights. The procedure can be listed, variables examined
and breakpoints and statements inserted, but no existing
statements can be deleted or modified. Statements which are
added while in this mode can later be deleted, however, as they
are flagged as temporary DEBUG statements. Provision had been

made to automatically delete all debug statements once the mode

- is excited but this has not beeniimplemented in VIPER. 1In the

earlier monogrammed PROSIC it had been found that owing to the
size of the programs (300 - 500 lines), debug statements could
be inadvently left in a program. In the modular VIPER, however,
where the average procedure is much shorter (34 lines in the
Case Study) this problem has not occurred. A simple alternative
would be merely to flag any debug statements in the listing of

a procedure.

A very useful function which is available in the debug
mode is a statement execution frequency count. This counts the
number of times that each statement in a procedure has executed
and displays the current number when the procedure is listed -
as illustrated in table 4.2, KNUTH (1971) has stressed the
importance of execution ‘counts and has advocated their use in
all software systems. They are an invaluable aid in determining
the most frequently used parts of a program, and can in |
addition be used to determine which statements have never been
executed. The simplicity and economy of this feature in VIPER -
it takes only about 75 lines of code to implement - illustrates

the versatility of an interpretive system.

MONITOR

This mode permits the state of a procedure to be examined using
commands such as PRINT and LIST, but no statements caﬁ be added
or changed. This restriction ensures that nothing can be done
which interferes with the execution of a procedure and this

mode can therefore be made freely available for process staff to
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use. In view of the general goal of the SVMM to enable users
to co-operate, the default state of MONITOR is free, i.e. any
user can look at a segment which is in 'free monitor' mode. If
it is in the state 'password-monitor', then only a password
holder can perform monitor functions. The.state of a procedure
can of course only be changed by a password holder. The sub-
state 'password-monitor' is specified with an access command,

as shown below.

4, EXECUTE

The access attribute EXECUTE can be in one of three states:
free execute, password execute and no-access. The latter category
ensures that a program is locked out and cannot be executed by
any user., The default state here is password execute, i.e.
" only a password holder can invoke.a-procedure unless the owner

specifically decides to make it freely available.

The state required is specified by an access command:
ACCESS (<procedure name>) = <attribute>

The procedure name can be ommitted if the current procedure
is intended. The attribute is a three bit operator which has

" a numerical value of 0 to 7:

0 - No access

—
1

Password execute
2 - Free execute

4 - Password monitor

Symbolic, instead of numeric, attributes could be provided
as is done for data segment access. (The data segment access
statement is of the form: ACCESS (<data element name>) =
READA/WRITEA where READA and WRITEA are symbolic attributes.)
Symbolic execute attributes have not been provided in VIPER as
the numerical values are considered adequate. It has been found

in practice that these substates are not used frequently in the
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direct applications software, i.e. the software used by the
process staff.  They are, however, useful for controlling access
to software modules which are used for system housekeeping and
management tasks. The numerical equivalents are also used for
display purposes as the access attributes can be used in (

arithmetic expressions e.g.
X = ACCESS (<proc name>)
PRINT X

or even more directly

PRINT ACCESS (<proc name>)

From these access states and the defaults that are used, it is
evident that users are generally unaffected by the password constraints
unless they wish to modify or execute another user's procedures or

permit a user to access their procedures,

Data Access

There are two different aspects of data accessing. The first is
related to specifying the access attribute of a shared data segment
i.e. who can access that segment; the second to the individual '

access states of data items which may be either local array

‘variables, elements of a shared data segment or formal parameters.

Tables 2.2 and 3.2 have illustrated operations of the second type.

The object of protecting shared data segments is to limit

access to those procedures which need to reference the data, granting
only sufficient rights to permit the required operation. The most
general method of performing this access control is to associate a
capability list with each data area which specifies the individual
rights of each accessing procedure. No other procedures would then be
allowed Fo access the segment. The skeleton of such a capability list
exists in the procedure reference descriptions that are necessary on

the data segment descriptor table for linking purposes. (Fig. 3.9.)
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In reviewing the requirements of process control systems in
general, and of the Case Study in particular, it was, however, felt
that this generalised procedure could be unnecessarily complex and
that simpler mechanism would give adequate protection. This works

as follows:

A shared data segment always has a password associated with it.
Originally this is the same as the password of the procedure from
which it was created but this can be changed. The segment can then
be in one of two modes, paséword protected or public access. If it
is password protected only procedures with a matching password can
access it, both read and write operations from other segments being
prohibited. A public segﬁent on the other hand is not password _
protected and is freely accessible to be read by anyone, with the read
only attribute being granted by default. To write into a public
segment, a procedure segment must specifically request access to

either a particular element or to all elements.

To continue to provide a measure of protection to these public

segments, however, it was decided that only procedures with a
matching password would be granted write access. In problems with

complex data structures which are shared between disparate tasks which
do not have the same password, this restriction may lead to cumbersome
use of artificial passwords. This restricted access algorithm was
adequate for the tasks envisaged for VIPER, however, and was attractive
to use because of the simplicity of the commands required to implement
it. Complex commands are likely to discourage the use of the protection

facilities altogether, a point which has been emphasised by PALME
(1976).

In the spirit of VIPER, which is to promote co-operation rather
than to discourage it, the default attributes of shared data segments
are public access, read-only. If password protection is required

it must be specifically requested with a command of the form.

ACCESS (<data segment name>) = 4

Only the password holder can issue the command.
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The other form of the access command
ACCESS (<data item name>) = O/READA/WRITEA/READA+WRITEA

are used to set the access from within a procedure to either a data
segment or a particular data item. Examples of operations of this
type are to be found in Table 2.2 and in many of the Case Study
programs (Appendix B).

The access attributes READA and WRITEA have numeric values,
as in the case of procedure segment access. The numeric equivalent

of the access command above is

~ ACCESS (<data item>) = 0/1/2/3

and the current access state of either a segment or a particular

element can be determined with display commands such as

PRINT ACCESS (<data item name>)

where the value returned is between 0 and 3 :

0 = no access

1 = read access

2 = wyrite access

3 = read and write access.
4.3.3 Error control

There are three types of errors to which attention must be given in an

operating system:

1. Expected errors

These can result from certain commands e.g. RUN <prog name>
where it is known that there is a possibility that the name

may not exist or that it may be in an illegal state (e.g.

already running),

2. Unexpected errors

These usually, but not necessarily, indicate either a logic or

coding error, or a hardware error.

3. ool /0227
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3. | Errors originating from within the operating system itself.
It is generally accepted that a programming system must provide

orderly control of the first type of errors within the programming

language. A particular approach has been recommended for real time

'BASIC systems (PURDUE, 1975) which has been implemented_in at least

two systems (KOPETZ, 1976; BIANCHI, 1976). The action to be taken

-foilowing the occurance of errors of the other two types is a subject

of debate (KOPETZ, 1975; GOODENOUGH,.1975; POPER, 1977) and there
would appear to be no consensus on the action which should be taken
in these situations. The basic point of divergence is whether
automatic recovery from type 2 and 3 errors should be attempted or
whether the task or system in which the error originated should be

halted until the error is either fixed or converted to a type 1 error.

Expected errors

If no action is taken to detect an error the standard procedure is

to print a diagnostic message on a logging device and then halt the
procedure or task where the error originated to prevent it from
executing further. To permit a task to perform its own error handling,
some mechanism must therefore be provided for inhibiting the transfer
to the normal system error handler and forcing a transfer to a user
supplied code sequence. This trapping operation can be performed
either locally or globally. Table 4.3 illustrates these two

different types, the first exampie is from the Hewlett Packard RTE

FORTRAN and the second is the recommended approach in real time BASIC
(PURDUE, 1975; ESONE, 1977).

In VIPER the global RTE-B approach was adopted although implemented
some what differently to avoid the use of an instructured GOTO. The
statements ERROR-ERETURN are provided as a stfuctured pair which can
be unbedded anywhere in a procedure (but usually either within the
initialization section or at the end of the procedure). Table 4.4
illustrates the use of these statements. From the example it can
be seen that although these facilities do provide the necessary control,

they are somewhat clumsy to use. It is also not clear whether they

are ...../4.28
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are adequate in a structured programming environment where it may
be necessary to report errors back up to higher level module. This

is a subject which requires further investigation and development.

Unexpected errors

KOPETZ (1975) has argued for the systematic handling and attempt at
recovery from even unexpected errors such as arithmetic underflow
and overflow, divide checks and certain hardware errors. In the
discussion which followed his papef however, it was clear that
there is no consensus on this point and that many workers in the field v
are of the opinion that no automatic recovery should be attempted in
these situations. In the design'of the language EUCLID, POPEK et él
(1977) for example, have noted that "we know of no efficient general
mechanisms by which software can recover from unanticipated failures
of current hardware. Anticipated conditions can be dealt with using
the normal constructs of the language; most proposals for providing
special mechanisms for exception handling would add considerable
complexity to the language'. The occurence of the error should be
clearly noted of course, and every assistance should be given to the
programmer to assist him in determining the location and cause of the

error.

In my own experience there is a real danger, if the first
"KOPETZ" approach is adopted, that the error handling code can become
as complex, as the original programming. This additional code not
only adds to the cost of software, but is in itself a possible source
of error; adding the additional complication of handling errors
within error handling code. In considering the actual process control
software with which I have worked it is difficult to see what this
unexpected error handling could hope to achieve. More fundamentally,
and far more serious there would appear to be a definite pdssibility
that attempts at automatic recovery would allow (or force) a task to
continue which was executing incorrectly. 1In a process control
enviromment it would appear better to stop the task and nofify the

operator to allow him to implement appropriate back-up procedﬁres.
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VIPER is tﬁerefore a supporfer of the second approach where any
error which is not expected is logged, with the name of the procedure
and the line number where the error occurred indicated. The
offending procedure is removed from the ready list and flagged as
containing an error to prevent repeated execution (and repeated
printout) in case the procedure is part of a task which is running

periodically¥®.

4.3.3.3 System errors

An operating system should operate without errors, but this is seldom
achieved in practice. The two approaches outlined aboﬁe can be taken
here also, i.e. error recovery and error abort. Error recovery systems
are of value particularly in large complex operating systems which
consist of many independant modules, or which use a kernel approach.

As VIPER is a relatively small system which does not have a kernel and
which is entirely memory resident, the second approach was adopted,

i.e. the system is halted on the occurrence of the error.

Every effort must therefore be made to locate and fix any errors
which do occur and the system itself should assist in the earliest
possible detection of any errors, particularly when the system is
being developed. The time and space overheads of vigorous self-
testing and checking are of little consequence at this stage and it has
been found that these tests can locate incipient errors which may

otherwise only manifest themselves at a later stage.

In VIPER for example, the double-linked lists that are used for
both the physical and logical structures, and the very well-defined
structure of each segment, permit regorous tests of the structural
integrity of the system to be performed. These checks are always
performed, for example, when the structure has been altered in any
way, and are invaluable in preventing an error from propagating its

ill effects before being detected.

There ...../4.30
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This algorithm may also be said to work on the assumption that it is less
embarrassing to have a task stop at midnight than it is to have the computer

room knee-deep in paper in the morning. The former has been known to pass
unnoticed, the latter, never!



A

4,30

There are good opportunities for error recovery in the SVMM
in that if any one pointer is found to be in error, it can be
corrected owing to the double-linked nature of all lists. 1In
VIPER however, the redundant information is used for assertion
cheéking in a hanner analogous to that recommended by RAMAMOORTHY
(1975) and POPEK (1977). At various points in the executive
(particularly at points where the structure has been modified) it

is asserted that a given structure or set of relationships exists.

By verifying that the assertion is correct, the computation can be

allowed to proceed with a high degree of confidence that the preceding

computation was performed correctly. In the development of the

SVMM system these assertion checks have proved to be an invaluable

debugging aid and they are considered to be a vital element of the

error-detection features of the executive.

SYNCRONIZATION

The semaphone principle developed by DIJKSTRA (1968) is the basic
building block for the synchronization of processes and the control
of access to shared data. It is, however, an awkward element to

use in real-timeé programming for several reasons (KYLSTRA, 1977).

1, If a lock (wait) operation is encountered in the program text
it is not immediately clear whether or not it is an entry to
a critical section (in which case it should be followed by

a free (signal) operation further on).

2. If it is the entry to a critical section it may not be

immediately obvious from the text what the shared variables

are.

3. It is difficult to check whether all critical sections are

- properly protected by a semaphone.

4, It is difficult to check for the possibility of deadlock.

For these reasons other language constructs have been proposed

such as the "REGION" construct (HANSEN, 1973) the "MONITOR" concept

(HOARE, ...../4.31
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(HOARE, 1974) and "KNOWS" clauses (GORD, 1976). These facilities can
be implemented with simple semaphones or with more general constructs

such as those proposed by SCHROTT (1976) or RADUE (1975).

_ HOARE's monitor concept has been noted to be one of the most
general and secure structures, but it would appear to be more suitable
for operating system construction than for an application oriented
software system like VIPER, Reviewing the synchronization and
protection requirements of such systems, the "REGION" comstruct was
selected as the one which appeared most natural for use with the shared
data segments which are used so extensively in VIPER. This operates

as fdllows:

Civen a shared data area which is declared with a statement
COMMON <com name>, <data list>

a critical region where mutually exclusive operations are required

is defined by:

REGION <com name>
<eritical region sLatements>

END REGION <com name>

Two or more procedures declaring an area in this way are guaranteed
to be mutually exclusive in the critical region. The REGION statement
sets a semaphone associated with the data area and can only proceed
to execute the critical region statements if the semaphone is not
already locked., If the semaphone is locked the procedure is suspended

and waits for the semaphone to be cleared (unlocked) by an END
REGION statement. '

Theuse of a REGION-ENDREGION pair ensures that the operating
system can check that no area is inadvently left locked. The
indenting that is performed between the pair‘also ensufes that the
region which is critical is immediately apparant. Examples of the
use of the REGION - ENDREGION construction are given in Table 2.2
and in a number of the programs of the case study, Appendix B.2

pages B2.5, B2.14, B2.20 and B2.21.
‘ Other ...../4.32



4.5

4,32

Other syncronization operations are occasionally required

which do not fit naturally within the region conmstruct. Two operations

LOCK <com name>

FREE <com name>
are therefore provided for these purposes. One use of these
statements, for example, is during interactive operations. If a
data structure was to be examined using the on-line interactive DEBUG
or MONITOR operations it may be desirable to prohibit>modification
of the data while the debug operations was in progress. Typing the
command

LOCK <com name>
would then set (lock) the semaphone associated with the data area
<com name> and prevent any procedure from entering a corresponding
critical section defined by the REGION ENDREGION statements. When
the debugging operations were complete, the data area could be
released with the command

_FREE <com name>
Any task which had been suspended waiting to enter the critical

region would then be reactivated to continue processing.

. These simple but powerful facilities assist in the modular
decomposition of tasks into separate and independént sub-tasks which
are much simpler to code and debug. A particularly good example.of
this is to found in the case study where the FORTRAN program SERVO
was decomposed into the three tasks SERVOTIP, SERVO.HOUR and ‘
SERVO.8.HOUR. (These programs monitor and record the operation of a
servo-balance scale unit which weighs the raw sugar entering the
refinery). Not only are the VIPER programs easier to write, read and
debug, but they require only 760 words to be used routinely in memory

on each tip of the scale versus 5328 in the FORTRAN version. (Table
6.1).

DOCUMENTAT ION

The importance of good documentation in programming systems has been
stressed by many workers in a range of programming areas, from

-commercial ...../4.33
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commercial applications to real-time systems programming.

(DE BALBINE, 1975; GILB, 1975; HOLT, 1975; KERNIGHAN, 1973,
1977; McMONIGALL, 1974; NEELY, 1976; NEWMAN, 1974;

OSTERWELL, 1976; SCOWEN, 1974). The purpose of documentation is

to allow programs to be read and understood both by their original

implementors and by others,because real programs have been noted
to.be subject to a continual flow of changes and improvements over

their lifetime.

This is particularly true of process control systems where
changés in process operating conditions or strategy can frequently
require changes in associated software over a life of five to twenty
years. Considering the documentation requirements of VIPER, it is
' apparent that they are even more rigorous because VIPER is
designed particularly for experimental or investigatory work, an
environment where the maintenance of good documentation is as

difficult as it is important.

An additional factor militating against good program
documentation in VIPER is its interpretive nature. Because of the
incremental compilation into internal meta-code, source text is never
stored and text layout to improve program visibility cannot be used
as it can with compiler oriented languages. BASIC, on which VIPER
is based, is also notoriously difficult to document and read because
of the clumsy comment facilities and lack of syntactic structufe.
(The only thing worse than BASIC is APL which has been strongly
criticised, KERNIGHAN, 1973; DIJKSTRA, 1972.) Special effort
must therefore be made to assist and encourage the documentation of

interpretive programs.

A second aspect of documentation which is of importance,
particularly in real-time systems, is the documentation of the overall
structure of a task. This is concerned with the relationships between
programs and the hierarchy of progréms and data structures which
constitute a task. This aspect has been termed system documentation

as apposed to program documentation which was commented on above.

4.5.1 ..../4.34
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Program documentation

There are two aspects of program documentation which contribute

to the clarity of program code:

1. Language structure.

2. Comment facilities.

Language structure

A structured language is one of the most important aids to program
documentation and is absolutely essential to enable interpretive
systems to back list (decompile) a program in an intelligible format.
This aspect was commented on in section 4.1.2 and an example of the
VIPER facilities giveﬁ in Table 4.1. There is a strong case for all
interpretive systems which perform the backlisting of programs to
use structured languages, for the sake of documentation if nothing

else.

A second aspect of language structure is related to variable and
procedure naming conventions. The restrictions in BASIC (a letter
and a digit for simple variables and a letter only for array
variables) are atrocious and quite unnecessary, as an extension of
PROSIC has shown (HEHER, 1976 (b)). In VIPER, all names, including
variables, data areas and procedure names can be up to 16 characters
in length. (This length restriction is arbitrary and arose purely
out of the desire to pack additional information in the 16 bit de=
scription head, as shown in Figs. 3.1 and 3.3,) These long names are
an invaluable aid to clear documentation, as can be seen from the
programs in Appendix B, and reduce the requirement for trivial
comments to explain the meaning of variables. The increase in the
size of the symbol table as a result of the longer names is of minor
consequence compared with the benefits accruing from their use. (In
the case study it is estimated that using only short one or two

letter names would save approximately 10%Z in the total space required

by the programs.)
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Another aspect of language structure which has invited comment
is that of conciseness. (KERNIGHAN, 1973). FORTRAN, and to a lesser
extent, BASIC, suffer from a lack of conciseness which results in
program modules being physically larger than necessary. As the
ease with which a program module can be understood is related to its
size there is an incentive to allow more compact representations.

"short and clear', is not to

(Conciseness, in the dictionary sense of
bé confused with the sententious contraction of a language like APL
which can reduce a page of code to a single incomprehensible line.)
Considering the structure of a large number of FORTRAN programs,
KNUTH (1971) has shown that nearly 507 of the statements in typical
programs are assignments, 60 to 707 of which are simple assignments
with one argument. An experiment was therefore made in VIPER with
providing multiple assignments on one line; numerous examples of
which are to found in the programs in the case study. The average
length of fourteen of these programs was measured to be 48 lines
compared with 73 lines for their FORTRAN equivalents (comments
excluded, see Table 6.1). A major portion of the contraction is

attributable to the compound assignment statements.

As the assignment statement does not affect the program flow,
this conciseness does not detract from program clarity. It is the
control structures IF-FOR-CASE and the like which determine the flow
and these are pivots on which the understanding of a program hinges;
contracting the "straight-line" code enhances the lucidity of the
control structures. The comment conventions adopted in VIPER which

are discussed in the next paragraph also contribute to maintaining

the conciseness of programs.

4,5.1.2 Comment facilities

The importance of comments in program documentation has been stressed

by SCOWEN, (1974); KERNIGHAN (1973, 1977) and HOARE (1975). All
languages make provision for commeﬁts in one form of another, but the
point these authors make is that the actual syntactical forms used

are of crucial importance. The ease with which comments can be inserted,

and their readability once inserted, are an important factor in
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determining the extent to which the facilities will be used by

. programmers.

End-of-line comments are especially recommended as they are
easily inserted, are directly associated with a line of code, and
can be made highly visible. End-of-line comments were first tried
out in PROSIC where they were combined with a horizontal tabulation
facility to permit the construction of tabular comment areas. This
achieved the first two goals above, but did not achieve a high degree
of visibility. 1In VIPER with the longer assignment statement and the
indenting, this visibility was likely to be even worse, so the
horizontal tabulation was replaced by a simple right justification
of all end-of-line comments. This appears to achieve the
desired visibility without detracting from the ease of insertionm.
The right justification has been recommended by NEELY (1976) in a
description of a structured FORTRAN preprocessor, but it should be
noted that the right justification is tedious and difficult to achieve
in a compiler oriented system. The line must first be typed, its
length determined and then moved to the right with a text editor,
an operation which destroys the essential simplicity of use. In
VIPER the comment is inserted immediately after the last character
of code, the start of the comment being demarcated by a control
character. It is in the backlisting operation where the length
of the comment can be determined apriori, that the right justification

takes place. Table 4.1 illustrates this mode of operation.

One of the severe problems associated with commenting inter=
pretive prbgrams is that the comments remain in memory together with
the code and therefore use memory space which would otherwise be
available for code segments. As the comments in a well documented
program may take nearly as much space as the code, this could double
the swapping rate in a situation where all the segments cannot fit
into memory. This is regrettable because the comment code is only
required when the program is listed (decompiled), an event which
occurs relatively infrequently. The knowledge of this space penalty

would also deter the programmer from adding comments freely.
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A simple and elegant solution is available using the SVMM
facilities. The comments can be kept in a separate segment which
could normally be resident on a bulk storage device and would only
be swapped into memory for either listing or updating operations,
Only a minimal space penalty would therefore be incurred in adding
as many comments as were necessary. Fig. 7.1 outlines a structure

in which this concept is incorporated.

(This facility has not, however, been'implemented in VIPER
because of the very small memory which was available for the initial
development work on the case study programs. The code to handle this
separate manipulation of comment segments .was sketched out and was
estimated to take 200 to 250 words which just could not be spared on

the 16K computer that was in use at that time.)

System documentation

Typical real-time programmiﬁg tasks are made up out of a number of
independent modules which operate on one or more data bases. In
maintaining and operating these systems it is important to understand
the relationships between the various modules of the task, including
information such as which modules call others (the hierarchial relation=
ship) and which modules access particular data areas. The relation=
ships amongst modules is of importance because the interface amongst
them is known to be one of the most troublesome and error prone in

real-time programming.

A number of software tools have been proposed and developed for
the documentation and verification task (DE BALBINE, 1975;
McMONIGALL, 1974; OSTERWELL, 1976; RYDER, 1974). The primary
assumption of these documentation systems is that "the only precise
and by definition up-to-date source of internal documentation for most
software in existence today lies in the progréms themselves"
(DE BALBINE, 1975). The purpose of the system documentation exercise
is therefore to extract from the source listing of the program one or

more of the following items of information:
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1. A list of all main programs and the subroutines (modules)

which they reference (applied recursively).

2. A list of all common data areas and the modules which reference
them.
3. Checks and diagnostics on illegal references to common data

areas (mismatched sizes or data types).

4. Checks and diagnoétics on actual/formal parameter lists in=
cluding verification of parameter type matching and illegal

references.

5.  Tests for undefined variable references; redefined variables

without use; and illegal or dangerous type usage.

6. Cross reference lists of local and global variables and labels.

In all the systems mentioned in the literature, these functions are
performed off-line by separate processing programs operating on the
source listing of the task to be processed. They are typically very
large programs, in the range 10 000 to 25 000 high level language
statements, which illustrates the complexity of producing this

information from source listings.

In VIPER items 3, 4 and 5 are tested dynamically at execution
time (in addition to other checks and protection functions described
earlier). Furthermore the information reqdired for items 1, 2 and 6

is available and readily accessible within the descriptor tables of

the segments.

Only one documentation module has been included in VIPER to
date, but is provides a powerful means of analyzing the overall
structure of the task. The output of this documentation aid for the

programs of the case study is shown in Fig. 4.5.

For each module in the system the following information is

provided}

1. Module name and the name of its current father, if any.
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2. A list of all the external modules (subroutines and programs)
to which reference is made. Each entry is also flagged (with a*)
to indicate whether or not it is currently linked to this

module.

3. A list of all the common data areas which are referenced, with

a flag as abéve.

4, Schedule and status bit information which describes the current

state of the program.

Each common data area is also listed together with information
on its size and all modules which reference this area. Each module
name entry on this list is also flagged as above if it is currently

linked to the data area in question.

A list of all the assembly language subroutines which are

available in the system can also be provided.

The important point about this information is that it is obtained

dynamically on line and represents the actual state of the syétem

at that moment.

The facility is invoked with a statement

CALL MAP (<param>)

which, as always, can be used either as a program statement or as
a command. The parameter <param> is used as a qualifier to obtain

partial listings of information:

param = 0 — list and map all modules
< 0 - status information only, no
cross reference list

PASSWORD ( proc name )

- provide mapping and status information only
for those modules which match the password of

the specified procedure

(<proc name>) optional, if ommitted current assumed).

A cross reference list of local variables used in a procedure

is not provided in VIPER, but could easily be implemented as the

information ...../4.40
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information is feadily available. 1In the case study, it was found
that the relatively small size of the program modules made a
cross reference virtually unnecessary. Any variable could be

located by inspection within a short space of time.
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TABLE 4.1 AN EXAMPLE OF THE STRUCTURING OPERATIONS

#PROC STRUCTURE.TEST

#1 FPROC

#10 PRINT "ZIMPLE =TRUCTURE TEST"

#20 TTART END OF IWITIALIZATIONM CODE

#100 FOR I=1 7O 7 MAIM LOOP

#110 PRINT I

#11_20 IF I<3 EIMARY IF OW ITZ OuH FOR YISIBILITY

#130 THEN PRINT " T<3", THEM2ELZE AHD UMHARY TF CAM OHLY
#1400 ELEZE PRIMT " I "s BE FOLLOWED BY A HNOM-COWNTROL
#1550 IF I=4 PRINT " I=4"y ZTM OM THE ZAME LIHE

EHMDIF

IF I¥»=5

THEH THE FOLLOWIMG COMTROL =TM MUET BRE OM B HEW LINE
0N FOR =1 TO 4 .
CATE J=1
0 FRIMNT
CAZE I=6
FRIMT
CRZE I=
FRINT *  CRSE I=7",

EMDCAHZE T EMD OF IMMER CRAZE

#3200 CASE L2 AMD Ix5 |DNPDHHD CRZE COMDITIONs INDEX=J

i

#2110 PRIMT © CAZE J:2 AMD TS
#3800 ENDCASE EMD UF OUTER CAZE
EPF‘UP T OIN LINE 320 OF STRUCTURE.TEST (Example of syntax error handling.)

4OEND OF OUTER CHSE

EMIIF
PRINT " "

HEXT I EMD OF tOOFs LIME WO LINMKE FOR =TH
EMD FROC MAME ADDED BY SYEITEM

WIPER  RENY AT 1E2-04-78  20:53:101.7 1570472
1 PROCEDURE ZTRUCTURE.TE:LT

10 PRIMT "ZIMFLE :ETRUCTURE TEST"

20 2TART STRUCTURE. TEST _ EHD OF INITIALIZATION CODE
tog FOR I=t TO 7 - MAIM LOOP
1in PRINT I
120 IF T3 . EIMARY IF OH ITZ DOuk FORF VISIBILITY
120 THEN FRINT " THEH.ELSE AND UrARY YTF CAM OMLY

146 ELZE PRINT ChE EE FDLLDWED EY ® MON-COMTROL
150 IF I=4 PRINT " I=4"» ZTM O THE ZAME LIME
150 ENDIF

20nn IF I:=5

cln THEM THE FOLLOWIMG COMTROL STM MUST BE OM A MEW LIME

=an FOR J=1 70 4

o330 CHZE J=1 OUTER CRSE INDEX=.l

c4n PRIMT " CRAZE d=1",

250 CHZE I=& HEZTED CHZE IMDER=I

250 I=i2"s : :

270 CHRE

230 3 I=F"s

o2an ENDCHS EMI' OF INMER CRIE

300 CRZE J:2 AND I COMPOUNMT CAZE COMDITIOM. IMDEX=1

310 FRIMT * AT .>2 AMND T26" :

320 EMOCHZE . ' EHMD DF QUTER CARSE

A0 HEXT J .

L] ERDIF

E3=11] FPRIMNT "

$10 HEXT 1 1ng ' EHD OF LOOFs LIME MDD LINKZ FOR 3TH

293 END STRUCTURE.TEST FROC NRME ATIOED EY =YETEM
RN .

,IHFLE ETRUCTURE TEET

1

3

=) »

[ CHZE I=6 e .

7 CRZE I=VY LCAZE J4-2 AND I*6  CASE J*2 AMD Ix6 e
RN

EEa g

3

El

5 .

[ CAZE I=5 o

T CRZE I=F CAZE J>*2 ARD Ix& CRZE Jx2 AND I*5 e
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TABLE 4.2 STATEMENT EXECUTION COUNT

TRACEON
#RUH
1 I<3 e

CRZE J:2 AMHD I:6

[

CRZE J:>2 AMD I>

[ U W B STV gV

4
(]

VIPER REY RV 12-04-.F72 21:03:41.5 123-04-7

# 1 PROCEDURE STRUCTURE.TEST
10 PRINT "SIMPLE STRUCTURE TEST"
20 ITART STRUCTURE.TEST
100 FOR I=1 7O 7
110 PRINT I,
120 IF 143
120 THEM PRINT " T3,
1410 ELZE PRINT I»=3"s
150 IF I=4 PRINT " I=4",
160 ENDIF
200 IF I:=5
210 THEM
220 FOF J=1 TO 4
230 CASE =1
240 PRINT * CRAZE J=1",
esu CASE I=8
=] PRINT " CRSE I=6"s
270 CAZE I=7
230 PRINT * CAZE I=7"»
=3=T1] EMDCAZE 1
200 CRZE J:2 AMD 1:6
=1n PRIMT " CRSE J:2 AMD I:8",
3z ENDCAZE  J
330 HE=T 14 2210
240 EMDIF
350 PRINT *  e"
400 MEXT I 100
293 EMD TRUCTURE.TEST

TRARCEDFF

46
T

Lol =d =g 00 D0 0 G = T e G0 P G0 00 =) = O G T = =] e e
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TABLE 4.3 ERROR HANDLING PRACTICES

(a) FORTRAN: Example of local error handling (Hewlett Packard RTE FORTRAN)
1. No user error handling (all errors handled by system)
CALL EXEC (CODE, <parameter list>)
2. User error control
CALL EXEC (100000B+CODE, <parameter list>)
GOTO <label>
<normal code>
<label> <error handling code>
(b) REAL-TIME BASIC (KOPETZ,1976, BIANCHI 1976)

<gstatements>

ON ERROR GOTO <error linme no.>
<statements>

<error line no> <error handling statements>

RESUME| RESUME <line no> | GOTO SYSTEM

Notes:

1. The ON ERROR GOTO is an executable statement and can appear
anywhere in the program body. On occurrence of an error, control
is transferred to the last specified <error line no.>

2. RESUME restarts execution at the line causing the errvor,

3. GOTO SYSTEM transfers control to the operating system.
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TABLE 4.4 AN ERROR HANDLING EXAMPLE

VIPER REY AT 12-04472 11:01:5%.4 19-04-73

1 PROCEDURE ZTARRTLF
S COMMON ZFE MADC«E=ZDELT
&0 LET RCCEERE - =RERDA+WRITER .
T0 LET HADC=Z0 i3 EZ=30 M0 OF ARDC CHAMMELZ~TIZE OF ENG COMMON
20 LET DELT=320 & DELTL;=F
a0 CALL TINEwaHF MOMTH DH.-HUHF MIMe ZECD . ' RERD CUREREMHT TIME
100 RUM SCAMCE EVERY DELTCE S .
110 RLIH SLHHHHL EYERY DELT hEL
120 FRUM WATCH.DODG EYERY DELT ZECE
130 RUM ZERYOROURE EVERY 1 HOUR AT HOLURE+1:0: 0 REUN EYERY HOUR OH THE HOUR
140 LET MHESTIHIFT=S0 THTHOUR S0 45 . ZHIFTEZ ARE AT 22:00. 0600 AMO id4z00n
150 RUON SERVYOSKHOUE EVERY & HOUWRE AT MHESTIHIFT: N
160 RUM FILTER.REFORT EMERY 2 HOURTZ AT MEATIHIFT:D
170 PRIMYT "HULETTE FACTORY =OFTHARFE ZTRETED UFP AT™ &
130 CARLL FPTRD FRIWT TIME AMD DRTE TO LOG ZTARTUR
190 EMHD STRRTUR ’ :

IN0 ERROR

z10 CALL ERRORZHILIHE s ERMOM FICK UF %TM HO AHD ERROR HO
320 IF ERHO=2%1 OFR ERMO=c22 251=PROC MOT FOURD

23o=ILLERAL ETATUS

230 THEM _ PRIMT ERROR DIRGHOZTIC
235 IF ERMO=251 FRIMT "PROG MOT FOUMHT: .

F36 IF ERMO=222 PRIMT "ILLEGRL STATUZ.

=40 IF LIME=1Z0 PRIMT "ZERVOROUR s

350 IF LIME=150 FPRINT "SERYOSHOUR s

0 IF LIME=160 PRINT "FILTEF.MONITOR "

AV0 IF LIME<1Z20 FPRINT “ERROR AT LINE " 3 LIME" «PROS HOT FOUMD”

400 ELZE FRIMT "ERROR " 5 ERMO" IH LIME " § LIME" [OF =TRRETUP®

410 EHTIIF
S00 ERET COMTINUE FROCEZZIMG AT MEXT LINE
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PABLE 4.5 SYSTEM DOCUMENTATION EXAMPLE
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YIFER REY A7 12

MAZTER 2
ExT:LIMERATIO* MAFe
- cOmMa:
FROCEDUIRES:
LIMERRTIO CMAZTERY
E“T:MEZZRAGE» CDRACH
COM:SFECSe YOLTS+ EHG+ EITIZe GREFLOWe
CLELOW 2
EXT:FILTERCOEF® MEZZAGE CDRC LIMERATIO
COM: SFECESe EMce BITEZe
GAREZFLOWA O
EXT:MESZREE CDRC
COM:SPECSe EMGe EBITZe SREZFLOWS
BREFLOWC
EXT:MEZZAGE CDARLC
- COM:EZPECSs ENGe EITZe GARZFLOW
SATFLOW
EXT:FILTERCDOEF MEZIZRGE CAMBLC
SCOM: ZPECTe EMGe YOLTEe BITE+
REMELT o3 :
EAT:DECLE» MEZZAGE CAMAC
COM:EHIS+ BITS+ ZPECE+

SUBROUTIMHES:

MESZZRAGE <L IMERATION
EXT:FRINT.MEZZREE TIME
cOaMs

CAMAL CCDACD
EAT:
cOma

FILTERCOEF <CLFLOW?
ExT:

ComM:

CDRC CLIMERRTION
EXT:TECLRE» CRMACe
MUl H

COMmMoMs s

ZPECE v & STARTUR SCAMADD EMGUMITE EWMGLIMITE ZATFLOMe FEMELTe
CLFLOMe BREZFLOMCe SATFLOWA+ LIMERATIO*

YOLTE o3 &0 TCAMADD EMGUNITE ZATFLOWe LIMERATIOS

EMG o3 A0 EMGLHITY ZATFLOWMe REMELTe CLFLOlie SAZFLOWMCe SATZFLOWA+
LIMERATIO

EHGLIM <% 1g0 EMEUMHITE EMGELIMITE

BIT= ©» 12 ZATFLOWs RFREMELTe CLFLOMe GAREZFLOMWC+ GRTIFLOUA® LIMFRATIO

GRIFLOW <» 10 GRIFLOVCeS GHRIFLOMA+ UIMERATIOw
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CHAPTER 5

PERFORMANCE

There are a variety of criteria which can be applied to gauge the performance

of a real-time system. These include both time factors and resource

utilization. Time factors which may be of importance include throughput, response
time to asynchronous or external events and task completion deadlines (deadline
scheduling). Local memory, bulk storage and back—up storage requirements are

examples of resources whose utilization must be considered.

The criteria which is considered almost exclusively in this chapter is
that of throughput, i.e. how fast can the system perform its tasks. The reason
for restricting attention primarily to this one area, is the interpretive mode
of operation., There are many misconceptions concerning the performance of
interpreters and the purpose of this chapter is to clearly indicate the capabilities
and limitations of interpretive systems in general, and of VIPER in particular.
A second reason for restricting attention to the execution time performance is
that the other time criteria are of less importance to an interactive user-oriented

system like VIPER.

The execution time of programs, which determines the throughput, is
important in real-time systems for a élightly different reason than in batch
oriented systems. In batch systems, if programs execute 20% faster, then the
system can possibly achieve a 20% higher throughput and consequent increase in
revenue i.e. achieving a faster execution time has a direct monetary incentive.

In real-time process control applications however the CPU is typically busy only
a certain proportion of the time on a cyclic basis; which is reportedly as low
as 5% even in a relatively large installation (GALLIER, 1965). Provided the total
set of cyclic tasks is executed in time it is therefore irrelevant whether the
CPU is busy 5% or 90%Z of the time.

The execution time is important, however, to the extent that it determines
the range of tasks to which the system can be applied. This is particularly true
for VIPER because its modular properties permit it to be applied to a wi&er class
of problems than simple BASIC-type systems. It has been observed that in certain
cases BASIC is limited more by its structural inadequacies than by its execution

time ...../5.2
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time penalty.

This chapter is therefore primarily concerned with the execution time of

VIPER, both in comparison with other BASIC-type systems and in comparison with

systems executing in-line compiled or assembled code. Certain measurements which

have been made to demonstrate the extent to which the present execution times

of VIPER can be improved, are also reported. Discussion of other performance

criteria such as memory and bulk storage requirements is defered to chapter 6.

There are four techniques which can be used to evaluate the performance

of a software system:

1.

Micro-analysis. This technique examines and compares the performance
of individual operations and statements. While useful in under=
standing the operation of system and in making comparisons between
closely related systems, it is of little use when comparing dis=

similar systems.

Macro-analysis, which is concerned with the performance of groups of
statements which constitute a task, but still in abstract terms, i.e.

not related to any particular program or task.

Bench marks, which are used directly to compare the performance of

" the same program in two different systems. The difficulty of per=

forming an accurate, unbiased evaluation of the relative performance
of interpretive systems has been noted by HAMMOND, (1977); LIENTZ,
(1976) and HAASE (1976, due to the strong dependencies on the type
and structure of the programs used for the benchmarks. To quote
HAMMOND "In order to compare the two compilers and the interpreter,
they must be made to process a typical ‘BASIC program. Unfortunately
a typical BASIC program is as difficult to find as the soap powdef't

advertiser's typical housewife, and as unconvincing if found."
Case studies, which consider a typical application of the system or

systems under consideration and consider their overall performance

in performing the tasks which are required in the application.

In ...../5.3
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In performing an evaluation of VIPER and of Software Virtual Memory

Management, all four techniques mentioned above have been applied. The results

of particular measurements in categories | and 2 are presented in Table 5.1 and

the results of some simple benchmarks in table 5.2. The results of a case study

are presented in chapter 6.

PERFORMANCE IN COMPARISON WITH INTERPRETIVE SYSTEMS

Comparison with VARIAN BASIC and PROSIC

VIPER was derived from a BASIC interpreter, and the essential inter=
pretive processes have not been changed significantly. The first
two columns of data in table 5.1 show the results of measurements
on PROSIC and VIPER on the VARIAN 620i computer. Measurements on the
Varian BASIC are not shown because they are identical to those for
PROSIC. From these figures it can be seen that for simple operations
in small programs, VIPER and PROSIC are almost identical in speed.
This shows that the extra mapping and protection functions in SVMM

incur only a small overhead.

One of the most notable differences between VIPER and PROSIC,
is that in PROSIC the time to execute the control statements FOR-NEXT,
IF and GOTO increases as the size of the program increases. This has
a severe affect on the performance of medium to large programs, and

in the 200 - 300 statement range VIPER is likely to be two or three
times faster than PROSIC.

Four factors contribute to this improvement:

1. Task partitioning, In VIPER the partitioning of a task into a

number of independent procedures reduces the time taken to
perform typical branching operations. A 500 line task, for
example, executes in less than half the time when partitioned
into procedures with an average size of 50 lines. (A similar
improvement can be obtained in BASIC by performing a partial
compilation of the program before execution but this restricts

the interactive facilities.)

2. .00 /5.4
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2. Structural linking. Using special descriptors on the descriptor

table, fig. 3.3(e), for structural linking, an improvement in
the performance of individual statements can be obtained.
Compared to PROSIC, in VIPER the FOR-NEXT pair for example,
executes in half the time in a 70 statement program and in 107
the time in a 600 statement program. The figures in group I

of Table 5.1 illustrate this trend.

3. Structured programming. VIPER uses a structured language where

the program flow follows well defined paths, a property which can
be used to reduce the time taken for branching operations.

This effect is shown in Table 5.1 groups 5 and 6.

4. Formal-actual parameter mapping. The linking structures used in

SVMM significantly reduce the time taken for formal parameter
referencing, as shown in group 8 of Table 5.1. This aspect was

also discussed in section 3.2.4.

The mapping and protection of references to shared data items
defined by COMMON, are also performed efficiently as shown by the
figures in group 9 of Table 5.1. The increase in execution time ranges
from 2,5 to 6,9%, which is minimal in view of the importance of

protecting this type of data.

One of the specific claims of this thesis is therefore that
Software Virtual Memory Management techniques can be used to enhance
the performance of interpretive systems and that the overhead
introduced by the virtual memory mapping and protection operations is

acceptable in view of the overall improvement in performance which is

obtainable.

In the fourth and fifth columns of table 5.1 measurements of
VIPER's performance on MIKROV, the microprocessor based Varian
emulator (VAN AARDT, 1977), are tabulated. The measurements in
column four were obtained using the same version of VIPER as was run

on the Varian 620i and the improvements directly reflect the higher

speed of the emulator.

Column ...../5.5
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Column five of table 5.1, and some results in Tables 5.2(a)
and (b); show the result of measurements on VIPER using a different
interpretive structure. The evaluator section of the interpreter
was rewritten to handle code in Polish form and in addition, floating
point firmware was used. The purpose of these tests was to obtain
some idea of the performance improvement which could be obtained
using readily available hardware and software enhancements. The
syntactical routines were not modified for these tests and the
various short test sequences were hand translated from infix to Polish
form. (The rewriting of the syntactical and back-listing routines
to compile and decompile to and from the Polish representation is
being delayed pending the availability of a high level systems
programming language. This aspect is discussed further in chapter 7.)
The measurements which were obtained in this way indicate clearly
the advantage of these enhancements. It should also be noted that
these figures are conservétive, as a further 20 to 30Z improvement
is obtainable by simplifying the code used in the initialization and
control of the interpretive operation. The improvements which it is
thought can be reasonably obtained are documented in Table 5.3. The
overall improvement which is noted in Tables 5.1 and 5.2 is about
3 to 1 with a factor of 4 or 5 to 1 being achievable with this
"streamlining" operation. A point which was observed in making
these measurements, is that as the time spent on the floating point
arithmetic and on the precedence determination operations is
reduced, the proportion of the time taken by the virtual memory
mapping and protection function increases. This effect is shown in
Table 5.3. The example shown in the table is the worst case, as when
floating point operations are involved, the mapping operations take

proportionally less time. An estimate of this effect is shown in the

second half of Table 5.3.

This data illustrates that there is a limit to the performance
which can be attained when using software virtual memory management.
Further improvements could only be obtained by moving some of the
mapping and stack operations into firmware. This is one of the
intrinsic limitations of software virtual memory management, and in

applications where executing speed is of primary importance SVMM may not

be a suitable technique.
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Comparison with other BASIC's

Some figures comparing VIPER with Hewlett Packard BASIC are given
in the last two columns of Table 5.1. The results of some simple
benchmark tests which are given in Tables 5.2(a), (b) and (c) extend

this comparison to a four other BASIC and interpretive systems.

The comparison with the Hewlett Packard BASIC is of interest
because the HP2IMX computer was used for the FORTRAN versions of the
case study programs. From an examination of the source listing of the
HP BASIC it was determined that its interpretive mode of operation was
similar to PROSIC viz, interpretation of meta-codes stored in infix
form. The measurements of individual micro-operations therefore re=
flects to a large extent the difference in the average instruction
execution'time of the various machines. From the figures in Table 5.1
it can be seen that, excluding the trigonometic functions, the HP BASIC
is 40 to 607 faster than PROSIC or VIPER on the Varian 620i and 30 to
507 faster than the MIKROV. This difference corresponds roughly with
the difference in average instruction execution time recorded in notes
(9), (10) and (11) of Table 5.1. Like PROSIC and Varian BASIC, the
performance of the HP BASIC deteriorates rapidly as the program size
increases. In programs with 50 to 100 statements, even the infix
form of VIPER would outperform the HP BASIC. The anomalous results
obtained for the trigonometric functions illustrates the difficulty
of making objectiﬁe comparisons between even similar systems. This
anomally also distorts the results of the benchmark measurements, as

noted below.

One other result which is of interest in Table 5.1 is the data
for the HP Fast BASIC (GANS, 1975) as it illustrates the improvement
which can be obtained by placing the floating point functions in firm=
ware rather than software. The overall improvement in typical programs
would appear to be of the order of 2 to | i.e. using floating point firm=

ware the execution time can be halved.

Table 5.2 shows the results of measurements from some simple bench=
mark programs. These benchmarks are of interest despite the simpleness
of some of them because results of measurements on several othér com=
puter systems have been published (FULTON, 1977; MAPLES, 1977;‘ VAN
MEURS, 1977). These results are also shown in Tables 5.2(a), (b) and

. (c) together with listings of the programs. Some of the tests were

also run using the HP BASIC and FORTRAN.

From ..../5.7
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From the results of these benchmark measurements five

observations can be made:

1. The performance of VIPER is considerably better than the
| simpler PDP and INTEL BASIC systems and comparable to the
performance of systems running on much more powerful machines
such as the PDP 11/45 and Data General 840. From this
observation it can also be stated that the Software Virtual
Memory Management operations do not.affect the performance

of VIPER vis-a-vis that of ordinary interpreters.

2. The benchmarks which have been published are inadequate and at
times misleading. The excellent performance of VIPER in some of
the benchmark programs can be attributed largely to the efficiency
with which the trigonometric functions have been implemented.
(This occurs as a result of a trade~off in space versus speed.

The Varian BASIC trigonometric functions take twice the space of
the HP functions but execute in one quarter of the time.)*

There is a need for better benchmark programs to be developed.

3. Interpretive programs are reasonably efficient when executing
scientific type calculations involving largely floating point
operations. Where integer arithmetic is used extensively, as
in the sort segment of Benchmark 3 - Table 5.2(c), the compiled

programs execute in dramatically less time.

4, Programs which interpret source code directly, such as
ABACUS/10 ~ Table 5.2(c), are more than an order of magnitude
slower than systems executing either infix or polish meta-code
forms. A number of early BASICs wused this interpretation’
technique and at least some of the prejudice against interpreters

can be traced to experience (and rumour) with these early

systems.

‘5. oo--u/5-8

*Contrary to appearances, the benchmarks were not chosen because of VIPER's
superiority in this respect; they were the only ones found in the literature.
It was only after these somewhat anomalous benchmark results were obtained

that the SIN and ATAN functions were added to Table 5.1 to show the cause of
the discrepency.
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5. The interactive system ABACUS/X described by FULTON (1977)
executes compiled code, using an incremental compiler. Other
BASIC-like systems which execute compiled code have been
described by KOPETZ (1976) and WILKENS (1976). In these
systems the conversion to in-line code is either performed
line-by-line at input time, or from an internal meta-code
format immediately prior to execution. Even in this latter case
the conversion is very fast because only the code generation
must be performed without any lexical or syntactical scanning
being required. Because of the high speed of the conversion
(typically a few tenths of a second) the operation is virtually
unnoticed by the user and the system still appears to have the
attributes of an interactive interpreter. In one-off batch or
"student" jobs this is an excellent approach, but as the
compiled module has all the characteristics and disadvantages
of code generated from conventional compilers, this technique
cannot be used in a real-~time multiprogramming environment
without sacrificing the interactive facilities to a greater or

lesser extent.

PERFORMANCE IN COMPARISON WITH SYSTEMS EXECUTING IN-LINE CODE

No detailed comparison using benchmark programs has been made to
determine the difference between VIPER and similar programs executing
compiled code. The results of the case study of chapter 6, and the
scattered results recorded in Table 5.2, are, however, adequate to

demonstrate the general nature of the difference.

In the remainder of this section some results from the literature
are quoted and some observations made on the factors which influence

the difference between the two types of systems.

A detailed comparative analysis of the relative performance of
interpretive and in-line code has been performed by HAMMOND (1977).
On a set of five "representative" test programs interprétation was an
average of 5 times slower than in-line code. In three quite different

applications using different computers and different software

organizations, ...../5.9
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organizations, ADIX (1975), HELPS (1974) and FOSTER (1973) have
reported éimilar figures for the ratio between interpretive and

compiled code.

In the case study the ratio between the execution time of
12 programs which were written in both VIPER and FORTRAN has been
measured to be 6.6 to 1. An estimate of the true ratio between
interpretive and compiled code is difficult to make from this result,
however, because of a number of conflicting factors. These factors
are discussed and taken into account in chapter 6 where it is concluded
that the execution time ratio between interpretively executed code
in VIPER, and compiled in line code, is of the order of 6 to 1. This
corresponds closely with the results obtained by other workers which

were noted above.

A comparison between the performance of the SVMM and other mini=
computer real-time executives is rather more difficult owing to the
fundamentally different nature of the two processes. Even an
approximate answer can be given only if the characteristics of the
tasks to be performed are known reasonably well. A few general
observations can be made, however. A real-time process consists typically
of a large number of concurrent tasks of various priorities, and as
a result the processor is switched frequently from one task to another.
If all these tasks are executed in one, or at best a few, memory
partitions, the CPU is busy only a small percentage of the time
because of the time spent rolling tasks in and out of memory. In the
SVMM system however, execution of one task can, in general, proceed
concurrently with the swapping of another task, so that the CPU can
be kept busy a greater proportion of the time. Even if concurrent
execution with swapping is not allowed, (as in the.current version. of
VIPER) the compactness of the interpretive code ensures that many
more modules are simultaneously resident in memory. The swapping
rate is then reduced accordingly. In the case study for example none

of the cyclic real-time tasks need be swapped at all.

The corollary that follows from this observation is that the
ratio between the total throughput in a system like VIPER and in a
compiler-based system is generally less than the ratio between the

execution times of individual programs in the two systems.

In ,..../5.10
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In the case study, the foreground partitions of the HP RTE-3
operating system in which the FORTRAN programs ran, were measured
to be busy about 157 of the time. (The majority of this time was
spent in swapping tasks as the CPU itself was only busy about 27
of the time.) The same set of tasks in VIPER keep the MIKROV CPU
busy 12,8% of the time. In terms of the real time tasks which can
be supported, the two systems can therefore said to be closely related
in capacity, despite the fact that the actual computing speed of the
VIPER programs is 6,6 times slower than the FORTRAN programs.

A claim of this thesis is therefore that in a real-time multi=
programming environment, an interpretive system using SVMM can
perform as well, or better,>than a compiler oriented system executing
in-line code with swapping. Furthermore, this performance is
achieved without recourse to large, expensive and unreliable
electromechanical bulk-storage devices,.and even more importantly,
without sacrificing either the interactive facilities or the protection

functions of the interpretive system.
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EXECUTION TIME OF STATEMENTS

. - LI ND
STATEMENT TYPE TOTAL STATEMENT EXECUTION TIME MILLISECONDS (1)
P NUMBER VARIAN 620i (9) MIKROV (10) HEWLETT PACKARD 2IMX (i1)
o (The statement numbers 1nd1§at§ the OF - FAST FORTRAN
8 association of statements within a STATEMENTS | PROSIC | VIPER | VIPER | VIPER | BASIC | BASIC ™
% group. Groups 2 to 9 all execute
within group | statements.) (2) (3) (4) (4) (5) (6) (€))] (8)
1 3FOR I =1TO 10 000 2 1,9 1,96 1,72 0,65 1,13 0,46 | 0,017
9 NEXT 1 50 3,4 1,96 2,17 1,51
10 END 100 4,6 1,96 3,48 2,80
2 4 R = RND(D) 3 1,81 1,63 | 0,57 1,13 1,12 | 0,635
3 5X=R 4 1,2 1,16 0,94 0,36 0,60 0,60
5 X = IR 4 2,35 2,37 1,95 0,62 1,91 1,05 0,027
5 X = I+R 4 2,20 2,24 1,89 0,61 1,43 1,03 0,017
5A(1) =R 4 2,30 2,08 1,74 1,90 1,89
5 X = SIN(R) 4 4,14 16,18 3,64 1,16
5 X = ATN(R) 4 9,3 8,50 22,57 4,77 | 2,44
4 5 IF R<0,5 THEN 9 5 1,44 1,15
6X=R 50 3,40 3,11
100 5,37 5,07
5 IF R>=0,5 LET X = R 4 2,41 2,04 0,79
5 5 IF R<0,5 THEN 8 7 1,87 1,59
6X=R 50 4,49 4,18
7 GOTO 9 100 7,20 6,77
8X=1
6 6 IF R>=. 0,5 7 4,13 3,38 1,30
6 THEN X = R 50 4,13 3,38 1,30
7ELSEX =1 100 4,13 3,38 1,30
8 ENDIF
7 5 GOSUB 100 1,7 0,72 0,72
100 RETURN
CALL SUBX 3,5
SUBROUTINE SUBX
"RETURN
8 5 GOSUB 100, R, I, X, 4, 5 6,25
100 SUB A, B, C, D, E
102 RETURN
CALL SUBX
R, I, X, 4, 5 6,90
SUBROUTINE SUBX
(A, B, C, D, E
RETURN
101 C=A+B 8,8 . 2,40
9 2 COMMON CO ¢ INCREASE
M1, R, I, X, A(2) FROM
"GROUP 1, 2, 3
FOR - NEXT I 2,5% 2,01
=R 6,97 1,24
X = R+« 5,1% 2,49
A(])=R 2’92 { 2,14
NOTE: The numbers in parenthesis (1) to (I7) refer to the notes on the next page.
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(2)

(3)

(4)

(5)

(6)
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(8)

(9)

(10)

(1)
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TABLE 5.1 (CONT.) NOTES

Time for actual statement indicated i.e. excluding FOR-NEXT

overhead and time to generate random number.

In PROSIC and HP BASIC the time to execute a statement is
dependent on the total number of statements in the program,
including REMS. The statements need not be inside the FOR-NEXT
loop.

PROSIC is similar to VARIAN BASIC with some small improvements.

VIPER - Infix form for meta codes.

VIPER - Meta-codes stored in Polish form, using

floating point firmware.
HEWLETT PACKARD stand alone BASIC HP 20392A Sept. 1974.

HP BASIC modified to use floating point firmware (University of
Natal Fast BASIC - GANS, 1975).

FORTRAN IV running under RTE-2 on 2IMX with hardware FAST
FORTRAN firmware.

VARIAN 620i: 1,8 us memory cycle time, 4us average instruction

time.

MIKROV INTEL 3000 based emulator of Varian V70 instruction set:

450 ns memory cycle time, 3,5us average instruction time
(VAN AARDT 1977).

HP 2IMX 660ns memory cycle time, average instruction execution

time approximately 2,5us
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"TABLE 5.2 BENCHMARK DATA

(a) BENCHMARK 1

TIME PER LOOP
COMPUTER AND LANGUAGE MILLISECS
Published Data (MAPLES 1977)
Data General 840 Multi-user BASIC : ' 4,5
DEC PDP 11/45 BASIC 3,2
DEC PDP 8E FOCAL 38,0
INTEL 8080 BASIC 75,0
INTEL 8080 compiled BASIC 22,0
(Lawrence Livermore Laboratory)
VIPER - Varian 620 ]4,4(1) 13,1(2)
VIPER - MIKROV 12,0 10,7
VIPER - MIKROV + Polish + Firmware 4,2 -
(Note 5 Table 5.1)
Hewlett Packard 21MX (See notes.6, 7 and 11
‘ Table 5.1)
1. HP BASIC 10,7
2. HP Fast BASIC (ex University of Natal) 6,7
3. HP FORTRAN IV 0,18
BASIC
10 REM SIMPLE BENCHMARK VIPER (1): as BASIC except
15 REM #*, /, -, + 100IF A = 1001 GOTO 200
20 REM
30 LET A = | vipEr (%)
40 LET B = RND(A) 30 DOWHILE A<=1000
50 LETC=A+ B 40 LET C=A+B;A=A+1;E=B/C;F=AxE;
60 LET A = A + 1 C=C—F
70 LET E = B/C 50 END DO
80 LET F = A%*E
90 LET C = C-F
100 IF A = 1001 THEN 200
110 GOTO 50
200 PRINT "THE LOOP IS DONE"
210 END
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TABLE 5.2(b) BENCHMARK 2

COMPUTER AND LANGUAGE EXECUTION TIME-SECS
PROGRAM | PROGRAM 2

Published data (VON MEURS 1977)
DEC PDP 11/40 with DOS/11 V8.08 operating system

1. DEC FORTRAN VOO4A 3 21
2. DEC BASIC VOO8A ‘ 45 134
3. BACO (Tagged data structure interpreter) 14 47
VIPER - MIKROV ' 14,5 41,9(])
VIPER - MIKROV Polish Notation + Firmware 5,1 %%’3(2)
i

Hewlett Packard 2/MX
1. HP BASIC ' 8,7 83,6
2. HP FAST BASIC 6,3 24,7

(1) Measured, SIN function not using floating point firmware.
(2) Estimated, SIN function using u i u

Program | ’ Program 2

10 LET X = 0 10 LET X = 0

20 LET X = X + 0,1 | 20 LET PI = 3,1415

30 IF X <360 GOTO 20 30 LET Y = SIN (2*PI/360%*X)

40 LET X = X+0, 1
50 IF X <360 GOTO 30




TABLE 5.2(c) -BENCHMARK 3

i
EXECUTION TIME-SECS
COMPUTER AND LANGUAGE 1 2
Published data (FULTON 1977)
Data General 840 :
1. FORTRAN IV ‘} Standard Data General 13,05 9,91
2. Extended BASICJ Translators 46,84 145,30
3. ABACUS/X - Incremental Compiler 13,18 11,14
4.  ABACUS/10 - Interpreter 77,89 11600,57
VIPER - MIKROV 18,1 158
N=250
Hewlett Packard 21MX (BASIC Array limit)
— * *
1. HP BASIC 13,4 29,0 03,2 79,1
2. HP FORTRAN IV 0,51 0,55 2,01 120
1. Computation Segment 2. Sorting Segment *Extrapolated
BENCHHARK -- GEMERATE SONE KUMBERS AND SORT THEN
¢ FORTRAN 8001.18088 C ABACUS/
DIMENSION AC1098) 0801.2060 SET N=108:
N=tooe i ‘ 0001.3068 I(FE *(7)START®
TYPE *<7>START 6081.4880 /REL ACN)
¢ 8081.5008 FOR =1, ;
c COMPUTATIGON SEGMENT ' 1186000 99
c B662. 0168 C SOURT KOUTINE
D0 180 I=1,1000 8062.0150 TYFE *¢7ySORT"
0=1 0002.8268 SET NGaN
K=STHCQ)*C0SCA) 8062.0308 SET NO=NB.,2
X=X+4000. 0082.8408 IF (NB<=8) GOTO 2.19
_ X=SART(ABS (X)) 8802.65080 SET K=N-NB '
108 ACII=AINT(180. «X) 8002.9688 SET Jai
c 8002.8788 SET I=
c SORTING SEGMENT 8002.0800 SET ;=foua
¢ :
. 0802, -
B3 T I A coro 2
HO=N 52 ¢
. 0862.1180 SET ACI)=a(H)
220 HB=HB,2 0882.1288 SET ACH)=T
IF(HO.LE. B> GO TO 380 6002.13066 SET H=|
5:?-N0 0082 1498 SET [=1-Ng
- 0082.1568 IF (1>8) GOTO 2.89
260 ;;f+ue 8082.1688 SET J=u+i
0062. z
280 IFCACID.LE. ACH)) €O TO 350 oeog_:;gg ;g,;“§'§; GoT0 2.07
z:?;:;(ﬁ) gggg_xeea TYPE "C?)FINISH®
ACI = .2800 QUIT
Hal
8099.8508 C COMPUTATION o
I=1-Ko 0899 1968 SET x=stu<l)thov“Lues 70 SORT
IFCI.GE. 1) GO TO 2889 0099.2008 SET X=X+4808 s
358 f;gz?LE;K) to To 268 (8093.3000 SET X=FSQT(FABS(X))
8099.4089 SET ACId=FITRC180+K)

GO TO 229
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TABLE 5.3 INSTRUCTION BREAKDOWN

~ Approximate number of machine instructions executed by VIPER when interpreting

infix and Polish representations of statement:

LET X =R
(Table 5.1 Group 1)
0 iy Number of Instructions
peration - T g 17
Infix Polish streagllned
Polish
Initialization 25 20 2
Stack operations _ : 30 20 20
Precedencerdetermination 135 - -
Assignment 10 10 10
Mapping ' 30 30 25
Next statement calculation 20 20 2
Total no of instructions 245 100 59
Measured execution time, ms 0,94 0,36 0,23)*%
Proportion spent on mapping 127 307 427
%* .
Estimated

Estimated time spent on mapping in operations involving arithmetic functions

Using floating point software 87 127 137
Using floating point firmware 117% 257 | 307%




CHAPTER 6

CASE STUDY

The case study deals with a process control project at the Huletts Sugar Refinery
at Rossburgh in Durban. This project was a co—operative venture between the
National Electrical.Engineering Research Institute (NEERI) and Huletts Refineries
Ltd. NEERI was responsible for all computer and systems software while Huletts
was responsible for all instrumentation. The applications software was developed
jointly by staff of both organizations. I was project leader of the project from

its start in 1975 until its termination in 1978.

This case study is of interest because most of the FORTRAN programs used
on this project have been translated into VIPER, permitting a direct comparison

to be made between FORTRAN and VIPER. The comparison deals with four factors.

1. Memory space requirements.
2. Relaﬁive execution speeds.
3. Bulk storage requirements.
4. Readability of code and ease of implementation.

The first three comparisons are based on quantative data obtained from
direct measurements while the last is a subjective, but no less important,

assessment of the "useability" of the two systems.

The characteristics of the process and of the hardware and software used

are tabulated in Appendix B, in addition to being summarised below:

6.1 FORTRAN IMPLEMENTATION

A Hewlett Packard 2IMX computer was used, running initially under
control of the RTE-2 executive with 32K of memory and later,
(August 1977 onwards) under RTE-3 using 48K of memory. All the
applications software was written in FORTRAN IV. The computer is

interfaced to the plant instruments using a CAMAC interface. Detailed

process ...../6.2
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process studies had to be performed concurrently with initial control
work, the first contfol loop being placed on-line in January 1977 and
the six other main control loops going on-line at approximately two
month intervals as the process studies proceeded. The modular
decomposition of the software was therefore essential to permit
independent testing and debugging of new programs without disturbing

existing control programs..

The software is organised as a series of 17 separate dontrol and
monitoring programs and approximately 45 supporting subroutines and
programs. All the control programs and some of the service programs
are listed in Table 6.1. The synchronization of the various modules
is achieved using semaphones (called Resource Numbers in RTE). The
only memory resident shared data is a blank COMMON area as RTE does
not support labelled COMMON in a multiprogrammed environment. Various
disc files are also used for shared data as well as for data base

operations.

RTE 2 can address a maximum of 32K words of memory resulting in
a single foreground area of 6K words in the configuration used in
Durban: 14K for resident system and drivers; 10K for background
minimum for FORTRAN compiler]; 1K for system buffering; IK for
COMMON . All the control programs were therefore swapped in and out
of this singlé foreground area. This caused two problems; a high
disc access rate and difficulties with the debugging of foreground
programs, as described in the "Pathological Debugging Problem" of
section 4.2.1. These problems and others, such as chronic base page
overflow, led to the installation of RTE 3 in August 1977. Using the
system with 48K of memory enabled three foreground memory partitions
to be provided of 2,4 and 8 Kwords respectively. This reduced the
disc swapping rate and permitted larger foreground programs, but did

not otherwise materially affect the organization or structure of the

software.

The source listings of the FORTRAN programs are provided in
Appendix B.3.

6.2 .5.../6.3
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6.3.1

6.3

VIPER IMPLEMENTATION

The FORTRAN programs were translated into VIPER directly, retaining

the structure of the original programs except as noted below:

1. GOTO statements in the FORTRAN programs were avoided in all
cases (the VIPER programs do not use any GOTO's) requiring a
certain amount of logical reorganization to use VIPER's control

structures.

2, In a few cases the programs were significantly reorganised to
either take advantage of the modular properties of VIPER or to
avoid particularly poor construction in the FORTRAN programs.

These programs are marked with a (*) in Table 6.1.

3. As a result of the interactive facilities in VIPER a number
of the FORTRAN programs are not required at all. Other functions
such as CAMAC error reporting are included in the resident VIPER

nucleus - some of these programs are listed in section 3 of Table
6.1.

The listings of the VIPER programs are given in Appendix B.2.
Table 6.1 lists all the VIPER programs which have been written
together with their size parameters. The program size information is
sunmarised in Table 6.2 while the data areas which are used in the

TORTRAN and VIPER versions are tabulated in Table 6.3.

COMPARISON BETWEEN FORTRAN AND VIPER PROGRAMS

The two different implementations are compared in size, Table 6.1

and in execution time, Table 6.4.

Size comparison

The sizes of the programs in the two systems can be compared in three
classes:

l. Repetitive programs which execute either periodically (with a

period of 5 to 30 seconds) or asynchronously in response to

frequent external events.

2. ...../6.4
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2. Non-repetitive programs or programs which execute infrequently

in response to external events.

3. Monitoring and service programs which are used to observe

the performance of the control programs.

The size of the FORTRAN programs can be expressed in two ways.
The one is the actual size of the program module (RTE-2 size) and
the other the size of the smallest partition into which the program
would fit in RTE—B (expressed in pages, each page being 1K words in
size). The RTE-2 size is quoted in order to asses how much space
would be required if the programs were packed one against each other
in a foreground resident partition. The RTE-3 size results from
rounding the RTE-2 size up to the next highest page and adding one
page for base page data and linking. From the figures tabulated in
6.1 it can be seen that the VIPER programs are in all cases
considerably smaller than their FORTRAN counterparts. Furthermore in
a 32K memory system, all the VIPER programs would fit into memory,
enabling the system to operate without a bulk storage device. This
is a significant and major advantage of VIPER over compiler oriented
systems. Even if a number of additional programs were added, most
of tﬁe repetitive programs would still fit into memory and only the
less frequently used programs would have to reside on a bulk storage
device. As disc units are quoted to have up to four times the failure
rate of memories and CPU's (BHAT, 1976), avoiding the use of an
electro-mechanical device for time critical tasks can make a marked

contribution to the reliability of a system.

It is physically impossible to place the repetitive tasks in
memory in RTE-2. Even if a subset of the critical tasks was selected
which was only 6 to 8K in size, the system would be unworkable be=
cause there would be no foreground partition in which to run thé
other tasks. As RTE-3 supports more than 32K of memory, a partition
could be allocated to each task (or a group of tasks) if sufficient
memory was available. This would require 60K words for the repetitive
tasks which is 5 times more than VIPER requires. In addition to this

60K words, a foreground partition would still have to be provided plus

a ..;,./6.5
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a background partition making a total of nearly 100K words in all.
Even when using this amount of memory a disc storage unit is still
required not only for swapping the non-repetitive tasks but also for

supporting the language processing and file management facilities.

An important point to be noted is that this saving of space in
VIPER is achieve& without any particular attention having been paid
to the storage and packing of the interpretive meta-codes. Using
suitable meta-code structures HELPS (1974) and ADIX (1975) have
shown that code compression factors of 0,5 to 0,3 can be achieved.
BROWN P (1976a) has also discussed the use of compact codes and shown
that the original source text can still be recreated from them. The
aspect is commented on further in the concluding chapter, sections

7.2.2 and 7.2.3.

6.3.2 Speed comparison

6.3.2.1 FORTRAN measurements

The execution time of the FORTRAN progréms was measured by running two
low priority tasks, each of which measured the time which it spent
computing. The one task was run in the background partition, while the
other ran in a foreground partition. (Which is called a real-time
partition in RTE-3.) The size and number of the partitions is shown in

Table 6.4. The measuring programs have the lowest priorities.

If the measuring task running in the background partition
(partition 4) is of a lower priority than the one in the foreground
(partition 3), then the availability of partition 4 represents the
time when the system was busy swapping and did not have a program to
execute in any foreground partition. The availability of partition
3 represents the time when the system could have been processing
additional real-time tasks. Items 1, 3, 4 and 5 of Table 6.4 illustrate

measurements of this sort.

If the measuring task running in the background partition 4 is of
higher priority than the one in the foreground, then the availability
of the partition 4 is a measure of the availability of the CPU i.e.

it vi.../6.6
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it is the time that the CPU is not busy executing real-time tasks.
The CPU is only switched from the background task to a real—-time
task when the swapping in operation is completed, and immediately
returns to the background task when the foreground task is complete
i.e. it does not have to wait to be swapped in nor does it have to
wait for the real-time task to be swapped out. Item 2 shows this

measurement.

To simulate the performance of RTE-2, which has only two
partitions, a foreground and a background, two other small programs
were run which generated operating system calls to lock a partition
exclusively. These locking programs did not consume any overhead

as they had the lowest priority.

The availability of the CPU can be determined to a first
approximation (ignoring the effects of the measurement programs them=

selves) by summing the availability of the individual partitions.

The measuring programs introduce, or are subjeet to, a number of
errors. When measuring the availability of a foreground partition, for
example, the measuring task also measures the time taken to swap
itself in and out of memory. Even if the task does not have to be
swapped, overhead is introduced by the additional scheduler context
switches., The dispatcher must always switch back to the waiting

‘measuring task when the control programs are not executing, instead

of merely returning to an idle state. A more seriéus error is introduced
by the resolution of the clock, which is 10 ms in RTE. Programs

which complete executing in less than 10 ms will not be recorded by

the measuring task. Even though this effect and the error introduced

by the measuring program overheads act in opposite directions, the

net affect is inpredictable. The results in Table 6.4(a) are therefore
only approximate but are considered adequate to determine the general
nature of the performance of the FORTRAN system and to compare its
performance with that of VIPER. SPANG (1974) has commented on this
difficulty of the performanée evaluation tools themselves influencing the
measurement results. The only solution is to use hardware performance
evaluation aids, as is done in large systems, but this was considered

unnecessarily ...../6.7
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unnecessarily complex for the system at hand where all that is required

is an indication of the relative performance of two dissimilar systems.

The measurements were performed with all the control programs
listed in Table 6.4(b) running, the results being tabulated in
Table 6.4(2). The slight variations in the figures as different
partitions are available, are not considered significant and it can
be seen that the essential characteristics of the system are not
changed by the use of additional partitions. The primary purpose of
the additional memory space in RTE-3 was to reduce the disc access
rate and to permit larger foreground programs to be used. Estimates
of the average time that the CPU and real-time partitions are busy
have been made from these figures and are noted at the end of

Table 6.4(a)<

VIPER measurements

The ease with which test data and programs could be generated in VIPER,
permitted the individual execution times of all the programs to be
measured. From these measurements, which are listed in Table 6.4(b),
the total time that the CPU is busy computing can be determined

from a knowledge of the relative frequency of execution of each program.
This is known deterministically for all except the one program

SERVOTIP, for which a statistical weighting factor can be calculated.
These weighting factors are listed in the second column of Table

6.4(b).

The average time busy computing in each 60 second period is
7,92 seconds or 13,27. As all these programs can be simultaneously
resident in memory, there is no swapping overhead to be measured or
taken into account. The computation time is therefore a direct

measure of the overall availability.

Comparison

The results obtained from this case study are of interest for two

reasons: firstly they indicate the gross performance capabilities
of VIPER irrespective of any differences in the machines or in the
measurement techniques used; and secondly they permit an estimate

to ...../6.8
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to be made of the relative performance of interpretive versus

compiled code.

Ignoring all differences between the HP 21MX and MIKROV
computers, the results indicate that VIPER, running on a micro=
programmed microprocessor emulator, is capable of substantially
the same throughput of real-time tasks as a real-time executive which
executes in-line compiled code with swapping. The HP RTE system
could of course, also support concurrent tasks in the background
partition, which could utilize the time when the foreground
partitions are idle because swapping is in progress. As the most
common tasks executed in this background area are editing, compiling
and link loading, however, (none of which are required in an
interactive system like VIPER), this argument is.somewhat specious.
Nevertheless, it is not claimed that VIPER is equivalent to a system
like the HP RTE in computational power; only that given a set of
real-time tasks, such as those encountered in the case study, VIPER
has much the same performance and could be used in many applications
where much larger and more complex operating systems had to be

used previously.

It can be argued that the inefficient way in which the FORTRAN
programs -are orgénised, contributes tb the good performance of VIPER
relative to the RTE system. Frequently used programs like SCCS,
or programs which take a relatively long time to complete like SCAD,
could be placed resident in memory and other programs could be combined
together into larger modules. These changes reduce the flexibility
and modularity of the programs however, and it makes it either
impossible or more difficult to perform on-line changes and upgrades.
The execution time would have to be far more critical before retro=

gressive changes of this type are justified.

The second aspect of the VIPER and FORTRAN measurements which is
of interest, is an estimate of the ratio between the time to perform
a given function in interpretive code, and the time to perform the

same function in compiled code. The direct measured ratio made on the

programs ...../6.9
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programs of the case study is 6,6, as noted in Table 6.4(b).

Extrapolating this ratio to obtain a direct indication of the

difference between compiled and interpretive code is difficult

because of a number of factors:

1.

VIPER was running on a microprogrammed microprocessor emulator,

whereas the FORTRAN programs were running on an HP 21MX.

The VIPER programs are functionally equivalent to the FORTRAN
versions, but some of the VIPER programs are significantly
simpler and execute less code as a result of their modular

properties.

The RTE operating system in which the FORTRAN programs are

running introduces an unknown overhead into the measurements.

The measurements on the FORTRAN programs are subject to un=
certainty, particularly insofar as the CPU utilization is concerned

as this could only be measured indirectly.

Taking these factors into account where possible, a ratio of

about 6 to 1 in interpretive to compiled code execution times is

estimated, with a possible variation between 5 to 1 and 8 to 1.

Bulk storage requirements

A particular advantage of interpretive systems which use an internal

meta—code format is that only one copy of any program need be kept

in the system. This contrasts with compiler oriented systems where

three copies are usually retained: the source, the relocateable

binary (output from compiler or assembler) and the absolute binary

(memory image). The relocateable binary is required for loading purposes

and also during the system generation, if a program is to be

permanently linked into the system. The bulk storage requirements

of the FORTRAN programs used in the case study are listed in Table 6.1.

Taken together with the storage requirements of the absolute binary -

modules, the total bulk storage required for just the class 1 and 2

programs is 127 K words. This contrasts with the 15,3 K words required

for all the VIPER PROGRAMS. The VIPER programs do not contain many

comments ...../6.10
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comments (for reasons outlined in section 5.1.2), but even

allowing 10 K words for comments, the space required for the VIPER
programs is one fifth of that required for the FORTRAN programs.
HOARE (1975) has commented on this desirability of reducing the bulk
storage requirements by storing source programs in a more compact

form and by eliminating additional copies of programs where possible.

In addition .to the space required for the class 1| and 2 programs
of Table 6.1, additional space is required for the monitoring and
service programs (class 3 Table 6.1); for the several hundred
library modules which are used by the linking loader; and for a
few dozen files that are used for process communication functions.

(Disc files used for logging procesé data are not included.) The
total bulk storage requirements is therefore more like 500 K words.
(If system generations are performed on the same system this requirement

increases to 900 K words or more.)

The difference in the bulk storage requirements of the two

systems has two important consequences:

1. Because the VIPER programs use far less space, smaller higher
speed bulk storage devices can be used. Bubble or CCD memory
devices in particular, would appear to be eminently suitable

for use in an SVMM environment.

2, All on-line bulk storage devices should have sdme form of back-up
facility. In the case of a system like RTE which uses a
cartridge disc, the only feasible back-up medium is either
magnetic tape or another disc unit, adding additional complexity
and cost to the system. In the case of VIPER, cassette tape
units have been used exclusively for off-line and back-up
storage and a simple device such as this would be adequate for
many applications. Floppy disc units would also be well suited
for use in an SVMM system, provided a higher speed device such
as bulk semiconductor RAM or CCD memory was available for the

intermediate swapping operations.

A ...../6.11



6.11

A claim of this thesis is that Software Virtual Memory
Management can use smaller, cheaper and higher speed bulk memory
devices to achieve a similar or better performance than compiler
oriented systems, without degrading the security of the system
in any way. Furthermore, recent developments in bulk storage tech=

nology can be readily incorporated into a system like VIPER.

6.3.4 Ease of use

The preceding three sections have dealt with quantative data
obtained from measurements on the case study programs. More
difficult to qﬁantity, but just as important is the ease with which
the system can be used. This is concerned with factors such as the
debugging of programs, readability of code, documentation, safety

and security, and ease with which programs can be written.

From my experience with the two systems over a period of two

years, the following observations can be made:

1. The modular, structured code produced in VIPER is far easier

to read and understand than the FORTRAN source.

2, The division of the global FORTRAN COMMON into separate named
COMMON areas made a marked contribution to the safety of the
system and permitted the data and program relationships to be

visualised more clearly.

3. The VIPER programs were dramatically easier to debug. The
simple undefined-variables checks, array-bounds checks and
access checks were adequate to pin;point both coding and logic
errors. Some of these checks even revealed errors in the

original FORTRAN programs which had remained undetected for

several months.

4, The VIPER programs were easy to test and commission because
small test programs could easily be generated both to drive the
programs, as well as to be driven by the program being tested
i.e. respond to the stimuli issued by the program under test.

5. vu...16.12
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5. The programs were generally easy to write and the use of
GOTO statements could be naturally avoided in most cases. The
only akward feature in entering text, is the lack of a line
editor. Many errors are of the single character type and a
facility to edit a line without retyping all of it would be
deéirable; particularly the long lines occuring in multiple
assigmment statements. This editing facility has been added
to a "relative" of PROSIC called ABAKUS (DU PLESSIS,1974)
(ABAKUS was also derived from Varian BASIC) and could be added
without difficulty to VIPER.

A final claim of this thesis is therefore that in VIPER,
programs are easier to write, debug, read, test and document than
they are in FORTRAN.,



TABLE 6.1 HULETTS REFINERY SOFTWARE:
SPACE REQUIREMENTS
VIPER HP FORTRAN (RTE)
No Size No Size
Name Lines | . (Words) Name Lines Words (3) Pages Dise storage
) M @ m (RIE-2) (RIE-3) | Source (4)] Binary
. (In blocksbf 64 words )
]. Repetitive programme .

- PACIR 17 323 2 8 2
SCANCS 29 640 SCCS 61 1 002 2 22 6
SCANADC 32 550 SCAD 60 798 2 34 6
ENGUNITS 60 1 155 ENGUN* 104 1 886 3 48 34
WATCH.DOG 37 593 WCHDG 45 1 201 3 50 7
SERVOTIP 40 760 SERVO* 121 5 328 7. 74 17
SATFLOW 80 1 406 SAFCO 130 2 984 4 45 28
CLFLOW 48 899 CLFLO 88 2 633 4 46 10
REMELT 45 ) 669 REMLT 60 1 466 3 27 10
LIMERATIO 53 1 020 CLIME 72 1 427 3 50 18
GASFLOWA 44 . 879 GASFA 62 1717 3 46 9
GASFLOWB 44 879 GASFB 62 1714 3 60 . 8
GASFLOWC 35 740 GASFC 64 1 592 3 34 7
FILTER.MONITOR 80 1 343 FILCY* 175 8 205 10 63 27
CDAC 5 128 -

WCOuT 19 353 -
MESSAGE 32 487 MESEG* 57 5 540 7 36 13
683 12 501 1178 32 276 60 766 199
2, Non-repetitive or infrequent programs
STARTUP 16 340 STRUP* 4 666 6 52 11
SHUTDOWN 8 109 HANGO* 6 431 8 44 16
ENGLIMITS 15 365 -
FILTERCOEF 12 265 -
SERVOHOUR 16 257 -
SERVO8HOUR 18 250 -
FILTER.REPORT 72 999 RFLDT* 6 572 8 25 - 20
CLOOP - 14 255 CLOOP* 34 2 138 4 32 6
171 2 830 19 807 26 153 53
683 12 501 ‘32 276 60 766 199
854 15 331 52 083 86 919 252
PRINT.MESSAGE 80 { 919
PRINT.PROG.NAME 11 { DISC 64 x 1171
PRINT.CHAN.NAME 32 f FILES Words . 74 944
3. Monitoring and service programs
(Not required because of intpractive MONT 12 550 14
facilites or included in opefating RCOMD 55 5 085 6
system nucleus) CAMEP 10 3 077 5
PRADC 3 328 5
WRDAC 3 547 5
LAMG2 3 462 - 5
HEAD 3036 | 4
34.085 Wl
‘52 083" ‘86
NOTES 86 168 130

(1) Excluding comments.

(4) Including comments.

(2) Including symbol table.
(3) Including non-reentrant library modules.

Functionaly equivalent but not comparable line-for-line.




TABLE 6.2 PROGRAM STATISTICS

GASFLOW 5

150

A. FORTRAN Programs
1. Average length = 1 178/15 = 78,5 lines
2, = 32 276/15 = 2 151 words
3. = 60/15 = 4 pages
4. Average words/line of code = 32 776/1 178 = 27,4 words
B. VIPER Programs
1. Average length = 854/24 = 35,6 lines
2. Average length = 15 331/24 = 638 words
3. Average words/line of code = 15 331/854 = 17,9 words
4. Average length of descriptor table (direct measurement) = 178 words
TABLE 6.3 COMMON REQUIREMENTS
A.  FORTRAN 4
Global COMMON = 758 words
(See Case Study programs Appendix B.3 for description)
B. VIPER
SPECS 3 _
VOLTS 30 150 x 2 = 300
ENG 30 Segment descriptor 6 x 15= 90
BITS 6 Overhead (Fig. 3.5(b)). ‘ 390
ENGLIM 60
SERVOD 16




TABLE 6.4 HULETTS REFINERY SOFTWARE: SPEED

(a) FORTRAN PROGRAMS (HP RTE FORTRAN 92060-16092 Rev 1726)

Availability of partitions with all control programs listed in (b) running.

[
i Z CPU
' %2 Availability of Partition | Available
Comment
|
Partition No. 1 2 3 4
Size K words 2 |4 8 15
1. Simulates RTE 2, low priority BG N | N | 84,3 13,5 97,8
2. Simulates RTE 2, high priority BG N N . O 98,4 98,4
3. PACIR, SCCS and SCAD in partition ] A |N i 84,9 13,1 98,0
4. Some programs in partition 2 N | A 85,2 12,7 i 97,9
i e . ! 5
. 5. All partitions available A i A 85,6 11,9 . 97,5
i ; H

Notes: N - Partition not available (locked).

A - Partion available but actual time available not measured.

BG - Background.

All figures averaged over 5 minutes.

Average time CPU busy = 27.

Average time real-time partitions busy = 15%.
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TABLE 6.4(b)

VIPER PROGRAMS

. T Number of Computation
Program Exe??f}on 1me executions/ | Time/Minute
millisecs minute Secs
SCANCS 75 10 0,75
SCANADC 1 410 2,82
ENGUNITS 790 2 1,58
WATCH . DOG 160 2 0,32
SERVOTIP 670 1,3* 0,89
SATFLOW 172 2 0,34
CLFLOW 105 2 0,21
REMELT 76 2 0,15
LIMERATIO 128 2 0,27
GASFLOWA 106 2 0,21
GASFLOWB 106 2 0,21
GASFLOWC 86 2 0,17
: - ) . 7,92 secs
% Time busy in 60 sec sample time 13.2 %
b ’
*Statistical weighting factor, all others deterministic.
RATIOS
1. Average CPU busy in VIPER = 13,2 _
Average CPU busy in RTE FORTRAN 2 6,6
2. Average CPU busy in VIPER = 13,2 _
Average real-time partitions occupied in RTE 15 = 0,88
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CHAPTER 7

LIMITATIONS AND EXTENSIONS

LIMITATIONS

In addition to the particular ommissions from VIPER which were
listed in section 2.7, there are three more fundamental limitations
which affect real-time interactive systems using software virtual

memory management.

Dynamic relocation.

The software virtual memory management algorithms described in this
thesis require that the segments of code be dynamically relocatably
to any position in memory. To meet this stipulation with reasonable
efficiency only relative address references can be used in the code,
all other referencing being performed indirectly via specially
constructed linking elements (descriptors). The use of interpretive
code was proposed as the simplest method of meeting this requirement
as appropriate meta-code structures can be devised which meet the

relocation and relative addressing conditions.

To enable in-line (compiled) code to be used in a software virtual
memory management system would require special order codes which would
have to be provided by microprogramming if the actual instruction set
was not suitable. (Certain machines do have codes which are relocatable
e.g. Data General NOVA 2/3, provided certain coding restrictions are
accepted.) If the same protection functions are required, however,
either a time or space overhead must be incurred. The protection
functions must either be provided by in-line code (requiring more space)
or by out-of-line calls to subroutines, which is essentially what '

an interpreter does.

Two other problems which must be considered when using this

machine code approach are:
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1. Addressing of data items in shared data areas and parameter
linking.
2. Decompilation of the machine code to recreate the source listing. .

This has been reported to have been done in one system (WILKINS,
1976) but no details of the algorithm have been published. De=
compilation from machine code would also only appear possible

on certain machines. (BROWN P., 1977)

The Varian.620i on which all the development work on VIPER was
perforﬁed does not have a suitable instruction set for this purpose
and is not microprogrammable, so this approach was notnconsidered
in any detaii. With the.microprogrammable MICROV now available

these techniques are receiving reconsideration.

Swapping rate

The space allocation and dynamic linking operations in softwafe virtual
memory management are an order of magnitude slower than similar hard=
ware virtual memory mapping devices. In many applications this does
not significantly affect the performance of an SVMM system because
most of the repetitive or critical tasks will be permanently resident
in memory, but an SVMM system can clearly not support as high a

swapping rate as a hardware memory management system.

Some alternative structures which may reduce the swapping
overhead were discussed in section 3.4. These structures may permit
a higher swapping rate to be tolerated with reasonable overhead, but
the SVMM system will nevertheless generally still be significantly less

efficient.

SVMM therefore cannot be said to compete with hardware virtual
memory management; what it does achieve is to enable the advantages of
virtual memory to be provided or small systems at low cost and without

requiring special purpose hardware.

Performance limitations

The mapping operation which is performed on every reference to a

variable ...../7.3
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variable together with the protection fﬁnctions which are regarded
as an intrinsic part of SVMM, limit the ultimate performance which
can be attained in a system which uses SVMM. This phenomena was
documented in Table 5.3 where it was shown that as the overhead
associated with the intérpreter process is reduced, the relative
time spent performing the mapping and protection functions increases.
The times shown in the last column of Table 5.3 for the fstreamlined"
version could possibly be reduced fyrther by in-line codg.expansion
in the interpreter (rather than using subfoutine calls), but there

is still a limit beyond which the mapping operation overhead will

be dominant. This is clearly an intrinsic limitation of SVMM

which can only be overcome by hardware memory management systems.

As the results of the preceding two chapters have shown however,

SVMM systems are still capab1e7of-ekce11ent performance in the small
processor domain, and can be improved further before this intrinsic

mapping limit becomes significant.

EXTENSIONS

The concept of Software Virtual Memory Management has shown itself to
be a powerful tool for constructing a flexible interactive software
system. The interpretive mode of execution used contributes strongly
to the attractive interactive features and it would be desirable to
maintain this mode of execution while impfoving the performance of
the system. There are eight possible ways in which the performance
of a system like VIPER could be improved without sacrificing the

interactive and protection facilities.

Floating point firmware

This simple hardware improvement was discussed in chapter 5 where it
was estimated that it gives a 2 to | improvement in speed. A further
advantage of floating point firmware or hardware is the memory space
that is saved., Moving the basic functions add, subtract, multiply and
divide, and conversion functions to and from integer and floating
point, would save nearly 1 000 words of local memory space which would
then be released for virtual memory operations. Placing additional
routines such as trigonometic, log, ekponential and square root
functions etc. into firmware would save another | 000 words besides

improving the performance.

7.2,2 o0 /7.4
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7.2.2 Polish notation

The advantage of using the Polish notation was discussed in section
5.1.2 and this is an extension which should be used in all
interpretive systems. The disadvantage of more complex decompilation
algoritims is offset by the simplification of the actual interpretive
or evaluation section. The use of the Polish notation has two
advantages: firstly the time to execute statements is considerably
reduced, and secondly more compact representations of the internal
code can be formulated. An example showing the difference between the
infix and Polish forms was shown in Table 2.8. This compact

representation would halve the size of the code portion of a segment.

7.2.3 Alternative procedure segment structures

If the size of the code portion of a segment were to be reduced by
using the compact Polish form noted above, the symbol table partition
of the segment would tend to become a major component of the overall
segment size. As the ASCII representation of the symbol table
elements is only required during interactive operations, the size of
the table could be significantly reduced by maintaining separate seg=
ments for the variable data values and for their ASCII names. This
is analogous to the problem of space occupied by comments which was
noted in section 5.1.2. They alsq should be kept in a separate segment
so that if the local memory is full, all information which is super=
fluous to the execution of segments can be swapped out of memory.
Additional information which is not required in the normal execution
of segments (or which can be eliminated by suitably restructuring

the code) is the statement number, length and type.

These considerations lead to a proposal for an alternative
segment structure which is shown in Fig. 7.1, The procedure segment
is split up into four separate segments, one for the variable table
+ code, and one for each of the symbol table, statement numbers and
comments. (The statement number and comment segments could possibly

be combined,) As shown in Fig. 7.1, this structure is combined

with ..,../7.5
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with the use of a segment number identifier and segment directory,
as was discussed in section 3.4. Some problems relating to access
to shared data segments must still be solved using this structure,

but these would not appear to be insurmountable.

The size of the remaining code + variable portion of the
segment using this structure would be less than half of the space
required by the segment using the current monoli;hic segment |
organization, This is a significant advantage in real-time applications,
as the smaller the modules afe, the bigger the -"wofking—seth of
real-time tasks can be. This permits larger and more complex tasks
to be handled than would otherwise be possible. Although an
arbitarily large set of tasks can theoretically be run in a virtual‘

"working set" of modules cannot fit into memory,

memory system, if a
the high swapping rate and thrashing of modules to and from bulk
store that will result, will seriously degrade the performance of the
system. (DENNING 1974). In a real-time system the "working set"
may be defined as the set of tasks (or modules within those tasks)
which execute repetitively or frequently in response to external
events. If all these tasks can fit into memory the system will be
capable of achieving a significantly higher performance. This effect

was demonstrated in the results of the case study.

Operating system kernmel

One of the specific objectives of software virtual memory management
was the avoidance of hardware memory mapping devices. On most current
(or forseeable) mini and micro-computers this limits the local memory
addressing space to 32K 16 bit words (64K bytes). In VIPER all the
operating system code is kept permanently memory resident with only a

few segments being used for system data storage operations.

This results in a maximum of 18 to 19K words being available
for virtual memory operations. Furthermore the addition of new functions
and drivers to the operating system will steadily decrease the memory
available. Many of the modules which are now memory resident>are used
relatively infrequently and could reside on a bulk storagé device most

of ...../7.6
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of the time without noticably affecting the performance of the
system. Modules in this category are the lexical and syntactical
scanner; decompilation (listing) programs, directory manipulation
routines and system documentation functions. By keeping those
routines out of the resident operating system nucleus 3 000 to

4 000 words of memory could be saved, reducing the size of the
resident code to 8K words or less if extensions 7.2,1 and 7.2.2 were

also implemented.

These infrequently used modules could be swapped into memory
into the fixed segment areas which were indicated in Fig. 3.1. The
important point is that these areas could be allocated dynamically,
and no area or partition need be permanently allocated for their use.
This is in marked contrast with most minicomputer real-time executives
where the memory is divided into fixed partitions which can only be
changed at system generation time. As an example of this_type of
allocation consider the memory division employed in Hewlett
Packard's RTE. A fixed background partition is provided'which
consumes 10 to 16K, but which is only used a small proportion of the
time in a typical process control system. All the critical real-time
tasks are forced to swap in and out of one (or a few) foreground

partitions.

The resident code which remains aftef,strippiﬁg off the in=
frequently used functions can also be further subdivided into two or
more levels, At the innermost level would be a small operating system
kernel which implements the basic operating system functions such as
interrupt handling and synchronization. At the next level, more
sophisticated operating system functions are prdvided such as
scheduling and memory management. The basic interpreter functions could

be provided on a yet higher level together with the SVMM functions.

The use of a kernel has distinct advantages as far as the
reliability and maintenance of the operating system is concerned.
More than one level of kermel is in fact desirable in this respect, as
a number of recent systems have shown that a modular system with
appropriate layers of software built upon an innermost kernel is
significantly more reliable and is easier to expand and maintain

(BAYER, ...../7.7
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(BAYER, 1975; CHALMERS, 1976; MARK, 1977; VOJNOVIC, 1977).

Further advantagés noted by these authors when using a compact
inner kernel, are firstly, fhat all the outer layers can be written
in a high.level language, enabling a measure of portability to be
achieved, and secondly, thét the kernel can be implemented in micro=
code providing a very efficient realization of :hé essential and

most frequently used operating system functions.
Incorporating these concepts into an implementation of VIPER
would enable an efficient, compact and portable operating system to be

constructed,

Multi-language

One of the limitations of VIPER as implemented in this thesis, is that
it cannot support more than one language for on-line interactive
operations. It shouldbe desirable to extend the interactive and pro=
tection facilities to enable them to be used in other more standard

or conventional languages. As the information required for these
operations is for the most part contained within the descriptor tables
and not within the body of the code, it is theoretically possible to
extend the facilities to other languages.. The basic requirement

would be for the same descriptor (symbol) table format to be used.

Two other practical requirements would also need to be met. The
syntax scanner and decompilation routines for an additional language
could not be kept memory resident and an essential requirement of a
multi~language system would be the implementation of the modular kernel
approach with the language processing modules being swapped in as
needed. A second requirement would be that the internal meta-codes
which were used would need to be language independent (otherwise two
different interpreters would be required). The actual meta-codes would
also have to be selected to have some of the general characteristics
of machine code while retaining the properties required for the SVMM
operations.  ADIX (1975) and HELPS (1974) have shown that meta-codes
with this dual general-plus-special purpose characteristic can be
constructed for particular applications. Unsurmountable difficulties
may however be encounteredin attempting to use more complex languages

such as PASCAL in the SVMM environment.
7.2.6 vessol7.8
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"Throw-away" compiling (BROWN P. 1976; HAMMOND,1977)

"Throw-away" compiling was mentioned briefly in section 3.5.4. . In
this middle-path between interpretation and compilation, each
statement of a procedure is dynamically cbmpiled just before it 1is
executed the first time. If each statement in a procedure is
executed only once, throw away compiling is slower than inter=
pretation, but if, as is frequently the case, the program spends a
significant proportion of its time in one or more loops, then the
compiled code which has accumulated for these loops will execute
much faster. The term throw-away derives from the fact that when
memory space is short or when‘any interactive operations take place,
all the compiled code is thrown away aﬁd compilation is begun anew.
An essential requirement for tolerable efficiency with this approach
is the storing of the interpretive meta-code in Polish form to

ensure that the code generation step can be performed quickly.

This technique is of interest to systems such as VIPER because

f the repetitive nature of many tésks. It was noted in the case study
and elsewhere that in smaller systems some of these tasks are likely

to remain resident in memory. If they remain resident, however,

then they could be executing in-line compiled code instead of inter=
pretive meta-codes. This would enable the repetitive or time consuming
tasks to execute faster and hence improve the performance of the system.
The only disadvantage of thié approach is that the compiled code
generally takes more space, so that converting tasks from interpretive

to in-line code will in general reduce the memory available for other

tasks.

Microcoding

In addition to the microcoding of the floating point operations and
possibly of an operating system kernel, some of the interpretive

functions themselves can be micro-coded. GAINES (1976) has reported
a 10 to 15 fold improvement in execution time of a BASIC-like system

using less than a 1 000 words of microcode.

There ...../7.9
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There are two approaches that can be used when using microcoded
functions. The first is to retain the basic implementation of the inter=
preter in Assembler but to place certain of the mapping and specialised
seérch and move operations in microcode. This is essentially an

extension of the concept of using floating point firmware.

The second approach is to use the microcode to implement a
pseudo-machine which executes the interpretive meta-codeé directly.
A difficulty which arises from this épproach is that the order codes
and addressing structures reqﬁired for the interpretive mode generally

do not coincide with that of the host machine. To enable the full

- gpeed and space advantage of the interpretive code to be realised,

architectural changes may therefore be necessary to enable the two
different types of code to be executed on the same hardware. It is

not simply a matter of providing a new set of functions in a control
store (writable or otherwise) as it is the actual order codes themselves

which are different.

It can be argued that if architectural changes are required, it
may be more profitable to implement the virtual memory management
functions in hardware and to return to a compiler oriented system. The
advantage of retaining the interpretive mode of operation together
with SVMM, however, is that no major operating system or language
éhanges are required in order to enable a micro-coded iﬁplementation
to be used. The advantage of portability would, in particular, be
retained as the same meta-code could be executed on two different'
machines; in the one case via a normal interpreter and in the other
by direct emulation in micro—code. In other words, the use of special
hardwaré on one machine to obtain a particular speed advantage would
not preclude the use of the language and operating system concepts on
anothervmachine with a different architecture. It is this BASIC—like
portabiiity that is an attractive adyantage of SVMM, a‘portability'

which can be complemented by microcoding techniques.

Multicomputer operation

A further extension of VIPER which is being studied is the use of multiple
processing elements. There are two aspects to this study, the first

relating ...../7.10
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relating to multi-processor systems and the second to multicomputer
éystems or computer networks. It has been pointed out by
BORGERSON(37) that single—language systems such as BASIC and APL

are particularly suitable for the implementation of multi-processor
systems because it is possible to utilize one section of re-entrant
code for the 1anguége processing which is operated on by multiple
processors. The allocation of processors to tasks is a non-trivial
problém, but the well-defined task partitioning that occurs in VIPER

can help to reduce the magnitude of this problem.

The second aspect of multiple processor'use occurs in multi-
computer systems or computer networks. The pfoperties‘of the SVMM-
system permit the meta-code segments and data to be transmitted from
one computer to another for execution on that machine. The processors
in the system can differ, provided only that each is capable of
evaluating the meta-codes by interpretation or micro-coding. 1In
this environmment, a task consisting of one or more segments can be
executed on any element of the network without any modification or
link-loading. This concept of 'packet-switching' of segménts of tasks
(as opposed to merely data) between elements of a multi-computer
system is a unique property of SVMM which it is planned to use to
advantage. To facilitate the movement of segments, it was desirable
that all the information associated with a segment should be contained

in a physically contiguous block, and this consideration influenced the

segment structure that was chosen.
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CHAPTER 8

CONCLUSION

Interactive real-time software systems, consisting of the amalgamation of

a high level language and a simple operating system, are an important class
of software which have been widely used in a variety of applications. It is
claimed, however, that the structure and performance of this type of system
needs to be enhanced to enable improved programming methods to be used and to
enable more complex programming tasks to be undertaken by the application

oriented user.

The goal of this thesis was therefore to demonstrate that the interactive
facilities of such software systems could be extended and improved, using a
structured language in a multiprogramming and multi-user environment, while
retaining the ability to run on simple, small, minicomputer or microprocessor
systems. An additional goal was to maintain the simplicity of operation and
construction, while improving the protection facilities, as well as to-demon=

strate that good programming practices are possible on systems of this type.

In constructing a system to meet these goals, serious memory management
problems had to be solved. This led to the development of the concept of "Software
Virtual Memory Management" (SVMM); a memory management technique which extended
the concept of hardware virtual memory management without requiring the use of
hardware mapping devices. In addition to extending the effective memory space

of the system, this memory management system facilitated the provision of a variety

of protection functions.

In developing the operating system VIPER, which uses SVMM techniques, it is
claimed that the above goals were attained, and that the following concepts were

demonstrated:

1. The interactive facilities found in simple monoprogrammbd systems
can be extended and improved in multiprogramming systems. Both
the interior and exterior (shared) data structures of a procedure
can be examined while the procedure is executing, using normal

program statements and commands. As far as I am aware, this is a

unique ...../8.2
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unique property of VIPER and has not been implemented on any other

system.

Structured programming concepts can be simply implemented and the
memory management algorithms can take advantage of the modular

properties of structured programs.

The efficient way in which memory is used in SYMM improves the
performance of intérpretive systems by permitting many more

programs to reside resident in memory. This reduces, or eliminates
the need for swapping, résulting in the performance of the inter=
pretive system being comparable to that of a system executing in-line

code with swapping in typical applicationms.

The unification of the command and programming languages, and the
use of the same language elements for debugging operations,
simplifies the user interface. This facilitates the use of the
system by application oriented userswith minimal training in real-
time operating system concepts. The SVMM structures also contribute
to this simplicity by integrating the text manipulation and

protection functions.

The SVMM structures permit protection facilities to be naturally
incorporated at all levels in the system, including parameter
passing, data segment access and the file-system-like protection of
prograﬁ modules, The integration of the protection functions into
the language and operating system also simplifies these operations
and encourages the use of the protection facilities by the

application oriented user.

The documentation aids which can be provided in the interactive
language contribute to the production of programs which are readable
and maintainable. These include the structured programming

indenting, the end~of-line comments and the system documentation aids.
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In the implementation of SVMM in VIPER, the simplest structures and
algorithms were employed which enabled these concepts to be demonstrated. As
noted in chapter 3 improvements could quite likely be made to the memory
allocation and scheduling algorithms. Alternative memory structures could
also be investigated, as discussed in chapter 7. Despite this simplicity of
construction, the performance of VIPER is considerably better than that of
many simple real-time BASICs which are currently available, and systems
using SVMM could be applied to applications where interpreters could not

previously be used.

In the process control case study, for example, it was observed that
VIPER had a performance which was comparable to that of a compiler oriented
system executing in-line code with swapping. It is not claimed, however; that
an interpretive system like VIPER competes with these compiler-orientel real-
time executives in all applications. VIPER is a dedicated, high-level-
language system, whereas these latter executives are general purpose multi-
language systems. What is claimed is that in many applications the full
facilities of these executives are not used. In these cases SVMM and an inter=
preter can provide an attractive solution which simplifies the programming task

and which facilitates the production of more reliable software.

VIPER was designed primarily as an interactive software tool for experimental
process control work, A final claim of this thesis, however, is that the
concept of Software Viftual Memory Management is of wider applicability.
Business processing applications, for example, such as those described by
GAINES (1976) and FULTON (1976) as well as distributed instrumentation systems
(RAIMONDI, 1976; AGRAWAL, 1976; DIEHL, 1975; ANFALT, 1975; VON MEURS, 1977)
could all use SVMM concepts to advantage. The numerous simple interpretive
process control systems which have been reported (FOSTER, 1974; OTTO, 1974;
LAURENCE, 1975; NELSON, 1976; GLADNEY, 1976; BERCHE, 1976) could also use
the SVMM type structures to improve the program structure and interactive

facilities, as even these simple systems suffer from shortcommings in one or

other of these areas.

Furthermore, the extensions and improvements which can be implemented (as

discussed in chapter 7) can be used to overcome some of the current limitations

of ...../8.4
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of the SVMM implementation in VIPER. This would facilitate tbé application
of SVMM concepts to an even wider class of applications and could be used to
eliminate the dependence on software interpreters.. Software Virtual Memory
Management is therefore a powerful technique for constructing real-time inter=

active software systems on mini~ and microcomputers,
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APPENDIX Al

BNF DESCRIPTION OF VIPER

segment .. = <procedure>| <subroutine>
procedure i = PROC| PROCEDURE [ <name>]
<statements>
[ START
<statements>]

END| <goto>

subroutine ‘= SUB| SUBROUTINE[ <name>[ (<formal param list>)]]
<statements>
[ START
<statements>]

RETURN| <goto>

formal param list :'= <variable>[,<formal param list>]
command :: = <proc stm>
statements .. = <line no>{<proc stm>| <control stm>}

[ statements]
proc stm = <assign>| <print>| <unary if>| <rem>| <goto>| <input >|

<common>| <dim>| <op stm>| <call>

control stm I = {<if>| <for>| <while>| <case>| <error>| < region>}
assign ! = LET <assignment list>

assignment list = <assignment>{;<assignment list>}
assignment .- = <assignment head list>= <expr>

assignment head list ’={<variable>| <system assign>}[ =<assignment head list>]

system assign :i= {PRIORITY| PASSWORD ACCESS} ( name) ]

call I = CALL <sub name>[ (<expr list>)]

expr list I = <expr>| ,<expr list>]

print = PRINT[ <lu spec>][print list]

print list ‘'={<expr >| "<string>"| TAB(<expr>)} {,| ; }<print list>]
lu spec = (<expr>)

input :i= INPUT [ <lu spec>]<variable list>
variable list :'= <variable>[ ,<variable list>]
rem ;= REM [ <string>]

goto ::= GOTO<line no>

common ,.,...A1.2
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common ::= COMMON<com name>[ <variable list>]

dim = DIM<dim list>

dim list ‘= <array variable>[,<dim list>]

op stm :’= <lock free> | <list>| <save > <get>

<run>| <wait>| <log on>| <log off>| <name ops>

name ops .= {RESET| STATUS| MONITOR| DEBUG| CHANGEI
TRACE ON| TRACE OFF| SCRATCH| DELETEI

GO} <proc name>}]

lock free = LOCK| FREE<com name>

list ! = LIST[ <lu spec>][ <proc name>][,<line no>[,<line no>]]
save .= SAVE| 1lu spec][ <proc name>| <com name>}
get = GET[ <proc name>| <com name>]|[,<io address>]

RUN

RUN[ <proc name>][ <time spec>]

time spec = {{EVERY| IN}<expr>{SECS| MINS| HOURS}}|

{AT<expr>:<expr>[ :<expr>] }| <time spec>

wait = WAIT<expr>{SECS| MINS| HOURS}

log on = LOGON<pass word>[,<lun>[,<priority>[,<access>]]]

lun i = <number> ' (logical unit no)

priority ' = <number> (Maximum priority of password)
access .. = <octal constant> (Access states allowed to the password)
log off = LOGOFF[ <password>[,<lun>]

proc name . = <npame>

com name = <name>

line no ' = <integer>

io address I = <integer>

number ! = <integer>| <octal constant>

octal constant ' = <integer>B

unary ...../At.3
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unary if = IF<expr><proc stm>

if = IF< expr>
THEN[ <proc stm>]
fstatanents]
[ ELSE[ <proc stm>]
[ statements]]
ENDIF

while := DOWHILE<expr>

<statements>
ENDDO

for :i= FOR<variable>=<expr> TO <expr>[ STEP<expr>]
<statements>

NEXT<variable>

case .= <case list>
ENDCASE<variable>
case list :i= CASE<variable><rel op><expr>
<statements>

<case list>

error -.= ERROR
<statements>

ERET

region := REGION<name>
<statements>

END REGION<name>

expr ::= <conj>| <conj> OR <expr>

conj ‘= <boolian op>l boolian op> AND <conj>

boolian op :i= <arith expr>| <arith expr><rel op><boolian op>
rel op ‘= >| <| >=| <=| # = '

arith expr != <term>| <term><pm op><arith expr>

pm op = 4 —

term :i= <factor>| <factor><md op><term>

md op = ¥/

factor = <primary>| <un op><primary>

un op

ceeed/ AlL4
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un op ::= + -| NOT
primary .= <operand>| <operand>**<primary>
operandi= <variable>| <decimal no>| <system function>|( <expr>)
system function = <trig func>| <arith func>| <format func>
| <access function>| <bit function>
trig func !i= {SINICOSITANIATN}(<éxpr>)
arith func = {EXP| LOG| SQRI RND} ( <expr>)
format func = {FLT| FIX| INT| SGN}( <expr>)

bit func i = {SHIFT| XOR| BIT}(<expr>,<expr>)
access func :: = {PRIORITY| PASSWORD| ACCESS[ &name>)
| READA| WRITEA| READA+WRITEA
variable = <dim variable>| <simple variable>
dim variable :: = <name>(<expr>[ ,<expr>])
simple variable = <name> -
name ..= <letter><letter digit> (max length = 16)
letter digit I = <letter>| <digit><letter digit>
letter :* = AlBlC ... |2

digit <= o112 ...19
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APPENDIX A.2

VIPER COMMANDS

" This appendix describes the commands which are available in VIPER. All the
commands can also be used as program statements, although sbme, such as
LOGON, CHANGE, DEBUG, etc. are seldom used in this mode. The syntax of the
statements is the same in bofh cases, bnly the presence or absence of a

statement number differentiating between the two modes.

The BNF description of the command syntax was given in Appendix A.1.
In this appendix the syntax is repeated for ease of reference, followed by a

semantic description and examples in some cases.

LOGON<password>[ ,<lun>[ ,<priority>[ ,<access>]

<password> - new password can only be specified if command is issued
by Master password holder; if password is known, identifies
user to system. |

<lun> - accept further input from device specified by logical unit
number (lun). Current terminal remains active until LOGOFF.
If not specified remain on current terminal.

<priority> - can only be specified by Master; determines maximum priority
which can be specified by this password holder.

<access> - can only be specified by Master; determines states in which
user can operate

(a user can be excluded from CHANGE or DEBUG)

Examples:
LOGON MASTER - Logon with master password (any name, up to 16 charactefs,
' specified at system generation),
LOGON USER1, 2, 50, 77B - Establish USER] on logical unit 2, maximum
| priority of 50, all states permissible,
LOGON USER2, 3, 90, 17B - USER3 not permitfed to enter DEBUG or CHANGE modes
LOGON USER4 — Change to previously specified User4 password

on the same terminal.

LOGOFF ...../A2.2
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LOGOFF[ <password>[ ,<lun>]] _
Terminate input from a terminal. No further input accepted until
correct LOGON entered. Password and logical unit number can only
be specified by Master; used to logoff a particular user from the

system: <lun> = 0 deletes the specified password, user cannot LOGON

again.
Examples:
LOGOFF - Terminate current sessiong disables terminal
until correct LOGON entered
LOGOFF DUSER1, 2 ~— Terminate USER] or unit 2‘(Master only)
LOGOFF USER2, O - Delete password USER2 (Master only)

- PROCEDURE <name>
Create a new procedure with specified name. If issued as a command,

name must be specified and must be unique.

SUBROUTINE <name>[ (<formal param 1list>)]
As procedure, except parameter list can be specified when used as a
program statement. Parameter list ignored when issued as a command.
(The difference between procedures and subroutines is arbitary and-was
adopted largely for ease of transition of FORTRAN oriented programmers.

A single type, procedure, would be sufficient.)

CHANGE [ <proc name>]
Move to CHANGE mode, if permitted by password attributes, on the
specified procedure (or subroutine). If name not specified, shift

mode on current segment. Permits any changes to be made to procedure.

DEBUG [ <proc name>]
As CHANGE, but in DEBUG mode existing statements cannot be changed

or deleted and only PRINT and LET statements can be added. Statements
added under DEBUG can be deleted, however.

MONITOR [ <proc name>]

Permit state of procedure to be monitored, but allow no changes or

additions.

LIST ...../A2.3
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LIST [ <proc name>][ ,<line no>][,<line no>]
List a procedure or any portion of it. Current procedure assumed

if name ommitted.

Examples: . o
LIST - List all of current procedure
LIST PROCA - List all of procedure PROCA

List from statement 100 to 200 of current

LIST, 100, 200
LIST PROCB, 300

List statement 300 only of PROCB

RUN [ <proc name>][ <time spec>]

Examples:
RUN . - " Execute current
RUN PROCA -~ Execute PROCA

RUN PROCB EVERY 10 SECS - Cyclic execution
'RUN EVERY 10 SECS IN 2 MINS - Cyclic after delay
RUN PROCD AT 10:20 - At time of day
RUN EVERY 1 HOURS AT CURRENT,HOUR+1:0:0
- Every hour on the hour
RUN WEEKLY EVERY 24%7 HOURS
— Run once a week
RUN SHUTDOWN IN 2%24 HOURS AT 04:00:30
~ Shutdown at 04h00.30 in 2 days time

WAIT <expr> SECS| MINS| HOURS
Wait designated period before resuming execution.
Examples:
WAIT 2 SECS
WAIT 2%X MINS

SAVE [ (<lun>)][ <name>]
Save a procedure or common data file on the external device specified
by logical unit lun. (In VIPER, (lun) always defaulted to a single

bulk storage device, compucorder or Disc)., Name optional, current saved

if not specified.

Examples:
SAVE - Save current on default bulk storage device
SAVE PROCA - Save specified procedure
SAVE COMX ~ Save current values in data area COMX
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GET [ (<1un>)][ <name>][ ,<io address>] '
Obtain a copy of a procedure from a specified (or default) bulk stqfage
device. Réstore named file (procedure or common) or obtain file from
a particular physical address on the device. (Used for Compucorder

where no off-line directory exists)

Examples: _
GET 1 - Restore current with text as at last SAVEf
GET PROCA = Restore specified procedure
GET, 90 .~ Obtain a procedure from address 90

of compucorder (legality of éddress is
carefully checked with code words on the
magnetic tape).
RESET [ <proc name>]
Clear all entries on scheduler lists; release externals; delete any

unused descriptors on symbol table. Name‘optional. Password holder only.

SCRATCH [ <proc name>]

Clear symbol and statement pools but do not delete segment.

(Releases all externals first)

DELETE [ <proc name>] _
Delete segment, does reset first then deletion. If current procedure
deleted, move terminal control back up to father, or Master if no

father exists and logoff if father or Master password does not match
current.

STATUS [ <name>]

Display the status of a procedure or common area. Procedufe status
indicates lists on which procedure resides, and scheduler parameters,

Common status indicates state of sempaphore and size information.

TRACEON [ <proc name>]
TRACEOFF [ <proc name>]

Turn statement execution count trace on and off. Count is examined by

using LIST with trace still on., TRACEON, TRACEOFF and RESET resets count
to zero. Procedure name optional.

LOCK ...../A2.5



A2.5

LOCK <com name>

Lock the semaphore associated with the specified common data area.

Procedures executing further LOCK or REGION statements suspend pending

a FREE or END REGION.

FREE <com name> ‘ ,
Unlock (release) semaphore. If any procedures are suspended waiting

on this semaphore, the one which has been waiting longest will be

released to execute.

STOP [ <proc name>]
- Suspend execution of procedure,3savihg éuspension point and displaying
message on console device:
STOPPED IN LINE XXX OF <proc name> _
If name ommitted, stop procedure which is currently associated with input

device. A "stopped" procedure can only be restarted with a GO or GOTO.

END [ <proc name>]
Terminate execution immediately, does not save termination point. Also

used as normal program termination statement.

TURNOFF [ <proc name>]
Remove from time list, permitting procedure to complete current

execution, i.e. inhibit repetitive execution.

GO [ <proc name>]

Restart a procedure after a STOP. Continues executing from suspension point.

GOTO <line no>

Restart execution after a STOP at a specified line number.

" ACCESS (<name>)=0| READA| WRITEA| READA+WRITEA
Set access attributes of a data element. This can be either a shared data
segment name (common name); the name of either a gimple or subscripted'
variable within a common area;' a local array variable; or’a-fdfmél
parameter; | |

Examples/ ...../A2.6
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Examples: o
ACCESS(COM1) = READA+WRITEA _ - Read and write access
ACCESS (ARRAY) = READA - Read only
ACCESS (SOMENAME) = O - No access
PRIORITY [ (<proc name>)] = <value>

Assign a priority to a procedure, in the range 0 to 127. .0 is highest
pfiority, 127 lowest. The password attributes may prohibit setting a
priority below a specified value (see LOGON).
Examples:

PRIORITY (PROCI1) = 50

PRIORITY = 40 - Set priority of current procedure associated with

input- device.

PASSWORD [ (<namel>)] = PASSWORD [ (<name2>)]
Change the password associated with procedure or data area <namel> to
that associated with <name 2>.  Only the Master can use this command
to change passwords.
Examples:
PASSWORD (PROC2)
PASSWORD (PROC2)

PASSWORD - PROC2 password = current
PASSWORD (PROC3)

The ACCESS, PRIORITY and PASSWORD' functions can also be used in expressioné
to determine the value of the attribute. |
Examples: |

PRINT ACCESS (COMI)

IF ACCESS (ARRAY) = READA PRINT "ARRAY READ ONLY"

IF ACCESS (SOMENAME) = 0 CALL NO.ACCESS.FIX

LET PR] = PRIORITY (PROCI)

IF PASSWORD (PROC2) = PASSWORD (PROC3) PRINT "SAME PASSWORDS"
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HARDWARE AND SOFTWARE DEVELOPMENT SYSTEMS
VIPER is written in VARIAN Assembler code which is cross-assembled on a CDC
CYBER 174. The cross assembler program is written in FORTRAN and was
originally run on an IBM 370/158. Additions and changes to the VIPER source
are performed with the CDC KRONOS text editor on a (remote) CRT terminal.
As down loading facilities from the CDC directly into the Varian had not been
implemented at the time that the development of VIPER was taking place, the
binary output of the cross—assembler is dumped on paper tape for loading into
the Varian. (As there is in fact no paper tape punch unit on the CYBER, output

is via an intermediate 9 track magnetic tape, for punching on an off-line unit.)

All the development work on VIPER was performed on a Varian 620i com=
puter with 16K words of core memory. This computer is equipped with a paper
tape reader, magnetic tape cassette unit, cartridge disc and CRT and TTY
terminals in addition to process input-output units and a CAMAC System Crate
interface. In April 1978 the construction of a microprogrammable emulator of
the Varian was completed and further development of VIPER and the programs of
the case study was performed on this machine. The emulator, called the MIKROV,
uses INTEL 3000 bit slices and was based on a design by J. VAN AARDT (1977) of
NIDR, CSIR. This machine was operated with 24K of RAM initially which was
later upgraded to 28K. The remaining 4K of the 32K memory space is allocated |
for.PROM memory. Only 2K of this space has been used for a resident debug aid

plus paper tape and cassette load/dump utilities.

On the 620i the cartridge disc unit was used as a swapping device while
a CAMAC bulk memory unit (which was constructed specifically for VIPER use)
was used on the MIKROV. Magnetic tape cassette units were uséd for program
storage on both machines. The CAMAC bulk memory module was built using 16K
dynamic RAM memory chips and was designed and layed-out for a capacity of 64K
words in a single Camac module, but only 16K words were used for the case study
as the module was operated with only one quarter of the chips inserted. No
battery back up was provided for this module as a high-speed AC mains switch
over unit was used at the Huletts Refinery which switched to an alternative

AC supply if the primary supply failed.
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PROGRAM INDEX

‘Program function VIPER Page FORTRAN Page‘
% Name No. Name No.
1. Repetitive or frequently executing programs ,
Master pacing program - PACIR B3.1
Scan contact sense SCANCS B2.1 SCCS B3.3
Scan A/D convertor | SCANADC B2.2 SCAD1 B3.6
Engineering units conversion: ENGUNITS B2.3 ENGUN B3.9
Watch dog time-out WATCHDOG B2.4 WCHDG B3.14
Servo balance scale tip SERVOTIP B2.5 - SERVO B3.18
Saturator flow control , SATFLOW B2.6. SAFCO B3.23
Cloudy liquor flow control CLFLOW B2.8 CLFLO- B3.29
Remelt flow control ' ' REMELT B2.9 REMLT B3.34
Lime ratio control )LIMERATIO B2.10 CLIME B3.38 |
Gas flow control A Saturator GASFLOWA B2.11 'GASFA B3.42
Gas flow control B Saturator = | GASFLOWB B2.12 GASFB B3.47
Gas flow control C Saturator GASFLOWC | B2.13 GASFC B3.52
Filter unit logging - FILTER MONITORB2.14 FILCY B3.56
Control D/A output ?CDAC B2.16 - g
Write contact output ?WCOUT: IB2.16 - é
Operator message control ;MESSAGE B2.17 MESEG % B3.66
Operator message control » - ERMES i B3.70
Operator message control - i MESAG B3.71
2. Non-repetitive programs ?
Start up and initiation : . STARTUP IIB2.l8 STRUP B3.72
Shut down control progs. SHUTDOWN !B2.18 HANGO B3.76
Engineering units limits o ENGLIMITS iB2.19 -
Calculate smoothing filter coeff.: FILTERCOEF ;B2.19 -
Hourly average of servo data ; SERVOHOUR !B2.20 - E
Eight hour (shift) report servo ! ' % : ?

data ' SERVOSHOUR  B2.20 - |
Report on filter units N FILTER. REPORT B2, 2] RFLDT | B3.82
Monitor and report control % ;

loops on-line ' ' ' CLOOP ‘B2,23 CLOOP B3.85
Operator message output _ 3 PRINT.MESSAGEEBZ.24 -

Operator message output

Operator message output

" PRINT.PROG.NAMB2. 26
. PRINT.PROG.NAMB2, 26




B.3
APPENDIX B. |

PROCESS DESCRIPTION

The prbcess under control was the front end of the Huletts Sugar Refinery at
Rossborough, Durban. Fig. B.1 is a schematic diagram of this section of the
refinery. The control fﬁnctions consisted of three flow control loops and
four quality control loops to control pH and reagent addition. A number of

monitoring functions were also performed.

The software is organised in two classes, the first being the timing and
scanning programs and the second the control and monitoring programs, as shown
in Fig. B.2. The synchronization of the programs is performed with semaphores
and communication amongst the programs is performed via a single global

COMMON area.

The computer was interfaced to the process using a CAMAC system, as shown
in Fig. B.3. This diagram shows a dual computer configuration. This use of
dual computers was investigated'briefly but due to the rapid and continual-
development of programs that took place during the period when this thesis was
in progress, the dual computer configuation was never used for control work. All
the results reported in this thesis were obtained on the single HP 2IMX running
under control of the HP RTE (Real-time Executive). RTE 2 was used initially with
32K of memory but this was later upgraded to RTE 3 with 48K of memory.

The programs depicted in Fig. B.2 and listed in Appendix B.3 were all
independent modules which could be separately compiled and executed. This

facilitated the testing and on-line expansion of the system as new functions were
added.
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PACIR
(Master sampling time control)

-

! ) T
SCAD SCCS

WCHDG

[

SDATA
(Store data)

(scan A/D's) (scan contact status) (watchdog)
e l — -
CLOOP FILCY (M1) SERVO (M2)
(servo-balance monitor)

ENGUN on/off line)
(conversion to
engineering units)

(control loops (filter cycle monitor)

[
SAFCO (C1)
(saturator
flow control)

[ T
CLFLO (C2) REMLT (C3) GASFL (CSL c6, C7)
(cloudy liquor (remelt flow (gas regulation
flow control) control) for pH control)

(three loops)

The numbers C1 - C7 and M1, M2, correspond to the
elements marked in Figure B.1.

FIGURE B.2 SCHEMATIC OF FACTORY SOFTWARE

CLIMEI(C4)

(1lime/solids
ratio control)

5°d



DUAL COMPUTER CAMAC SYSTEM

COMPUTER A

HP 2108 32 K KEMORY
DISC BASED EXECUTIVE
FOR DEVELOPMENT

DISC

COMPUTER B
HP 2108 32 K MEMORY

MEMORY

BASED EXECUTIVE

FOR CONTROL

GRAPHICS

TERMINAL[ @

MAG TAPE

LINE

PRINTER [

DATA DATA
LINK [S 1 LINK
=] TERMINAL
BRANCH ARBITRATION BRANCH | |
DRIVER ~ . DRIVER [ PAPER
: TAPE

CAMAC
CRATE

CLLCKL

CAMAC
CRATE

i
;

FIGURE B.3

T

<—> FACTORY WIRING

(MEASUREMENT
AND CONTROL)

QLL<—-> TEST AND

DEVELOPMENT

9°'d



Notes:

B.7

APPENDIX B.2

VIPER PROGRAMS

The VIPER programs have relatively few comments. This was becausé
of the small memory size of the Varian 620i on which VIPER was
running at the time the programs were written., (The MIKROV with
its larger memory, was only used later.) For expanded descriptions
of any of the programs see the FORTRAN listings, See also section
4,5.1.2,

The numbers on the right hand side of the listings of some of the
programs are statement execution counts - as described in section
4.3.2.1 p. 4.22. (A bug in VIPER resulted in some of the counts
being incorrect. This has been fixed, but the listings were not

updated.)



YIPER

1 FPROCEDURE

200
310
220
IS0
40
350
G430
4210
SO
S1n
S

APPENDIX B.

REW HY

REM =3-11-F
COMMOMN BITE
LET ACCER
LET
CRLL DECLFE
CARLL DECLFR

CRLL DECLEC

CALL DECLR D
CALL CAMAC 1S, CE
CHLL CHMAC 131
CRLL CRMAZ 1.1
CALL CAMACCIEICE

SZTRART ZCAMCE
CRLL
CHLL CHRMAC (D
CALL CAMAC C0. L0

CALL CRAMRC OO CE
CIMOta=FILML
FILMHZ=CIMZ AMD
SEVHI=BITOISCIMEY &
FILD==0R<FILOL S FILH11+ OR CFILOZFILME

LET
LET
LET
LET
LET ZRWh=HORC
LET CHMTD=
IF FILDN RLI
I ZEWD RUH
TF CHTOD R
LET FILOL=FILH1
LET ZRY )

CRMEC s TR

2

1z2-04-782

.'HHL_

hl

’D""HTD!IHTH'
FILTEFR.
SERVOTIF
mLons

WM1sFILML s
SeFILHZ 02
Wy S IMEs
NEYERELE E NN

- VIPER. PROGRAMS

'J

o0

1809~

ZCAM COMTACT IHFUT

CIH 3y SCOF T2

CCDIM =RERTAR+WRITERA
SRYOI=SRYCE=CHTO=FILO1=FILOE
Wlasls12s 2
Wzalslgs1s

ErS ] 1:.1 [

flds 1ol

=FILOZ=0=

!1'
L e Diw i
Palie
Gs T E1
g s [ls 30

WRITE LAM MAZK TO ALL

READ COMTARCT =TH TH'

i CIMGz

15 &

3=FILAE § CIMOI =CIME 3
CHTH=SHIFT CCIMgs —1
ERYHE=EIT (1, CTM4Y

P +#0R CFILOZ FILHEY
SRYMED

CIModr=CING

LRYMLY +HOF CTRYOS
MOMITOR

FILOS=FILMHZ 3
ZRVDZ=SRWHE 3

FILOZ=FILMZ
CHTO=CHTH

PAGE B2.1

IWITCHEE

CHAMAELE

TWITCHER



VIFER

Sy
SED
S0
510

APPENDIX B.2 VIPER PROGRAMS ‘ PAGE B2.2

REY A7 1204973 10:42:45.0  18-04-72

1 FFDiEDHhF ZCAMADT ' : ICAM A TO D CHAMNELS

REM 23127 7FEDR
COMMOM ZPECE, HADC, COLIFM C23
COMMOM YOLTS. W CHADDY
LET RCCEZECOVOLTED ‘kEHDH+HPITEH
CHLL DECLECMUE1AN 1.5 00
CARLL DECLR SMUES1Bs 16l
CALL DECLE CMU<ZH 14 72 010
CRLL DECLE tMUEZEs 1a ¥y 12
CALL DECLEYANC 13, 00
ITRART ZCAMALC

S LET J=0 § JIMC=17 § MUSL=MUXE=MUX1A

FOR I=1 TO HMRIDC
CHLL CAMAC YEE M1 e Die G - ) RESET
CALL TAMAC (18« MLESEs s 1) : . o o WRITE DUT CHAMMEL MO
CRLL CAMAC C2e AL s Tis G0 ' ETART COMYERSIONM
LET Jd=Jd+JIHC |DMFHTF HEST CHAM MHILE MRITIHG FOR COMPLETION
IF I=17 LET Jd=0 §F JIMC=47352 § MUsi=pl#1E . :
IF I=3232 LET =0 3 lIHt-l. ML =MUS2=pUHEE
IF I=45% LET J=0n = JIMHC=4352 1 MUHE=mLHEZR
LET &2=0 _ ’ o : .
DOWHILE =0 - . . WAIT FOR COMMWERSIOM TOD COMFLETE

CRLL CRMAD D ADC Dy 810 . ‘ o '

EHDDO
LET & ilo=rD=320 703273, 57

HEST T =10 ‘

BLUM ENGUMITE

EML ZCOAMRLC




WIPER

ar
)

APPENDIX B.2 VIPER PROGRAMS

REY A7 12-04-78  12:142:09.6 18704 i

1 FROCEDURE EMGURITE

AEN)
oo e T

0 o) T g T

E

L
0,

94ﬂ

R
10060
1010
1020
1020
1100
1110
1izn
1200
1210
1220
12720
12410
12540
12&0
izvn

REM  D1027SELR
COMMON SPECT s MADC s ESs DELT
COMMOM 2OLTE s CHATCS
COMMON EMEsE CETD
COMAON EMEL IMe EL CES» 20 .
LET BCCESEC oWy =ACCESS (B2 =READA+LIRITER
CALL EMGLIMITE

TTART EMGLIMITE

¢t LET LLIM=1

FOR I=1i TO HMHADL
IF 119 LET LLIM=2
IF WiIx<LLIM
THEM ©CHLL MEZZAGE (1.1
LET wolr=LLIM
EMTIIF
IF Woln=1i0
THEM ©CARLL MESZARECL.I2
LET &cla=11
ENDIF
MEXT I 3220
FOR I=11 TO 13
LET EcTa=wCl:4»10
HE=ST T - Si
LET E1S=E 15
IF EiSs<en OF E15:490 LET ECiSy=2i
LET ZEPE=1.234. 1324 030
IF ZGHPB1.2445% OF * :
THEM CHLL MEXR

LET SiBRE=1.C
EMDOIF
LET Ecila=10040, 37
LET EvZr=10iie,
LET EvSr=100le,
LET "%=1DU¢v.
LET '=1UD¢=
LET
LET
LET
LET
LET
LET
LET
LET
LET
LET
LET
LET
LET
LET
FOR 3 .
IF ECIDZEL vIs1> OF EqCIrxxELCI«2r CALL MESEA
MHEAT I 11i0u
Pl SHTFLDOW
RN TLFLOW
FUM REMELT
Rl LIMERRTIO
R BRIFLOWA
ELM GHZFLOE
FUN GARSFLOWC
EHD EHEALINITS

= Ty M TP ARFMAT (M 1 (T 0T 0 (T P I P T

)

e«

PAGE B?.3

EASS L EPE+E,. 20DE-DZeE 1S

—t



APPENDIX B2 VIPER PROGRAMS

YIPER REV AV 12-04-72 14532813300 180407

1 PROCEDURE WATICH, DOG
! REM  170172EDR
LET HMLOORPE=T § MAXHO=2 § Lid=1
COMAMON BITS CIM 4 ZCOP (2
LET RCCEZE ¢ CZCOFY =REATIA+WRITEA

L CRLL DECLECLAMGe 1223y 03

=1L LET ZCOFCi»=0 3 ZCOPC2r=0

arn DIM FLAGCHLOORE)

ion FOR I=1 TO HLOOFE

110 LET FLAGCIX=MAXHD

iz0 MEXT I 106

130 WARIT 1 MIMZ
00 ZTAHRT WRTCH, DOG

210 CALL CAMAC C1es LAMG Dy i)

R0 CALL CARFAC O LAME. Da Q2

— M

T

230 IF D0 PRIMT JLU: "LAMG ERREOR. G« Ii="D

400 CALL CAMAL C1Es LAMGE 22 7Fa7 s 0
S50 CALL CAMSC CDs Lrpisy Dhs 0

S0 FOR =1 TO MUODFE

510 LET STRTA=EIT ol Z2COR L0y

1 IF FLAS D >100 LET FLAR dx=100
] LET CMT=FLRG 1 —MfAxMHD

I IF CHT=0 0OR ZTRT.I=1

5 THEM LET CHPRM=-1 .

1} CALL WCOUT CCHAMY ZTRAT A2

n LET MRAZE=ZHIFT {1 s

[y R Y

T T

IF STAT.A

T O O
)

P I S o N e B R Y R A 0

0 EMDIF

10 HEXT I Son
T LET ICORdla=0
TE0 EMD WRTCH, DOG

™
(1]

260 IF D227y PRIMT (LU "LAME ERROR» 3277 D="D

{ : ‘
i THEHW LET ZC0OF 2y =%COREY OF MAZEK

HOT MAZE

S5 1) CALL MEZZRRE (2e 1)

&e 0 ELZE LET =ZCOPe2y=2C0OP V22 AMD
arh EMDIF -

O LET FLAG v =cFLAGO 2 +10#01~-5TAHT 2

PAGE 32,4
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Ots01-00

o
(g}
™
(]
=t
na
n

WIFER REYW AT 3-04-7E

1 FROCEDURE ZERVDTIF
o RFEM Z101F2EDE
1 COMMOM BITS:CIMGEr « 2C0F 2
S0 CaMMiH = ”DD FPROD FRODL . PFUD;-HH"PHTEnHH“Z.HDHF DHH til1?
T TIM THY T2 e B

LET RCC ERWOD =FEADR+WRITER

CARLL DECLF ALTs 12112

CALL LECLE ALlslalegedn

CRLL CREaC CRLOs D L1

CRLL CAMAC CAL1sDslln

LET =ZRYDI==2pv0z=FrOD=FPRODL= FFDDL—NHSZ HOLR=0

CRLL TIMT(GELS« TPREEW:
START SERYWOTIF
FESION ZERYOL )

LET SRWHI=BRITOLECIMSE 3 ZRWHE=EITO1sCIM 40

IF ZEWOi=0 AMD ZRWYMHI=1

THEM CaLL CARMPOCERCAL DMOT 100
LET THMASZO=MOT1-S00 § PRODL=PRODLI+THASEN
EMDIF
IF EZRWOZ=0 AN ZRVHE=!
THEM  CALL CAMAL (2 ZCRLT»MOTZ 00
LET THMAZ=0=MOTZ-300 3 FRODZ=FROLZ+THMARIIO

EHIIIF

LET PROD=FROD+THASIO § SRVDLI=ERYML § SRYOZ=SRWNE

LET MAazs, HOLR =My L HOUR+TMAZED

CARLL. TIMT {DELZ TRFREYW

LET DELH=DELZ- 20
FOR I=%0 TO 2 ZTEP -1

LET Jd=1-1 % THARZZ 1 Ix=THMARAZZ1s  §F THAIZS (2 I0=THRZZ (2 10 +TIELH
HE=T I 450 '
LET TMREZZ 110 =THAZEN ¢ THMAZZ CZa10=0
LET K=1 3 MAZZRATE=D
ODOWHTILE THRA Cr o=l AMHD K =3

LET MHE;FHTE HHQEPFTE+TMHs;.
EHTILA
1 LET MAZEZRATE=MAZTRATE “TMREZ (2« K—-11
540 ENDFESION TERVDD
S50 EMD JERYWOTIF




APPENDIX B.2 . VIPER PROGRAMS : . PAGE B2.6

oo

VIFER PEY AT 18/04-72 14108:30.8 15-04-7

1 FPDIEDH&E ZARTFLO

& FEM 22017 ZEDR
50 LDHHDH SPECZsHADRC»EZs DELT
=0 DOMMOM EHGsEYERY
L COMMON YOLTS W OMADD
30 COMMON BITZsCIMOS: s SCOP 08D
2] LET (LCOPY =FERDR+NRITER

1o LET i HAFM=Z, 252932 §.HSSH=E.26099 5 HFLM=3.371

110 LET o5 AEET=11.39%%
1240 LET “ZTeHAFM 8 WEIT=AZET
1zn LET i H: P=.2 3 WPLR=S
140 LET LIR=326 & GFL E §ORIE=50

150 LET m 1.JuuﬂuE—03 H BHHF—
LET HEZMI=ECi2 1010 3 HHFFl HAFFZ=RRF=E (> ~100

=

T
1
=
O L e e N P

i LET ZOLIDS=NLEZEY=0 5 ALPHA=.Z .

1] LET MLHFFT=10008F 7y 5 FLOW=E (23> 3 BRIS=%03) § EBRI¥S=E(D)

{1 CRULL FILTEPCDEFimsDHMF-DELT«LscrtsCD-CE) : : ' 1
0 LET GIRY=1s0a0e5IRY ¥ I n—1,. nezI3n

0 START ZATFLOW : 100
0 LET HAFH=E 2> ~100 § HFLH=E (2% <1 DH 100

TN TS NN I O I N R F K

D I T B W I e Y R S R

a SEM=E C12 ¢ALPHAC- 1 00+ (1 -RLPHAD #HEENT s 100
] M5, 00000E-0Z CTALL MESTAGE(Ty1d | . 1an
0 =EMF .90 CTHRLL HE--HGE-?~21 . - 100
0 IF HAFH-S, CIRGE (T3 100

B0 TF HEFHS . 35 CHLL HE*“HEEk.s#) 100
400 LET HAFF=CEeHAFF1-CC#HRFFE2+CIeHRFMH+0E #RRF ' 100
410 LET HFDOT=yHAFF-HAFF1» “DELT i DELAF=HAFF-HAFF1 100
420 IF ABZ(DELAFY .1 , ' 100
4z0 THEM CALL MEZZAGE (7.3 . ]
340 LET HFDOT=. 1eZGH DELRAF ~DELT? ]
441 EMDIF 100
3445 LET HEZDOT=rHILM-HETH1 2 ~DELT § DELEM=HEISN-HIZIMI 100
3450 IF ABZCDELEMI». 1 _ _ . ’ 100

452  THEM CALL METEREE 73 )
454 LET HEDOT=.1e3GM{DELEMY ~DELT i
456 EWDIF 100
450 LET ERFT=HAFF-HAFIF § EZST=HMIIN-HITIF 100

470 LET HAFFZ=HAFF! § HAFF1=HAFF § FAF=HAFM & HIZA1=HZIHN 100
420 LET GRIZZT=0PS# (HIDOT+RIEYeERET) 100
500 LET GAINH=D 100
510 IF HRLM<.S AMD HAFM<.S LET GAIN=1.00000E-032 100
LET GRPIAZT=—GRA* (HFIOOT+0IRAYERFT-GRIMe (. S—HRLM» 3 ) 100
F LET DLEF=GFRIAZT : 100
F RAND GPIAZT:0 LET DLEF=GFIIET 1an
3 SETP OAMD GPIAST«0 LET DLEF=GPIZETH+ERPIARZT . ' 100
S50 LET DELM=DLZF#DELT § DLE3Y=DELH+DLEIY 100
S00 IF ARZCDLZTWY 1. 00000E-1 100
A10 THEM LET MUMP=IMT (DLESwe 10000 1o
&z LET DLEZW=DLIEV-HUMP-1000 1on
B ELZE LET HUPF=DN _
I EMDIF 1o
1an

0
G LET NFOZ=FE«7Tretind i DIF=HPOIZ-HUMPT

100
16

0 IF ABZ¢DIF)»25

0 THEM CALL MESSAGE (770
LET HUMPT=HFOZ . 4

EMDIF 100

&

Oy e T T O T
w0 g T



.
2
a0

DOCERS WA o I S B
—
[ v

M

1000
1100
1114
itz
1129
1130
1141
1150
i1&0
1170

APPENDIX B.2 VIPER PROGRAMS

IF REZ HlF =100
THEM CARLL MEZIAGE (Fad
LET MUME=100
EMDOIF
IF HUMP+HUMET 0
THEHW CALL MEIZIRAGE (7S50
LET HUMP==MHUMFT
EMIIF
IF MUMP+MUMFT=1 000
THEH CRALL MEZIZIRGBE (Vi)
LET HUMP=1000-HUMPT
EMDIF
LET MUMPT=MUMPT+MHUMF
IF MUpPs0 CRLL CRMAC C15s TRUL s HUMF . Q0
LET FLOW=FLDOWe ¢ 1 —RLFPHAY +ALFHBSE (230
LET BRIZ=EBERIX® i 1-BLFPHAY+ALPHRASY 320
LET Z5PE=1.23+1.20000E-(Z29ERIx
LET BRISE=RERISZ# (1 -RLFPHAY +AL PHASE (303
LET RATEZ=FLOBLI+Z5FR+BFIx2-100
LET DEDLID=FATEZ+DELT - 3&00
LET Z0LIDZ=S0LIDE+0S0LID
LET =COFC1»=2COFR Ly OF 1
FHML SaTFLOw

PAGE B2.7

100
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i
100
100

i

i
a0
i0o0

f
100
100
SO0
10
100
140
0o
100
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MIPEF  REY  RY 12-04-782 17

FROS:5F.E 1900478

tH 1 FROCEDURE CLFLOW
2 REM 23017SEDR
1] COMMOMN ZPECEYHRDCSEZSDELT
I COMMOM EMS.ECES

7 COMMOM RITZyCIM O 2 SCOFC32

=31 LET RCCEZEC CZCOF: =RERTIA+WRITER

1an LET FMCL=10 § HAFM=2.3529% § HCLM=2.1&5

105 LET BCLT=4.67 § WCOLT=RCLTeHOLNM

110 LET WPLRE=5 & GBFC=2 § GIC=a0 5 W=1.S0000E-02 5§ DAMP=.T
120 LET HAFF1=HRFFZ=FRAF=E &) “HAFM

130 LET HCLF1=HCLFZ=RCL=E 27 “HCLM

140 LET DLLRY=0 3 GICY=1-CEiemIC)
150 CRLL FILTERCDEF s LRFMFs DELTs CE«CCs S CEY
200 ZTRFET CLFLOW :
310 IF BIT s CIMCdnD 200
THEM LET HRFM=EZ»~100 _ 200
. LET HAFF=CEeHAFF1-CCeHRFFE+ITIoHAFMN+TE®RAF 200
3 1] LET HFOOT= HHAFF-HAFF1: -DELT 200
1] LET HAFFZ=HAFF1 § HAFF1=HAFF § RAF=HAFHM zon
y] LET HECLHM=E ‘272 <100 ]
| IF HOLM<S. 000GOE-2 o - REZRGE (S 10 Z2un
i] IF HCLM>. 25 CALL MEZZAGE (220 =3 s]
i LET HCLF=CE®HCLFI-CoeHOLFZ+LDeRHCLM+CESRCL 200
g LET HCDOT=(HCLF-HCLF1:~DELT 8 DELCF=HCLF-HCLF1 ' o0
J10 IF ABZCDELCF»>,1 zan
3210 THEN CALL MEZZAGE rSs g . 4
4320 LET HCDOT=.13GMCDELCFY ~LELT 1
4410 EMIIIF : 200
450 LET HCOLFZ=HILF 3 HCLF1=HILF § RFCL=HZLH _ , 200
Son LET HFIOT={fi s HAFF=.3 2o
510 LET DLLR=GPC®  (HODDT-HFDOT» 4510 (HOLF—HAFF» 200
S0 LET DLLREV=DLLR®10 § YPLE=WFLR+DLLRWSDELT _ 2nn
530 IF ABZSDLLRY»>1 : 200
5410 THEM ©CHLL MEIZAGRE ¢S 3 0
5510 LET DLLREV=1 L
&1 EMDIF ' 20n
&L IF YFLRE<D 20n

s
lrUHHHHHHHHHr—-HH

n,
b=
=

-

a0 Gl Dl O g
RO ol T
¥

RO R I

a1 THEN CHLL MEZTAGE (2:4) ]
&2 LET WPLR=.1 ]
g3 EMDIF gon
LN IF WPLR=1U i
6510 THEH : 195
=131 LET VWPLR=%.29333 195
& EHTIIF 200
&30 EMDIF : _ 200
7ol CALL CDRC COaWFLEY 2000
7o LET zCOPCi»=3C0Fc1» DR 2 Enan

720 END CLFLOMW
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APPENDIX B.2 VIPER PROGRAMS
FEY A7 12-04-7% 15:35:24.8 12-04-T72

1 PROCEDIRE FEMELT

FREM 010272EOR

commMo _FEE::HHDI-E s DELT

COMMOM EMGeECES

COMMOM BITZ2CIM gy s ZCOF (20

LET ACCEZZ («2C0P»=FERDR+WURITEH

CARLL DECLE/PULE» 1214510

LET HRFMM=1.82 § AREA=10.02 3 HEMMIF=.25 5 DELKH=0
LET ALFHA=,2 3 GFR=1 & GIR=S50 § GIRW=1-(G0e5IR:
LET HEMMEZ=SE S ~100 3 MHUMPT=1000«E (3

TTART REMELT
IF BIT S«CIM g

THEN LET HRMH=E28Y <100
IF HEMMH» 4F CRLL MESZAGE (91D
IF HREMMSS, OO00HE-02 CARLL MEZSAGE (920
LET HFHDDT BLFPHA® CHFMH-HRE M
LET HEMHZ=ALFHR*HRMM+ (1 -RLFHH? oHEMMHE
LET ERR=HRMHI=HREMMIF '
LET DELFEP=GFPR+HRNOCTCIFYSERFSTELT
LET DELM=LELFZF+DIELH
IF ABZCNELHY <1, GO00RE~02

THEM LET HUME=D

420 ELZE LET HUMP=INT COELM#1 006G
431 LET DELH=RELM-MUMP-1 000
441] EMTIF

451 LET HPOZ=E2re1000 ¢+ DIFF=HFOZ-HLUMFT
3510 IF REZYDIFF» =25

470 THEM CHLL MEZIZRGE I3«
350 LET HUMFT=HFDT

430 EMDIF

SO0 IF AEZ CHUMPY =100

510 THEM CARLL MEIZZAGE (39240
520 LET HUMP=100

5340 EMHNOIF

S IF HUMP+HUMPT <0

550 THEM  CALL MEZZAGE 23153
SE0 LET MUMP=-~HLIMET

a7 0 EMDIF

320 IF HUMP+HUMPT>=1000

S THEM CALL MEZSAGE (95
(=31 LET HMHUMP=1000-HOMPT

“ia EMIIIF

ey LET MUPPT=MLIMET+HUME

o0 CALL CRAMAT C1Rs PUL S« MNUMF e 9
710 EMDIF

720 LET ZCOPYi»=300F 1y TR 9

T30 END REMELT

PAGE B2.9
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]
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WIFER

L% YT

RC Y]
=

300
410
420
G430
EE Yy
4510
40
4710
S0

510
Sg0
S20
S41)
S50
SE1
SV
SE0
S53n
AN
a1

g

[N e RS W I 0 2

—d g T
o

!
()

300
210
gz

APPENDIX B.2 VIPER PROGRAMS

®EY RAY  1&s0d-FR 20108 AF.00 19404078

1 FROCEDURE LIMERATIO
REM 2301 72EDF
FEM
oMo 'FEE'!HHDI-E sDELT
comMmMor VOLTE eV CHRDC
COMmOM EMEsECEED
COMMOM BITZ«0INY 4'-LLDPLCJ
l"EIHMDH GRSFLOM GRZAMAY s GRTEMAR Y GRZCHAY » PHOIP . IZ0
LET ERECCICOPY =RERDR+WRITER :
LET :R‘H i CCRO=10.214 & GOR=2 5 ALPHA=.2 § YOLTO=Y 9
LET BRIX=EZ» § FLOW=E C23) ¥ ZRDV=V I3 5 PHCO=E (222
IF BIT ?-:EDPf P2 LET FHCEP=E (223
LET EZF=1eDELT- icied43)

ETART LIMERRTIO

LET BRIX=BRI:ec1-AL PHAY +ALFHASE (30

LET FLDW=FLOW® ¢ 1-ALFHAT +ALPHASE (23

LET ZROY=ZADNe (1-ALFHAY +ARLFHASY (23

LET ZGEPE=1.23+1.Z20000E-02+3ADY § ZFR= FLDM* GFE § LLIDE=%FReERIX

LET LODOFETAT=EIT e CIMCdan
IF LODFETAT=N LET FLIM=E {221,182 3 En—FLIM¢CrHD ELIDE
IF ABEZ WOLTO-Y (32,1 AMD LOORPITART= 1 : :
THEH LET HOGO=«<SCOF 2y AMD 1122+ 0CIMH 4y RHD 4430
IF HOR0=5&1n0
THtH LET IZ2=0
LET PHC=E (222 #ALFHA+ Y 1-ALPHADY oFHC
LET ERsPHC-FHIEP

YAUL

LET ZAR=E ‘24 DAZARMARY § ZB=E (23) ~GRZBMAE § Z0=E (261 ~GRZ

IF ZA>.37 AND zB' 97 LET IZ=1
IF ZA<.1 AND ZE<.37 AMD 04,97
THEH
IF ER<D LET IZ=1
IF ER>0 AHD ZC _
THEM CRALL MESZAGE(10s1>
EMD LIMERATIO
ELZE
IF ER:0 AND ZC>.1 LET 1Z=-
EMDITF
ENDIF
LET ZF={1-ESF#ZR+EIFeIZ
LET FCR=FCRI® ¢ 1-GOReZRSER
LET FLIM=FCReZLIDE-CCAD :
LET SPEED=1.1893#FLIN 5 VOLTO=.337 #3FEED+ 236
ELZF ©CALL MEZZAGE 11020 :
UET ZReh i FLIMZE ¢3).1.183 3 FORS=FLIMeCCAD/SLIDS
EMDIF .
ELZE LET wOLTO=¥r3y 3 ZR=0
EMDIF
CALL COAC (2. w00TO?
LET SCOFC13=3C0F 1) OR
EMD LIMERATID

[na}

FY DIy SR V]

L R I e e e i e R S SN U P,

- .
[ |

10z
103

#1100

103
103
103
103
1032
103
102
102
102
26
10&
102

103

1030

103
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APPENDIX B.2 VIPER PROGRAMS

VIFER REV A7 18-04-78 19:05:28.3  19-04-73

1 PROCEDURE BRIFLOWMA
z REM 010272ELR

N COMMOM SPECSsMADCESSDELT
=81 COMMDON EMGeE(EED
Fi COMMGON BITSCIN 4D
20 COMMOM GRIFLOs GASRME.
S} LET RCCE COFP» =REARTA+WFRITER
o1 LET HFFE CEASFLOMY =RERTIA+WRITER
. MEZE: EE(1153}
; '1Ff

oF o2y

C20y 8 PHO=E (223
120 LET “FH— a5 ? “LIH— '
140 LET GRZAM==27Z0 & A
S0 LET SIRF=GIHLEFeDELT
00 ETRET GAZFLOWA

310 IF BITCVsCIMOg)D

Zn THEM LET EAFRTDOT=RALPHAe (E (202 —PHA>

S0 LET FHA=E 20 #ALFPHA+ ©1-ALPHA? +PHA

30 LET PHC=E (222 ALFHA+ (1 -HALPHA #PHC

S LET ERFHC=FHC-FHCIF

=S} LET PHAC=PHALZF-GOA+IZC«ERFHD

LET SPPDOT=FHAC-FHACDO 3 PHACO=FHAC

R0 LET ERRBRH=FHR-PHRAC

33 LET DELFR=GFZ+ ERFIDT-ZPFDOT: +5IZeERAFHSTELT
400 LET GREZA=GAZA+DELFHA

410 IF Hﬁ”ﬂ¢=4ﬁﬂ & HH“HH‘ LET GREA=GRIAMA-SY4TE. &
420 SH=1, QO000E=-02

430 LET FLDMH Et“42ﬁq436.n P ERAF=FLOWR~-GAZA

340 LET DELYA=GIF+LOELTSERRF § YFPH=VPA-TDELWVA

00 IF WPRXYWLINM LET WRA=YLIM

S0 IF FLOWR<GAZAMM -S436, 6

S0 THEH

Sz20 IF WFAID

541} THEMH CHLL MEZZAGE (11,20

S50 CLET WrH=

Sl ENDIF

S70 ELEZE CALL MEZSAGE11s12

S20 EMOIF

YO0 EMDIF

710 LET YPAO=10e 01 -"FA>s

yeo IF YWPARO<10e o1 —=%L_IM» LET YFAO=10e 1=y IMy

ran CARLL CDARC CZWPARO: :

c40 LET ZCORJC1»=ZC20FR 1y OF 165

TEO OEMD SREFLOLA

!
=.c
GIF=1-(c0&GIREFY 3 GIE=

GRZAEM: s BRICHY s PHCERS IZC

PAGE B2.11
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APPENDIX B.2 VIPER . PROGRAMS

LIZT GAZFLOWE

YIPER

a
ar

REY A7 12<04-723 15:50:154.3 21-04-78

1 PROCEDURE GARFLOWE
REEM  DI0Z2FSEDR
COMMOM, SPECZyHADTSES» GELT
COMAOMN EMGsECEDS
COMMOM BITZCIMOds o 2000
COMMGH GRIFLOM GRE Hﬂhubh EH“aGH"FHN-PHE:P 120
LET ACCERZC{ZCORY=RCCERS
IF DELT<e CRALL MEZZRGE (133
LET GIRE=30 § GFE=.29%9 § GIHDEP=3, ZS00E-02
LET FHE=FHECO=FHEIP=E 21y § FHO=E 22
LET WFE=.5% 5 YLIM=.85 3 EHEE=.5
LET GHEBMA=2FED 3 ALPHAR=.Z :
LET hIPF GIHDEFDELT & GIF 1-7raleimIRFY § GI5=1
START 5 : :
IF EITL”,u
THEM LET EPBDDT=HLPHH¢Ei81}fPHE v
LET PHE=E(Z1seRLFHA+ (1 —-RLFPHAI $FHE
LET PHC=E v22y #HLFHA+ C1-ALFHA? oFPHC
LET ERFPHO=FHC-FPHCIF
LET PHEC=PHEZF-GOR+IZCSERFHC
LET ZPFDOT=FHEBC-FRECD * PHBFH:PHPP
LET EFEPH=FHE-FHEL
LET DELFPE=RFIel FEPDDT—-FFDDT-+hI vEPPF“*DEL
LET GAZBE=GRZEBE+DELFE
IF GREZE#S455,6>ERAZEMY LET GREE=GRATEME-S43%, 6
IF GHR=ZE«0 LET GAZE=1. 00000E-02
LET FLDWE=E v25)» #Sd435.6 + ERBF=FLOWEB-GHEE
LET DELWE=GIFTELLT#EREF 5 YPE=VFB-DELYE
IF YRPE:WLIM LET “PB—”LIH
IF FLOWE<SAZEM: -S4726.,
THEM
F. YPELD
THEM CALL MEZZAGE T30
LET “FHR=O
EMDIF
ELZE CHALL MEEZIRBRE (LTI
EMLOIF ) '
EHOIF
LET wPEC=10#{1-%FE>
IF YPEO<10eC1-YLIM: LET WPAO=10#cl-yLIMD
CALL CDRC 4 YRARDD .
LET =COPC1y=3COFYLY OR 32
EMD GREIFLOWE

COHEZFLOL) =RERDA+WRITERA

GOR=1

A CEOeGTIRED

PAGE B2.12



WIFEF

APPENDIX B.2 VIPER PROGRAMS

REY A7 1870478  1237:112.% 1970478

1 FROCEDLRFE GATFLOWC

v [

S0
(=1
T
an
Y]
21
100
110
120
120

e
J:s

-
C"..l

t

T e £ 113

L]

REM N1 0Z7RRLF
commor SRPE HADCsES2 DELT
COMMOMN EMGsECEDR
COMMOMN BITS.CSINCds « SCOP G2 ,
COMMOMN GEIFLOWM GRASAM= s BASBME» BRSCMY « PHCSFRS I 70
LET RCLC SATFLOM =RFERDIAR+WRITER
LET RCC CECOFY =RERTR+URITER
LET WPC=.55 3 WLIH— rJ Y OGASC=.S 8 GRICHME=1326
LET ALPHBE=.Z
LET F =P
LET G A £ S 8§ GIMDEP=2.91700E-DZ
LET i3 J—l"'h“*hIF&) i BIRF=3IMDEFPeDELT ¥ GIF=1- i c0e3IRF)
STRRT GAZFLOMC '
LET ECTOT=AL PHRA® (E {22y —-PHC)
LET FHC=E (222 #ALFHA+ (1 -8BLFHA #FHD 3
LET DFLFI REI#ECDOTHGIZ«ERCDELT 5
z SHRECMS . LET GREZC=GRICM: .2
i =1, GO0O00QE-12
LET FLDMF—EILrvf;rlg.B i ERFC=FLOMC-GAEC
LET DELWC=GIF#ERFCeDELT 3 wRC=YFC-DELYC
IF WECH-WLIM LET YRPC=vLIM
IF FLOW: 4P¢FH,LH SET1E.3
THEHM LET IZc=1
CALL HE::HGE 13a1%
ELEZE LET IZC=0
IF WFCID
THEM LET YPC=0
CHLL METZAGE r13s 22
EMDIF
EMDIIF
iLET WPCO=1i0e v1—-YPCD
IF WRPOOC10e =L IMY LET VRPCO=10e 01—%L IM:
CARLL CORD Sy WRCh ‘
LET ZCOPGI»=3C0FR iy OFR &4
EMD GRIFLOWT

C-PHCEZP
3' +DELFLC,

PAGE B2.13

et ek b e b bt bl b ek b el b ek

0
20
00
200
2010

Z00an
200

-1&



APPENDIX B.2 VIPER PROGRAMS

LIZT FILTER.MOMITOR

YIPER  REV AT 1204572 15:32:11.9 21504578

1 FPROZEDUREE FILTER.MONITOR

2 REM E3M7SEDR

14 LET MRx=4

510 COMMDORM SPECE s MEDC » EZsDELT

=30 COMROM BITZCIMOSY  SCOF C2

7 COMMON FILTERSFILDAT (MA=+d» 122 s CYCLECLE
=1 COMAMOM EMGECE:D :

=y DIM FETIMOO2s120

1010 FOR K=1 TO 12

el LET DELFP=Z00 5 FILAR=117 § IFILS=0IMAM=0IFRI=03YAL=0

11n LET FETIMi2sk2=-1 5 CYCOLE¢KI=1 § FETIMOisK»=0

120 FOF =1 TO MAYed
130 LET FILDAT (J«kd=-1
1440 ME=T J  1&0
isn HE=T & 100 ,
150 LCRLL TIHTCTEITARTs TPREY Y
NG ZTRET FILTER.MOWMITOR
310 RERIOM FILTEFR
220 CARLL TIMTCTEART s TFREND
330 CHLL TIME Y amMOMHs DaHa TN 30
240 LET THEbLI=H+ (MIM+S 500 251
230 LET MHEMAM=CIMOL? o
3510 LET HEFRZ
370 LET MIvpL=
1 LET MAM, OHOF=0%MAM AMD  HOT HEMAM
290 LET HM#EM, OFOM=HEZMAN AMD . MOT OZMAC
00 LET FPRPZ.OFOM=HZFFS AMD  HOT O=FRES
414 LET WAL.0OFOM=MzZWAL AMD  HMOT O3YAL
S00 LET E Zl= 111 B 5 Z22=111+E14>
510 LET & E
S0 LET Hmu=EHPtu—'
SO LET HNilME=12
10 FOrR I=1 7O 12
Bl LET HUMBE=MUME~BTT L HEMAMD
a0 HEXT I &10
] LET FLOW=E i3y ~HLME
FOor Jd=1 70 12

LET FILFR=FLOU+FLOWeHML
Y LET FaTIM (10 =FITIM Ls D +FILPR®TETHRT
i ME=T J  £S0

g
0o =g I U B
=]

Je T T

Z14+E46, 527 22+559, 942«

SHIFTOCIM G129 =120 DOF SHIFTCCIM S s 4
EHIFT OCIH ISy s 3 OR ZHIFTOCIM O30 550

tZlelc)

PAGE
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10005
1011
inza
1100
1118
{20
113240

APPENDIX

B.2 VIPER PROGRAMS

FOrR K=1 TO 12
IF CYILE cks “MAHed

1140

1150
110
1178
1120
1130

N
1ze0
1230
12410
1z50
1260

270
1zan
1310
1320
1330
1340
13580
14010
14110
1420
14210
1441
14510
1480
14770

S0

S0

THEH

IF BITCEsFMAM.ORHOF
THEH LET FETIMclkr=0 5 FETIMCEKY=THEW
IF IFLZ:0
THEH LET EZTRTM=THEW-FETIMIZs IFLEY
IF STETM<O LET ZTRTH=ITETM+Z4
LET KWT=CYCLE (kD #4-3
LET FILDAT EMT» }--%TPTH
EMDIF
LET IFILE=K
EMDIF
IF BITCEs-FRL.OFOM : :
THEM LET KMT=CYCLE (kxed : ™
IF FILDAT fKMTsk2=-1 '
THEM LET FILDATCEMTsEY=FILEY
FRIMT "FILTERRBILITY FOR FILTER “K"=FILBEY"
EMDIF '
EMDIF

CIF BITAEsYAL.OFOM) AMD FETIMEZsKr:=0

THEH LET WPOP=THEM-FETIMIZskD
IF YPOF<0 LET WPOF=24
LET ENT=0CYCOLE tkh ed-2
IF FILDAT “KHTsk3=-1 LET FILDHTKPHT;kJ—*PDP
EHDIF
IF EBITCESPMAN.OFOMY AMD FETIMOZ2a k2 »=0
THEM LET CPOF=THEW-FEZTIMCZs K
IF CROP<D LET CPBP=CFOF+24

LET ENT=CWILE OkD ed-1
LET FILDAT kT kx=CPOP
EHDNIF
EMDIF

MEWT K

1000

LET OZMAM=MIMAEM § OIFRS=HIPRED i DIVAL=MIYAL
1510 EMDREGION FILTER
EMD FILTER.MOMITOR

PAGE B2.15



APPENDIX B.2

WIFER REY A7 12-04-72 EZ0:3F:(4,4

h 1 ZUEROUTIME HCDUTfCHHﬂsSTHTh

10 LET C=1 i DUM=0Q
300 START WCOUT
LET IC=ICHH 3 H=10

IF =TAT
THEM LET F=20

ELXE LET F=12

EMDIF
00 CALL DECLRCOUT» SaMs 1CH

410 CALL CAMBC CF» COUT s GUML G
420 IF F=ci [Ir F=12

330 THEHM
441} ELZE
4350 ENDIF

s

CALL CAMRCY

450 IF LETAT PRIAT "CONMTACT OUT ERREORsHs A="H. IC

470 RETLURM

LIZT ChRC

A3

12-04.-72

L
e
i

WIFER REY A7

1 ZUBROUTIME CDRC CCHAMWOLTEN
10 CHLL DECLRCDACs 1s 1« CHAMD
20 LET I=¥OLTZe25.5
20 CALL CRMRC CIETIRGC Isih
S0 RETURM

IF IC:21 LET H=11 3 IC=IC-3&

e 22e e,

VIPER PROGRAMS

IF ICx1s LET F=22 3 IC=IC-16

IF ICx1e LET F=14 § IC=IC-1&

CRLL CRAMAC (27 COUT s DidMy 15
e DOUT o DI s B2

0

-
o

PAGE B2.
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YIFER

10
a1
&1
i
an
=21
100
110
20
130
144
150
160
170
1810

120

X

fi
i

S B0 KRN 5 B B LR I Y

Lt e a0 3 G T fo o T P o)

Lo 03 N s

REY AT 12-0457

START MEEE
LET MEZHC=100+MRME SH+CHAN

CARLL TIME Y aMsDsHe MIMNgZ

LET THEW=H®&0+MIH

LET TOLDEET=-MIMDAY 5 I0LD=0
FOoe I=1 7O CFM

APPENDIX  B.2 VIPER PROGRAMS

L

16245240, 4 21704785

TUBROUTINE MEIZZAGE (MEIMs CHRAM:

LET ®MAxX=10 § HMESMRX=12
ODIF PMCCMAYs 20 o REPT COMEZMBRD
VET CPRM=0 3 MIMNDRY=&lsz4
FOF I=1 TO MEINM&X

LET RERTCIN=1
HE=T 1 gy

AixE

IF PMyIslr=MEZHC
THEM LET TDIF=THEW-PMIIs22x-100
IF TDIF<0 LET TLRIF=TOIF+MIHLAY
IF TOIF=FREFT ¢MEZHY

THEM LET HREPEZ=PMyI2)—1008IMHT (PMCI 201000

LET PRI 20 =THEW®1IODN
CALL PRIMT.MESSAGE MEZHC: TDIFsHRERE
ELZE LET PHOT«21=PMiTs 20 +1
EMELIF
RETUFRHN
EMHDIF ,
LET TOUR=PMII«SH-100
IF THEW=TCUR LET TCUR=TCUR-MIMHDRAY
IF TOLDEET<TOUE LET TOLDEST=TOLR & I0LD=I

HE=T T 1910 .

CALL PRINMT.,MESSAGE (MEZM. Ox 03

IF CPM<MAX LET CPM=CPM+1 3 I0LL=CPHM

LET PMOTIDLI 10 =MEIHC & PMOIOLDS 22 =THEW+ 100
ETLRFM :

PAGE
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APPENDIX - B.2 VIPER PROGRAMS

LIZT ZTARTLF

YIPER REY A7 304072 1353:146:134.8  DE-04-78

i 1 PROCEDIIRE ZTARTLF
S0 COMMOMN SFECEsMRDBCAEXSDELT
&0 LET RLICE: =
F0LET MRIOC=30 3 ES=320
S0 LET DELT=30 % DELTCE=S
Q0 CALL TIME YaMs Dy HOURSMIMY 52
100 RUON ZCAMCE EVERY DELTCE: ZELCE
110 RUM ICAMADC EVERY DELY =ELC
120 K WATCH, DD EVEEY DELT SECE
120 RUM ZERYOHDUR EVERY 1 HOUR AT HOUR+1:0
140 LET MEETIHIFT=8«INT (HOUR 21 +&
S0 RUM SERVOSHOUR EVERY 2 HOUREZ AT HEXTEHIFT: N

180 RUM FILTER.REFORT EVERY 2 HOUREZ AT MEXTIHIFT:D

170 PRINT "HULETTS FACTORY SOFTWRRFE STRRTED UF AT"
120 CALL PTAD '
190 EMD ZTARTUF

LIZT SHUTDOWA

YIPER REV A7 3-04-73  14:102:42.9  DE-04-73

1 PROCEDURE ZHUTDDWH

10 TURHOFF SCAMCE

20 TURMOFF SCAMADC

0 TURMOFF WATCH. DOG

40 TURMDOFF SERYDOHOUR

S0 TURNOFF SERVOSHOUR

£0 TURMOFF FILTER.REFORT

T0OEND SHUTDOMM

PAGE
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APPENDIX B.2 VIPER PROGRAMS

VYIPER REY AV

% 1 SUBROUTIME FILTERCOEF s DRAMFs DEL T2 CByCOs CTs CED

100 LET Wi=20F C1-TIAMPeTAMESY #bi

110 LET A=tlehAmF

120 LET ERT=ExXP{-meDELT

120 IF LIO<t 000udE-{ds

140 THEM ~LET THETR=1.53Y02 5 CA=ERT
S0 ELEE  LET THETR=RTHN (R Ll

2-04-78 10:39:45.7 - 19-04-75

150 LET CH=EHT¢EDSMD¢DELT+THETH?fCBiTHETHD

170 EMDIF
2ol LET CE=ZeERTeCOZWO+DELT:

210 LET CC=ERTeERT § Ch=1+CRA-CE 3§ CE=CC-CH

220 RETURN

rn

P 14226355,

et
—
[y

an}

WIPER REY RY 1270407
i 1 ZUBROUTIME EMGLIMITE
SO COmnPAnM SRFECEHMADNCETZ DELT
a0 COMMOMN EMGLIMEL CEZs 20
FOOLET RCCEEZCCEMBLIM: =WMRITER
200 FOR I=1 TO E= '

T
et
fost

O e

HE=T 1 =00
RETUR

230 LET EL 3 13=A0 § EL(Zs2i =20

240 LET ELOTs1r=0 i s =1

Z2an LET ELdIfs1:=53 2 Er=VH
Z2a0 LET EL718s 10 =70 Sedr =310
270 LET ELC20. 10 =5, ELiZiEr=
oE0 LET ELfPYs=1in= ELiz2lsr=
290 LET ELtEZe in=7, EL (28 2o =

ﬁué FETLIRM

00D

o
)
I
i)

LET EL €I 12=—-1.00000E-35 &8 ELCIs2y=1, D0000E+2S

PAGE B2.19



APPENDIX B.2 VIPER PROGRAMS ‘ - PAGE B2.20

LIZT ZERWOHOUR

YIPER REW RY Z-03-72 12:33:008.4  05-04-7

(nx]

i 1 FPROCEDURE ZERVOHOUR
S0 COMMOM ZERYOD DUML ¢4 s MAZS . HOUR s MASZSH 032 » DUMZ {30
&1 LET ACCESZ SERVODY =FERDA+WFITER
7 FOrR I=1 7O =
=41 LET MRZZgGH I =0
-1 HE®T I L
100 ZTRRT ZERVOHOURE
110 REGIDON ZERVYDD
izn FOR I=2 TO 2 ZTEP -1
12n LET MAZEZBH (I =MASZEH (I -12
140 HEST 1 120
1514 LET MRZZEH Q1 x=MALE.HOUR
150 FRINT OLIDE MELT RATE="MRIZ.HOUR" TOWMIZ-HOURE"
170 LET MAREE.HOUR=D
120 EMHDRESION ZERYOD
e0f EMD ZERYIOHOUR

LIZT ZERYOSHOUER

d 12:41:22.2 0504778

WIPER  REV AT 270407

* 1 PROCEDURE SERNYDOZHDOLE
S0 COMMOM SERVOD DM CS2 o MAZS, SH D2 s MRS, SHIFT 0322
el LET RCCEST o RERVODY =REATA+WRITER
i FOR I=1 TO 2
il LET MASZ,EHIFTCIx=0
S0 HE=T 1 T
100 LET ZHIFTH=1
110 STARRT ZERNYOZIHOURE
120 REGTON ZERVOD
120 LET MAZE="
140 FOR I=1 7O 2
1510 LET MAZI=MAZZ+MBEE, BHCT
1510 MEST T 140
174 LET MASZ.EHIFT(ZHIFTHY =MATE
130 LET ZHIFTH=ZHIFTH+1
130 IF ZHIFTH:>3 LET ZHIFTH=1
200 EMDREGICH ZERWECD
210 EMD ZERYDSHOUE




' ' B2.21
APPENDIX B.2 VIPER PROGRAMS PAGE B2

YIFER O REY AT 120040720 163

12504 21004078

r

3% 1 PREOCEDURE FILTER.REPORT
10 FET MAsE=4 § t=4
51 COMMOM FILTERSFILDAT CMAXedGs 120 CYCLE (1T
&0 ZTRART FILTER.FEFOET
TOODIM AYCC12s 4 o TR COM
a1 REGIDM FILTER
S PRIMT "FILTER DATH FOF ZHIFT EHLIME AT 3
16 CHLL FTRD
tii FOr L=1 TO 72
1z6 FRINMT 3
1310 HESET L 114 i
140 FRIMT ‘
150 For I=1 TO 4
1&0 FOR =1 7O 12
I70 LET Zh=1
150 FOF ¥=0 70O CYCLE Ty ~1
130 LET SUM=ZUM+FILTAT idek+1s 0
S0 HEST ¥ 180
2140 LET RAY s T =%liM-CYCLE © 2
st ME=T 4 1&10 :
=3 ME=T I 150
FOF M=1 TO g
LET TRYM)»=0
FOrR H=1 1O 12
LET TR MY =TRY M +8Y CMa
HEAT 1 2e0
ME=T M 240
PRIMT TREZY s
FOR L=1 TO 12
FRIMT L.
HMEET L =210
FRINT
FRINT
FOR I=0 TO Méx-1
FOF k=1 70 4
FOFR J=1 7O 12
LET #=IMT(FILDAT cdaeI+kas o+, 5
IF #=-1 FRIHT " "o
IF “a-1 PRIMT 3
ME=T 1 420
ME=T ¥ 419
FRIMNT
MEXT 1 400
=31 FOR I=1 7O 12
LET CYCZLE (In=1
FOR =1 TO MRXe3
LET FILDRT CisTIs=-1
MEST 4 4534
MHE=T 1 3210
EMDREGION FILYER
FRIMT

0 OO O 0
N

o U NG oD 0

4
)
4
4
4
e}

[asa B2 BN Y |

;



PRI R O |

= O

by

e O

RN PRI R I R

T

=} =4 Qv T

APPENDIX B.2 VIPER PROGRAMS PAGE B2.22

FEIMT ,
FREIMT "AVERAGEZ FOR EACH FILTER"
FRINT
CPRINT "FTILTER HO" 5 TRAECLISY § AVLET,IMT. 5 TARBCZO:
FEINT "A%. C. P. FER™ § TRE<4S) 5 "AY. CvC,. TIME" § TRE:SO) § "AYW. FILTEBY™
FRIMT :
FOR I=1 TO 12
1 PRIMT IsAVITadasAY CIscasAY (T 20 a AW IIs g0
0 MEXT I 570
= FRIMT
FRIMT ) :
PRINT "OVER-RLL RYERRGEZ"
FRIMNT
FRIMT "AVERAGE =TART IMNTEEVMAL=" § TRV (13 ‘
FRIMT "AYERAGE TIME TO YRALWE FULL DFEM=" § TAY(2)
PRIMNT "AYERAGE FILTER CWCLE TIME=" 5 TRY (3
FRIMT “AVERAGE FILTERBBILITY=" 5 TAY (4%
DIM AsConss TRY OO0
EMD FILTER.REFDOET
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APPENDIX - B.2 VIPER PROGRAMS

MIFER  REM AT 12004573 159:47522.7 21004478

r

3 1 PROCEDHIRE CLOOP

FEM 3-11-7F

COMMOMN BITZsCIM 40 » TCOP 022

LET 0=0
TTART CLOOP :
LET C=3HIFTOCINGdrs—12 § DIF=xORC.COY § CO=C , _
LET MEZMN=4+4BIT01.C2 . MESH=4 OF 5
IF BITZ1-DIFY CALL MEZSAGE CHMESH 0
FOR J=1 TO HLODF

IF BITC s ZCOP 22y AMD BITV 0 TIFY

THEM LET MESH=4+BIT (a2
CRULL MEZAGRE iMEZMN. 0

EMDIF
NEST 1 250
TAVYE EBITE
EMD CLOOor

T I A L T e (R
P 0 R O U B e e B e e W B e B e e B VN

Q0 ~ 1T

=

e Q0 0 G 03 0 G0 LD LD 0l L

=
e

CLOor



VIFPER

S

=0

Rl

a0

2 il
A00
210
401
3110
4210
G200
500
S10
S2h
20
s00
s1n

=]

3210
1000
inin
1ozn
10=a
1040
10510
10END
1070
R
1070

1100

i1in
1120
1130
1140
1150
1160
11710
1200
1210

izzn
1230
1240
12510
1255
120

FEV AY  1Z2-D4-7i

|:|_|

1

I'D

5258, 1200907

(1]

ZUERUUTINE PRINT.MESZAGE (MEZHC TOIF s HREFEY
COMMOMN SPECE»MALCSEZs DELT

COMMOMN - EMGsECEZr

COMMOM YOLT S W cHATIC

COMMOMN EMGLIMEL VEZ, 20

LET Lu=1

CZTHRT PRINT.MESZAGE
LET MEEM=IWHT iMESHT 100y 3 I=MESMHC~1 00eMESH
CATE MESH=1

PRIMT LU "ADC™J" " 3
CALL FRIMT.CHARN. HEM Oy LU
PRINT ¢LUY"y OUT OF RAMSEs="¥(0” wOLTS" 3

CATE MESN=Z

FRIMT LD “EHE"JI" & " 3
CHLL PRIMT.CHAM.MHS O LD
PRIMT «Lid " OUT OF RANGESYALUE"E (" LIMITES ARE"ELCJa1y 5 EL¢J &)

CHEE MEEZHM=3

CALL PRINT.PROG. MAM I LU
FRIMT <Lus™I3 NOW OM LIMNE™ |

CHEIE MEZM=9

CHLL PRIMT.PROG. MAM s L
FRIMT oL "HRT GOME DOFF-LIMNE" 3§

CRIE MEZM=S

CHLL PRINT.PRDG. MAM s L2
FRINT ﬁLU?“CDHTRDL ROOM SWMITCH SET TO LOCAL MODE™ i

CHYE MEZM=

CALL PE‘IHT PROG. MAM O UL
FRIMNT (LU "COMTROL ROOM SWITCH ZET TO COMPUTER MODE" 3

CRHZE MESH=T

FREIMT <Ly "SRTFLOW"." &7 3

IF PRIMT LU "ZAT SUPPLY TAME LOW:"EdL> ™ XFULL™ 3§
IF 4 FRINT LU "ZAT EUPFLY TAME HIGH:"EC10 " NFULL® :
IF FRIMT «LuUs "ARUTOFILTER ZUPPLY TARMK LDM‘"EfEJ" SFULL™ §
IF PREIMT <L "ARUTCFILTER ZUPFLY  THME HIGH: "EC23 " SFULL™ §
IF FRIMT LU "ZART FLOW FULL DOPEMH" 3

IF 4 FRINT LU "CRLCULATED YALVE FOZ DIFFERE: FROM ARCTUAL™ 3

IF PRINT <Llx"SAT FLOW YYARLWE MOWIMSE TOD FRET (-10%>" 3§
IF J
1

1}

[ SO S |
L 1 e T 1 O O { O [ T TR TR TR

4

FPIHT LUy MCHECK WRLUELZ OF ERRDR LEFIWATIWEE™

{.-'fl KO RN B S N Py O RS

b
=
L}
ul

CLUN "CLFLOWT ) 2

FRIAT oLy "CLOUDY LIGUOR TAMNKE LOW: "ECE27 "SFULL™ |
PRIMAT LUy "CLOUDy LI2UOR TAME HIGH: "Ed2v» "SFULL” &
PRIMT (LU "LISUOR RETURME YALYE POY CHAMGE=1O0XY 3§
FRIMT Ui “LInU0r RETURME WALYE CLOZED” »

FRIMT Ll "LIQUOR RETURME YALWE FULL OFER” 3§
PRIMT <LUs"CHECK LT LEVEL DERIVATIWE™ .

e Qo e

0

CRIE MEZMN=3

PEIMT (LU "FEMELT"J" &7 3 e

IF . PRIMT ¢LUx "REMELT TAMEK HIEH-"EfﬁHb"EFULL" 5
PRINT (LU» "REMELT TARMHE LOW: "EC2E2 "XFLLL" 5
FRIMT LU “CALCULATED FLOW ZETPOIMT AMD FEEDEACK DIFFER" 3§
FRIMT <L "CALTCULATED FLOW ZETPOIMT CHAMREX 10" 3§
FRINT CLU "WALWE CLOZED" 3 '

CPRIMT L "WARLVE FULL OPEM™ 3

SR

—
T
S

—
¢

{1 VI | S T T

Yot
M

1,
T fa ) Do

-

APPENDIX B.2 VIPER PROGRAMS : ' ' PAGE B2.24
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1200
12140
1320
13320
1400
1410
1420

1420

13440
1500
15110
1520
1520
1540
1s0n
1618
1620
1630
1840
1van
1710
1200
1510
1220
13320

[
=

APPENDIX | B.2 VIPER PROGRAMS

CHZE MEZM=10

PRINT <L\ "LIMERRTIO"A™ & 3§

IF J=1 FRINT (LU "PHC:PHCSF AMD COAZ<10%" 3§

IF =& FPRIMT Ly "GRT CONTROL OFF-HO LIME CONTROL™ 3
CAZE MEZM=11 _

FRIMT LU "GRSFLOWA"." =7 3

IF =1 FRINT LUry"R AT OUT OF GASIFLOW="E (24 "CFM"

IF J=2 PRINT (LUX"A ZAT 5AZ SUPPLY YALYE CLOSED" 3
IF J=3 PRINT «LU:"DELT TOO SMALL" §
CAZE MEIM=12
PRINT ¢LUs "GAREFLOWE"J" & 3
IF J=1 PRIMT «LUs"E SAT OUT OF GRASFFLOM="E(2S) "CFHM" ;
IF 1=2 FRIMT <LU»"B ZAT GAT SUFFLY WALWE CLOZED" 3
IF J=3 PRIMT «Lux"DELT TOO SMALL™ i
CAZE MEZM=13
FRINT (LD "GRIFLOWCT.L" £ 3
IF J=1 PRIMT (LU»"C 3AT OUT OF GAZIFLOW="EZE) "CFM" |

IF =g FRINT oLUx"C ZAT &R: ZUPPLY VALYE CLOZED" 3
IF =3 PRINT <LUX"DELT TOD ZMBLL™ §
CAZE MEEZMN=MEZHM
PREIMT (LU) "MESESRGE:MEZMH="MEZM" + #LUNKHOWN MEZZASES"
EMGCOATE MEIN
CRLL FTARD
IF MREPZ:0D PRIMT oLy CUMREEFZVOCCURENCEE IM LASTYTDIF" MIM=» "
FETURM

.PAGE B2.
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APPENDIX B.2 " VIPER PROGRAMS ) PAGE B2.26

WIFER  REVM AT 12004078 2GI20:57.8  18-04-78

1 SUEBRDUTIME PRINT.PROG. MEMOd«LUY
1o0 IF g0 Or 007 PRINT LU "eelUMHENOWMH HAMEee™ 5
110 IF FRIMT <LU" MPASTER " §
120 IF FRIMT cLU»" SATFLOW " 3
130 IF FRIMT «LU»™ ELFLIW * 3
140 IF FRIMT it " REMELT * §
150 IF FRIMT cLUx" LIMERATIO v 4
160 IF PRIMT  <LL>" SREZFLOWA
170 IF FRINT Lu»” GREZFLOWE ™
120 IF FRIMT LU " GREFLOLC
200 RETL

—

L_l;_"_‘;_l;

-
tam aa cas

v

[t S G A

ot I R (I O Y T o Y

L U | I R | T

LIZT PRIMT.CHAM.HAR

Z140.1 12-04.72

[¥]
ria
ne

WIPER FREY A7  12-04-7%

1 ;UEFDJTIHt FEINMT. CHRH., MRM e LI
1o IF OF 230 FRIMNT LU "eUnkrHOuH CHEHHELe” §
110 IF FRINT <LUx"SAT ZUFFLY TAME LEYEL™
120 IF FRINT (LU "RUTU-FILTER ZUFPLY TRAME LEWEL™ 3
130 IF FRINT (LD "PDLIERHIMG ERIS" 3
140 IF FREIMT <Lih "BEROEH LIGUOF EBRIA" 3 _
a0 IF FRIMT fLHW"“PE??ED LIDUORE TAME LEMELY &
1en IF PRIMT oLus” '
170 IF PRIMT Ly "130k FhEDEHFF 5
120 IF FRIMT JLUx"PUMPED FILTEF ZUPFLY FPRETZIURE" 3
120 IF FRIMT JLUx"xC02" §
znn IF 0 FRINT " "
10 IF 1 PRIMT «CLU»"A SHT TEMP" 3
2zn IF 2 PRIMT JLU»“EBE SRT TEHMRP" 3
220 IF 3 PRINT CLU»"C ZAT TEMR™ 3§
a0 IF J=14 PRIMT (LU "AFEZ EXIT TEHMF" 3
250 IF =15 PRINT JLLIX»"ZRT TAME TEMP" 3
Zel IF J=1FA FRIMT <L "FIMNE LIQUDR FEMF 8
Zya IF =17 PRINT <L "REMELT TEWME"
220 IF J=18 PRINT CLL» "IWEET WATER TEMP H
230 IF =19 PRIMT Lidx™ "o
200 IF =20 FRIMT <L "A AT PH" 3
21 IF FRIMT <Litx"B ZRT FH" 3
20 IF FRIMT dLida"C SAT PH™ 3
320 IF FRIMT oLy "REMELT FLOW™" s
J4u IF FRIMT fLU»"A GRZ FLOW" 5
25N IF FRIMT <L "B BRI FLOW™ 3
350 IF . FRIMT CLL " 3% FLOW" &
a7n IF FRIMT cLU“CLOUDY LIGUOR RETURME TARME LEWEL" *
s20 IF FRIMT CLLU: "REMELT THRMHE LEWYEL™ 3§
4 FtT

B

S S S SN

v

[ (I COE PN W = —

¢

v

T T T TR T TR T T TR TR T TR TR

[ Y S

Lol ol SN 0 B B o

o
i

el f R AR I R e KR o VIR N

(RN
e

£ L_ L

S
N e Lo [

,.
'T| |I [ T T L I ]

i

[ WS I w 5



APPENDIX B.3 FORTRAN PROGRAMS '. PAGE B3.1

R R

JE BEal FTH. Rr23 AN SUH.e 8 AUIGLy 13FE

FTHa Lo T ”
FROGEAM FACTECL 18 B31E877Y? 22127V 7VEDR

tm_w_”ﬂnmmm_m__“m“wmm_"M,m__mnmmm___MW~_~w_m_“um_mww____Mm"m___mmmmmwwwm

G PACIR - PACE THE MASTER SAMPLIMG RATE T o \

7 s s o s st i b e e s i i S S S, i S S o . S, S o S i 5 e S S e . e T S . . s . . 3

TO 3 ERACH TIT1E IT REUHE
.HH PROGRANE

HUHWHfT"'FHTUH}
TG
FLLOT HH:]J FY S TRUIP

i M5 RRE

ITF TsmMULcly I8 WEGATIVE. ISMULCLs 15

=T Ok FHD
EITHER EUH DIRECTLY L -lHLhUILD BY -

wwwéwe COMHOM  —mmm e

COMPOH EMGOEd 2 s ARGV CEd s CORCV T Zd 2 '
SAFCODCEA)y CLFLODC 18 s REMLTIN 1@ s CLIMED 182 s
GRSFADCIE ) w GASFEDCLIAN s GRSFCD 1@ s FILCYDO 18,
SERVODCZE Y DUMMY (58 0y
TEAMT s TSMUL 320y TRMO@ s TOTH O TOOUT OG0y
TSCOPCZ s TDUMY C58

Lt fe .

h

EHG = EMGIMEERIHGE LIMITES CCALCULATED BY EHGUH FROM ADCY WOLTRGES
HOCY - A<D YOLTRGES (UPDATED BY SCAD:
COACY - DA MOLTRAGES CUPDATED EY CIAC)

CHERCTE A T R

¥ SRFCOD- ZATURATOR FLOW COMTREOL DATH
LLFLOD- CLOUDY L IGLOR FLOW DATA
REMLTI-~ REMELT COMTROL DATA

CLIMED- COWTEOL LIME DATHA

LHEFAD- GRS FLOW COWTREOL DATH FOR “/"
LHSFED- GRS FLOM COMTEOL DATA FOR "R
LAZFCD- GRS FLOM COMTROL DATA FOR "0
¥ FILCYD- FILTER CYCLE MOMITER DATH
SERYOD- SERMOBALAWE SCALE MOMITOR DATA

TSANT MASTER SHAMPLIMG EHTE CFACER FREGUEMCYs SECS) '
DEMUL SUB-FATE SAMFLIMG TIMES CPERIODCE)=TSAMT®ISMUL My
IRH - RESDURCE MUMEERS '

ICIH COMTHCT STATUS IWM CUPDATED BY S00S5)

IFHH CONTHCT STATUS WORDS UPDATED BY COHTROL PROGRAMHES.
= FLAG USED BY WCHDG AMD THE COMTROL FROGRAMMES,

d= STHTUS OF COMTROL FROGREAMMES, C1.E. RUMHING OFR DEE:
A= BTATUE OF AUTOCMAMUAL SWITCHES.

EE e R i |

SATURATOR
SATURATOR
SATURATIR

R

i

L N e B O A |
i

¥
i

5

Ea I e
—t b
!_;l(_llrn
PO o O+
[l
o T —
MPQH“I

DK

by

CRLL SWITFOLS:
TFOTEMUL L LT A CRLL EXECOEs B sy
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FRGE BB@: PROTE  S323 AR SUM.» 8 AUG. . 1976

¥ | SUSFEND AMD REMOYE FROM TIME LIST

" CLEARE EESOURCE HUMBERS 1 TO 3 WHEM DUE A% IHDICATED BY TsMUl 2 TO 4
D018 TRHI=13
PEMULCTRRI+LT Y = TEMULCIRMI+LY Y + 1
TFCTEMOLCTRM T+ 1P LTy DEMUL CTREHI+ 15 2 GOTO 1@
CALL RHEGC4 TRMOTRMT 2y TSTATY o
TEMUL CTRHE+LTY = B
B COMTIMUE
EHD

% MO OWARHIMGE % MO ERREORED &% FROGRAM = B8GE1 COMMON = BE75E



APPENDIX B.3 FORTRAN PROGRAMS _ PAGE B3.3

FAGE @BE1  FTH.,  S:26 AW SUH.» & AUG.s 1976

AEEL FTH4sL T
R clslsk FF”MFHH SLCEY e 28

0

5]t I

paas o

AdEe O

STGTE I S e e e
agnn o

aERs  C CLEARS RESOURCE HOS 7 & 2.

EElE O CLOOP IS CALLED BY ESEC CALL IH ORDER 1H BE FHELE TO FHF E PHEAMETERS
el | TH HIIHH IT T BE DORMAMT 1T :

LT I1 HUﬂ

MO 2 MHICH T% !IIHmmm”J‘mPHLIW AHD THEH CHECES
HEATHST TSMUL I,
e CISAMTHISHULS R SECOMHDE

Py R R )

() :
I i ICIH EIT-SIGHIFICAHCE ¢

P00 3 O LN e T e

R A

)
1
1
1
1
1
1
1
1
1
1

Py
i

HER S
e Ll

TO de TH O TCIMOLY -
T w I TCIHEEY -
CTO e IM ICIHO4Y -
 IN TCIMOEY - SERVD
IM TCIHCdY - SERNO

@
o
5]
%]
A
|
3
A

Pl 5on

—

fon o R ]

Ty i) T L0 T

)
o
=
[
o
o
-

s s (R i

TR 1111 1| SJR——

L_.._......__.__..._.,......_...............,...,....._q....._......,..m............,,.._._._.........._....,...,_.,,‘.‘.
]
|
L

Faoel
=

COMMAIN EFHGCEG Y FOCY S84 0w CORACY S 2 0 g
wHFlﬂDL' 'ulLFLHB'IHJMFFHLTD'lﬂ‘alIIHEDIIHJw

~ER”HHLZH'5NU1H1‘JG'!
TSAMT TSMULCE2 s TRH A s TOIM OG0 TROUTE 47,
TSR3 TOLIMY 5

o
=

§ T O D O S S 0D O O O

=
Py
O e L0 Py

e
P

%

"3
1
4
5

=
o
oy
el
]
[
i
o

=

L :
I EMG = EMGIMEERTHG UMITE CCALCULATED BY EMGUM FREOM ADCY VOLTAGESS
£ HECY - A<D YOLTAGES CUPDATED BY SCADD '
= CDACY - DR WOLTAGES CUPDATED EY CDAC)

(R e e |
o
s

pn

SHECOD- SATURATOR FLOMW COMTROL DRTA

CLFLOD- CLOouDy LIGUDR FLOW DATHA

REMLTD- REMELT COMTREOL DATAH

IL[HED COMTROL LT TATA

‘ - GRS FLOW COMTROL DATHA FOR A"
GRS FLOMW COMTREOL DATA FOR “R®

GRS FLOWN COMTROL DATA FOR "0

- FILTER CYCLE MOHITER DATH

_EFTUD SEEMOBALANS SCALE MOHITOR DRTH

FHTURATOR
ATURATOR
SATURATOR

LTEAMT - FREGLIEM
Lapu. - TE SAMFLIMG TIMES (PERIOD:
IEM, - FE NURCE HUMBERS

TCIH - COMTACT STATUS IM CUFDATED BY
ICOUT - COMTACT STATUS WORDS UFDATED EY

&Hfllth EATE CFPACER

LHHTEHL FROGRAMFES,
IZCOFC1Y- FLAG USED BY WCHDG AMD THE COMTROL PROGRAMMES.

P By B o B IR By B oy R B Ak A e i
oy 3 o I ncon B B o B | ] W T
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FPHREZE BEB2  SC0E Brde AN UM

L}

i

STATUE OF COMTEOL FREOGEAMMES, CI.E. RUMHING OF OFF3
- ETHTUS OF AUTOCMANLIAL SHITCHES,

i
—

THTEGER CLOORCE?

THATHA GLDDPﬁHHﬁLsEHUDﬂlHPf

X IMITIALIZE ALL BITS TO ZEROD,

Ty (T T O 1

a0 g T O e

AR

DO 18 I=1:4
1COUT (T =4
5 COMTINUE -
IFILO1=6
IFIL02=8
IFIL03=8
ISCOFCE) -

-1 {7
]
bace]

S I T
Tl
R

T

L}

B
inl

Ty LR e 03 T

B e R
£

polon

BN - ™ Ty
Do ncs v s SRR

[ I I

AR e

JUMTO
TRLIM=@

fn]
P
oD O Mo O O T R I O O T S S O T

[ue

—
St it

CALL DECLRCICEHSs
CALL DECLREICSHSs1s

face I )
fx b o i v

[ MEITE LAM MRSk FOR ALL &4 CHAMMELS:

[
460 CALL CAMACOLS TCSKLs ITUIMs TR
CALL CHEMACC ISy TCSMZs THUM TR
CALL CAMATS TSy TOSME T TR
CALL CHMADCLTES TUSKE s THUMy TR
o
COWAIT OM RESOURCE HUMBER
I

CHLL RHRRCEs TRMHOZ) TSTHT
= GLORAL SET TO FERMIT FACIR TO CLERR.

TRUH=IRIH + 1
TFCIRUML LT, TEMUL CE0 o GOTO 44

C CHECE RUM FREBUEHDY FOR SCCS
IRLH=8 '

CALL SHITFC13

QIBS -

ales  © READ STATUS OF A4 COMTRCTEZ:
Bl@? C

JIJIH:
Coaya TR




APPENDIX B.3 FORTRAN PROGRAMS
W ESUML . &8 ARG, 137E

CHMAC D TOSME s TCTH 4 s TR

FTH4 COMPILER: HP3Z8cG-188%2 REY. 1726

% M UHFHIH": #% MO ERREORS =% FROGRAM = @a@a3zz

PAGE B3.5

a1l CHLL

gilz O : :

ai1s MAsk OFF SFECIFIC PORTIONS:

giid. C

Alis L ‘ : FOR FILCY =

81l TFILHL=TCIMH L

iy IFILHE=ICIHCZ

gria IFILME = TAMDCICIHCZ ) » BEBE1ITE

garils o

AloE o FOR CLOOF :

a1z S ICHTH = TAMDCICIHC4 o 1PV YERB s

alzz JOHTH = TSHFTCICHTHs -1

gizz O

alzd O FOR SERWO

G125 IzREWHL = IHHD(ILIHFwW~1UDGHHE-

g1z ISRWHEZ = TAMDCICIMCS  BEEAEIED

arey oo '

alzs o OOk FOR CHAMGES IW STHTUS & FELEHSE AF EIRTE RESOURCE HO,
gles

B1aa IFILD=Ts0R  IFTLOL s IFTLHL 3+ TRORCIFILDE IFIL rJ\+1an TFILOZe IFTLMED
SRRCE I5RYI= IWHP ISREYO1s 15 P“H11+I ARG TSRMOE s TERVHE
al1ez [CHTD=T ORCICHTOs TOMTHS

gLz o ‘

glz4 L :

mlas IFCIFILDLHE. @ CHLL RMREGOG: IRHCF s ISTART
qize ¢ CLEAR FILCY TO FUM

@1a7 TFCISREYD, ¢ E Bronbll RHRGCGy IRMIZ ISTAT
glzs G : CLERR SERVO TO FHH

a1as IFCICHTD HE . BaCALL ESECC24s CLOOF JOMHTO JOHTH
aidm O _ HUEUE SCHEDULE MITHHU1 MAIT
di41 . . '

pldz o UFDATE OLD STATUS WORDS:

A143 :

G144 IFILM=TFILHL

@145 IFITLOZ=IFILHE

Blde IFILOZ=TFILHS

B147 ISEYDL=15RYHI

glda TSRYOZ=T5RHE

fld= ICHTO=ICHTH

Al156 JIHTO = JCHTH

#3151 TSCORP 3 =JCHTH

g1sz

B153 GOTO 448

His4d EHI
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FRGE BE81 FTH.  S:24 AN SUM.y 8 AUG.. 1976

FTHdaLaT
FROGEAM SCATIL L BB B3 1E7 e 2FPRIR

(N
f e e e e e e e s e . e e e . e . e . 4 et et e et et et e e e e 2ot o e
C

- SCAM A TO I COWYERTOR

iy
—
I
=
—

LA

e o e s e SO S S s AR S ST 0 T 6 AL b L e 1T o S e e B S ey Fap g e ek A S R ot SR Y e S s e s o s o

e e e e O e el sl s A

T 0~ T L e D

N
T

THIZ IS A PROGRAM.FOR SCAMMING &4 ADC CHAMMELS, ERCH CHAMHEL
IZ2 ANDEEZSED IMDIVIDUALLY. THE WALUES ARE COMYERTED ToO°
WOLTZ AWD STORED IN THE COMMOM ARRAY ADCYWIIN,

s
1
2

&= S & S

e

H=Mllas STATION HUMBER
¥ Hl=Ml=1 STRTIOW HUMBER
' M =RDC  STATIOW HUMEER
IC= CREATE MUMEER

]
—_— =

% b B o

COSRADD REUHE AFTERE A TIME IMTERYAL DE]EPHIHEH BY THE FREGUEMEY 0OF PRACIR
COAMD A MULTIPLE THEREOF CI,E. IEMULCZ)d, PACIRE CLEARS SCADL EACH TIME
COIT RUME AMD SCADY CHECKS ITS OWH RUM FEEGUEMCY. SCRDL ALSO REGULATES
> THE RUM FREGUENCIES OF SDATA AWMD EMGUHM BASED: OM THEIR SEFERATE RHD
COTHMDIVITDUAL MULTIFLES CLLE.ISMULCSY & ISMULCEY RESP. OF SCADLI'S RUM
O IMTERMAL . o
S A EHGUN RUHS EMVERY .. .. CTEANTETSMULC2# TSMUL CE Y SECOMDS
' SOATA RUHS EVEEY ... 0 ITSAMT#ISHUL FIEMULCS 2y SECOMDE
SCATL RUMES EVERY ..., CTSAMT*TSMULCZ S ) SECOMDE

© 1.E. PACIR SETS THE SAMPLING TIME OF ALL PROGRAMS.
© AT THE END OF SCAN» SCATL CLEARS THE FOLLOWING RESOURCE HUMBERS
; TRH(4) - EYERY SCRAM  CSPARED '
IRH{S) - EYERY ISMULS SCAMS
¥ IRH(EY - EVERY ISMULE BCANS

THIE RELERSES THE WAITING CONTROL FROGRAMS (WIZ. SDATA & ENGUH:

cres e snan men vve o et e e o sl s B o e i et s N1 S L S SR Hirm AT s et e nt o 47 St e St RS 4t S ke 0 B b ey o e S e SRS AN St B e v o ot VR 9o S Se s i s o b S Ay et et e b e

m e COMAON ==

COFMMAOH BRI
1 SAFCOD  CLFLOT
z GASFADG LA GASFEDC LA GASFCIC 1A s FILCYTIC 1@
3 SERMWOTNCZE o DUMMY C38 0
1

4w ADCY Gy CTFALY LR
- 'flﬂ'uPEHLTD'1M':ll1HFH 1U'u

TEAMTs TSRUL 220y TRNC Gy TCTHOSw TCOUT 4Dy
TSCOPCE » TIIMY C5E 5

EHG - EMGIMEERIHG UNITES CCALCULATED BY EMGUM FROM ADCY YOLTAGES
ADCY - ACD VYOLTAGES CUPDATED BY SCRADD
COACY - DA YOLTAGES CUPDATED BY CDRCS

o N R

I I

SAF 0T THTHFHTHF FLOW COWMTROL DATA
CLFLOD- CLoumey LIGEU0R FLOW DATH
REMLTI- REMELT 0L TARTH




AYFENDIA B.S FUKTRAN YRUGRAMS ] PAGE B3./

‘HGE BEEZ  SCADL 8024 A SUMLs 8 RAUGLs 19

gt
-
T

L CLIMED- COMTROL LIME DATHA e

" GASFAD- GAS FLOW COWMTEOL DATA FOE A" SATURATOR
i GASFED~- GAS FLOW COMTEQL DATAR FOR "B" SATURATOR
L GASFCD- GAS FLOW COMTEOL DATH FOR 'E' SATURATOR
I FILCYD- FILTER CYCLE MOMITER DATH

£ SERNMOD- SERYORPLAME SCRLE MOMITOR DATA

[
Lo OISAMT - £ SFMPLIMG RATE (PRCER FREQUEMCY
C ISHUL ~ SUB~RATE SAMPLING TIMES (FERIONCH:
. © IRM - RESOURCE HUMEERS

ICIN - COMTACT STATUS IM CUPDATED BY SCOS
ICOUT - COMTACT STATUS WORDE UFDATED BY

=
PROL K

1

5h1ﬁuL FROGRAMMES .
ISCOFCL9- FLAG USED BY WCHDG AHD THE COMTROL PROGRRMMES,

fan R N I

[SCOFC2Y- STATUS OF COMTROL PROGREAMMES. CI.E, RUMHIMG OR OFF
PECOPCI - STATUS OF AUTO-MAMUAL BHITOHES .

v s S o S e s do LS T e (hrh o L 10D A IMEN WU S i Tio Bl MR T b S o s St s St Sy e (O e S0 et o s e P S B ey e st e WS 180 v et A s ot T b sart e i oY S e vt i St 1108 9 S

Ha=g
Hi=7
He=

IC=1

T O T O
S e~ T LA e £

Ficn T o I e B B i B oy v B it B bt A

[
IE.H'_-:I
)

900 ' CAMAC DECLARATIOMS
BE ge CALL DECLROMUSIA [CaMH2s @

HEn CALL DECLROMURIBY ICM2a1

BEE: ' CALL DECLROMUNZA ICaHLIs B

3 PHLL TECLROCMUS2E TCsMladn

DECLECHADC TCsHa@

[an]
=

w0 e O 00 00 00 L0 00 OO
=

S I
[ i)
Il
—
T

i 2: 33 3

MATH DATA SAMFLIMNG LOOF

R o BN I B O O
MR A A

WAIT FOR FACER TO CLEAR REZOURCE MUMBER 1 CIRM1:

]

PO G S 0 S O

L& CHLL BMEGCZs TRHC L)y TSTAT

L. ) GLOBAL SET 50 THAT FACER CAM ELERE IT
CALL SMITFG140

<
[En RN TS Y 5
(SRR st R w S R R OO £

IO 1688 =154

i

‘ TFCT LT LEDGOTE 0@
I ELSE . MiE1A
L B S B :
FMUEL=MJ1<1A
MUsa=ml=s i/
GOTO 266

Ty
=

T O OB O O (S T O O L

TR R L) = SRR S

ZEE IFCTLGT.320G0T0 488

MLIKTE

R
PU
R
L5 LA

dEARERE T
MUS L =M1 1B

S O O O O Oy O T S5 O T O S O R O O Ry O O O G T o O O G

N O T A R =X R A B e R Y]
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k1
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FRGE @Bad

FTH4 COMPILERS

##

B

M WARHIHMGE

B.3 FORTRAN PROGRAMS

BUADL a4 AN SUHL . 3 AUGL . 197

MUE2=ME 1A
LOTO 286

IF i1,

LT, 48

AGEOTO SEE

MUHE A

uUWU *HH

o ML 2B

2 J=4352% 0 ] '
MUHI“MUAEL
MUs =ML A

L
COZET LR MULTIPLEROR CHAHMMEL
r

LHLL CAMDL CZea M1 IDUM I0: TERR S
IFCIERE.GE. LACALL CAMERCTERF » 25 ML

CHLL CHMDICIEMLES s THs IERE
IFCIERR.GE, 1DCALL CAMERC TERR 16 MY

JE]

CHLL CAMDL C2y MADC TBUM T9 TERE
C : STHRT COMYERSION
IFCIERR.GE. 1 ACALL CAMERCTERR & s HADC
CALL EECCLE anlan ----- 23
I WAIT FOF COWVERSIOW TO COMFLETE
= IHEREHSED FROM 18 TO 24 MS z4-11-v& BY A.D.HEHER
L TO AMOID IHTERMITTANT COMYVERSIOW ERRORS
CALL CAMDL S8 HADC TDy TRs TERE :
ERD TRTH
CALL CHMERCIERR &y HADE 3
ﬂ : COMYERT TO NMOLTS
AT 3

SR BRIy T

L

TEEE COMTIHUE
i
ISHULC22s=T5MI.c220+1
TSMULC 2 p=TaMUL 2 2+
CHLL REHEGRCD ITRMHOG s ISTATY .
C DMy RESDURCE HUMBER
TFCIEMUL 2] o LT IEMULCE Y E0TO
TSR 2T =6
CALL RHREC4 IRMCS s TSTAT
i RELEASES STATH
3EE [FCISMULC2E s LT ISMUL e GATOD
: TEMUL 220 =8
CHLL RHRGCGs TRMCE s TRTAT
[ FELEASES EMGUH
2ERE COMTIMUE : : :
E . CLERAR - RELEASES COMTROL FROGEAME
coTO ie '
EHI

SR

ZBRzZR

SCADL Brad AN SUMLe 8 AUG. . 1976

HP?EBE@¥1EHQE REM. 1726

4% MO ERRDRS #+ BREIE COMMOM = BB75:E

FROGEAM =

FAGE B3.8
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FAGE BBal  FTH.,  ®:g7

(%]
—J
g

Moozl B AlG. s 1978

BERL - FTHa LT

aEas FROGEAM EMHGLHY Bre 1881VEEDR Z228173BDRE H1U FEEDER .
E[Ej[."j} 72 3 4 - EFEEETELREEEEE DR R R R S R R o e e e e B R 3 R R O e

BEEY THIS PROGRAM CALCULATES THE ENGINEERING UNITS DF THE FACTORY
DATA STORED RS VOLTS IM THE ADCY ARERY.

THE FREOGEAM* S RESQURECE HUMBER I3 RELERSED EY "SCHDC.

—
LIRS

(s
—

o Tl
o

1%

— —

[
Lo}
fax i B un ]
L0 OO =] Ty LN
T !,—l 4

Rt Ew i i

3

Paos
Rt

wggws OUT OF SPECTIFICATION HLHEH MELSAGES. ##%%%

1. f I

BHTURATOR TEMFERATURE ABMORMAL
SATI U TEMPERATURE AEMORMAL
5 [Vl TEHFEP%FHHE AEH IR MHAL.
- HLlTIJI ILTER SUFPLY TAHE TEMFERATURE AEMORMAL
SATURATOR SUFFLY TAME TEMPERATURE OUT OF RAHGE

SRS L

PRI PP 7 I Wt I
[
()

1 (S0 O O i i T O U gy oo S T O OS5 O
[ Rl or oy xR ot ol act I a R R e
—_
[

FooL ~ FINE LIGu TEMPERATURE AEHORMAL
an - REMELT LTGUAR TEMPERATURE ABNOREMAL
1Y ~- SHEET WATER TEMPERATURE OUT OF RAMGE

-

ae:z1
51510
HE23
B S
BEz25
G
REz7
HE
HEZS
@n ﬂ

Gl
]
i’_':s

9 -~ POLISHING BRIX MERSUREMENT OUT 0OF RAHGE
18 - BROWH LIGUOE BRIX MERSUREMEMT OUT OF RAMGE

3 0 T U Ve O s B W

11 = SATURATOR SUFFLY TAME LEVEL QOUT OF RAMNGE
X HUTOF ILTER SUFFLY TAME LEVEL QUT OF RAHGE

13 - FRESZED LIGUOR TAME LEVEL OUT 0F RAMGE

14 - CcLouly LIgUORE TAME LEYEL OUT 0OF RAMGE

o - RECOVYEEY REMELT TAMK LEVEL OQUT 0OF RAMGE

—
—
T

i

Caf a0

&~ SHTURATOR FLOW COMTROLLER FEED-BACK SIGHAL OUT OF RAHGE
v o~ REEMELT FLDH COMTROLLER FEET-BACK SIGHAL 0OUT 0OF RAHGE
g o~ MAGFLOW STGMAL OUT OF RAMGE
7 - REMELT }f'I~IIIF'H FLOW OUT OF RAHGE
= CLOUDY LIoUOR REETURN FLOW OUT 0OF RAMGE
1~ "A" BATURATOR GRS FLOW OUT OF RAMGE
2 - BT OBATURATOR GRS FLOW OUT 0OF RAMGE
= CTOBRTURATOR GRS FLOW DUT OF RAMGE
4 -~ LIME WHEEL SFEED o FLOW » OUT 0OF RAMGE

o
K3 S it

.r
%
- G
L2
2]
B NS

PR v S S B S T

25 - A" SATURATOR PH OUT OF RAMGE

26 = "BY SATURATOR FH OUT. OF RANGE
27 - "CUOSATURATOR PH QUT OF RAMGE

g
i
I

=

s ]
b Jo Jo I B e
i w0 [ o oLy O i
— e

TR

- GRS COZ2 CONMCEWTRATION LEEE THHM 8%

- GRS 002 COMCENTRATION LESE THAM 1o%

[ ]
(]
N
Ln
%)

ABde [
ag4y -
gadn o

8644
Sl

R e et s iy b 1 o s e s . ) et

L

o=
Tnononf
e Pt
I 2 v O W B £

T 011141 Y ——

gE CCOMMON EHGEE4 S s ADCY 540 s COACY ¢ 2d
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FAGE BEBZ E
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!
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I';
1
I

Hﬁrl

0T T T T O O

O S I S o O O 5 T 0

Y]
RNy

= T T
¥al
—
A

o a0
=
L

FTHS COMFIL

#% MO NARMIMGE #%  HD ERRORZ #% FROGREAM = BREES COMMON = Bav

e ) e

i

|

i

i

I GASFAD- GAS FLOW COMTROL DATA FOR ™
|

l GRSFCD- GRS FLOW COMTROL DARTR FOR "
I

|

I

¥ TREH =~ RESOLRCE
BH. I ICIM - COMTHCT STATUS IH CURDATED BY &
| TCOUT ~ COMTACT STATLE WORDS URDATED BY

3 FORTRAN PROGRAMS ' ' ' - PAGE B3.10
HEGUH 8327 BM SUM.s 8 AUG.s 1976

SHFEDDiEBBsCLFLDD(IBHnEENLTDﬁlﬂ}sCLINEﬂilﬁﬁs
GASFADC LAY s GREFEDCIB2 2 GASFCDC LB s FILCYDG 180,
—EP“an Bos DUMMY CS58 0 .

TEHMT o TEMULTEE D TRMOEB ) TOTH G4 'uIlIIHII aw
i 1% LUFI;\uIUHH1k|Hl ’

T
{

NG ~ EMGIMEERIHG UMITS (CALCULATED BY EHGUH FEOM ADCY WOLTRGES)
ooy - AeD “HLI'JF_ CUFDATED BY SCAD
DACY = B YOLTRGES CURFDARTED BY CDRD:

BAFCOD- SATURATOR FLOW COMTROL DATHA
CLFLOD= cLouDy LIGUOR FLOW DATH

EMLT- EEMELT COMTREOL DATHA
LIMED- COMTROL LIME DRTA
A" SATURRTOR
ASFED- GRS FLOW COMTREOL DATA FORE "B" SATURATOR
C" SATUREATOR
ILCYD- FILTER CYOLE MOMITER DATH

SERVOD- SERVOBALAME SCRLE MOMITOR DATAH

ISAMT - ”HJTFE SHAPL.ING RATE tPACER FREBUEMNCYs SECS)
15

AL - SUE-RATE SAMPLIMG TIMES (PERIODCS »=TSAMT#TSMUL R
HUMBERS

CEY
COHTEOL FROGEAMMES.
SCOFCLY- FLAG USED BY WCHDG AND THE COMTEOL PROGRAMMES.
SEOFC2y— STHTWS OF CONTREOL PEOGEAMMES. c1.E. BEUHHIMG OF OFFD>
ZFUP'“3~ STATUS OF AUTOSMANUARL SWITCHES.

e bt s 3 e e G s e mers e A2 TRt a3 e S b it e e P Sk e e e TG b e e S e i b S P St s Sk i e SN M My Sttt ke i i e e bt 1o e S St e PN e e b ot e 3

CALL WATTC1s 3 TERED
HHL FMIMUTE HHIT TO SUPPRESS EEROR MEZSAGES AT
START-UF DURIMG TERMIMAL EHABLE.

AL HHHHﬁEvIRHEE}aIDUNh
LOCK EESOURCE HUMEBER

CALL SHITFO12)

CALL EMGUSCADOY s EMGD

oy o158 I o= 11.248

CALL EHREGCAs TRHCT s TTILFD
i RELEASE OF RESOURCE HUMEBERS

A3 COMTIMUE

GOTO 1ag
EMD

=
m
—
=]
[
(23]

ER: HP9ZEER-16832 F

Co



APPENDIX B.3 FORTRAN PROGRAMS : "PAGE B3.11
FAGE BRE4  FTH. gra® oAM. EHUMGe 8 RAlG. s 197
/

@1@1 ) EUERHUTIHE EMGLS CADCY EMGY » BER1TEEDR 1661 7EEDR 2381 7EBDR

=
fce
—
C

T

YT Y T ORI T SRR TR g g
THIS SUBROUTINE CALCULATES THE EMGIMEERIMG UHITES 0OF THE FF
DATH STORED A% VOLTE TH THE ADCY ARRAY.

HLBG
Biay
Alas
AR DIMEMSTON ALCWC&E o a ERG &G
Alle IREF = &8
giltL o

wile %% TRMPERFTLRE S %% 5
a3 Do2Es I=11.18

AR _ EMGCT e=ADCN T e lE,

o

,l%%%%%*%%%%%%%%%%%%%%%%%%%%%%%%%%%ﬁ%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

L)

@1le IFCCADCYCT Y, LT, B, 0, OR, CADCYCT VL GT 18, 20 CALL ERMESC.

@117 1 ITFTHCIRE, *Hﬂiwk|"~JREP‘

arle o THETEUMENT FATLUEE CHECE

q1es 2RE COHTIHUE : ' :
Blge o wxed GPECIFIC TEMPERATURE RAMGE CHECE-DUT #xss:
TFOCEMGOLE LTk, 0y DR CERGO LS GT %8, D0 CALL ERMES (S,
1 IFISAEMGECLE 2y TREF Y '
TFCiEMGCLISY LT, 68, 0, OR. CENGC1S), GT. 90, 1 ENGLS) = &8,

BEFAULT YAL IP WF SATURATOR TEMP,.. FOR REFORTING

TFCOCERGOIRY LT, Da R CEMGOIEY CGT. 98, 2 3CALL ERMES S,

1 JFI”'EHH'ImﬂlehEF

- T

;l:TE 1.::‘d+” Fjl BRI

IFCoSGFE.GT. 1. 24450, HHIJ CELFELLT. L
| GG SET AT 68 DEG. BRIX

wFT AT &8 DEG, BEIX

v A JFTACLEE, #SGPEY s IREF )

SGFE = 1,30

DEFAULT WALUE AT &8 DEG. BRIX AMD =8 DEG. CELSIUS,

., ,"n"'n:_l :| 4 |;||_] I ” _'“:,

AMD 26 NFG CELSTIE,
HHD g8 DEG, CELSTUS,

; wdwses TAHE LEVELS ##xss o

SEE TFOCADCY O LT 8 D OR CADCY L GT. L8, D0 CALL ERMESE 11

1 IFTEC18R. sADCYC L ay TREP ‘ ' '
IFCADCY Sl r LT 8, YRDCY L r=0,

IFCRDCY L x, BT, 18, 2RI L a=16,

EHGOL =8, 3744 A0 L ) 2 S0PE

EMGCL =180, sEMGC] -2, 261

LEYEL A% = FULL : '

PR CADCN SR LT LA, D CELL ERMES LR

LE s IREF )
|HI“ "L e =8,

i WL 2a=10,

IFCCATCY 2T, LT,
IFIwC18G, foJ
thnru.g;“

TFCCADDY CSy, LT, @, o HP'rAUva%J GT. 18, 33 CALL ERMESC 15,
A5 1 IFIHCL@E, ADCY S : RIESCLS,
[154 TFCADEYESS . LT, .

i ADEY (50 =0,
8155 IFCADCYCS ), GT. 18, SADCY (Sr=16,
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FHGE 88083 ENGUS 8127 AM SUMGs 8 AUG.s 1976

M, dEds *HDIan*”RGPB
) AR #EMGSE S0, BT .
- Ib”EL F& W FULL
LI I IFCCADCY 2T o LT 2, s DR, CRATICV e 2w, GF 18, 2CALL ERMESC 14,
IFI= 188, +HD|”L~f"-IPEPI
TFORDCY T2 LT 2. JADCY 2Ty =2,
IFCRATICY C27 0 6T, lﬁ YADCMW 2T a=10,
EHGCET »=8, 4 A R I I3 1 =
o LHhtd?'"lﬁUnanGiEF.fE.155
BE D LEVEL AS % FULL '
A W TR ORI C28s LT, 2, 2o OR. CADCY C28 6T, 18, 33 CALL ERMESC 15,
oo 1 IFIRCLAE, #ANICV C2B 3y IREFS ' :
IF ADCY BHLT"E,PHHEUKEB) = 2.6

LD CREY G 18, JHICY 2R =
1., 29 =

..,.
it
b
!
—

p
&
3

Folt v 1N

]
I

T T T
Py B sos B o B o B}

o

; WUL%L_d;~E 3
""E'HL: Lo 3 1 o HE

u LEVEL RS % FULL

fcu I el ot I ol o

I Fexerd RBRIVSES $%*x

TEMF=EMG ] ' :

EMGIA =188, ¢ S0PE-1, 1+, 88927 4TEHF' i h4n+:bFE+ BE2Z e TEMP
N THIZ FORMULA IS IMCORRECT. '

IFiiEHGI‘\ LT, &l 0 0F, CEMGCEY.GT. 88, JJEHLL ERMES Dy

1 IFIAC1B8. *FHhtﬁﬁlwIEEP- :

EHGOIEY = 53, Sy CRDCY IR -1, 0
i IFCTEHGE 18 LT L ORL CEMGEIRY L GT. FE, 2 rCALL ERMES . 18
e 1 IFIHEIBH"%EHGKIEbhsIEEP)

53 Sl el

Ty T
o8 BN §

S BN

#xsxxs 130K FEED-BACK SIGHALS #xssx

EMGUY a=CANCYCP -1, 24,

IF"Hﬂi“"J LT, 1. o, OR. CADCYCT 3, 6T 5, 33 CALL ERMESC L
1 IFTHe1aB. «ADCY CF 00y IREP

EMGUEa=CAOCY 20 -1, 39,

TFCCRDCY CR s LT Ly 2 OB, CRDCY RV GT G0 2 2 CALL ERMESCLT
1 IFIHKIGE;*HDEUHUJFsIHEFA

£ SEEess FLOP 5%
TFOADOY Ce o BT B,
EMHGIEY = 8,

E0TO 382
281 EMGUE =11, 7e#5ERTOADCY (e 18,
IH EUanHR

|1LL.F F L Fr1rr .
' ; : 20w T W AR CALL ERMESC L9
JuIFtP'

o B oo B At By Bt S R iy B 6 S % B oy B

o TFCoADEyY Coy LT
i 1 IFTRG188, &0
B2 EMGO9Y = CADCV ORI -0, 336 0 :

I L1MF HWHEEL CFEED CA-18 EFM)

IF COoRDCW R (LT L, 2u DR CARDCY O30 GT. 18, 2 0CALL ERMESCZ4y

1 ITFIMCEHG R 2y TREP

IO 318 I=2d4y 26

A= S5436.6 ,
o : FLOW IW CU.MsHR FOR RLE SATS.
. SEIA=EYIE.3

L FLOH TH CUL M HR FOR C© AT
Slels kB ARG = 'Hﬂl“ [o-g
B2 16 : IFLRRG. LE. CAGOTO 365

b s R R

SRR
i i

=

R a

.12



APPENDIX  B.3 FORTRAN PROGRAMS - © PAGE 3.
FRGE BHes  EMGUS 8327 AM SUH.. 8 Al 1978

EHGOTY = A#SORTOARGD
S IFCRDCY Ty LE. 2, 2CALL ERMESCT -2y IFITHCADCY CT 2oy TRE
TFCRDCY O Ty, GE, LR CALL ERMESCT- mnlfl,fHDL”'I*”«lh
F1E COMTIMUE '
EHGECEEY = CRDOW 23 -2, 0B, #1583, 5
2 PAGFLOW RETER. L.,
IF"HDI” 230 LTes 2 OR CRICY (23D uT 16, 22CALL ERMESCLT,
1 IFIMci8n, "HDLvlﬁ_J“”.}fB.Ja[PEFJ

211

F o
EF

5
el
,.
o

i

oD T S O O 5 O 0 O

ST Mo e fceh

#rees PHYE seses

e

FH SETFOIMTCA&E =92 3 OMIM=9,8 AT 26 ﬂEGu r
FH SETPOTRTOCY =B, 2 @ 2 oMIM=E.B AT 28 DEG. o
FRCTORY WMALUED =0 LAR YALUES ~ B.4 & HZEUMED HERE.

Far i T R ar R g

EMECZE =7, +CHINY 2
o IFCCEMGO2RY. LT,
oo o IFTAC1B6, $EHGOR

Hi-2, 0%, 625

o b

2
2
2
2
o
=t
&
)

D OR.CENGEZAY (GT. 9,22 0C0ALL ERMESCES,
HllyIPEF3

EMGUEL 0= +CADCNVCR2 L3 -2. 3% 625 '
(S TFCCEHGO2L 0 LT 8. 60 QR CEMGE21 3  GT. 9. 30 0 CALL ERMES (26
oo 1 IFTRC1GB., *EHGC2T 2 0s IREFS

EHGCZZ =7 U ATICY (220 -2, 1+, 625 '
M TFOCEMGEZ2) LT Fu 82 DR CEMGCE2Y, GT. 8. 62 1 CALL ERMESCRT

R4 ]

D T

L P o

[ Ren ]

et a0 e

T Q0 oo S 0 00

G 5
)
i

gans oo IO IFIE 188, sEMGLE2yva TRERP
Ay [ :
i ¥EEE QAN OO COMUEMTEATION %%
s [

EHGEZE) = CANCY 383 -2, 02,5

ITFCEMGO2E, LT 8. 80CALL ERMESS
o IFCEMGIZAY, LT, 1U JCALL ERMESY

RETLREH

EMD

o w0 I x|

.
2!

fox [ T Pk 1O 72

AR M A

FleciBp, EHGIZB 3y IRER
Flucibg +EHbfjH'1aIFtFJ

et —i

5N
1,
PR AR Ly IS )

fun]

FTHd COMFILER: HF9ZB86-16098 REV, 1726

#4  HO WARMINGE =+ WO ERRORS @ FROGREAM = @13:85 >EUMHDH

= BBRGE
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FAGE Bgapl FTH. ERREE HH. MOM. s 28 FEE.. 1978

nﬂ'll?ﬂ[DF 17FE178ER
r++-)+4 e -,l--l--E--f--l—-j-—I- g **‘1—1-{+»¢»~¢-}+++¢_—++1 o i R S R o S S TR e A A R T R R T R o

[ WCHIG = WATCH~THIG,

THIS PREOGRAM CHECKS THE OPERATICON OF ALL COMTROL PROGREAME.

IF RHY OF THEM STOF RUMMIMG IT CAUSES THE CORRESPOMDIMG
COMTROL LOOP TO BE SWITCHEDT TO MAMUAL. IT HALED CHECKS FOR
COMPUTER FAILURE AMD WEES THE WATCH-DOG TIMER. IF PRACIE

STOFS RUMHIMGs ALL COWMTREOL LOOPS ARE SWITCHED TO MAMUAL USIHG
THE MAZTER SMHITCH.

S U e U

L

1

HHIH
EfER
Aa1E
BE1E
SRR
AA1S
BE1E
E@LT
ﬁﬂl_

TR S

ERCH BIT IW THE WORDE ISCOPL AMD ISCOPZ SIGHIFIES THE STATUS

OF A FROGRAM. WHEM A COMTROL PROGEAM RUMS IT SETS A BIT ALLO-
CATED TO IT. TO THE WALUE 1. MFHUF CHECES TO SEE THAT THE BITS IM
TSCOP) HAWVE EBEEM SET TO 1. IF S0 «IT SETS THEM BACK TO ZERO. :
IF MOTs A COUM IS USED TO TIHE QUT THRT PROGEAM B4 COUMTIHG FF
ERROR COWDITIOWS., IF IT “TIMES OUT™ WITHOJT BEIMG REZET TO 1» THE
CDHTEDL LDDP I5 SWITCHED TO MAHUAL . A MESSAGE IS SEMT TO THE

H lHFPEmFDHﬂLHh FIT IH T=COPe I SET TO ZERD.

I Ew

, GG

_.___ﬁ
%
i T
s
I
—
=
!:l
_E

ER G

BIT IHHTFUL PPDGFHH HHHE

oy

aHFLU

=t
H

i 2 CLFLO

i ! REMLT

- 4 CLIME
B GHEFH
& GASFE
= GRSFE

MESSAGES _
-1 = MOT REARDIMG ZERO FROM LAM GREADEER.
= HOT RERDIMG 32767 FROM LAM GERIER.
= SAFCD HAS GOHE OFF-LIHE.
SAFCO T% HOW OM-LIHE.
CLFLD HAS GOME DFF-LIME.
CLELD T3 MOW OH-LIME.
REMLT HAS GOHE OFF-LIHME
REMLT IS MOW OH-LIME.

S T T O B RO

i
i
DI o e Tl

L]

— Ty s,
L Bt
S
IR

iy H

[nn] ':-.] (5]

.,_
A
&a

o e Fo g P e ) A
et R

T T T I

i Ry N R AR A S

e COMMON ===

o I I ko s I

b E

245y RICY 640 s COACY (247
LFLADC R REMLTIC 18 s CLINEDC 18
EDCLBY s GASFCDCIBD s FILCYDOLED .

20 = T O e L0 T

[ B I U o8
T O o T S I

4 I‘HHT i?hHL Sy TRHCSE) s IDTHE4 ) s TROUT (43
B TGCOPCE s DDUMY CSE0

ERow i 5 e |

" EHG - EHFIHhEﬁlH1 UMITS CCALCULATED BY EHGUM FROM ARCY YOLTHGES:
" ApCY - AL WOLTARGES CUFDATED BY SCADD
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PAGE BE8z  WOHDG 9018 A MO, « 2B FEB., 19975

» COACY -~ Dop VOLTAGES CURDATED BY CIOAC:

Fanr N |

SHFCOI- SATURATORE FLOW COMTREOL DATA

CLFLOD~ CLogny LIGUOR FLOW DATA

REMLTI- REMELT COMTROL DATA

CLIMED- COMTEOL LIME DATH

GASFAD- GAS FLOW COWMTREOL DATH FOR "A" SATUREATOR
GASFED- GAS FLOW COWTREOL DATH FOR "B" SATURATOR
GAZFCD- GRS FLOW COWTROL DATA FOR "C" SATURATOR
FILCYD- FILTER CYULE MOMITER DATA

SERMOD- SERVOBALAMEG SCALE MOMITOR DATA

AAGE
BEEl
515 e
FRE
Uur4
nw

ISAMT -~ MASTER SAMFLING RATE (PACER FREGUEHCY. SECS)
TEMUL ~ SUB-ERTE SAMPLING TIMES CPERIODCK»=TSANT T3MUL T s

el wiwkwiwiwiwlw kel

; TRH - RESQURCE HUMBERS
: ICIH - COMTACT STATUE IW CUPDATED BY HCCE:
= ICOUT - COWTACT STATUS WORDZ UPDATED BY COHTREOL FROGREAMMES.
E IZCOFcLly- FLAG USED BY WCHDG AMD THE COMTROL PREOGEAMMES.
= [SCOPCZ2y— STATUS OF COMTROL FROGRAMMES. CI.E. RUMHIHG QR OFF:

ISCOPC STATUS OF ARUTO-MAMLAL g.HITlHE;~

1)
1

b N 3

T

IHTEGER MFLAGE La)

N Ex]
[ s 2 T |

1o IMITILISATION,

B i |

CALL DECLECLMANR: 1223062

]

LI = i
TECOPCLs= @
ISCORCZY= 1
FLOOPS = 7

i HUMBER OF ACTIVE COMTROL LOOES
MAEHD = 2o 0 TSRO s TERMUL CE A THMUL Cdn s

i 2 CYCLES OF THE COMTROL PROGREAMS RELATIYE TO WCHDG,
Do o1E I=1.16

MELAGET ) = MAXHO
18 COMTIHUE

CALL WAIT¢ls3s [ERR

R HATT OME MIHUTE FOR CONTROL PFHLPHH" TO

IHITIALISE IsCOR,

0 f O L e DD T

00 G 02 4O

e RS

3T O (0 [ = i

T

ok T O RN S S S R N s ¥ 2 N ¥ R o)

Ty
EAC i 4
™

WRIT OH RESOURCE HHHbLP 3, CLEA

E| PHIH

Pl o 50 0

X
i f

1aE CRUL RHROCZ TRMO3)« TETAT
CHLL SWITFo11D

B
i
A
]
a
A
B
5]
5]
ol
i
5]
5]
&
5]
g
d
1
1
1
1
1
1
1
1
1
1
1

LR s R on i e Bor s B cn B o o Bon o i B acn B o o B won B xR R oy Rt R et e )

bl S R 1 W W ey By R
LoUIEN o n X (s PO s IO N %

| -
[ TFIGEEF HH]IH auile IHFF B HFITIHh fH H I
- CREDER . HD PEHIIHh FPHH THF LHH
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FAGE @883  WCHDG 9518 AM MOM.: 28 FEE.. 1978

23 P e

R i SR | IS NS

k1
=1

R D D O O O

11
11
11
11
11
11
11
11
11
12
1'|

oy
A

P
a0 a3 a0 el 3 1
RN N LR H

i

— e,
Pun B w i

e iy

|4
o
o
nd

pcn B s A R )

L )
=3 i

[ n i

o

£ if

F3 [ o 0 g

T )
fun it )

T T T
IO Il oA ]

.,_.
=0
7 T O

T
i 4=

1
1
1
1
1
1
1
1
1
1
1
1
1

o T T
[y

I = BoosaaR
CHLL CRMACC1E LMATE s T T
L MEITE ZERO :
CHLL CAMAC OB LIATE TOATA TN
o PFHH LHIP

I = IVFPPFE
CALL CAMALCK JrlLHHﬂFuID LTLIE
I WEITE 32VEV
CALL CAMACCAs LMADRs IDATA s TTHIM
i READ EACE
IFCIDATALHEIPPFRPFEICALL MESAG -5y

MARHD = E*EIEWULiE)%IEHULﬁEDfIEHULi4):

00 =88 =1 HLOOFS :
I = ABITo s TECOPCL S

PAGE B3.16

£ HOTES - T = 1 WHEM FROGRAM RLUHHIHG

TFOMFLAGC D L GT. 1AEY MFLAGC LY = 186
£ ' FROTECTION WHEH PROGREAM
ITCHT = MFLAGCL - FMAXHD

[
TFCICHT. LT A GOTD 128
TFCrIOHT GT 8 AMD, CT ER. B0 E0TD 128

5n DL PHT HE~:HIE III fLPHlHHL

I
I

SARD=ZEL v L 4 ]

ko= d-1

CALL MESAGC.JMES s kD
[
[ - s vrom s s s b i e e e e e ety S s e b i o St
R IHHHhE THE IHHFHIF QUTRUT ZTATUS AMD
L .

LRLL WCOUT ORI
' E COMTACT: I=8

CRLL SETRC.4 IH

] e e st s i s e e it B omm P fats o Lih e i i 110 i S o i R e s LA TR ) A 4 iSO A BAMY S e i G P e

¢ 7. RESETRELE COUMT UF BEFORE SWITCH OVER
1z4 FMFLAGCSY = CMFLAGCLY + 1as0i-10

S MOT RUMHIHG.

th FLHh IM I:EDP'E'.

OFEH COMTRCT

T MAHLIAL.

L THHAIELIT COUNT WP IF FROGEAM IT@ RUMHIMNG

ZEER COMTIMUE

3. RES ET lﬂHTFHL FHG}HH HHPD I PﬂF

Do I s 4

S

ISCOPC] b=8
GOTO 148

4. IHEIF HH BIF: 'F1 E fHE LUHFRUL LOOFE.
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FAGE @aod  WOHDG 9318 AN Mo, . 28 FEE.. 1378

B166 ENI

FTH4 COMPILER: HP9ZBEB-1E@92 REV. 1726

% MO WARMIMGE #%  HO ERRORS #:% FEOGEAM = BA293 CCOMAOM = BEFES



APPENDIX

FRGE dBal

.,_
i
W
M

a
5|

5
5]
HB

A
o
f 1}
—

DULILH N

aass
BESd
AESo

B.3 FORTRAN PROGRAMS ' _ PAGE B.18

FTH. Fidz AM MOM.» 28 FEE.s 1978

FTHda LT

T S B s S O e Y s B v B o N s M B e

AT

EacE)

Fa

i3

T

2

© PEOGRAM SERVOCZ. 383, 19127FEDR ASH17SRIR J1@1#55DF

e o e R - R R S O ) R -F--i,—-lr-rq--r--)_—-'(- o e T R R

FERDE THE SERVU-BALANCE REGISTER AMWD STORES RAM FEED
STHTISTICS
DPFTHI]IUH
FHLE-THEH DELT ARE IN HOURS,
THASS L« K2 =MA%S OF K-~TH TIF AGOCTOMHES:,
THASS (2 K2=HOLURE SIHCE K-TH TIF RGO OCCURRED.
FEODL=TOMHES MELT ACCUMULATED YIA 15T SERWO-BRLAMCE,
FEODE=TOHMES MELT ACCUMULATED YIA ZHD SERVO-BALAMCE.
PEOD=TOTAL TOMHES MELT FORE THIS PRODUCTION RUM. )
SHIFTCTD p=HOURLY AYERAGE MELT RATECTOHHES) FOR LAST SHIFTOIAT.
HOUR=TOMHEZ MELT FER HOUR FOR LAST HOUR.
HOIURLY=TOHS PER HOUR OM-THE-HDUR. (AN ARRAY COMTAIMIMG THE
LAST & HOURS WALUES).

SERNMODCLY =
SERNMDDC2Y = FRODZ
SERMODCEY = PROD
SERVODC4y = HOUR
SERMODCE Y = RBLAMHK
SERVODCEY = THAELEE
SERMODCTY Y = IMOTI

= PROIL = CUMULATIVE TOMS MELT OW SCALE 1.

CUMULATIVE TOMWE MELT DM SCALE Z.

CUMULARTIVE TOTAL TOMS MELT.

AYERRGE MELT RRTE OVER THE IMMEDIATE FAST HOURE

it

H

SCALE DUMF TH TOMS.

= HUMBER OF PULSES FREOM ZSCALE 1.
SERVODCEY = IMOTZ HUMBER OF FULSES FROM ZCALE 2.
SERVODCSY = DELT TIME SIMCE LAST DUMP CHOURS:,
SERVODC1A= SHIFTCLy= SHIFT THROUGHFPUT EATE FOR 22HEE-oHEE.
SERVODCIL0= SHIFTOZd= ZHIFT THROUGHFUT EATE FOR &HBE-14HE
SERNMODC 12 = SHIFTCR)= SHIFT THROUGHFUT REATE FOR 14HBE-22H
SERVODCLZ TO ZBr= HOURLY MELT RATES OW-THE-HOUR FOR THE L

HOLURE, CSERMODG LS =M0ZT RECEMT WALLE. X

HouoH

il
=

N w I e
03 Sy e

—4 =
[}

—_

CHEF R EREEFEERFLFEEFDEEDEEFERFFEFRFF LA ELERELELEFELERELEF R R AL XL LR XXX FERERREL

FEAL SERVOLs SERVOZ: SERYO3s SERVOS SRRV
IMTEGER IHEF
DOUEBLE FPEIIblUH FFHDIsFPﬂDhsPPHDn-HIF HOURLY » HOUR

DIMEHSIOH THASSCE: 98 ITIS) s IYEARCL Y SHIFT O3

e COMMON =mmm

COMMOH EHb'r4'~HDI SRS T COACY CZ29 0
SAFCODC 28w CLFLODC LAY s REMLTDC 18 s CLIMEDC 1A D
GASFADC LG s GAS FEDCIAY s GRSFCOCLIA) s FILCYTICLA )
SERNOTUZE D x DUMMY C5E D s
TSAMT TEMUL 320 s TRMO4A s TCIM S TCOUT O 0 s
[SCOPC3es TDURY C580

A8 e —

[ QR U

EHG - EMGIMEERIMEG UMITS ¢CALCULATED BY EMGUN FROM ADICY YOLTAGESS
AOCY - ACD VOLTAGES CUPDATED BY SCAIDG
COACY - D/ WOLTAGES CUPDATED BY CDACS

SAFCOD- SATURATOR FLDW COHTROL DATH
CLELAOD- CLOUDY LIGUOR FLOM DHTH
FEMLTD- REMELT COMTROL DRTH
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FAGE BEED  SERMD 9142 AN MOH. s 28 FEE,» 1978

CLIMED- COMTREOL LIME DATA

GHEFATD- GHE FLOW COMTEOL DATH FOR A" SATURATOR
SASFED- GRS FLOW COMTEQL DATA FOR "B" SATURATOR -
e CO- GAS FLOKW COMTEOL DATH FOR "C° SATURATOR
FILCYD- FILTER CYCLE MOMITER DATH

SERVOD~ SERVOBRLAMS SCALE MOMITOR DATH

-

—

TSAMT ~ MASTER SAAPLIMG RATE CFACER FREQUEMCY. SECE

PEMUL ~ SUB-EATE SAMFLING TIMES '}ERIHﬂfilmfwﬂnTxIJHUIV”?T
IRH ~ EES HUMEBERS

IGIN - IUHIHLT THTUS TH CUPDATED P TN

TCoUT ~ COWTACT > WORDS URDATED BY COMTREOL PROGEAMMES,
TECORCL Y- FLAG | 1 BY WCHDG AWD THE COMTREOL FROGEAMMES. -
[ECOFC2h~ STATLE OF fUHFhHL PPHFFHHHh'nEI.Eu RUHMTIHIG DH'DFF)
[2COPCE - STATUE OF AUTO<MAMUAL SWITCHES. :

EQUIVALEHCE CSERYODC 1Yy SERVOL )
EQUIVALENCE ¢ SERVODICE Y s SERVOZ )
EQUIVALEHCE  SERYONCEY y SERYVOE)
EXTERHAL IFERK

DATA CHECK ZHEHs ZHEC 1HE

[io iE B ot By BEaon B n B o B o B B BT IR s A B % B B o o B oy B 5ot At B R B cw oy i |

PR orRie Ry Bur R R Bon i B ol cn s R an Hax i s Kol B B ue i uy B o s it 8 R It i ]
-. P =l ) 3 . § =3 = Ty Ty

5

T
2y

0

3 " 3 " ™. 2 3 2
oy e ek
HEREEATE  RS s NP I U X

l
aag [
e P (P —— 5 1 o 0 1 1 3952 5 1 e s i e e -
agaEs oo, IH[[[HLTlelHH
(5] T S
e SHIF=8,
HEEE IFLRAG=G
BRET IFLAGE =5
mEss CALL DECLEGCIREGE 1s LS
a|as CALL DECLECIREG)«1s 1Sy 1o
HEwE CARLL EXECCL1«1ITs IYEAR :
HEs] TOLO=TIT O+ ITOR+ITER0 A58, D 60,
agsz THEW =T0OLD
gasa CALL CARMACCS s IREGE TN TG0
aand CRLL CRMACYS s TREGL TDUMs TG
gass o o CLEAR REGISTERS,
H RS TCOUTCEy = TCIMCS)
agay ICOUT 4y = I0THcd
gass :
BB I LT T~ T Py ———— S 0 1 s S, s S 1 . e S S . i e S . s v, S -
Bleg  ©o2, MATH LOOF STRETS,
[5G
@1@@ 1A CRLL RHRESCRs TRMCS e TTIIM S
@1u3 (W RESOURCE MUMBER ILEHFEH BY sC0s
SRRSE CARLL SWITFS LG
ales
BEE e o e s s o o s s e e e e
Biavy SEHSE 'HITLH
Rias o
Bins MUME = TCIHCIY ,
alig TRRYHLI=TBTTC L&y LR
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PRGE GEGD  SERYD  9:42 AN MOM.» 2B FEE.s 19782

HUME = ICIMo4:
ISEVHZ=TEBITC1 s HUMED
HUME = TCOLITCD:
TSRV =TBITC L8 HLIME
HUME = TCOLTC45
ISEYO2=IBIT s HLIME

e B Bt byl ko
3 o

.,_
i ek ek e b et T b b eh b et b b b bk b ek ek ek R b b a S ek b ek b Reb e b b et ek b b 3k bl b b Bl bt D el b b d b b Jek b i e b fen

-3 LN e

. T

T
Fae e
DR R

e Exx]

4. TEST FOR EDHTHﬂT‘ELUSURE & TGHOR COMTACT OPEMIMG.

e
P
)

U I N S I
I SN I A% B P A TS SIFU PN

IF i ISRYOL-1SRYH1 208, 150 150
1568 TFCTSREYOZ-TERYHE D300 D8 900
ACT IF I®REMHM CHAMGES FREOM & TO 1

L-—-1

Pl

I B A% B ]
£

FR KV

T 5. READ AMD CLEAE REGISTERS.

BN
o

=
Tk

o

i
T

"READ AMD CLERE REGISTER *B° .

W
-,

L GT T T U e D [l

T
PR i |

2RE IFCIFBREKCITUMY b285, 218

285 WRITE® T LAGE '

1888 FORMATC"ENTER THE HEW SCALE READIHG. ">
READCT s ¥ PROD] '
218 CRLL WAITC1As2s IERRE

& CALL CAMACCZ TREGE IMOT1s 10D

1 THRSSE= IMOTL1-1 "
av PROD1=PRODL+THASEE
SERYO0Y = PRODI

GOTO 4868

L0 00 ol [0

fac}
S a0 Pl e T

T.
4o
[
—
[ace}

3 O G I O

T
=

ke FEAD AMD CLEAR REGISTER 717

43 I88 IFCIFBRECIDUMIDZAG5. 216

44 A5 WRITECT . 10880

4% RERDNCF » # 2 PRODE

46 318 CALL WAITCLG 2 TERRD

47 CALL CAMACCZy IREGLs TMOTE s TE
45 THASSE= IMOTZ- 1068,
PRODZ=FRODZ+THAZSE

SERNOZ = PRODZ

™

e B O
[ N B S s RN

hnen

488 FROD = SERYOZ
FROD = FREOD + THASLE
SERNOSZ = FPROD

fn

1{n

TEMFORARY USE FOR DERUGLEINGE -

THASSE

SERVODCEY =
= THOTL

SERYODCT!
SERVODCE
= SERNMODCF

R R
O b Ty L
M

ITHoT:
DELT

| vt o g e i o o b s e Vi b oo s nrars Baese o ottt BERE RERY EBM e W B A fomee

E £. RECORD THE DLRAP IHTER?QL.

Do el Bt B o o By B oV v Bk Bl o B i on o B ow B aov B kow B o JEscn B o e B on JEaou i we o )

Iy iy i O i T LR
LTI R I ' e aor L

[ - [ —— T T
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FEGE @084 SERVD 9542 AN MOM., 28 FEB. 1978

(53]

Ty

JTOLD = THEW
CALL EXECE11sITs IYERRD

THEM=TTCda+ ITORITOE 60, 20k,

-3 T 1T

b Dt 00 —d T 1 e G P e T A0 OO

; DELT=THEW-TOLT

v IFCDELT.LT. MuDkLleLLr+'4

7 SERMODCSY = DELT :

v CALL EXECCZ4s CHECK

v i

T [ e e e e e »—~——~w»w«m~m~—~-~a-~—~~—-—m———~——~~-—ewm——~mw—~—m
7 V. LUPDATE THE T[P Frmﬁﬁh

¥ o

-

00 588 1=98:2s-1
N

a1g1 THASSC 1y [3=THASS 1y 10

alaz THASS(2y [)=THASS(2s JI+TELT
G183 568 COMTIMUE ,

@184 . THASS (1 1) =THASSA

3185 THASS (2 10=4,

fin R B Rt R R Rk R e R i e B o B ot SR ot I v
I ek e b L bk b L pek et ek st ek

fan]

s

b N O

5. CHECE WHETHER A HEM "HIFT HAS uDHHEHEED.

S B o 3

A

TFCCTOLDL LT & 2w AMD CTHEM. GE. &, 2 2 TFLAG=1
IFCeTALD. LT 14, 2o AMDL CTHEW. GES 14, 20 IFLAG=Z
TFCCTOLDL LT 28 0y AMDL CTHEW. GE. 22, 3 2 IFLAG=32
IFCIFLAG.LT. 12G0TO s86 '

s s N N A R R
P

[ I v T e e e B ]

v e ek o e e ot o et i o i e TEL AV SCE PR PRy e s e Shmg e MG VAP IS AR 4 oo S Sy i s Rk AN s Sorm RGBS e At o N A i Srm e e T b MM oot ek S S WM o SniL IR st e S PO S e s RO

9. CALCULATE AMD JIHPE MERM TDHHER HOLE.

P2
=) TR = L3

9.1 AYERAGE MELT RATE OVER LAST SHIFT OR FHET THEREQF: - -

(s W an]

A RAE] gty

ey T
i

IFiSHFT.LE, 8, )GOTO 666
SHIFTCIFLAGY = SHIF-SHFT
SERYODCS+IFLAGY = SHIFTCIFLAG)
SHIF = @,

SHFT = 4.

S S GO O

AN
RS ERE R [ v N ¢ I = O S B %

T 9.2 UPDATIHG OF HOURLY MELT RATES 0OWER THE LHET.S.HDURSa EVERY HOLR
OM-THE-HOLE . :

EEE TFLHG = B
DO o &18 I=1.24
IFCCTOLDL LT T  AMD CTHEWLGE. I 2 IFLAGE = 1
IFCCTOLD. GT. 23 s AMD . CTHEW.LT. 122 IFLAGE=1
18 COMTINLE
IFCIFLAGE L HE. 12GOTO 826
00 E28 K=26y 141
Jo= k-1
SERVODCE = SERVODC )Y
E28 COMTIMUE
SERMOS = HOURLY
SERNVDDCLIZY = SERVOS

LR BNV I o o B B 0 Bt T n TR o B oy B oo Bt Bt Bt B oy o B it B o o B s S s B s I ok O oy

el et e Sl S el S % I it
0 Ty L s 0 T e B

x9]

)

Fodt T 1o 1o 10 P D0 Tt 10 T 0 o o0 Pt Pl Pl T T 153 Pl 2 2 1t b b 63 13 8 bt it s 2 b

.,_
—

i

[t
[
g
i

T T T L e Rapw - (mis i s i Lt 1t oy bon s it S bt H St s S 48 Sk St A i St 1 e it WS B s o Uy S O el et e B S o
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FRGE BEE5  SERMD 3042 A MOM.y 28 FEE.»

RN

HOURLY = B,
TF o LTS«
WEITECE s JBEEY]T

AEEE FORMAT O DAY
1"t SAT.

"HﬁnleﬂTﬁ Fjﬁ

L UMELT RRTE="sF!
= FD. Ge e TTEH" s o) |

09,3 HOURLY MELT RATE OVER THE IMMEDIATE FAST HOUR: -

638 HOUR
}FLH

a1 ll
i h} )

HOLRELY = HHHFll + THASSE
My FaE f=1. 90
TRCTHASS Rk T, llnlthLIU T
HOUR=HOLIE+THF
TF Ok L ER B8 ML=
P CONTIMUE
SERVOG=HOUE
SERVODCE Y = ZERVOS

mUh THRASE (2 90

" H}MHIL Mﬂhﬂﬁ FORE QLD COMTAET STATLS,

it
H

GE#E HEE HUPE
Ba4v CALL
AaRdn TCOUTS = LM E

B HLITTE TCOUT 4

B s CALL SETECL s MUME s THREYHZ
32 TCOUT 4y = HUME

GOTO 188

EWD

=ICOLIT R
SETE L& MUME DERVHL
3

R £ 5] u

FTH4 COMFILER: HPF9ZBeR-16032 REY. 1728

w4 MO WARHIMGS #% MO ERRQORED PROGREAM = B132E COMMOH =

PAGE B3.

& CURREHT RATE OYER IMFEDIATE PAST HOUR.
-

22
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FAGE @AEE1 FTH. W8 AR - MOMLs 28 FEB., 1378

,_
%
et
fior
A I R

Ty L e D3

w500 g

IRl ot

P xR cx Byl wn By e os i icr B ot ]

Tl BB R lolololofofn ko gonod
[ S R A I 7 o I I i B B s

1

o5y 5
_
¢ L e

Ha1E

LA
ED
—
ER

ﬂHl“

LI I
5 4
—

SARNE

DEEI N R L e

—
= ]

E oy W e §
T S

AR RSN R AR L]

T
o

o S 5
Do T o= T e o =4 T LN

03 00 L G P T P {0 T

ool o R o
o

1

PRY

5y
s
!

izl
J
3
L]

[ 3 cx B o
RN s FIR I

el won Jcx I on
S O TR P W TN T R
=

2 RN N

BG4 3
A5 4
BE4 S
R
AQ4 7
AR e
BG4 3
BE5 G
BES 1
AEs:
AR5 3
BE5 4
BB5 S

FTHs LT
PROGEAM SHAFCOCE. 480 BR127FT 1881VPERDR 238178BIE
EREEEERRFFEFENRF R E R EFE RSB E LR R GRS B LR FRER SRR D F SRR R EFFRFFERE R R R

CSAFCO - "SATURATOR FLOW COMTROL™.

SAFCO ADJUETS THE SATURATOR FLOW SET PII]II[ ITH HECORTAMCE

WITH THE AFET 55T LEVELS AMD THEIR DERIYATIVES. FROPORTIOHAL
PLUZ IHTEhPHL COMTROL 15 USED., THE AFST LEVEL MEASUREMEMT

IS PRASSED THROUGH A SECOMD-0ORDER LOW~-FAZS FILTER TO

FREDICT THE TREMD WHILE FILTERIMG OUT THE TRAMEIEWNTS. THE AFST
AMD 55T LEVELS ARE HORMALISED EBY DIVIDING BY THEIR.

MAATAUMES ., THE REGUIRED FLOW CHARMGE IS CALCULATED AWD- COR-
YERTED IMTO A HUMBER OF PULSES WHICH RRE GEMERATED BY THE
CRMAC PULZER MODULE. WALYE POSITIOM AMD TAME LEVEL LIMITES FARE
CHECKED. THE FROGRAM OMLY EXECUTES WHEW ITS RESOURCE HUMEER 1S
CALLED.

fm T v e B T e e B T B

R T S B T T A 4

HAFZT - AFST LEYEL

MZET - 557 LEVEL

HCLT - CLT LEVEL

el = MIHETHUM LEVEL
............ W HOEMALTSED LEVEL
~RaT - DERIVATIVE
——SP - LEWEL SET-POIHMT
el — FILTERED WALUE

S B v N s |

T -

fA I T s

THHE LEYELS ARE MERSUREL IH METERS.FLOW 15 IM CUBIC METERS.HE,

- HLAREM MESSAGES

o 1 T EMPTY

r 2=aaT FULL

I I=FFST EMPTY

C 4=HFST FULL

I G=5RT. JUPPLV COHTREOL YALYE CLOSED

M E=SAT. SUPPLY COHTEOL YALVE FULL DPEH

N TJEHLLULHIED SAT. WHLVE PDSH. DIFFERS FROM TRUE WALUE
E S=CHAMGE IM ZAT. SURPLY VALYE POSH. > 16%

i

CHECE THE WALUES OF THE ERROR DERIVATIVES
- flWE. SAFCODCLIZY & (123

i

S 2 B N e B T

———=mm COMHON ===

—
Fa

COMPGOH EHulanuHh|VnF4|.|nHEv.*q.,
SAFCODC Ay CLFLODC I8 s REMLTDC 1@ s CLIMEDC 165
FH FHH'19'!'H“Fbﬂkan!hHuFEDklﬁ‘PflL|1D 18

ERVOD 2By DUMMY CS8 3
I'HHT TEMULCRE s IRMCAB s ICTHSG 0w TOOUT S
TSCOP 3 e TTILIMY CS6 0

DEIRE RS S B I

L EMG - EMGIMEERIMG UMITS (CALCULATED BY EMGUH FROM ADCY WAL TRCESS
C ADCY - A<D WOLTAGES CUPDATED BY SCALY O ADEY VHLTHGES!
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FAGE

[a R U ]
e
H

ot

UU:_“:

Bgas
ERRals
B1al

P

B1Es
@ile

B.3 FORTRAN PROGRAMS . | PAGE B3.24

BHFCT 9038 AF MOM.s 28 FER.. 1978

COACY - DR WOLTAGES (UPDRTED BY CLAC) \

1= SATUEATOR FLOM COMTROL DATA
1= CLOLTY ALICE FLOW TRTA
- REMELT Ll DATR
LM : IIHF IATA :
HE T TROL DHTA FOR A" CSATURATOR
A DATH FORE "B SATUEATORE
: 1H1th TATH FOR "C" SATURATOR
OMTTER DATH
s BEALE MOMITOR DATH

GH"FIHW
LT
SERYOD-

ISAMT - WASTER SAMFLING RATE (PACER FREOUENCY: SECS)

ISMUL ~ SUE- AMPLING TIMES ¢FERIODCAY=ISAMT#TSMULLK )

IRN - RESOURCE HUMEBERS

ICIH - COMTACT STATUS IW CUPDATED BY SCCS;

[COUT - CONTRACT STATUS WORDS UPDATED BY COMTROL PROGRAMMES.

S OF 1;~ FLAG USED BY WCHDE AND THE CONTROL PROGRAMMES
- ; INTROL FROGRAMMES. (1.E. RUNHING OF OFF)

Iy

1500P (5~ STF

EQUINMALERCE CBAFCONCL s e GPA Y
ATH FROFOET TOHAL Y FFRT
SAFCOTNCE e GRS
M FROPOETIOMAL s SETL
ERUINMALEHCE CSAFCODCIYGIAY
THTEGEAL GAIHs AFST
EQUIVALENCE ©SAFDODCSya GI52
THTEGRAL GAIM: SETL
[k FLDD’E‘«H'
OFF FRERUEMHCY . SECE
D E s D
FIHE FRCTOR
CEHF OO T e HEY i .
TT LEVEL SET FOIMT CHORMALISED:
TE sy HAFSF
=T LEVEL SET FPOIMT
SHFCODCRY = b Yy THE HLMEEFR 0OF PUW
ERLIINMALEMHCE Fﬂﬁ‘lﬁ'!HHFFJ :
¥ LPED AFST LEVELCHORMAL TSEDY
Dolars HLFHRA :
HEH TlHL SHMOCTHIHG FOR CUMULATIVE SOLITDE FLOW.
DelsaseRATES Y ‘
FHTREEDDS SOLIDS FLOW RATE.
ERUTYALEHCE CSRFCONC2a s S0LITE
CUMULATIYE SOLTDE FLOM

ET"U L'W?L EHCE

EGUIVALEMCE

EQLIYALEHCE

ERUIVALENCE

EQUIVALENCE ©&F

EOUIVALERCE
ERUIVALEMCE ox

3454 DECLARATION STATEMENT ###+#
CALL DECLRCIFULy 1a14:80
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PRGE REEZ  SAFCO B8 AR MOM.e 28 FEE. s 197% .

rossss SPECTFICATION OF COMSTAMT DATH FOR BOTH COHTROL LUUPH“%%%%

RS XS]

Pt i b b g S el e
5 &

¥ © MARIMUM FLOW RATES (El, METERS /HOUR )
FHAF=153,5 - i ‘

i O
Py L8 B g Pl

fav]

- MAXIMUM LIGUID LEVELS <MY
HRF =3 . 353 S
Hgsn=z. 28

i HFLM=3. &

Fan)
N

-
Ea R

R
fax ]

1
"l
I © TAME CROSS-SECTIOMAL ARERZ CHELM. D

T
i

~ll 4

FE S

o . COTAME WOLUMES cCULH.
' YAFST=AAFST#HAFM '
l|| l._T Hl I"T"'-'HL:":..'H

T ) T 1S

- NEFAULT SET POIHTS AMD CONMTROL GRIMS
HHF SF=H. ﬁ :
HEEE‘=H

W . FFET FROFORTIOMAL GRIH
W AFST IMTEGRAL RESET TIMEs MIMUTED

T T O O O O T O T O T R

arae S5T PROPORTIOMNAL GAIM

H14# GIS=%a,

@ial o saT IMTEGRAL RESET TIME. MIMUTES
B4z Bl=@, 8815

ards o CUT OFF FEERUEMCY s RANIANSSSEC
nidd D=8,7
gr4s

I DAMFIHG FRCTOR
A 1 4F -

|

|

—
s
i

IHITIHL EDHDITIHH% FOR THE PREDICTOR AHD DIFFEREMTIAL EGUATIOHS.

-
-

HESH1 =BG L a1 8,
HAFF 1=EHGC 2~ 18,
HAFFZ2=HAFF |
FAF=HAFF1

[y I Y
1 e oees T3 RS U

ILESY =8,

CCHAMGE ITH SAT. SURPLY VYALYE POSNL T

it A VY R N )

CHUMPT=TFIM0 LARE, sEMGIT ) -
L ' : IMIT. WALUE 0OF TOTAL HO OF PLULS LﬁwVHL”L Pl Bag

i ALPHA = @, 2 ' '
£ _ : EAPUNEMTIAL SHOOTHING FOR SOLIDS FLOK CRLCULATITN,

et RN

DB R R R R R S R R ]
n

FEEREFEREELEFRESHEEEERFREFEREERFFREEREFE D FE RS E DR R FEERE R R E R LB SR E R

Dy T T D O O O S O VR O O T O T O O S 6
D el N ST R R e e e e i ol o L e ]

o Oy T
L8 G T

n
oo _ ‘
L seweMATH LOOF FOR SAT. FEED COMTROL STARTS HERE ##&w#s
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FAGE BB84  SAFCO 9230 AN MO, s 28 FEE.s 1978

: . 5 LEVELS HUD CHECK LIMITS
3. OHE-S aw ST PREDICTION OF NERN REST LEVEL
4. CALCULATE FLOW CHAMGE

' : | 136K OPERATION

CALL RHRDCE TRMOLL Y TIHIMD
LOCE OH BRESOUECE. HUMBERE UNTIL CLEARED BY EMHGLIM

CALL SMITFC8)

MA S =L AFTC IO Tl o g
TFOMFEER HE . B GOTO PEE

— K
— ¢ T Ty = ST Ty TG STy S
ER I on B B 0w 6% B oy B DA R R BN R RS AN ]

L #xs% ERROR MEGSAGE SUPPRESSION FERIODCHMIMUTES) #w##
IREF = &0

p e

£ [

gies T= LUHI'I 1MT%ISMULiE}%ISMUL£ﬁDE

K] I :

i [ wsas 1, CALD, FILTER COMSTRAHTL s
4 : :

YR

GLBERLT THETR=ATANC-AHE
Ti
1,573 CA=EAT
VBT CRA=EAT#COSCWA+T1+THETAY A COS ( THE TR

EH1~EEP“
IFCTHETH. |

S COHTROL Lonp
GIFY=1.
GIEV=1.

#55%% 0, FEAD MORMALISED LEVELS & CHECK LIMITS ##ses

HAFH=E |I_-.I aae
HESMH=EMG L1 #HL.

HPLH EJb'xJﬁ'""u
COHEEHL LT .

IF ¢ HHFH:LT::
TECHAFH.GT. .

STEF-HHEAD FREDICTION OF MEAR AFST w:vﬁhﬁ*%%%'

e EE

"% Fuy Tn
23§ e

S HAFF 2+ CI#HAF S CE RAF
CALCULATE DERIVATIVES AND ERRORE.

HFDOT= ¢ HAFF~HAFF 130 T1

LELAF = HAFF-HAFF1

HHFFﬁCB%HHFFiw
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FRGE BRES  SAFCD 9538 AN MOM. . 28 FEE.s 1978

IFCABSCDELAF Y LT. B, 12GOTD 114
CALL ERMESCH« IFTAC108, #HFDOT)y [REP
HFOOT = SIGHOA. Ly DELAFY-T1
118 HEDOT=0HSEH-HEEM12-T1
LELSH = HESH-HEEM1
IFCABSCDELEM LT 8, 10G0TD 128
CALL ERMESCS IFTHCLIBA, #HSD0T s IRERY
HSDOT = SIGHCA. 1y DELSHY-TL
128 ERFT=HAFF-HAFZF
ESST=HEEN~HE SRR

I UFDATE FARST VALUESD

HRFF 2=HAFF 1
HRFF 1=HAFF
RAF=HAFH
HESH1=HEEN

o gesed 4, DAL, FLOW CHANGE e

GRISST=GPSs (HETOT + GIEV#EZST)
i 2T COMTRIBUTION

GATH=&.
IF¢CHPLML LT 8. 50, AHD L CHAFKH. LT, B, S 0 GATH=, 881
GRIAST= =GPA%CHFDOT +GIAY#ERFT-GALIM® @, G~HFLH Y
i FAFET COMTREIEBUTION
] AT HESEF Y DLSF=GFIHST
25T IS5 AEBOVE 5P« COMTROL OH AFST OHLY
SPYAMD. CGPIAST.GT, B2 DLEF=LGPISET -
' L-T LoW cBELOKM SPY AMD AFST TREWD IS TOWH
COMTROL DN 55T OMLY ©THIS MAY BE SHUT TOWHD
IFCCHSEH. LT HESEF ) CAMD. CGRPIAST. LT 80 3 DLEF=CPISET+GRPIAST
IF 5T LOW AWD AFST TREEWD I3 UP
COMTROL OW BOTH SST AMD AFST
CEHUT DOWM AMD FILTER HOLD UFX
DELM=DLEF#T]

TLSSY=TELH+ILSSY
FICK UP ROUMD OFF FROM LAST COUTFUT

oo B R R B Rl
T Mo PO P fd Do Mg
BN s Jw o Bt I RN U £ I S S I )

10l fo P Fo o B B B Ja g 00 0 D el Q4% D5 00 0 3 P
k Fav IS Rt e P I AT AR

IFCABS CDLESY ), GT.B. 881 GOTO
HUMF =0
GOTD S8a6
HUMP=TF IO DL SEyY # 1 @nE.,
DLSSV=HHDDKUL5C“~H BE1
SHNME ROUMD OFF OF LESZ THAM OHE PULSE

288

#%%%% 5, CHECK PULSER AMD 1328k OPERRTION swsss

LoIF CURREWMT POZITION OF SET POIMT IS MOT EGUAL TO COMPUTED
FOSTTION M HGE 7 OUT RAND RESET HURMPT ‘

2. IF HEST COMMAMD WILL DRIVE SET FOIWT UHDER OF OYEE RAHGE.
IMHIEBIT QUTRUT AMD WRITE MESSAGE o

G LIMIT CHAMRGE T 18%.

HFOS=EMGL 7 1 1 HEBE,
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PRGE @BEE  SAFCO 9:2@ AN MOM,. 260 FER,. 1873

[TF=HPOE~HUMPT
IFCIABSCTNIF L LT
CCRALL E
HUMP T =h

TOROTD &R
VIF s TREFS

D R "

IFCTABZCHUMP Y LT LHEGOTD &1
!HlL Ak ha%»HHHF IREP

b

]
AU N

IF{CHUHF+HUHPT“nGT"HD GOTO 620

CALL ERMES (S WUMF [REP 3
MUMF s =ML FT

TFCCHUMPHNUMPT 3 LT, 1888 GOTD £38
CHLL ERMES G MUMFs IREP
HUMP =1 BEE-HUMPT

=t

" . ’ _
I #dgad o, WETTE TO PULSER @85
|

BB HUMPT=HURET+HLFF
o INCREVMENT TOTAL MO OF FULBES
IFCHURFLHE, 83 CALL CAMACC1Es TFUL s HUMP s |
¥ | WRITE PULSE COLNT IF HOT ZERO
. SAFCODOCSY = HUMF ,

o I o I acw B o B s B e )

v
o

5 50 O 7

i d

e EUNULHT'”E SOLTIE FLOW lHlf”LHTIHH ¥ EEE

— iy
x5

't
W
l

A ] e B FI
'lmHLPHH‘ + FLFHASEMG S

R
=y
=
o R
-3 E iR

T 1T
o RN o |

k1
:

FHTF“ - BRI T8, _
DEOLID = RATED®[HAMTS TSMULCZ s e TEMUL O s BE0E,
SOLIDE ;:ULLD' + DEOLID '

+ 05 OR OT 0T D O O

K
ok

REETRT

T4 T3 o

]

5 ' : -

CUFDATE COHTROL WORD FOR AUTOAMAHUAL WATCHDOG (PROGREAM: HCHDG)
o ‘ .

L3

oo

WH'= TEHF T ] B ‘
UPf11 = LR CFALRE s TSCOR L 30

T-
SRR
B
—
.
P

ia
]
az
(S0
]
a1
A

Il f ot 1t pey gt 3et e et

oY - T
PRSI NS B

GOTO 1EE

BT

FTHY COMPILER tOHPOREEH- 16092 REY., 1786

g MO MARMINGE #%  HO ERRORS #x FROGRAN = 81127 CQHHUH = T A



APPENDIX  B.3

FTH.

. CDRCY -

SAFCON

AEEL FTH3sLsT
aREs PROGRAM CLFLOCZ 4@ 848777 22017ERDE
AEED L+¥++++w+++*4++ft+**4++1¢¢+*§%*¥f+¥w+++*4++++**f%++i++wflr+4++litr+*¢++w
a4 C CLFLO — "CLOUDY-LIGUORE FLOW COMTROL™
ARRS ' :
agoe O CLFLO ADJUSTS THE ABSOLUTE “ALWE POSITIOW IMW THE CLOUDY-
aReT o LIGUOR RETURHS LIME UZING PROPORTIOMAL-FLUS~-IWTEGRAL COMTROL
A@Egs o ACTIMG 0N THE HORMALISED ERROR IHM THE THHE LIGQUOR LEYEL.
aaR? o LIMITS OM THE WALWE POSITIOHW AHD THHE LEWEL ARE CHECKED
gate o AMD MEZSAGES Sk {T TO THE OFPERATOR*S COMESOLE IF HECESARY
agilt o THE CLT LIGUOR LEVEL IS PRSSED THROUGH A MATHEMATICAL FILTER
aplas o AS FOR SAFCO, :
aalz o THE PPUIPHN DMLY EXECUTES WHEM EMGLIM WFLEHEEF ITs RESOURCE MUMBER,
aEld C :
apLs - G THE FﬂHTPUL RCTION CAM BE MADE TO RCT O THE DIFFEREHEE,BETMEEH
@@ie L THE RFST AND CLT LEWEL: BY DELETIMG LIMES 185 AMD 188,
a|ly o
als O HAFST - HFST LEVEL
gale L HCLT -~ CLT LEYEL
Ba; » el = MAMTHUN LEVEL
A : meP = HORMALISED LEYEL
AR ¥ 00T - DERIYATIVE -
Qaaz » ——woF = LEVEL SET-POIMT
apz4  © P = FILTERED WALLUE
gz L
duze o THHE LEVELEZ ARE MERSURED IM METERS.FLOW IS IH CUBIC METERS.<HR.
aazy  r HLARM MESZAGES @
gaze 1=CLT EMPTY
BBze o 2=0LT FLULL
peza S=L10UNE EETURHS YALWE PDSH. CHAMWGE » 1@%
Bz . 4=l TRUORE EETURMS VYALVE CLOSED
BB B =l TR EETURMES YALVE FULL OFEH
EI5H o g=LHELE THE WALUE OF THE DERIYATIVE OF THE CLT LEY
HE: I nl.E. CLFLODCT :
a1tk I
=]l [ e o e e P e e e 1 1 . . . . e e . B B A 3 e 5 . s e
pEaIyT O
BE3IE O - COMAON  ===—me
ag3s o
E1aEas COMADH EHGOE b s ADCY CE4 0y COACY (240
SIS0 D 1 SAFCODCZE ) s CLFLODCI8 s REMLTDC1@ s CLIMEDC 18y
apdz 2 GRZ FHD-lﬁ'suH»FEDLIHI-GHCFLDL1H-sFILP1D'1HJ5
A4 3 “EP”HD'_U'sDUMHT' =1t
B44 4 TSAMTs ISMULCE2)s IRMCAE s ICIHC 4 ICOUT Oy
843 2 TSCOPCIs TDUMY 5@
gde L
|47 L ENG - EMGIMEERING UMITS CCALCULATED EY EMGUM FROM ADCY VOLTAGESS
gj§ o RAOCY - A<D WOLTAGES (UPDATED BY SCADDY
7
B350
B51
Boe

Pl B e W s WA Bt B B ey B el L R R i I A

22 [ CLFLOD-
833 o REMLTO-
as4 o CLIMED-
RS GASFAD-

e

FORTRAN PROGRAMS PAGE B3.29

PEZ AN MOM. 28 FEE.. 1972

DA WOLTAGES CUPDATED EBY CDAC)
SATURATOR FLOW COMTROL DATA
CLOUDY LIGUOR FLOW DATA
REMELT COMTROL DARTH
COMTROL LIME DATA

GRE FLOW COMTEOL DATA FOR

“HYOSATURATOR
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FAGE @862 CLFILO Q:SE'HM_'HUH;y 28 FEE.» 1978

TR SATURATOR

i O “C" SATURATOR
w L F HUHITEE DATH :
BHlHHn SCALE MONITOR DATA

fucn I or it en ]

L[]
Lo

[ IHSI
Lo GRS GRS F
o FILEYD- FILTE
~I —EFHUH BERV

o—
-,

[ W [Rn o Y
51 ISy S 0 00 O O 0 (5 T 0

]
£
£

4]
1
3
4

I ISAMT HHSTEE SHHFLIHG RATE CFPACER FREGUEMCYs SECED
= ISMUL - SUB-RATE SHAMFLIMG TIMES CPEHIDHEHB=ISHMT*ISHUL&AJ'
B IRM . - RESOURCE HUMEERS S
ICIM - COHTACT STATWS I CURDATED EY SCL5)
. - COMTRET. STATUS WORDE UPDATED BY COMTROL FPHGFHHH¢W
1y~ FLAG UEED BY WCOHDGE AMD THE COMTROL FROGRAMMES.
CZa- BTATUE OF COMTROL PROGGEAMMEL. CT.E. BUMMIMG OF OFF
1~ STATUS OF AUTO-MAHUAL SHITCHES. L

T
RAY

3 T
5 iy iy iy Oy

—
2,

R Y

P
ol S
oy
o
O

RX
Sy 00 O O

e s v e e ey 448 e 6 i s e o St i Bt 1 g S s e St e ot . P Pt N e i S i ot S A e T Ak £ s Y s S A 1o T o o i e AN 078 W Lt i e Pt R A i s S S i e

o o i

@

AE74 EHH1”HLEHIE'ILFLHﬂtlﬁshFr' '

AETE O CLT PROPORTIOMAL GAIH

Bove EUHI”HLEHIFIILFLUD'?'sGII" '
5 1= N R LT O IMTEGREAL GAIM:

aave FHHl HIEHIﬁ'ILIIHU'$“sJPLP' :
S14 I C LIJOR RETURME VWALYE FOSH.
=15 1 LHUI“HLEHIL'lLIlHDL4‘sHlLF'
I CFILTEEED CLT LEWV

[l

Eﬂﬂr
-
=

(X !I

[xs a3

= Ty 1 e 0 Tos e

ERUIYALEMCECCLFLOTCS 3a L
CUT-0FF FREERUEHCY
CERUIVALENCECCLFLODCE s I
L DAMPIHMG FRACTOR A ‘
EQUIVALENCECCLFLODCT 2 s HCDOT : o
FATE 0OF CHAMGE NF FILTERED CLT LEW EL.f

OO 0T O

ER N

SRR R R B B B o)

METEE: SPEGIFICHTIQH OF COMSTAMT DATH &%

MASTHUM FLOW RATE {ﬁU.HETEEBfHDUR}
FMCL=16, LT

3
9
o

o

=
=T

v

;

]

o

ki |

MAXIMUM LIGUID LEWEL (M)
HRFH=3. 253
HCLM=2. 165

w0

250 L0 L

THHHVEHDSSMBEﬁTIUHHl HFFH CERL M

Eox

ACLT=4.67

5 E - , - TEME WOLUME ﬁﬂU;HE3

2K
HER )

VD D T S O T O O S O 0D T O T O O O O O R O T
—
o

P e e i R I vt WEw T oo B o i o O e

fd WL T=ACLTHHELM
Gles L : : . ; o
G18E © DEFAULT SET POIMTS AHD COMTROL GRIMNS
A1my YELR=5, @ :
ﬁ BB I : . ,
1 SRC=2, 1A , ,
3 ?S l . ' PLT PROFORTIOHAL GATHM
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.,_.
11
—
Tt

FAGE 88A3% CLFLD 9832 AM  MOM.x 28 FEB.s 1978

™ i

C CLT IMTEGRAL RESET TIME s MIME.
. T CUT OFF FREGUENCY: RADIAMS-SEC

o LD [l
= =
i i

=1

et

—

n

DFAMPITHE FROTOR

I O T O T T

PR I N

C INITIAL COMDITIOMS FOR THE FREDICTOR AMD DIFFERENTIAL EQUATIOME.

s gy i i iy if

HAFF 1=EHG (20 13,
HAFF &= HAFF 1
RAF=HRFF |

HCLF 1=ENG (270109,
HELF2=HCLF1
RCL=HCLF1

—
b}

3P b o e e = L
o o e
by R

PO
3=

R e
LR

oo Pt 0o T

Tl B =5,

s S D O

oY
o

CCHAMGE IH LIGUOR REETURME WALYE POSH. "

16 CALL RHEGCZs TRHCLZ2y TTILIM
[ LOCE ON RESOUECE HURMBER UHTIL CLERRED BY EMGLM
[ '

&

2
o
i
<
]
P
]
o
-
o

g
A
)

b I e B v B o 3 ot B

CALL SMITF(S)

—
=

o

MASK=TAHDC T IO by 1HED
a7 IFCMASK . HE. 1ABXGOTD 728

Loy Bacu e

]

o
o]

390 s444 ERROR MESSAGE SUPPRESSTION FERIODCMIMUTES) ##%%
G146 IREF = &8

—
o i)

@142 | T1=FLORT o TSAMT#TaMULc2 & TSHUL CE s
144 e #ases 1, DALC, FILTER COMSTAMTS s#ess

Bl4e WE=SHETO L, DD

@1dv A=H*D

B14% THETH=1. 57 '
143 IFCHA, GE. 8. 8861 THETA=ATAM . ~A-WE

S ERT=ExPo-A#T13

[ S

O O O

1 .
1 IFCTHETH.ER. 1,570 CR=EAT

{ TFCTHETH.ME. 1370 CA=ERAT#C0SCWE*TI+THETA» ~COSCTHETA
1 CE=2. #EAT*COSCWET L)

1 CC=ERAT*ERT

1 Ch=1.+CA-CE

158 CE=CC-CH
1 "

1

1

1

1

1

pRIIE =R SR LR R

v

A ##%%+DETERMIME FILTERED AFST LEWEL #®%x#

e

HRFH=ENGCZ ) 18,

@ o OHE-STEP~AHEAD FREDICTION OF MEAH AFST LEVEL*%#ss

Bled HRFF=CE+HAFF1-Co#HAFF2+CD*HAFN+CE#RAF
9165 O CALCULATE DERIVATIVES AND ERRORS.
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FHLE G884 CLFLO 932 AM MOM, s 268 FEE.» 1978

lEE HF DO T= CHAFF~HFFF 15T
@168 C . UPDATE PAST YALUES
@176 HAFF2=HAFF1

Ayl HAFF I=HAFF
A1y FAF=HRFH

PR EEFEERFEEEEFREEE DR EREE

[
[
-
I
AT [ 0 S 0 O R0 R R R O R R R
[

3178 | . | ‘
B179 [ sxssxEMAIN LOOP FOR CLOUDY-LIGUOR RETURNS RATE STARTS HERE:+
N

READ MORMALISED CLT LEYEL % CHECKE LIMITS

UME-STEF-AHEARD PRELICTION OF MERAM CLT LE”EL
LU=IWG SAME COEFFS. AS FOR AFET.

CALC, FLOW CHANGE & CHECE LIHITo

COUTRUT TO COMTROL DAC.

Tl —

A B O e N

O 0 D0 0 0D OO et el

r
B
i~

[ 0 o B o B ac B oy G B o Y R K AN Rt A Rk
b et L et fb et e
O O e a2 el o= g

o0
T

0
areF o COMTEDL LOOF WOLUME GRAIMS

Glae GICW=], 08B, G100

Alas o . :

AloE Oosees 1, ‘PPHN MORMALISED CLT _E“EL FHD CHECE LIHITS, HEE
131 0 .

a9z ' HELH=EHGI 2T 1

1aa.
ITFCHCLH. LT.. 5

Ry e e ]

14

193 CALL ERMESC1s IFTX¢18A, #HCLM s IRER

194 ITFEHCLH. T, CALL ERMESCEs IFIS E #HCLHY s TREP)
a1ss o : :
A19E O #%%% 2. OHE-STEF-AHEAD FREDICTION 0OF CLT MEAHN LEVEL. $#x#%
B R I CUEES SAME COEFFICIEWMTS AS FOR AFST LEVEL
Aalss 0

115

gl HCLer[+H|LF1mEr¢H|Lr:an+HLLH4|E+p|L
HCOOTa= HPLFmHUL
DELCF = HECLF '

. IFCABSCTDEL AL IAGOTD 118
CALL EFHE'frnIFl 186, #HEDOT > s TREF
HIDHT = SIGHYE. 1 DELCF Y. T1

P
o

=

.._
.
i

[ I w
fax]

LR KA}
[x]

0 T3 T D0 T3 Tar PO D0 P [0 0

[ W

T
%

UFDHTE FAZT WHLUES.

P T

ile HILF; HCLFL
CHELF1=HCLF
RCL=HZLH

LY ERR RN B L VL { R

P

=
L I
=

5 t : , .
5 O wwexss B, CALC, rlmu CHANGE % CHECK LIMITS ###s
G} o ' ' o :

HFDOT=8,
HRFF=4. 3 |
C MAY EE DELETED IF DESIRED.
DLLR= GPL ¢ (HODOT-HFDOT) +GICH+ CHELF- HFFF 3
DLLRY=DLLR#
”FLF—UFLP+DLLF-wll

00 e Gl e—

=1 ¥

R e i e e i el ol S B T s s B s

oI o B o R R R e T e

T PG P T P T Tl T

HEN S 3

o)

LI@.'RET, VALYE POSH. @ TO 18 YOLTS).
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FAGE @@ES  CLFLO 9332 AM MOM.: 28 FEE.» 1378

#eg s DHECK LIMITE #s#%%
PR, CHAMGE = 18%
BOWPLEC 1.

LA A

)

o

TFCRBSCDLLEY )W LT, 1. 3 GOTD 7AS
TLLREY=1, :
CALL ERMESCH TF T 1@6, #DLLEN TREP
FEE CIFCVPLECGT. @, 2GOTO ¥ 18
WRELRE=E, 1
CALL ERMESCds TF LR LEE. #YPLEYy IREF
FLE TFONPLEGLT. 1@, 2GOTH 726
: WRLE=9, 9

CALL ERMESCS TF T CLEEH, #¥PLEYy IREFP

o |
Cowsses OUTPUT TO CONTROL DAC, ®x#%s

@ CALL CODARCCEsVPLED

I N ]

##%# IPDATE COMTROL WORD FOR AUTOMAMUAL WATCHIOS CFPROGREAR: HCHﬁG?%**

Ea I

MASE = TSHFTO1s 12
ISCOR Ly = TORCHMASE. TSCOFCL YD

I
iz #x 00K PROGRAM OUT UHTIL RELEASED AGAIM##s

GOTO 186

EHII

FTH4 COMPTLER: HPFIZBER-~18892 REV. 1FZ2&

#% MO MARMIMGE % MO ERRECOESD ## FROGRAM = @B&71: COMMOM = BEF5EE
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PARGE @88l FTH. HEd R MOM. e ZB FEE. . 1978

FTH s Ls T
PROGERM REFLTCEZ 3@ 0

:ﬂ:—jr;-»';;mjn;-'.glg-j{-gg--;ﬁ-{:g--;{-{--:{-a;--‘;:;«{ﬁ--iq- g g F%{ |,-‘l,- |‘;++ )--a Al e e g ol |«1 A |-;1-4-+-|_ e o e e e e e o o e o

REMLT = RECOVERY REMELT RETURM FLOM FHHTTHL

|

i

|

[

L RECOYERY REMELT THHE LEWEL 15 USED TO COMTROL THE RETUEH FLOM.
L THE FLOW COMTEOLLER SETPOIMT IS AJUSTED BY PULSE TEARIM UETHG

[ A THO-TERM PROFORTIONAL PLUS THTEGRAL COMTREOL ACTIOW.
¥ . :
|

|

{

i

|

|

MELT FROPORTIONAL GRIN
- REMELT INTEGRAL RESET TIME: HIHUTES

'*w TAME FLLL ¢ HEMH > J.,hn 1
[ TAME EMPTY © HEMM < &,83 >
' CALCULATED FLOW SETROIMT AHD FEETLEACK TIFFER.

an 15
BEE
BE17
1
dELd
HL:I;"'I-I

'm“ CALCULATED FLOKW SETPOIMT CHAMGE » 1@,
T YALYE CLOSED o BN OFEM 3
WALYE FULLY OPEM 188X OFEMD

|
i
|
i,
-
-
[ e ST T I
I

TC5 CES s CORCY O D
HilHJHPLHLTU‘lﬂlaCLINEﬂilﬁﬁs
CETCIE s GASFCICI@ o FILCY TN 18D »
'EF"'HIH' w TLEI o S
4 TSANMT: THMUL cm@ s n IRNCS@ ) s TOTHO S s TOOIT O
5 ISCOFCd Jy[ﬂ””]huﬂ)

EHF@@H@

Bk = EHGIMEERTE
A Aol WOLTE
CDACY - DA WOLTAGES

GOUMITS CCHLCULATED BY EMGUH FROM ADCY YOLTHGES
s CJPDATED BY SCHID
s CUFDATED BY CDRC

SAFCOD- SATURATOR FLOW COMTROL DATHA
CLELOD- CLOUDY LIgUOR FLON DARTA
REMLTD- REMELT COMTROL DATA

CLIMED- COWTREOL LIME DATH

CASFAD- GAS FLOW COMTROL DATA FOR “AY
GHSFED- GAS FLOW COMTROL DATA FOR “BY
GESFCD- GAS FLOW CONTROL DATA FOR LT
FILCYD- FILTER CYCLE MOMITER DATA
SERYOD- SERVOBALANG SCALE MOMITOR DATH

SHTLRATOR
SHTURATOR
SATURATOR

u(‘ln

ISAMT - STER ‘HHFI]H& RATE CFACEE FhkUHtHb|~ SELS

remul. - =ik E SPAMPLIMG TIMES (RERIODCHI=TESAMTEISMUL CRd s
TEH - FEﬂDHPLF HUbeP“
TCIM - STATLE I CUPDATED BY
roouT - GDHTHET STATS WORDS UPDHTED BY JHWFHL IiﬂuRHNHFf
1ECOFC1Y - FLAG USED BY WCHDG AWMD THE COMTROL FROGRAMMES.
TarnFo2y - STHTUS OF COMTROL PROGRAMMES. cT.E. RUHHING OF OFF 3
ITSCOPCRy - STATLE [F -AUTO-MANUAL SHITCHES.

HUF4
AR5 bk

"
»
[
i
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FRGE GEE2  REMLT  9:3d4 @AM MOM. 28 FEE.. 1978

T
i

&

=) ERUIVALENCE cREMLTDCZ)sGIRD
B2 EQUIYALEHCE CEEMLTIGZ) s HLPHRA?
EGQUIVALEHCE CREMLTDCL ) e MU
EQUIVALEMCE iREHLTDﬁS?nHRHHSP}

BESE r_,mm___nw___mmmm__“HM_”Mm_qmm_“_“m_m,m___~m~__““~____mwmwwmw*ﬁ_mememm
BEST O
pasa oo
51 Lk R .
HRsH ERUIYALEMCE CREMLTINL by GFRED
g
5|
5]

ot o o

= 1n IHITIHLIQHTIHH ”HLHEL

U S S e )

|
R #5%% DECLARATION STATEMENT #xxs
TH CHLL DECLRCIFUL 114010

HRMM = 1.32
o FIRs MU TAME LEYEL: METEESD
paT FREEA = 18,83
ﬁﬂ.l i CROSS-SECTIOMAL TAMK AREA, S0, METERS
HET 5 HEMHZFP = 2
aarvy o DEFAULT MORMALISED LEVEL SET-FOIMT
BT DELH = B,
@@y o o IHITIALISED ROUMD-OFF YALLUE.
BREE ALFHA = 8.2
= EXFOMEHTIAL SMOOTHIMG FRCTOR.

GPE = 1. :
- FEOFORTIOHAL GATHM.

GIR = 38,
i IMTEGREAL REZET TIME: MIMUTESD
HUMFT = TFLHCIEEE, $EMGoE) D

FEEDEADE SIGHAL.

PR R ion B B o I o I et B o o Bt
!’Si D S O T
3

H
=
T
i

px]

P o B o Bt R S it B e 0

o MHIH COMTROL Luur STHPTN

i

188 CALL RHERCE, TRHCLD s TTILMS
i _ LOCKS OH RESOURCE HUMBEERE UHMTIL RELEASED BY EHGUH
CALL SWITFCE
TEEF = &b

[N ¥l

g

-
E FMASK=TANDC TCTH A4 02 Z0E
IFCMASE.EQ. BG0T0 260
t AUTOCSMAMUAL SWITCOH STATIE CHECK

3. CRLCULATE COMTREOL CvOLE IMTERWYAL.

[l Ry Y s Y a
I P o Tt e B A 00 d T LU e Q0 T e

—
.

DELT = FLORTEIZAMT#ISMUL C20#T5MULCEY S
R

SO —— v roe s o Snt bevn St ot SRS o Sk b s s san

I...' S
I 4. IHH”EFT HHH lHtlF IHFH1 DHTH
v

w0 g T

o o o 0% O T O Oy 050 £ U5y T oy 050 () O 5 0T
e e e g e e e () O Y T R O D (D D

e S o O e

GIRY = 1./068, #5]
HRMM = ENGCZE) - 1EE

fen )
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FAGE @863 REMLT 2534 AR MOW,» 2B FEBE.» 1973

=t

ITFOHEMM GT B 250 DAL ERMESC Ly IF LEC 1EE, #HRIM » TREP )
IFCHEMM. LT 8, B85 CALL ERHESEEaIFIH(lGB.*HHHH)vIREP?

o8 WL R
PR

o
2,

T IHLIHLHIE EREDE AMD DERIVATIVE EﬂEuE UF WHUU1HLD IHFUT DATHA.

HREHDOT = ALPHA® CHREMAH-HEMHS
HEMME = ALPHA#HEMM + &1, -ALPHAY *HREMHS
ERE = HEMHE~ HEMHZP

sy B
-
't £

]
SR I L )

3 5 e

N N

—
R

CoE, COMTREOL EGUATICH.

1
1
1
1
1
1
1
1
1
1
1
1

B
b=
-
[
-
L
o

e )
e P o 0 5T
i

DELFSP = GPFE#HENMDOT + GIRV#ERR#DELT

| JrrR—— P e L T S s e ben s o My e oo oy e et v b PO A o Sty S AL Ghesp A s b et WA et ot i e e o s b (i1 S e (i (e G et b o e T e i
(I EDH“FFT T PUL?EM AMT CHECK LIH[IH 0OF H||IHH
£

TELH = DRELFSF +DELM _
N FICE UF ROUND-OFF FROM LAST OQUTPLT
IFCABSCDELM )  GT. 8, BE12G0TO 116
HUMF = #@
GOTO 1248 -
118 HUMF = IFISCDELMELBEE. )
DELH = AMODCDELM«B. BEL
N SHYE REOLHD DFF OF LESS THRW OHE PLLSE
128 HPOS = ENGOZ)#1080,
IﬂIFF = MPOS - HUMET
IFCABSCIDIFF LT 250E0T0 1306
ﬁ14H CALL ERMES(Zs INIFFs IREF? -
pldl ° ' CHECK CALCULATED SETPOIMT POSITION AGAIWST ACTUAL.
B142 HUMPT = HPQS
ai43
A1 126 IFCTABSCHUMP LT, 18EXGOTO 144
A145 CALL ERMESC4xHUMPs IRERY
afde O LIMIT CHAWGE TO 1E%.
a147 HUFMF = 15
alds o

: P48 TF ¢ CHUMP+NURPT ). GT. B2GOTO 158
CALL ERMESCSs HUMFs JTEEF ) )

I IMHIEIT OQUT 0OF RAHGE DUTPUT
HUWP = —HUMPT

=

156 IFCCHURPHHUMPT: LT, 1BBEIGOTD 168
CALL ERMESC&s MUMPS TREF Y :
I INHIBIT OUT OF RAMGE OUTFUT
HUMF = 1888E-HUMET

Ty O e e o T ar

fax]

TP RO R RE FE R 13 N

o

e OUTRUT 10 FULSER MODULE.

T S = =F =l
—
e

AR R s R LN ot R I i o ey ot B Y o ]

¥y iy

FRR R S ]

ales 8@ HUMFT = HUMFT +HUMP N
gled ' AL lHHHLt[PuIPULsHUMFnIuﬁ
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HGE ApRs RERMLT O R34 AR MOM. s 28 FEB.s 1978

17 i o s o it o o ot i R i A O 1 e e S P ot e it 1 i o i i e i . A S s e o e e i . Pt e S e

oos, UP-DATE COMTEOL WORD FOR AUTO-MAMUAL WATCHDOG CPROGEAM & MOHDGS.

iy Oy iy 1

IR v I S T w B B2
2]
av]
x5}

SEE ISCORCLY = IORCH TSCOPCL D

A

R —— e e e e oo e e St R —— e b ot vins wi sxee et S SR A ot mers srse e AU AR ot D A e St SR Wt baae b e e e Snb

18, LOCK REMLT ONTO ITS RESQURCE HUHBEH'HGHIH

T

GOTO 188
-

mf =g o =g =]l

T LA e

[ EHMD

haRualan el Race Riall o ke R LR
b el b bt b e L R4 et R

FTH4 COMFILER: HP9Z8e@-18092 REY. 1726

#% MO WARMINGE #% HO ERRORS #+  PROGRAM = G@4@3 COMMON = BA7SE

[ R



APPENDIX  B.3 FORTRAN PROGRAMS ' PAGE B3.38

FAREE @8Rl FTH. 23 AN MO, 28 FEE.. 1978

RN}

i::' | |‘| |::I. [ I_ n [
FROGRAM CLIME::

o I

”H'HU5H1.HEDP 2381 FREDR

J—
= |

PR
PRt 2y

e s bt i b i = St s e ot s B S, S e i L S o o e e s 9 8 g P s o o et o St

CLIME - COMTROLEZ THE LIME-SOLIDS RRATIO BY FEhHLHTIHb THE .
LIME~MHEEL SFEED. LINEAR PROFPORTIONAL COMTROL WITH
OWER-RIDE IS USED. THE RATIO IS REDUCED WHEH ALL

THREE SHTS. ARE OUT OF GRS,

AT En )

—

A e
R

AN A

i3

T I T 1
P
o

LN

LR W C e SR LT O R O I8 o B
o~

T
P T o B o B e B o B o I o By B ot ]

HOMEMCLATURE 3

A
[ e

A
fuorien Jun |

e

— —
g

DN I 2 O s B

SRE=EWITUHING FLAG CESFOMEMTIALLY SHMOOTHED?
F”F ENFOMEMTIAL SHOOTHIMG FRCTOR
SH=0LT-0F-GAS FLAG FOR A-SAT.
ZE=0UT-0F~GAS FLAL FOR EB-SAT.
ZC=0UT-0F-GAS FLAG FOR C-SAT.
GOR=0OVER-RIDE PROFPORTIOMAL GAIM
FHCSFP=SET~FOINT FOR C-5AT FH COMTEOL
FCR=LIME-SOLIDS FLOW COMTROL RATIO
FCRE=SET-POINT FOR FCRE

o ison
&=
e e e e el e Y I ]

T n T Tl Ty O R T o

LRI o

b

ERY

e o111 n I

=
A Y

COMMOM EMGGAES ) s ATICY 054 0y CORCKY (24 0y
LHFEDII'*UlnlLFLHD'1H'-EEHLTD'1U'-ILIHEDLIH'-
GRSFADG 18y GRS FFMLiﬁJ-FH“FIDIlquFILI1D11Hlu
SERSOTCZA » BLIFMY C58 1
TSAMT TSMUL (325 IRHCEEY s ICTHO 0y IEOUT 4
TSCOPC3ry TDUMY CEED

U e Q) Tl e

EHG ~ EMGIMEERIMG UMITES CCALCULATED EY EMGUM FROM ADCY WOLTAGESD:
FOCY - A<D WOLTAGES CUPDATED BY SCAID
CHACY - TR YOLTAGES CUFDATED BY CDAC

E’D AR un Ecn B B 5

® SHFCOD- SATURATOR FILOW COMTROL DATA
5 ) CLELOD- CLouDy LIGUOR FLOW DATH
AEEe L REMLTD~- REMELT COMTEOL DATA
B4 o CLIMED— COHTROL LIME DATH . .
pEdl GHSFAD- GAS FLOW COWTROL DATA FOR "AT @HTUR@TDH
gad4s o CHSFED- GAS FLOW COHTREOL DATA FOR “5“ @HTUEHTDR
aed4s o CESECT~- GAS FLOW COMTROL DATA FOR "C" SATURATOR
aas4d4 o FILCYD- FILTER CHCLE MOMITER DATR
HE4s O SERMOD- SERVOBALAMES SCALE MOMITOR DATH

-

64 e -
321% © ISAMT - WASTER SAMPLING RATE (PRCER FREGUENCY, SECS)
B@4n  F ISHUL - SUB-RATE SAMPLING TIMES C(PERIODCARY=ISAMT#ISHUL A
A4 IRH - REEDUREEC¥Q¥HER?” UPTRTED B SoC

WSRO CIM — COMTACT % S ITH CUF i ECCED

ggg? - %Eéﬁ1 - LUH¥HET STHTUE WORDS UFDATED EY COMTROL krﬂGPHﬂHEE.
AR5 ISEOPi15- FLAG USED BY WCHDG AMD THE LDHTEUL FROGRAMMES

e ISEOP(Z3- STRATUS OF CONTROL PROGRAMMES, (1.E. RUNNING OR OFF:
ARG IECOFE 39— STATUS OF AUTOCMANUAL SHITCHES.

ARSS -

1
1

e



APPENDIX B.3 » FORTRAN PROGRAMS

FAGE @82 CLIFE 93 AR MOM. e 28 FER. 1978

ERLTWYALEMNCE
EQLITVYALEM
EQUIYALEMZE CCLT
EALIVALEMNCE GOl

I

«WL?J = I”

IHTTHILTSE COMSTHMTS

SR,
IREF = &b

Hﬁ?l & :
AT COHO=16, 314
i ACAC TH LIME SLURREY AT DEMSITY 1.@%8 TOW CU. M.

GOR=Z.

ALFHA=6. 2
BRIY=EHG

PAGE B3.39

b e el BEML BT Gl St A LD e BT WIS G G1L S VAL BRI ORI DN AR S o) G DD fend AT PR IS S SR SO 1S b e sk RN DARS A TN R4S S WO SAS ek sons spie e e Ssrs h SR 4R See beg S e Rl o Sevn sues oren

FLOW=EMNGC i
: BRIV =RTICY
1 1 1
alsk FHO = EMGOEE
5] TGHEL = TRMDCT
& IFCTGRSE. ER. E :
ElLE L CEHEFCT RUMHIMG,
KRR »
gany o
gasn O WRIT UNTIL RESOURCE HUMEER RELERSED BY ENGUM
gdmy O
skl LEg CALL FHFH'Fuerf 1a e TDIIMS
aas CHLL SWITFOS
ggns O
l‘j[ '»;:l ,:: L i S U o e s e s e St o e A s st S AL St ot s s o st - - e
SEE e S W HLLHLHFt H1 }IJ h hHTE IM TOME HUHP

BRLA = BREIW#OL. ~ALPHAY + ALPHA*EMNGC )
FLOW = FLOW# L. ~ALFHAY + ALPHA%EHG: 230
SHOV = BADVECL, ~ALFHA? + ALPHA#ADCY S
L EXPOREMTIAL SMOOTHIMG OF IMPUT DATA

e
—
-
%
n

v FEEDEACK

T O
—

—~ =
T3
2
o SR
1o
-
=

H
b ] ] .. i T STt
YEAf O =1 AT L0

MAML. =

) : :ﬂ O MAMUAL .
IFCMAML. . En 4nylrnrn 118

O 5 30 0D
PP
.

i
SEREE

[GHAL FUOR CHANGES.



APPENDIX  B.3 FORTRAN PROGRAMS PAGE B3.40

FAGE @@z CLIME 9038 AM MOM.s 28 FEB.s 1978

|i1l FLIM = EMGECIx-1, 183

ariz FCREZ = FLIM#CCROCSLIDS

A1 TFCRBES OVOLTS- HDF”'qA,,lE B, 18@xG0Ta 114

gl14 ZE HOT REEZET IF HO CHAMGE MADE IH MAHUAL HUDEu
B115 YOLTES ﬁn|“,q.

glle Zf o= 3.

Bi1Y GOTO 258

glig ©

B LS o e o o
dlze C CHECK IF GRS FLOMN COMTROL LOOPS RUHMIHG.

a1zl

A1z 118 HOGOL = TAMDCIECOPCZ»BEE16EE)

B1a3 HOGOZ = IAMDCICIMCA ) s GRETHAED

Bl24 HOGO = HOGOYL + HOGD2

9125 O WO LIME COWTROL IF GAS COMTROL OFF.
a126 IF(NOG0.ER. BRTAEREGOTO 148

a1z CALL ERMESCZs @y IREFD

5126 ZR=8,

SEiEa FLIM = EMGI®)~1, 183
g130 FCRS = FLIM#CCRO-ELIDE
A131 GOTO 256
pizze O '
'ﬁ Cmum_mm~m~-wMWm_mmwme—M—“mmm——mm-___mnmwﬂ——mm-m~~——a_——-m*——_wn—~__——mm

ﬁ é EHLCULHTE SAMPLIMG IHTERWAL SMODTHIMG FACTOR %3ET DEFAULT

k e
a7 148 IZ=@
S DEFAULT OH OUT-DF-GAS SMITCH

-
A DELT=FLOAT: ISAMT#ISMULc20# TSMULCED D
1
2 ESF=1.#DELT 068, #45, 2

s e o sout et s s s e . £ s St S v s o e S B P TS S . g S S o AT Tt e Sy e i i A A s e NN S sy e TR N Jo S S s (S S S st

T L0 P 0 Pulos

GET ERROR IM C-ZAT FH

PHC=EHGC22 0 #ALFHA + 01, ~ALFHA#PHD
ER=FHC~PHOSP

N 1E T FOR DHT DF“&H: LHHUITIUH

-
i |

o ot bk e Bk Yt ke fonb ek b b b pok b Beh bt bt bk E it e bl b b b et
LR TR R L G A A S T e s S S L
o

w0 00 ] O O e G0 Tl s B o s C0 )

o= EHu-»4nqu3kHD'ﬂ»
2B GRS RASFEDCD
20 EHGE FH'FFDLnJ :
IFCr PR, GEL B, 97 AMDL (2B GE. A, Gy el E=1
IFC . HOT. ¢ i2ALE.B, 1, AHD, CZB. LE. B, L2 0EOTH 288
IFCFC, GE, B, 9FILOTH 2@
1FCER.LT.0. 012=1 - o
,IFi“HDT.(dEE,ETuB,JHHHD.QEC,LT.BHIDhbGDTU 158
CALL ERMESC1wBs IREFD
GO TO 164
156 IFﬁﬁEE.GTu@ubuHHD“ﬁEC.ET,BHIEBIE=—1

ii i

[l s oy T e T wos B how Bt 3 oo B s B Ul s e won Bt )
T @I T M LB AN LA RO dd

[ I SRR Rl s



APPENDIX

FRGE

bon]
SR

of =g = T T T T

R o e o s

T
i 2y

3
D0 e o O gD 00 ] R L G P 0 g 00

. - T S
o T o T T O

—
=

000 00 0 OO0 00 00 OO ) e e el

o0 0 ) T L0 B

w7 ufn o O D 0

[ 3 I =N P I N S ]

AR A DA A R A T R R R R R

i
i)

,_
o
L

L

[N lN s N u}
DIER T aN e b ]

Lo Tl O

Ly R gy B acu

—
%

PO PG PO T PO Pl T PO T T Tl = b 14 b 33 = b b ot b ot e Bl ft i L Bt & b i bk b 5 B ek b S b D T el b b
s 00 ) Ty LR

0SS S O T O T D O O O o 0o O

= T 5 0

fax)

B.3 FORTRAN PROGRAMS

BEEd  CLIME  9s3& AR MOM. s 28 FEB. 197

L= ADJUET LIME-S0LIDE RATIO SMOOTHLY.

SRR ZR=01.-ESFIelR+ESFE]S
FOR=FORS#01, ~GOR&IE#ERY

FLfHﬂFEH*SLIHSfECHD

COHVERSTON TO WOLTS FOR DUTFUT TO DAC.

SFEED=1.1823«FLIM
[ AT LIME FLOM=E, 81292 DU M. <MIN. 7REY.
= LIME DEMSITY= 1.898 TOH-CHLM.
WOLTS=8, 337+5PEET+E. &3

| s s e it s i st e b e o s e i o Lt S i o it S T A Pt e s Sl Bt e O i e o s
¥ DUTFUT COMTROL ACTIOH

258 CALL COACC2.VOLTS
CLIMEDCY: = FLORTOIZ:

UFDATE 4-TH BIT IH IECOFCLY FOR WCHDG
ISCOPC L s=T0RCIERE TECOP L)

LOCK OH RESOUECE HUMBER
GOTO 18

|
e O

2848 COMTIMUE
EHT

FTHd COMFILER: HPIZEep-1ef9s REV, 17PRE

w4 MO WRAEMIMGE #%  HO ERRORS % FROGRAM = BSsd4e

r :
I CALCULATE LIME FLOW RATE IM TOHHHES <HE

COMMON =

PACE B3.4f

P
T
A%

-1

£

T



APPENDIX -

-
I
i

i T (5
RERY]
fete

ST
e

fr i R s BexRir Rt a il on o oy ot it oy o s ot oy e e it s e R in s Ju Ju iy it ion Jh By

—
Y
A
L P = Ol 00 ) 0

T ¢
R

P D S  O  O OD
0 T e £ T

F
et
4t b )

[ArS
LRI

[RETR I R LA

PR B
WLE L T

7,

o P [t o = e e e e s b e e 1SS O AT
gk
e

AN SN S

ER I Y I A% ]

e T on o o8 o By ot B o o B B s w2 e e O

Ey

e T

—
|

3 T T
A5 T

Lot CF e 1

DESCIE SO0 B S o)

R RN R RN ST 0T 05 T T T ]
150

B.3 FORTRAN  PROGRAMS

FTH. FEIV AN MOM. s ZE FEB.»

FTH4s L

FP“FFHH bH\FH'J13UJ535H1r0EBF

GHZFA - LuHIFHLE
THE GRS FEED EATE.
WHERE THE GRS
FEOFORET IOHAL
ERROE.
BY RESET-
SETROTMT.

C-SAT I3

QHLY

QLT OF GRS

“luifCEDJ DI'ZTEEDF

PAGE B3.42

19w

THE PH auT ﬂF HN:HTUIHTUP BY FEbHLH11Hh
A CASCADE COMTROL ,

FLOW EATE SET-FOINT IS RDJUSTED BY
FLUS BESET ACTION FREOM THE A-5AT
THE GAS FLOW COMTROL WALME SETTIMG IS ADJUSTED
ACTION TO
THE A-%AT FH
TH

SYSTEM [5 USED
FH
MAIHTAIM THE FLOMW

SETPOINT 15 REDUCED OHLY HHEHN
MHICH CRZE A SIMPLE PROFORT IOMAL

OWER~-RIDE IS EROUGHT IMTD RCTION.

MOMEMCLATLURE &

Ho= FhHFHFTlHHHL GRIM

] GHIH FOR
lHThuHHL GHIM FOR
Co= COMTEOL POIWT FOR

=R AL

= PH SET-POINT

s QT -

EREOE HE

1=A-SATURATOR OUT OF LAS.
2=A-SATURATOR GRS SUPFLY
F=WARMIMG - "DELT"

COMMOH EMGL

1
2 GRSFADL 180G
a fEP»uﬂfJU'nﬂIIMr'|Uls
4 ISARMTs TEMLIL O
B TSCOF R s TIPS C5E

MG HHITS
CUFTIATED BY

-~ EMGIMEERT
A=T WOLTAGES

EHG
ROCY -
CRRCY -

SRFCOD-
CLFLOT-
FEMLTI-
L IMED-
GRSFART-

GASFED-

GASFCD-
FILCYD-
SERMOD-

cLouDy LIGUoR FLOW DATH
REMELT COMTROL TATH
COMTROL LIME DRTH

GAS FLOW COMTROL DATA FOR
GRS FLOW COMTROL DATH FOR
GRS FLOW COMTREOL DRTA FOR
FILTER CYCLE MOWITER TRTH
SERVOBALAMS SCALE MOMITOR

YALYE POSITION SET
OF-GAS FLAG FOR
= OWER-RIDE FROPORTICOWAL GRIM

CCALCULATED BY
SCAD
D<A YOLTHGES <UPDATED BY CIOACH

FOR GRS FLOW SETFOIMT
GAS FLOW SETFOINT
FLOW COMTROL

A-5AT. FH

FOIHT
C-SATEOYER -

RIDES A-SAT FH:

YALVE CLOSED.
REDLICED Too LLOW -

YALYE COMTROL AFFECTED

COMMON =

G473 ADCY 540 s COACY (240, -

ERFCOTC 20 s CLELOTE 18 s REMLTDC IR CLIMED G 133 s
FEDC 183 GRSFCDC 1A FILCYDO1AY

s TRMG @ s TOTH A TCOUT O 0,

EHGUH FROM ADCY VOLTAGES:

SATURATOR FLOW COMTROL DATH

AT SATLRATOR
"Rt OSATURATOR
"t SATURATOR

IATH



APPENDIX  B.3 FORTRAN PROGRAMS o  PAGE B3.43

FAGE @@B:s  GASFR 937 AM poM. e 28 FEB.. 1978

FIE
”U‘:H

|

i TSANT - HHﬁ[t' ----- SAMPLIHNG BATE CPACER FREQUEHDY . SECS)

G Tamu, - AT IMFLING TIMES CPERIODCE y=TSAMT # TEMUL e

i TRH AR

I ICIN FUs IH CURPDARTED BY SCCED

I IIUUI ATHS WORDS UPDATED BY CONTROL PREOGEAMMES,

I OFCLy- FLAG USED BY WCHDG AHD THE COMTROL PROGRAAMES,

ZZ 20 STHTUE OF COMTREOL PROGEAMMES. CT.E. RUMMIMG OF CFF
A STHTUES OF AUTOCMAMUAL SWITCHES.

RESIL)
COMTHET
CONTRACT

P11

bl

Pun]
ot

=

)

03
5

- r-
¢ L
1 L) =

o
s

HﬂilbaPHHE}ﬂiGH“FHB(EhﬂGIHﬂEP}
ANCEy GRS3y CGRSFADC 2 GIRS

FTCE 0 GOAY s CGRAEFADCE ) PHAS F?
RICY aw GHSR S s CGREFADCE s GREAM: 3
RS MLTM 2 s CGASFADC LA s YFA S
mE Gy PHOSP )

EQUEVALEHCE O
EQUIYALENG
© ERUINALEME
ERLIIVALEMHEE:
ERLTYHLEHCE:
EGUTVRLEHCE UG

1 Ty OFy £y O

- -
HE SRy IS

£ oI
Pk}

I I I
L7 P

PRSI %

3§

O D Ty O O O O D O O T S

(]
i -1
2

b
phcx.

THITIALISE COMSTAMTS

: GIHSzBH. : ‘
L FLOW glPUlHI ALUSTHENT THTEGRAL RESET TIME IH MIMS.

GPE = 8.25

5
i
-
¢
o
b
]
=
)
o

5}
1

[cn R R R x ]

G ~ FLOW SETPOINT ADJUSTHEMT PROPORTIONAL GAIH
B GIMDER = @, 83125

gas o FLOW COMTROL WALYE THTEGRAL RESET TIME IM MIMS-SELC,
BEE GOR = 1.8

(IR H-ZAT. PH SET-FOIMT OVER-RIDE GAIM

0 B0 D T T o R O R GG S0 O T D O T S 0 O S 0D

FHA = EMGCHEE
I A=SAT. FH FOR EsF, SHODTHIMG

FHACD = FPHFA ' o
i SET POIWT FH LAST CYCLE CIMITIALISED:
B9 o PHC = EHGC22
AERd O C-5AT FH FOR EsF. SHOODTHING
BEws FHASF = EMGC2ED
Ba9s O ‘ HwSHT FH SETFOINT

ARas IGHSFC = TAMDCISCOR:
BESs IFC IhH»FL,HF,1UUb'FHC S uH FIU'SJ

lII " .1 = I:j " E'
5

IIFI
CWLIM =
CASA =

i

[ l_,_"-"l
-
Ty U’

GREAMY = 2728, |
. MAKIMUM FLOW CONSTRAIMT = 4358 CU, MoHRC LEBECFH )

U D

T
2

o
i

ALFHA = 2

fics B B s B B IR or B o B By Y )
e et s bk b e ok ek

RS LR RS s PR I OREIV S SR

o
o
pa

TREF=&8

" 4 THASE tead SATE IS D) sewbn et dvsbe SHAS BAR VIS PINY PIISL ANMEC SAAG NI FROTR PR 4h1e BAGAE BNNS BNOM MOE BN BIIM WO GRMD Geuge MUE G SN0 RPL DML Pb Thers Bigre SPIE BRI BII BINNR BT 1Ihe Mt BMTE VRS WAM MFbe SIA G160 semea eamm saes 6101 NI ammer beews Seese sens Wmena svead ribe mesrs seees A
- b



APPENDIX  B.3 FORTRAN PROCRAMS ' PAGE B3.44

FRGE B3 GREFA 9237 AM MOM.s 28 FEE.. 1978

L SUPRESSION FERIOD CMINS.» FOR ERMES

Pl B ol oy Wn ]

|
1
1
1 } ‘

1% 1a8 CALL RHRECZ: TRHCLS s IDLMD

}ﬁ I WAIT UNTIL RESOURCE MUMBER RELERSED E EMGLIH.,
1

1

o

g CALL SWITFo43

AR RN
fcn R wn os ]

: IFLAG = TAMDCICTIHCE )y JEEE
21 © HUTOSMAMURL SWITCH CHECK
S TFCIFLAG. HE, TREREIGOTI 268

T
i

= CALCULATE SAMPLING IMTERYAL

DELT=FLOATCTSAMT® TSMUL G20 TEMUL CE )
IFCOELT.LT. &0 CALL ERMES (2 Bs IREF

0 CALCULATE IHTEGRAL GRIM

GIRF = GIMDEF#DELT
I ITHTEGRAL BESET TIME FORE CONTROL YHALVEsHIME.
GIF = 1l.<0cf, #GIRFD

LIS losieB.#GIRSY

i CALCULATE SMOOTHED ALT PHY S C-5AT PH ERROR & A-5AT FH CHAMGE

ERPOOT = ALPHA#CEMHGOZAI-PHAL -
FHA=EMGO 2@ #[ALFHA + 1. -ALFHAT#FHA
FHO=EHGC2Z0#ALFHA + 01, -ALFHA»#PHD
ERFHC = PHC-PHCESF

% EHLLULHTE H SAT EDHTFUL FH SETPOIMT IM CASE C~E T Iq UHT HF GHS

Pl

IR B S £ I R P T %

[

FHAC=PHASP-~GOA#GEASFCD 4 ) #ERFHE
SPROIOT = PHAC-FHACO
FHACO = PHAC

EREPE R R BN .

CALCULATE A- CHI EEEDR

A

r
=

]

ERAFH = PHA-PHAC

H~—HT CAS FLHM JETFUIHT

31— D1 Li

DELFA = GPS:CEAPDOT-SPRIOT) + GIS*ERAFH*DELT
GAZA = GASA + DELFH
[FCCGASA#S438, &0 GT. GASAME GAEA = GREAME-5436
IF GASA.LE. 8. "GASA=E.E1 '

Ty T T A R RN NN R e e e

o

e



APPENDIX B.3 . . FORTRAN PROGRAMS : R ~ PAGE B3.45

PRGE BBE4 GRSFR 9337 AW MON.s 26 FEB., 1978

1167 CRLCULATE GRS FLUH RATE
116 ARG = CAOICY(R4)
117 TFRDCVC24) . GT. 2
317 FLOWA = 8,881
117 GO TO 126
3173 118 FLOMA = SORTCARG)
A17E O CALCULATE FLOW ERROR
5178 120 ERAF = FLOWA-GASH
4179
[ s e e e s s . s o i e s s e e i [Ep— o s . P
¢ CALCULATE VALYE POSITION.
C
DELVA = GIF#DELT#ERAF
:
PR = YPA - DELVH
TFCYPRLGT. YLINIYPR = YLIN
N
f“ s st e s e s et O s S e e S SR —— [ - - -
3135 ©  CHECK IF YALVE POSITION LIMITIHG.
B o
B191 IF CFLOWRA, LT, (GRSAMX/S436, 67 160TD 26D
3152 CALL ERMES(1,B) IREP
3193 GOTO 360
194 o
8195  2BE IF(YPA.GT.A.)G0TO 308
A13¢ VER = .
a1a7 CALL ERMES(Z By IREP)

FIIlTPIIT o IJHH?UI..,. A I IUH

,
%
T
T 3
ol =
T ou

AZEZ AR YPAD=16. %01, -YFRD
BER IFCWPRO, LE. LB, %01, =L TP 3 3 YPRAD=C 1A, €01, =YL I3
ﬁ2m4 CRALL CDACE 3. YRAO)
H'Hb

b b

BB HPJ.IH]I' 4 'IH E:IT lH I l[I}'LI' FHF' l-ll..IHI]IIEi
AZaG

B2 AEE ISCOPCLY = [ORCAE TSCOPCL 2
azie o

STy S
LPL LR

el [ e e PR . ot ot . St . S, 0 5 O S S i s et e s . .t b s st S st e, . S s e . e s s . st g

azlz O I..IfJ[HI HH F ki fIUF"I'" I“" HI lfll':)l P

1 R I

gz14 oo WEITECE s 1ABAYERFHI ERAFPH EAPDOT SPROIOT DELF A GRS (PR B ¥
gzls oo L GRSFCDCE b ERAF S DELYAY YPA BB EEE 2 FLONR:
gale TIEEE FORMAT Oy 20BFLE B

w21y GOTO 1LjH

H"lF-"-: I

|

aE

Py
=%,

+
e i



APPENDIX  B.3 FORTRAN PROGRAMS

FAGE BEES GRSFA 9037 AR MOM.« 28 FEE. s

SEE COMTIMUE
- END

FTH4 COMFILER: HF9206H-16692 REY, 1726

#% MO HHHHIHES #% MO EREORL #% FROGRHAM

19748

= BESST

5758

COMMOH =

PAGE B3.46



APPENDIX B.3 FORTRAN PROGRAMS ‘ : PAGE B3.47

FAGE BBl FTH. HERS ORAM O MOM. e 2B FEB.s 197E

aRal FTH4 L

FfUhFHI hH FEL

JHbFE - IHH|h”|

3U1 .'-‘.“l:’l"lll I?H.L- 17 3IJJJI"’ # lu*

THE PH HHFIH
o FEED RATE. A ©
FHE GRZ FLOW RERTE I
PROPORTIONAL FLUS RESET HLIlHH FROM THE E-SAT PH

[ - o THE GRS FLOW COMTEOL YALME SETTIMG IS ADJUSTED
L kR T RCTION OHLY TO MATHTATIN THE FLIOW
l

|

|

b st I
%]
Fax ]

;HTHFHTUL k' PthIHllHu
s COMTEOL SYETEM I8 WEED
ITHT 15 AT

.‘_
XN
Exd

T §
ol
B
=g

R i

I I %
L"I!Ei

1
ij”
gale o ZE1PHTHI THE B-ZAT FH SETPOIMT IS REDUCED OHLY WHERM
T Ta OUT OF GRS "IN WHICH CHEE A SIMFLE PROFORT TOMAL
i

el - .
AALE 1MEP RIDE IS BEOUGHT TWTO ROTIOM.
e
BBl
aalE o HOMEHCLATLRE 3
BEle I . _ _ v '
EaLy o RS = PROPORTIONAL GAIH FOR GRS FLOW SETPOIMT
BRIl O TRS = IHTEGRAL GATH FOR GAS FLOW ZETROIMT
Huj4 o AIF = IMTEGRAL GAIM FOR FLOW COMTROL
UH N FHEC = COMTREOL POIHT FOR B-5%AT. PH
F HEs & = FHOSET-POINT
WPEDF = YALVE FOSTTION SET-FOINT
T80 = DUT-0F-GAS FLAG FOR C~SATCOVER-RIDES B-SHT PHD
Gk = OVER-RIDE PROPORTICOMAL GALH

ERROE. MESSAGES

=E-GHTURATOR OUT OF GRS. '
SR 2=E-SHTURATOR GRS SUPPLY VALVE CLOSED, :
Baze L "HHFHIHM ----- DELT REDUCED 20 LOW THAT WALWE COMTROL AFFECTED

o COMMON e

= D

COMFON EMGOEd 2 BOCY CEd s CORCYCSd
1 SAFCODY 2R, LD LBy s REMLTOC 1B CLIMEDC LB
a GHSFADC LAY o 0 q1mh.5ﬂ“rvnn1nluklll|D'1H'~
] *EP”anjﬂJuH”HM1qu|n
o TEAMT s TEMUL S22 s TRMCAB s TCTHCS s TEOUTC S
5 TSCOF Yy s TOUMY C5E

Y T
PR

. EMG = EMGIMEERIMG LMITS kIHLLULHILD By EMGUH FROM ADCY WOLTAGES )
= HOCY = A D L CUFTDATED BY SCADD)
CORCY ~ TR WOLTAGES CURDATED BY CODACD

r
Pl

SRFCOT- :HTUh TOR FLOW COMTROL DRATA

CLELOD=- CLOUDY LIGUDE FLOW TATAH

FFHLFU REMELT COMTROL -DATA

» - COWTEDL LIME DATHA

' LRSS FLOW COMTROL DATA FOR A" SATURATOR
“FE LAS FLOW COMTROL DATA FOR “R" TURATOR

: &H*FID" GRS FLOW COMTROL DATA FOR "0 SHTURATOR

FILCYD=- FILTER CYCOLE MOMITER DATH

SERYOD- ZERVOBALANE SCALE MOMITOR DATA

O T 5 950 35 T 0 O Oy
¢y s T OO O O OO0 O O O () 6

LS R Bt B w

RO e B fo B B BB B BB 0 0 G
i -

¢ e i
SRR

iy iy
P T T A




APPENDIX  B.3 FORTRAN PROGRAMS ' PAéE B3.48

FRGE BEBZ  GASFE 9139 AM MOM. s 28 FER, . 1975

P

SISAMT - MASTER SAMFPLING RATE (FACER FREGUEHC “Er:?

LML SUB-REATE SAMPLIMG TIMES CPERIODCS ) =TSAMTx TSMUIL WD

TRH = RESOLRCE. HUMBERS

ICIH COMTARET STRTUS IH CUFDATED BY SiC

eouT COMTACT STATUS WORDS UFDATED BY LHHTFHL FROGEAMMES.

I_LUP'l'— FLAG USED BY WCHDG AMD THE COMTROL PROGRAMMES.
FC2y- STRATUS OF COMTROL PROGEAMMES. CI.E. RUMHIMG OR OFF:

I"FDPf?‘~ STATLE OF AUTO-MAHUAL SWITCHES.

oy T T
Eaoe B el oy I |

i

oy

D I o I ]
I R
1

oS

vl
SRR

)
1

0 a0l Tl = 5T
L i s

EAE L AT ]

ERUINMALENCECGRSFEDCL 3y PHEC Yy GRSFEDCZ 35 GIMDER
ERUINVALEHCECGASFED O3 2 GRS CGASFED 42, GIRSD
ERUIVALEMCE CGREFED S s GOE Y » CGASFEDCS Y s PHESF )
EQUIVALEMCE CGRSFEDCT 1 s GASE Y » CGASFRICZ) » GASEMK)
EGUTYALEHCE CLASFE fH'n”LIN'H'GH FEDC LB WFED
EGUIYALEMCE CGRSFEICE ) s PHOCSF b

[

I:_....._._.,._.._._.........._.......__.._...._.......—.—-.--......_».-....-—--....._.._......_................m._-..—.._._-.-.»——---...._-..—.—.........,,...........,.__......_..........._................._._....u........

[

oo IMITIALISE COMSTAMTS

..

GIRS=30,
% FLOW SETFOTHT ADJUSTHEWT IMTEGRAL RESET TIME IM MIHS
GRS = G, "-::l
o FLOW SETFOINT ADJUSTHENT PROPORTIOHAL GATH
GIHDEP = @.83125
o FLOW COHTREOL YALWE IMTEGRAL RESET TIME IM MINZ-SEC.
GOE = 1, _
- E-2AT. FH SET-POINT OVER-RIDE GRIM

_ FHE = EMGUZ1)D

I E-SAT. PH FOR EXP. SMOOTHIHG
FHECD = PHE

2 SET FOIMT PH LAST CYCLE S IMITIALISED:
FHC = EMGLZED '

= C-5AT PH FOR ExP. SMOOTHIHG
FHESP = EMGL2L1D

e E-SAT FH SETPOIMT

TGRSFD = TAMDCTSCOR T2
IFCIGASFC, HE. 1BBE ) FHCSR

T -
1
o
IS
Ly
i
—
L]

i
WRPE = B 55
MLIM = B.65
GASE = §.5
[

Blu&
glas O
alray o
G160
gias o
Aalld IREF=£H

4‘ = | ERE |PH




APPENDIX B.3 FORTRAN PROGRAMS ' s PAGE B3.49

FRGE @883 GREFR 3139 AN MOM.s 28 FEB., 1978

EUPEESEIHH FERIDD oMIME.) FOR ERMESD

|
I, . .
!

7

BB CRLL RHRECE IR
C WATT UNTIL

Hf1ﬁJuID“HJ

CALL SWITFCE
AE

i
AL SWITCH CHECK
SHE

IFLAG = TAMDCTICTIMHOG s
I FILITC . MR ML
IFCIFLAG. HE. 2BEE 2 GOTD

2B
|
)

o
I _IHIEHLHTE SAMFL th lHTEP”HL
I

e b et et ke feb Bt b b o FE b e =

DELT=FLOATCISAMTIEMUL (20 TSHULCa s D
alze IFCDELT.LT 6. 0CALL ERMESCIy @0 IREFD

|
SRR 5] [ st e e v s s e . o o e D i i 8 e e sttt e o s S . S B A 0 T W . s S . g e e
L

CALCULATE THTEGRAL GRIM

=3
—
[¥x]
[
fad

alsa GIRF = GINDEP&DELT

aizd o RESET TIME FOR COWMTEOL VALYE»MIMZ.
135 LIF Lostal, #GIREF 2 '

Bl GIE Lo CER . GIRED

IHLIULHTE “HHHFHEH

LG PH’bn r*‘ﬂ] FH EHRUE i B-EHT FH !HHHu“

1
—

— - —
£

Aldl EBFDOT = ALPHA*CEMGCEL2-FHE

@ida FHE=EHG: 21 0 #ALFHA + ©1.~ALPHAD#FPHE -
@14z FHC=ENGOZ2 0 #ALPHA + ©1.~ALFHA2#FHC
G144 ERFHC = PHO-FHCSF -

e s o e v Syt o Jah 1o S vy i s e NI RO T 0 St B v e O U -

T
=
—

e e o o

0 <3 T LR

C CALCULATE B-SAT COMTROL PH SETROINMT IH CASE C-SAT 1S OUT OF GAS
al4s PHEC=PHBSP-GUB*GASFCD (4 ) #ERFHE

Bish SPFDOT = PHEC-FHECD

pis1 PHECD = PHEC

FHLLULHFh E":Hl EHRDH
EREFH = FHE~FPHEL

(RN«
O 00 o Gt [

nin
oG~ O

B-5AT GRS FLOW SETPOTHT

DELFE = GPS*CERF
laHEE = LASE + I
IF CiGASE*S436, 60, GT. GASEMNIGASE = GASBMM-S436.8
IFiGHSB.LEuB,:.thmu a1 '

NS
=

¥

e
R e

Ty 3
baa

“NOT-SPPDOTY + GIS#EREFH&DELT

i

Tt et L 4t ek b ek b b et 1 b fen

[l s i sl iox B B It o o o o i I s B I
Ty 0y

[EHE =P SR

e e e s " S A s e R R e O don e WS RN TSR S e SRS st sty MU THIL BN D oo S s fd WS TLED b Mo S SGE astg DAE BID LD S N Bt AR s B o



APPENDIX . B.3 FORTRAN PROGRAMS PAGE B3.50

FAGE @Bdd  GRZFE 9539 AM MOM. . 28 FEE.. 1978

[ e o o e st o . b . o ke S S o 4 I 7 1 e S o ot e 1 e 1 o et
coo- CHLCULATE FRESEMT GRS FLOW RATE
L

[RETE

ARG = CAOCYCZH -2 3-8,
TFCRDCY C250, LT 2. 2GOTOD 1148
FLOWE = &, 861 '
G0 TO 124

118 FLOWE = SRRTOARG?

7 o e e o e s . o b = o o o b i ot o e et o e bt o 1 o 3 et 1 a2

i CALCULATE FLOW ERROE
128 EREF = FLOWE-GAZE
[ e et i e e e s v e g st i e e el s b SPE Shhe otk ot L S Dt P o L TS St e o s b Vo s S ) Sy hmpe it S bt e Py T =TT Mt bt e P e S sy o e A s et ks e o

L CALCULATE YALVE FI“I1IUH

Fsc 0 aov I e B o T o T o B T ot 0 B o B o e B RN
b 55 0 00 T O L B LD PO T D 00 ) Ty

REREEIE U Rt Bl Bt Bl Bt Bt B B Bt S 0 sl w 47

20 G
<3y L0 o 2

DELWE = GIF*DELT#EREBF
GIF#DELT I3 IMDEPEWMDEMT OF DELT!!!

jon
et ek et b b b el bel fl jek fel b ol et Bl el fes b b

R
i

Ll

L e I e T

%PB - VPB — DELHB
TFCVMPELGT.WLIMANFE = YLIM

TxEElE

a0 0 e 5850 L0 O

LR
[

".....-m—.—-. M et e o e it o o b R oot Attt e teore e el P i Arree A e A Tt ot ot MbTE Tt VTGS e it UMY e e M P fmmn P e (o St ey o e A e U e T et e Mot et RO s S MM S e

i CHECE IF YRLVE Fﬂ"ITIﬂH LIMITIMG,

Pl en B

TFCFLOWE. LT, (GRSEM:- 5436, 62 2G0TO 288
CALL ERMES f1|HuIFFP-
194 GOTO 28

T (o ot
Py
0 e T o 0§

G195 209 IF(VPE.GT.0.)G0TO 2a8
a157 VPE = B,
6135 CALL ERMES(E: s IREFY

BEEE [ o

azal o QUTFUT COWTROL ACTION
o

aEp YPEO=18, %01, ~WFED
TFCYFED.LE, (1B, %01, ~VLIN 3 aVPBEO=018, 01, ~VLINa 2
CHLL COAC O VPR

fun)
0
]
s

PO NG T M RO ToO R R TOaOrora ol
Facn P

¥ s PR B CRR TR B DY

WX
|

UFDHTE 5-TH BIT IH T&C0RCLS FOR WCHDG

4B ISCORCLY = IDRCAER. ISCOPOL00
I
{7 e e s e e e i s s e e e e s v e e 3o i s otk s i e e e s AL S i O b e o 3 o S Mt S S o S Tt T T

I LOCE OW RESOURCE HUMBER
|

P o S n 0 O

[y R A

GOTO 166
I

1.

[aniindS B e 4

I AR R SR P SR S A = I e B e B oy )

s
i

SR COMTIHUE
EMD

P e B i JE B b B oo B on R i A B oy B o B o ot T Bt 0 O e
-
S

oy X s

T
e



APPENDIX B.3 FORTRAN PROGRAMS 7 : PAGE B3.51

FRGE BAES GASFE  9:39 AM FOM.s 28 FEB.. 1978
FTH4 COMPILER: HP920E-160%2 REV. 1726

#% MO L-JFII«':!f-IIf'JGS/ #% MO ERRORS ## FREOGREAM = @8558 COMMOMN = BETSS



APPENDIX  B.3

FRGE 8881 FTH.

- |

[l uw)

o |
e |

R

R I oy o |
[}

o, ¢
5,

R
R
P

T B

17

T T s S
T
SRR

__.,.._
F I
PRy
= i
i

o
Tyl
ol s T

i
0 Fa Dl

oo

!

P B

Ty T T T
Do B0t o B B B e

)
O il G o O O 50 T g B 0 O B T O T O O O (0

AR O R IR e el e e e e i sl
£F fil e 0000 ;

LR R ot s Tt BV o ey
* 1

T
!

D i en ]

]

DAV BN

FTHS s L

BE48 AM O MOM.s 2B FEE.s 1

FORTRAN PROGRAMS : ' o PAGE B3.52

a]

FEOGEAM GHSFE(“._U'wUJHIFBEDP LSBIT?EHH HlU'"TEUP

|
I
f
[
|
l
|
|
|
=
[
‘
|
L

e Rl B
S IR RN R A

En 3 B B s T o O B o

£

COMPOH EHG
SRFCODC
GRS
CEERYODC
TSAMT s THMULCE20 s IRHOGB s TCTHO4 20 TEOUT C4 2
TSCOF 3,y DI C56 D

"t

LI e 03 7

EMG -
ADCY
CIRCY

o T s T T s s B

SAFCOD-
CLFLOD-
REMLTI-
CLIMED-
GASFAI-
GASFED-
GASFCI-
FILLCYD-

0 i T N O

f SERYDD-
l:: .
o ISAMT

¥

T EMUL
TRH

TCIH
oot

0
| S T S T |

GREFC

= COMTROLS THE PH OUT OF E— ATURATOR En REGULHTIHG
THE GH%Z FEED RATE. PFUPUFTIHHHL FLUS IHTEGRAL
COMTROL IS5 WSED.
WHEM OUT TF GHZ» THE FLAG 20 CEQLITVYRLEWT TO
GREFCTIC4 Y TH COMMOHY TS5 SET TO 1. ‘

HOMEMZLATURE

[ GRATH FOR GRS FLOW SETFOIMT
GRFF = PR "m GAIH FOR GAZ VWALME COMTROL
GIRZ = lH1LERHL GAIH FOR GRS FLOW SETFOIMT
GIRF = IMTEGRAL GAIH FOR LHZ YALYE COHTROL

= [-5AT PH SET-FOIMT '
120 = QUT-0F-GAS FLAG FOR C-SAT.

Rl
m
e
=
--T'x
Ul
U!
L|_1
m
[ix]

SATURATOR OUT OF GRS,
SATURATOR GRS SUPPLY YALYE CLOSED.
F

:.

e COMMON === .

T HOCY RS s CTIRCY G2 b

L ﬂ'lﬁ'"EENLfﬂ'JH'wILlﬂFULIUIH
; Dei@ s GASFCD LR s FILOYDCIA
1ly|||”|’1|| |ﬁlu

FAD®

EMGIMEERIMG UMITS (CHLCULRTED EY EHCUH FROM ADCY WOLTAGESD

AT HULrHukw"HFDHTED BY SCARDG
D-A WOLTAGES CUPDATED BY CDAL:

SATURATOR FLOW COMTREOL DATH

cLouny LIGUOR FLOW DATH

REMELT COMTROL DATAH

COMTROL LIME LATA

GAS FLOW COMTREOL DATA FOR "A" SATURATOR
GRS FLOW COMTROL DATA FOR "B SATURATOR
CHS FLOW COMTROL DATA FOR "G SATURATOR
FILTER CYCLE MOMITER DATH

SERVOBALAMS SCALE MOMITOR DATH

MASTER SAMPLIMG RATE <FACER FREGQUENCYs SECZ)

SUE-RATE SAMFLIMG TIMES CPERIODCH=ISAMT#ISMULCED
RESOURCE HUMBERSD
COMTACT STATUE IM CUFPDATED BY GLCEY
COMTACT STATUS WORDS URDATED BY COMTROL FROGRAMMES,

H LIMG IMTEREYAL TOO :HHFT FOR COMTEOL ALGOEITHAM.



APPENDIX  B.3 " FORTRAN PROGRAMS ' i PAGE B3.53

PRGE BEBZ  GASFC  9:48 AN MOM.s 28 FEE.» 1978

FILAG USED BY WCHDG HHD_THE.EUHTEUL'PHDGEHHHEEH
rTHFH I COMTROL PROGRAMMES. (1. E. RUMHIHG 0OF OFF

L I n ]
=1 ry

DRI R

= N
90
ETH o o o o e o o e . e
el O
m2

Tiw GRSy CGREFCTCE Y s GIRED

e PHOSF 0w CGASFUTNCE s GRSCMN )
C7 s HLPHRA w CGRASFLT S GIMDEF
o ¢U'4'sh SCH s CGHASFCICTE T WL T

i bH"'EDh4' = FLOATCIZN

I ' GRSFCDCEY = WPD

i

.

F“HI“HLEHIL hﬂ“

F' ohe

T Oy Oy O

SR EAN]

1 3 —
% Bt

YPL=E, 55
C IHITIALTSED YALYE STEM POSITION
YLIN = 8,65

N Fe Gl P e 0 00 ) T LR

YALVE OFEMIMG LIMIT
GHSC = @, 5
C INITIALTZED GAS FLOW SETPOINT CHORMALISZETD
GRECHE = 1366

it
—
=

LI R B

,.
L

C-5AT MASIAUMN FLOW ERATE. UL HoHR

0 Td g T ] el

DR R erRua i Il o R B s Rl ol o el on A s T Rce oy B i o J oy Loy S cu
FEx}

;:l

jux}

=

T

I

i

px

EAFOMEHTIAL ZMOOTHIHG DEFHULT'VHLUE

fn]
P
—

o DEFAULTED TO "HOT OUT OF GAS™
FHCSP=EMG (RS 1
5 C-5AT FH OSETPOIMT.
ABEE PHE=EHGI22)
R C-SAT PH CERPOMENTIALLY SHOOTHED:
aae GIRE=:

Do I B or I s Sy o B ot B o B ot B Bt B B B B o ot B At W ace o B Bt B Ao I e e

Y]

|l||'_l'||||isi

um m

e
ks

TPOTHT THTEGREAL RESET TIME IHM MIMS.

it
T
<

LRZ=8,

—_
—

TROTHT FEOFORETIOMAL GATH
GIHDEF A, 82417 , '
oo IHIJEF EHDEMT GAS WALYE IHI"FIFHL RESET TIMEsMIMS-SEC
C MOTE &~ THIZ RESET-OMLY RALGORITHM IS POSSIBLE OHLY EBECAUSE
o THE MORMAL YALVE RESFOHSEs ¢ IMCLUTING DERD-TIME )
i i OF THE ORDER OF &-F SECONDS. THE ALGORTTHH
Q DETERIORATES IF "DELT" IS PERMITTED TO FALL T
N BELOW THIS RESFOMEE TIME.
|

L nl R

L A R

IREF =68

b T e T Al OO Ty LN s £

T 0 e T O n e

L SUFRESSTON PERIOD CMIMZ. ) FOR ERMES

M

|': O e et M e s sen St bah S Lk s s e SRS ARt Sty et Sene BRSNS BATS SO e e W S b e Bkt b e Tkt S s ponr s s o - e o st s v ad e e s o oo oo
i

it

198 CALL RHERCZs TRHC
3 _ WAIT UMTIL RES

Ty N e

P LIRS
DURCE HUMEER RELERSED BY EHGUH.

e 0T

N
LR

CALL SHITFOz:
TFLAG = TAMDCICTHG S 3y 480

L R I B cr I ot B I I o) ot B I IR ou I icn By B B A I e B AT By R fun]
HHHHH"“HHH"""""@'E”E‘E”E'E}Q{I'BE‘G‘r_"—.]

= 5 )

Ty
5,

i

it e o St S S o Bt 4 4t 0 A 1 s o 9 e Mt i S o o St o S e o i St S i A S S B S s o S S L D S i o, S e 20t s s e



APPENDIX B.3 FORTRAN PROGRAMS ' PAGE B3.54

FRGE BARZ GASFC 9848 AN MOM.s 28 FEE., 1978

IFCIFLAG.ER, BOGEOTH 5646
[ : FEOTECTION AGAIMET IHTEGRAL COMTROL WIWD-UF

0 CALCULATE SAMPLING INTERYAL

It AR SR T S
a1
i
{
i
t
H
i
i
H
i
1
i
i
i
!
i
i
i
i
H

DELT=FLOATCISAMT#ISMULCZ2 2 TEMUL CE s
TFCDELTL LT e dCRLL ERMES 348y IREF

P v=t = =t = = b e

(RS S Yy W

E LHLL|H-H|F 1I4FFGPHL IJH[HM
Gls=1.-Cal, «LIES) :
i IMTEGRHL GRIM FOR GH‘ FLOW SETPOIMT
GIRF = GIMDEF*DELT
i COMTROL WALVE IHTEGEAL GAIM«MIHZ.
o HOTE: — GIRF IS5 DEFEMDEMT 0OH SAMPLIMG IMTERWYAL.
GIF = 1.o060, #GIRF

' THTEGRAL GRIM FORE COMTEDL VALYE RACTIOH.

D o B o B o B ot B o B ow T o T w0 Ry S B B o B oy A Y

b ke b ft ek bk ek ek bt ek St bk b = ek ek b Bt bk ot b3 ek b fn b ek bt bk bk bt em ps s s
T

Fal ol Tl T3 Tl Tod P
[ R R e I R
1

P I e

¥ CALCULATE C-SAT ERROR & ITS DERIVATIVE

—
[ ]

Ca2 07 Puld T

¥

o Pl 5y 0

o e

ECDOT=ALPHA® (EMG L2283 ~PHE
PHC=EMGC22 1 #ALPHA + © 1, ~ALFHA£FHE

3
I,
L

ERC=FHC-PHCSF

SRR

il

3 ' FHLIHLHTE HEM FL“H wE1PDIHT

DELFC=GRssEnn0T+EIS*ERC+DELT

GR=C FASC + DELFC

IFCCGRSEG*2T -,3' GT.GASCHE M GREC=GASCHR 2718, 2
CIFNGREC.LE. B hGRED=E.81

il

S OO T O3 T O Om 0 O 5 T S e

o fa e e Dl OO €3 G 00
Fo 00 o= im0 a0 o7

¥
g
oy

R
}

1w
—
P Ja
0y Lh
"

i CALCULATE F EMT EH" FLDM MATE

&3 50
— e
E
i
~

#4149 ARG = CADCWOZED~2. 08,
@a1%4d IFCADCY C2a D GT. 8. 2G0T 168
@151 FLOWZ = 8.881

El¢; GOTO 174 '

168 FLOWD = SHETOARGD

on
—
n
L

T
i, f

—
A

TP IE  E R

5 CALCULATE FLUM Ehhuﬁ AHD 175 DEPI”H|IVE
178 ERFC = FLOMWC-GRZL

liorananOnon

e el Pod e S o 5 ) T O = O

FHLIHLH1h ”HLVL ltH PU_TTIUH

DELYC = GIF*ERFC=DELT -
L GIF#DELT 15 IHMDEREMDEMT OF DELT!II
YRD = YPO-TELYE '

o O l::l}zl [y B B W

Ay O T T



APPENDIX

FRGE

'
g,
[
i

T D O

L bt bR T el demih gl fet b A i feh b gf Sk i fual e T2 Pk et

.
L5

ijdé

fnx)
Pl
T4 i

oot 150

O O O
=

=
T £
5 4

o 38 u2x B e 3 ow
o 00 T TG
N¥]

K
— T8,

5

o
Fax I uy Iy |

g
i R
i

=

5
¢ f

P s
L0 fo o

—
Lol

e B o I o s B ]
2%

S atarala

RN

o
-1 1T

FTH4

FE

ER 2 R I

Ea

"B.3

TFaWPC.GT.

IF

S
IF«

I[JF:

,,,,,,,, ST
IF

CAL

LHS
FLOCE=YPD

GRS

HFDHTE r“IH [l[

SEE Tal

LHL}

GRSFD

CHECE
CFLOWC, LT,

e
TEl=

FORTRAN PROGRAMS

Brdi Al MOM. e 28

WLIMIWED = YLIHM

HIFE """ ﬂ?ll[UH LlHlTIHh

120=1
LALL
GOTO

ERMES 1@y IREF
208

5]
WRCL GT. B 2GOTD 386
-"I:J-

GALL ERMESCS B TREFY

}UT lﬂHThHl HIIIHH

O=i@,s0] ., ~NP0s

YERDOLLE. C18

1L =YL IS D 3 YPCE
- T CLOSE
L COACES: YPLOY

FODOd y=FLORTETEC

OPCLy=T0RCIAAE, TEOOFCL

HH EEwUIhLE HUMHER

LOTO 1uﬁ

§ ot s st smm sm o et s s .t e e s st i G 2 e s s o

488 COMTIMUE

END

COMPILER:

MO WRREMTHES

HFQ9ZBEE-1GE22 REY., 1726

MO ERROREL ##*

18, %0

IH l LDPlll FHF HIHDH

FROGRAM = BEd52

PAGE B3.55

(6, FEEGASOMEA2T IR, 20 3G0TH 208

1.5 T

COMEON = G575



APPENDIX B.3 ~  FORTRAN PROGRAMS _ . : - PAGE B3.56

FRGE @881 FTH. P25 AN MOML s 28 FEE.s 1378

,_.
i

=
b

FTH s L

FROGEAM FILCY CEs &80 14127 7PSHy B1EETRPSH
FEOLEAMMED BY P, 5. HUSSEY.

T g 0o S O T
Dol ey WA T o I
s Bt I s B

WERSTON & 1 -@-197E

B L R R L L L L R o
THIS PROGRAM CALCULATES FILTER CYCLE TIMES AMD STORES THEM IM
H FILE CALLED "FILDAT" OW THE DISC AT 2HEBS8 EVERY MORMIMG.
CFILDAT® COMSISTS OF THE SEGUEMCE 0OF RECORDS FORMED EBY THE
HERRY “IFCT" MADE UF OF THE FOLLOWIMGY FOR Is=1s12 f.0=1:12%
[FCTO s ko=TIME AT WMHICH DATA WAS STOREDsK=1 TO 5.
IFCTCl»g2=5AMPLING FRERUEMCY CSECE. M.

IFCTO4I~2. L0=TIME SINCE MOST RECENT STARTCHMIMSY,

IFCTo4I-1a02  =VYRARIABLE PRESS. CCOMET. FLOW) nFEPHTIHh FERIODCHMING
IFCTCalw Jo=TOTAL FILTER CYCLE OPERATIHG FERIODCMIHSD

IFCTCa4l+1y Ja=FITERREILITY C% OF MR THLRM

=

[
I
I
[
-
I
-
[
[

-—

fox By ]
L U s B or i won ey B a i x|

e s T
PR I )

AR o u

[
[
[
o
J
[

S W I

[
(Rt R iow
—_ —
SE
— —

AE e
@BEI l -
IM THE RERRY "FETIM"s

I FETIMCL kY ACCUMULATES THE FILTEATIOM PARAMETER

= FRTIMCE Ky STORES TIME WHEH FILTER STARTEL.

[ IFILS STORES THE MUMEBER OF THE FILTER WHICH STARTED LAST.

I T O 2 B

1

I - WHEHM THE PROGRAM RUWS FOR THE FIRST TIMEs THE ARRAYS

| CTFCT™ AMD "FETIN ARE IMITIALISED TO ZERO AMD ~1. FOLLOKMIMG

£ THIS SECTION T&H A REESOURCE HOLD STATEMEMT WHICH LOCES THE

I FROGEAM OUT UMTIL IT IS RELEASED BY "SCCS".THE TIME SIMCE MIDMIGHT

g
A
5]
&
|

UL o sl won By R S

—
2y

pe s

1

2 0 CTHEM? 15 THEWM IMMEDIATELY DETERMIMED.

3o A FILTERAERILITY FARAMETER IS UPDRTED EWERY TIME FILCY I3
4 G FELERSED.

S THE ORIGIH AMID MATURE 0OF THE COMTACT

I CHAMGE IS AMALYSED BY COMPARIMG THE FPRESEMT STRTUS

f IM ICHEW WITH THE OLD STATUS IW ICOLD. IF FILTER K HWEHT "OH"
oo ITS START TIME I5 STORED IN FSTIMOZsK» AMD DIFFEREMCED FROM
i THE HE®T MOET RECEWT START TIME. STORED IM FETIMCZs IFILEY.

[ IFILS IS THEW UPDRTED TO K.
|
!

1

A AR R TR )
i

WHEM THE FRESSURE SWITCH IS TRIGGERED THE FILTEFHHI[ITW
1% CALCULATED AWD STORED IM IFCT.
- WHEW THE “ALVE SHWITCH IS TRIGGERED
> - [JF THE FILTER GDES OFF-LINE. ITS OFERATIHG
¥ TIME IS CALCULATED BY SUBTEACTIMG FSTIMcZskY FROM THEM
¢R TEST FOR PASSIMG MIDMIGHT IS DOHE USIHG TOLDM. THIS VALUE I
THEM STORED IM THE APPROFRIATE ARRAY FPOSITIOW IM “"IFCT".

IF THE FRESSURE AWD WALYE SWITCHES ARE MHOT TRIGGERED

A ZERO WILL APFEAR AT THE FOSITION IW THE IFCT RRREAY WHERE

BE4E
BB 7
GE4E
SEEE
BESE O THE DATA FOR THAT CYCLE WOULD HORMALLY GO,

EA T I S

GES 1 IF AMY COLUMH IH "IFCT" IS FULLs THE WHOLE ARERAY IS DUMFED
AEh OMTO DISC, THE CURREMT WALUE 1% THEW PLACED IM THE ZHD  ROM
SY5 i OF THE "CLEAM" IFCT ARRAY,.TOLD IS UPDATED AMD THE FROGEAM
@asd o WAITS FOR THE MEXT CALL. _

BEE5
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PREGE BEEE FILDY 9325 AN MOM.e 20 FEE.s 1970

HLED MOTE THAT *
TRAY O Ko =STHTUS OF FILTER K-
-] IF OM-LIME & PRESSURE YARIABLE
i IF OM-LIHE & PRESSURE COMSTAMT.
wd ] TF OFF-LIHE.

B@f

WRELD IH THE IFCT AERERYT IN BLOCKE OF 3 WORD:Z.
IOW OF BLOCE TH AREAY

TION OF WORD IH BLOCK

[ TION QF HORD ITH ARRHY.

THE DATA 15
TRAY 2 K
ISTRT = POS T
1CHT ShE

IJHFlJIfoH Dlo= BTATUE OF UlJlﬁkF SUITEH
= O 5 OF PRESS HPE SWITCH -
aF “HL”E SWITCH

it i iwiwiuluiw e

b

EA R N T TN TR S N R

FILCY OHLY STORES DATA FOR B GIVEN FILTER FROM THE FIRST
FILTER START-TIME OMMARDS., ALL FREVIOUS DATA IS
TRERTED AS GARBRGE AND OVER-WRITTEN. FILCY ALED DOES  OH-LINE
MERZUREMENT OF THE FILTERABILITY: "FILBY".IN GEMERAL
FILE“-&IlPP'lFllHE*FILHP*BFDTJ R
WHERE .

Sl

F I

H

b

.IIEL|EHT1PHI E
Fo=5 HHT FLOMRATE TO A SIHGLE FILTERCCH. H’HFJ
FILAR=FILTER AREACSEH. M)
=HLFIL Ok #APERL
HLFIL=HO., OF OFERATIVE LEAYES FER FILTER
APERL=AREAR FEFR LERF -
DFIT=RATE OF CHANGE OF PRESSURE DROP ACROSS
FILTER LMDER COMSTANT FLOMW COMOITIONSCRPASS)

MU=—‘l

L F ¥ ww @i o3io3i oG d

AFPROESIMATIMNG DPDT=YPP-DELF
WHERE YFF=OPERATIMG FERIOD UMDER YARIABLE FRESSURECE:
DELP=RAMGE OF YARIABLE F SURECKFAS
A SIHCE MEAMOCFILFRY=IHTEGRALCFILFRY~VPP
THE FROGRAM LPEES THE FORMULA ¥
- FILBTmIHTEGRHLﬁFILPHDfﬁFILHR%FILHH*DELP)
IF FILARE AWD DELF RRE SET EGUARL TO UWITY«FILEY WILL BE ERUAL
T} THE VARIAEBLE PF"“ﬁHEE PEEIHD IH HOURS.

THE SUMMATIOW OF FILPR IS LOME OVER THE PERICD WPF AHD
STORED ITH FSTIMOL. k2. WHEM FILTER K “STHRTS": FETIMOL.KD
R I IMITIALISED TO ZERO AWD IMCREMEMTED EY FILPR#DELT

By o EVEREY TIME THE PROGRAM IS EELERSED. ¢DELT = TIME SIHCE

Al LAST COWTACT HTATUE CHAMGE CSECS.3x FILPR IS TREAMSFERRED
ar o FROM EHMGUW YIA COMMOM. EYERY TIME A YARIABLE FREZSURE

|m L FERIOQD TERMEMATES FILBY IS CALCULATED AMD PRIMTED.

0 if g

[ .

L EREQR MESSAGES @

I E=FILTERREILITY OF FILTER K{Xisk=1s12
£ Via=UMRABLE TO OPEW FILE FILDAT.

am o l14=UNAELE TO WRITE TO FILE FILDAT.
I 19=UMABLE T CLOSE FILE FILDAT.

Fen R ia)
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FRGE @oad FILCY  9:23% AW - MOM.» 28 FEE.s 1978

arLlr o

B L DS I o o o o e st e i s o e 1 o s s 2 e . . . 2 . 2 s . s 5 e e o s s e e o . e
arss oo

ali4 «© e OO e ——

@i1s o ,

Alle COMMOHN EMGECE4 s ADCY 840 s COACY C2d 0 _

B11v 1 MHFEDDI“H*nLLFLUDflﬁﬁsPFHLTDklﬁlnFLIHED'1Ul~
R 2 GRSFATDC I8y GAZFEDC 18 s GRSFLDC 183 FILCYDC1@)
gl 4 SERMODCZA Y s DLMMY CSE 2y

a1z 4 TSANT TSMUL 220 s IRMCAB s ICTIHE 4'!ICUUTk4J!
w1zl b TSCOP s TDUMY C5E

g1 I

6 L EMG - FHFLHEEPIHu UHITE CCALCULATED BY EHGUM FROM ADCY YOLTAGES:
gl " AOCY - D ““LTHhFo CUPDARTED BY SCADD

aizs COARCY - D A YOLTAGES CUPDATED BY CIAC:

d@ize O :

Blzvy C SAFCOD- SATURATOR FLOW COMTROL DATA

@lrzg CLFLAD- CLouDy LISUORE FLOW DATA

grze o REMLTI- REMELT CONTROL DATA

giz8 C CLIMED- COWTEOL LIME DATA

g1l C GASFAD~ GRS FLOW COWTEOL DATA FOR “A" SATURATOR
B (W GASFED- GRS FLOW COWMTROL DATA FOR "B" SATURATOR
g1 GASFCD- GAS FLOW COMTROL DATA FOE "C* SATUREATOR
B FILCYD- FILTER CYCLE MOMITER DRATH :

KAl T B |

81 SERMOTI- SERMOBALAME SCALE MOMITOR DATA

B . :

A1 » IZAMT - MASTER SAMPLIMG RATE CPACER FREEGUEWCYs SECS)

a1 e [SHUL - SUB-RATE SAMFLIMG TIMES (FERIQDCHI=ISAMT#ISMUL K
1 - IRH - REZOURCE HUMEERS

@1 e ICIM - COWTACT STATUS IW CUFDATED BY SCCS)

g1+ L ICOUT - COMTACT STATUS WORDS UPDATED BY COWNTROL PROGRAMFES.
aid4z C ISCOPCis~ FLAG USED BY WCHDG AMD THE COWMTREOL FEOGRAMMES.
@idz o ISCOFPC2r- STATUS OF COMTREOL PROGRAMMES. (I.E. RLUMHMIMG OR OFF3
Gidd

ISCOPC3Y- STATUS OF AUTO-MAMUAL ZWITCHES.

)

i st s vt st i S0 N e o ey T ke o o WU Mbnt o mbrl LSV S sen erty SR AT P Wb o) S NS o oo RS PP e i Tl I O i i € b AP i OO Rt i ER e ety it b e At g A it AAE IS shmd e Hrt AR TR e st ot

r
T
=
P
i
—

A147

al4a

H149 ' '

A1568 IMTEGER IFCTCS@« 120 ITCS s IRAY (21202 IICEC144 s IBUF CEBE D
aist IMTEGER HHEW1C1Zs o MHEMZ 120 s HOLDI O 120 e MOLB2C12 0w MLFILC 122
glag IMTEGER FILTATIxIDUMC1Z22

B1S3 LDIMEHSION FJTIHIL:1#;5?TPTCfIB'-HHEujkl_;sHDLD C1an

@154 EGUIVALEHCE (FILBYFILCYDC102

@1es o

A5 DATA HLFIL-12#58 s FILDAT#2HF Lo 2HLDs 2HAT

ayEy :

BIL I o et £ 2
alss 0

gilea o ++++IHI1IH JSATION SECTION #xx#ss

g1el

ALes

B1es o 2ea

01ed FETIMC 1

Bles FSTIHkh.L.
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FRGE BEES  FILCY 935 Ap MOM, s 28 FEE.x 1978

F"Hl'l Bl
TRAY (2K )
0 ._F‘lﬁ J=1 0 58
TFCT O k=i
ARE COMTIMUE
IFETOLs 18D = 1 | -
FLAG T RFLDT OH FIRST DUMF OF DATA

S0, MAFILTER LERF

oo i o o o R oo son o

e B gk gt b A T fet S b gD b el BT Pt T e S
O e 1 5 L=t - 3 T .,
5 L § i i T S B -5

IF IL &=

oy Jcn S i sl l

sadsEPATH PROGRAM #%ss5%

[ I I I o ]

fn}

Elé; § #eeses £ AT UHTIL RESOURSE HUMEER RELERASED ##eeess
g1ev ZR8 CALL RNEECE. TRHOT 2o TN
glod CALL SWITFoG

L wkereEeEssllHAT TINE 18 IT?
G191 CALL EXECCLLs 1Ts ITERARD

B1o3 'E exkres s CALCULATE HOURE SIHCE FLTTIM TG T 46 5 4
a1ad THEM=IT 40+ 0 TTOR+ITO2 w0, 2 ral,

Bi9E O sxxed COLLECT LATEST STATUS YALUES ssss

am [CHEML=TCTHE L)
[CHEME=TC MR
ICHEWZ=TCIH

Pcs N ]
P ]

.._.
ind
— 3T

A FCTOLD. ER. ~1)EOTO 1950 |
R b REEE LHLI TIME STHCE LAST CONTACT STATUS CHANGE ##sés
C sxxxs  DUMP DATA ARRAY IFCTCS@)123 TO FILDAT FILE AT BHAG  ##&4s

IF G HOT. CoTOLDLLT. 8, b AHDL CTHEW.GT. 2, 000 GOTO 318

[N
IRTH=318
GOTO 1286
I

IR BN o B B O S ¢ 6 X

316 nhL1'THEu-nu1
IFEDELT.LT. B, ' DELT=DELT+24,

k2
i L

PERTE i I NS

i
i
1
i
i
i
H
H

ool wx e Far T cm T acn B oo B o 508 B B e B ot 0 o B B st B o I |
Jf AT PO T I TI TO PO P PO P D3 PO Tl 0 T Fod = —

HHHH;—'!—*HH‘E'B'E"E‘S"S

o

(I )
11:5 I ##EfASE OFF SECTIONE OF STHTUS WORDE #xse
- |

noo24h =112
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B.3 "FORTRAN PROGRAMS

FILCY 3025 AM MOMH.s 28 FEB.. 1978

MEHEWT Cda=TBIT Ol TONEML
HOLTH C=TBTT 0y TCOLDY o
IFCAGEVSYEOTD 345

MHEWZ o J0=IBITCd+12s ICHEN]
MOLDZC  a=IBITCA+12s TCOLIL S
HHEW S C 8= TETTC s TCHEWS
HOLDEC I8 =TBTTO. )y TROLTE
GOTO 345

HHEWZ C Ja=TBITC I~ds ICHERZ
HOLDEZC Ja=TRITC.J-4s ICOLDZ Y
HHEWZ O =4 0=TETITC+4y ICHEWZ X
HOLDZ G d=a =T RBIT O 4y TROLIED
245 COMTIHUE

PAGE B3.60

##esk CALCULATE PRERERQUISITE FILTERABILITY IHFORMATION

E=EMHGE 3
T=E

AL

Cwwd HOW MAMY FILTERS ARE OHY %%
' HIIME = &
Do 228 J=1s12
HIIMB = 12 ~

IR COMTIMUE

HHEW L .0

#%% CALCULATE THE AYERAGE FLOW RATE FPER FILTER =#=%

0o 238 J=1s14
EHMGL #3200 = EHG
FILPR = EMGC
FETIMOLadd =

COMTINUE

L HUMEB
FE MG+ AU

338

Do 1888 K=1.12

EEE LY

IFCHHEMT Sk ER HOLIT CK D 2GOTD 488
IFCHHEML ck 3 ERL 12GOTO 498

Z5H COMTIMUE

FETIMulsdy + FILFE#DELT

CHECE STATUS OF MECHAMICAL SHWITCH ssssss

LBk, G270 11T+ TO+E09, B43#R 001 I-Basc 11 1+T00
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3230
6291
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14

Fog Pot bt = 2 bt
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FORTRAN PROGRAMS

FILCY 9185 AM MO, » 28 FEE.» 1373

PAGE B3.61

geesss THEM FILTER BREOUGHT DHwLIHE.ﬁPHESEUHE WERTAELE Y ek

I5TAT=-1

IFCTRAYC 1K), EQL 1IGOTD 366
WRITECLs BRAAIK IRAYC Lok ISTAT
s FORMATC“FILTER OPERATIMG SEGUENCE AWRY. FILTER #"s 13,

" LAST STATE=":I13s", CURRENT STRATE="sI3>

GOTO 1686

FETIMCL K=,
ITUNCK ) =8
FETIMUZ K =THEN
IF(IFILE.ERLBIGOTO 378

TIMT=THEW-FETIMCZs IFILE
IFCTINT.LT. 8. dTIMT=TINT+24.

C ICHT=TRAY G2 kD #d4-2 '
IFCTOICHT s K =TFIACTINT#68, +B,. 52
IFILS=K '

gies RUMMIHG AVERAGE OF 18 FILTER STARTS ##%%

I VAR =19

STRTZCLL~Jy = STRTSC18-10
COMT IHLUE
STETSCL ) = TIMT#ed.
AYWET = B.
0o vig Jd=1s14a

AYST = AYST + STRTZCJ
COMT IHUE
AVST = AVET- 1.
FILCYDZY = AVET
A0k s ITCG e ITCHDw BTETEC L s AVET

FORMATC"FILCY### FILTER #"«I2e™ OM AT "2 125 "H"
. ETARTS="»F&.1v" = RAV.STARTE="sF&.1a "MINS, "

IFILE=K

GOTD 380

FEedss DHEDE STHTHS OF PRESSUIRE SHITOH #s$es

#¥xxee [LHOR PREESSURE SWITCH OFF STRATUS #xsssx
#x%% DD WE HAVE R STRART TIMEY ##£:#

IFCFSTIMOZy K LT 8. 2GOTO 166G

s lis

LI

TF DT O HHEWZ kD ERL T AMDL CHOL D2 CK L ER. B 23 G070 458
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FAGE @@6a7T

A3da
B356
B35
%]
S]

o

=Ty I8 Je

30 3 I v ]
L) G0 Loy Cad o a3 a5 D) a3
N LR

i
n g

Fax]
1

s]
L

=

o o
s O Oy (0

o 5

"
o |

1

T T T T T T

LR o 00 0 e 02 o0 00 ~1 0 68 o £

OO 00 0 O D0 0 ]

)
s

B.3

FORTRAN PROGRAMS PAGE B3.62

e

<

e
[

CFILCY 9 A MOH.» 28 FEB.»

1eva

TFCTDUMCE D ER, 1aGDTo 186
TGHOR COMTACT EOUNCE

#ieeees ELSE CALCULATE FILTERABILITY #+xxs

FILAR=MLFIL:K»*AFERL
FILEY=FSTIM{lsk)-CFILAR#FILAR*DELF )
IFgY CFILEY#188, -3, 1422E~8230 + 8.5
MARIMUM ESTIMATED FILBY WALUE MHEH: -
FLOW=11 CUHMAFILTER<HOLR
T DEG. C©
BR L rs=EE
A =
DELP= i

2, 1432E-3

5 CL.FOISE
EFH
ERYES-FILTER

SIGMACTIELTY= & HOURS
3. 1432E~2= FLOM*FLOW#AMU*SIGHACDELT 3 CDELP*NLFIL*HLF IL*AFERL#AFERL 2
WEITEC L ZBEA bk ITC4as ITEZ 0 IFBY
FORMATC"FILCY##+ FILTER #"» 12"
1 O RFILTERABILITY="yIfs~2 :
saes  OUTPUT FILTERABILITY AS % OF EXPECTED MAXIMUM

HEA TIME-"sTzs"H"s 12y

ICHT=4#IRAY CZy ki a+1
IFCTCICHT s E3=IFEY

IDUMCK =1
GOTO 18848

sxxe% CHECK BTATUS OF WALVE SWITCH #s#x.

5

B OIFC HOT. CCHNEME O Y ERL L2 AHD, CHOLDECR D CERL B 2 2G0TD 18
IGHOR YHALWE SWITCH OFF STATUS

4

#¥%% ELSE VWARIABLE FRESSURE FERIOD TERMINATED #%#%

IZTAT = @

##% IGHOR COHTRACT BOUMCE %%#

L]sy

IF¢IRAYCLe KD, EQLOIGOTO 18
GOTOD 5@

seesrees ELSE FILTER TARKEM OFF LIME ###ss
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FRGE oEs  FILCY 925 AWM MOM.» 26 FEEB.» 197

B4 4
B4 65
B4 6
B4RT
A4S
B4H5

,_
=%

=
Ty

LR

x]
=9
n

T
=N
U

f T
£ T
a7 P

[ )

Dos e
fnor
T e

o

RS O

fux]
AR S Y

]
I
s

A419
A4 EE
B2
Ag R
B3
B d

S

[

L wvd
Py

s

" 49m ISTAT=1 o
TFCTRATE Lok sy MEL GO MR ITE 1o 3BEE K TRAYC Lo ks TSTAT

ggeses OO BEFORE YOU LERAF!D ###s

T ompE COMTIHUE

seskses 15 THE IFCT ARRAY FULL % #sss
IFCIRAY 2K, LE, 121G0TO 568

. s [F DUMF OM DTS &%
[
IRTH=360
S GOTO 1zBa
I
C

BGE COMTIHUE

COIFCFSTIMCE K, LT, B, JGOTO 960

LRI NI R A

wadss GET STRARET TIME OF FILTER K ###ks

o
[ S

TIHT=THEMwFHTIHfEnHﬁ

st St aive MIM e besse e Seese e mbr w10 Sulen el AL G feedd eera shed WY AT tHer e reebe W rer e e mevs sesd TebHd WITE ML LB boHE GMGY st mpber b Shieh dRees S Mhies P basmh W GBS b MbA s e SN Sene SRR ST BT GHRG Aae A e

##4 STORE OFERATING TIME OF FILTER K IH MIMUTES ##ws
CEEE ICMT=4#IRAY (2 Ko +IETAT-1

IFCTIHT LT, 8. 2TIMT=TIHT+24,
IFCTOICHT s k= IF DO TINT#68, + B, 5

M #edx UFIHTE RECORT COUNT #ssses

SEHA TRAEYCZ s k= IRAY CE R 1+
HEE IRAYCL«K=T8THT

ClaBa COMTIMLUE

[

S Stk e S a0 ot o S S0 R 1 S N s s s 3 Rtk b1 e brs s e 6 ot s S Aok L Db e o T S o

l.a

C »

C ##ss UPDATE AHD WAIT FOR MEXT PROGRAM CRLL##%
185G TOLD=THEM -

ICOLDT=ICHEMW]

ICOLT2=TCHEWE

63
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FHGE Bags F

SELY
Bdd
Adds
Ad444
H445
Addi
A4 7
Ad4a
SRR
H456
SE AN
Ad5:
BdE3
B454
Ha 55
50 B
H457
A450
A459
ﬂ46ﬁ

Frcs B o B uow
Fo P

I T A I

B.3

LR
12688

12

1306
1488
1418

1428

1458

TLCY 9325 AM MOH. s

IﬂDID?—IIHEH"
GOTO 288

FORTRAN PROGRAMS

el

FEE.s 1973

PAGE B2.64

#x&xxROUTIME FOR DUMPIMG IFCT DATA IWTO-DISC FILE “"FILDAT®

ETURME TO STRATEMEMT HUMEBE

oo 1258 I=1.5
IFCTOLe I = IToL
COMTIMUE
IFCTOls80 = IEANT
I 1418 J=1.358
o0 1486 I=1:12
LAST = 4#IRAYC2. 12

IFCIFCTELAST [0 HE. B IRAYCZ T = IRAY

Moo= Cd-13#12 + 1

LIM=d4#IRAYI2aTo~104+1
IFCTYS@a I = TRAYCZeI
IFCC L GT LIM, AMD, LT
TBUF MY = TFCTSJa T2

GOTO 1484
[BLF M) =3
COMTIMNUE
COMTINUE

B GIVEM EY IRTHX

-1

SE II;,rllll 1aEE

CALL QCEMDCIDCEsFILDAT: IERE: :
IFCIERR.LT.ACALL MESAGE =13y IERRD

v JBUF s ERE D
IFCIERRS, LT.BCALL MESHGI-14s IERRS

CALL WRITFCILCEs IERERES
CALL CLOSE:IDCE:

RE~IMITIALISE ARERAY:

Lo 1478 k-
DH 14_U I

a
[

vl
4

ii h

I3

IFITkI+1 l'—IFETiHsHZ

COMTIMUE

00 1458 I=1s12
IRAYCZs Ty = ]
0 14568 =6 S

IFCTole I =
COMTIMUE
IFCTCLs 12 = @

IF¢ IRTH. Ef. 2183G0T0
IF{IRTH. ER. SEEGOTH

END

A REN]

Ty e

o R wn ]

ren o+l
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FRGE @ale  FILCY 2925 AWM MOMLs 28 FEB.» 19378
FTH4 DOMPTLERS HPFIZBe@- L f%2 REM. 1FEs

#% MO HHRHIHGS #% MO ERRORES #£%  PREOGEAM = B3247 COMMOH = Bar5E
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FAGE @881 FTH. HREZOAM O MOM. . 2B FEBuﬂ 1eva

FTH4sLsT
- PREOGERM - MESEG 3 8@

[

i
i
i
i
i
i
i
i
i
|
i
]
i
{
H
H
H
i
i
t
i
!
i
i
|
t
I
I
I
{
i
1
{
H
1
i
]

_ -
o T T i T

RN
i 1]

MESES - SCHEDULED BY MESAG TO FFIHT EITHER IHFHFHHTI 'E OF
EREOR MESSAGE.
“EI:-.-:'.[LII"‘H 4 1“—:] 1"‘||n

Dol oy B B o B o B e |
[ Rkl o B s iy ot ko

E@_QIEIG)L,_‘-‘llSlElGl ™A

A i e

LR I S I B A I

HUEUE SCHEDULE WITH WALT
FARAMETERS:
IP1:IF2: IF3 - & LETTER HAME ¢ORIGIMATIMG FPUhFHN)
IF4 - 8 - MESSAGE MUMBER
TB - EREDORE MLIMBER
IPS - FHPHHE1LF COFTTOMAL 3

b B B o oy By W e

G

AGES 19

A RECORD OF ALL M AL.50 FEPT IM THE FILE "ERROR”

TOOLIMIT THE DI G TIME THE ERROR FILES ARE LIMITED TO S@E@
RECORIE | FI NITH AW IHCREMEMTED SERIAL MO I.E. ERROR 1s.
ERROR Es wawe ETC. TS CEEATED

MOTES - 1.MODIFIED TO ACCEFT MHEGATIVE ERROR MESSAGES FEOM “ERMES”.
THESE ARE DECODET AMD HAMDLED A% POSITIVE ERROR CAL LT
THE HMEGATIVE YALUE IS5 SEMZED FOR ZSEMDING HEGATIYE MESSAGES
T LU=1 OMLYs MWHILST OTHER MESSAGEZ CAM EE SEMT ELSEWHERE.
2, COMAOH HAS BEEM ADDED FOR ACCESZ TO ISAMT & ISMUL WALUES.
THEREFORE LOAD WITH REVERZE COMMOM. CfRUSLORDs 380 »

AR B AN =
LI % e ]

s
A

+r%¢1++++k++t++r*¢+4++k++****++1+++*4+4+++r+i+%r++rr++*+++w+++#++th++++

fa | i.—:!.!_—} B O 2 e e T I s O T e B B w B s B - s e O e O e B SO

IHTEGEE IFCSxy ITIMECSy s ERROR I 2 EREORR CE
IHTEGER IBUFC1Lxs IDCECHER JBUF C450

C , L T R—

COMMOM EHGCE4 0 ADOY CE4 2y COACY C24 D
SAFCODYE ?-lLlluﬂliﬁ--FEHLTU'1UJsﬂLIHEDCIBhs
GASFADC 1@ GASFEDCLIA) s GRIFCDC 1B FILCYDO LG s
SERVOTCZE s DUMMY (S8
TSAMT s TSMUL S22 0 s IRMOGB 2« TCTH A2 TEOUT OS5y
TSCOR 3y TDUMY C5E D

Bl I RPN O IR

<3
i
e i
o i d e Led e
(N g D3 w0 00 ) T

EHG. - EMGEIMEERIHG UMITS (CALCULATED BY EMGUM FROM ADCY WOLTAGES:
ADCY - ACD WOLTAGES CUPDATED BY SCHD
COACY - DA WOLTAGES <UPDATED EBY CDAC

46

g I e B B

SHFCOD- SATURATOR FLOM COMTROL DRTH

CLELOD- CLouDy LIGUOR FLOW DATA

REMLTD- REMELT COMTROL DATH

CLIMED- COMTROL LIME TIRTH '

CHSFAD- GRS FLOW COMTREOL DATA FOR “A" SATURATIR
GASFED- GAS FLOW CONWTROL DATA FOR "B" SATURATOR

DRI R 1 I R A 2
ol o= 0 g 0

[n iR B orl cn i we RRATO TG Ay BRI R Y oy
T T T T

P en orR e RO R Buv)

non
fl 3 I S
~
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FHGE BBE:  MESEG 9122 AN MOM.s 28 FEB.. 1978

s o 5 o
s W I 2% I I I
4 )

= 0 7 T g

0o 0 O T T O O U O O T 0T
Lo T 3 oo B B s o s el i e |
3

ag

(1]
bl QRN X el 3 ]

x
=1
£
_F

O =d ‘E':s

Uﬁ”U
uwill

B4y
HiEE
Bl
B1le

. GREFCT- hH- FIHH 1)

TROL DATA FOR "G SATURATOR
MOMITER DATH
; SCALE MOMITOR DATH

FILGY - "
SERMOTD- LE.Fr'”HE-‘HLHI »
wh”ﬂrl THIJ RATE CFHLEE AAEMCY s S
TIMES 'PfhifullV'ﬁi lﬁHT

LSANT - MASTER
TSHUL -
IRH -
ICIM = COHTAC
ICOUT - COMTACT :
ISCOP (1)~ FLAG LSED OHTROL
[SCOFCEs - STATUS OF L RHNES. (1.E. RUHNING uw R
STATUE OF AUTOCMAMUAL SWITCHES. |

E :
[SMUL Gy

DATA ERROR/ZHER: 2HROs ZHR 1 ERRORY ZHER s HRD» 2HRE,
CALL RMPARCIPY |
CALL EMECCLLs ITIMED

GOOTO 26 ' _ '
* o COBKIF OYER ROUTIME T0 LOG ERRORE OM DISC FILE
(REMOVE AT A LATER STAGE IF<WHEH FOUMD MECESSA

CoOOPEM ERRORE FILE AMD SKIP TQ EMI PIEHIHG LF LAST ERROR MESHAGE
oo ITF THERE IS5 OHE. :
|

IPCALL OPEMCTIDCE: TERRE ERROE 108y By 46862
IFCTERRHE, -8 G0TO 15

CALL CREATOCINCES TEER EREOR: 1TEE 18 B ~2x SEE S
IFCTEREL LT EOWRITEC L 1821 P TERE '

Tazl  FORMATCUUMABLE TO CREATE ERROR FILE" I
CALL OPEMCIDCEs TERRyERROR 1y By @ 466D

1% IFCIERRLLT.8Y WRITECLs 18280 IERR
828 FORMAT C"CAMMOT OFEM ERROR FILE. ERROR MO"I&:

Lo BEARCH FOR EHD OF FILEs CREATE MEW FILE OF MOREE THAW 588 RECOREDS

I 28 TREEC=1s 506
CALL PEHDFLJL
IFCLEHL.LT .83

| COHTIMUE
IFCIREC. LT CHBAGOTO 38

B TERF IEUFu]iaLLH)

%]
[
GOTD 28

R ROUTIME TO OFEM A MEW FILE.

[FILH=6
25 TFILMH=TFILH+1
IFCIFILNL GT. 90 WRITECLy 1938)
ERRORKCE =2HRE+TF LM
LEEn FORMAT ¢ "MAYR O OF ERROR FILES EWCEEDED -
1 "DELETE FILES ERRORX =1 TO %) OR COPY FILES TO MT")
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MEZEG 9222 AM FOH, EB FEB.» 15

X}
Ty
Le]

CCALL MAMFCITICEs [ERR ERREOR EREDRK D
o REMHAME '
: IFCIERRLER. -2 GUTO 25
i DUFLICATE MAMEs GO TEY NEXT OHE
IFCTERRE.LT.6 WRITE:Ls 18480 IERR : '
REE 1K FOREMATC "RENAME EREOR "I&3
WMEITECLs 18562 FPPWPV
LESE 1 FORMAT Y #"0a 0 "HEW ERRDR FILE VPFHTED = FILE MAME = " » 2R
SOATECET

L : © EEMMDER OF FILE MO CURREMTLY IH USE

1P

[ BTN Ao e B e B B

Bt it L a4 R b b et s g
Dbt e et et b bt ek et

S s T B R

]
oy

i3

5y

3 o 0 T

en i
i

2 CALL IPIHIfIHIFaTLhPJEPEIhuiHU TE s Bl 20 BV

3 ELOCKS oK LI 2 EM D ]
IFCTERR B, e rHlL CREAT ¢ IOCEs IERR PFPﬂﬁwlﬁHnlﬂquml

I HH SPACE. TRY REMOYABLE PLATTER

IFCIERR.LT. U' INI[EﬁlsIBEED

FORMAT O @205 booy By "HO DIEC SPACE FOUMD OM EITHER DISC FOR®

oG

R R

2 I " NEW ERROR HESSAGE FILE. "s /s Sy " griEs HELF [11 #dsss”
2 2 _ skaxxxes URGENT #%€8#%84% 5454y "PURGE REDUNDANT FILES."

[ HOGDs GIVE UP

CALL OFEHCIDCE: IERRy ERROR 1y 8 kis 4580

¥ MOH~ ESCLUSIVE OFPEHM

. THIS ALSO REWIMDE FILEs I.E.

pcu e B B o e e B oy BN RO It B v

OPEHS AT RECORD HO

fk el g s p L L L ek et bk s s pe oy
PR

Lyl s
—
[N
by

N |
—
|' h
o

3E COMTIMUE
CesErseRes*EHTREACT THE FACKED REPETITION

COIHT %% %% %%

OO I T I O I W ot

b a0 00 Dol a0 L il L LG

UHFACK TO FIHD THE HUMEEP OF COUMTS TRAMZMITTED BY "ERMES"

AWDE A POSITIVE ERROE HUMEER

Hl el
n14m

T

~
=2

—

_L..

o

T

TFLLAG =0

IR = TRO40

IFCJIP LT B2 TFLAG]
5 IFCIABSC TR, LT, 1A@E0TO 46
SR T ICHT = B
CE147 TER = IRBESCIIP

GOTO 7@
48 TCHT = IABSCITF Y108

IER = CIABSCIIRY ~ TCHTx186

0 =

IR I P I AR I SN O ]
A

AN
n

i

ek tEees 5 RECORD ERFOR-MESSAGE OM DISCHesssssrss

b I e ]
e e

AeninCn Cnan g

FE DD FS I=laZ
IBUF I =IRCL
IBUFCI+5a=ITIME(&~12

A R
—

A157 i IBUF 4 =TER"

IBUF Sy =IPCEs
IERTE

= GBS0 TEAM T TEMUL 2 a % 15

ALIL &

IMIN = ICHT-IRATE

= o}

MEAHMIHMGFUL CHAMGE OF A COUNT TO TIHEa
APPLY IMG QHLY TO THE FRCTORY COHTREOL
FROGEAMMES. :

L)

N
o

Bex e i)
ot s pn It ek et

TEUF (8 =TMIH

Py}
=
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PRAGE @@pd  MESEG  9:22 AM FOM.» 28 FEB.s 1973

unrn v
- SUFRPRE ElHH OF EREOR FILIMG O DISC CTEMFORARY 10
e CALL WRITFCIDGE: IERRIBUF.110 ’ ) :
IFCIERR.LT.HAY WRITECL-183210 IERR
5D FORMATC"WRITE ERROR"IS" IM FPEOGEAM MEZEG™?
CALL CLOSECIDCES. :

[t s 5 ol

1 e O
P N

*%%%%%*%%%PRIHT FRETRE FESSAGE $ %% %85 % 5 % % 5%

R R B B RS ES E e

xR0

w ';;:' @ ';11‘ L_ l_l =1 ‘
BE T niaeriasesenees PUT LU=3 TN PREYIOUS LIME MHEH TERMIMAL
oo BECOMES AVATILABLE, :

IFCIFLAG. EQ. LaLU=1
Cx%x  SEARCH FILE FOR A SPECIFIED ERRORE HUMEBER AMD FEINT IT.

ITRCay=T0RCTANDCIP Oy IVPS4AEE s BEEAT TR
» ' © ksssxx APFEMD 7T TO PROGEAM NAME FOR ERROR FILE MAME.
FHC=@
CALL OPEMCINCE: TERE TFs L3
IFCTERR.LT.EHRETITE LU VB&E ) TERR
FEEE FORMATC"ERREOR TH HFFHLHD ERROR FILE ASSOCTATED WITH CRLLTHG
gls I " PROGEAM" s 288y "CIERRE = "sIdx" 27

R R el o R R et i R ot o R e I an B LR kot oo B R R It R

=Y
o

i

Bt
2

R0 00 = T L e 0 T e A

£ 0 00 U0 00 03 00 00 00 00

-
2

¥
3

it

L
—

L0l AL

dE CRLL READFCIDCE. TEREL Y JBUF 48 LEMY
IFCLEH.LT.BGOTO 9@
I : THEW EOF FOUMD
IFCIWORCTRAMIG JEUF G L Y 1PV 4BER s B2 1485
[ LOUE FOR # IN FIRST CHA
CIFCERC.OGT. TERMGOTO 98
S IFCEHC. LT, IERIGOTD S

ofe g
I AT I N TR LY

EX WY v}

Bo ERBIKHO=KHI+1
FRCTER.

S A YA N S e e

=

“H WRITECLLs 1EEE

gzas - 18E8 FORMATO" 2

azaz CALL EXECCEy LUs JBUF s LEMX

aza4  © OUTPUT COMTEMTS OF THIq RECORT.

B2B5 WREITECLUy 181@ CIBUFC. 3y J=149 o

AZBc 18168 FORMATCZAZ A1y " CH"s 122" I“I‘:ll.HF.-—'wI-ﬂfu' DRY" s Tds"s TIME" s I3

DT

== 5 g

B2av T"H"s T2 "0 FOR "s I3 MINUTES SIHCE LAST REFORTED" )
BEan ZOTO & :

azas o

Azl 96 CRALL CLOSECTOCE:

agll o '

azly O

Gata EMID

FTH4 COMFILER: HF32@ED-160%2 REY. 1726

oz
T
=
=i
i

i,
b
o

#% MO WARHIMGS % HO ERRORS ## FROGEAM = B13135 COMAaN =
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PRGE

T
= T

@1
A1

o)
bR

— x]
T P o= i a5

K

P}
158

FRoe B o B B WSO SO B o B o =
R kcx] 2

HEEL FTH. HE23 OAM O MOM. s 2B FEB.s 197E

FTHaaLsT

SUBROUTIME ERMESCTERE IFRAM IREF?

.:‘L“'.l".l:.l"-F*+‘l e e e e e A S
: "ERMES" =
ERMES SUFPR

ol el e I'J A el G R S

|

{

|

| | TESSAGES PHIHTED BY MESEG.

|

! TERE = [ FOSTTIYE HMESSAGE HUMBER OF

I A MEGRATIVE ERRORE MESSAGE HUMBER

| CSEE LISTIMG IM CALLIWG PROGRAM)

I JIHI'leHdeHUNHEP OF COUMTS OF ERROR MESSAGE MHUMEBER
I "Ha"s FEOM CALLIMG PEOGEAM OF CODE = Hls
I . STHNCE LAST REFORTING THE MESSAGE.

e TREP = PERIOD ©IW MIMUTES: DURIHG WHICH THE

o MESSAGE TS TO BE SLPPRESSED.

! THIS SUBRQUTIHME WILL SUFPFRESS ERROE MESSAGES IW THE COMTROL

i RIOD EQUAL TO IREP CIM MIMUTES:). THE THFORMATION
f OF PRIMTIMG & STORING OW DISC FILEs IS FRCKED
|

I

l

f

|

FROGRAM FOR AP
FRESED TO HE
THTO AH THT

RRE THE ER

0F

1BER WHERE THE TWO LERST SIGHIFICAMT DIGIT
! SEAGE MUMBER AWD THE MEXT DIGITS ARE THE HUMBER
D BIMCE LAST REPORTIMG THE MESSRGE.

lv'EFv" 1HH . 1“

81977

e R

DATA IGHT.
IATA TERA-E@#R-
CALL EXECCE1s 1Ty IVERR)
IF(1IERR.EG. 87 RETURH
I7=151GNC1s IERR
LERR=TRES( [ERR)
IEF = IERR:
THEM=FLOAT ¢
IFCIERACIERR D, F
TALD=FLOATC TERFL IERR )
T CTHEW-TOLD S W LT, 6, 2 TOLD=TOLT- 1448,
TFCIF LM THEM=TOLD Y, GE. IREFIGOTO 168
TCHTCTERR)=1CHT ( IERRY+1
 RETURN
106 TER =17%¢ 1R ICHTCIERR ) +IERRD
266 CALL MESAGCIER IPRAM:
TERAC TERRY=TF IHCTHEM
[CHTC TERR ) =@
RETLRH
EHD

FTHa COMPILER: HF9ZOcA-1&8%2 REM. 17VZ6

g

MO MARHIHGE £ HD ERRORSD PREOGRAM = BEZ&Y COMMOH = AEBAD
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PAGE @E81 FTH. HrEd A MOM. s 28 FEB.. 1973

Frbe sl
SUBROUTINE MESAGOMESHy TPRAMD » @301 7EHADH 245700y

AEE ]

ot
MHLN

MEERG - MESERGE OUTPUT

ST0OH =

g Hﬂﬁ Hel-TEor RUEUE ﬁUH JHIE HITHUU1 Hﬂfl

PURPOSE METHOD OF OUTPUTTING
THE SYSTEM CONSOLE. 1T SCHEDL
" THE ERROR AMD THEREFORE AYOIDE

| F‘».‘ Tk

Dn }
0¥ s o (G
—
d

LGE:
CALL MESAGOE

o

MESH - MES

L.
i

i

|

|

|

i

|
¢
I
i lIF'
|

|

|
(W
|

i

I

sy Ty

i o N T
o

Lo o oo

IFRAM ~ | EBLE

x)

x I N ]

fHE
S SEE MESEG LISTING FOR ADDITIONAL FUNCTIONS PERFORMED.

ﬂJIPhtf " MR
DATA MESEG. ZHME

ERECUTIHMG PROGEAM HAME

J—

SCHEDULE MESEG , »

L : RUEUE SCHEDULE WITHOUT WAIT 10 AYODID
r : TIME DUT IH WCHDE AWD CONTREOL FROGE
RETLEN

EHD

FTH4 COMFILER: HP9ZBE@-188%92 REV. 1728

4 MO WARMIMGE #%  ND ERREORS %5 FROGRAM = @884z LT

TERR FROM B FHGR PROG

PAGE B3.71

A THF
THE |
FOR

4HNEC1?nHHMEiE?uHHHEQﬂ?sHEEHaIPHHH?

o I EE
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FRGE @aB1 - FTH. BRI AN MOM.e FE O OFEE.. 1978

'PthHH waHF'IlvnH'l”“HDH H11U .HDP SRS

1 O s So® AT DL e Stk e SR St S0 eren o Seh ks s S soms v sy i

17EATH _

STRUP - START UP PROGRAM,
VERSION ¢ 4-18-1977  (BIR)
LORD TN BRCKGROUND H"IHu REVERSE COMMON

R kR - M I L1 b Tt i s s i e B SR e b T et S S i Sk s e

© CORAOH - e

1 EHFEDD mﬁUfluunPLHLTﬂ'1H'|fLINEDL1H3~
2 LASFAD l'uGH FPMleTubHoFFD 1B FILCYDO1ad
4 . SERNVOD; KLARS1" R :
4 IS . ':?'sIFHk4UJaIlIH(%*wlLUHT e

] SCOR .JwIl]llHrr“xHI :

G = EMGIMEERTHG LUHITS WFHLFHLH]ED By EHEUH FROM RDCY HGLTHGEEH
HICY AT WOLTAGES CURDATED BY SCRDG '
CDACY - DT-f YOLTAGES CUPDATED BY CIRAC:

SHFCOD= SATURATOR FLOW COMTEOL DATH
LLFLOD= CLOUDY LIAUOE FLOW DATA
REMLTD-~ REMELT COMTROL DATA
LLIHFD COHTEOL LTHME TATAH

HI- GRS FLOMW COMTROL DATA FOR “AC
GRS FLOW COMTREOL DATH FOR "B"
LGRS FLOW COWMTROL DATH FOR 0"
: FILTER CYCLE MOMITER DATA -

SERY UD“ SERVOEALAME SCALE MOMITOR DATA

SATURATOR
TURATOR
T

LREATOR

0 5

oH
H

.r—.

[SHMT ~ MASTER SAMPLIHG RATE (PACER FREQDUE
Pamul - SUB-REATE SAMPLTHG TIMES"EPERIUIH
TRH ~ REZOURECE MUMBERS

TCIH ~ COMTACT ﬂlH[HQ I CUPTRTED By !
[COUT — COWTACT STATLES WORDE UPDATED BY COM _

SLOFCL 0 FLHG WEEDE BY WCHDG AMD THE COHTROL PROGRAMMES.
TSCORCE AT DFCOXTREOL PROGEAMMES, CT.E. RUMMIMG OF OFF 2
TECOPY 41“- ﬂTFIHl‘ OF AUTO<MAMUAL SWITCHES, :

L BECS
TSAMT# TEMUL Gl

IHTEGER -
INTECER SCRT(3),F
IHTEGER YDAY s (EFAF
EHUIHHLEHLF!1IIH

HHHF;;DHMuUErﬁ - -
?.ﬂEL:jJ'ITJMk'3“~HIHS}5iITIHEi#ﬁﬁHDUHH}u

.fﬁsﬂﬂﬁ?ﬂ”iﬁﬁyﬁilﬁﬁaﬁillﬁn
DRI FRCh I
I.Hl r2HE wE2HI s 2H4 « 2HT S

TIATH u~1??
IATR SCAD
DATA 5CCS
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STEUF 9215 AM MO« 28 FEE.. 1378

DATH HAHGO EHHA S EHMG s 2HO o0 EMGUMS ZHEM s ZHGL 3HH -

THE STAET WP PEOGEAM PERFORMES THE

FOLLOWTHG FUMCTIOMS: _

WRITE HERDIMG AHD GET TIME AWD DATE
IMITIALISE CAMAC CRATE

ALLOCATE REZOURCE MUMBERS

SCHEDULE HRMGD TO START PACIRE AWD TO
IHITIALTISE COMMOM FROM THE FILE "COMDAT".
STHRT CONTROL FROGREAME

Lol Pl
= = = =n

£

HERDIHG AMD DATE. TIME

CALL RMPARCITIMED
YERRE=TTIMECL
IFCYERRE. LT 18FRIYEAR=1973

WEITEC]1 18&A
READG L+ 'IDHI;T“HJTH
IFCeMOMTHL LT 3. OR, CFONTH., || TaxaGnmd 1@
TFOMODCYERR» 0 ER, A2
IFCCIDAY LT Lo DR CITAY . GT. H HHH|H"J GOTO 16
YTOHEY = TDRARY
IF CMOMTH LE0. 1% GOTO 3@
g 28 I=1«MOHTH-1
YOAY=YDARY + MoIo

MRITEC1s 1816
REARDC L2 HOURS: MIHES: SECS

GET TIME
CALL SETTICYERRs ITIMEs IRESF )
IFCIRESP.WHE, B2 GOTO 16

SET TIME

CALL FTADCL ‘
FREIHT TIME AMD DATE TO YERIFY

JIIIHLI E FHHHI !FHTF HHD DH LA hPHBFP TEST

ICEAT=1 :

CALL CAMCOCZ#%CTCRAT-1 29 IERE
IFCIERR.HEAG3CALL CRMERCIERE By ICRAT#S12 -
CALL CAMEZCOICRAT. IERR)

IFCIERRE.HE, B0 CALL CRAMERS IFFFIwalFHT'II

CALL DECLE CTLEMG TORAT 23, 680

D0 S8 J=1.16
I=1SHFT(1a.d~10
CALL CAMAC ¢ 16 TLAMGs I+ 100
CALL CRAMAC ¢ 6 TLAMG, 11y 1600
IFCILHMELTL) WRITECLs34EY I.11
COMT IHUE

FORMATC"LAN CRADER TEST ERRDR: WROTE “.IS5." BUT EEHD &nlﬁﬁ



APPENDIX: 573 FORTRAN PROGRAMS - . PAGE B3.74

FAGE Gopz  STRUFP 9215 AM MOM.s 28 FER.s 1

(¥}
—-4
2K}

[

.UE HLLDLH[E HHU FHLH FL HLLDIHTE HLL FE UHPEE HHHEEF*

Iy S8 TREMI=1.28
' CALL RHREGC1I4EE4EEs TRHCIRHI s ISTAT
i GLEARR CDE-ALLOCATED + HO WAIT OF ABORT
GOTO S51d
SED IT0IaT=86
I IGHORE ERRORS
518 COMTIHUE. ' '

F—
1
i

Ty T
nE e i
T
i

ol
SI KRNI BN cN Y

R

]

3T it et et peet = i

X

—
FRA R
Tolb &= 750 0400 1058
—
—
&

!

CALL RHRGC14BH28E IRHCIRHI e TSTAT
[ GLOBAL ALLOCATE + MO WRIT +HO ABORT
GOTO 520
TIGRIOT=8
COMTIHUE

[ I
£

[ B o]
5

—
Tt

IGMORE ERRORS

P Pl PO fd T

CONTIMUE

s o o St WU bt S G L dati ool D SRR Ot o forh AL a1 Sk S A0S o S o (o v o v sy e it NS e Sk LS bt S Sty b o ot e it Mnth g e e b S it i i S 2 Bt e e e e s e

SET FRCIRE GUOTHG

4,

—
fan

RN S [ x4

fn R )

[
DEG
C
o

Pl
=

CALL EXECCSs HAMGDs 13 ’
SCHEDULE HAWGD WITH FRAEARMETER = 1 TO START PACIE
TMMEDIATELY . THIS ALS0 READS COMPMOW FROM DISC FILE.
START AWMD STOF TIMES ARE HOT REGUESTED. REUN HAMGO
DIRECTLY TO I THIS WITH FARAMETER = &.

e O T

13

Facn R I e I ]
" O3
] bl b1}

13 s I |
[

o}

4 e 13ma e m mn St i Yo Mo e St Srem i 4Me S Sk e TS A1 ThHe e S o gy e e Shen e ek Sre v s e e e e b Ak St e S} om e e oy T e e S o i o S o S b G Fon T ot e i o st e

il COMTEOL PREOGEAME

P Ry
b
oy - —
D S I
i

A141 CALL EXEC(18; SCADD _
: . "”HH A TO D - IMMEDIATE SCHEDULE MO WAIT

X}
—_
e
el
-

@143 CALL ESECCLE, :
i ¥ : HH COMTACT SEHSE - IMMEDIATE SCHEDULE MO WATT
A143 CALL EXECCIEs EMGLMY
3 EMGIMEERIHG UHITS COHVERSTOH

) R
— —
= e
Fat ey
— .

A 00 )
TR 3

C‘] 3
—
=
£
i

PR

STOF , o
T LB FH}HHr'f CHULETTS REFIMERY COMTROL FROJECT << "SET DATE AMD TIRE
4 1 24 UHuuHHHTH "ot .

5 1I1E FHEHHT-s HHHR yMIMSs CSECSY 7 "o
= :

Tl
1

1a FORMAT (" SAMPL IMG T[HEC-MH TEF AHD SUE-MULTIFLES"

=

fal

. 1 AL HHT«!HHIJHQHUL
s EHID

FTH4 COMPILER: HPSEBAE-16892 REY. 1726

4 MO MARHINGS ##% M0 ERRORS #%  PROGRAN = B8459 COMMON = EBF3E
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i

FAGE ABB4  FTH. 9015 AM O MOH.s 2B FEB.» 1972

e
=
[

KN

13

(T
%
—

SUBROUTIHE SETTIC lnEHPJlTIHE IRESP

i

2 A

[
[N s ]

b}

cem BETTI === SET TIME BY CALL TO MESES e o o o

3o

N e e et il el et ool

ITTIHME HAZ SAME FORMAT A% EXECCLLY COMMHMD -
IRESF IS PE FOMSE T SET TIME COMMAMD. ERROR IF.ME.B

.......

Ta s

I
e

DIMEMSION IPEQ:
IATA IFECL s IFE
TATA IFECS> TR
DATA IPEC2E 0. IF

Yo ITIMECSY

Yy IPECS s IPBCA) 2s 2HTHa 2H s 5H

i) I.FE” ]x.)v"' IF"BLJ. aw ] ."9 TR ‘.F-..')J SRR, | W} 1oa s
CAE TPBCE 4Jsl+Et3H -

it xR}

D S O

.
o

b

faca]

r FINIZH SETTING UP PARSE BUFFER
IFECE)=1YERR
TFEC1B=ITIMECS)
IFEC143=T1TIMECS)
IPBC18s=
77 IPB(220=]

=i

.
AL

act

R IS I SRR s s i S (UL ]

faa ) QR I W R i

o

o 0o T U

PP S L gt gt T e

o oo THVERSE PRSS TO COMYERT DRATA TOOASCIT COMMAMD
CAHLL THFRESCIPEs TFRCZED ‘
I ExECUTE COMMAMD BY CALL TO MESHS
IRESF=MESSSC [FE. 483
i THFRES RETUREHME & CHRARACTERZ<-FARAM I.E. MESSE CHT =0
IFCTRESF.ER, BORETURRM
I THYALTD CALL. PRIMT RESFOMIE OM SYETEM LUHfHI
- CALL EXECCEs 1o IFEY - TRESF 2 '
RETLREH
EMT

—

0O 00 00

£ P ) T — oo O

00 00 00 G T

o0~

F B B B won Iy o IR |

FTH:S COMFTLER: HPSZEGE- B9 REV. 1726

#% MO MARHIHGS % HO ERRORS %% PROGREAM = BB1Z4 - COMMOM = @oo8n
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FRGE @3l FTH. 1824 AR MED.. 28 AFRE.. 1973

] S “HEI0H OF PRCIE.
ISE] .: “LOLD "THFT BY SHEDULE FROM STRUF WITH PRARAM i=1
s OHAHGD MUST BE LOADED [HTO FORECRGUND

LFEBY SETTIHG TEMULGCL b=
AT :

- 3l el e ';—tw'-'p'p'r EE S SR

Foomra COMOBAT R IR A@8 s TTOT CRSE s TS5

DL IMEDC I8 s
Aoy FTLOY T LE D .

T TOIHCd e TOOIT O 0y

F
k]
-
m
et
]

LU 34 EMGUH FROM ADCY WOLTRGESS
IRy SCRD
PRy CDAC

DATH

oL DATR FOR
JTEDL THTA |
HTROL DATA FOR
(CLE MONITER DATS
SCALE MOMTTOR DATH

SATURATOR

TLRFTOR

STER SAMPLING RATE CPRACER
ATE SFMPLIMG TINES
R PECE HUMEBERS

= COMTALT =TATUE I
- Hll” I' T FTLES WO
R ' By WOHDG 1] -

COHTEOL FROGEAME!
AU FRN LU AL

t

M

1 COMTROL PROGRANMES.
THTROL PROGRANMMES.
C1LE. RUMHIMG OR UOFFD

rn'ﬁ: NG

EC TV RLERCE TR o AR SR R HT'|"1'IHL']'w[THT'ﬁ§P}
BATA RS fﬁHFHw=thJaH1 : ":ﬂhf"AEHLHH IHET Y ZHAT S

o
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cEnE BEET  WAMGD 1@Di4 AM  WED,s 26 RAPR.. 1978

C©4. CHECK FOR IMMEDIATE STARTUP REGUESTED BY STRUF,

CALL REMPARCIF
L= g ‘
TFOTReLy ER, Ly GOTO 11D

C ' STHRET ITMMEDIHTELY

oo IFHHr"T "HDPFHﬂ i FE*(HIT TlHLa FFHH THF HPFIHTHE"
|

CALL ERECTL L.
18 WRITECLU 1BEEs0T<
FTHH'LHn+lI TOF s

+ H4“ﬁIﬁTDP}

WRITE L L 188
FFHU!L”«*Il-[HF
CETART = 12 o+ BB, E
IFeCTsTOR, GT. 8. Al
1 DT 1@

v+ 24, #ISTRRTD

o HLT Uf HHEDIHTE FF'FHH [ ThHHE

1

p—
2

2

TFETSTOR, ERL BIGOTD 48
TFCTETRRT.ED, 80G0T0 11
IFCTETOP, LT, 8. AHD, ¢
- EHT

5[%4% CLTCETETORF BoEl
FoOHD E' FT TTHE AYATLAELE.

4. lHZEl CLIE htlT WIWE ﬂﬂHIH f HFHT IINEB.

aicls

Irn‘Tluu"La
TF ¢ ¢ THOW, GE. BTART:
e TEAULL . HE .15 |

AN, £ THIW. CE A

T HMIT |H| UHM HJHHIf IF HH Hll Hh FFHHIFFH

S0OCALL WATT O & 1R
COTO i

o WFDRTE COMDAT FILE.

48 CRLL OFEMCIDCE: TERRE COMDAT » 16 B B, 408
TFCTERE.LT.AMETTE CLU 1580 » COMIAT

10 BB I=1,32767
CALL READFIDCE: TERRy [TOT: 358, LEH?
GKIF TO EWD OF FILE
IFCLEHLER, - 100

" YAGE B3.77

I .
F 1 :
1T, CTETART . GT. 8, AT, COSTART -RETOF ) LT 808

e v t1o e i Y b i e H ot S Y A S i el AN o bt s o e e 8 T8

Hnu CTETOP. HE., ~15 1 COTO 43
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MEMGD 1824 AN WED.s 86 AFR.. 197

ﬂu COMTIHUE

: ﬂHHI.flr
= PILE Y o ]
a o TP O 7+
o TILIFITY o T e

'TIH”IHTU CORNAT FILE

TFCTERRE, LT, BRI TECLU Y {E8E S COMDAT
[
CHLL CLGSECIDE

CPRCIR AMD MOTIFY T TR,

i b FHHI THI= CAMMOT BE DOME MITH

- ok 33 -m?L IS A BRETARD AT
S o I 13 - S ) 3 O A B N 1 RELTEVE METCRDH

G L]HH WHIT UMTIL SDRTR X Al

s [T OHCE MORE To CLOSE THE
CELL RHREC 4y TRHOS T TSTAT

{-
o ETOF IF PRACIR ETULET

LFCISTART.

L



: B3.79
APPENDIX  B.3 . FORTRAN PROGRAMS. FAGE

Pl B HHHFH LR s HH CWETH » 28 BFE. 1RVE

Eae Rt ]
:

W, RCHEDULE FA
£
T1e CRlL RECDER
WEITECLU: 1460
AL LS MEN
Lag BTOF Az

[
l:? ]lﬂn HH HTS
-

LR8E FORMATCTODAY IS DAY MUMBER "2 15", " S .
1 "EMTER 3T 'fJTHFT TIMES MM, c@= IHHFUIHTh RESFOMSE, ~1=IGHOREDY"
SR 'NHthUUP FITHLITE > 2" 2 ' :
' CTIAY s HOLIE s MJHHTF' "
PR P TR sEEMIED OH COMMAND® : :
: FDEHH1'”JLH DILED -TO RE-STHRT OH ﬂH: IS AT e lZe"HYsIED
FORMAT C"FACTE COMMEMCTHG O SCHEDULE™ :

: FORMAT CUFILE OPEHIMG EREREGE IH " "HAMGO" "~ 1 I
BE FORMATCFILE WEITIMG EREQRE TH " "HERHGD " -0 3R 0D

EMD

FTHG CORPILER: HP92@50-16092 REY. 1726

w6 MO WARMINGE =& HO ERRORZ =3 FROGRAM = B1&72 COMMON = BEFS:
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8380

PROGE 2033 FTHL 1824 A WEDL . F& 0 ARR.. 1978

:dL:“”llHF BT

ORI A

THTEGER RCOMDOZs PRACIR T

T

O 14 €111 s I —_——

T

1R CLTMEDE 187 s
SECTC L0 s FILCTTC 16,

40 TCTHO40 s IEOUT (4
MG THEER

Il I sl
= DR YOLT

T

TOUMITS CARLOUL
FPIRTED B

DB EMGUN FROM ADCY YOLTAGES
CURDRTED B TR |

Ea]

{7

i COMTREGL DRTH
OFLOW TIATH

& THETH

= LRTH

| DATA FOR A"
 DATH e
0L DATHA
© MOHITER DATH
& GCALE MOMITOR DATA

DEDUEHDY s SECE) -
I =TSANT# ISMULCH

CLUFDATED BY S005E

s UPIATED &Y COMTREOL PROGEAMMES.

- COHTREOL PROGEAMMES.

ol E. RUHHING OF OFFS

DATA RCGHDSEMECs ZHOMy ZHI <« FACTR-ZHPA ZHO T ZHRE

[ OSCHEDULE RCOMD 70 GET LAST SET OF COMMON DRTA

i R o] S e nIlHH”

CORCHEDDLE WITH WATT

Sy M I MHOLR

CRLL BHDTHOISART « By HEELD ) o o
1E R TO HEST HALF FIHUTE OF WHATEVER

ROVHTE T1

DML ]
BET leh FHP FRE TR .
CALL EXECC 12 FACIR 2 DRAMT « HHOUR  HIATH: HEECS 8
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PAGE mame  RCDSP 1@:zd AM MED.s 26 APR.s 1978

RETLEN
EHD

FTHa COMPILER: MP9ZRER-16092 REY. 17EE

i HOOMARMIMGE #%  HO ERRORS ## PREOGRAF = B4

FAGE B3.81

COMMOM = 8Ee By



APPENDIX

.,_
¥
o

&
il = = = e e e T T

]
-
K

a
=

ot BRI B 5on Bt B8 By By T s B B
foa o— o

RN B Tt B L 1 S R P ]

2 |

o 0 0 T O T I O TR Ry O O O

T

o I S 52 T o B a0 T e I |

B3 56
AEal -
B3z

i B ko I ko i i
T S E 5 S0 T : 1]
- a0 e

1 O T T R

o G G

PRt

ad

D D D T O O

G o 5

Bt}

FTH. FEEY AN

THI% |
T THE DATA 0OH THE FRIMTER.
L DEYIATION

"START IHTS"
"YAR
"CYELE
"FILTREABILITY"

FIMALLY
FARAMETER

2EOFORMAT

FCRTRAN PROGRAMS PAGE B3.82

MO 28 FEE. s

FROGEAM EFLDT

% EFLOT - READ FILE "FILDAT" OH DISG

FILCY AMD LISTE
THE MERN AHD STAHDARD

FROGRAN READS THE FILE FILDAT GEMERATED BY
IT THEN CALCULATES
OF THE FOUR PARAMETERS ¢

=5TART IHTERYALS

=YARTAELE FRESSURE PERIODE
=TOTAL CYCLE PERIDDS
=FILTERABILITY

FOR ERCH INDIYIDUAL FILTER AN

PR FERDCS"
FERDE"

LISTS THEM,

THE OVER-ALL MERAH AMD STAMDARD IF EACH

FIE - ALL

DEVMIATION

ARE LISTED.

‘ FILTERS THEEH TOGETHER FALCULATED &
& : . .
5] . WERSTON: 1o3-12-1977.
B [ o e i o i e o o e S e e s o e
apze .

i

DEEC 1443 IFCTCSR, 1200 IBUF CERE DS TELK1E)
43y TEIVCEY

FILOATCE 1
SO R e THW
ZHAT

IHTEGER
DIMEMSTON AW CLE,
DATA FILDAT<ZHFIs 2HLI

DO 58 M=1yd
TRY CH =8,
TEIY (M =4,
COHTINUE

”EFF FILDHTalsBs@?

IHlL DFEHfIWIE

WRITEC L, 1BEE TERE
"UHFBLE TO OFEH FILE FILUIT -

GOTO ZEpa

IERE="5 Ik

WRITE (S i )
FORMAT CSAC"#" 0 u oy 264y "FILTER DATA FILE"s. o8
CALL READF{IDCE: TERR: IBUFy 600 LEN
IF(IERR. GE. BGOTO 208

o 4

WEITECLs 1828 [ERR
FORMAT S "UMABLE TO READ FREOM FILE
GOTO 2808

FILDAT - I

IFCLEHLER, ~13GOTO ZEEa

1:
IFIT W

& I_Ut4TIPHlE

IM = IFCTolwlas
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FAGE BBB2

12

= o

£ 0
i e

Y o ngE g
REIE Iy o

g
a5
I

SR BRI A ]

L T
ERL R I

—
i

s e e s e (U S O O (D O
e
-

SORT B Ry S

2]
Tl
T
o5t

s ]

AlEs

AlEs
116

B.3

RFLDT 9829 AM MOM. . 28

208 FORMAT ("FILTER" s iy

b [
]

1ASE FlkHHru
HFlrE-h-M
1EER FHFHH1u1 T

TETE FORFMAT C23H

1

1

o
e
]

]

4

HUR=B

FORTRAN PROGRAMS

Il = 1+If

EI ] lJHl "||_lr|4"~.'1,["'

WETTECE 187A ¢

MRTITE & 1HHAEY 0

LEBE FORMAT. ]“fdt4ntl'[Fw/'~fluﬁ

WRITECZs 1196

1198 FORMAT CLSM "ssaeeeSTATISTICE

AW "IHDINMIDUAL FILTERS"
WRITECE 1@26y
I FORMAT (22K "AVERAGES "y L4ns
WRITECE 1288

"FILTER”
By FILTER",
UNMEER" s

L TEPR:-
LTER="23s"H
ILlI“”nhnn'

s "CYCLE" s 2 " F
s "OYCLE" s 2 "F
CTIMES " s @ka"F
CHEILITY"xo ek

"iﬂIHE)“ﬂBHy

COMTMES" 3

T _EB I=1s12
TBLECT s=IFOTOSE 0~ TH
IFCIBLECT »u LT, 1'IHLF'I' 35

ML=+ TR CT

COMTIMUE

IFCHUM. LT oMM =

00 488 H=1y4

TAYIHY = @,

no =258 I=1s12

ZUM=8, '

Do o388 Jd=lJs IBLECT 2+ TH
L4*H43
SUM=SUM+IFCT L I

TH”'HJ TRAMUHI+TFOT O T

JEE COMTIMUE

TFCIBLECT s LTl aTRLE T o=y
AW CTaH =80 FLOATC TRLK T 2
COMTINUE

TAYCH =TAV R FLOAT RN D

i COMTIMLE

D FEA H=i:4
TEDWCHY = @,
0 e58 I=is12
SUM=8,
DD 88 d=T.0s TRLKST s +THM

L=d#lHH-3

DUML=TFCT Loy DoFW G T M
D= TFCT Oln To=-THY R
THH*JHH+DHH1 TR

TEDVOH =TSN CH DM E % T2

i ll:”ll"l"h’"!_-,'-;! " , [
CHIHE Y e dH

Hnﬁ“

A

g

tEM e e

GO DATH FOR

EACH FILTER###E8E") o

PAGE B3.83

FOR FILTER STATION OFERATIOMSEEEE" s

"ETAMDARD DEYIATIOHS, "

vy VAR TABLE"

“PR

'“HPlHELE“
STARTS" 1 2

‘1."

3

ESEURE" s

4

2

CHIHE "

ue ] i s e

,I'.l
ot 178

PWE;W
IHa " TIT
ﬂm"

£

R
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C HBBI RFLDT O 9rzo

gl
sl
g
m
—
=

R COMTIHUE

IFCIBLE T

STV Ty

GOTO X

I ARG = SUMFLORTOIRLE S I r~10
SDVﬁInHD=SQRTEHRG}

58 COHTIHUE

ITFCHUM. CE.

TSI IHY =

COTO VEa

FREG = TSOWOH-F

TEDY CH o =SORT (ARE

YEE COHTIMUE

I 5568 I=1:12

WEITECGs 189 TaCANY I TaM) s =124

A OFORMATOI4Z2F 168, 1 2F S 1o dis

S50 COMTINUE

=t

0T
[
I

Py

. o
Y

b, GELFIGOTO 18
Hy = B, '
Eﬂﬁ

Y

% 38 5% B
n
T
—

T
st

ZAGOTD &od
&,

X
)
RN I e el el S S R

SR OURE n I wn S T S 3 B CORF J SN

i W) R o |
Ll e el el el o Y Sy
3 T T

AT LT -1

P
s B n

MEITECE: ]
1188 FDHHHT&ﬁf
1 "ETAMDARD DENMIATIONS" A3
MEITECSs 1228 aTAYC L »s TSIV 01 2
FORMATC"STARTS "« 145 "
MEITECEs 12285 THY
1226 FORMATC"YARTABLE
WREITITET 5, E#H'1H”
FORMAT " i
MEITECE LEH0 0 THY
FORMAT"FILTERME
WRITE(Es 1266
S FORMAT O/ w @@ %" 3y e
SRe] GOTD 154
18 COMTIMHUE
CALL CLOSECTROE
EMI

122a

Ceb o TSN
BILITY" s 7

5T

]

s 1T 1
LA 2 I |

i I

T
bR an

COMPILER: HP9ZBEE-16A5Z REY. 176

RED WARFTHGE #%  HO ERRDRD %% FEOGEAM

E e

COVERALL RESULTEZW"

9 uP§'1nEﬂﬁ

T

PAGE B3.84

e SDMO T a =10
ZF18., :

ls2Fi. 1

w S THVERAGE S 0 215

L 1s2THAFE. L

2V RsFE L

COMFOH = @R
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.PHGE AR FTH.. FLEA AN MOM.s 28 FEB.s 1978

 FTH4s L
- FROGRAM CLOOF

700 0 0 O O A0 0 0 A B 0 O B O B OO R O R R B R R

| .
F ©CLOOP -~ MOMITORS THE CHAMGES IH STATUS OF THE CONTROL LOOF
L QPERATOR S SHITCHES. IF COMTROL PEOGEAMES AEE

F . RUMHIHG THE SWITCHES SHOULD OMLY BE *OFF*-ED IH AM EMERGEMHCY.
G SUCH AW QCCUREMCE IS LOGGED AMD STORED IW THE DISC FILE

i CEMAUTSY CETATUS OF MAMUARL-AUTOMATIC SHITCHES: FOR RETEIENVEAL
- IM THE FROCESS MAMAGER®S REPORT, : :

- T

I, . :

I THE DATA IS STORED IM A S5-HWORD ARFEAY WMHERE &

o . TBUFCL2=5WITCH NUMBERC I=MASTER OVER-RIDE SHITCH:

o C2=5AFCD LOCAL-COMPUTER SMITOH:

o : 3=CLFLO LOCRL-COMFLTER SWMITCH?

N |4 EEHLT LOCAL ~COMPLUTER SWITCH?

| . LOCAL-COMPUTER SMITCH?

[ SFR LOCAL<COMPUTER SWITOH?

B OLOCHL <COMPLITER SHITCHS

D LOCALS<COMFUTER SWITCH:
15 = LLHHl'

CE=0H LOCAL D

£ . Cl=0M COMPUTERS

C [EUFC2=50=1IRY s HOLIE » HIH AT TIME ‘OF SWITCH.
|

i
L TEUF C2r=CURREHT wTHTIB

EREDORE MESSRGES 3

MASTER COMTEOL SWITCH TO LOCAL MODE.

MASTER COMTROL SWITCH TO COMPU MODE.

SATURATOR FLOM ON LOCAL COMTROL

P OSATURATOR FLOMW OM COMFU COMTROL .

OCLOUDY LRIoR FLOMW OM LOCAL COMTROL

POCLOUDY LeorR FLOW OH COMPU COMTROL
REMELT FLOKW OH LOCAL COMTROL- ‘
EEMELT FLOW OH COMFL COHTROL

A-ZAT GAS FLOMW OH LOCAL COMTROL

A-SAT GAS FLOW O COMPL COMTROL

= F GRS FLOW OW LOCAL COWMTROL

GRS FLOM OM COMPU COMTROL

GHE FLOM OM LOCAL COHTROL

CLAS FLOW OM CORPL CORTROL

LIME ARBDITION RATE OW LOCAL COMTROL

LIME ADDITION RATE OH COMPL COMTROL

1
[ RO s

(IR ST CAE o RN It e

T ETE e
b Rt b ek b el

. - VEREION : 9-11-1977,

1
|
] B e R ke ol R R E o o R R A T Y EFREELFELEE LSS LA T R A R S A g A
.

] INTEGER IDCEC14dy IBUFCS s ITCS )y IFCS T, SHANTS (3
. ——m=e COWMOH  ~ =

—

LHFI"I"IIII“‘F'j'nI!FLrIII'lﬁluﬁEHLTD']H'wILTHbH'1H'~
GHEFADTC LAY GASFEDC 1@y GRSFCDE lHluF[lf1D'1UJ~
SERYODCZE ) s DUMMY 56 1

TEAMT TEMUL C320  TRMO 4B s TOIMCE s TROLT (34

Fo i
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FPAGE BE62

EM
A
)

=H
L
FE
WK
faH
aH
I3A
FI
SE

T
T4
IR
I
I
Is
T4
15

ﬁlﬂd
A Es
ulur

1B

cL

CTH

TRNIIE

FORTHAN PROGRAMS

o

OOF Bt 28 HM PIOM,

Datap i T 56
= EMGIMEERTMG LMITS
= BSMOLT
= DR MDLTE

[
ok
FC

CFDATED
g CUPTATED

ITJ el iy
By CTAS

FLOD-
FLOD-
HLT D~
THED-

SATURATORE FLOW COMTROL DATA
CLOUDY LTGRO FLOW DATA
REMELT COMTROL TATA

COHTROL LIWE DATAH

SFAD- GRS FLOW COMTEGL DATA FOR H
SFED- GRS FLOW COMTEQL DATA FOR "B
EFCD- GRS FLOW COWTEOL DATH FDH,fﬂ"
LEYD- FILTER CYCLE MOMITER DATH
EWOD~ SERVYOBALANE SCALE MOHITOR DATA

AMT
P~ &
H

OEAMPL THG RRATE CPACER F
"ESAMPL THG TIHES CPERT
HLMEERS
SBTATLS TH IIIF]JHTIII B
[LE MORDE UPTRTED b
TOWEHDG HHD T
OHTREOL PEOGRAME
OF - HUTO-MARLIAL

ouT
COP
i

SEHEM s ZHAL S 2HT S

BMAUTES

TRTH
FEOM Gkl THG

FICK UP PRRAMETERS
CALL RMPRREIF
JOHT =]
SO TR

CALL DCEMDCTD

OFEH FILE &

’.”“U‘ s .l.rl"‘" !
LT 5 T EHD

AMT STEF
TSTAT=H

I EEE I=1.1%

IFiiIuEﬁﬂlﬁﬁ“HHW CISTAT.ER. 1) 26070
TFOTLER, LIGOTD 1BE

e -1
Jd=TBTITC s T

TFi.d, kuuu ;m:“n

TSTAT

FLAG THAT IHE COHTRAL

AT LERST

K TBIT O JOMTH Y
L= lBITo s JONTON

'PHLLH|H1FU [y

EGLIEHCY s

fcI(E“
S 1 TOHES

PREOGREAN 8

Fepe QG

PAGE B3.86

EHGUH FROM ADCY WOLTHGES

ERTLRATOR

F B DL.FrHHfIf~ ]
RLHMTHG HP FF

N

LEE

Is EUMHIMNG.
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PAGE GEB3  CLOOP  S:8@ AM MOH.s 28 FEB.s 1978

—
R

IF <Ok,
JEEEI-0 1=K :
CALL MEZAGO-Ja T3
CALL EXED
IBUFCLy=1
TEUFC k.
TELFC ITeES
TEUFC43=TTi40
i TBUF S =TTe3

LN R

-
=l

R i O

EE o e B ot I I o
L i el b e e e e

L
R R I e e e e

5]

B12E j CALL MREITFOIDCE: TERE: TBUF 50

=

COHTIHUE

CALL CLOSECIDCES
Bl2s END
FTH4 COMPILER: HFSZ@EG-160592 REV., 1728

#% MO WHENIMGE % HD ERRORE ## FROGEAM = @&3%%9 COMMOM = BETFS:






	Heher_Anthony_Douglas_1978.front.p001
	Heher_Anthony_Douglas_1978.front.p002
	Heher_Anthony_Douglas_1978.front.p003
	Heher_Anthony_Douglas_1978.front.p004
	Heher_Anthony_Douglas_1978.front.p005
	Heher_Anthony_Douglas_1978.front.p006
	Heher_Anthony_Douglas_1978.front.p007
	Heher_Anthony_Douglas_1978.front.p008
	Heher_Anthony_Douglas_1978.front.p009
	Heher_Anthony_Douglas_1978.front.p010
	Heher_Anthony_Douglas_1978.front.p011
	Heher_Anthony_Douglas_1978.front.p012
	Heher_Anthony_Douglas_1978.front.p013
	Heher_Anthony_Douglas_1978.front.p014
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