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A BST RAC T

This thesis describes a new method of constructing a real-time

interactive software system for a minicomputer to enable the

intera~tive facilities to be extended and improved in a multi­

tasking environment which supports structured programming

concepts. A memory management technique called Software Virtual

Memory Management, which is implemented entirely in software, is

used to extend the concept of hardware virtual memory management.

This extension unifies the concepts of memory space allocation

and control and of file system management, resulting in a system

which is simple and safe for the application oriented user. The

memory management structures are also used to provide exceptional

protection facilities. A number of users can work interactively,

using a high-level structured language in a multi-tasking environ=

ment, with very secure access to shared data bases. A system is

described which illustrates these concepts. This system is

implemented using an interpreter and significant improvements in

the performance of interpretive systems are shown to be possible

using the structures presented. The system has been implemented

on a Varian minicomputer as well as on a microprogrammable micro=

processor. The virtual memory technique has been shown to work

with a variety of bulk storage devices and should be particularly

suitable for use with recent bulk storage developments such as

bubble memory and charge coupled devices. A detailed comparison

of the performance of the system vis-a-vis that of a FORTRAN based

system executing in-line code with swapping has been performed by

means of a process control Case study. These measurements show that

an interpretive system using this new memOrY management technique can

have a performance which is comparable to or better than a compiler.

oriented system.

INDEX TERMS

Real-time operating system; virtual memory; BASIC; interpreters;

protection; interactive systems; structured programming; command

lanuages; system documentation.
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P R E F ACE

STATEMENT OF ORIGINALITY

All the work reported in this thesis is the candidate's own original work

except where specifically stated to the contrary.

BACKGROUND

During 1974 I was involved in three small process control projects which used

a simple real-time BASIC for data acquisition and some simple control functions.

The system used, called PROSIC, was an extension of the Varian computer BASIC

(GOUWS, 1973). The BASIC implementation had replaced earlier applications which

had been coded in assembler, enabling an order of magnitude reduction in program=

ming effort to be achieved in the process. Despite this successful use, it

became apparent during the course of the projects, . that PROSIC (and all other

real-time BASIC's available at that time) had a number of limitations. Some of

these were overcome in an upgraded version, called PROSIC 2, which was produced

in early 1975 (HEHER, 1975, 1976a, 1976b) but s~rious defects remained which

limited the scope of PROSIC.

In 1975 a new medium-scale process control project was commenced (HEHER,

1977b). On examining the requirements for the project, it was clear that a simple

real-time BASIC such as PROSIC would not be adequate, primarily because of the

lack of multiprogramming facilities. FORTRAN IV was therefore used as an applica=

tions programming language for this project, running under the control of the

Hewlett Packard Real-time Executive RTE 11. In the course of this project

considerable experience was gained in the use of a non-interactive compiler­

oriented system. The FORTRAN/RTE combination worked satisfactorily, but in various

instances it was noted that programming tasks were considerably more difficult to

perform in the compiler-oriented system than they would have been in an interactive

system. A general purpose real-time operating system like RTE is also relatively

difficult for the application oriented user to operate.

The experience gained on this project, together with the experience of

using a real-time BASIC on the previous projects~ indicated a definite need for

an interactive multiprogramming system. The widespread acceptance of structured

programming techniques over the last few years also pointed towards the in=

corporation ..... /ii
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corporation of these concepts in an interactive program development system.

Examination of the current literature indicated that this need was being felt

elsewhere as well, but that there were no systems available which met all

the desired requirements.

The design of a multiprogramming system, which had commenced in 1974, was

therefore continued in earnest in 1975. In attempting to design the system it

was soon apparent that serious memory management problems existed in the

construction of a multiprogrammable system. A variety of techniques for solving

the problem were considered and discarded before the concept of 'Software Virtual

Memory Management' was evolved early in 1976.· This new system was originally called

PROSIC 3 but in 1977 the name was changed to VIPER (Virtual Interactive Process

Executive for Real-time control) to reflect the totally different structure of the

new system.

SCOPE AND CLAIMS

This thesis therefore presents a new method of constructing real-time interactive

operating systems for a mini- or microcomputer. The primary claim of this thesis

is that to construct such systems fundamental memory management problems must be

solved. The concept of software virtual memory management is proposed as a

solution which does not require the use of any special purpose hardware, the memory

management functions being implemented entirely in software.

The additional claims of this thesis are that:

1. The interactive facilities found in simple monoprogr~ed systems

can be extended and improved in multitasking systems.

2. Structured programming concepts can be efficiently supported in an

interactive multiprogrammin& environment.

3. An interpretive system can be constructed which has a performance

comparable to that of a system executing in-line code with swapping,

without requiring an electromechanical storage device for the time­

critical tasks.

4..... /(iii)
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4. A simple user interface can be provided which facilitates the use

of the system by application oriented users.

5. New and improved protection facilities can be provided to permit

safe multi-user m~lti-programming by the application oriented user.

A system incorporating the facilities presented above provides a unique and

powerful set of software tools which makes a mark~d contribution toward the goal

of producing more reliable software efficiently and economically. Many of the

facilities listed above are not new or original concepts and have been discussed

and proposed in various contexts, as referenced in tpebody of the thesis. It is

claimed, however, that they have not or could not be implemented op small mini-

or microcomputer systems which use a high-level user oriented language for process

control word.

The concepts presented are demonstrated in the experimental operating system

VIPER which operates in an interpretive mode. It is claimed that the performance

of interpretive systems can be significantly improved using the memory management

technique, to the extent where they are competitive with conventional compiler

based real-time executives, for a range of applications where interactive systems

could not be previously used. The system described in the thesis was developed

primarily for experimental process control work, but a further claim of this thesis

is that an operating system using software virtual memory management could be

extended and its performance improved to an extent where it competes with a wider

class of applications.

VIPER has been used in an industrial application. From the results of this

case study it is claimed that compared to the original FORTRAN implementation, the

VIPER implementation required less memory and bulk storage space; was easier to

write and generated more readable code; took less time to debug; could be more

thoroughly tested; was far safer; and executed faster.

ORGANIZATION

Chapter 1 opens with a review of the problems facing the real-time programmer

and of the techniques which have been proposed for the production of cheaper and

more reliable software. The properties required of an interactive system are

then discussed followed by a brief review of existing real-time interactive

operating systems and languages. The chapter concludes with an explanation of

the requirement for Software Virtual Memory Management (SVMM).

An· •••.• / (iv)
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An overview of the operating system VIPER is presented in Chapter 2. This

system has been constructed both to demonstrate the facilities which can be

implemented using SVMM and to assist in their development. In Chapter 3, the

. memory management algoritluns themselves are described in mQre detail together

with. some comments on alternative structures and the reasons for selecting

particular mechanisms in the VIPER implementation.

A detailed description of all the important features supported by SVMM

is given in Chapter 4 under the headings of structured programming, interaction,

protection and error handling, synchronization and documentation. In Chapter 5

some figures on the performance of the system are given, both in absolute

terms and in comparison with VIPER's monoprogramrned predecessor PROS+C.

Information on the performance of other interpretive and interactive systems

which has been reported in the literature is also presented.

The performance of the SVMM system in comparison with compiler-oriented

systems executing in-line code, is made in Chapter 6 by means of a case study.

This case study draws upon my experience with the FORTRAN-based process control

system mentioned in the opening paragraphs of this preface. The difficulty of

performing more precise performance evaluations is also noted.

The concluding chapter discusses the limitations of, and possible

extensions to the SVMM system. Some interesting extensions are. examined which

can be used to improve the performance of the SVMM system and extend its range

of application. These extensions relate both to work which is in progress,

but which has not been completed, as well as to more fundamental aspects.

DOCUMENTATION OF VIPER

Within this thesis only a brief functional outline is given of the construction

and operation of the operating systems VIPER. The primary documentation for

this system is the source listing. The source has been written with extensive

comments and cross-indexing, so that although it is written in Varian Assembler

it is intended to be a readable document even for readers unfamiliar with the

Varian code. No flow charts are used in the documentation of VIPER nor were any

used in its design. This is in accordance with modern documentation practice.

This .•... / (v)
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This approach was also adopted with PROSIC and this proved to be an

adequate way to diseminate information on the internal structure and operation

of the system. The advantage of using the source listing as the primary

descriptive document is that up-to-date copies can be easily produc~d for the

interested worker. The excessive bulk of the listing of VIPER (approximately

500 pages), and the cost of duplication, precluded its inclusion as an appendix

to this thesis, but, as noted above, copies are readily.available if required.
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1.1

1.1

C H APT E R

I N T ROD U C T ION

THE SOFTWARE PROBLEM

The cost of software has been rising rapidly over the past decade

and in nearly all applications the software cost now exceeds that

of the hardware. Within the next decade it is estimated that the

disparity between hardware and software cost will continue to

grow to a ratio of 90% for software and 10% for hardware. Two

factors contribute to this disparity: the first is the steadily

declining cost of the hardware and the second the increasing

sophistication which is expected of software. To permit low cost

computer hardware to be exploited in new applications there is a

pressing need for the software cost to be reduced in every possible

way,

There are four components to the total cost of a software

project (SMEDEMA, 1977):

I. specification and design;

2. coding;

3. connnissioning (testing and debugging) ;

4. maintenance and upgrades.

To reduce the cost of software, attention must be given to all

aspects, but particular attention must be paid to connnissioning as

this 'can often be the most tiresome, expensive and unpredictable

phase of program development' (HOARE, 1975a). Hoare has further

noted three principles which are of importance in the production

of reliable software:

'If a progrannning language is regarded as a tool to aid the

programmer, it should give him the greatest assistance in the

most difficult aspects of his art, namely program design,

documentation and debugging.

I. ..... f 1,2
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I. Design. The first, and very difficult, aspect of

design is deciding what the program is to do, and

formulating this as a clear, precise and acceptable

specification. Often just as difficult is deciding

how to do it: how to divide a comple~ task into

simpler subtasks ..••. A good programming language

should give assistance in expressing not only how a

program is to run, but what it is intended to accomplish

2. Documentation •.••• must be regarded as an integral part

of the process of design and coding. A good programming

language will encourage and assist the programmer to

write clear self-documentary code ••••. The readability

of programs is immeasurably more important than their

writability.

3. Debugging ••.•• even the best-designed and best-documented

programs will contain errors and inadequacies, which the

computer itself can help to eliminate •••••

A necessary condition for the achievement of any of these ob=

jectives is the utmost simplicity in the design of the language'

(lWARE, 1975a)

It is also recognized (KERNIGHAN, 1977; ROARE, 1975a) that real

programs are subject to a steady flow of changes and improvements and

that both the language and the operating system should make provision

for this dynamic characteristic of software. Maintenance and upgrades

together with testing and debugging can constitute 50 to 80% of the

cost of a software project and a system which makes specific

provision for these tasks can have a significant impact on the total

cost of the software.

Although many of the concepts presented in this thesis are of

general applicability, the thesis is concerned primarily with soft=

ware for real-time applications and for process control systems in

particular. KOPETZ (1976) has made some pertinent comments on this

class of,applications.

'The user group concerned is that of process control and, in

particular ..••• /1.3
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particular, the direct control of heavy industrial plant by

computer. Many types of industries are involved, such as

chemical, petroleum, steel and public utilities (e.g. water,

gas and sewage).

A number of user requirements combine to place major

constraints on the design of a suitable system. Some of the

most significant points are indicated below, though not all

of these are applicable to each user:

I . The programming expertise available to a user varies

from virtually none to an extensive and expert team.

2. Frequently, the process being controlled, or the control

techniques being applied, are secret. In such cases, the

user will normally prefer to utilise his own resources

to program the most confidential areas.

3. Often, it is not practical to fully define all the functions

of the system prior to installation. It is, therefore,

necessary for the user to enhance his system as experience

and resources permit.

4. It is normal for the system to have to function for 24

hours a day and five or seven days each week. Further,

any development work must utilise-the process control

computer.

5. Because of reliability and maintenance problems, the system

must not be dependent upon mechanical devices such as

discs and magnetic tapes. These devices are often used,

but only for non-critical functions.

6. Man-machine interfaces represent a major proportion of the

functions of the system.

7. The market is often conservative, preferring well established

techniques to potentially more effective but unproven

approaches. Indeed, it is only in recent years that the

use of high-level languages have become widely accepted.

8. The cost of a system may vary from around f20K to greater

than £300K, but each has the same basic characteristics.'

KOPETZ .•••• / J .4
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KOPETZ notes further that no suitable systems were available

to meet these requirements and goes on to describe the development

of a multitasking BASIC system (the system is described in more

detail in section 1.4.3). More extensive survey papers (DIEHL, 1976;

GERTLER, 1975; WILLIAMS, 1976) make similar comments on the

characteristics of process control systems.

In addition to the points made above there are three additional,

related factors which have motivated and influenced the work under~

taken in this thesis.

I . Large, complex and costly plants can afford large, complex and

costly computer systems, but there are a very large number of

smaller plants which can benefit from automation provided it is

available at reasonable cost. In other words, decreasing the

cost of computer control systems will open up new areas of

application rather than merely reducing the cost of present

applications.

2. Many applications are in new areas which require extensive

experimental work before control strategies can be evolved.

3. The users of the systems are technically well qualified and

generally have a good understanding of their plants and how

they would like them to perform, even if uncertain of how to

attain this performance.

As a result of these factors it is claimed that there is a

definite need for improved interactive computing systems which can be

used by the process oriented user. The systems should be simple and

safe to use and provide flexible multiprogrannning facilities to permit

_new tasks to be written and connnissioned concurrently with tasks which

are performing on-~ine control.

In this introductory chapter some factors which can simplify and

reduce the,cost of writing software are discussed next, followed by

an examination of the requirements for a real-time interactive multi~

programming system. In the fourth section of the chapter a few

existing •••.. /1.5
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1 .2.1

1.2.2

1.5

existing software systems are briefly reviewed to illustrate the

problems encountered in constructing interactive systems. In the

fifth and final section the importance of memory management is dis=

cussed and a new memory management technique is proposed which can

be used to overcome a number of the difficulties reported.

Techniques for reducing the cost of software

Since the "software crisis" was first identified nearly a decade ago,

(NAUR, 1968) there have been a number of developments which have

improved the reliability of software and decreased the cost of

production. Seven fact9rs which are of relevance to the class of

application with which this thesis is concerned are discus~ed below:

Structured Programming

Undoubtedly the most important advance in recent years has been the

development of "Structured Progranuning" (DAHL, 1972; WILKES, 1976).

The methods and discipline associated with this concept have

assisted in reducing the cost of all four components listed above.

The "top-down design" or "stepwize refinement" (WrRTH, 197]) used,

unifies the specification, design and coding phases, while the

modularity and structural integrity of segments of code have been

widely reported to reduce the number of logical errors which occur,

thereby simplifying the commissioning of software. Structured

programs are also easier to maintain and upgrade. Although aspects of

structured programming are still under development, sufficient

evidence has been accummulated to indicate that the concepts should

be incorporated in all future languages and operating systems.

Interactive operation

The testing and debugging phase can be further simplified if they

are combined with the coding phase by use of an interactive software

development system. The interaction is to permit software modules

to be tested as, or as soon as possible after, they are written,

as well as to allow iterations in the software development cycle

with the rapid testing of previously developed modules as additional

modules are added. Interactive testing and debugging is particularly

important in real-time systems where a complex set of programs co-

operate ••••. /1.6
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operate to perform a given task in response to real-time events.

If a task need be stopped or taken off-line before 'test' or

'debugging' functions can be included, the commissioning task is

made considerably more difficult and time consuming.

WILKES (1976) made SOme pertinent comments in this connection:

"There has, to my mind, been too little interest in devising ~fficient

methods for locating the errors that do get introduced. Most

debugging procedur~s in current use are crude and depend on

examination by the programm~r of a static picture of his program

when it has stopped. Methods of obtaining a trace of what was

happening during the running of a program have been successfully used

in the past and I suggest that the time has coroe to re~examine these

methods with the object of developing them into serious tools that

.can be used by the software engineer.".

User programming

The function of software ~s to perform a service for sOme user.

If the user is able to perform the programming task himself, the

program is far more likely to meet his specific requirements. This

need for the programming to be undertaken by those who understand

the problem has been emphasised by DRIESTROWSKI, 1975; GORDON CLARK,

1975; DIEHL, 1976; ZEH, 1976 and others. To enable the application

oriented user to perform the task himself, however, excellent

software tools must be available so as to "improve software reliability

by reducing the opportunity for error" (GRIEM, 1975). The user does

not wish to, and should have no need to learn the intricacies of a

real-~ime operating system. There are four essential requirements

to enable a user to perforriJ. the real-time programming task himself:

1 • The system should be simple and safe to use and should inspire

confidence in the user.

2. The user's previous experience should be built upon and extended

without attempting to force him to adjust to radically new

concepts. Many process engineers; for example, are familiar

with FORTRAN and BASIC and any new system should draw upon this

experience wherever possible.
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3. The system should guide the user gently and naturally into

the use of new programming techniques such as structured

programming and should give him every possible assistance

in preparing and maintaining good documentation.

4. Good error reporting and recovery facilities should be

provided and adequate protection mechanism must be implemented

to protect the user against his own errors and against his

errors affecting any other users.

Documentation

Documentation is an important aspect of any software system, as

was noted in section 1.1. In an interactive experimental environ=

ment, where the programming task is evolving on-line, documentation

is even more important, and commensurately more difficult to

maintain. The language and operating system should provide every

assistance to the programme in maintaining clear, readable

documentation. An important point is that documentation is related

not only to the description of a particular piece of code or

program module. Of equal or even greater importance is the

documentation of the overall structure of the system and the

relationships amongst the various code and data modules out of which

a task is constructed. As these relationships can vary dynamically,

it is desirable for this aspect of documentation to be automated,

so that the information represents the actual state of the system

rather than an assumed state as may occur with manually produced

documentation.

Synchronization

An essential requirement of any multiprogramming system is the

provision of synchronization functions to control access to shared

resources. A wide variety of techniques have been developed for

synchronization (BRINCH HANSEN, 1973; DIJKSTRA, 1968; HOARE, 1974,

WETTSTEIN, 1977) many of which are designed primarily for the more

complex synchronization problems which occur in the construction of

real-time operating systems. Only the simpler functions are needed

for ....• / 1•8
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for the user-oriented system under consideration. Suitable functions

are available and can be readily implemented, as discussed in section

4.4

Protection and reliability

The ideal program is one which is known with absolute certainty to be

correct. This can be established for certain classes of software by

using formal proofs of correctness, but as BRINCH HANSEN (1973) has

pointed out "a proof is merely another formal statement of the same

size as the program it refers to, and as such it is also subject to

human errors. This means that some other form of program verification

1S still needed".

The next best thing to absolute correctness is immediate

detection of errors when they occur. This can be gone at compile time

or at run time. (In the case of an interpreter using as incremental

compiler, compile time implies any time before execution.) In either

case reliance is placed 1n a certain amount of redundancy in programs

which makes it possible to check automatically whether operations

are consistent with their types of variables and whether they preserve

certain relations among those variables. Error detection at compile

time is possible only by restricting the language construction e.g.

by using a "structured" language; error detection at run time is

possible only by executing redundant statements e.g. subscript bounds

on array variables. In interactive systems, which frequently use an

incremental compiler, greater reliance may need to be placed on run

time checks, but compile time checking should still be used wherever

possible.

This still leaves a class of errors that is caught neither at

compile time nor. at run time. This implies that a secure and reliable

system must protect both the data and physical resources of each com=

putation against unintended interference by other computations.

A further class of errors are those arising from time depen=

dences. These are in fact the most difficult to trace and fix as

they are frequently non reproducible. The synchronization functions

mentioned in the previous section are an important safeguard in this

respect. Although they cannot prevent all errors, if correctly used

they ..... /1.9
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they can ensure that the results of each computation is independent

of the speed with which the computation is carried out. In other

words the result of a computation is unaffected by concurrent

processes which may be running simultaneously.

All four types of verification and protection, namely compile

time checking, run time checking, data and resource protection and

time dependence error protection, should be implemented in a secure

system.

High-level languages

The use of a high-level language has been more or less taken for

granted in the discussion up to now as no user-oriented system should

ever descend to the level of Assembler coding. High-level

languages are in fact now being increasingly used even for system

programming functions (SMEDEMA, 1977) and are also reportedly in~

vading the small program microprocessor domain (CLAGGETT, 1977;

MAPLES, 1977). While certain system programming (and microprocessor)

applications will continue to be programmed in Assembler code,

purely due to the lack of a suitable high-level language on a

particular machine, there is a no justification for the typical

process control application to do so. A high-level lan~uage should

be used in all but the most exception~l circumstances, such as low­

level functions with very fast response time requirements; but

even these functions should be controlled from high-level routines.

PROPERTIES REQUIRED OFA REAL-TIME INTERACTIVE MULTIPROGRAMMING SYSTEM

The facilities required in interactive computing systems have been

studied in some detail by a number of workers (ARDEN, 1975a; CHU,

1976; GOULD, 1975; HILDEN, 1976; PALME, 1975). Chu in particular

presents a list of desirable properties of an interactive program

development system:

"1. The interactive language is symbol-executable, expression­

executable, and statement~executable as each symbol is

being entered; the degree of interactivene~s can be

made under the user's command.
"2 •••••• /1.10
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2. The declaration statement is permitted to be entered at any

point of the source program for the user's convenience in

making program entry and program composition. In order to

obtain program clarity, a "declaration collector" could be

included in the interpreter in much the same way that a

BASIC interpreter allows the resequencing of its lines.

3. The syntax allows left-to-right, nonbacking-up, symbol-by­

symbol syntax checking and execution.

4. The values of the user's data structures should be inspect=

able at any point during the program execution without

affecting the source program.

5. The precedence relation of the operators allow left-to-right

statement execution and top-to-bottom program execution.

6. There should be a language construct which permits a "pro=

grammatical pause" so that the user may examine and modify

the values in his data structures.

7. There should be language constructs for program entry, program

editing, program execution, program debugging, and program

documentation. There should be uniformity in the syntax of

these language constructs in order that the interactive

language becomes easier to learn". (CHU, 1976)

Some of the properties are only directly applicable to the

particular single user direct execution system described in his paper,

but the concepts are extendable to more general interactive systems.

The facilities required in real-time languages and operating

systems have also been examined by a number of authors (BARNES, 1975;

BlANCHI , 1976; BRISTOL, 1975; ELZER, 1972; ELZER, 1977;

HAASE, 1972; KOPETZ, 1976; KYLSTRA, 1977). From these papers

and from the author's experience with various process control systems

and applications (HEHER, 1975, 1976a, 1976b, 1977a, 1977b) a

definitive list of the attributes required for a real-time inter=

active multiprogramming system can be specified.
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The system must:

1. support structured programming concepts with independent

named procedures and subroutines, together with multi­

tasking facilities;

2. provide controlleq access to shared data bases (synchroni=

zation and protection);

3. be simple and safe to use;

4. provide flexible interactive operations which facilitate

the on-line writing, testing debugging, maintenance and

documentation of real-time tasks.

REVIEW OF EXISTING INTERACTIVE OPERATING SYSTEMS

In this section a number of existing interactive systems are reviewed

and their successes and shortcomings discussed.

Real-time BASIC and derivatives

Real-time versions of BASIC are the simplest form of interactive

operating systems and they have been widely and successfully used

in a variety of applications. Their primary advantage is that they

permit a high-level language to be used without recourse to an

expensive bulk storage device and a complex real-time operating

system. The systems are simple to operate and program and have

been used to a large extent directly by the users, but three

fundamental restrictions have limited the more widespread use of

BASIC systems.

1. BASIC is essentially a monoprogrammed system supporting one

single monolithic task. No provision is made within the

language nor in many implementations for multiple independent

tasks.

2. The language has very poor structure which together with the

limited variable naming conventions results in large programs
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being unwieldy and difficult to read or change.

3. Even where multiple programs can be used using techniques

such as overlays, the shared data facilities are limited

and unsafe.

A further disadvantage of BASIC is the execution time penalty

which results from the interpretive mode of operation. On the

other hand, if a compiler is used the interactive facilities are

sacrificed to a greater or lesser extent.

Compiler-oriented disc-based teal-timeopetatirtgsystems

In more complex applications where BASIC cannot be used, the next

"step-up" in computing power is to use a real-time operating system

which supports an on-line compiler for a high-level language. Owing

to the size of the compilers and the associated loader, editor and

library, these systems must be disc-based and generally use some form

of foreground/background memory partition with swapping of programs

to and from disc storage. An example of such a system is the Hewlett­

Packard RTE-II operating systems which supports FORTRAN, ALGOL and

BASIC. (This system is described in more detail in Chapter 6 where

it appears in a Case Study.)

These executives which support on-line compilation are

frequently called interactive in that a program can be edited COmF

piled and link-loaded in a few minutes without disturbing other tasks

in the system. This type of interaction is considerably different

conceptually from that offered by BASIC however, and requires a far

greater level of experience and training to utilize effectively.

Some other disadvantages of these systems are mentioned below. Be=

fore listing these, it should be noted that these operating systems

are generally very successful in their intended function and represent

a major advance in the state of minicomputer real-time software.

They are powerful 'general purpose' systems which will continue to be

used for a variety of applications which require the speed and

generality of multi-language systems.
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The disadvantages of using this type of executive for inter;:::

active process control software development are as follows:

1. The complexity of the systems makes them difficult to

operate and easy to 'crash' (some commercial systems are

known to be particularly unstable and susceptible to operator

error).

2. True interactive program development is not possible and real­

time programs can be extremely difficult to debug because of

the difficulty of providing suitable high-level 4ebugging

facilities. The only facilities available are generally memory

dumps and limited utilities for monitoring the operating of

programs at the assembler code level.

3. Error handling and reporting is rudimentary and is usually ~n

machine level terms e.g. memory protect at location xxx.

4. Tasks and data areas are afforded little protection and can

be turned on or off or overwritten by other users whether

authorized or not.

The primary purpose of these real-time executives is in fact

to provide the support necessary for writing more special purpose

user-oriented software rather than for users to use the system

directly. The software system VIPER described in this thesis, could

for example, be developed, and run, under the control of a real-time

executive as well as in a stand alone mode. To this extent user~

oriented interactive software systems like VIPER and general purpose

real-time executives may be considered complementary rather than

competitive.

Multi-user and multiprogrammable BASICs

In recognition of the gap that exists between compiler-oriented

real-time executives and simple real-time BASIC, various attempts

have been made to extend the facilities of BASIC into a multi=

programmed mode. As it is difficult to generalize about these systems,
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four particular systems will be briefly reviewed. The first two

retain the interpretive mode of operation while the second two use

a combined compiled/interpreted mode.

1. HP real-time multi-user BASIC (HEWLETT-PACKARD, 1976)

This system runs under the HP RTEII or III executive and

supports up to four users each of whom has his own copy of

the entire BASIC subsystem. If sufficient memory is avail=

able, a user may be memory resident, but in typical instal=
•

lations the users will share a memory portion with other

tasks. In this situation the entire BASIC program and the

BASIC subsystem are swapped to and from the disc with an

overhead of ]00 to 250 ms per swap. The users have limited

shared data facilities and each user can only have one main

program which is partitioned into subtasks by line numbers.

All tasks have a global (common) symbol table. A flexible

subroutine calling mechanism is provided, but subroutines can

only be coded in ASSEMBLER or FORTRAN. (The BASIC GOSUB

function is not a subroutine call in the accepted definition of

a subroutine). In summary, although the system has a limited

multi-user capability, it is not a multiprogrammable system.

2. NOVA Multex-BASIC (PERSEUS, 1976)

This system uses a single re-entrant copy of an interpreter to

execute a set of independent tasks which are located in user

specified memory partitions. A maximum of 32 tasks are per=

mitted each of which is a single monolithic BASIC program.

Only ASSEMBLER subroutines can be called from BASIC programs.

The size of a memory partition can be changed with user commands

only, the system performing no memory management outside of a

memory partition. A single global common area, which is not

protected in any way, is used for all tasks. A notable feature

of the system is the ability to provide some degree of protection

by prohibiting a partition from using specified commands.

A major disadvantage is the necessity to have a physical I/O

device connected permanently to a partition if that partition

performs ••..• /1.15
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performs any input or output. Only the system console can

be switched from one partition to another with operator

commands.

3. KENT K90 BASIC (KENT, 1974; KOPETZ, 1976)

This BASIC system operates in two disjoint modes. The one is

a development mode where normal BASIC type interactive

operations are permitted and the other is a multiprogrannned

mode. Only compiled programs can exist in the multiprogrannned

mode and no interactive operations are permitted on these

procedures. The development mode is similar to a time sharing

BASIC in that up to three terminals can be active simultaneously,

but no communication is possible between a user at a terminal

and any other task in the system. Access to the plant data­

base is also restricted in the development mode in that no

output operations are permitted.

In the multiprogrammed mode programs are compiled either

into resident memory areas or into user specified partitions.

Programs resident in one partition are swapped to and from

bulk storage devices as required by the scheduler. Only a

limited number of resident programs can be added or deleted

without performing a system regeneration. Hardware memory

mapping devides are used to provide the necessary access to

partitions. (The system operates only on PDP-11 computers.)

No memory resident shared data facilities are provided and

task to task communication beyond a single word must be per=

formed via shared files which are resident on a bulk storage

device.

A notable feature of the K90 systelli is the comprehensive

treatment of error handling. A variety of modes are possible

ranging from full system control and reporting of errors to full

user control and reporting. A major drawback of the system

however is the complete separation of the program development

and multi-programming modes, each of which uses its own set of
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keyboard commands and program directives. This lack of

uniformity of presentation is a serious handicap to process­

oriented users.

4. SWEPSPEED (WILKINS, 1976)

SWEPSPEED is a multiprogrammed BASIC system similar in many

respects to the KENT K90 BASIC. All procedures must be com=

piled before execution but a limited set of interactive facilities

are available fQr use on executing programs. (The symbol

table is retained in the compiled version permitting symbolic

examination of variable values when in a special mode.) The

various procedures within the multiprogrammed system are

identified by number only and no named subroutines are permitted

either.

It is a single-user system with only one console being

supported where program development can be performed. All

commands to the command job which controls the system, all

editing and listing and all error messages are transmitted

through this terminal.A single global data area is provided

for access to shared data. A certain degree of protection is

provided for this data area in that programs below a certain

priority can only read and not modify global variables, while

other priority levels can read and write to globals, but

cannot create them. This restriction is necessary because

globals can only be deleted with difficulty once created, re=

qu~r~ng either a system generation or a temporarY shut down of

the system to enable the 'system manager' to clean up memory.

Deleting statements and certain other operations also result in

wasted memory which can only be recovered with difficulty.

A notable feature of the system is the ability to back­

list (decompile) a program from its compiled code. (This is

another reason for retaining the symbol table.) The advantages

of only a single copy of a program without the need for a

separate copy of the source are therefore retained together

with the advantages of high-speed execution.
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SOFTWARE VIRTUAL MENORY MANAGEMENT

Comparing the requirements stipulated in section 1.3 with the pro=

perties of the systems described in section I.4~ it can be seen

that no existing systems are satisfactory in all aspects. Their

major shortcomings are:

1. The lack of independent named procedures and subroutines which

is essential for a structured progr~ing approach.

2. The poor shared data facilities and a lack of protection for

any facilities that are provided.

3. Restricted interactive facilities~ in that none of the

systems listed, nor any system known to the author, permit

the interactive operations to be used on executing tasks.

These shortcomings can all be traced to a single problem: memory

management. The implementation of interactive facilities requires

that the code defining a task and its associated data areas, be

expanded and contracted as the interaction proceeds. In a multi=

progrannned system the difficulty occurs in attempting to allow

multiple tasks or procedures to simultaneously undergo this dynamic

change in size and structure. The addition of a multi-user

capability further complicates the memory management task, as does

the requirement for flexible access to shared data areas.

Hardware virtual memory mapping devices were considered as a

possible solution to this memory management problem, but were rejected

because of the desire to maintain processor independence. Suitable

mapping systems are in any event only available on medium to large

scale machines, whereas the system described in this thesis is

designed for use on mini- or microcomputer syst~s. A memory

management technique was required which would permit the operating

system to be as transportable as BASIC.

These considerations led to the development of a new memory

management technique. This management system is implemented entirely

in software, but has many of the characteristics of a system using
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hardware virtual memory management.. It· is for this reason that the

technique used has been called 'Software Virtual Memory Managem~nt'

(SVMM) •

The term 'virtual memory' has two connotations in the context

of this thesis: the first is related to the usual concept of

addressing a logical space which is larger than the physical space;

the second is related to the security of, and access to, both tasks

and data structures which are operated upon as if they were located

in a file system. Both executable (and executing) tasks and data

structures ~re afforded protection in a hierarchy of security levels.

The user therefore creates, modifies and executes tasks as if he

were working on a set of files which may in fact be memory-resident;

and conversely, he operates within a task as if all tasks and data

structures were memory-resident, when in fact they may be resident

on some external device. This file-system analogy is an extension

of the usual concept of virtual memory in that it is associated

with the reverse mapping of memory onto a mass-storage device, as

opposed to the mapping of mass-storage onto memory, which is the

property of the extended logical space. The importance of this

reciprocity is that the properties of the memory management system

can be utilized to construct an operating system with the attributes

required of a real-time interactive multiprogramning system.
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C H APT E R 2

A N o V E R V I E W o F V I PER

In this chapter the operation of VIPER (Virtual Interactive Process Executive for

Real-time control) is briefly described to provide a background for the detailed

discussion of the construction of S~1 and other facilities in chapters 3 and 4.

The overview deals with seven topics:

1. Interpretive operation.

2. Multiprogramming.

3. Interactive operations.

4. Protection.

5. Shared data.

6. Bulk storage devices.

7. Limitations.

VIPER was constructed both to demonstrate the facilities which can be im=

plemented using Software Virtual Memory Management (S~1) and to assist in their

development. The level of development was such as to enable VIPER to be used in

an industrial application to permit a realistic assessment of its performance to

be made, as discussed in chapters 5 and 6. Some of the specific limitations

and omissions that resul ted from this approach are listed in section 7 of this

chapter, while some of the more fundamental limitations of Software Virtual

Memory Management (SV1lli) are discussed in chapter 7.

VIPER is an interpretive system which evolved from an earlier monoprograrnmed

real-time BASIC called PROSIC (HEHER, 1975, 1976a, 1976b). PROSIC in turn was

a development from the origina~ VARIAN BASIC (GOUWS, 1973). VIPER is coded in

VARIAN Assembler and like BASIC is a stand-alone system containing all its own

operating system functions. Further information on the hardware systems and

software techniques used in the development of VIPER are given in Appendix A3.
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INTERPRETIVE OPERATION

The interpretive mode of operation of the original BASIC has not

been changed significantly in VIPER. The language processing

modules and the operating system functions are all resident in

memory, and it is only the remaining memory which is manipulated

in the SVMM system. Figure 2.1 shows this basic division of

memory as well as the approximate size of the partitions.

The basic mode of operation of the system is shown in Figure

2.2. Between the interpretive execution of each statement a single

flag ~s tested to determine whether any system work is pending. The

various categories of work which may need to be performed are listed

in Figure 2.3. This procedures ensures that no asynchronous events

are handled during the interpretive phase and the evaluator is therfore

not re-entrant. (This would in any case have been difficult to

achieve on the VARIAN 620i.) The response time to asynchronous

events is therefore limited by the time to execute a statement

interpretively, which may be as much as 10 to 20 ms. This was

acceptable for the range of work envisaged for VIPER.

In the evaluator section of the interpreter shown in Figures

2.4 and 2.5, two modes of operation are possible, depending on

whether the internal meta-codes are stored in infix or Polish forms.

Examples of these two types of internal representations are given

in Figures 2.8. The infix form was enherited from the original

BASIC. In this form, precedence is only determined as a statement

is executed, requiring an operator stack as well as an operand stack.

The Polish mode of operation is mentioned here even although it

has been only briefly tested, as this is the way in which the inter=

preter should be operating. This aspect is commented on in more

detail in sections 5.1 and 7.2.

A program in VIPER consists of a three-part module, as shown

~n figure 2.6. The symbol table consists of a list of descriptors

containing both the ASCII characters of all identifiers and their

values. The ASCII representation is required for the backlisting

(decompilation) ••••• /2.3
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(decompilation) and interactive operations. The structure of the

descriptors on this table is closely related to the memory

management functions and this aspect is therefore described 1n

chapter 3 and Figures 3.2, 3.3 and 3.4 illustrate the descriptors

used in VIPER. The statement pool consists of elements as shown

in Figure 2.7, while the structure of individual code words is

shown in Figure 2.8. The major difference between VIPER and its

forerunners is that all operand references (yariable addresses)

are values relative to the start of the symbol table. An absolute

address is therefore computed from the relative operand address and

the current position of a segment.

As a result of using these relative pointers, the address

field is comparatively small and can be packed into one 16 bit word

together with an operator code. Used together with the Polish form,

this structure results 1n a compact representation, as shown in an

example in Figure 2.8. HELPS (1974) and BROWN (1977) have commented

on the advantages of this compaction property of interpretive systems

which can be used to achieve significant savings in memory space.

~ruLTIPROGRA}~fING

VIPER permits independent, named segments of code and data to be

executed and manipulated concurrently. Each of the code segments is

a self-contained procedure as shown in Figure 2.6, which is similar

in many respects to a stand-alone BASIC program. The data segments

are used for shared data as well as for input/output buffering and

other system activities. These segments all exist in an area of

memory which is reserved for S~ operations, the remainder of the

memory being used for the fixed, resident operating system nucleus.

The resident code is VARIAN machine code, while the code segments

which are manipulated in the S~ space can consist only of the

special high level language meta-codes which are executed which are

executed interpretively. Figure 2.1 shows this basic division of

memory as well as the approximate size of the partitions.

The procedures (= code segments) are created and manipulated

interactively .•••. /2.4
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interactively from an input device. More than one keyboard can be

active at once as VIPER has a multi-user, multi-terminal capability,

as well as multiprogramming facilities. Other tasks in the system

can also run concurrently while program development is proceeding.

At any given time an input device is associated with a particular

procedure and all commands and statements are executed within the

scope of that procedure. rhe association of a device and procedure

can be changed with simple commands.

Table 2.1 illustrates some of these interactive operations,

while a complete description of all commands and their syntax is

g1ven in Appendices Al and A2.

All statements have the same syntax, irrespective of whether

they are executed as commands or as program statements. In other words

the command and programming languages are synonymous. This duality

not only simplifies the user interface but also results in the protec=

tion and data manipulation facilities being applied equally to the

command and programming languages. Statements are differentiated

from commands by the presence or absence of a line number.

As each line is entered it is incrementally compiled into the

internal meta-code format. If it is a command it is executed

immediately,whereas if it is a statement it is stored in the

appropriate position in the segment. As the line of code is being

entered, the segment with which it is going to be associated may be

memory resident or it may have been swapped out onto a bulk storage

device. In the latter case, the segment will be swapped back into

memory under control of SVMM for the compilation and storing operations.

Immediately after compilation the segment may be swapped out again

if the space is required for other tasks, or it may remain resident.

When the segment is swapped back in, it can be positioned at any

location in memory where there is space i.e. it does not have to

return to the same location. If there is sufficient memory available,

all segments may be memory resident all the time even with two or

more users working simultaneously. In addition to being swapped,

segments can also be dynamically relocated (moved) in memory to make
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space for additions to a segment or to make space for a new segment.

The movement of segments to and from a bulk storage device is in=

visible to the user and results in perceptible delays in keybord

response only when the segment size approaches the size of

availablable memory.

INTERACTIVE OPERATIONS

One of the most important properties of VIPER and S~1M is that inter=

active operations, including the execution of commands and the

addition of statements, can continue while a procedure is executing.

Operations of this type were illustrated in Table 2.1. This facility

is an invaluable aid in the debugging of process control software,

where a number of tasks are executing concurrently. Typical tasks

of this type execute cyclically; obtaining data from a plant data

base, calculating a control algorithm and then outputting a command

to an actuator. As the control algorithm is invariably time dependent,

stopping the task from executing in order to examine the values of a

variable (as would be necessary with all but one real-time BASIC which

is known to the author) destroys the time dependent characteristics

of the data. A FORTRAN-based system is in an even worse position

as the task must not only be stopped but edited, compiled, link­

loaded and executed afresh before the required data can be monitored

(assuming that this can be done). Besides being extremely cumbersome,

by the time this re-loading is complete, the condition which it was

desired to monitor will quite likely have been destroyed, requiring

that the task be re-edited, compiled and line-loaded once more to re=

move the write statements ... : (or suffer voluminous printout for

the next few hours while waiting for the event to repeat itself). The

alternative to the above procedure is to place all the variables of

interest in a common area and monitor their value from another program.

The difficulty with the approach is that the allocation of common areas

must be carefully performed when the control programs are first planned

and usually cannot be expanded at will. By the very nature of program

bugs and typical real-processes, it is also very difficult to foresee

all the possible states in which a task may execute and hence equally

difficult to decide which task variables must be allocated to common
areas.
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These problems are compounded by the fact that control algo=

rithms frequently have special coding to cater for transient or

unusual plant conditions which may occur relatively infrequently.

Off-line testing and simulation can be used for testing these

conditions in some cases (and should be used wherever possible) but

on-line real-time testing is still an essential requirement in most

process control systems.

The provision of interactive debugging operations on executing

real-time tasks is therefore not merely a convenient feature, but

a powerful tool for the testing and debugging of real-time software.

As noted in section 1.1, this commissioning phase can be "the most

tiresome, expensive and unpredictable phase" (HOARE, 1975) and any

tool which can simplify and shorten this phase can make an important

contribution towards the goal of producing more economical qnd

reliable software.

PROTECTION

The basic philosophy underlying the protection functions in VIPER was

to extend the concept of protection to executing tasks and their

associated data structures. Protection facilities are provided in

most operating systems but usually only to bulk-storage (disc)

resident files. Executing tasks and shared data elements are frequently

afforded no protection whatsoever.

A specific goal of VIPER was therefore to provide file-system­

like protection measures (and additional facilities) to executing

tasks as well as to the shared data structures. It should be possible

for a user to grant a range of access rights ranging from virtually

unrestricted access to completely restricted access to all accept

holders of the appropriate password. Reasonable protection facilities

should be (and are) applied at all times without specific user action

but a user can be expected to expend a modicum of effort to obtain

the highest degree of security.

The actual protection facilities implemented in VIPER and

additional facilities which could be implemented if required, are

described in section 4.3.
2.5 SHARED ....• /2.7
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SHARED DATA

Shared data areas are an important resource in a real-time environ=

ment. They are used to pass information on the process state from

one procedure to another and hence require protection from inadver=

tent or illegal modification if the system is to be secure. Simple

read or "read/write" access attributes, together with password

protection on who may change the access state, are adequate in many

instances. Additional facilities are required for synchronization

purposes however, and to this end a semaphore has been included as

an integral part of the data structures used in VIPER. This can be

used either directly with independentLOCK~FREEcommands or in as

a structured-pair in the form REGION-ENDREGION.

Shared data segments in VIPER are referenced and defined in

a manner analogous to that of named COMMON in FORTRAN IV, with the

significant difference that the segments can be created and deleted

dynamically like files, protected like files and moved to and from

input/output devices. Table 2.2 illustrates some of the commands

and statements available for manipulating these shared data elements.

A more complete description is given in Appendices Al and A2 as well

as in sections 4.3 and 4.4.

BULK STORAGE DEVICES

VIPER was originally developed with the intention of operating it

primarily in a memory resident mode, with only infrequent access to

bulk storage devices being required. If a computer with 32 K words

of memory is used the assumption is valid for a wide class of

applications. Due to hardware delivery problems, however, only a

16 K machine was available for nearly all development work on VIPER,

including the entering and initial debugging of all the 25 programs

written for the Case Study. Working in this restricted space where

only one or two of the programs could fit into memory at once, forced

more attention to be paid to the use of bulk storage. devices at

higher swapping rates.

Table 2. 3 lists the devices which have been used in VIPER and

their characteristics. A typical configuration consists of the

use ..... /2.8
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use of a cassette unit for program storage and transportation. .

. together with either the cartridge disc or CAMAC Bulk Memory for

the temporary storage of programs which are ~wapped out. (The cassette

unit was used for program storage a$ there was a unit available for

use on each of the two computers used in testing VIPER, whereas

there was only one disc unit. The bulk memory· is volatile and there=

fore cannot be used for storage.)

The management of these bulk storage devices is described 1n

section 3.3.

LIMITATIONS

In its present from VIPER is an experimental operating system con=

structed to develop and demonstrate the concepts discussed in this

thesis. Due to the lack of suitable hardware and software tools

which would have permitted a more sophisticated implementation, the

development of VIPER has been halted at a point where it is adequate

to perform the operations required for the case study described

1n chapter 6. Certain limitations and omissions are mentioned in the

text where applicable while some of the more fundamental ones are

listed below.

t. VIP~R is coded in VARIAN Assembler code as nohigh~level

language was available on the VARIAN computers which were used.

As the source listing comprises 22 000 lines (code and comments)

the system has bec~e too large to be easily maintained and

developed. This problem is aggravated by the lack of an

underlying operating system. A system like VIPER should be

written around a compact operating system kernel with a high

level language being used to write the outer shells of the

overall system.

2. The I/O structure of VIPER is ad hoc and all drivers are hard­

coded into the total system. Input is interrupt~driven under

software control but output operations have been left unbuffered

and are sense-loop driven.

3 .•.•.• /2.9
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3. Overlapped execution with swapping ~s not implemented. The

CAMAC bulk memory module is accessed under program control due

to the lack of suitable hardware for DMA operations. The

cassette units are also not set up for DMA operations and in

any event they are not suitable for use as swapping devices.

The cartridge disc is driven via DMA and overlapped execution

and swapping is theoretically possible when using this device,

but as the unit used was essentially on loan, the simplest

driver was used which would merely enable the system to run

using a disc. (The same block transfer oriented driver is in

fact used for both the disc and the CAMAC bulk memory unit

except for the final block read and write routines.)

4. Executive-controlled swapping of data segments has not been

implemented.

5. Not all protection modes and checks were incorporated to control

access to shared data segments. Segments can be individually

read and write protected, but can also be accessed by other than

the password holder. Procedures are fully protected, however.

The facilities which have been implemented are considered

adequate to demonstrate the concepts presented.

6. The interpretive meta codes are stored in infix form as ~n the

original BASIC rather than in the Polish form which is

recommended. This latter format would have a marked effect

on the performance of the system as the PoHsh code form takes

less space and executes faster. This onnnissiondoes, however,

enable a direct comparison to be made between the monoprogrannned

PROSIC and the multiprogrammed VIPER. Some measurements have

also been made to illustrate the difference between the two

representations.

A research program is underway which is aimed at producing an

improved version of VIPER which will overcome or eliminate many of

these limitations. The specific steps which have been taken or are

proposed are outlined in chapter 7.

TABLE ••. .• / 2 . 10



2.10

-
BAS E PAGE (0.7 K ) - l~

LANGUAGE

PROCESSOR
(2.5K)

RESIDENT
INTERPRETER OPERATING SYSTEM

(2.3K) NUCLEUS

SCHEDULER
AND MEMORY MAN-
AGEMENT (2.7K)

REAL-TIME

INPUT / OUTPUT
CONTROL· (3 .3K )

FLOATING POINT
LI BRARY AND
FORMATTER (2.0 K ) , I

FIRST WORD

- OF AVAILABLE- • MEMORY

MASS
STORAGE /SOFTWARE VIRTUAL
DEVICE \ MAPPING MEMORY

(UP TO 19K) __ ,-
. -

SPACE CONTROLLED
BY MEMORY MANAGER
- SEE FIGURE 3.1

LAST WORD
OF AVAILABLE

MEMORY

FIGURE 2.1 VIPER MEMORY MAP



2.11

(a) FLOW CHART

START (INITIALISE)

. SYSTEM WORK?

NO

STATEMENT?

NO

INPUT?

NO

(b) ASSEMBLER CODE

YES

IFIND WORK (FIG. 2. 3)1

YES

IEVALUATE STATEMENT (FIG. 2.4) I

YES

~ SERVICE SOFTWARE INTERRUPT I

MAIN LOA WORK

JAPM fWORK

LOA CNXP

JAPM EVAL

CALL T~STI,

JMP MAIN

WORK FLAG

FIND WORK (SEE FIGURE 2.3)

CURRENT NEXT STATEMENT POINTER

EVALUATE STATEMENT (SETS NEXT CNXP)

TEST FOR INPUT (SOFTWARE INTERRUPT)

LOOP

FIGURE 2.2 INTERPRETIVE CONTROL



2.12

YES
POWER FAIL? ')--.-;...;;;.;;.-----------,

POWER FAIL MESSAGE AND RESET

CLOCK?

DISPATCHER?

YES

YES

UNE COM PLETE ? >-_Y;",,;E;.;.S_--- ....,

PERFORM LEXICAL AND SYNTACTICAL SCANS

INPUT REQUEST? >.----------,

SET UP INPUT BUFFER

RESET WORK FLAG

FIGURE 2.3 FIND SYSTEM WORK
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I INITIALIZE

r-- -- ---- r-- -- --~------- - --,
(POLISH) .. (INFIX)

OPERAND

PUSH ONTO
OPERAND

STACK

INPUT ITEM?

PERFORM
OPERATION

OPERATOR

PRECEDENCE 7)!=2!ER

HIGHER

PUSH ONTO
OPERATOR STACK

I PERFORM OPERATION
I AT TOP OF
I OPERATOR STACK

I
I
I I

I I
L -1_ ~ ...J

(INCREMENT INPUT POINTER I

DETERMINE NEXT STATEMENT TO
EXECUTE AND SET IN CNXP

FIGURE 2.4 EVALUATOR
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OPERAND STACK
OPERATOR STACK

(INFIX ONLY)
OPERAND I

2

N

OPERATOR I

2

M

OPERATION TABLE
-

,

POINTER TO ROUTINE

1
PERFORM OPERATION

ON TOP 0,1 OR 2

OPERANDS ON STACK

10PERATOR (INDEX)I~

FIGURE 2.5 PERFORM OPERATION
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SYMBOL TABLE .
(DESCRIPTORS)

(FIG. 3.2, 3.3, 3.4)

STATEMENT POOL...
(FIG. 2.7)

ARRAY VARIABLES

FIGURE 2.6 PROGRAM STRUCTURE

STATEMENT NUMBER

LENGTH I LEVEL

STATEMENT TYPE CODE

4
I
I OPERATOR CODES

I AND

I OPERAND ADDRESSES

I (FIG. 2.8)

I

•
END OF STATEMENT CODE

FIGURE 2.7 STATEMENT POOL ELEMENT
STRUCTURE
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15 8 7 0

I~_-_(_C_O_DE_.--11_C_O_D_E_T_Y_P_E_)_I -( ) = I's COMPLIMENT

CODE TYPE USED TO DETERMINE PRECEDENCE, NEGATIVE

(COMPLlMENTED) VALUE DISTINGUISHES CODE FROM ADDRESS

EXAMPLE: LET A = B + C

(a) INTERNAL FORM USED IN VARIAN BASIC AND VIPER

- ( 27 I 1I )

ADDRESS A

- ( 67 I 8 )

ADDRESS B

- (55 I 3 )

ADDRESS C

-(0 I 15 )

LET

A (LOCATION IN SYMBOL TABLE)

=

B

+

c

END OF STATEMENT

(b) SUGGESTED POLISH FORM

15 98 o
0 ( B)

+ ( C )

= (A)

(B) = ADDRESS OF B

NOTE: ALL ADDRESSES ARE RELATIVE TO SYMBOL TABLE START

FIGURE 2.8 INTERNAL META-CODE FORMAT
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TABLE 2.1, .

A SHORT EXAMPLE ILLUSTRATING SOME INTERACTIVE OPERATIONS

INPUT
(Output not shown)

LOGON USERI·

PROC ABC

10

20

PROC XYZ

lOO

50

INPUT DEVICE
ASSOCIATION

MASTER

USERI

ABC

ABC

XYZ

COMMENT

USERI = password (echo of input is suppressed
during LOGON)
Creates a procedure calledUSERI.

Create a procedure called ABC and associate
input device with it. ABC has default
password USERI.

Enter statement into ABC
(in any order)

Creat~ XYZ (Input now associated with XYZ)

Enter statements

Enter statements

CHANGE ABC XYZ

200 ••. ABC

RUN XYZ EVERY 5 SECS ABC

RUN (ABC) ABC

PRINT X ABC

MONITOR XYZ XYZ

PRINT Y XYZ

DEBUG ABC XYZ

lOO PRINT X ABC

CHANGE (ABC) ABC

110 •.. ABC

PRINT X ABC

STOP (ABC) ABC

TURNOFF XYZ ABC

SAVE ABC

SAVE XYZ ABC

LOGOFF MASTER

Return to make a change to ABC
(only permitted to password holder USERI)

Change a statement in ABC .

Set XYZ to execute periodically

Execute ABC-(ABC) optional (defaulted)
because of input device association

Examine variable X in ABC while ABC is running

Monitor operation of XYZ (restricted rights)

Examine variable Y in XYZ while XYZ is
running

Enter restricted mode (no changes to
existing statements permitted)

Insert statement to examine X at line lOO
(ABC stili executing)

Move to CHANGE mode to permit alterations.

Make a change.

Examine X now

Terminate execution ~mmediately.

Remove XYZ from time list.

Save copy of ABC on external device.

Save XYZ

End of session, return to Master
Deletes procedure USER].

TABLE 2. 2 ••••• / 2. I8
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TABLE 2.2

SOME EXAMPLES OF SHARED DATA MANIPULATION

CONSOLE INPUT

LOGON USERI.

COMMON SIZES, NI, N2

ACCESS (SIZES) = WRITEA

NI = lOO; N2 = 120

PROC XYZ

10 COMMON SIZES, NI, N2

20 COMMON COMI, A(NI), B(N2)

30 COMMON COM2

40 ACCESS (A) = READA+
WRITEA; ACCESS (B) = 0

lOO REGION COMI

160 A( •.• ) =

180 SAVE COMI

200 ENDREGION COMl

210 FREE COM2

250 DELETE COMl

280 COMMON COMl, A(Nlx2)

PROC ABC

10 COMMON COM2

lOO LOCK COM2

LOGOFF

COMMENT

Password USERI will be associated with all
conunons created.

Construct a data area (this is a conunand).

Permit write operation.

Initialise this COMMON.

Create procedure XYZ

Link to SIZES to pick up NI and N2
Default access is read only.

Set up variable siz~ data area.

No data area, semaphore only.

A: read and write;
B: not used here (no access)

Start of a critical region
(Mutually exclusive access to COMI)

Perform some operation on A

Save current values on bulk storage device.

End of critical region.

Unlock semaphore associated with COM2
(see ABC line 100 below)

Delete COMI
and allocate new size.

Create procedure ABC

Declare semaphore

ABC will suspend until FREE COMl in line 210
of XYZ

TABLE ••••• / 2• J9
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TABLE 2.3

CHARACTERISTICS OF BULK STORAGE DEVICES USED

Device Access times
Transfer rate Block·size Typical segment i

words/sec words . *swap tune

Random access cassette:

SYKES Compucorder 100 I to 45 secs 330 Variable 2 to 6 secs

SYKES Compucorder 120 0,5 to 30 secs 660 = segment size) I to 3 secs

Cartridge disc 40 ms/revolution 92 K 120 55 ms

PERTEC Model 36 10 ms track to track (= 1 sector)

Bulk semiconductor I ~s 25 K Variable 30 ms

Memory (RAM) 30 ~s first word (Program Control 64 typical 15 ms +

(CAMAC resident) (software Hmi ted) 580 K + " (I,5 ms with hard-

(DMA hardware)
ware error
detection)

Notes: *Segment size 600 words (= average program size in Case Study)

+Not implemented in VIPER, data given for information only.
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C H APT E R 3

MEMORY MANAGEMENT

3.1 THE MEMORY MANAGEMENT PROBLEM IN INTERACTIVE SYSTEMS

Interactive programming systems require that any statement in a

task can be changed, deleted or added in some sort of incremental

compilation mode i.e. the entire task or procedure need not be re=

compiled and link-loaded. A good interactive system should also

support interaction during the execution of the task with monitoring

and debugging facilities that do not require the suspension of .the

task before they are activated. In PROSIC, the forerunner of VIPER,

it was demonstrated that even more general interactive facilities

can be provided in a mono-programmed system (HEHER, 1976 a, b) which

it would be desirable to extend to the multi-tasking environment.

The implementation of interactive facilities requires that

the code (which is usually an interpretive meta-code form, but may be

compiled machine code) defining a task be expanded and contracted

as the interaction proceeds. In a multi-programmed system the

difficulty occurs in attempting to allow multiple tasks or pro=

cedures to simultaneously undergo this dynamic change in size and

structure. Various ad hoc solutions to the problem have been pro=

posed and implemented, resulting in equally ad hoc restrictions.

For example, two of the real-time interactive systems described in

section ].4.3 which do support multi-programming, restrict inter=

active operations to one particular task which must be compiled be=

fore operating on any other task. Virt~ally no interactive operations

are permitted on a task once the task is executing. The other two

BASICs described in the introduction which have multi-user capability

require a fixed memory partition to be assigned to a given task or

user and also do not permit any interaction with the running task even

though interpretive rather than compiled code is executed. A further

equally serious problem, is that all four of these systems have

limited (and dangerous) global areas which can be accessed by all

users. Nor do any of them support a structured language with nested

named procedures, an essential requirement for any modern programming

language.

To ..... /3.2
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To permit interactive multi-programming using a block structured

language, it is necessary to allow the segments of code to dynamically

expand and contract while maintaining the linking between the various

segments of code and data that co-exist in the system. The essential

requirement is then that the segments of code used in the system

must be dynamically relocatable i.e. it must be possible to move the

segment while it is executing. As the performance of the memory

. management technique is dependent on the efficiency with which segments

can be moved, extensive, or slow relinking of segments to perform

relocation is undesirable. These requirements can be fulfilled most

simply by segments of meta-code which are executed interpretively,

and sof~ware virtual memory management is ,of particular relevance to

this class of software. An ~mportant point is that the memory

management features required, couid not be implemented using simple

base registers, which is a common method of achieving dynamic relocation.

The reason is the real-time interactive nature of the software system,

as will be clear from the structures described in the following section.

The structures employed are superficially similar to an earlier

memory management system described by RIETER (1967) but this system

was designed for operations of a time-sharing type and would not

permit the flexible access to shared data and code segments that

is an essential feature of the real-time interactive system VIPER.

Hardware virtual memory mapping devices are also not suitable for

this type of relocation and they were in any event specifically

excluded because of the desire to maintain processor independence.

This was specified in order to permit the operating system to be

transported to other mini or microcomputer systems in the future. The

operating system MERT for example, (BAYER, 1975) which manipulates

segments of code and data in a manner roughly analogous to VIPER, is

constructed specifically to run only on a PDP 11/45 or 11/70

computer using particular hardware features of that machine for

memory mapping and protection functions.

The use of interpretive meta-codes to provide the basic means

of relocating segments has other advantages also. The interpretive

structure can be utilized by the memory management system to imple=

menta variety of unique features which considerably enhance the

attractiveness ••••• /3.3
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attractiveness of an interpreter. Furthermore, a number of recent

implementations have shown that interpretive systems possess some

important advantages over systems executing in-line code (OTTO, 1974;

HELPS, 1974; AD IX , 1975; BERCHE, 1976; ZEH, 1976). Their only

disadvantage, that of increased execution time, can frequently be

overcome or reduced by various techniques such as mixed code

(DAKIN, 1973; DAWSON, 1973; ZEH, 1976) or micro-coding (HELPS,

1974; REIGEL, 1972). Alternatively, initial development can be

performed interactively with later compilation into in-line code.

The desirability of this route for software development as opposed

to batch compilation has been emphasized by CAINE and GORDON (1975).

As the interpretive execution time of the meta-codes currently used

in VIPER were acceptable for a range of experimental process control

work undertaken in the past (and foreseen in the future) "none of

these techniques have been implemented in the current system. As the

mixed code approach may cause relocation difficulties, micro coding

would appear to be the most promising technique for overcoming any

speed problems that may occur in future applications. It should also

be noted that the execution time penalty of interpretive systems

has also not prevented their being used successfully in a wide variety

of applications (AD IX , 1975; AGRAWALA, 1976; BIANCHI, 1976;

BERCHE, 1976; CAINE, 1975; DIEHL, 1975; FULTON, 1976; GAINES,

1976; HAASE, ]976; HELPS, 1976; NELSON, ]976; PURDUE, ]975;

RIAMONDI,- ]976).

STRUCTURES USED IN THE IMPLEMENTATION OF SOFTWARE VIRTUAL MEMORY
MAm-GEMENT

While developing the concept of Software Virtual Memory Management

(SVMM) it became apparent that there were a variety of different

techniques that could be employed. In many cases these involved

trade-offs in space and time which were difficult to evaluate at the

time the system was being developed. One of the major assumptions,

for example, was that most of the important segments of a real-time

task would fit into memory simultaneously and that the swapping of

segments to and from input/output devices would occur with a

relatively low frequency. (This assumption was validated by the

results of the case study (chapter 6) where all tasks can fit into a

32 K ••••• /3.4



3.4.

32 K memory system). In retrospect, however, it is felt that some

alternative structures could have been used which would not seriously

have affected the performance of a resident system and which would

improve the performance of a system where a higher rate of input/

output transfers was necessary.

The four sub-sections that follow consist primarily of a de=

scription of the actual structures used in VIPER as it is felt that

this approach contributes to a clearer understanding of some of the

alternatives which are discussed in section 3.4. It must be em=

phasised at this point, however, that although better structures may

exist, the ones that have been used are adequate for many applications

and for the application presented in the case study in particular.

The software system utilized divides memory into two main

partitions, as was shown in Fig. 2.1. The resident area consists

of the various operating system and language processor modules, while

the remainder of the memory is available for virtual storage

operations. It is the management of this latter memory area as shown

in Fig. 3.1 that is the subject of this chapter. The language pro=

cessor is placed permanently in the resident area because of the

uniformity of command and programming languages, i.e. it 1S also used

as the command interpreter. The information manipulated in virtual

memory consists of segments of both code and data.

To control the division of the available memory into segments,

two basic structures are employed: one to perform the physical linking

of segments, and the other the logical linking. The physical par=

titioning is performed in a straightforward manner by means of a

doubly~linked circular list, as shown in Fig. 3.1. Each partition

has forward and backward printers to the next and previous segments,

and also a pointer to the end of the partition. Each partition,

called a segment, is of arbitrary size but must be smaller than the

physically available memory. A segment is in fact similar to a

page in the hardware virtual memory analogy in that it is an in=

divisible unit, with the difference that the segment size can vary

dynamically. A task could, however, consist of a set of segments

whose ••••• /3.5
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whose total size ~s larger than the phYsical memory. The advantage

of this structure over that of a hardware-mapped page is that there

is always a 1 : 1 correspondence between the page size.and the

segment size, as they are physically identical elements. This is

of particular advantage in the structured programming language used

where there is a natural emphasis on partitioning a task into a set

of independent but co-operating procedures.

Segments may not only vary dynamically in s~ze, but can also

be created, deleted or moved to and from peripheral devices. Both

the first and the last and all segments between them can be dynamically

relocated. The position of the first and. last segments can be

adjusted to allocate memory for use by certain fixed segments which

cannot be relocated, as shown in Fig. 3.1. These fixed segments

are used for assembly language subroutines and could also be used

for in-line code produced by compilation of interpretive code, as

discussed in section 3.5. (A notable difference between this resident

area and the resident area found in many commercial real-time

operating systems for minicomputers, is that it can be expanded on­

line.) Some examples of the segments used in VIPER are shown in

Figs. 3.5 and 3.6.

Segment and variable descriptors

Each segment in the system is headed by a table consisting of one or

more descriptors which describe both the internal structure of the

segment and the external resources which it uses.

The first desciiptor on the table is the segment descriptor

which contains elements describing that segment as well as the list

linking pointers. The general format of all descriptors and that

of the segment descriptor are depicted in Figs. 3.2 (a) and 3.2 (b)

respectively. The first word of the segment descriptor identifies

the segment type and the length of the segment descriptor; while

the NEXT, PREVIOUS and END pointers are used for list linking and free

space control. The fifth element of the segment descriptor EXTERNAL

is used for the logical linking of segments as opposed to the

physical linking of the forward and backward pointers. The de=
. f· "scr~ptors orm ~n effect a local name space'! (LNS) similar to the

LNS ••••• /3.6
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LNS of HYDRA (WULF, 1974; JONES, 1975). The capabilities defined

within these descriptors are used to control access to both data

areas and other procedures. As in HYDRA, the capabilities are

manipulated only by the operating system and so cannot be tampered

with by the user. In VIPER however, the descriptor table is also

used for a variety of other purposes, as described in the following

sections.

Each segment is identified either by a name or by its association

with an event or device. Procedure segments and shared data segments

for instance,are named, while segments used for input/output

buffering are identified by the device with which they are currently

associated. All segment (and variable) identifiers can be an

arbitrary number of characters in length. Within the segment de=

scriptor a segment normally, but not necessarily, contains additional

information which describes the structure of that segment. The

descriptor of a procedure segment, for example,· (Fig. 3.5) contains

an additional ]2 words containing information on the access rights

and sub-structure of the segment, in addition to scheduler parameters

if it is a segment which is known to the scheduler. The same structure

1S used for all segments containing executable code, whether they are

'main' programs scheduled by a scheduler or sub-routines or co­

routines.

In addition to the segment descriptor at the head of the segment,

a procedure segment has a table of descriptors, which contains entries

describing the data structures used by that segment. both internal

and external, i.e. the symbol table plus space for variable values

and pointers. Examples of the descriptor types used in VIPER are

given in Figs. 3.3 and 3.4. Additional types for which provision

has been made but which have not been used in VIPER as yet, are bit

and string variables, function references and multi~pre~ision

variables. The various descriptors are of different sizes and can

appear on the descriptor table in any order. The numeric value of

a variable (if any) is contained in its descriptor as are the ASCII

characters of the identifier. The ASCII identifier must be retained

for the purposes of decompilation 1n an interpretive system, but is

also very useful for a variety of other interactive features. Even

if •.... /3.7
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if compiled code were used, DASAI, 1977; PIERCE, 1974 and others

have shown that there are good reasons for retaining the symbol

table for symbolic debugging purposes. Each element of the

descriptor table has a structure identical to that of the segment

descriptor: a descriptor head, an information section of variable

length (typically one to four words) and an identifier or arbitrary

length. The variable-length information and identifier fields of

the descriptor are specified by fields within the descriptor head.

The descriptor head also contains a field which defines the type

of descriptor. Within a 16-bit word these fields result in certain

limitations, viz. a maximum descriptor length of 64 words, 32

descriptor types and identifiers up to 16 characters in length.

Within many of the descriptors of both procedure and data segments

are capability entries which protect the segment and define the right

of access to the segment from other segments.

This organization of the ~escriptor table or local name space

is very efficient, not only in terms of bit packing density, but

also in terms of the accessing and manipulation routines, which are

identical for all types of descriptortable elements. In the 25

procedures of the Case Study the average length of the descriptor

table is 178 words which is 28% of the average segment size of 638

words. The space required is considered well spent in view of the

uses and benefits of the table.

Father/so~ relationship*

The logical structure of the SVMM determines the hierarchical

relationship between segments. The basic element is the father/

son relationship that results from one segment invoking another, as

shown in Fig. 3.7. The father contains external reference descriptors

in its variable table which define the external procedures (sons)

used by itself. If this pr~cedure is currently a segment residing

in physical memory, the descriptor in the father will contain an

absolute pointer to the location of the procedure, which is now his

son. Simultaneously with the establishment of this pointer, the

external pointer is set up in the son to point back to the father.

This .••.. /3.8
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This double linking is essential if segments are to be moved

efficiently, but is also useful for a number of additional functions.

The simple father/son relationship is similar, in the FORTRAN

sense, to a main program (the father) calling a sub-routine (the

son), but in SVMM this is not the only means whereby a father can

acquire or create sons. All segments are in fact spawned fron one

original master segment which is created when the system is generated.

The logical structure is not static, however, and the relationship

between segments changes dynamically. Segments may be assigned to

new fathers or they may temporarily acquire a 'stepfather' as would

occur during the re-entrant execution of a procedure. An example

of this type of access is shown in Fig. 3.8. (Note: Provision for

this re-entrant access has been made in VIPER but as it was not

required for the Case Study experiment, it has not been implemented

in the current version of VIPER.) Segments may also be permanently

or temporarily fatherless if this defining segment was deleted or

swapped out, for example. Fathers can also voluntarily release their

sons if they are no longer required, with the links to the son and

the return link from son to father being zeroed in this case.

If a segment is moved, two adjustments must be made, each re=

quiring a search of a descriptor table. First, the descriptor table

of the segment to be moved must be searched to find any active sons.

The back pointers from these sons to the fathers are then adjusted

appropriately. If the segment is being deleted or swapped out,

the pointers are zeroed. Secondly the descriptor table of the father

of this segment (if there is one) must be searched for references

to the segment which is to be moved and the pointer in the external

reference descriptor which refers to this son must be adjusted (or

zeroed) .. The overhead involved in adjusting the externals when moving

segments is therefore not negligible (2-3 millisecs on the VARIAN).

Without a firmware move instruction, however, the time taken to perform

the actual physical move is far more serious - ]4 millisecs for

500 words. If a known procedure is referenced, 1.e. one which is a

son, negligible overhead is incurred because an absolute pointer to

the segment exists. If, however, an unknown procedure is invoked a

search of the resident segments must be made for the required segment.

(If •.••• /3.9
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(If the segment is not found, a directory segment obtained from

an external device should be searched.) A simple linear search

is adequate because even with a hundred segments the maximum

search time is of the order of 5 to 6 millisecs. Certain memory

allocation algorithms are used, however, to reduce the typical

search time to 1 to 2 millisecs and as even this occurs only the

first time the procedure is referenced there is no need to maintain

any associative or hash tables.

If the segment is resident, the mean searGh range will generally

be far less than half the resident segments due to a locality of

reference that results from the virtual memory operation. When a

segment is created or obtained from a peripheral device the memory

allocation algorithm tends to place the segment within the locality

of the originating segment, i.e. the father (see 3.5). The search

is therefore first made within the locality of the requesting segment,

and continues until either the required segment is found or the

search ends on a return to the original segment via the circular list.

One example of father/son interaction may serve to illustrate the

general nature of the strategy.

If a segment is spawned by a father within some locality of its

father, but is later released by its original father and adopted by

a new father (this may be either a new 'true' father or a stepfathen

the locality of reference will quite likely have been destroyed, but

only for the first reference. Thereafter the new father will enjoy

direct access to his son until such time as he releases him. The

worst case is therefore that of two or more fathers, who are not

within the same locality, competing for ownership of the same son.

As explained above the overhead associated with even this (unlikely).

worst-case condition is not severe, being of the order of 2 to 3

millisecs, each time the son is transferred.

If a segment must be swapped out, the segment descriptor is

left in memory and becomes a directory element containing information

about the location of the body of the segment on the external device.

As the remainder of the descriptor table is swapped out with the

segment, •.••• /3.10
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segment, including the external reference descriptors containing

pointers from father to sons, the father/son links cannot be pre=

served when the father is swapped out. (Conversely the links can

be preserved when a son is swapped out because the pointer from son

to father ~s maintained within the segment descriptor.) When a

father is swapped back in and needs to reference a son again, a

search for the son must therefore be made, taking typically 1 to

2 millisecs as described above. This overhead is one of the dis=

advantages of using absolute memory pointers instead of indirect

pointers via a resident directory. Preliminary investigations had

shown, however, that in the typical applications envisaged most of

the critical real-time tasks would be mem9ry-resident and only the

less frequently executed tasks would be swapped to and from a bulk

storage device. The results of the case study (chapter 6) indicate

that this assumption is valid. In an environment where the swapping

rate is higher there may well be an advantage in using indirect

pointers via a directory segment - as discussed in section 3.4.

Although superficially cumbersome, this maintenance of father/

son linking is in fact quite simple and provides a powerful tool for

determining the structural dependencies of the system and a means of

constructing a hierarchical error-reporting and recovery mechanism.

Access to data shared between procedure segments

Another important type of logical linking is that used to gain access

to data segments. A number of different structures were analysed in

some detail for this linking and the one that is presented here is

considered a reasonably good compromise between the opposing factors

of access time and relinking overhead. At the simplest level, segments

are defined and accessed in a manner roughly analogous to that of

named COMMON in the FORTRAN sense as was illustrated in Table 2.2.

Fig. 3.9 shows the linking used for segments of this sort. As a

result of the virtual memory structure however, the segments can be

operated upon as if they were files, thus they are conceptually

quite different from the static COMMON block of FORTRAN. Furthermore ,
the structure of the data segments permits a semaphore to be incorporated

in ..... /3.11
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in the data segment descriptor which is used for synchronizing

procedures which access the data segment. In addition to being

available for manipulation directly by synchronization primitives,

this semaphore has also been used to implement the "REGION"

construct (HANSEN, 1973). The synchronization functions are

described in more detail in section 4.4.

Other data area protection and synchronizing techniques such

as "KNOWS clauses" GORD (1976) could also be implemented using the

SVMM structures, but are not included in VIPER.

References to shared data items are performed as follows:

Each procedure which accesses the shared data contains a

declaration descriptor (A). (The capital letters in parentheses

refer to the labelled elements of Fig. 3.9.) This descriptor contains

a pointer (p) to the data segment, an access code (G) defining the

current access rights of this procedure, and the name of the data

segment, as shown in Fig. 3.4 (e). Within the access code (G) is

also an identity field which is used to identify variable descriptors

associated with this declaration.

The data segment is headed by a defining descriptor (B),

Fig. 3.5 (b), which contains the name of the segment, a pointer to

the start of the data area (I), a password pointer, the location of

this segment on a mass storage device and a semaphore. The descriptor

head identifies the type of segment. The external reference element

(C) of the defining descriptor is used to point to the procedure

which is currently locking this data segment as a result of a sema=

phore operation. (Procedures which are suspended waiting for access

are kept on another list maintained by the dis~atcher.)

In addition to the external reference pointer which defines

ownership of the segment, the data segment has a descriptor table

(J) which contains an external reference descriptor (D) and Fig. 3.4

(f), for each procedure which references it. This double linking of

data and procedure segments is an extremely powerful tool for

analysing the over~ll structure and data relationships of a set of

tasks and enables many of the pitfalls of the strictly FORTRAN-type

labelled COMMON to be avoided.

Within .•••• /3.12
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Within each referencing procedure, each reference to the

data segment is defined by a variable descriptor (E), Fig. 3.4 (a)

and (c). The descriptor contains either an absolute (FA) or

relative (F
R

) pointer to the location of that element in the data

segment, as well as a copy of the identity word that occurs in the

declaration descriptor (A). This identity is copied to all referencing

variable descriptors which reference ~_ given data segment, to

enable the absolute pointer to be adjusted if the data segment is

moved. The access field (G) in the defining descriptors (E) can be

set independently to protect any particular element of the shared

data segment.

The pointers (F) in the referencing descriptors (E) can be of

two types:

1. Absolute.

2. Relative to the start of the data area in the shared data

segment.

The relative pointers are used in order to preserve tlle location

of data items in the shared data segment when either a procedure or

shared data segment is swapped out. When a procedure segment is to

be swapped, for example, the descriptor table is searchrd for all

references to shared data segments and the corresponding pointers

converted from absolute to relative by subtracting the position of

the data segment (H) and the size of the data segment descriptor

table (I) from the absolute pointer (FA)' (Relative pointers are

flagged by being complemented i.e. a negative value represents a

relative pointer.) No action is taken when a segment is swapped

back in until the first reference toa shared data item occurs. At

this point, the relative pointer (FR) is converted back to an absolute

pointer. This is performed by using the identity field (G) to

index up to declaration descriptor (A) which contains (or can obtain)

a pointer (H) to the data segment. In the data segment is a pointer

(I) to the start of the data area which is then used to construct

the absolute pointer (FA)'

This ••..• /3. 13
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This algorithm ensures that the more critical tasks and data

areas which are likely to remain memory-resident have fast, direct

access to the common areas, while the less critical tasks which may

have been swapped out will have to re-establish their links (but

with increased overhead only on the first access - thereafter they'

too will have direct pointers).

All references to items in data segments are chec~ed for access

violations. The overhead associated with this mapping and checking

is of the order of 5% compared with local variable references, i.e.

a procedure using only shared data would take approximately 5%

longer to e~ecute than the same program, using only local variables.

This overhead is considered minimal in view of the importance of

preserving the integrity of shared data at all times. Furthermore

typical tasks use a mix of data types. In the programs of the case

study, for example, the average increase in execution time is less

than 0,5%, with a maximum of 2% on one procedure (ENGUNITS) which

makes many references to common elements. Table 5.1 shows the result

of various measurements or shared data access times.

If a procedure segment which references a common area ~s moved,

the descriptor table of the procedure must be searched for the common

declaration descriptors (A) to find the data segments referenced by

this procedure. The descriptor table of the data segment (J) must

then be searched to find the pointer (K) in the descriptor (D) so

that its value can be adjusted appropriately. The pointer (C) may

also need to be adjusted.

If the data segment is moved the following operations must be

performed. The descriptor table of the data segment (J) is searched

for procedure references (D) (K). For each pr~cedure found, the

procedure descriptor table must be searched for the corresponding

declaration descriptor (A). Having found this descriptor, the de=

scriptortable must be searched once more to find all reference

descriptors (E) which have a matching identity (G). The absolute

,pointer (FA) in the descriptor can then be adjusted. (If the pointers

in ••••• /3.14
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in (E) had been set relative as a result of a swapping operation,

pointers (K) and (H) would have been zero and therefore no

searching would have taken place.)

If a new descriptor is added to the data segment as a result

of a new procedure referencing this data area (this can occur

dynamically), then the procedure described above must be performed

to adjust the pointers (F) in the reference descriptors, The

pointers (K) in the procedure reference descriptors, need not be

adjusted however. The value (1) in the data segment descriptor must

also be updated to reflect the increased size of the data segment

descriptor table.

One of the limitations of this method of accessing shared data

is that the data itself cannot contain pointers to other data segments

i.e. an indirect address within a data element. All addressing must

be performed via the descriptors in order to allow the operating system

to perform the necessary adjustments as segments are moved. This is

not a serious limitation, however, as the interactive language elements

of VIPER are intended for applications programming where pointer

manipulation is both undesirable and seldom required. HOARE (1975b)

has pointed out the dangers of using pointers within data areas and

emphasised the importance of data reliability. Pointers are far

better handled within the protected capability lists (COSSERAT, 1975)

which are manipulated only by the operating system. Routines which

do require pointer manipulation are coded in Assembler and located in

the fixed segment areas - Fig. 3.1. (They could also be coded in a

high level language for compilation into in-line code but this is not

implemented on the current system. See also the comment in section

3.5.)

Parameter passing

Parameters are passed between segments by passing addresses. Parameter

types are matched, and must agree. The actual structures used for

parameter passing are illustrated in Fig. 3.10. When a father passes

a parameter to a son, the relative address of the actual parameter

descriptor (B) is copied into the corresponding formal parameter

descriptor •••.• /3.15
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descriptor of the son (C), a single bit being set in the head of

this descriptor to indicate that it is an external reference. A

further bit is set in an access word (D) of the formal paramter to

distinguish between formal parameters and external references to

data items. To complete the uniformity of access mechanisms

between parameters and shared data items, an additional bit field is

established in the formal parameter access word as for shared data

references (Element (G) of Fig. 3.9). This access subfield defines

the type of operations permitted on this parameter.

Protection of parameter passing is performed with a capability­

like mechanism with the access attributes. of a parameter being passed

(copied) from segment to segment. As in other capability-based systems

(COSSERAT, 1975) the access attributes can be decreased but never

increased in the copying operation. The VIPER implementation does not

have the generality of other capability-based systems (FABRY, 1973;

WOLF, 1974; JONES, 1975; COSSERAT, 1975) which are intended

primarily for the writing of operating systems, but the restricted

set of operations permitted is adequate for the application-oriented

software for which it is intended.

In VIPER the types of parameter passing allowed have been

intentionally restricted to provide security. Table 3.1 lists these

types and their default access states. All other mappings are illegal.

The detection of illegal mappings 1S performed at the CALL-SUB

set-up time while access violations are checked on each reference

to a formal. When passing array variables, only whole arrays can be

passed i.e. no equivalencing can be performed and the dimensions of

the actual array are used in double subscript references. Code or

data outside of the array therefore cannot be overwritten. The

checking that is applied by default is sufficient to detect the

majority of programming errors, but if this is insufficient, additional

checking can be added under program control. The default access

states of the formals shown above, for example, can be changed from

read and write access to read only if this is required (but not from

read to write!)
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Setting of the access states of the actual parameters can also

be exercised to affect control of parameter passing. By forcing the

state of an actual array variable to read only, for example, before

passing it as a parameter, it can be ensured that it will not be

written into. Conversely by setting its state to write-only until

after the subroutine call will ensure that it is not used before

being written into by the subroutine. Control in this way is performed

with explicit program statements, as illustrated in Table 3.2.

Although syntactically somewhat cumbe~some, the infrequency with

which the default states need be overridden makes the provision of

more sophisticated syntactic structures unnecessary.

Parameter passing 1.S 1.n effect a form of 'domain crossing' in

HYDRA (WOLF, 1974) terminology, with templates specifying the

capabilities of the formal to actual parameter translation. In

VIPER however the template does not need to be passed as an actual

parameter, as the system has access to the descriptor tables and

extracts the information required for template matching. While more

restrictive than the generalised HYDRA capability mechanism, this

implementation is adequate for the simple high level language used.

The template matching technique can also be used in Assembler Coded

routines, however, with some restrictions on the permissible forms

of parameter access.

Although there is a certain overhead involved 1.n this detailed

verification of parameter passing, the checking is considered essential

in view of the fact that this interface is one of the most troublesome

and error-prone areas in progranuning, as has been stressed by

COSSERAT~ (1975), HOARE (1975a),GORD and MAHON (1976), ZEH (1976) and

others. The overhead involved must also be viewed in the context

of the interpretive system, as the time required to establish linking

between formal parameters and actual parameters, is roughly equivalent

to the execution time of a single statement with a similar number

of operands.

On the VARIAN 620i, for example, (4 ~s cycle time), the time

to perform a CALL-SUB-RETURN sequence passing five parameters is

6,9 millisecs, (which compares favourably with the 6,25 millisecs
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taken to perform a GOSUB with parameters in the original BASIC

where no access checking is performed). Once the formal to actual

parameter translation has occurred however, references to formals

are handled very efficiently. An operation inv~lving two formals

such as X = Y+ Z, for example, executes in 2,4 millisecs in VIPER

compared with 8,8 millisecs in the original BASIC. The same operation

on local variables takes 2,3 'millisecs so that mapping and accessing

checking performed on each reference takes only 4% longer, an

entirely reasonable overhead in view of the importance of this type

of checking. (These absolute times can also be reduced by a re=

organization of the interpretive meta-code, as discussed in chapters

5 and 7.)

BULK STORAGE MANAGEMENT

The three bulk storage units which have been used in testing VIPER

were described in section 2.6 and listed in table 2.4. They are:

1. Random access cassette.

2. Cartridge disc.

3. Semiconductor bulk memory (CAMAC resident RAM).

The management of these three devices is described briefly

here in order to clarify the need for and usefulness of alternative

SVMM structures.

The use of bulk storage devices for program swapping in VIPER is

complicated by the fact that the segments of code can change dynami=

cally in size. It is therefore not possible to allocate a fixed area

of a unit for storage of a particular module and to swap it to and

from the same area each time. This is analogous to the problems of

file system management where the size of files may expand and

contract dynamically. There is a wide variety of bulk storage memory

allocation algorithms in use, which can be broadly classified into

sequential and block allocati~n strategies. The essential characte=

ristics of these two strategies are described briefly below.
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I. Sequential allocation. In these schemes the expected size of a

module (file) is estimated and space allocated accordingly. If

the module is shorter than expected, space is wasted, while if

longer than expected, additional non-continuous space, an

"extent", must be allocated on some other area of the device.

Only a finite and relatively small (10 to 20) number of extents

is typically permitted. Various heuristics are used to deter=

mine how much additional space to allocate when the first

allocation is filled. When a module is deleted it mayor may

not be possible to recover the space released. In the Hewlett

Packard RTE File Manager, for example, this free space can only

be recovered by a packing operation which literally moves all

files on the disc to close up any gaps. This compaction operation

is lengthy and can only be performed in special circumstances

viz. no file on that unit must be currently open. This re=

striction may prohibit any disc packing operations during times

when the system is active and they would have to be scheduled

during system maintenance periods. (In the system used in the

Casy Study, chapter 6, a special utility was written to perform

a disc pack at 12 pm, every night. At that time cer~ain open

files can be closed at the shift change to permit the pack to

be performed. Two to three minutes of recorded data can be lost

while the packing operation is in progress, however.)

2. Block allocation. The bulk storage device is divided into equal

size blocks typically 64 to 256 words in size. A table is then

maintained which has one bit to represent the availability of

each block. When space is required blocks are allocated

according to some algorithm and the appropriate bit set in the

free block table. The directory entry for the file points to

the first block while the remaining blocks are link-listed i.e.

each block contains a pointer to the next block. Any number of

additional blocks can be simply allocated if the file expands

in size. When a file 1S deleted all the blocks it was using can

be de-allocated and returned to the free block table. Nopacking

operations are ever required and all the storage space is used

efficiently. The disadvantage of the block structure is the
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speed with which files can be stored or retrieved. Due to the

block linking and other system-related factors, the blocks

must invariably be moved into a buffer first. This overhead

typically takes a time equivalent to the time to transfer

more than one block, so that when working with a rotating

device like a disc, the writing operating can only use every

third block. Transfers to and from bulk memory therefore take

at least t4ree times as long as in the sequential case.

Both algorithms, therefore, have certain disadvantages which

it seems will not be overcome until a measure of intelligence is

provided in the bulk storage unit itself •. (It could then, for

example, be treated as a sequential device externally even if

organizing itself on a block algorithm internally. This aspect is

discussed further in chapter 7.)

The cassette unit 1S used in a sequential mode only, i.e. an

entire segment is written out sequentially. Under certain circum=

stances a record can be overwritten with a new version of a segment

and this has been used to operate a system with only a cassette for

bulk storage. (With limited memory this configuration has of course

a very poor performance.) The disc and CAMAC (RAM) bulk memory units

are operated in a block mode, the block sizes used being 120 and 64

words respectively. A free-block~bit-table is kept in memory and this

is used to allocate blocks of storage to requesting routines. When a

segment 1S read back out of bulk storage (disc or RAM) the blocks are

automatically de-allocated as no permanent directory is maintained

of segments stored on these devices. The current address of a segment,

if it is on a bulk storage device, is contained within its segment

descriptor (see section 3.2.1 and fig. 3.5 (a)). This algorithm

ensures that when uS1ng bulk RAM the combined space of the local

(computer) memory (e.g. 18 or 19 K in a 32 K system) and the bulk RA}1

(typically 16 K to 64 K) are available for program storage. The

bulk storage therefore provides in effect an extended local memory

space which is the characteristic of virtual memory management.
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None of the three devices used for bulk storage can be considered

ideal: the bulk RAM because it is volatile, the cartridge disc

because it is too big and too expensive and the cassette because it

is too slow. The object of using these devices was to demonstrate

the operation of VIPER with devices having a. range of access times

as well as to overcome the immediate memory space problems on a 16 K

machine. Devices which would appear particularly suited for soft=

ware virtual memory management operations are bubble memory for the

fast access, non-volatile extension of local memory space and a

floppy disc unit for storage and back-up. An important point ~s that

these two devices are bracketed in terms of access times and transfer

rates by the three devices which have bee~ used, thus ensuring that

they can effectively be used in a software virtual memory management

enviromnent.

ALTERNATIVE STRUCTURES

The primary disadvantage of the structures chosen is the need to

release (zero) the links between father and son and between procedure

and data segments when a segment is swapped out. When the procedure

is swapped back in again, it must search by name for any external

segments which it references before it can once more establish the

direct links. (Once in memory, the direct links between segments

are maintained even if a segment moves.) As mentioned in the

introduction to this chapter, this algorithm was initially selected

because it was anticipated that most of the time critic~l tasks

would be memory-resident and only the less frequent tasks would find

themselves being swapped out. Experience with the use of both disc

and bulk semiconductor memories, however, indicates that SVMM is

capable of supporting a much higher swapping rate, or equivalently,

of running real-time tasks of a size which cannot fit into the local

computer memory.

Although the existing structures work satisfactorily with the

higher swapping rate, there ~s an overhead of 2 to 3 millisecs involved

in this re-establishment of links

compared with the swapping time of

overhead is of the order of 10% of
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table 2.4, however, if alternative bulk memory control hardware was

used, the swapping time could be reduced to less than 2millisecs, at

which point the relinking overhead is substantial. An analysis of

alternative organizations is therefore of interest in order to

determine the efficiency of SVMM when using such high speed devices.

The overhead incurred in establishing and deleting the links to

segments can be reduced by maintaining a segment directory which

is kept in memory. Entries in the directory would then point to

the segment. Each segment would have an identity number associated

with it from which the segments' position in the directory could be

quickly computed. (The identity number could simply be the relative

or absolute position of the entry in the directory.) The absolute

pointer in a descriptor to another procedure would then be replaced

by the identity number of that segment permitting the segment to

be found by indexing via the directory. This identity number would

be left intact when the segment was swapped out to a bulk storage

device and would not need be zeroed as is the case when an absolute

pointer is used. If a segment were moved, only the directory entry

would have to be updated.

This mode of operation 1S proposed in an extension of VIPER

which is discussed in chapter 7. To illustrate the problems that

must be solved in formulating new structures, some of the difficulties

involved with this approach are noted below. (Solutions to all these

difficulties have not yet been found!)

I. Segments are dynamically created, and must be allocated an

identity number and the corresponding directory entry. Over the

lifetime of a system, which may extend over several months,

as old segments are deleted and new ones created, the directory

will grow steadily larger with no direct means of re-using old

entries, for the reasons given below.

2. Before an old entry can be deleted or re-used, it must be ensured

that no segment currently in the system or which is likely to

become known to the system, references this particular identity

number. As there are no direct links to inform the system
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which segments are referenced by another segment, every

segment in memory and on the bulk storage devices will have

to be searched to find and delete references to the segment

which it is required to delete. As segments which have been

stored on removable devices, such as disc cartridges or

cassette tapes, may not be accessible, they will have to have

had all the ID elements in their descriptors deleted before

being stored, i.e. the same as is done.. with absolute descriptors.

This searching operation will be lengthy but as it may only be

necessary infrequently, this may be acceptable. It is in effect

a form of garbage collection, a process which is usually performed

either when the system is idle or when space is short.

3. The alternative to this searching operation is to perform a

check each time a segment is swapped in to verify that the ID

element held in some descriptor does in fact match the name of

the corresponding segment i.e. no search is involved, merely a

test whether the name of the segment does match the expected

name held in the descriptor. The test must either be done for

every external descriptor on the table, which requires a search

of the segment descriptor table (which may be even longer than

the search for the segment directly!) or it can be performed on

the first reference to the segment (as is done in ~he case of

absolute pointers). In this latter case a flag must be set

indicating that the test has been done. A possibly attractive
solution is to change the relative ID value at this stage to an

absolute value in a manner similar to the existing method of

handling references to shared data segments (see section 3.2.3).

These absolute pointers would then of course have to be converted

back to relative pointers before the segment was swapped out ­

once more requiring a search of the descriptor table to reset all

external descriptors.

4. One of the objectives in the development of VIPER was to plan

towards its use in a multiprocessor environment. The relocatable

segments of meta-code are particularly attractive in this

environment as they can be sent to any processor in the network

and executed in any available memory space. The information

carried •...• /3.23
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carried in their external descriptors specifies all the resources

which may be required by that segment in its new environment.

A bulk storage module (either RAM or possibly bubble memory)

is an ideal element for shared storage 1n this environment and

segments stored there could be swapped in and executed on any

processor using current structures. If the identity element

plus indexing were 'used instead, then either the directories

would have to be identical in all processors, or it would have to

be noted when a segment changes processors and ,the ID elements

adjusted (zeroed) at that time; or the ID elements must be

deleted in segments which are stored in the shared module

(which contradicts point 2); or the checking technique in 3

above must be used.

From the various points which are made above, it is clear that

there are no simple, clear-cut alternatives to the structures ,which

have been used in VIPER. The VIPER structures were arrived at after

many months of careful thought and it could seem that they are the

best under the assumptions that were made viz. most time critical

tasks reside in memory. In other environments the factors affecting

parameters such as swapping rates, segment size, the number of

segments in the system and multiprocessor operation, must be known

before optimally efficient structures can be synthesised. In instances

where these factors are not known or vary unpredictably,the simplest

most straightforward structures may be if not the best, at least

not significantly worse than the best. This difficulty of selecting

efficient algorithms in an ill-conditioned environment has been

observed by SPANG (1974).

MEMORY ALLOCATION

There are three events which the memory allocator must handle:

1. A request by an existing segment for more space.

This space must be obtained adjacent to (i.e. at the end of) the
segment.

2. A new segment is to be created. The space can be obtained

anywhere in memory.
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3. A segment must be swapped out to make space for either a

new segment or an increase in size of an existing segment.

Additional space

Four events can cause an existing segment to require additional

space.

1. The addition of new lines of code to the statement pool of a

procedure descriptor.

2. The addition of new descriptors to the descriptor table of

either procedure or data segments.

3. The allocation of space for a local array variable.

4. An entry is added to one of the system segments.

(Scheduler segment, password segment or syntax recursion list.)

5. The body of a segment is swapped back in from bulk storage.

All these operations can occur dynamically i.e. while a

procedure segment is executing or between successive references to a

data or system segment.

In general, segments are scattered over memory and are not

necessarily contiguous. Bits of free space may exist between segments.

If a segment requires more space, a test is first made to see if

sufficient free space exists between the segment and the next. If

there is, the segment merely expands into the free space and no

movement of segments is required. If there is insufficient space, then

a compaction operation is performed in the vicinity of the segment

requiring space such that the minimum number of segments is moved to

obtain the necessary space. In situations where only a few words

of space are requested e.g. adding a descriptor to a table, more than

the requested space is obtained, if compaction is required. The extra

space obtained is left as free space at the end of the segment so

that if another request for space is made shortly thereafter (as is

quite likely) it can be satisfied immediately without moving any

segments. . •••• /3.25
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segments. If the required space cannot be obtained by compaction

then a segment must be swapped out. as described in section 3.5.3.

New Segments

New segments are created when:

1. A new procedure is started.

2. Anew shared data segment is formed.

3. An I/O buffer is required.

4. A reentrant data block is required for decompilation (back

listing).

5. An old procedure is restored from an input device.

The allocation strategy adopted for new segments is essentially

first fit i.e. the first free space area which is large enough is

used. In a detailed study of memory scheduling AGRAWALA (1975) has

commented on this allocation strategy: "In a swapping system.

determining where to place the next arrival in memory can be a very

complex task. Heuristics are usually employed to help solve the

problem. Quantitatively. now much better are such strategies than

first fit. which KNUTH (1968) endorses."

ROBSON (1977) has also shown that the worst case fragmentation

is serious for all sytems. but is much worse for best fit than for

first fit systems. In addition. fragmentation is not nearly as

serious in VIPER because free space can also be collected easily by

moving segments. In fact. due to the dynamic properties of segments

a certain amount of fragmentation may be quite desirable.

The only heuristic employed in VIPER is to attempt to separate

the temporary and permanent segments. Procedure and shared data seg=

ments. for example. are likely to settle down to a fixed size after

debugging is complete, and are likely to remain in memory permanently

if they ~re associated with time critical tasks.
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. . "These segments are therefore allocated from the bottom

(first segment of fig. 2.1 and 3.1) end of memory upwards, while

the temporary segments, such as I/O buffers, reentrant data blocks

and scheduler lists which change frequently in size, are allocated

from the 'top' (last segment) of memory downwards. This process is

simplified by the doubly linked list of segments which permits

searches for free space to be made with equal ease in either direction.

If first fit is not possible, i.e. no free space of the

required size is available, then one of two actions can be taken:

1. If the total free space in memory (i.e. the sum of all the

pieces) is larger than the required area, the space can be

obtained by compaction, a process which requires the relocation

of one or more segments.

2. One or more segments can be swapped out of memory to obtain the

required space.

The decision on which of these actions to perform is even more

difficult and complex than the free space selection problem mentioned

by AGRAWALA. On the VARIAN which lacks a firmware move instruction,

the time taken to move a segment is typically 20 to 25 ms depending

on its size and structure. If more than two or three segments must

be moved it may therefore be quicker to swap a segment out (30 -

60 ms) than to perform a compaction operation. (If a firmware move

instruction was available the movement time could be reduced to 5 or

6 ms, but there would still be some point at which it would be faster

to swap than to move.)

In the initial design of VIPER there was no experience to draw

upon so the simplest strategy was adopted: if there is sufficient

free space it is obtained by compaction, otherwise a segment is swapped

out. With a little care in the placement of segments this has been

found to work surprisingly well, for the following reasons. The

compaction and allocation algorithms tend to cause all the segments

which ••.•• /3.27
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which are more or less fixed on size to be packed one after each other

from the bottom of memory upwards, with most of the free space occur=

ring between the end of this pile and the top of memory, with only

a few segments being scattered in this free space. The compaction

operation therefore very often involves only a few of these segments.

Occasionally free space will occur in amongst ~thepile of fixed

segments, as a result of some interactive operation for example, but

the time taken to recover this space is then of little consequence. If

frequent movements are taking place these are most probably due to

extensive interactive operations by a number of users working simul=

taneously, in which case one can be expected to pay some overhead

for the facilities one is using. In any ~vent, in process control

applications, which usually run 24 hours per day, it is almost

impossible to perform such operations more than a small proportion of

the time, so that as far as the system is concerned it operates most

of the time in a quasi-static environment.

In the latter respect the memory management problem in real-time

systems is significantly different from that occurring in batch or

time sharing applications (AGRAWALA, 1975; ARDEN ,1975). SPANG (J 974)

has clearly demonstrated this point by showing that a slight change

in the characteristics of one task in a set of 17 repetitively

executing programs could change the number of swapping requests by

50%.

De-allocation (swapping out)

When insufficient free space is available a segment in memory must be

swapped out to provide the necessary space. Chosing the best segment

to swap out i.e. the one which is least likely to be needed in the

near future, is as'difficult as a "best-fit" strategy when swapping in.

Unless the characteristics of the tasks are known and the algorithm is

designed accordingly, nearly any algorithm will degrade. under certain

conditions and will end up swapping out segments unnecessarily

(SPANG, 1974; AGRAWALA, 1975).

The algorithm adopted in VIPER swaps out procedure segments in

the following order:
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1. Segments which are dormant, i.e. which are not on any scheduler

list. These segments may have been swapped in to perform either

syntactic or editing operations (e.g. the addition of a new

line) lor for an interactive operation (e.g. examination of the

value of a variable in the descriptor table).

2. Segments which are on any suspenS10n list (operator, I/O,

semaphore, unit lock or memory).

3. Segments which are on the time list; longest next-time-to-run

first.

4. Segments which are on the ready list waiting to run; lowest

priority firs to

Provision had also been made in the design of VIPER to permit

shared data segments to be swapped out, but this has not been

implemented as yet. They can be moved to and from bulk storage devices,

but only under user control i.e. with program statements or commands.

One difficulty with swapping of these segments is the determination

of which segment to swap out. A sufficient condition is when all

pointers (K) in the procedure reference descriptions (D), Fig. 3.9,

are zero, as this implies that all the referencing procedures have

been swapped out. User commands can also be used to explicitly release

a common area which would also zero the pointers in the reference

descriptor. Simple and efficient algorithms can be devised to

implement this strategy which would appear adequate for the use in

VIPER.

A comment on memory allocation algorithms

No detailed theoretical studies have been undertaken to determine

whether the memory allocation and scheduling algorithms are optimal.

In general, optimal memory management is of somewhat more concern to

large multi-environment real-time operating systeml:\(BAYER, 1975;

SPANG, 1974) than it is to a small specialized system like VIPER.

The time taken to obtain space for a new segment in SVMM, for example,

can be compared with the time taken to recompile a program segment

from source code. Thisrecompilation method is used in many disc-based

"extended" BASICs to provide an overlay facility; user designated

lines •..•• /3.29
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lines of code being discarded to allow new lines to be loaded into

the same space. A complex BASIC system using this kind of overlaying

has been described by CARY (1976). It should be noted that this

technique not only incurs a significant time penalty but also requires

care on the part of the user in constructing the overlay modules.

Even if extensive compaction is required to find space, the

time taken to load a new segment in VIPER is an order of magnitude less

than the time taken to recompile an overlay module. If no compaction

is required, the time to perform the loading operation is at least

two orders of magnitude faster. Furthermore,if the segment is already

resident in memory, as is more likely to occur when using SVMM than

when using overlays, the SVMM "loading" operation can be said to be

three to four orders of magnitude faster.

Having achieved a gain of this magnitude there is little

incentive to expend effort on optimal management, even if it were

possible to achieve a further 50 or 60% improvement. This is

particularly true in VIPER where many if not all of the time critical

tasks are likely to remain memory resident. Only if the SVMM

operations were to be improved to support a higher swapping rate, as

is discussed in chapter 7, would a more detailed and thorough

examination of memory management be required.

A further point in favour of simple algorithms is their compact=

ness and efficiency. MADNICK (1974) has pointed out how complex

scheduling algorithms can become self-defeating due to their time

and space overheads. Due to the 32K word direct addressing constraint

of the VARIAN (and of nearly all current mini and micro computers),

space consumed in the resident operating system nucleus 1S space lost

for use ip the local portion of the virtual meE~ry space. This

factor, together with the difficulty of deciding in many cases what

is a better algorithm, is sufficient reason for using the simplest

possible algorithms which perform with reasonable efficiency.

Memory allocation extensions

An interesting aspect of memory allocation occurs if on-line compilation

is .•••• /3.30
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is possible, i.e. if relocatable interpretive code can be converted

to fixed in-line code. These in-line code segments would be placed

in the fixed segment area shown in Fig. 3.1 and would therefore

reduce the memory available for virtual memory operations. They

cannot be relocated once placed in a fixed segment. Assuming some

ratio between the execution times of interpretive code and in-line

code, it is clear that given a set of tasks, the advantage of faster

execution time as a result of executing in-line code must be weighed

against the slower effective execution time that results from

reducing the memory available for virtual memory operations. The

optimum allocation will vary with the task demands and hence with

time, so that an estimation of the optimal memory allocation strategy

is a non-trivial problem. In many instances, however, a few tasks

can be identified which consume a large proportion of the available

processing time (particularly in real-time systems with some

repetitive tasks) and in this event a significant increase in overall

efficiency could be gained by compiling these tasks into in-line

(resident) code. The operating system can be used to identify which

tasks are consuming the most overhead, and the most time-consuming

operations can be compiled either automatically or under operator

control.

An important feature of SVMM is that tasks can be added in-line

into the fixed-segment-resident areas shown in Fig. 3.1. This is in

strong contrast to many commercial real-time executives, where the

tasks must be partitioned into memory-resident and bulk-storage­

resident tasks at generation time, and no more tasks (or at best

only a very limited number) can be added later. In addition, in

SVMM the most recently-added resident task can be deleted and the space

used by this task recovered for virtual memory operations. This

possibility of executing in-line code must however be balanced against

the loss of interactive capability which results when a procedure

is not interpretive. As this ability to interact on-line with any

procedure is one of the major advantages of SVMM, restraint should

be exercised to ensure that this advantage is not sacrificed to

obtain marginal gains in throughput.
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The technique of 'thrm,T-a~."ay' compi ling developed by BROIm

(1976) which is a middle path between interpretation and compilation,

may also be a useful tool for optimization the memory allocation

and throughput of the system. Using this technique, a relocatable

segment (or portions of it) would be dynamically compiled into in-line

code in the fixed segment area. When either additional space is

required or interactive operations are required on the segment, the

entire compiled segment is thro~ffi away, to be compiled again when

next executed. If the interpretive meta-codes are kept in

reverse-polish form (which is in any event a desirable representation)

this dynamic compilation is fast and efficient as only the code

generation portion of the compilation must be performed.
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DEFAULT ACCESS STATES OF PERMISSIBLE ACWAL TO FORMAL
PARAMETER MAPPINGS

Actual parameter
type

Local simple variable

External simple
variable (common or
a formal)

Array variable (local
or external)

Constant

Expression

Formal parameter
type,

Simple variable

Simple variable

Array variable

Simple variable

Simple variable

Default access
applied in son

Read and write

Copy formal access =
actual

Copy formal access =
actual

Read only

Read only

TABLE 3.2 SOME EXAMPLES OF EXPLICIT ACCESS OPERATIONS IN VIPER

DIM A(N)

Statement Comment

Local array, access = read and
write

ACCESS (A) = READA

CALL SUBX (A, B)

ACCESS (A) = READA+WRITEA

SUBROUTINE SUBX (x, Y)

ACCESS (Y) = READA

CALL SUBY (X,Y)

Force to read only for call

and back to write for local use

Drop access of Y

Pass access of X unchanged
access of Y is modified.
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C H APT E R 4

I N T ERA C T I V E MULTIPROGRAMMING F A C I LIT I E S

In this chapter the techniques for producing better software which were listed in

section 1.2 are discussed in more detail. The discussion is in two interrelated

(and intermixed) parts: the first deals with the more abstract concepts with

reference to current literature and the second deals with the implementation of the

facilities in VIPER. The five topics covered are:

1. Structured programming.

2. Interactive operations.

3. Protection and error control.

4. Synchronization.

5. Documentation.

4.1 STRUCTURED PROGRAMMING

"I take structured programming to be a term of art signifying a style

of programming in which the flow of control is determined by procedure

calls and by statements of the type IF ••. THEN ••• ELSE .•• ,

rather than by the indiscriminate use of GOTOstatements. Further,

it is usually advocated that the program should be written in a

top-down manner. These recommendations, it is claimed, lead to a

disciplined method of programming with the following advantages.

I. The program, being modular in nature is easy to understand and

check.

2. There is a possibility of proving it correct.

3. It is easier to maintain and modify."

(WILKES, 1976)

The term structured programming has acquired a variety of meanings,

but this concise statement by WILKES captures the essential properties

of this programming discipline. The development of structured program=

ming techniques is a current topic of research and a wide variety of

control structures have been proposed and discussed (DAHL, 1972;

MEISSNER, ••••• /4.2
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MEISSNER, 1976; BARTH, 1974; NEELY, 1976).

Because of this fluidity, only the simplest and most widely used

structures are used in VIPER and no attempt was made to either

develop or expand new structures.

The two essential requirements for structured programming are:

1. Modularity of program modules, permitting top down design

and step-wise refinement.

2. Suitable control structures which permit indiscriminate use of

GOTO statements to be naturally avoided.

A claim of this thesis is that the SVMM facilities! complement

the goals of structured programming and contribute towards the

construction of an efficient software system.

Modularity

In VIPER each named code module, which may be either a procedure or

subroutine, exists as a separate segment which can be ind~pendently

moved to and from bulk storage devices. One of the goals of structured

programming is to break-up a task into modules each of which ~s no

more than one to two pages in size (30 to 70 lines of code). In SVMM,

therefore, a well-structured program is naturally divided into blocks

a few hundred words in size, each of which represents a natural "page"

which can be swapped to and from a bulk storage device. This 1 : J

correspondence between pages and segments is in marked contrast with

hardware virtual memory mapping devices where the page boundaries are

randomly scattered over the procedures constituting a task. (DENNING,

1970; AGRAWALA, 1975). Only the segments which are currently required

(or which are being used frequently) are likely to remain in memory

and the o~her segments will tend to be moved out of memory. Together

with the fact that the meta-code segments are smaller than their

machine code counterparts, with the result that more of them can fit

into memory, this correspondance between pages and segments is

likely to result in less time being spent in swapping segments and in
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a reduction in the probability of pages i'thrashing" in and out of

memory.

An equally contentious aspect of structured programming is that

related to the use of block structure (as in ALGOL type languages)

as opposed to Main-subroutine structure (as in FORTRAN). One of

the advantages of block structured languages is the better organization

of variable referencing which avoids either long parameter strings on

subroutine calls or excessive use of COMMON. The use of blank (global)

COMMON has, in particular, been pointed out to be most undesirable

(NEELY, 1976; HOARE, 1975). The primary criticism of the use of

COMMON concerns the fact that it imports variables into a procedure

which may not be required there and which may be accidently over=

written. These errors can be very difficult to locate.

The main - subroutine - labelled common approach was adopted for

VIPER, however, for the following reasons:

1. In a real-time process control environment the use of a

COMMON area for the plant data base is unavoidable.

2. Block structured languages are conceptually more difficult

to understand for the process oriented user who is familiar

with FORTRAN and BASIC.

3. The ease of using labelled COMMON in VIPER and the protection

facilities which are provided, overcome the objections which

have been voiced at the use of shared data areas of this type.

4. When synchronization problems are taken into account, the

labelled COMMON area is a natual structure for the use of the

REGION construct (HANSEN, 1973) thereby simplifying access

contention problems.

5. Debugging operations are more difficult in a block structured

language because of the need to identify the scope of

variables (PIERCE, 1974).
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One of the claims of this thesis is therefore that the data

structuring and protection facilities provided by SVMM enable

structured programming techniques to be used in a simple,easy to

learn, FORTRAN type environment.

In the programs of the Case Study presented in ch~pter 6,

the FORTRAN programs were already modular in nature. In the VIPER

implementation, even further modularization was possible. The

program SERVO (Appendix B page B3.18 and B2.5, B2.20) and the error

message handling facilities (B3.6 and B2.17, B2.24) ill4strate how

this modular decomposition can be used to simplify the programs.

The modularity of programs in VIPER, together with the inter=

. active, operations, also permits an informal, but flexible, top-down

or step-wise refinement design strategy to be used. This aspect is

commented on in section 4.2.4.

Structures

The control structures incorporated in VIPER are as follows:

1. IF THEN ELSE ENDIF

2. FOR - NEXT

3. DO WHILE - END DO

4. CASE - ENDCASE

5. GOTO

This restricted set of relatively ~imple structures was chosen

as they were co~sidered adequate for the type of software likely

to be written in VIPER. Examples of the use of these structures are

given in Table 4.1 and in Appendix B.2. To simplify the incremental

compilation of lines of code, lines containing a control structure

must appear on their own in VIPER. Although a little cumbersome

at times, this restriction does ensure that the control statements

are highly visible and cannot be obscurred by surrounding code. This

is particular true of multiple rested IF - THEN - ELSE - ENDIF clauses
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and the enforced simplicity that occurs in these nested structures

is an open invitation for the insertion of end-of-line comments.

This has the double advantage that the programmer is more likely

to insert comments in this naturally occuring space, and secondly,

that this 1S the very point at which comments are most likely to

be needed to explain the program flow.

The one control structure included which is slightly more complex

is that of the CASE - ENDCASE. This statement can assume many

different forms (BARTH, 1974; MEISSNER, 1976). In.its most general

form Meissner claims that "at the advanced level, an extended CASE

form is introduced that provides the opportunity to remove the last

vestiges of undisciplined GOTO statements from FORTRAN programming".

A slightly restricted form of this advanced CASE is implemented in

VIPER which sacrifices some of the power of the most general form for

syntactical simplicity. Examples of the use of the CASE are given in

Table 4.1 and in Appendix B.2.

The simple GOTO was retained in VIPER as it has quite clearly

been shown (KNUTH, 1974; DEMILLO, 1976) that it is sometimes required

even in well-structured programs to avoid awkward and clumsy con=

structions. An interesting observation arose, however, from the Case

Study presented in chapter 6. In the translation of approximately

I 300 lines of FORTRAN code into VIPER not a single GOTO was required

whereas the FORTRAN code contained nearly 100 of them. This observation

indicates that the control structures chosen are adequate for the

relatively simple logic structures that generally occur in process

control work.

Despite the simplicity of the structures they have a markedly

beneficial effect on both the clarity and ease of understanding of the

control programs. The VIPER programs are generallyconsiderd far more

readable than their FORTRAN counterparts. (See Appendix B).

One of the most important aspects of structured programming in an

interpretive system is that it can be used to automatically perform

the indenting that provides the invaluable visual aid to program
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structure. An example illustrating this facility is given in Table

4.1. The manual insertion of indenting is a tiresome and frequently

overlooked chore which is especially difficult when programs are

changed or updated. Furthermore, real programs are subject to a

steady flow of changes and improvements over their lifetimes

(HOARE, 1975; KERNIGHAN, ]977) so this problem is not just a

development phenomena. In VIPER the automatic indenting is coupled

with a proof of the structural correctness of the program. This proof

is not only an assurance that the program is correctly structured,

but is also a useful teaching aid in that it gently prompts the user

to use the correct constructions, pointing out the cause of the error

and where it occurs. With this interactive assistance users un=

familiar with structured programming can rapidly learn the rules.

In addition to the control structure indenting there is another

aspect of program layout which is of importance in real time programming.

Programs which execute cyclically nearly always require an

initialization section where control loop variables and items in

common areas are given initial values. The static initialization

performed by FORTRAN type DATA statements is only a partial solution

as the initialization requirements can encompass all programming

functions, including input/output operations and computa~ions based

or process variables. In a FORTRAN environment this function can be

performed by using a flag in a common area for each program. This

flag is tested in the program to enable a jump around the initialization

section to be performed on subsequent cyclic executions of the program.

In a real-time language oriented system this flag testing and setting

should be provided in the language to enable this function to be

implemented naturally. This is achieved in VIPER by providing a

statement START which indicates the end of the initialization section

and the start of the repetitively executed code. The in~tialization

code is indented to distinguish it from the body of the program.

Examples of the use of the facility can be found 1n nearly every

program of the case study listed in Appendix B.2 as well as in table

4.1.
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INTERACTIVE OPERATIONS

The term "interactive" has acquired a variety of meanings in computer

applications. Two basic divisions which can be identified are:

1. Interactive program development.

2. Interactive dialogue in an applications environment (e.g.

data-base management and information systems).

The send category is important 1n process control applications

as part of the interface between the computer system and the process

engineers and operators, but it is the first category which is of

primary concern to this thesis. Similar ergonomic principles apply

to both divisions (PALME, 1976) and in the development of interactive,

dialogue systems using interactive programming systems, GAlNES (1975,

1976) has shown that the two topics can be closely related.

Even the term interactive program development is not well-defined.

It is used by some authors to mean time-sharing type computing

services (ARDEN, 1975) and by others to mean incremental compilation

and direct execution such as is possible with BASIC (BERCHE, 1976;

CHU, 1976; GAINES, 1975; HILDEN, 1976; WILCOX, 1976). Another

context in which the term interactive is used is in mini-computer

operating systems where the user drives the system directly from a

keyboard to edit, compile, load and test programs in a rapid development

cycle. The term interactive arises from the fact that on modern disc­

based operating systems these operations can be performed in one or

two minutes as opposed to 15 to 30 minutes on older magnetic tapes

or paper tape oriented operating systems. Although a great improvement

on past systems, this type of operation 1S not considered interactive

in the context of this thesis.

Although the primary aim of VIPER is to provide excellent program

development tools in a real-time interactive multiprogramming

environment, the provision of dialogue facilities which can be used

by process engineers and operators is also an important property. No

explicit process dialogue functions are provided in VIPER, however,

and the facilities which exist arise from the generalised interactive

programming and debugging operations.
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The interactive facilities which are provided in VIPER fall

into four interrelated and overlapping categories.

1. Symbolic debugging of programs on-line and in real-time.

2. Monitoring of on-line real~time programs; examination of

plant variables and perturbation of outputs.

3. Creation of new programs and editing of old program.

4. Testing the modules of a task as they are developed. (Top­

down design and step-wise refinement.)

Only two functions need to be implemented to enable these

facilities to be provided:

1. The ability to add (or delete) a statement to a procedure at

any time whether it is executing or dormant.

2. The unification of the command and programming languages.

These functions unify the language elements, the debugging and

monitoring commands and the file manipulation commands into a single

coherent set with a common syntax and enable the interactive mode of

operation to remain active on executing tasks. The operation of a

proces~ can therefore be dynamically monitored and symbolically

debugged using the same command and programming language that is used

to write the program. In PROSIC, the monoprogrammed predecessor of

VIPER, the essential simplicity and naturalness of this on-line real­

time debugging and monitoring facility proved to be an extremely

powerful tool which was readily accepted by the process oriented

users. To enable these facilities to be extended to VIPER, however,

the properties of SVMM are essential, as this level of interaction

could not otherwise be supported in a multi-user multi-tasking

environment.
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Debugging

"Probably the most overlooked area of programming from· the point of

view of development and system effort spent versus computer and

programming time involved, is debugging."

(GLASS, 1968)

"It is now connnon practice to use a high-level language for develop=

ment of both systems and applications software, even on small

computers. However, it is unfortunately true that while compilers

abound the same cannot be said of good runtime diagnostic and

debugging aids."

(PIERCE, 1974)

"Program debugging can often be the.most tiresome, expensive and

. unpredictable phase of program development .•• even the best-designed

and best-documented programs will contain errors and inadequacies

which the computer itself will help to eliminate. A good programming

language will give maximum assistance in this."

(HOARE, 1975)

These three comments together with the perspicuous comments by

WILKES (1976) quoted in section 1.2.2 emphasise the importance of

the program debugging and the extent to which it has been neglected.

There are four basic functions of any debugging operation:

1. Examination of the process state i.e. display of current values

of local and global data items.

2. Insertion of breakpoints: A breakpoint is a point up to which

a program executes before passing control to the system with a

suitable message to indicate that a breakpoint has been reached,

together with an indication of which breakpoint has been hit.

3. Selective execution of blocks of code (usually coupled with 2).

4. Insertion of new code either to assist with the debugging or

to fix any bug which has been found.
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A typical debugging seSS10n consists of the interactive

application of above four functions to trace, detect, locate and

fix errors in the code.

In the majority of operating systems, and even on small stand

alone minicomputer systems, a variety 9f facilities are provided for

performing the above operations in machine level terms: to determine

the state of a variable for example, a memory location is examined;

to insert a breakpoint, a trap or jump is inserted at the req~ired

memory location; execution of a code sequence is performed with a

simple jump to the start of the code with a breakpoint at the end of it;

patching of new code is permitted by the ability to alter memory

locations (i.e. machine code patch).

On a minicomputer these operations can usually be performed

interactively, but on larger systems they are often severely re=

stricted and can only be used in a batch mode. The examination function,

for example, typically consists only of a dump of the entire memory

space of the process.

The implementation of these debugging aids in machine level terms

is adequate for assembler programming (which is what they are intended

for) but is totally inadequate for the debugging of high level

language modules which are written by application programmers. Without

other help, these (and many other) programmers are reduced to using

WRITE statements imbedded in the code to examine variables at various

points. The frustrations and inadequacies of this procedure for

debugging real-time software was noted in section 2.2.

In addition to the obvious disadvantages of such techniques I

have encollntered at least one situation where t:ven as crude a tool as a

WRITE statement could not be used. This pathological case is worth

documenting as it illustrates the dilemnas which frustrate users in

their debugging operations.
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A pathological debugging problem

The problem occurred in the course of using the Hewlett Packard

RTE-2 Executive on the Huletts Refinery Project. (This project

is described as the case study.) In RTE-2 the memory is divided

into two partitions, foreground and background with other memory

areas being reserved for system operations, (in addition to the

resident operating system). In the configuration used for the

project the maximum size of the foreground partition was 6K

words out of a total of 32K. This size was adequate for nearly all

the control programs, provided they did not contain any formatted

input-output statements, as the formatter routines immediately

increase the size of a program by 3K words. Many of the programs

could therefore no longer run in the foreground partition if

WRITE statements were adped. As a background program was not

permitted to write into foreground COMMON, a program could not

be temporarily debugged in the background partition. Nor could

the system supplied assembler debug routines be used as they

applied only to background programs which did not reference

COMMON at all. The only solution to the dilemma was to tempo=

rarily place certain variables in CO}lliON and to provide special

message functions which could pass a few integer values from

the program in question to another program from where they

could be printed.

As if program debugging is not difficult enough as it is:

The object of high level, user oriented debugging systems is

therefore·to avoid the use of machine level concepts and to apply the

four debugging operations listed above directly to high level

language modules. Debugging systems which operate in this way are

frequently called symbolic debugging systems. The basic requirements

for symbolic debugging are runtime access to the symbol table of a

procedure and the ability to associate statement line numbers with

memory locations at run time. In compiler based systems this

requires passing information from both the compiler and link-loading

stages through to the debugging package.
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Systems which use symbolic debugging techniques have been

described by DANIERI (1976), DASAI (1977), GLASS (1968),

GOULD (1977), ITOR (1973) and PIERCE (1974). In all the systems

which they describe, however, the debugging operation must be

decided upon before the program is compiled and run and even then

only in some cases (PIERCE, 1974; DASAI, 1977) are the debugging

commands interactive in the sense that they can be turned on or

off during the execution of the program. In only one instance are

the debugging commands closely related to the programming language;

PIERCE (1974) uses a subset of CORAL for the debugging process.

These systems are, however, a considerable improvement on the

machine level debugging which must otherwise be used.

The size of the debugging system or package is also of particular

importance. The very powerful PL/I checkout compiler (CUFF, 1972)

for example, requires several hundred kilobytes. Even a compact

"interpreter emphasising debugging capability" GLASS (I968) uses

50K words and the system described by PIERCE (1974) which uses a

"greatly restricted subset of CORAL" requires 3K words for the

debugging section. In VIPER, on the other hand, where the total

executive occupies only 13K words, all the debugging facilities are

estimated to occupy only a few hundred words. (An exact estimate is

difficult to obtain because the facility is closely related and in=

tegrated with the normal mode of operation.) In the earlier mono=

programmed PROSIC (RERER, 1976a) it took less than 150 lines of

assembler code to provide similar facilities.

The simplicity, economy and versatility of the debugging

facilities in VIPER results from four factors.

1. The symbol table is always available as it must be retained to

permit programs to be backlisted (decompiled).

2. Associating a trap or other debug operation with a source

statement line number is straightforward because the line

numbers are also stored in memory with the program code.

3. The unified command and programming languages.
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4. The ability to enter a statement into a procedure at any

time whether it is executing or dormant.

The use of the same language for programming and debugging, and

the unification of the command and programming languages can therefore

be regarded as an essential feature of a software system for a small

computer and not as an expensive luxury. The savings in code which

result from using a common command and language processor have also

been noted in an implementation of POP-2 (BURSTALL, 197]).

As an example of a debugging operation in VIPER consider the

use of a simple PRINT statement to monitor the operation of a re=

petitive real-time task. The statement can be issued either as a

command to examine the current value of any variable known to the

procedure, or as a statement which is entered on-line into the

procedure at a specified position. The procedure may be executing

or dormant, memory-resident or bulk-storage resident. (The SVMM

will perform the necessary seek and swapping-in in the latter case.)

By adding and deleting PRINT statements within the procedure as it

is executing, the program flow can be traced dynamically using what

is in effect a software probe which selectively displays the required

data at any point in the procedure. This procedure is considerably

more flexible and general and easier to use than the shotgun "trace"

command which has been implemented in many debugging systems (e.g.

GLASS, 1968). (A trace operation was tried in VIPER and was rapidly

discarded as being far too unweildy.)

Any legal statement can be used as a probe, or any sequence of

statements. (A little care must of course be exercised when using

structured statements which are always paired e.g. FOR-NEXT.) As

another example, consider the use of some sequence of statements

which constitute some debug or monitoring operation, such as printing

a table or checking a table for consistency. If these statements

were coded as a subroutine, called SUBX for example, they could be
invoked directly with a command
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CALL SUBX «parameter list»

or inserted at any place, or at any number of places in the executing

procedure by

<line no> CALL SUBX «parameter list»

The parameter list is optional, and if it was too cumbersome

the necessary data required by the debugging subroutine could be

temporarily placed in a shared (common) data segment. When the

debugging operation is complete both SUBX and the data segment can

be deleted.

Example

The subroutine MESSAGE in the Case Study (page B2.17), has a

local array PM which contains a record of the previous messages

that have occurred 1n the applications software. This array

need normally only be known locally to MESSAGE, but if a record

was required of these previous messages, a call to a subroutine

executed as a command, thus

CALL PRINT.PM (PM,CPM)

within the context of MESSAGE (which could have been established

with a DEBUG MESSAGE command) would permit this array to be

printed out. This ability to examine the interior data

structures of procedures is a unique property of SVMM.

The interactive mode of operation together with the SVMM permits

the entire language to be used as an extended set of debugging

faciliti~s which can be applied to any segment which is known to the

system.

Monitoring

Closely related to the debugging mode of operation is the monitoring

of values of variables 1n the plant data base. In addition to the

direct r~adings which are obtained from plant instruments and trans=

ducers, there are usually a number of derive~ variables which contain

information which is of interest to operating staff. A selection of
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these variables is usually placed in a particular common area and

made available for examination by means of special keyboard or

display devices. These specialised display devices and their

associated software are an expensive component, however, and may

not be justified in small or experimental installations. In VIPER,

by using the flexible interactive commands and the 'shared data areas

(if necessary) the value of any variable in the system c.an be

quickly and simply displayed. While not intended as a substitute

for process operators' display pannels, the facility is an invaluable

aid to the process engineer who invariably needs more data and

information than the process operator, particularly when investigating

a particular process problem or proposed. change in processing strategy.

The facility can also be used in the design phase by helping to

determine what facilities are required in any proposed hardware

display panels. In VIPER a restricted subset of the debug-mode­

operations has been provided which has special access attributes

tailored for these monitoring operations - as described in

section 4.3.2.

Another aspect of monitoring is the direct measurement or

adjustment of process input and output devides. In the case study

for example the routines CDAC (Control Digital Analog Converter)

and WCOUT (Write Contact Output) are used to output control values

to particular devices, appearing in the form -

<line no> CALL CDAC (CHAN,VOLTS)

or

<line no> CALL WCOUT (CRAN, STATUS) (STATUS=O or I)

and which will write a voltage or set a contact respectively on the

specific channel.

The same statements can be used as commands, however, by

ommitting the line numbers, and will then directly perturb the value

of the designated channel. Together with others, commands of this
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form constitute a direct method of monitoring and commissioning

plant instrumentation on-line with a minimum of disturbance to

the system. Used incorrectly, these output commands could of

course cause unwanted disturbances. In VIPER this is prevented by

permitting a password to be associated with the commands which can

be used to prohibit access to all but authorised users.

Text creation and editing

The methods whereby new program text is created were described in

sections 2.2 and 2.3 and illustrated in tables 2.1 and 2.2. Line

numbers from the basis of editing operations. It has been pointed

out that in ~ structured language line nUmbers are not strictly

necessary (CHU, 1976; LAWRENCE, 1975). In VIPER the only statement

which requires a label is the GOTO, which is seldom used in any

event, as was noted in section 4.1.2. If a label (possibly non

numeric) was provided for the target of a GOTO, no line numbers

wbuld be required from a structural point of view. Although super=

ficially minor there is in fact a profound difference in operating

philosophy between line numbered and non-line numbered systems.

In my experience, editing operations are significantly easier and the

overall operating commands simpler when line numbers are used. There

are also good reasons for retaining line numbers for labels if labels

are required. A GOTO is an undisciplined transfer of control which

can go anywhere; but if the target is a sequentially numberedlirie

identifier, it is far easier quickly to follow the program flow,

particularly when working with a limited display of text on a CRT

screen. GAINES (1976) has emphasised this latter point and has

stressed the desirability of using line numbers in interactive systems.

Module testing

One of the recommended practices associated with the art of structured

programm~ng, is the independent testing of individual modules of a

task as they are written. Some sophisticated software tools have

been developed for this type of operation (e.g. CUNNINGHAM, 1976;

HENDERSON, 1974) particularly when top-down design or stepwise refine=

ment strategies are being used. VIPER makes no specific provision
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for this design procedure but the ease with which modules can be

individually tested, together with the flexible data structures which

simplify the generation and linking of test data, enables this

practice to be carried out using the standard interactive facilities.

Of more importance than a formal design procedure, (which is

possibly of relevance only to large software problems which wduld

most probably hot be coded in VIPER anyway) is the informal

flexibility of being able to test and examine the operation of a

procedure in a variety of ways before it is finally integrated into

an overall task.

This type of testing was used extensively in the development of

the software for the case study. All these programs were entered and

tested in Pretoria before being used in the factory in Durban. This

required numerous test programs to provide dummy inputs, outputs and

simulated process data to enable both the scan and control programs

to be exercised.

PROTECTION AND ERROR CONTROL

The most important property of the protection facilities is that they

are applied to executable code (and data) segments and remain in

force on active tasks. The ability of users to modify procedures,

access data areas or execute tasks can therefore be controlled

dynamically. The application of file-system-like protection

facilities to active segments in the system is a unique property of

SVMM.

The protection mechanisms have two goals - the first is to

provide facilities which are easy to use and the second is to ensure

that they are impossible to circumvent. These two goals conflict

at times so that in practice a modicum of effort must be expended

to achieve the highest level of protection; on the other hand good

protection facilities are always applied by default without any

explicit user action.

There are three aspects of protection and error handling which

are of importance in VIPER:
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1. The inherent protection provided by the interpreter.

2. Explidt protec tion provided by the SVMM struc tures.

3. Error control and recovery.

Inherent protection

The protection facilities which are usually provided in most

interpretive systems are as follows:'

1. Detection of undefined variables.

2. Array bounds checking.

3. Subroutine call parameter list matching (number of parameters

only) •

Checking of arithmetic operations for underflow, overflow and

other illegal states is also usually performed, which, although not

strictly a protection operation, is a useful monitoring function.

Despite the limitation of these three facilities they do perform

a useful service which can save a great deal of time during program

debugging. A short example may help to illustrate this point.

During the commissioning of the FORTRAN version of one of the

control programs of the Casy Study, it was observed that the program

sometimes malfunctioned during override conditions. The fault had

appeared only three times in 6 weeks of continuous running. Attempts

to trace the source of the error required that the program be re=

compiled and loaded with debugging statements added, but each time

this was done, the fault cleared itself. The error wa~ eventually

traced to an undefined variable; the random number that resulted

sometimes being within a suitable range so as not to cause an error,

and which always ended up being reset (cleared) when the program was

reloaded. An interpretive system would have pinpointed the exact

line and variable which caused the fault on the very first execution

of the override condition.
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A compiler which notes variables which have not been assigned

values would have helped in this case, but this is not always

possible as a variable may be assigned a value on one path through

a program and not in another.

The point to be noted in connection with this example is not

the length of time that it took to locate the error, nor that the

error was eventually found, but the fact that other errors of this

type may exist in programs which could go undected for long periods

of time (perhaps forever) and yet still be causing a program to

compute incorrectly some of the time.

Array bounds checking is also an important protection function

as it ensures that neither code nor data can be overwritten. Un=

fortunately the checks are sometimes bypassed once an array is

passed as a parameter to a subroutine. This is particularly un=

desirable property, as errors which are propogated across module

boundaries are always more difficult to detect. The comment made

above in connection with undefined variables also applies here; that

the serious problem is not so much the occurrence of the error but

the possibility that it may go undetected. This is a particular

possibility when another data area is overwritten, but can occur

even when code is damaged.

The time consumed by these run-time checks has been criticised.

The use of a check-out or debugging compiler has been suggested which

introduces overhead only while testing; the debug or checking code

being removed in the production version of the software*. Alternative

methods of reducing the run-time overheads are possible (e.g. BROWN,

1976(c)), but additional work is required in this area. In VIPER

where .•.•• /4.20
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where run-time overhead is not of particular concern, a check is

always made for undefined variables and for array bounds overflow.

The testing of subroutine parameter strings for matching

lengths is of limited usefulness, and far more rigorous checking

is required here in order to produce reliable software. The

facilities provided in VIPER for testing this interface were

described in section 3.2.4.

Explicit protection

The explicit protection functions provided in VIPER can be divided

into two classes:

1. Segment access, including the control of source text

modifications.

2. The protection of shared and local data areas and of parameter

passing.

Similar mechanisms are used for both classes, but the environ=

ments in which protection is applied are different.

Procedure segment·access

The basic means of controlling access to procedure segments is by

using a password. Before any input is accepted from a user at a key=

board he must LOGaN with an appropriate password. (The LOGaN command

is also used by the system manager - known as the MASTER - to

introduce new users. These functions are described in Appendix A2).

A password is not necessarily associated only with a particular

user. Its primary function is to logically partition tasks into sets

of co-operating procedures. The set of procedures an.d their associated

data elem~nts controlling a particular section of a plant, for example,

could be ?ssociated with a particular password, while the modules

of an operator interface could be given another. In this context the

LOGaN co~and identifies a logical subset of procedures which the user

wishes to access. It also serves the usual protection function,
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however, in that if the appropriate password is not specified, no

modifications can be made to a procedure.

There are seven access states and substates of procedures for

which provision has been made:

C~E

DEBUG

MONITOR - Free

- Password

EXECUTE - Free

- Password

- None

Password holder only

Password holder only

Default mode

Substate specified by ACCESS

command

No access

CHANGE, DEBUG and Free-MONITOR modes are entered by typing the name

as a command, e.g.

CHANGE <procedure name>

whereas entry into the substates of EXECUTE and Password-MONITOR

is controlled by ACCESS commands. If the input is already associated

with a particular procedure the procedure name can be omitted. To

move from DEBUG to CHANGE mode, for example, within the same procedure,

the command CHANGE on its own is sufficient. The states DEBUG and

CHANGE are available only to password holders, provided that password

has been validated for these modes. A password has attributes

associated with it which can restrict the states which a user is

allowed to enter. The substates of EXECUTE and MONITOR may permit non­

password holders to perform an operation but the state can only be

changed by the password holder.

1. CHANGE

In this mode any alteration can be made to a program, even if

the program is executing. It is the basic mode used for

editing programs and with a little care is also useful as

a debugging mode in that permanent changes to the program can

be made immediately.
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2. DEBUG

This mode possesses a restricted set of the CHANGE mode

access rights. The procedure can be listed, variables examined

and breakpoints and statements inserted, but no existing

statements can be deleted or modified. Statements which are

added while in this mode can later be deleted., however, as they

are flagged as temporary DEBUG statements. Provision had been

made to automatically delete all debug statements once the mode

is excited but this has not been implemented in VIPER. In the

earlier monogrammed PROSIC it had been found that owing to the

size of the programs (300 - 500 lines), debug statements could

be inadvently left in a program. In the modular VIPER, howev~r,

where the average procedure is much shorter (34 lines in the

Case Study) this problem has not occurred. A simple alternative

would be merely to flag any debug statements in the listing of

a procedure.

A very useful function which is available in the debug

mode is a statement execution frequency count. This counts the

number of times that each statement in a procedure has executed

and displays the current number when the procedure is listed ­

as illustrated in table 4.2. KNUTH (1971) has stressed the

importance of execution :counts and has advocated their use in

all software systems. They are an invaluable aid in determining

the most frequently used parts of a program, and can in

addition be used to determine which statements have never been

executed. The simplicity and economy of this feature in VIPER ­

it takes only about 75 lines of code to implement - illustrates

the versatility of an interpretive system.

3. HONITOR

This mode permits the state of a procedure to be examined using

c~ands such as PRINT and LIST, but no statements can be added

or changed. This restriction ensures that nothing can be done

which interferes with the execution of a procedure and this

mode can therefore be made freely available for process staff to

use. • .•.• /4.23
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use. In V1ew of the general goal of the SVMM to enable users

to co-operate, the default state of MONITOR is free, i.e. any

user can look at a segment which is in 'free monitor' mode. If

it is in the state 'password-monitor', then only a password

holder can perform monitor functions. The state of a procedure

can of course only be changed by a password holder. The sub­

state 'password-monitor' is specified with an access command,

as shown below.

4. EXECUTE

The access attribute EXECUTE can be in one of three states:

free execute, password execute and rto access. The latter category

ensures that a program is locked out and cannot be executed by

any user. The default state here is password execute, i.e.

only a password holder can invoke a procedure unless the owner

specifically decides to make it freely available.

The state required is specified by an access command:

ACCESS «procedure name» = <attribute>

The procedure name can be ommitted if the current procedure

is intended. The attribute is a three bit operator which has

a numerical value of 0 to 7:

o - No access

] - Password execute

2 - Free execute

4 - Password monitor

Symbolic, instead of numeric, attributes could be provided

as is done for data segment access. (The data segment access

statement is of the form: ACCESS «data element name» =

READA/WRITEA where READA and ~~ITEA are symbolic attributes.)

Symbolic execute attributes have not been provided in VIPER as

the numerical values are considered adequate. It has been found

in practice that these substates are not used frequently in the
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direct applications software, i.e. the software used by the

process staff.' They are, however, useful for controlling access

to software modules which are used for system housekeeping and

management tasks. The numerical equivalents are also used for
(

display purposes as the access attributes can be used in

arithmetic expressions e.g.

x = ACCESS «proc name»

PRINT X

or even more directly

PRINT ACCESS «proc name»

From these access states apd the defaults that are used, it is

evident that users are generally unaffected by the password constraints

unless they wish to modify or execute another user's procedures or

permit a user to access their procedures.

Data Access

There are two different aspects of data accessing. The first is

related to specifying the access attribute of a shared data segment

i.e. who can access that segment; the second to the individual

access states of data items which may be either local array

variables, elements of a shared data segment or formal parameters.

Tables 2.2 and 3.2 have illustrated operations of the second type.

The object of protecting shared data segments is to limit

access to those procedures which need to reference the data, granting

only sufficient rights to permit the required operation. The most

general method of performing this access cont~ol is to associate a

capability list with each data area which specifies the individual

rights of each accessing procedure. No other procedures would then be

allowed to access the segment. The skeleton of such a capability list

exists in the procedure reference descriptions that are necessary on

the data segment descriptor table for linking purposes. (Fig. 3.9.)
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In reviewing the requirements of process control systems in

general, and of the Case Study in particular, it was, however, felt

that this generalised- procedure could be unnecessarily complex and

that simpler mechanism would give adequate protection. This works

as follows:

A shared data segment always has a password associated with it.

Originally this is the same as the password of the procedure from

which it was created but this can be changed. The segment can then

be in one of two modes, password protected or public access. If it

is password protected only procedures with a matching password can

access it, both read and write operations from other segments being

prohibited. A public segment on the other hand is not password

protected and is freely accessible to be read by anyone, with the read

only attribute being granted by default. To write into a public

segment, a procedure segment must specifically request access to

either a particular element or to all elements.

To continue to provide a measure of protection to these public

segments, however, it was decided that only procedures with a

matching password would be granted write access. In problems with

complex data structures which are shared between disparate tasks which

do not have the same password, this restriction may lead to cumbersome

use of artificial passwords. This restricted access algorithm was

adequate for the tasks envisaged for VIPER, however, and was attractive

to use because of the simplicity of the commands required to implement

it. Complex commands are likely to discourage the use of the protection

facilities altogether, a point which has been emphasised by PALME

(1976).

In the spirit of VIPER, which is to promote co-operation rather

than to discourage it, the default attributes of shared data segments

are public access, read-only. If password protection is required

it must be specifically requested with a command of the form.

ACCESS «data segment name» = 4

Only the password holder can issue the command.
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The other form of the access command

ACCESS «data item name» = O/READA/WRITEA/READA+WRITEA

are used to set the access from within a procedure to either a data

segment or a particular data item. Examples of operations of this

type are to be found in Table 2.2 and in many of the Case Study.

programs (Appendix B).

The access attributes READA and WRITEA have numeric values,

as in the case of procedure segment access. The numeric equivalent

of the access command above is

ACCESS «data item» = 0/1/2/3

and the current access state of either a segment or a particular

element can be determined with display commands such as

PRINT ACCESS «data item name»

where the value returned is between 0 and 3

0 = no access

read access

2 = write access

3 = read and write access.

Error control

There are three types of errors to which attention must be given in an

operating system:

1. Expected errors

These can result from certain commands e.g. RUN <prog name>

where it is known that there is a possibility that the name

may not exist or that it may be in an illegal state (e.g.

already running).

2. Unexpected errors

These usually, but not necessarily, indicate either a logic or

coding error, or a hardware error.
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3. Errors originating from within the operating system itself.

It is generally accepted that a programming system must provide

orderly control of the first type of errors within the programming

language. A particular approach has been recommended for real time

BASIC systems (PURDUE, 1975) which has been implemented in at least

two systems (KOPETZ, 1976; BIANCHI, 1976). The action to be taken

following the occurance of errors of the other two types is a subject

of debate (KOPETZ, 1975; GOODENOUGH, 1975; POPEK, 1977) and there

would appear to be no consensus on the action which should be taken

in these situations. The basic point of divergence is whether

automatic recovery from type 2 and 3 errors should be attempted or

whether the task or system in which the error originated should be

halted until the error is either fixed or converted to a type 1 error.

Expected errors

If no action is taken to detect an error the standard procedure is

to print a diagnostic message on a logging device and then halt the

procedure or task where the error originated to prevent it from

executing further. To permit a task to perform its own error handling,

some mechanism must therefore be provided for inhibiting the transfer

to the normal system error handler and forcing a transfer to a user

supplied code sequence. This trapping operation can be performed

either locally or globally. Table 4.3 illustrates these two

different types, the first example is from the Hewlett Packard RTE

FORTRAN and the second is the recommended approach in real time BASIC
(PURDUB, 1975; ESONE, 1977).

In VIPER the global RTE-B approach was adopted although implemented

some what differently to avoid the use of an instructured GOTO. The

statements ERROR-ERETURN are provided as a structured pair which can

be unbedded anywhere in a procedure (but usually either within the

initialization section or at the end of the procedure). Table 4.4

illustrates the use of these statements. From the example it can

be seen that although these facilities do provide the necessary control,

they are somewhat clumsy to use. It is also not clear whether they
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are adequate in a structured programming environment where it may

be necessary to report errors back up to higher level module. This

is a subject which requires further investigation and development.

Unexpected errors

KOPETZ (1975) has argued for the systematic handling and attempt at

recovery from even unexpected errors such as arithmetic underflow

and overflow, divide checks and certain hardware errors. In the

discussion which followed his paper however, it was clear that

there is no consensus on this point and that many workers in the field

are of the opinion that no automatic recovery should be attempted in

these situations. In the design of the language EUCLID, POPEK et al

(1977) for example, have noted that "we know of no efficient general

mechanisms by which software can recover from unanticipated failures

of current hardware. Anticipated conditions can pe dealt with using

the normal constructs of the language; most proposals for providing

special mechanisms for exception handling would add considerable

complexity to the language". The occurence of the error should be

clearly noted of course, and every assistance should be given to the

programmer to assist him in determining the location and cause of the

error.

In my own experience there is a real danger, if the first

"KOPETZ" approach is adopted, that the error handling code can become

as complex, as the original programming. This additional code not

only adds to the cost of software, but is in itself a possible source

of error; adding the additional complication of handling errors

within error handling code. In considering the actual .process control

software with which I have worked it is difficult to see what this

unexpected error handling could hope to achieve. More fundamentally,

and far ~ore serious there would appear to be a definite possibility

that attempts at automatic recovery would allow (or force) a task to

continue which was executing incorrectly. In a process control

environment it would appear better to stop the task and notify the

operator to allow him to implement appropriate back-up procedures.
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VIPER is therefore a supporter of the second approach where any

error which is not expected is logged, with the name of the procedure

and the line number where the error occurred indicated. The

offending procedure is removed from the ready list and flagged as

containing an error to prevent repeated execution (and repeated

printout) in case the procedure is part of a task which is running

periodically*.

System errors

An operating system should operate without errors, but this is seldom

achieved in practice. The two approaches outlined above can be taken

here also, i.e.' error recovery and error 'abort. Error recovery systems

are of value particularly in large complex operating systems which

consist of many independant modules, or which use a kernel approach.

As VIPER is a relatively small system which does not have a kernel and

which is entirely memory resident, the second approach was adopted,

i.e. the system is halted on the occurrence of the error.

Every effort must therefore be made to locate and fix any errors

which do occur and the system itself should assist in the earliest

possible detection of any errors, particularly when the system is

being developed. The time and space overheads of vigorous self­

testing and checking are of little consequence at this stage and it has

been found that these tests can locate incipient errors which may

otherwise only manifest themselves at a later stage.

In VIPER for example, the double-linked lists that are used for

both the physical and logical structures, and the very well-defined

structure of each segment, permit regorous tests of the structural

integrity of the system to be performed. These checks are always

performed, for example, when the structure has been altered in any

way, and are invaluable in preventing an error from propagating its

ill effects before being detected.
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There are good opportunities for error recovery in the SVMM

1n that if anyone pointer is found to be in error, it can be

corrected owing to the double-linked nature of all lists. In

VIPER however, the redundant information is used for assertion

checking in a manner analogous to that recommended by RAMAMOORTHY

(1975) and POPEK (1977). At various points in the executive

(particularly at points where the structure has been modified) it

is asserted that a given structure or set of relationships exists.

By verifying that the assertion is correct, the computation can be

allowed to proceed with a high degree of confidence that the preceding

computation was performed correctly. In the development of the

SVMM system these assertion checks have proved to be an invaluable

debugging aid and they are considered to be a vital element of the

error-detection features of the executive.

SYNCRONIZATION

The semaphone principle developed by DIJKSTRA (1968) is the basic

building block for the synchronization of processes and the control

of access to shared data. It is, however, an awkward element to

use in real-time programming for several reasons (KYLSTRA, 1977).

1. If a lock (wait) operation is encountered in the program text

it is not immediately clear whether or not it is an entry to

a critical section (in which case it should be followed by

a free (signal) operation further on).

2. If it is the entry to a critical section it may not be

immediately obvious from the text what the shared variables

are.

3. It is difficult to check whether all critical sections are

properly protected by a semaphone.

4. It is difficult to check for the possibility of deadlock.

For these reasons other language constructs have been proposed

such as the "REGION" construct (HANSEN, 1973) the "MONITOR" concept

(HOARE, •.... /4.31
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(HOME, 1974) and "KNOWS" clauses (GORD, 1976). These facilities can

be implemented with simple semaphones or with more general constructs

such as those proposed by SCRROTT (1976) or RADUE (1975).

HOARE's monitor concept has been noted to be one of the most

general and secure structures, but it would appear to be more suitable

for operating system construction than for an application oriented

software system like VIPER. Reviewing the synchronization and

protection requirements of such systems, the "REGION" construct was

selected as the one which appeared most natural for use with the shared

data segments which are used so extensively in VIPER. This operates

as follows:

Given a shared data area which is declared with a statement

COMMON <com name>, <data list>

a critical region where mutually exclusive operations are required

is defined by:

REGION <com name>

<critical region statements>

END REGION <corn name>

Two or more procedures declaring an area in this way are guaranteed

to be mutually exclusive in the critical region. The REGION statement

sets a semaphone associ~ted with the data area and can only proceed

to execute the critical region statements if the semaphone is not

already locked. If the semaphone is locked the procedure is suspended

and waits for the semaphone to be cleared (unlocked) by an END

REGION statement.

The use of a REGION-ENDREGION pair ensures that the operating

system can check that no area is inadvently left locked. The

indenting that is performed between the pair also ensures that the

region which is critical is immediately apparant. Examples of the

use of the REGION - ENDREGION construction are given in Table 2.2

and in a number of the programs of the case study, Appendix B.2

pages B2.5, B2.14, B2.20 and B2.21.
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Other syncronization operations are occasionally required

which do not fit naturally within the region construct. Two operations

LOCK <corn name>

FREE <corn name>

are therefore provided for these purposes. One use of these

statements, for e~amp1e, is during interactive operations. If a

data structure was to be e~amined using the on-line interactive DEBUG

or MONITOR operations it may be desirable to prohibit modification

of the data while the debug operations was in progress. Typing the

command

LOCK <corn name>

would then set (lock) the semaphone assoc~ated with the data area

<corn name> and prevent any procedure from entering a corresponding

critical section defined by the REGION ENDREGION statements. When

the debugging operations were complete, the data area could be

released with the command

.FREE <corn name>

Any task which had been suspended waiting to enter the critical

region would then be reactivated to continue processing.

These simple but powerful facilities assist in the modular

decomposition of tasks into separate and independant sub-tasks which

are much simpler to code and debug. A particularly good e~amp1e of

this is to found in the case study where the FORTRAN program SERVO

was decomposed into the three tasks SERVOTIP, SERVO.HOUR and

SERVO.8.HOUR. (These programs monitor and record the operation of a

servo-ba1ance scale unit which weighs the raw s~gar entering the

refinery). Not only are the VIPER programs easier to write, read and

debug, but they require only 760 words to be used routinely in memory

on each tip of the scale versus 5328 in the FORTRAN version. (Table

6.1).

DOCUMENTATION

The importance of good documentation in programming systems has been

stressed by many workers in a range of programming areas, from
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commercial applications to real-time systems programming.

(DE BALBlNE, 1975; GILB, 1975; HOLT, 1975; KERNIGHAN, 1973,

1977; McMONIGALL, 1974; NEELY, 1976; NEWMAN, 1914;

OSTERWELL, 1976; SCOWEN, 1974). The purpose of documentation is

to allow programs to be read and understood both by their original

implementors and by others,because real programs have been noted

to be subject to a continual flow of changes and improvements over

their lifetime.

This is particularly true of process control systems where

changes in process operating conditions or strategy can frequently

require changes in associated software over a life of five to twenty

years. Considering the documentation requirements of VIPER, it is

apparent that they are even more rigorous because VIPER is

designed particularly for experimental or investigatory work, an

environment where the maintenance of good documentation is as

difficult as it is important.

An additional factor militating against good program

documentation in VIPER is its interpretive nature. Because of the

incremental compilation into internal meta-code, source text is never

stored and text layout to improve program visibility cannot be used

as it can with compiler oriented languages. BASIC, on which VIPER

is based, is also notoriously difficult to document and read because

of the clumsy comment facilities and lack of syntactic structure.

(The only thing worse than BASIC is APL which has been strongly

criticised, KERNIGHAN, 1973; DIJKSTRA, 1972.) Special effort

must therefore be made to assist and encourage the documentation of

interpretive programs.

A second aspect of documentation which is of importance,

particularly in real-time systems, is the documentation of the overall

structure of a task. This is concerned with the relationships between

programs and the hierarchy of progr~s and data structures which

constitute a task. This aspect has been termed system documentation

as apposed to program documentation which was commented on above.
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Program documentation

There are two aspects of program documentation which contribute

to the clarity of program code:

1. Language structure.

2. Comment facilities.

Language structure

A structured language is one of the most important aids to program

documentation and is absolutely essential to enable interpretive

systems to back list (decompile) a program in an intelligible format.

This aspect was commented on ~n section 4~1.2 and an example of the

VIPER facilities given in Table 4.1. There is a strong case for all

interpretive systems which perform the backlisting of programs to

use structured languages, for the sake of documentation if nothing

else.

A second aspect of language structure is related to variable and

procedure naming conventions. The restrictions in BASIC (a letter

and a digit for simple variables and a letter only for array

variables) are atrocious and quite unnecessary, as an extension of

PROSIC has shown (HEHER, 1976 (b)). In VIPER, all names, including

variables, data areas and procedure names can be up to 16 characters

in length. (This length restriction is arbitrary and arose purely

out of the desire to pack additional information in the 16 bit de=

scription head, as shown in Figs. 3.1 and 3.T.) These long names are

an invaluable aid to clear documentation, as can be seen from the

programs in Appendix B, and reduce the requirement for trivial

comments to explain the meaning of variables. The increase in the

size of the symbol table as a result of the longer names is of minor

consequence compared with the benefits accruing from their use. (In

the case study it is estimated that using only short one or two

letter names would save approximately 10% in the total space required

by the programs.)
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Another aspect of language structure which has invited comment

is that of conciseness. (KERNIGHAN, 1973). FORTRAN, and to a lesser

extent, BASIC, suffer from a lack of conciseness ¥hich results in

program modules being physically larger than necessary. As the

ease with which a program module can be understood is related to its

size there is an incentive to allow more compact representations.

(Conciseness, in the dictionary sense of "short and clear", is not to

be confused with the sententious contraction of a language like APL

which can reduce a page of code to a single incomprehensible line.)

Considering the structure of a large number of FORTRAN programs,

KNUTH (1971) has shown that nearly 50% of the statements in typical

programs are assignments, 60 to 70% of wh~ch are simple assignments

with one argument. An experiment was therefore made in VIPER with

providing multiple assignments on one line; numerous examples of

which are to found in the programs in the case study. The average

length of fourteen of these programs was measured to be 48 lines

compared with 73 lines for their FORTRAN equivalents (comments

excluded, see Table 6.1). A major portion of the contraction is

attributable to the compound assignment statements.

As the assignment statement does not affect the program flow,

this conciseness does not detract from program clarity. It is the

control structures IF-FOR-CASE and the like which determine the flow

and these are pivots on which the understanding of a program hinges;

contracting the "straight-line" code enhances the lucidity of the

control structures. The comment conventions adopted in VIPER which

are discussed in the next paragraph also contribute to maintaining

the conciseness of programs.

Comment facilities

The importance of comments in program documentation has been stressed

by SCOWEN, (1974); KERNIGHAN (1973, 1977) and HOARE (1975). All

languages make provision for comments in one form or another, but the

point these authors make is that the actual syntactical forms used

are of crucial importance. The ease with which comments can be inserted ,
and their readability once inserted, are an important factor in
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determining the extent to which the facilities will be used by

progranuners.

End-of-line comments are especially recommended as they are

easily inserted, are directly associated with a line of code, and

can be made highly visible. End-of-line comments were first tried

out in PROSIC where they were combined with a horizontal tabulation

facility to permit the construction of tabular comment areas. This

achieved the first two goals above, but did not achieve a high degree

of visibility. In VIPER with the longer assignment statement and the

indenting, this visibility was likely to be even worse, so the

horizontal tabulation was replaced by a simple right justification

of all end-of-line comments. This appears to achieve the

desired visibility without detracting from the ease of insertion.

The right justification has been recommended by NEELY (1976) in a

description of a structured FORTRAN preprocessor, but it should be

noted that the right justification is tedious and difficult to achieve

in a compiler oriented system. The line must first be typed, its

length determined and then moved to the right with a text editor,

an operation which destroys the essential simplicity of use. In

VIPER the ·comment is inserted immediately after the last character

of code, the start of the comment being demarcated by a control

character. It is in the backlisting operation where the length

of the comment can be determined apriori, that the right justification

takes place. Table 4.1 illustrates this mode of operation.

One of the severe problems associated with commenting inter=

pretive programs is that the comments remain in memory together with

the code and therefore use memory space which would otherwise be

available for code segments. As the comments in a well documented

program may take nearly as much space as the code, this could double

the swapping rate in a situation where all the segments cannot fit

into memory. This is regrettable because the comment code is only

required when the program is listed (decompiled), an event which

occurs relatively infrequently. The knowledge of this space penalty

would also deter the progranuner from adding comments freely.
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A simple and elegant solution is available using the SVMM

facilities. The comments can be kept in a separate segment which

could normally be resident on a bulk storage device and would only

be swapped into memory for either listing or updating operations.

Only a minimal space penalty would therefore be incurred in adding

as many comments as were necessary. Fig; 7.1 outlines a structure

in which this concept is incorporated.

(This facility has not, however,' been implemented in VIPER

because of the very small memory which was available for the initial

development work on the case study programs. The code to handle this

separate manipulation of comment segments .was sketched out apd was

estimated to take 200 to 250 words which just could not be spared on

the 16K computer that was in use at that time.)

System documentation

Typical real-time programming tasks are made up out of a number of

independent modules which operate on one or more data bases. In

maintaining and operating these systems it is important to understand

the relationships between the various modules of the task, including

information such as which modules call others (the hierarchial relation=

ship) and which modules access particular data areas. The relation=

ships amongst modules is of importance because the interface amongst

them is known to be one of the most troublesome and error prone in

real-time programming.

A number of software tools have been proposed and developed for

the documentation and verification task (DE BALBINE, 1975;

McMONIGALL, 1974; OSTERWELL, 1976; RYDER, 1974)~ The primary

assumption -of these documentation systems is that "the only precise

and by definition up-to-date source of internal documentation for most

software in existence today lies in the programs themselves"

(DE BALBINE, 1975). The purpose of the system documentatiop exercise

is therefore to extract from the source listing of the program one or

more of the following items of information:
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I. A list of all main programs and the subroutines (modules)

which they reference (applied recursively).

2. A list of all common data areas and the modules which reference

them.

3. Checks and diagnostics on illegal references to common data

areas (mismatched sizes or data types).

4. Checks and diagnostics on actual/formal parameter lists in=

eluding verification of parameter type matching and illegal

references.

5. Tests for undefined variable references; redefined variables

without use; and illegal or dangerous type usage.

6. Cross reference lists of local and global variables and labels.

In all the systems mentioned in the literature, these functions are

performed off-line by separate processing programs operating on the

source listing of the task to be processed. They are typically very

large programs, in the range 10 000 to 25 000 high level language

statements, which illustrates the complexity of producing this

information from source listings.

In VIPER items 3, 4 and 5 are tested dynamically at execution

time (in addition to other checks and protection functions described

earlier). Furthermore the information required for items I, 2 and 6

is available and readily accessible within the descriptor tables of

the segments.

Only one documentation module has been included in VIPER to

date, but is provides a powerful means of analyzing the overall

structure of the task. The output of this documentation aid for the

programs of the case study is shown in Fig. 4.5.

For each module in the system the following information is

provided:

1. Module name and the name of its current father, if any.
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2. A list of all the external modules (subroutines and programs)

to which reference is made. Each entry is also flagged (with a*)

to indicate whether or not it is currently linked to this

module.

3. A list of all the common data areas which are referenced, with

a flag as above.

4. Schedule and status bit information which describes the current

state of the program.

Each common data area is also listed together with information

on its size and all modules which reference this area. Each module

name entry on this list is also flagged as above if it is currently

linked to the data area in question.

A list of all the assembly language subroutines which are

available in the system can also be provided.

The important point about this information is that it is obtained

dynamically on line and represents the actual state of the system

at that moment.

The facility is invoked with a statement

CALL MAP «param»

which, as always, can be used either as a program statement or as

a command. The parameter <param> is used as a qualifier to obtain

partial listings of information:

param 0 - list and map all modules

< 0 - status information only, no

cross reference list

= PASSWORD (proc name)

- provide mapping and status information only

for those modules which match the password of

the specified procedure

(<proc name» optional, if o~itted current assumed).

A cross reference list of local variables used in a procedure

is not provided in VIPER, but could easily be implemented as the

information •••.• /4.40
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information is readily available. In the case study, it was found

that the relatively small size of the program modules made a

cross reference virtually unnecessary. Any variable could be

located by inspection within a short space of time.
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TABLE 4. I AN EXAMPLE OF THE STRUCTURING OPERATIONS

::PRoC STRUCTURE. TEST
::1 PP-DC
310 PRINT "SIMPLE STRUCTURE TEST"
320 START END OF INITIALISATION CODE
3100 FOR 1=1 TO 7 MAIN LOOP
::110 PRItH I,
311_20 IF 1<3 BINARY IF ON ITS OWN FOR VISIBILITY
:: 1:3 0 THEN PR UtT" 1<:3", THEN, EU;E AND UNAR'''' I F CAN Dt-IL..,.'
3140 ELSE PRINT" 1)=3", BE FOLLOWED BY A NON-CONTROL
::150 IF 1=4 PRItH" 1=4", :S:Hl.0N THESAt'lE LHIE
::lE,O ENDIF
~:200 IF 1>=5
3210 THEN THE FOLLOWING CONTROL STM MUST BE ON A NEW LINE
3220 FOR j=l TO 4
3230 CASE j=l CUTER CASE INDEX=j
3240 PRINT" CASE j=l",
3250 CASE 1=6 NESTED CASE INDEX=I
3260 PRINT "CASE 1=6",
::270 CASE 1=7
3280 PRINT" CASE 1=7",
::290 EtHICAS:E I Eml OF HU-IER CASE
3300 CASE j)2 AND 1)6 COMPOUND CASE CONDITION, INDEX=j
::310 PRINT" CA:S:E j)2 Arm 1>6",
3320 ENDCASE END OF OUTER CASE
ERPOf;' 3 HI LItlE ~:C'o OF S:TRlICTURE.TE':S:T (Example of syntax error handling.)

3':' 0 ~t-jDCASE

~:32 0 EtHICAS:E j END OF OUTER: CA:SE
::330 ND':T J
::340 ErmIF
::350 PRItH" ."
3400 NEXT I END OF LOOP, LINE NO LINKS FOR STM
3999 END PRoC NAME ADDED BY SYSTEM
~:L I ST

OUTER CASE INDEX=J

END OF OUTER CASE

NESTED CASE INDEX=I

END OF INITIALISATION CODE
MAIN LOOP

END OF INNER CASE
COMPOUND CASE CONDITION, INDEX=J

END OF LOOP, LINE NO LINKS FOR STM
PRoC NAME ADDED BY SYSTEM

BINARY IF ON ITS OWN FOR VISIBILITY
THEN,ELSE AND UNARY IF CAN ONLY

BE FOLLOWED BY A NON-CONTROL
STM ON THE SAME LINE

THE FOLLOWING CONTROL STM MUST BE ON A NEW LINE

PRItH" 1<3",
PR I rH" I.> =3" ,

1=4 PRINT" 1=4",

1
10

PROCEDURE STRUCTURE. TEST
PRItH "S:H1PLE STRUCTUR:E TEST"

20 START STRUCTURE. TEST
FOR 1=1 TO 7

PRHlT I,
IF 1<3

THEN
ELSE

IF
ENDIF
IF 1)=:.

THErI
FOR J=l TO 4

CASE j=l
PRINT" CASE J=l",
CASE 1=6

F'F~ Hn" CFrS:E 1=6",
CFeE I=?

PRINT" CASE 1=7",
ErWCASE I

CA:SE J;. 2 At·W· 1> 6
PRINT" C:A:SE J>2 rHiD 1>6",

ENDCA:S:E j

NE:on j 220
ErlDIF
PRnn" ."

NE:on I 100
END STRUCTURE. TEST

2:::0

260
270

290

230
240
250

100
11 0
120
130
140
150
160
200
210
220

400
'399

300
:':1 (;

340

320
'3:30

:350

RUN
::S: I t1F'L.E S:TPUCTUPE
1 I <.3 •
2 I <":3 •
.~ 1>=3 •.:;,

4 1'>=.3 1=4 •
'" 1;'=3 CASE ...J=1._'
6 1>=3 CAS:E ...1=1
? I )-=3 CASE ...1=1
F~UN

:: 1 <:;; •
2 I :::: •
3 I ="3 •
4 I =:3 I =4 •
5 I =:3 CW::E J=1
IS 'I =3 CASE J=l
7 I =:3 CA·~:E ·J=l

TEST

•
CASE 1=6 •
CASE 1=7 CASE j)2 AND 1>6 CASE j>2 AND 1)6 •

•
CA~:E I=E, •
CASE 1=7 CASE j)2 AND 1>6 CASE J>2 AND 1>6 •
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TABLE 4.2 STATEMENT EXECUTION COUNT

TF.:ACEm~

~~F.:ur-~

~~ 1 1<3
2 1<:3
3 1>=3
4 1>=3
5 1>=3
E. 1>=3
7 D=3
LI~:T

•
••

1=4
CASE
CA:~:E

CA"~:E

,
•
.J=1
.J=1
--1=1

•
CAS:E 1=6
CA:~:E I=?

•
CA:~:E .J> 2 At-m I:> E. CAS:E .J> 2 AND I:> 6 •

VIPER REV A7 12/04/78 21:09:41.5 18/04/78

7
7
2

o
o
1
1

5
5
7

1
2

7
:3

:3

7
7
'3
-1

12

1_-·c.

I> 6",

PRINT" I ocr,
PFUNT" 1>=3" ~

1=4 PRINT" 1=4",

PROCEDURE STRUCTURE. TEST
PRnn "S:It'1PLE STRUCTURE TEST'

START STRUCTURE. TEST
FOF.: 1=1 TO 7

PRINT I~

IF 1<3
THEN
EL:~:E

IF
ENDIF
IF 1>=5

THHl
FOR .J=1 TO 4

CAS:E j= 1
PR I rH" CA:~:E J= 1 .. ,
CAS:E 1=6

PR INT" C:A"~:E 1=6",
CA:~:E 1=7

PRINT" CASE I=7"~

HWCA::E I
CA:::E --I.> ;:' At-m I:> 6

PR ItH" CA :~:E J::- 2 At-W
nWCA:~:E J

NE:":T J 220
ENDIF
PRINT" ....

NE~-::T I 100
END STRUCTURE. TEST

1
10
20

100
110
120
1::;:0
140
150
160
200
210
220
2:30
240
250
2EIO
270
280
290
300
310
320
:330
:340
350
400
999

TRACEOFF
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TABLE 4.3 ERROR HANDLING· PRACTICES

(a) FORTRAN: Example of local error handling (Hewlett Packard RTE FORTRAN)

I. No user error handling (all errors handled by system)

CALL EXEC (CODE, <parameter list»

2. User error control

CALL EXEC (IOOOOOB+CODE, <parameter list»

GOTO <label>

<normal code>

<label> <error handling code>

(b) REAL-TIME BASIC (KOPETZ,1976, BIANCHI 1976)

<statements>

ON ERROR GOTO <error line no.>

<statements>

<error line no> <error handling statements>

RESUMEI RESUME <line no> I GOTO SYSTEM

Notes:

1• The ON ERROR GOTO is an executable statement and can appear

anywhere in the program body. On occurrence of an error, control

is transferred to the last specified <error line no.>

2. RESUME restarts execution at the line causing the error.

3. GOTO SYSTEM transfers control to the operating system.
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AN ERROR HANDLING EXAMPLE

1 PROCEDURESTARTUP
50 COMMON SPECS,NADC~ES~DELT

60 LET ACCESS«SPECS)=READA+WRITEA
70 LET NADC=30 ; ES=30 NO OF ADC CHANNELS/SIZE OF ENG COMMON
80 LET DELT=30 ; DELTCS=5
90 CALL TIME(YEAR~MONTH~DAY~HDUR~MIN~SEC) READ CURRENT TIME

100 RUN SCANC& EVERY DE LT CS SECS
110 RUN SCANADC EVERY DELT SECS
120 RUN WATCH. DOG EVERY DELT SECS
130 RUN SERVOHOUR EVERY 1 HOURS AT HDUR+l:0:0 RUN EVERY HOUR ON THE HOUR
140 LET r·iE::.;T:~:H I FT=:::H rHHOUR.···::::) +6 SH I FT:~: APE AT 22: 00 ~ 06: 00 AN D 14: 00 Cl
150 RUN SERV08HOUR EVERY 8 HOURS AT NEXTSHIFT:O
160 RUN FILTER.REPORT EVERY 8 HOURS AT NEXTSHIFT:O
170 PRINT "HULETTS FACTORY SOFTWARE STARTED UP AT"
180 CALL PTAD PRINT TIME AND DATE TO LOG STARTUP
190 Er·m :~:TAF'TUP

:300 ERI"OR
310 CALL ERRORSN(LINE~ERND) PICK UP STM NO AND ERROR NO
320 IF ERND=351 OF' ERNO=232 351=PROC NOT FOUND

232=ILLE6AL STATUS
330 THEN PRINT ERROR DIRGNOSTIC
3:35 IF ERt'iD=351 PI<' I rH "PROG NIJT FOUND:" ~

3:36 IF ERNO=232 PPItH "ILLEI:;iAL :~:TATUS:" ~

340 IF LHiE=130 PPItH "S:EPVOHDUP "~

350 IF LHiE= 15 I) PR Hn ":~:EF.:',,·'O::::HOU~: "~

360 IF LINE=IE,O pF.'Hn "FILTEF.:. r·mr-nTOR ",
370 IF LHiE<130 PRItH "EF.:ROP AT LHiE " ; LHiE" ,PPOI:;i NOT Four·m"
4 00 ELSE PI<' HiT "EPROP " ; EPr'iD" Hi LHiE " ; LI NE" OF :~:TAPTUP"

410 aHiIF
500 ERET CONTINUE PROCESSING AT NEXT LINE
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SYSTEM DOCUMENTATION EXAMPLE

VIPER REV A7 12/04/78 20:16:02.1 19/04/78

t'lASTER ()
EXT:LIMERATIO. MAP.
COt1:

PF.'OCEDUPES:
LIMERATIO (MASTER)

EXT:MESSAGE. CDAC.
COM:SPECS. VOLTS. ENG. BITS. GASFLOW.

CLFLOI.l.1 ()
EXT:FILTERCOEF. MESSAGE CDAC LIMERATIO
COM:SPECS. ENS. BITS.

!;;ASFLOI.lIA <)
E::"~T: MESSAGE CDAC
COM:SPECS. ENS. BITS. GASFLDW.

I;iASFI o1...1 ( ()

E:=-~T: ~lESSA(3E CDAC
COM:SPECS. ENG. BITS. GASFLDW.

SATFLOh-' ()
tXT:FILTERCOEF MESSAGE CAMA(
CDM:SPECS. ENG. VOLTS. BITS.

RE~lELT ()
EXT:DECLR. MESSAGE CAMRC
COM:ENG. BITS. SPECS.

S:UBPDUT I t"1ES:
MESSAGE (LIMERATIO)

EXT:PRINT.MESSAGE TIME
C0t'1 :

CAt'1AC: (CDAe)
E::-::T:
cm1:

FILTERCDEF (CLFLOW)

cml:
CDRC (L I t'lERAT 10)

EXT:DECLP+ CAMAC+
cml:

cDt-n'1Qt-E :
SPECS () 6 STARTUP SCANADC ENGUNITS ENGLIMITS SAT FLOW. PEMELT+

CLFLOW. GASFLOWC. GASFLOWA. LIMERATIO.
VOLTS () 60 SCANADC ENGUNITS SATFLOW. LIMERATIO+
EI'~I; c) Eo 0 Et-il:;UrH T·~: S:ATFL 0101. PEt-1ELT. CL FL mJ. GA:~'FLOI.dC. GFCFL OtdA+

L I t'lEPAT I O.
Et"K:iL I pl C:< 1c: (I EN!:';UtH TS Et-i':;:iL HlI T:S:
BITS () 2 SATFLOW. REMELT+ CLFLOW. GRSFLOWC. GASFLDbiA+ LIMERATIO.
GRS:FLOhl ) 1 (I I:;R:S:FLOI.':C. (:;A:~FLOldA. LH1EF<:RTI O•....
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C H APT E R 5

PER FOR M AN C E

There a~ea variety of criteria which can be applied to gauge the performance

of a real-time system. These include both time factors and resource

utilization. Time factors which may be of importance include throughput, response

time to asynchronous or external events and task completion deadlines (deadline

scheduling). Local memory, bulk storage and back-up storage requirements are

examples of resources whose utilization must be considered.

The criteria which is considered almost exclusively in this chapter is

that of throughput, i.e. how fast can the system perform its tasks. The reason

for restricting attention primarily to this one area, is the interpretive mode

of operation. There are many misconceptions concerning the performance of

interpreters and the purpose of this chapter is to clearly indicate the capabilities

and limitations of interpretive systems in general, and of VIPER in particular.

A second reason for restricting attention to the execution time performance is

that the other time criteria are of less importance to an interactive user-oriented

system like VIPER.

The execution time of programs, which determines the throughput, is

important in real-time systems for a slightly different reason than in batch

oriented systems. In batch systems, if programs execute 20% faster, then the

system can possibly achieve a 20% higher throughput and consequent increase in

revenue i.e. achieving a faster execution time has a direct monetary incentive.

In real-time process control applications however the CPU is typically busy only

a certain proportion of the time on a cyclic basis; which is reportedly as low

as 5% even in a relatively large installation (GALLIER, 1965). Provided the total

set of cyclic tasks is executed in time it is therefore irrelevant whether the

CPU is busy 5% or 90% of the time.

The execution time ~s important, however, to the extent that it determines

the range of tasks to which the system can be applied. This is particularly true

for VIPER because its modular properties permit it to be applied to a wider class

of problems than simple BASIC-type systems. It has been observed that in certain

cases BASIC is limited more by its structural inadequacies than by its execution

time ••... /5.2
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time penalty.

This chapter is therefore primarily concerned with the execution time of

.VIPER, both in comparison with other BASIC-type systems and in comparison with

systems executing in-line compiled or assembled code. Certain measurements which

have been made to demonstrate the extent to which the present execution times. ,

of VIPER can be improved, are also reported. Discussion of other performance

criteria such as memory and bulk storage requirements is defered to chapter 6.

There are four techniques which can be used to evaluate the performance

of a software system:

1. Micro-analysis. This technique examines and compares the performance

of individual operations and statements. While useful in under=

standing the operation of system and in making comparisons between

closely related systems, it is of little use when comparing dis=

similar systems.

2. Macro-analysis, which is concerned with the performance of groups of

statements which constitute a task, but still in abstract terms, i.e.

not related to any particular program or task.

3. Bench marks, which are used directly to compare the performance of

the same program in two different systems. The difficulty of per=

forming an accurate, unbiased evaluation of the relative performance

of interpretive systems has been noted by illLMMOND, (1977); LIENTZ,

(1976) and HAASE (1976, due to the strong dependencies on the type

and structure of the programs used for the benchmarks. To quote

HAMMOND "In order to compare the two compilers and the interpreter,

they must be made to process a typical BASIC program. Unfortunately

a typical BASIC program is as difficult to find as the soap powdet·~

advertiser's typical housewife, and as unconvincing if found."

4. Case studies, which consider a typical application of the system or

systems under consideration and consider their overall performance

in performing the tasks which are required in the application.

In ••••• /5.3
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In performing an evaluation of VIPER and of Software Virtual Memory

Management, all four techniques mentioned above have been applied. The results

of particular measurements in categories 1 and 2 are presented in Table 5.1 and

.the results of some simple benchmarks in table 5.2. The results of a case study

are presented in chapter 6.

5.1

5.1.1

PERFORMANCE IN COMPARISON WITH INTERPRETIVE SYSTEMS

Comparison with VARIAN BASIC and PROSIC

VIPER was derived from a BASIC interpreter, and the essential inter=

pretive processes have not been changed significantly. The first

two columns of data in table 5.1 show the results of measurements

on PROSIC and VIPER on the VARIAN 620i computer. Measurements on the

Varian BASIC are not shown because they are identical to those for

PROSIC. From these figures it can be seen that for simple operations

in small programs, VIPER and PROSIC are almost identical in speed.

This shows that the extra mapping and protection functions inSVMM

incur only a small overhead.

One of the most notable differences between VIPER and PROSIC,

is that in PROSIC the time to execute the control statements FOR-NEXT,

IF and GOTO increases as the size of the program increases. This has

a severe affect on the performance of medium to large programs, and

in the 200 - 300 statement range VIPER is likely to be two or three

times faster than PROSIC.

Four factors contribute to this improvement:

1. Task partitioning. In VIPER the partitioning of a task into a
number of independent procedures reducE:s the time taken to
perform typical branching operations. A 500 line task, for
example, executes in less than half the time when partitioned

into procedures with an average size of 50 lines. (A similar

improvement can be obtained in BASIC by performing a partial

compilation of the program before execution but this restricts

the interactive facilities.)

2...... /5.4
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2. Structural linking. Using special descriptors on the descriptor

table, fig. 3.3(e), for structural linking, an improvement in

the performance of individual statements can be obtained.

Compared to PROSIC, in VIPER the FOR-NEXT pair for example,

executes in half the time in a 70 statement program and in 10%

the time in a 600 statement program. The figures in group 1

of Table 5.1 illustrate this trend.

3. Structured programming. VIPER ~ses a structured language where

the program flow follows well defined paths, a property which can

be used to reduce the time taken for branching operations.

This effect is shown in Table 5.1 groups 5 and 6.

4. Formal-actual parameter mapping. The linking structures used ~n

SVMM significantly reduce the time taken for formal parameter

referencing, as shown in group 8 of Table 5.1. This aspect was

also discussed in section 3.2.4.

The mapping and protection of references to shared data items

defined by COMMON, are also performed efficiently as shown by the

. figures in group 9 of Table 5.1. The increase in execution time ranges

from 2,5 to 6,9%, which is minimal ~n view of the importance of

protecting this type of data.

One of the specific claims of this thesis is therefore that

Software Virtual Memory Management techniques can be used to enhance

the performance of interpretive systems and that the overhead

introduced by the virtual memory mapping and protection operations is

acceptable ~n view of the overall improvement in performance which is

obtainable.

In the fourth and fifth columns of table 5.1 measurements of

VIPER's performance on MIKROV, the microprocessor based Varian

emulator (VAN AARDT, 1977), are tabulated. The measurements ~n

column four were obtained using the same version of VIPER as was run

on the Varian 620i and the improvements directly reflect the higher

speed of the emulator.

Column •••.. /5.5
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Column five of table 5.1, and some results in Tables 5.2(a)

and (b), show the result of measurements on VIPER using a different

interpretive structure. The evaluator section of the interpreter

was rewritten to handle code in Polish form and in addition, floating

point firmware was used. The purpose of these tests was to obtain

some idea of the performance improvement which could be obtained

using readily available hardware and software enhancements. The

syntactical routines were not modified for these tests and the

various short test sequences were hand translated from infix to Polish

form. (The rewriting of the syntactical and back-listing routines

to compile and decompile to and from the Polish representation is

being delayed pending the availability of a high level systems

programming language. This aspect is discussed further in chapter 7.)

The measurements which were obtained in this way indicate clearly

the advantage of these enhancements. It should also be noted that

these figures are conservative, as a further 20 to 30% improvement

is obtainable by simplifying the code used in the initialization and

control of the interpretive operation. The improvements which it is

thought can be reasonably obtained are documented in Table 5.3. The

overall improvement which is noted in Tables 5.1 and 5.2 is about

3 to 1 with a factor of 4 or 5 to 1 being achievable with this

"streamlining" operation. A point which was observed in making

these measurements, is that as the time spent on the floating point

arithmetic and on the precedence determination operations is

reduced, the proportion of the time taken by the virtual memory

mapping and protection function increases. This effect is shown in

Table 5.3. The example shown in the table is the worst case, as when

floating point operations are involved, the mapping operations take

proportionally less time. An estimate of this effect is shown in the

second half of Table 5.3.

This data illustrates that there is a limit to the performance

which can be attained when using sof~ware virtual memory management.

Further improvements could only be obtained by moving some of the

mapping and stack operations into firmware. This is one of the

intrinsic limitations of software virtual memory management, and 1n

applications where executing speed is of primary importance SV1lli may not

be a suitable technique.

5.1.2 .•••• 5.6
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Comparison with other BASIC's

Some figures comparing VIPER with Hewlett Packard BASIC are given

in the last two columns of Table 5.1. The results of some simple

benchmark tests which are given in Tables 5.2(a), (b) and (c) extend

this comparison to a four other BASIC and interpretive systems.

The comparison with the Hewlett Packard BASIC is of interest

because the HP2IMX computer was used for the FORTRAN versions of the

case study programs. From an examination of the source listing of the

HP BASIC it was determined that its interpretive mode of operation was

similar to PROSIC viz,interpretation of meta-codes stored ininfix

form. The measurements of individual micro-operations therefore re=

flects to a large extent the difference in the average instruction

execution time of the various machines. From the figures in Table 5.1

it can be seen that, excluding the trigonometic functions, the HP BASIC

is 40 to 60% faster than PROSIC or VIPER on the Varian 620i and 30 to

50% faster than the MIKROV. This difference corresponds roughly with

the difference in average instruction execution time recorded in notes

(9), (10) and (11) of Table 5.1. Like PROSIC and Varian BASIC, the

performance of the HP BASIC deteriorates rapidly as the program size

increases. In programs with 50 to 100 statements, even the infix

form of VIPER would outperform the HP BASIC. The anomalous results

obtained for the trigonometric functions illustrates the difficulty

of making objective comparisons between even similar systems. This

anomally also distorts the results of the benchmark measurements, as

noted below.

One other result which is of interest in Table 5.1 is the data

for the HP Fast BASIC (GM~S, 1975) as it illustrates the improvement

which can be obtained by placing the floating point functions in firm=

ware rather than software. The overall improvement in typical programs

would appear to be of the order of 2 to I i.e. using floating point firm=

ware the execution time can be halved.

Table 5.2 shows the results of measurements from some simple bench=

mark programs. These benchmarks are of interest despite the simpleness

of some of them because results of measurements on several other com=

puter systems have been published (FULTON, 1977; MAPLES, 1977; VAN

MEURS, 1977). These results are also shown in Tables 5.2(a), (b) and

Cc) together with listings of the programs. Some of the tests were

also run using the HP BASIC and FORTRAN.

From .... /5.7
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From the results of these benchmark measurements five

observations can be made:

I. The performance of VIPER is considerably better than the

simpler PDP and INTEL BASIC systems and comparable to the

performance of systems running on much more powerful machines

such as the PDP 11/45 and Data General 840. From this

observation it can also be stated that the Software Virtual

Memory Management operations do not affect the performance

of VIPER vis-a-vis that of ordinary interpreters.

2. The benchmarks which have been published are inadequate and at

times misleading. The excellent performance of VIPER in some of

the benchmark programs can be attributed largely to the efficiency

with which the trigonometric functions have been implemented.

(This occurs as a result of a trade-off in space versus speed.

The Varian BASIC trigonometric functions take twice the space of

the HP functions but execute in one quarter of the time.)*

There is a need for better benchmark programs to be developed.

3. Interpretive programs are reasonably efficient when executing

scientific type calculations involving largely floating point

operations. Where integer arithmetic is used extensively, as

in the sort segment of Benchmark 3 - Table 5.2(c), the compiled

programs execute in dramatically less time.

4. Programs which interpret source code directly, such as

ABACUS/ID - Table 5.2(c), are more than an order of magnitude

slower than systems executing either infix or polish meta-code

forms. A number of early BASICs used this interpretation'

technique and at least some of the prejudice against interpreters

can be traced to experience (and rumour) with these early

systems.

. 5 ••••.• /5.8

*Contrary to appearances, the benchmarks were not chosen because of VIPER's
superiority in this respect;' they were the only ones found in the literature.
It was only after these somewhat anomalous benchmark results were obtained
that the SIN and ATAN functions were added to Table 5.1 to show the cause of
the discrepency.
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5. The interactive system ABACUS/X described by FULTON (1977)

executes compiled code, using an incremental compiler. Other

BASIC-like systems which execute compiled code have been

described by KOPETZ (1976) and WILKENS (1976). In these

systems the conversion to in-line code is either performed

line-by-line at input time, or from an internal meta-code

format immediately prior tb execution. Even in this latter case

the conversion is very fast because only the code generation

must be performed without any lexical or syntactical scanning

being required. Because of the high speed of the conversion

(typically a few tenths of a second) the operation is virtually

unnoticed by the user and the system still appears to have the

attributes of an interactive interpreter. In one-off batch or

"student" jobs this is an excellent approach, but as the

compiled module has all the characteristics and disadvantages

of code generated from conventional compilers, this technique

cannot be used in a real-time multiprogramming environment

without sacrificing the interactive facilities to a greater or

lesser extent.

PERFORMANCE IN COMPARISON WITH SYSTEMS EXECUTING IN-LINE CODE

No detailed comparison using benchmark programs has been made to

determine the difference between VIPER and similar programs executing

compiled code. The results of the case study of chapter 6, and the

scattered results recorded in Table 5.2, are, however, adequate to

demonstrate the general nature of the difference.

In the remainder of this section some results from the literature

are quoted and some observations made on the factors which influence

the difference between the two types of systems.

A detailed comparative analysis of the relative performance of

interpretive and in-line code has been performed by HAMMOND (1977).

On a set of five "representative" test programs interpretation was an

average of 5 times slower than in-line code. In three quite different

applications using different computers and different software

organizations, •..•. /5.9
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organizations, ADIX (1975), HELPS (1974) and FOSTER (1973) have

reported similar figures for the ratio between interpretive and

compiled code.

In the case study the ratio between the execution time of

12 programs which were written in both VIPER and FORTRAN has been

measured to be 6.6 to 1. An estimate of the true ratio between

interpretive and compiled code is difficult to make from this result,

however, because of a number of conflicting factors. These factors

are discussed and taken into account in chapter 6 where it is concluded

that the execution time ratio between interpretively executed code

in VIPER, and compiled in line code, is of the order of 6 to I. This

corresponds closely with the results obtained by other workers which

were noted above.

A comparison between the performance of the SVMM and other m~n~=

computer real-time executives is rather more difficult owing to the

fundamentally different nature of the two processes. Even an

approximate answer can be given only if the characteristics of the

tasks to be performed are known reasonably well. A few general

observations can be made, however. A real-time process consists typically

of a large number of concurrent tasks of various priorities, and as

a result the processor is switched frequently from one task to another.

If all these tasks are executed in one, or at best a few, memory

partitions, the CPU is busy only a small percentage of the time

because of the time spent rolling tasks in and out of memory. In the

S~1 system however, execution of one task can, in general, proceed

concurrently with the swapping of another task, so that the CPU can

be kept busy a greater proportion of the time. Even if concurrent

execution with swapping is not allowed, (as in the.current version of

VIPER) the compactness of the interpretive code ensures that many

more modules are simultaneously resident in memory. The swapping

rate is then reduced accordinBly. In the case study for example none

of the cyclic real-time tasks need be swapped at all.

The corollary that follows from this observation is that the

ratio between the total throughput in a system like VIPER and in a

compiler-based system is generally less than the ratio between the

execution times of individual programs ~n the two systems.

In •.••• /5. 10
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In the case study, the foreground partitions of the HP RTE-3

operating system in which the FORTRAN programs ran, were measured

to be busy about 15% of the time. (The majority of this time was

spent in swapping tasks as the CPU itself was only busy about 2%

of the time.) The same set of tasks in VIPER keep the MIKROV CPU

busy 12,8% of the time. In terms of the real time tasks which can

be supported, the two systems can therefore said to be closely related

in capacity, despite the fact that the actual computing speed of the

VIPER programs is 6,6 times slower than the FORTRAN programs.

A claim of this thesis is therefore that in a real-time multi=

programming environment, an interpretive system using SVMM can

perform as well, or better, than a compiler oriented system executing

in-line code with swapping. Furthermore, this performance is

achieved without recourse to large, expensive and unreliable

electromechanical bulk-storage devices, and even more importantly,

without sacrificing either the interactive facilities or the protection

functions of the interpretive system.
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EXECUTION TIME OF STATEMENTS

,
TOTAL STATEMENT EXECUTION TIME - MILLISECONDS (I)

I
STATEMENT TYPE

statement numbers indicate the
NUMBER VARIAN 620i (9) MIKROV (10) HEWLETT PACKARD 2IMX(II)

'"
(The OF FAST FORTRAN

I 5 association of statements within a STATEMENTS PROSIC VIPER VIPER VIPER BASIC BASIC IVI p:: group. Groups 2 to 9 ali execute
I '" within group I statements.) (2) (3) (4) (4 ) (5) (6) (7) (8)

I
I I 3 FOR I ~ I TO 10 000 2 1,9 1,96 1,72 0,65 1,13 O,4/i 0,017

I 9 NEXT I 50 3,4 1,96 2,17 1,51
I

!I 10 END 100 4,6 1,96 3;48 2,80

I 2 4 R = RND(I) 3 1,81 1,43 0,57 1,13 1,12 0,635
i

3 5 X = R 4 1,2 1,16 0,94 0,36 0,60 0,60

5 X = hR 4 2,35 2,37 1,95 ·0,62 1,91 1,05 0,027

5 X = HR 4 2,20 2;24 1,89 0,61 1,43 1,03 0,017

5 A( I) = R 4 2,30 2,08 1,74 1,90 1,89

5 X = SIN(R) 4 4,14 16,18 3,64 1,16

5 X = ATN(R) 4 9,3 8,50 '22,57 4,77 2,44

I 4 5 IF R<O,5 THEN 9 5 1,44 1,15
6 X = R 50 3,40 3,11

100 5,37 5;07
5 IFR>=O,5 LET X = R 4 2,41 2,04 0,79

5 5 IF R<O,5 THEN 8 7 1,87 1,59

P X = R 50 4,49 4,18
7 GOTO 9 100 7,20 6,77
8 X = I

6· 6 IF R>=.O,5 7 4,13 3,38 1,30
6 THEN X = R 50 4,13 3,38 1,30
7 ELSE X = I 100 4,13 3,38 1,30
8 ENDIF

-

7 5 GOSUB 100 1,7 0,72 0,72
100 RETURN

CALL SUBX 3,5
SUBROUTINE SUBX

RETURN
_.

8 5 GOSUB lOO, R, I, X, 4, 5 6,25
100 SUB A, B, C, D, E
102 RETURN

CALL SUBX
(R, I, X, 4, 5 6,90

SUBROUTINE SUBX
(A, B, C, D, E

RETURN

101 C=A+B 8,8. 2,40

9 2 COMMON COMI, R, I, X, A(2) INCREASE
FROM

·GROUP I, 2, 3
FOR - NEXT I 2,5% 2,01
X z R 6,9 % 1,24
X = R*I 5, 1% 2,49
A( 1)=R 2,9 % 2,14

NOTE: The numbers 1n parem:nes1s ~ I) to :11) reter to tne note$ on tne next: page.
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TABLE 5.1 (CONT.) NOTES

(I) Time for actual statement indicated i.e. excluding FOR-NEXT

overhead and time to generate random number.

(2) In PROSIC and HP BASIC the time to execute a statement is

dependent on the total number of statements in the program,

including REMS. The statements need not be inside the FOR-NEXT

loop.

(3) PROSIC 1S similar to VARIAN BASIC with some small improvements.

(4) VIPER - Infix form for meta codes.

(5) VIPER - Meta-codes stored in Polish form, using

floating point firmware.

(6) HEWLETT PACKARD stand alone BASIC HP 20392A Sept. 1974.

(7) HP BASIC modified to use floating point firmware (University of

Natal Fast BASIC - GANS, 1975).

(8) FORTRAN IV running under RTE-2 on 21MX with hardware FAST

FORTRAN firmware.

(9) VARIAN 620i: 1,8 ~s memory cycle time, ~s average instruction

time.

(10) MIKROV INTEL 3000 based emulator of Varian V70 instruction set:

450 ns memory cycle time, 3,5~s average instruction time

(VAN AARDT 1977).

(11) HP 211~ 660ns memory cycle time, average instruction execution

time approximately 2,5~s
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TABLE 5.2 BENCHMARK DATA

(a) BENCHMARK 1

TIME PER LOOP
COMPUTER AND LANGUAGE MILLISECS

Published Data (MAPLES 1977)

Data General 840 Multi-user BASIC 4,5

DEC PDP 11/45 BASIC 3,2

DEC PDP 8E FOCAL 38,0

INTEL8080 BASIC 75,0

INTEL 8080 compiled BASIC 22,0
(Lawrence Livermore Laboratory)

VIPER - Varian 620 14,4 (l) 13,1(2)

VIPER - MIKROV 12,0 10,7

VIPER - MIKROV + Polish + Firmware 4,2 -
(Note 5 Table 5.1)

Hewlett Packard 21MX (See notes. 6, 7 and 11
Table 5.1)

1. HP BASIC 10,7

2. HP Fast BASIC (e~ University of Natal) 6,7

3. HP FORTRAN IV 0,18

BASIC

10 REM SIMPLE BENCHMARK

15 REM *, I, -, +

20 REM

30 LET A = 1

40 LET B = RND(A)

50 LET C = A + B

60 LET A = A + 1

70 LET E = B/c

80 LET F = A*E
90 LET C = C-F

100 IF A = 1001 THEN 200
110 GOTO 50
200 PRINT "THE LOOP IS DONE"
210 END

VIPER (1): as BASIC except

100IF A = 1001 GOTO 200

VIPER (2)

30 DOWHILE A<=1000

40 LET C=A+B;A=A+1;E=B/C;F=A*E;

C=C-F

50 END DO
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TABLE 5.2(b) BENCHMARK 2

COMPUTER AND LANGUAGE EXECUTION TIME-SECS

PROGRAM 1 PROGRAM 2

Published data (VON NEURS 1977)

DEC PDP 11/40 with DOS/II V8.08 operating system

1. DEC FORTRAN V004A 3 21

2. DEC BASIC V008A 45 134

3. BACO (Tagged data structure interpreter) 14 47

VIPER - NIKROV 14,5 41,9(1)

VIPER - MIKROV Polish Notation + Firmware 5,1 22,8(2)
13,2 .

Hewlett Packard 2/MX

1. HP BASIC 8,7 83,6

2. HP FAST BASIC 6,3 24,7

(1) Measured, SIN function not uSing floating point firmware.
(2) Estimated, SIN function using 11 \I

Program 1

10 LET X = 0

20 LET X = X + 0,1

30 IF X <360 GOTO 20

Program 2

10 LET X = 0

20 LET PI = 3,1415

30 LET Y = SIN (2*PI/360*X)

40 LET X = X+O,I

50 IF X <360 GOTO 30
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TABLE 5.2(c) BENCHMARK 3

EXECUTION TIME-SECS
COMPUTER AND· LANGUAGE

1. 2.

Published data (FULTON 1977)

Data General 840

1. FORTRAN IV } Standard Data General 13,05 9,91

2. Extended BASIC Translators 46,84 145,30

3. ABACUS/X - Incremental Compiler 13,18 11,14

4. ABACUS/I0 - Interpreter 77 ,89 1 600,57

VIPER - MIKROV 18,1 158

N=250
Hewlett Packard 21MX (BASIC Array limi~

1. HP BASIC "13,4 "29,0 53,2* 79,1*

2. HP FORTRAN IV 0,51 0,55 2,01 1, 50

1. Computation Segment ; 2. Sorting Segment *Extrapolated

8ENCH"ARK -- GENERATE SOKE NUK8ERS AND SORT THEK

TO SORT

C

C
C
C

190
C
C
C

228

268

288

358 .

FORTRAN
DIMENSION ACloe8>
N=1009
TYPE "(7)STARP

COKPUTATION SEG"EHT

DO 108 1=1.1;)08
Q =1
X=S IHC Q) .COS«~)
X-)(*4980.
X-SQRTCA8S(X»
ACI )=AINT<tOO .•X)

SORTING SEGI'IEHT

TYPE "(7)SORT"
H0=H
H9=UQ12
IF(NO.LE.9) CO TO 398
K=/I-H8
J -I
I =J
"-I+N8
IF(ACI). LE. A("» CO TO 359
T=A(I)
A(J)=A(I'I)
AC")"T
"-I
I-I-H9
IFCI.CE. I) CO TO 288
J=J+I
IF(J.LE:K) CO .TO 269
CO TO 229

a99l. 1889 C ABACUS/X
0881.~IHll) SET H=1008
0091.3088 TYPE "(7)STA~T"

a091.4909 /REL A(H)
9091.5009 FOR 1=1,1809iDO 99

9992.91e8 CSORT ROUTINE
9B9Z.9l50 TYPE ·(7)SORT"
9002.8Z89 SET HO~H

9992.9399 SET HB~H9/2

999l.lJU9 IF (HI:I<=O) GOTO 2.19
999l.0t90 SET K=H-NO
909Z.96ee SET J=l
0902.9700 SET I=J
9002.8ge9 SET 1'I=I+H9
9882.999S IF CACI)C=ACI'I» COTO 2.16
09~2. 190e SET T=ACI)
0982.1100 SET ACI)qA(I'I)
0092.1200 SET AC")=T
OOOZ. 1309 SET "=1
0002.1488 SET I=I-HO
0002.1580 IF <1)8) COTO 2.89
0002.1608 SET J=J+I
0092.1798 IF CJC=K) GOTO 2.97
U8? 1889 COTO 2.93
8092.1980 TYPE "(7)FIHISH"
9992. Z8119 QU IT

8999.9S9S C CO"PUTATIOH OF VALUES
0899. 19a9 SET X=FSIHCI)*FCOSCI)
0099.2009 SET )(=X*4809
0999.~Doe SET X=FSQTCF~B~CX»
0899.4089 SET ACI)=FITRCIOO.X)
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TABLE 5.2(c) BENCHMARK 3 VIPER VERSION

1 PROCEDURE ABACUS. BENCH
10 LET, ~~=1 000
20 DIt1 Ft n'D

·:30 FDF<' 1=1 TO N
40 LET 0=1 ; X=SIN(Q)+COS(Q) ; X=X+4000
50 LET X=SQP(ABS(Xl) ; A(I)=100.~
6 0 t'~E;:'::T 1 :3 0
70 PRINT .....

100 LET NO=N.····2
110 DOf.,IHILEt·iO> (I

120 LET K=N-NO ; I=J=l
130 DOWHILE j(=K
140 LET M=I+NO
150 IF A(I)}A(M)
160 THEt'1 LET T=A(!) A(!)=A(t'1) A(f'1,)=T
170 LET t'1=I ; I=I-NO
180 IF I}=1 GO TO 150
220 ENDIF
2:30 LET j=j+l ; I=J
240 Et-mDO
250 LET NO=INTcNO/2)
260 ENDDD
300 Pj;;~It'1T .....
999 END ABACUS. BENCH
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TABLE 5.3 INSTRUCTION BREAKDOWN

Approximate number of machine instructions executed by VIPER when interpreting

infix and Polish representations of statement:

LET X = R

(Table 5.1 Group .1)

Number of Instructions
Operation , streamlined

Infix Polish Polish

Initialization 25 20 2

Stack operations 30 20 20

Precedence determination 135 - -

Assignment 10 10 10

Mapping 30 30 25

Next statement calculation 20 20 2

Total no of instructions 245 100 59

Measured execution time, ms 0,94 0,36 (0,23)*

Proportion spent on ~apping 12% 30% 42%

*Estimated

Estimated time spent on mapping in operations involving aritlnnetic functions

Using floating point software 8% 12% 13%

Using floating point firmware 11 % 25% 30%
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C H APT E R 6

CAS EST U D Y

The case study deals with a process control project at the Huletts Sugar Refinery

at Rossburgh in Durban. This project was a co-operative venture between the

National Electrical Engineering Research Institute (NEERI) and Huletts Refineries

Ltd. NEERI was responsible for all computer and systems software while Huletts

was responsible for all instrumentation. The applications software was developed

jointly by staff of both organizations. I was project leader of the project from

its start in 1975 until its termination in 1978.

This case study is of interest because most of the FORTRAN programs used

on this project have been translated into VIPER, permitting a direct comparison

to be made between FORTRAN and VIPER. The comparison deals with four factors.

1. Memory space requirements.

2. Relative execution speeds.

3. Bulk storage requirements.

4. Readability of code and ease of implementation.

The first three comparisons are based on quantative data obtained from
. .
direct measurements while the last is a subjective, but no less important,

assessment of the "useability" of the two systems.

The characteristics of the process and of the hardware and software used

are tabulated in Appendix B, in addition to being summarised below:

6. 1 FORTRAN IMPLEMENTATION

A Hewlett Packard 21MX computer was used, running initially under

control of the RTE-2 executive with 32Kof memory and later,

(August 1977 onwards) under RTE-3 using 48K of memory. All the

~pplications software was written in FORTRAN IV. The computer is

interfaced to the plant instruments using a CAMAC interface. Detailed

process · •••. /6.2
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process studies had to be performed concurrently with initial control

work, the first control loop being placed on-line in January 1977 and

the six other main control loops going on-line at approximately two

month intervals as the process studies proceeded. The modular

decomposition of the software was therefore essential to permit

independent testing and debugging of new programs without disturbing

existing control programs.

The software is organised as a series of 17 separate control and

monitoring programs and approxllnately 45 supporting subroutines and

programs. All the control programs and some of the service programs

are listed in Table 6.1. The synchronization of the various modules

is achieved using semaphones (called Resource Numbers in RTE). The

only memory resident shared data is a blank COMMON area as RTE does

not support labelled COMMON in a multiprogrammed environment. Various

disc files are also used for shared data as well as for data base

operations.

RTE 2 can address a maximum of 32K words of memory resulting ~n

a single foreground area of 6K words in the configuration used in

Durban: 14K for resident system and drivers; 10K for background

{minimum for FORTRAN compilerl; lK for system buffering; lK for

COMMON. All the control programs were therefore swapped in and out

of this single foreground area. This caused two problems; a high

disc access rate and difficulties with the debugging of foreground

programs, as described in the "Pathological Debugging Problem" of

section 4.2~1. These problems and others, such as chronic base page

overflow, led to the installation of RTE 3 in August 1977. Using the

system with 48K of memory enabled three foreground memory partitions

to be provided of2,4 and 8 Kwords respectively. This reduced the

disc swapping rate and permitted larger foregLound programs, but did

not otherwise materially affect the organization or structure of the

software.

The source listings of the FORTRAN programs are provided ~n

Appendix B.3.

6.2 ..... /6.3
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6.3

6.3.1

6.3

VIPER IMPLEMENTATION

The FORTRAN programs were translated into VIPER directly, retaining

the structure of the original programs except as noted below:

1. GOTO statements in the FORTRAN programs were avoided in all

cases (the VIPER programs do not use any GOTO's) requiring a

certain amount of logical reorganization to use VIPER's control

structures.

2. In a few cases the programs were significantly reorganised to

either take advantage of the modular properties of VIPER or to

avoid particularly poor construction 1n the FORTRAN programs.

These programs are marked with a (*) in Table 6.1.

3. As a result of the interactive facilities in VIPER a number

of the FORTRAN programs are not required at all. Other functions

such as CAMAC error reporting are included in the resident VIPER

nucleus - some of these programs are listed in section 3 of Table

6.1.

The listings of the VIPER programs are given in Appendix B.2.

Table 6.1 lists all the VIPER programs which have been written

together with their size parameters. The program S1ze information is

summarised in Table 6.2 while the data areas which are used in the

FORTRAN and VIPER versions are tabulated in Table 6.3.

COMPARISON BET~~EN FORTRAN AND VIPER PROGRAMS

The two different implementations are compared 1n size, Table 6.1

and in execution time, Table 6.4.

Size comparison

The sizes of the programs 1n the two systems can be compared in three

classes:

1. Repetitive programs which execute either periodically (with a

period of 5 to 30 seconds) or asynchronously in response to

frequent external events.

2.•..•. /6.4
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2. Non-repetitive programs or programs which execute infrequently

in response to external events.

3. Monitoring and service programs which are used to observe

the performance of the control programs.

The size of the FORTRAN programs can be expressed in two ways.

The one is the actual size of the program module (RTE-2 size) and

the other the size of the smallest partition into which the program

would fit in RTE-3 (expressed in pages, each page being 1K words in

size). The RTE-2 size is quoted in order to asses how much space

would be required if the programs were packed one against each other

in a foreground resident partition. The RTE-3 size results from

rounding the RTE-2 size up to the next highest page and adding one

page for base page data and linking. From the figures tabulated ~n

6.1 it can be seen that the VIPER programs are in all cases

considerably smaller than their FORTRAN counterparts. Furthermore in

a 32K memory system, all the VIPER programs would fit into memory,

enabling the system to operate without a bulk storage device. This

is a significant and major advantage of VIPER over compiler oriented

systems~ Even if a number of additional programs were added, most

of the repetitive programs would still fit into memory and only the

less frequently used programs would have to reside on a bulk storage

device. As disc units are quoted to have up to four times the failure

rate of memories and CPU's (BRAT, 1976), avoiding the use of an

electro-mechanical device for time critical tasks can make a marked

contribution to the reliability of a system.

It is physically impossible to place the repetitive tasks in

memory in RTE-2. Even if a subset of the critical tasks was selected

which was only 6 to8K in size, the system would be unworkable be~

cause there would be no foreground partition in which to run the

other tasks. As RTE-3 supports more than 32K of memory, a partition

could be allocated to each task (or a group of tasks) if sufficient

memory was available. This would require 60K words for the repetitive

tasks which is 5 times more than VIPER requires. In addition to this

60K words, a foreground partition would still have to be provided plus

a ••••• /6.5
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6.3.2.1

6.5

a background partition making a total of nearly lOOK words in all.

Even when using this amount of memory a disc storage unit is still

required not only for swapping the non-repetitive tasks but also for

supporting the language processing and file management facilities.

An important point to be noted is that this saving of space in

VIPER is achieved without any particular attention having been paid

to the storage and packing bf the interpretive meta-codes. Using

suitable meta-code structures HELPS (1974) and ADIX (1975) have

shown that code compression factors of 0,5 to 0,3 can be achieved.

BROWN P (1976a) has also discussed the use of compact codes and shown

that the original source text can still be recreated from them. The

aspect is commented on further in the concluding chapter, sections

7.2.2 and 7.2.3.

Speed comparison

FORTRAN measurements

The execution time of the FORTRAN programs was measured by running two

low priority tasks, each of which measured the time which it spent

computing. The one task was run in the background partition, while the

other ran in a foreground partition. (Which is called a real-time

partition 1n RTE-3.) The size and number of the partitions is shown in

Table 6.4. The measuring programs have the lowest priorities.

If the measuring task running in the background partition

(partition 4) is of a lower ~riority than the one in the foreground

(partition 3), then the availability of partition 4 represents the

time when the system was busy swapping and did not have a program to

execute in any foreground partition. The availability of partition

3 represents the time when the system could have been processing

additional real-time tasks. Items 1, 3, 4 and 5 of Table 6.4 illustrate

measurements of this sort.

If the measuring task running in the background partition 4 is of

higher priority than the one in the foreground, then the availability

of the partition 4 is a measure of the availability of the CPU i.e.

it ..••. /6.6
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it is the time that the CPU is not busy executing real-time tasks.

The CPU is only switched from the background task to a real-time

task when the swapping in operation is completed, and immediately

returns to the background task when the foreground task is complete

i.e. it does not have to wait to be swapped in nor does it have to

wait for the real-time task to be swapped out. Item 2 shows this

measurement.

To simulate the performance of RTE-2, which has only two

partitions, a foreground and a background, two other small programs

were run which generated operating system calls to lock a partition

exclusively. These locking programs did not consume any overhead

as they had the lowest priority.

The availability of the CPU can be determined to a first

approximation (ignoring the effects of the measurement programs them=

selves) by summing the availability of the individual partitions.

The measuring programs introduce, or are subject to, a number of

errors. When measuring the availability of a foreground partition, for

example, the measuring task also measures the time taken to swap

itself in and out of memory. Even if the task does not have to be

swapped, overhead is introduced by the additional scheduler context

switches. The dispatcher must always switch back to the waiting

measuring task when the control programs are not executing, instead

of merely returning to an idle state. A more serious error is introduced

by the resolution of the clock, which is 10 ms in RTE. Programs

which complete executing in less than 10 ms will not be recorded by

the measuring task. Even though this effect and the error introduced

by the measuring program overheads act in opposite directions, the

net affect is inpredictable. The results in Table 6.4(a) are therefore

only approximate but are considered adequate to determine the general

nature of the performance of the FORTRAN system and to compare its

performance with that of VIPER. SPANG (1974) has commented on this

difficulty of the performance evaluation tools themselves influencing the

measurement results. The only solution is to use hardware performance

evaluation aids, as is done in large systems, but this was considered

unnecessarily ...•• /6.7
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unnecessarily complex for the system at hand where all that is required

is an indication of the relative performance of two dissimilar systems.

The measurements were performed with all the control programs

listed in Table 6.4(b) running, the results being tabulated in

Table 6.4(a). The slight variations in the figures as different

part1t10ns are available, are not considered significant and it can

be seen that the essential characteristics of the system are not

changed by the use of additional partitions. The primary purpose of

the additional memory space in RTE-3 was to reduce the disc access

rate and to permit larger foreground programs to be used. Estimates

of the average time that the CPU and real-time partitions are busy

have been made from these figures and are noted at the end of

Table 6.4(a).

VIPER measurements

The ease with which test data and programs could be generated in VIPER,

permitted the individual execution times of all the programs to be

measured. From these measurements, which are listed in Table 6.4(b),

the total time that the CPU is busy computing can be determined

from a knowledge of the relative frequency of execution of each program.

This is known deterministically for all except the one program

SERVOTIP, for which a statistical weighting factor can be calculated.

These weighting factors are listed in the second column of Table

6.4(b).

The average time busy computing 1n each 60 second period is

7,92 seconds or 13,2%. As all these programs can be simultaneously

resident in memory, there is no swapping overhead to be measured or

taken into account. The computation time is thprefore a direct

measure of the overall availability.

Comparison

The results obtained from this case study are of interest for two

reasons: firstly they indicate the gross performance capabilities

of VIPER irrespective of any differences in the machines or in the

measurement techniques used; and secondly they permit an estimate

to ..•.. /6.8
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to be made of the relative performance of interpretive versus

compiled code.

Ignoring all differences between the HP 21MX and MIKROV

computers, the results indicate that VIPER, running on a micro=

programmed microprocessor emulator, is capable of substantially

the same throughput of real-time tasks as a real-time executive which

executes in-line compiled code with swapping. The HP RTE system

could of course, also support concurrent tasks in the background

partition, which could utilize the time when the foreground

partitions are idle because swapping is in progress. As the most

common tasks executed in this background area are editing, compiling

and link loading, however, (none of which are required in an

interactive system like VIPER), this argument is somewhat speC10US.

Nevertheless, it is not claimed that VIPER is equivalent to a system

like the HP RTE in computational power; only that given a set of

real-time tasks, such as those encountered in the case study, VIPER

has much the same performance and could be used in many applications

where much larger and more complex operating systems had to be

used previously.

It can be argued that the inefficient way 1n which the FORTRAN

programs are organised, contributes to the good performance of VIPER

relative to the RTE system. Frequently used programs like SCCS,

or programs which take a relatively long time to complete like SCAn,

could be placed resident in memory and other programs could be combined

together into larger modules. These changes reduce the flexibility

and modularity of the programs however, and it makes it either

impossible or more difficult to perform on-line changes and upgrades.

The execution time would have to be far more critical before retro=

gressive changes of this type are justified.

The second aspect of the VIPER and FORTRAN measurements which is

of interest, is an estimate of the ratio between the time to perform

a given function in interpretive code, and the time to perform the

same function in compiled code. The direct measured ratio made on the

programs ..... /6.9
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programs of the case study is 6,6, as noted in Table 6.4(b).

Extrapolating this ratio to obtain a direct indication of the

difference between compiled and interpretive code is difficult

because of a number of factors:

1. VIPER was running on a microprogrammed microprocessor emulator,

whereas the FORTRAN programs were running on an HP 21MX.

2. The VIPER programs are functionally equivalent to the FORTRAN

versions, but some of the VIPER programs are significantly

simpler and execute less code as a result of their modular

properties.

3. The RTE operating system in which the FORTRAN programs are

running introduces an unknown overhead into the measurements.

4. The measurements on the FORTRAN programs are subject to un=

certainty, particularly insofar as the CPU utilization is concerned

as this could only be measured indirectly.

Taking these factors into account where possible, a ratio of

about 6 to in interpretive to compiled code execution times 1S

estimated, with a possible variation between 5 to 1 and 8 to I.

Bulk storage requirements

A particular advantage of interpretive systems which use an internal

meta-code format is that only one copy of any program need be kept

in the system. This contrasts with compiler oriented systems where

three copies are usually retained: the source, the relocateable

binary (output from compiler or assembler) and the absolute binary

(memory image). The relocateable binary is required for loading purposes

and also during the system generation, if a program is to be

permanently linked into the system. The bulk storage requirements

of the FORTRAN programs used in the case study are listed in Table 6.1.

Taken together with the storage requirements of the absolute binary

modules, the total bulk storage required for just the class I and 2

programs is 127 K words. This contrasts with the 15,3 K words required

for all the VIPER PROGRAMS. The VIPER programs do not contain many

comments ••••• /6.10
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comments (for reasons outlined in section 5.1.2), but even

allowing 10 K words for comments, the space required for the VIPER

programs is one fifth of that required for the FORTRAN programs~

HOARE (1975) has ~ommented on this desirability of reducing the bulk

storage requirements by storing source programs in a more compact

form and by eliminating additional copies of programs where possible.

In addition to the space required for the class 1 and 2 programs

of Table 6.1, additional space is required for the monitoring and

service programs (class 3 Table 6.1); for the several hundred

library modules which are used by the linking loader; and for a

few dozen files that are used for process communication functions.

(Disc files used for logging process data are not included.) The

total bulk storage requirements is therefore more like 500 K words.

(If system generations are performed on the same system this requirement

increases to 900 K words or more.)

The difference in the bulk storage requirements of the two

systems has two important consequences:

I. Because the VIPER programs use far less space, smaller higher

speed bulk storage devices can be used. Bubble or CCD memory

devices in particular, would appear to be eminently suitable

for use in an SVMM environment.

2. All on-line bulk storage devices should have some form of back-up

facility. In the case of a system like RTE which uses a

cartridge disc, the only feasible back-up medium is either

magnetic tape or another disc unit, adding additional complexity

and cost to the system. In the case of VIPER, cassette tape

units have been used exclusively for off-line and back-up

storage and a simple device such as this would be adequate for

many applications. Floppy disc units would also be well suited

for use in an SVMM system, provided a higher speed device such

as bulk semiconductor RAM or CCD memory was available for the

intermediate swapping operations.

A ...•. /6.11
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A claim of this thesis is that Software Virtual Memory

Management can use smaller, cheaper and higher speed bulk memory

devices to achieve a similar or better performance than compiler

oriented systems, without degrading the security of the system

in any way. Furthermore, recent developments in bulk storage tech=

nology can be readily incorporated into a system like VIPER.

Ease of use

The preceding three sections have dealt with quantative data

obtained from measurements on the case study programs. More

difficult to quantity, but just as important is the ease with which

the system can be used. This is concerned with factors such as the

debugging of programs, readability of code, documentation, safety

and security, and ease with which programs can be written.

From my experience with the two systems over a period of two

years, the following observations can be made:

1. The modular, structured code produced in VIPER is far easier

to read and understand than the FORTRAN source.

2. The division of the global FORTRAN COMMON into separate named

GO~ON areas made a marked contribution to the safety of the

system and permitted the data and program relationships to be

visualised more clearly.

3. The VIPER programs were dramatically easier to debug. The

simple undefined-variables checks, array-bounds checks and

access checks were adequate to pin-point both coding and logic

errors. Some of these checks even revealed errors in the

original FORTRAN programs which had remained undetected for

several months.

4. The VIPER programs were easy to test and commission because

small test programs could easily be generated both to 4rive the

programs, as well as to be driven by the program being tested

1.e. respond to the stimuli issued by the program under test.
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5. The programs were generally easy to write and the use of

GOTO statements could be naturally avoided in most cases. The

only akward feature in entering text, is the lack of a line

editor. Many errors are of the single character type and a

facility to edit a line without retyping all of it would be

desirable; particularly the long lines occuring in multiple

assignment statements. This editing facility has been added

to a "relative" of PROSIC called ABAKUS (DU PLESSIS,1974)

(ABAKUS was also derived fromVarian BASIC) and could be added

without difficulty to VIPER.

A final claim of this thesis is therefore that in VIPER,

programs are easier to write, debug, read, test and document than

they are in FORTRAN.
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TABLE 6.1 HULETTS REFINERY SOFTWA~:

SPACE REQUIREMENTS

VIPER HP FORTRAN (RTE)

No Size No Size
Name Lines (Words) Name Lines Words (3) Pages Disc storage

(I) (I) (2) (I) (RIE-2) (RTE-3) SO\lrce (4)1 Binary

(In blocks of 64 words)

I. Repetitive programmE

- PACIR 17 323 2 8 2

SCANCS 29 640 SCCS 61 1 002 2 22 6

SCANADC 32 550 SCAD 60 798 2 34 6

ENGUNITS 60 1 155 ENGUN* 104 I 886 3 48 34

WATCH. DOG 37 593 WC HUG 45 1 201 3 50 7

SERVOTIP 40 760 SERVO* 121 5 328 7 74 17

SATFLOW 80 1 406 SAFCO 130 2 984 4 45 28

CLFLOW 48 899 CLFLO 88 2 633 4 46 10

REMELT 45 669 REMLT 60 I 466 3 27 10

LIMERATIO 53 I 020 CLIME 72 1 427 3 50 18

GASFLOWA 44 879 GASFA 62 I 717 3 46 9

GASFLOWB 44 879 GASFB 62 I 714 3 60 8

GASFLOWC 35 740 GASFC 64 I 592 3 34 7
FILTER. MONITOR 80 I 343 FILCY* 175 8 205 10 63 27
CDAC 5 128 -
WCOUT 19 353 -
MESSAGE 32 487 MESEG* 57 5 540 7 36 13

683 12 501 I 178 32 276 60 766 199
2. Non-repetitive or infreq\lent programs

STARTUP 16 340 STRUP* 4 666 6 52 11
SHUTDOWN 8 109 HANGO* 6 431 8 44 16
ENGLIMITS 15 365 -
FILTERCOEF 12 265 -
SERVOHOUR 16 257 -
SERV08HOUR 18 250 -
FILTER. REPORT 72 999 RFLDT* 6 572 8 25 20
CLOOP 14 255 CLOOP* 34 2 138 4 32 6

----
171 2 830 19 807 26 153 53
683 12 501 32 276 60 766 199
854 15 331 52 083 86 919 252

PRINT. MESSAGE 80 { 919
PRINT.PROG,NAME 11 { DISC 64 x 1 171
PRINT.CHAN;NAME 32 { FILES Words 74 944
3. Monitoring and service progr ms

(Not required because of int ractive MONT 12 55Q 14facilites or included in ope ating RCOMD 55 5 085 6system nucleus) CAMEP 10 3 077 5
PRADC 3 328 5
WRDAC 3 547 5
LAMG2 3 462 5
HEAD ·3 036 4

34 085 44 "-
52083 86

~ 86 168 130
(I) Excluding comments.
(2) Including symbol table.
(3) Including non-reentrant library modules.
(4) Including comments.
* Functionaly equivalent but not comparable line-for-line.
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TABLE 6.2 PROGRAM STATISTICS

A. FORTRAN Programs

1. Average length = 1 178/15 = 78,5 lines

2. = 32 276/15 = 2 151 words

3. = 60/15 = 4 pages

4. Average words/line of code = 32 776/1 178 = 27,4 words

B. VIPER Programs

1 • Average length = 854/24 = 35,6 ,lines

2. Average length = 15 331/24 = 638 words

3. Average words/line of code = 15 331/854 = 17,9 words

4. Average length of descriptor table (direct measurement) = 178 words

TABLE 6.3 COMMON REQUIREMENTS

. A. FORTRAN

Global COMMON = 758 words

(See Case Study programs Appendix B.3 for description)

B. VIPER

SPECS 3

VOLTS 30 150 x 2 = 300

ENG 30 Segment descriptor 6 x 15 = 90
Overhead (Fig. 3.5(b» --

BITS 6 390

ENGLHf 60

SERVOD 16

GASFLOW 5

150
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HULETTS REFINERY SOFTWARE: SPEED

(a) FORTRAN PROGRAMS (HP RTE FORTRAN 92060-16092 Rev 1726)

Availability of partitions with all control programs listed in (b) running.

! % CPU
. % Availability of Partition IAvailable

Connnent

Partition No.
Size K words 2

213
4 I 8

4
15

A

I.

2.

3.

I 4.
! 5.
i

Simulates RTE 2, low priority BG

Simulates RTE 2, high priority BG

PACIR, SCCS and SCAn in partition 1

Some programs in partition 2

All partitions available

!: !: I 8~,3

N 184.91

: i: ::~:: I

13,5

98,4

13,1

12,7

11,9

97,8

98,4

98,0

97,9

97,5

Notes: N - Partition not available (locked).

A - Partion available but actual time available not measured.

BG - Background.

All figures averaged over 5 minutes.

Average time CPU busy ~ 2%.

Average time real-time partitions busy ~ 15%.
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TABLE 6.4(b)

VIPER PROGRAMS

I Number of Computation
I Program Execution Time executions/ Time/Minute

millisecs minute Secs

SCANCS 75 10 0,75

SCANADC 1 410 2 2,82

ENGUNITS 790 2 1,58

WATCH. DOG 160 2 0,32

SERVOTIP 670 . 1,3* ,0,89

SATFLOW 11'2 2 0,34
CLFLOW 105 2 0,21
REMELT 76 2 0,15
LH1ERATIO 128 2 0,27
GASFLOWA 106 2 0,21
jGASFLOWB 106 2 0,21
IGASFLOWC 86 2 0,17
!

, 7,92 secs
% Time busy in 60 sec sample time 13,2 %

*Statistica1 weighting factor, all others deterministic.

RATIOS

1. Average time CPU busy in VIPER '" 13,2
Average time CPU busy in RTE FORTRAN -2- 6,6

2. Average time CPU busy in VIPER '" 13,2
= 0,88Average time real-time partitions occupied in RTE 15
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C H APT E R 7

7. I

L IM I TAT ION S

LIMITATIONS

AND E X TEN S ION S

7.1.1

In addition to the particular onnnissions from VIPER which were

listed in section 2~7, there are three more fundamental limitations

which affect real-time interactive systems using software virtual

memory management.

Dynamic relocation

The software virtual memory management algorithms described in this

thesis require that the segments of code be dynamically relocatably

to any position in memory. To meet this stipulation with reasonable

efficiency only relative address references can be used in the code,

all other referencing being performed indirectly via specially

constructed linking elements (descriptors). The use of interpretive

code was proposed as the simplest method of meeting this requirement

as appropriate meta-code structures can be devised which meet the

relocation and relative addressing conditions.

To enable in-line (compiled) code to be used in a software virtual

memory management system would require special order codes which would

have to be provided by microprogramming if the actual instruction set

was not suitable. (Certain machines do have codes which are relocatable

e.g. Data General NOVA 2/3, provided certain coding restrictions are

accepted.) If the same protection functions are required, however,

either a time or space overhead must be incurred. The protection

functions must either be provided by in-line code (requiring more space)

or by out-of-line calls to subroutines, which is essentially what

an interpreter does.

Two other problems which must be considered when using this

machine code approach are:

1. .•... /7.2
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1. Addressing of data items in shared data areas' and parameter

linking.

2. Pecompilation of the machine code to recreate the source listing.

This has been r~ported to have been done in one system (WILKINS,

1976) but no details of the algorithm have been published. De=

compilation from machine code would also only appear possible

on certain machines. (BROWN P., 1977)

The Varian 620i on which all the development work on VIPER was

p~rformed does not have a suitable instruction set for this purpose

and is not microprogrammable, so this approach was not considered

in any detail. With the microprogrammable MICROV now available

these techniques are receiving reconsideration.

Swapping rate

The space allocation and dynamic linking operations 1n software virtual

memory management are an order of magnitude slower than similar hard=

ware virtual memory mapping devices. In many applications this does·

not significantly affect the performance of anSVMM system because

most of the repetitive or critical tasks will be permanently resident

in memory, but an SVMM system can clearly not support as high a

swapping rate as a hardware memory management system.

Some alternative structures which may reduce the swapping

overhead were discussed in section 3.4. These stiuctures may permit

a higher swapping rate to be tolerated with reasonable overhead, but

the SVMM system will nevertheless generally still be significantly less

efficient.

SVMM therefore cannot be said to compete with hardware virtual

memory management; what it does achieve is to enable the advantages of

virtual memory to be provided or small systems at low cost and without

requiring special purpose hardware.

Performance limitations

The mapping operation which 1S performed on every reference to a

variable .•••• /7.3



7.2

7.2. 1

7.3

variable together with the protection functions which are regarded

as an intrinsic part of SVMM, limit the ultimate performance which

can be attained in a system which uses S~I. This phenomena was

documented in Table 5.3 where it was shown that as the overhead

associated with the interpreter process is reduced, the relative

time spent performing the mapping and protection functions increases.

The times shown in the last column of Table 5.3 for the "streamlined"

version could possibly be reduced further by in-line code expansion

in the interpreter (rather than using subroutine calls), but there

is still a limit beyond which 'the mapping operation overhead will

be dominant. This is clearly an intrinsic limitation of SVMM

which can only be overcome by hardware memory management systems.

As the results of the preceding two chapters have shown however,

SVMM systems are still capable of .excellent performance in the small

processor domain, and can be improved further before this intrinsic

mapping limit becomes significant.

EXTENSIONS

The concept of Software Virtual Memory Management has shown itself to

be a powerful tool for constructing a flexible interactive software

system. The interpretive mode of execution used contributes strongly

to the attractive interactive features and it would be desirable to

maintain this mode of execution while improving the performance of

the system. There are eight possible ways in which the performance

of a system like VIPER could be improved without sacrificing the

interactive and protection facilities.

Floating point firmware

This simple hardware improvement was discussed in chapter 5 where it

was estimated that it gives a 2 to 1 improvement in speed. A further

advantage of floating point firmware or hardware is the memory space

that is saved. Moving the basic functions add, subtract, multiply and

divide, and conversion functions to and from integer and floating

point, would save nearly 1 000 words of local memory space which would

then be released for virtual memory operations. Placing additional

routines such as trigonometic, log, exponential and square root

functions etc. into firmware would save another 1 000 words besides

improving the performance.
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Polish notation

The advantage of using the Polish notation was discussed in section

5.1.2 and this is an extension which should be used in all

interpretive systems. The disadvantage of more complex decompilation

algorithms is offset by the simplification of the actual interpretive

or evaluation section. The use of the Polish not~tion has two

advantages: firstly the time to execute statements is considerably

reduced, anq secondly more compact representations of the internal

code can be formulated. An example showing the difference between the

infix and Polish forms was shown in Table 2.8. This compact

representation woulq halve the size of the code portion of a segment.

Alternative procedure segment structures

If the size of the code portion of a segment were to be ;reduced by

using the'compact Polish form noted above, the symbol table P?rtition

of the segment would tend to become a major component of the overall

segment size. As the ASCII representation of the symbol table

elements is only required during interactive operations, the size of

the table could be significantly reduced by maintaining separate seg=

ments for the variable data values and for their ASCII names. This

is analogous to the problem of space occupied by comments which was

noted in section 5.1.2. ~hey also shouId be kept in a separate segment

so that if the local memory is full, all information which is super=

fluous to the execution of segments can be swapped out of memory.

Additional information which is not required in the normal execution

of segments (or which can be eliminated by suitably restructuring

the code) is the statement number, length and type.

These considerations lead to a proposal for an alternative

segment structure which is shown in Fig. 7.1. The procedure segment

is split up into four separate segments, one for the variable table

+ code, and one for each of the symbol table, statement numbers and

comments. (The statement number and comment segments could possibly

be combined.) As shown in Fig. 7.1, this structure is combined

with •••.. /7.5
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with the use of a segment number identifier and segment directory,

as was discussed in section 3.4. Some problems relating to access

to shared data segments must still be solved using this structure,

but these would not appear to be insurmountable.

The size of the remaining code + variable portion of the

segment using this structure would be less than half of the space

required by the segment using the current monolithic segment

organization. This is a significant advantage in real-time applications,

as the smaller the modules are, the bigger the "working-set" of

real-time tasks can be. This permits larger and more complex tasks

to be handled than would otherwise be possible. Although an

arbitarily large set of tasks can theoretically 'be run in a virtual

memory system, if a "working set" of modules cannot fit into memory,

the high swapping rate and thrashing of modules to and from bulk

store that will result, will seriously degrade the performance of the

system. (DENNING 1974). In a real-time system'the "working set"

may be defined as the set of tasks (or modules within those tasks)

which execute repetitively or frequently in response to external

events. If all these tasks can fit into memory the system will be

capable of achieving a significantly higher performance. This effect

was demonstrated in the results of the case study.

Operating system kernel

One of the specific objectives of software virtual memory management

was the avoidance of hardware memory mapping devices. On most current

(or forseeable) mini and micro-computers this limits the local memory

addressing space to 32K 16 bit words (64K bytes). In VIPER all the

operatiqg system code is kept permanently memory resident with only a

few se~ents being used for system data storage operations.

T~is results in a maximum of 18 to 19K words being available

for virtual memory operations. Furthermore the addition of new functions

and drivers to the operating system will steadily decrease the memory

available. Many of the modules which are now memory resident are used

relatively infrequently and could reside on a bulk storage device most

of ..... /7.6
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of the time without noticably affecting the performance of the

system•. Modules in this category are the lexical and syntactical

scanner, decompilation (listing) programs, directory manipulation

routines and system documentation functions. By keeping those

routines out of the resident operating system nucleus 3 000 to

4 000 words of memory could be saved, reducing the size' of the

resident code to 8K words or less if e~tensions 7.2.1 and 7.2.2 were

also implemented.

These infrequently used modules could be swapped into memory

into the fixed segment areas which were indicated in Fig. 3.1. The

important point is that these areas could be allo~ateddynamically,

and no area or partition need be permanently allocated for their use.

This is in marked contrast with most minicomputer real-time executives

where the memory is divided into fixed partitions which can only be

changed at system generation time. As an example of this type of

allocation consider the memory division employed in Hewlett

Packard's RTE. A fixed background partition is provided which

consumes 10 to 16K, but which is only used a small proportion of the

time in a typical process control system. All the critical real-time

tasks are forced to swap in and, out of one (or a few) foreground

partitions.

The resident code which remains after stripping off the in=

frequently used functions can also be further sUbdivided into two or

more levels. At the innermost level would be a small operating system

kernel which implements the basic operating system functions such as

interrupt handling and synchronization. At the next level, more

sophisticated operating system functions are provided such as

scheduling and memory management. The basic interpreter functions could

be provided on a yet higher level together with the SVMM functions.

The use of a kernel has distinct advantages as far as the

reliability and maintenance of the operating system is concerned.

More than one level of kernel is in fact desirable in this respect, as

a number of recent systems have shown that a modular system with

appropriate layers of software built upon an innermost kernel is

significantly more reliable and is easier to expand and maintain

(BAYER, •..•• /7.7



7.2.5

7.7

(BAYER, 1975; CBALMERS, 1976; MARK, 1977; VOJNOVIC, 1977).

Further advantages noted by these authors when using a compact

inner kernel, are firstly, that all the outer layers can be written

in a high level language, enabling a measure of portability to be

achieved, and secondly, that the kernel can be implemented in micro=

code providing a very efficient realization of the essential and

most frequently used operating sy~tem functions.

Incorporating these concepts into an implementation of VIPER

would enable an efficient, compact and portable operating system to be

constructed.

Multi-language

One of the limitations of VIPER as implemented in this thesis, is that

it cannot support more than one language for on-line interactive

operations. It should be desirable to extend the interactive and pro=

tection facilities to enable them to be used in other more standard

or conventional languages. As the information required for these

operations is for the most part contained within the descriptor tables

and not within the body of the code, it is theoretically possible to

extend the facilities to other languages. The basic requirement

would be for the same descriptor (symbol) table format to be used.

Two other practical requirements would also need to be met. The

syntax scanner and decompi1ation routines for an additional language

could not be kept memory resident and an essential requirement of a

multi-language system would be the implementation of the modular kernel

approach with the language processing modules being swapped in as

needed. A second requirement would be that the internal meta-codes

which were used would need to be language independent (otherwise two

different interpreters would be required). The actual meta-codes would

-also haye to be selected to have some of the gen~ral characteristics

of machine code while retaining the properties required for the SVMM

operations. ADIX (1975) and HELPS (1974) have shown that meta~codes

with this dual general-plus-special purpose characteristic can be

constructed for particular applications. Unsurmountable difficulties

may however be encounteredin attempting to use more complex languages

such as PASCAL in the SVMM environment.
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7.8

"Throw-away" compiling (BROWN P. 1976; HAMMOND,1977)

"Throw-away" compiling was mentioned briefly in section 3.5.4. In

this middle-path between interpretation and compilation, each

statement of a procedure is dynamically compiled just before it is

executed the first time. If each statement in a procedure is

executed only once, throwaway compiling is slower than inter=

pretation, but if, as is frequently the case, the program spends a

significant proportion of its time in one or more loops, then the

compiled code Which has accumulated for these loops will execute

much faster. The term throw-away derives from the fact that when

memory space is short or when any interactive operations take place,

all the compiled code is thrown away and compilatio~ is begun anew.

An essential requirement for tolerable efficiency with this approach

is the storing of the interpretive meta-code in Polish form to

ensure that the code generation step can be performed quickly.

This technique is of interest to systems such as VIPER because

Ff the repetitive nature of many tasks. It was noted in the case study

and elsewhere that in smaller systems some of these tasks are likely

to remain resident in memory. If they remain resident, however,

then they could be executing in-line compiled code instead of inter=

pretive meta-codes. This would enable the repetitive or time consuming

tasks to execute faster and hence improve the performance of the system.

The only disadvantage of this approach is that the compiled code

generally takes more space, so that converting tasks from interpretive

to in-line code will in general reduce the memory available for other

tasks.

Microcoding

In addition to the microcoding of the floating point operations and

possibly of an operating system kernel, some of the interpretive

functions themselves can be micro-coded. GAINES (1976) has reported

a la to 15 fold improvement in execution time of a BASIC-like system

using less than a 1 000 words of microcode.
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There are two approaches that can be used when using microcoded

functions. The first is to retain the basic implementation of the inter=

preter in Assembler but to place certain of the mapping and specialised

search and move operations in microcode. This is essentially an

extension of the concept of using floating point firmware.

The second approach is to use the microcode to implement a

pseudo~machine which executes the interpretive meta-codes directly.

A difficulty which arises from. this approach is that the order codes

~nd addressing structures required for the interpretive mode generally

do not coincide with that of the host machine. To enable the full··

speed and space advantage of the interpretive code to be realised,

architectural changes may therefore be necessary to enable the two

different types of code to be executed on the same hardware. It is

not simply a matter of providing a new set of functions in a control

store (writable or otherwise) as it is the actual order codes themselves

which are different.

It c~n be argued that if architectural changes are required, it

may be more profitable to implement the virtual memory management

functions in hardware and to return to a compiler oriented system. The

advantage of retaining the interpretive mode of operation together

with SVMM, however, is that no major operating system or language

changes are required in order to enable a micro-coded implementation

to be used. The advantage of portability would, in particular, be

retained as the same meta-code could be executed on two different

machines; in the One case via a normal interpreter and in the other

by dire~t emulation in micro-code. In other words, the use of special

hardware on one machine to obtain a particular speed advantage would

not preclude the use of the language and operating system concepts on

another machine with a different architecture. It is this BASIC-like

portability that is an attractive advantage of SVMM, a portability

which can be complemented by microcoding techniques.

Multicomputer operation

A further extension of VIPER which is being studied is the use of multiple

processing elements. There are two aspects to this study, the first
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relating to multi-processor systems and the second to multicomputer

systems or computer networks. It has been pointed out by

BORGERSON(37) that single-language systems such as BASIC and APL

are particularly suitable for the implementation of multi-processor

systems because it is possible to lltilize one section of re-entrant

code for the language processing which is operated on by multiple

processors. The allocation of processors to tasks is a non-trivial

problem, but the well-defined task partitioning that occurs in VIPER

can help to reduce the magnitude of this problem.

The second aspect of multiple processor use occurs in multi­

computer systems or computer networks. The properties of the SVMM-
. .;- ~ . . .

system permit the meta-code segments and data to be transmitted from

one computer to another for execution on that machine. The processors

in the system can differ, provided only that each is capable of

evaluating the meta-codes by interpretation or micro-coding~ In

this environment, a task consisting of one or more segments can be

executed on any element of the network without any modification or

link-loading. This concept of 'packet-switching' of segments of tasks

(as opposed to merely data) between elements of a multi-computer

system is a unique property of SVMM which it is planned to use to

advantage. To facilitate the movement of segments, it was desirable

that all the information associated with a segment should be contained

in a physically contiguous block, and this consideration influenced the

segment structure that was chosen.
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C H APT E R 8

CON C L U S ION

Interactive real-time software systems, consisting of the amalgamation of

a high level language and a simple operating system, are an important class

of software which have been widely used in a variety of applications. It is

claimed, however, that the structure and performance of this type of system

needs to be enhanced to enable improved programming methods to be used and to

enable more complex programming tasks to be undertaken by the application

oriented user.

The goal of this thesis was therefore to demonstrate that the interactive

facilities of such software systems could be extended and improved, using a

structured language in a mUltiprogramming and multi-user environment, while

retaining the ability to run on simple, small, minicomputer or microprocessor

systems. An additional goal was to maintain the simplicity of operation and

construction, while improving the protection facilities, as well as to-demon=

strate that good programming practices are possible on systems of this type.

In constructing a system to meet these goals, serious memory management

problems had to be solved. This led to the development of the concept of "Software

Virtual Memory Management" (SVMM); a memory management technique which extended

the concept of hardware virtual memory, management without requiring the use of

hardware mapping devices. In addition to extending the effective memory space

of the system, this memory management system facilitated the provision of a variety

of protection functions.

In developing the operating system VIPER, which uses SVMM techniques, it is

claimed that the above goals were attained, and that the following concepts were

demonstrated:

1. The interactive facilities found in simple monoprogr~ed systems

can be extended and improved in multiprogramming systems. Both

the interior and exterior (shared) data structures of a procedure

can be examined while the procedure is executing, using normal

program statements and commands. As far as I am aware, this is a
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unique property of VIPER and has not been implemented on any other

system.

2. Structured programming concepts can be simply implemented and the

memory management algo~ithms can take advantage of the modular

properties of structured programs.

3. The efficient way in which memory is used in SVMM improves the

performance of interpretiyesystems by permitting many more

programs to reside resident in memory. This requces,or eliminates

the need for swapping, resqlting in the performance of the inter=

pretive system being comparab~e to that of a system executing in-line

code with swapping in typical applications.

4. The unification of the command and programming languages, and the

use of the same language elements for debugging operations,

simplifies the user interface. This faci~itates the use of the

system by application oriented users with minimal training in real­

time operating system concepts. The SVMM structures also contribute

to this simplicity by integrating the text manipulation and

protection functions.

5. The SVMM structures permit protection facilities to be naturally

incorporated at all levels in the system, including parameter

passing, data segment access and the file-system-like protection of

program modules. The integration of the protection functions into

the language and operating system also simplifies these operations

and encourages the use of the protection facilities by the

application oriented user.

6. The do~umentation aids which can be provided in the interactive

language contribute to the production of programs which are readable

and maintainable. These include the structured programming

indenting, the end-of-line comments and the system documentation aids.
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In the implementation of SVMM in VIPER, the simplest structures and

algorithms were employed which enabled these concepts to be demonstrated. As

noted in chapter 3 improvements could quite likely be made to the memory

allocation and scheduling algorithms. AI~ernative memory structures could

also be investigated, as discuss~d in chapter 7. Despite this simplicity of

construction, the performance of VIPER is considerably better than that of

many simple real-time BASIGs which are currently available, and systems

using SVMM could be applied to applications where interpreters could not

previously be used.

In the prpcess control case study, for example, it was observed that

VIPER had a performance which was comparable to that of a compiler oriented

system executing in-line code with swapping. It is not claimed, however, that

an interpretive system like VIPER competes with these compiler-orientel real­

time executives in all applications. VIPER is a dedicated, high-Ievel­

language system, whereas these latter executives are general purpose multi­

language systems. What is claimed is that in many applications the full

facilities of these executives are not used. In these cases SVMM and an inter=

preter can provide an attractive solution which simplifies the programming task

and which facilitates the production of more reliable software.

VIPER was designed primarily as an interactive software tool for experimental

process control work, A final claim of this thesis, however, is that the

concept of Software Virtual Memory Management is of wider applicability.

Business processing applications, for example, such as those described by

GAINES (1976) and FULTON (1976) as well as distributed instrumentation systems

(RAIMONDI. 1976; AGRAWAL. 1976; DIEHL. 1975; ANFALT. 1975; VONMEURS. 1977)

could all use SVMM concepts to advantage. The numerous simple interpretive

process control systems which have been reported (FOSTER, 1974; OTTO, 1974;

LAURENCE, 1975; NELSON, 1976; GLADNEY. 1976; BERCHE, 1976) could also use

the SVMM type structures to improve the program structure and interactive

facilities, as even these simple systems suffer fr~ shortcommings in one or

other of these areas.

Furthermore, the extensions and improvements which can be implemented (as

discussed in chapter 7) can be used to overcome some of the current limitations

of ..... /8.4
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of the SVMM implementation in VIPER. This would facilitate the application

of SVMM concepts to an even wider class of applications and could be used to

eliminate the dependence on software interpreters. Software Virtual Memory

Management is therefore a powerful techniqQe for constrQcting real-time inter=

active software. systems on mini- and microcomputers.
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APPENDIX Al

BNF DESCRIPTION OF VIPER

segment

procedure

= <procedure> I <subroutine>

= PRocl PROCEDURE [<name>]

<statements>

[ START

<statements>]

ENDI <goto>

subroutine ::- SUBI SUBROUTINE[ <name>[ «formal param list»]]

<statements>

[ START

<statements>]

RETURNI <go to>

formal param list ::= <variable>[,<formal param list>]

command :: = <proc stm>

statements :: = <line no>{ <proc stm>1 <control stm>}

[ statements]

proc stm ::= <assign>1 <print>1 <unary if>1 <rem>1 <goto> I <input >1

<common>1 <dim>1 <op stm>1 <call>

control stm :: = {<if>1 <for>1 <while>1 <case>1 <error>1 < region>}

assign :: = LET <assignment list>

assignment list ::= <assignment>{ ; <assignment list>}

assignment :: - <assignment head list>= <expr>

assignment head list ::={ <variable>1 <system assign>}[ =<assignment head list>]

system assign ::= {PRIORITyl PASSWORdACCESS}[( name)]

call :: = CALL <sub name>[ «expr list»]

expr list :: = <expr>[ ,<expr list>]

print ::= PRINT[ <lu spec>] [print list]

print list ::={<expr >1 "<string>"1 TAB«expr»}[ {,I ;}<print list>]

lu spec ::= «expr»

input ::= INPUT [<lu spec>] <variable list>

variable list ::= <variable>[ , <variable list>]

rem ::= REM [ <string>]

goto ..- GOTO<line no>
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common ::= COMMON<com name>[ <variable list>]

dim ::= DIM<dim list>

dim list::= <array variable>[,<dim list>]

op stm ::= <lock free> I <list>1 <save >1 <get>

<run>1 <wait>l<log on>1 <log off>1 <name ops>

name ops ..= {RESETI STATUsl MONITOR! DEBUGI CHANGEI

TRACE ONI TRACE OFFI SCRATCHI DELETEI

GO}[<proc name>]

lock free ::= LOCKI FREE<com name>

list :: = LIST[ <lu spec>] [<proc name>] [,<line no>L<line no>]]

save ::= SAVE[ lu spec] [<proc name >1 <com name>]

get .. - GET[ <proc name>1 <com name>] I [,<io address>]

RUN ::= RUN[ <proc name>] [<time spec>]

time spec ::= {{EVERYI IN}<expr>{SECSI MINSI HOURS} H
{AT<expr>: <expr>[ : <expr>] H<time spec>

wait ::= WAIT<expr>{SECSI MINSI HOURS}

<octal constant>

log on ::= LOGON<pass

lun :: = <number>

priori ty :: =

access :: =

<number>

word>[,<lun>[,<priority>[,<access>]] ]

(logical unit no)

(Maximum priority of password)

(Access states allowed to the password)

log off ::= LOGOFF[ <password>[,<lun>]

proc name = <name>

com name = <name>

line no :: = <integer>

io address :: = <integer>

number :: = <integer>1 <octal constant>

octal constant :: = <integer>B
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unary if ::= IF<expr><proc stm>

if ::= IF< expr>

THEN[<proc stm>]

[ statements]

[ ELSE[ <proc s tm>]

[ statements]]

ENDIF

while ..= DOWHILE<expr>
<statements>
ENDDO

for .. - FOR<variable>=<expr> TO <expr>[ S'!'EP<expr>]

<statements>

NEX'!'<variable>

case .. - <case list>

ENDCASE<variable>

case list ::= CASE<variable><rel op><expr>

<statements>

<case list>

error ..- ERROR

<statements>

ERE'!'

region ::= REGION<name>

<statements>

END REGION<name>

expr .. - <conj>1 <conj> OR <expr>

conj ::- <boolian op>1 boolian op> AND <conj>

boolian op ::= <ari~h expr>1 <arith expr><rel op><boolian op>

reI op ::= >1 <I >=1 <::;:1 #1 =

arith expr ::= <term>1 <term><pm op><arith expr>
pm op ::= +1-

term ::= <factor>1 <factor><md op><term>

md op ::= *//

factor ::= <primary>1 <un op><primary>
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un op .. - +\ -I NOT

primary ::= <operand>1 <operand>**<primary>

operanG:= <variable>1 <decimal no>1 <system function>I«expr»

system function ::= <trig func>1 <arith func>1 <format func>

1<access function>1 <bit function>

trig func ::= {SINI cosl TANI ATN}(<expr»

arith func ::= {EXPI LOG! SQRl RND} «expr»

format func ::= {FLT\ FIXI INTI SGN}( <expr»

bi t func :: = {SHIFTI XORI BIT}( <expr>, <expr> )

access func :: = {PRIORITYI PASSWORDI ACCESS[ ~name»

I READAI WRITEAI READA+WRITEA

variable ::= <dim variable>1 <simple variable>

dim variab le :: = <name> (<expr>[ ,<expr>] )

simple variable ::= <name>

name ::= <letter><letter digit>

letter digit :: = <letter>1 <digit><letter digit>

letter :: - AI BI C ••• I ~I

digi t .. = 01 11 2 ... I 9

(max length = 16)
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APPENDIX A.2

VIPER COMMANDS

This appendix describes the commands which are available in VIPER. All the

commands can also be used as program statements, although some, such as

LOGaN, CHANGE, DEBUG, etc. are seldom used in this mode. The syntax of the

statements is the same in both cases, only the presence or absence of a

statement number differentiating between the two modes.

The BNF description of the command syntax was given in Appendix A.I.

In this appendix the syntax is repeated for ease of reference, followed by a

semantic description and examples in some cases.

LOGON<password>[ ,<lun>[ ,<priority>[ ,<access>]

<password> - new password can only be specified if command is issued

by Master password holder; if password is known, identifies

user to system.

<lun> - accept further input from device specified by logical unit

number (lun). Current terminal remains active until LOGOFF.

If not specified remain on current terminal.

<priority> - can only be specified by Master; determines maximum priority

which can be specified by this password holder.

<access> - can only be specified by Master; determines states in which

user can operate

(a user can be excluded from CHANGE or DEBUG) .

Examples:

LOGaN MASTER - Logon with master password (any name, up to 16 characters,

specified at system generation).

LOGaN USERI, 2, 50, 77B - Establish USERI on logical unit 2, maximum

priority of 50, all states permissible.

LOGaN USER2, 3, 90, 17B - USER3 not permitted to enter DEBUG or CHANGE modes

LOGaN USER4 - Change to previously specified User4 password

on the same terminal.
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LOGOFF[ <password>[ , <lun>]]

Terminate input from a terminal. No further input accepted until

correct LOGON entered. Password and logical unit m.unber can only

be specified by Master; used to logoff a particular user from the

system: <lun> = 0 deletes the specified password, user cannot LOGON

again.

Examples:

LOGOFF

LOGOFF USERl, 2

LOGOFF USER2, 0

Terminate current session; disables terminal

until correct LOGON entered

Terminate USER] or unit 2 (Master only)

Delete password USER2 (Master only)

PROCEDURE <name>

Create a new procedure with specified name. If issued as a command,

name must be specified and must be unique.

SUBROUTINE <name>[ «formal param list»]

As procedure, except parameter list can be specified when used ~s a

program statement. Parameter list ignored when issued as a command.

(The difference between procedures and subroutines is arbitary and was

adopted largely for ease of transition of FORTRAN oriented programmers.

A single type, procedure, would be sufficient.)

CHANGE [<proc name>]

Move to CHANGE mode, if permitted by password attributes, on the

specified procedure (or subroutine). If name not specified, shift

mode on current segment. Permits any changes to be made to procedure.

DEBUG [<proc name>]

As CHANGE, but in DEBUG mode existing statements cannot be changed

or deleted and only PRINT and LET statements can be added. Statements

added under DEBUG can be deleted, however.

MONITOR [<proc name>]

Permit state of procedure to be monitored, but allow no changes or

additions.
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LIST [<proc name>][ ,<line no>][ ,<line no>]

List a procedure or any portion of it. Current procedure asstmled

if name ommitted.

Examples:

LIST

LIST PROCA

LIST, 100, 200

LIST PROCB, 300

RUN [<proc name>][<time spec>]

List all of current procedure

List all of procedure PROCA

- List from statement lOO to 200 of current

List statement 300 only of PROCB

Examples:

RUN Execute current

RUN PROCA Execute PROCA

RUN PROCB EVERY 10 SECS - Cyclic execution

RUN EVERY 10 SECS IN 2 MINS - Cyclic after delay

RUN PROCD AT 10:20 - At time of day

RUN EVERY I HOURS AT CURRENT.HOUR+1:0:0

Every hour on th~ hour

RUN WEEKLY EVERY 24*7 HOURS

- Run once a week

RUN SHUTDOWN IN 2*24 HOURS AT 04:00:30

- Shutdown at 04hOO.30 in 2 days time

WAIT <expr> SECSIMINSI HOURS

Wait designated period before resuming execution.

Examples:

WAIT 2 SECS

WAIT 2*X MINS

SAVE [ «lun»][ <name>]

Save a procedure or common data file on the external device specified

by logical unit lun. (In VIPER, (lun) always defaulted to a single

bulk storage device, compucorder or Disc). Name optional, current saved

if not specified.

Examples:

SAVE

SAVE PROCA

SAVE COMX

Save current on default bulk storage device

Save specified procedure

Save current values in data area COMX
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GET [ «lun»][ <name>][ ,<io address>]

Obtain a copy of a procedure from a specified (or default) bulk storage

device. Restore named file (procedure or common) or obtain file from

a particular physical address on the device. (Used for Compucorder

where no off-line directory exists)

Examples:

GET

GET PROCA

GET, 90

Restore current with text as at last SAVE'

Restore specified procedure

Obtain a procedure from address, 90

of compucorder (legality of address is'

carefully checked with code words on the

magnetic tape).

RESET [<proc name>]

Clear all entries on scheduler lists; release externals; deleteany

unused descriptors on symbol table. Name optional. Password holder only.

SCRATCH [<proc name>]

Clear symbol and statement pools'but do not delete segment.

(Releases all externals first)

DELETE [<proc name>]

Delete segment, does reset first then deletion. If current pro~edure

deleted, move terminal control back up to father, or Master if no

father exists and logoff if father or Master password does not match

current.

STATUS [<name>]

Display the status of a procedure or common area. Procedure status

indicates lists on which procedure resides, and scheduler parameters.

Common status indicates state of sempaphore and size information.

TRACEON [<proc n~e>]

TRACEOFF [ <proc name>]

Turn statement execution count trace on and off. Count is examined by

using LIST with trace still on. TRACEON, TRACEOFF and RESET resets count

to zero. Procedure name optional.
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LOCK <corn name>

Lock the semaphore associated with the specified common data area.

Procedures executing further LOCK orREGIQN statements suspend pending

a FREE or END REGION.

FREE <corn name>

Unlock (release) semaphore. If any procedures are suspended waiting

on this semaphore, the one which has been waiting longest will be

released to execute.

STOP [<proc name>]

Suspend execution of procedure, saving suspension point and displaying

message on console device:

STOPPED IN LINE XXX OF <proc name>

If name ommitted, stop procedure which is currently associated with input

device. A "stopped" procedure can only be restarted with a GO or GOTO.

END [<proc name>]

Terminate execution immediately. does not save termination point. Also

used as normal program termination statement.

TURNOFF [ <proc name>]

Remove from time list, permitting procedure to complete current

execution, Le. inhibit repetitive executibn.

GO [<proc name>]

Restart a procedure after a STOP. Continues executing from suspension point.

GOTO <line no>

Restart execution after a STOP at a specified line number.

ACCESS «name»=OI READA/ WRITEAIREADA+WRITEA

Set access attributes of a data element. This can be either a shared data

segment name (common name); the name of either a simple or subscripted

variable wi~hin a common area; a local array variable; ora formal

parameter.

Examples/ ••••• /A2.6·
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Examples:

ACCESS(COMl) = READA+WRITEA

ACCESS (ARRAY) = READA

ACCESS (SOMENAME) = 0

- Read and write access

- Read only

- No access

PRIORITY [ «proc name»] = <value>

Assign a priority to a procedure, in the range 0 to 127. 0 is highest

priority, 127 lowest. The password attributes may prohibit setting a

priority below a specified value (see LOGON).

Examples:

PRIORITY (PROC1) = 50

PRIORITY = 40 - Set priority of current procedure associated with

input device.

PASSWORD [«name!»] = PASSWORD [ «name2»]

Change the password associated with procedure or data area <namel> to

that associated with <name 2>. Only the Master can use this command

to change passwords.

Examples:

PASSWORD (PROC2) = PASSWORD - PROC2 password = current

PASSWORD (PROC2) = PASSWORD (PROC3)

The ACCESS, PRIORITY and PASSWORD; functions can also be usep in expressions

to determine the value of the attribute.

Examples:

PRINT ACCESS (COM})

IF ACCESS (ARRAY) = READA PRINT "ARRAY READ ONLY"

IF ACCESS (SOMENAME)= 0 CALL NO.ACCESS.F.IX

LET PR] = PRIORITY (PROC!)

IF PASSWORD (PROC2) = PASSWORD (PROC3) PRINT "SAME PASSWORDS"
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HARDWARE AND SOFTWARE DEVELOPMENT SYSTEMS

VIPER is written in VARIANAssembler code which is cross~assembled on a CDC

CYBER 174. The cross assembler program is written in FORTRAN and was

originally run on an IBM 370/158. Additions and changes to the VIPER source

are performed with the CDC KRONOS text editor ona (remote) CRT terminal.

As down loading facilities from the CDC directly into the Varian had not been

implemented at the time that the development of VIPER was taking place, the

binary output of the cross-assembler is dumped on paper tape for loading into

the Varian. (As there is in fact no paper tape punch unit on the CYBER, output

is via an interm~diate 9 track magnetic tape, for punching on an off-line unit.)

All the development work on VIPER was performed on a Varian 620i com=

puter with 16K words of core memory. This computer is equipped with a paper

tape reader, magnetic tape cassette unit, cartridge disc and CRT and TTY

terminals in addition to process input-output units and a CAMAC System Crate

interface. In April 1978 the construction of a microprogrammable emulator of

the Varian was completed and further development of VIPER and the programs of

the case study was performed on this machine. The emulator, called the MIKROV,

uses INTEL 3000 bit slices and was based on a design by J. VAN AARDT (1977) of

NIDR, CSIR. This machine was operated with 24K of RAM initially which was

later upgraded to 28K. The remaining 4K of the 32K memory space is allocated

for PROM memory. Only 2K of this space has been used for a resiqent debug aid

plus paper tape and cassette load/dump utilities.

On the 620i the cartridge disc unit was used as a swapping device while

a CAMAC bulk memory unit (which was constructed specifically for VIPER use)

was used on the MIKROV. Magnetic tape cassette units were used for program

storage on both machines. The CAMAC bulk memory module was built using 16K

dynamic RAM memory chips and was designed and layed-out for a capacity of 64K

words in a single Camac module, but only 16K words were used for the case study

as the module was operated with only one quarter of the chips inserted. No

battery back up was provided for this module as a high-speed AC mains switch

over unit was used at the Huletts Refinery which switched to an alternative

AC supply if the primary supply failed.
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PROGRAM INDEX

iProgram function,
! VIPER
Name

Page
No.

I
I,
i

FORTRAN
Name

Page
No.

SERV08HOUR IB2.20
;

: FILTER. REPORT ;BZ. 21
I ,

! CLOOP lBz. 23

I PRINT. MESSAGE iBZ.24
;

PRINT.PROG.~B2.26

! PRINT.PROG.~B2,26
!

B3.56

B3.76
I

I

'

I
B3.82

B3.Ssl

B3.1

B3.3

B3.6

B3.9

B3.14 I
B3.18 I
B3.23 I
B3.29 1

B3.34 I
B3.38 I

I
B3.42 I
B3. 47 I
B3.52 I

I
I

B3.66 ,

B3.70 I
B3.71 I
B3.72 I

I

RFLDT

STRUP

HANGO

MESEG

ERMES

MESAG

PACIR

secs
SCADI .

ENGUN

WCHDG

SERVO

SAFCO

CLFLO·

REMLT

CLIME

GASFA

GASFB

GASFC

FILCY

CLOOP

B2.1

IB2. ]6

IB2 •. 17

I
I

i
i

iB2
.
18

IB2 • 18

jB2. ]9

IBZ.19

IB2.20
!

SCANCS

SCANADC

: WCOUT

! MESSAGE
j

tB2.2

~2.3

B2.4

:::;~~;P ~B~::.
CLFLOW B2.8

!
IREMELTB2. 9

iLIMERATIO IB2. ]0

IGASFLOWA !B2. 11

IGASFLOWB IB2. ]2

.1 GASFLOWC IB2. 13
: I
• FILTER MONITORjB2. 14, ,
: CDAC mZ.]6

ENGUNITS

·1 WATCHDOG

STARTUP

SHUTDOWN

, ENGLIMITS

i FILTERCOEF

SERVOHOUR

1. Repetitive or. frequently executing programs

Master pacing program -

Scan contact sense

Scan A/D convertor

Engineering units conversion

Watch dog time-out

Servo balance scale tip

Saturator flow control

Cloudy liquor flow control

Remelt flow control

Lime ratio control

Gas flow control A Saturator

Gas flow control B Saturator

Gas flow control C Saturator

Filter unit logging

Control D/A output

Write contact output

Operator message control

Operator message control

Operator message control

2. Non-repetitive programs

Start up and initiation

Shut down control progs.

Engineering units limits

Calculate smoothing filter coeff.

Hourly average of servo data

Eight hour (shift) report servo
data

Report on filterunit~

Monitor and report control
loops on-line

Operator message output

Operator message output

Operator message output
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APPEND IX B. 1

PROCESS DESCRIPTION

The process under control was the front end of the Huletts Sugar Refinery at

Rossborough, Durban. Fig. B.l is a schematic diagram of this section of the

refinery. The control functions consisted pf three flow control loops and

four quality control loops to control pH and reagent addition. A number of

monitoring functions were also performed.

The software is organised in two classes, the first being the ti~ing and

scanning pro~rams and the second the control and monitoring progtams, as shown

in Fig. B.2. The synchronization of the programs is performed with semaphores

and communication amongst the programs is performed via a single global

COMMON area.

The computer was interfaced to the process using a CAMAC system, as shown

in Fig. B.3. This diagram shows a dual computer configuration. This use of

dual computers was investigated briefly but due to the rapid and continual

development of programs that took place during the period when this thesis was

in progtess, the dual computer configuation was never used for control work. All

the results reported in this thesis were obtained on the single HP 21MX running

under control of the HP RTE (Real-time Executive). RTE 2 was used initially with

32K of memory but this was later upgraded to RTE 3 with 48K of memory.

The programs d~picted in Fig. B.2 and listed in Appendix B.3 were all

independent modules which could be separately compiled and executed. This

facilitated the testing and on-line expansion of the system as new functions were

added.
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PACIR
(Master sampling time control)

I
SCAD

(scan A/D's)
r

T
SCCS

(scan contact status)

-------~..-M-·-----·l

WCHDG
(watchdog)

VI

tJj.

--.------. -----------. ··--·1
SERVO (M2)

(servo-balance monitor)
FILCY (Ml)

(filter cycle monitor)

r
CLOOP

(control loops
on/off line)

I
!

-..--i
I

ENGUN
(conversion to

engineering units)

f
i
!
i

- ..J---r----------.--------,
REMLT

1
(C3) GASFL (CS', C6, C7) CLIME '(C4)

(remelt flow (gas regulation (lime/solids
control) for pH control) ratio control)

(three loops)

r I
SAFCO (Cl) CLFLO (C2)
(saturator (cloudy liquor

flow control) flow control)

r--
SDATA

(Store data)

The numbers Cl - C7 and MI, M2, correspond to the
elements marked in Figure B. I •

FIGURE B. 2 SCHEMATIC OF FACTORY SOFTWARE
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APPENDIX B. 2

VIPER PROGRAMS

Notes:

1. The VIPER programs have relatively few comments. This was because

of the small memory size of the Varian 620i on which VIPER was

running at the time the programs were written. (The MIKROV with

its larger memory, was only used later.) For expanded descriptions

of any of the programs see the FORTRAN listings~ See also section

4.5.1.2.

2. The numbers on the right hand side of the listings of some of the

programs are statement execution counts - as described in section

4.3.2.1 p. 4.22. (A bug in VIPER resulted in some of the counts

being incorrect. This has been fixed, but the listings were not

updated. )
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READ CONTACT STATUS SWITCHES

SCAN CONTACT INPUT SWITCHES

WRITE LAM MASK TO ALL CHANNELS

FIL03=FIun
Ct"lTD=CNTf"l

F I LOc'=F I U'12

1 P~DCEDUPE SCANCS
F.'Efo1 ':;'-11-77
COMMON BITS~CJN(4)~SCoP(2)

LET ACCESS«CIN)=PEADA+WPITEA
LET SRV01=SRVD2=CNTD=FIL01=FIL02=FIL03=D=O
CALL DECLR(CSW1~1~12,0)

CALL DECLR(CSW2,1,12~1)

CALL DECLR(CSW3,1,13~O)

CALL DECLP(CSW4,1,13,1)
CALL CAMAC(18,CSW1,D,Q)
CALL CAMAC(18,CSW2,D,Q)
CALL CAMACCI8,CSW3,D,Q)
CALL CAMAC(18,CSW4,D,Q)

S:TAF.'T :~:CAr"~C"S:

CALL CAMAC(O,CSW1,FILN1,Q)
CALL CAMACCO,CSW2.FILN2.Q)
CALL CAr-tAe «(I, C"S:!.t1:3, C: I t"i"::::, 0)
CALL CAMAC(0,CSW4,CIN4,O)
LET CIN(I)=FILNl ; CIN(2)=FILN2 ; CIN(3)=CIN3; CIN(4)=CIN4
LET FILN3=CIN3 AND 15 ; CNTN=SHIFTCCIN4,-I)
LET SRVN1=BIT(15,CIN3) ; SRVN2=BIT(I,CIN4)
LET FILD=XOR(FILD1,FILN1)+XDP(FILD2,FILN2)+XOP(FILD3,FILN3)
LET SRVD=XOR(SRVD1,SRVN1)+XPP(SRV02,SRVN2)
LET CNTD=XOP(CNTO,CNTN)
IF FILD RUN FILTER. MONITOR
IF SRVD RUN SEPVOTIP
IF CNTD Run CLODP
LET FILDl=FIUH
LET SRVD1=SRVNl ; SRV02=SRvN2
nm :S:CAtKS

50
t-O

2

BO

7E~ I)

100
110
120
1::: 0
140
150
160
170
300
310
320
330
340
;:50
400
4;::0
500
510
520
600
610
6E-0
700
710
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VIPER REV -R? 12/04/78 10:42:46.0 18/04/78

WAIT FOR CONVERSION TO COMPLETE

RESET
CHAtitiEL l·IO
CONVE"~S I Clt"1
CDt1PLET I Dr~

SCAN A TO D CHANNELS

I.oJRITE OUT
START

I._lA IT I Nf:i FOJ;.'t-W::<:l CHAt'l I,IHI L.E
t1U>:: i =r'lU/ lE:

t'lU::-:: 1=l'lU::-::2=!'iU::-:;C::B
l'lU::(2=t'lU::<;:'A

CQtolPtJTE
-...I I t-iC=43~i2
.JHiC=17 ;
J I r-iC=4:3Si::: .

r-jE>::T I 31 (I

pun EN(:;ur-i I TS­
niD :~:CFit-~ADC

PROCEDURE SCRNADC
PE!'l 2:::: 1C::7'7'BDP
COMMON SPECS,NADC,CDUM(2)
COMMON VOLTS,V(NADC)
LET ACCESS«VOLTS)=READA+WRITEA
CALL DECLP(MUXIA,I,6,O)
CALL DECLP(MUXIB,1,6,1)
CALL DECLP (t'11J::<:2A, 1, 7', 0)
CALL DECLF~ (!'lly:-::eB, 1,7, D
CALL DECLP(ADC,1,8,0)

START~:CAr-1ADC

LET J=O ; JINC=I? ; MUX1=MUX2=MUXIA
'-=01=<: 1=1 TO r~ADC

CALL CAMAC(26,MUX1,D,Q)
CALL CAMAC(16,MUX2,J,Q)
CALL CAMAC(2,ADC,D~Q)

LET J=J.+JH~C

IF 1=17 LET J=O
I F I =:::::::: LET -..1= (I

IF 1=49. LETJ=O
LET 0=0
Dm.iHILE 0=0

CALL CAMAC(O,ADC,D,Q)
Et-iDDO
LET V(I)=(D-32)/(3273.5)

.. 1..
'=.L..

50
60
70
;::::0
90

1 00
1 1 0
120
-:::00
::::05
-j 10._'
3;:'0
3:::0
340
350
:3t:1 I)

370
390
530
540
550
560
570
580
600
61 0
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.. 1
2

50
60
70
:::::0
90

100
:300
::::1 I)

320
'330
340
350
.360
:370
3::::0
::::90
400
41 0
4'::' 0
500
51 0
520
5:30
540
600
61 (I

620
630
640
650
700
71 0
7E'0
7::::0
::::00
:::: 10
:::20
::::::: 0
900
91 0
920
930
940
'350

1000
101 I)

1OE'O
1030
1100
111 0
1120
1200
1.::;. 10'-

1220
12:::0
lC'4 (I

1250
12E,O
1270

PROCEDURE ENGUNITS
F.:Hi 0102?BBDR
COMMON SPECS,NADC,ES~DELT

COMMON VoLTS,V(NADC)
COMMON ENG~E(ES)

COMMON ENGLIM,EL(ES~2)

LET ACCESSCCV)=ACCESSC(E)=READA+WRITEA
CALL Hil:=tL I t'i 1. T:~:

:S:TA~'T Et·iC:ilJN1.T:~:

LET LL Hi= 0
Fo~' 1=1 TO t'H=tDC

IF 1>19 LET LLIM=2
IF V(I) <LLIt1

THEN CALL MESSAGEC1~1)

LET './ (D :::LL I!'1
Et'HiIF
IF ',/(I)}10

THEN CALL MESSAGE(1,1)
LET ',/CI)=10

EtiDIF
t'iE::-n I 3;::'0
FoF-' I::: 11. TO U:::

LET EO) :::"l n) +1 0
"1E::<1 I 5 Cl 0
LET EI5=E (15)
IF E15<60 OP E15>90 LET ECI5)=80
LET SGPB=I.23+.13.V(3)
IF SGPB<1.2449 OP SGPB>I.3889

THEN CALL MESSAGE(2,3)
LET SGPB=I.29999

Et-ml F
LET E(1)=100+c.3744.VC1)/SGPB)/2.26099
LET E(2)=100+(.5573.VC2)/SGPB)/3.35299
LET E(5)=100.C.464S.VC5)/SGPB)/3.871
LET E(27)=100+(.4047+(V(27)-2)/SGPB)/2 165
LET E(~8)=100.(.2903.(V(28)-2)/1.276)/ .82
LET E(3)=100.CSGPB-1..1+2.20000E-03.E15 /(.269S.SGPB+2.29000E-03+E15)
LET E(10)=63+7+(V(10)-1)/4
LET E(7)=(V(7)-1)/4
LET E(8)=(VC8)-1)/4
LET E(6)=11.76+~QP(V(6)/10)

LET E(9)=(VC9)-.836)/.937
LET E(23)=153.S.(V(23)-2)/8
LET E(24)=5436.6-SQP«VC24)-2)/8)
LET E(25)=5436.6.SQ~('(V(25)-2)/8)

LET E(26)=27t8~3.SQP({V(26)-2)/8)

LET E(20)=7+~625.(V(·20)-2)

LET E(21)=7+g62S.(V(21)-2)
LET E(22)=7+~625.(V(22)~2)

LET E(30)=(V(30)-2).2.5
FOR 1=1 TO ES:

IF E(n<ELo,p OR EO»ELO,2) CALL r·lES:~:AGf.(;=:,I)

"iD:: T I 11 I) Cl
PUt-i :~:ATFL.ol.d

Pi.It·i CL. FL Old
PIY'i f<'Et'lFL T
Pllt'j L I t'lFPAT ID
F:'Uri I::iA::FLm.lA
f;::ur'1 !;;A~FLOI.,iF:

RU!'i I::iA:SFLDi..IC
Et·jft ErH; I.. !"1 I r:::
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,. i PF.'OCEItUPE 1..IATCH. DOt::.
2 REM 170178BDP

40 LET NLOOPS=7 ; MAXNO=2 ; LU=1
50 COMMON BITS~CIN(4)~SCOP(2)

60 LET ACCESS((SCOP)=PEADA+WRITEA
70 CALL DECLR(LAMG,1,23,0)
80 LET SCOP(1)=O ; SCOP(2)=0
90 DIM FLAG((NLDOPS)

100 FOR 1=1 TO NLOOPS
110 LET FLAG(I)=MAXNO
120 NE::-::T I 100
130 WAIT 1 MINS
300 START WATCH. DOG
310 CALL CAMAC(16,LAMG~0,Q)

320 CALL CAMAC(O~LAMG,D.Q)

330 IF D~~O PRHn (LU) "LAr'H:; ERPOP,O,D="D
340 CALL CAMAC(16,LAMG,32767,Q)
350 CALL CAMAC(O,LAMG,D~Q)

360 IF DW::2767 PRINT (LU) "LFir'lG EPRDP, 3':'767, D="D
5°Cl FOP ..1= 1 TO t·lL. OOP~:
510 LET STATj=BIT(j~SCOP(l»

520 IF FLAG(J»100 LET FLAG(j)=100
530 LET CNT=FLAG(J)-MFiXND
600 IF CNT=O OP STATj=1
60S THEN LET CHAN=J-l
610 CRLL WCOUT(CHAN,STATj)
620 LET MRSK=SHIFT(1,jl
630 IF STATJ.
640 THEN LET SCOP(2)=SCOP(2) OR MASK
650 CALL MESSAGE(3,j)
660 ELSE LET SCDP(2)=SCOP(2) AND NOT MASK
670 nmIF
700 LET FLRG(j)=fFLAG(j)+1).(1-STATj)
705 ENDIF
710 t'iE::,::r J 5 (I Cl
720 LET SCDP(l)=O
730 Et'iD I,.IATCH. DOEi
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VIPER REV A7 3/04/78

,.. 1
:'c..

50
60
70
80

200
210
2;:' 0
230
240
250
::':00
31 0
::::20
::::30
340
]50
:3E~ Cl
370
3:::0
390
400
41 0
4;::'0
430
44 0
450
4f,O
470
4::::0
490
500
51 0
5;::'0
530
540
550

PROCEDURE SERVDTIP
PHi 310178£:DI"
COMMON BITS,CIN(4),SCOP(2)
COMMON SERVOD,PROD,PROD1,PROD2,MASSRATE,MASS.HOUR,DUM(11)
DI t'1 Tt'lAS:S: <c:, '3 Cl)

LET ACCESS(SERVOD)=READA+WRITEA
CALL DECLR(SCALO.l,16,1)
CALL DECLR(SCAL1,1,16,1)
CALL CAMAC(9,SCALO,D,Q)
CALL CAMAC(9,SCAL1,D,Q)
LET SRV01=SRV02=PROD=PROD1=PROD2=MASS.HOUR=0
CALL TINT(DELS,TPREV)

STARTS:EP'·... OT I P
PEG I Dr'JS:FP\,'OD

LET SPVN1=BIT(16,CIN(3) ; SRVN2=BIT(1,CIN(4»
IF SRV01=0 AND SRVN1=1

THEN CAll CAMAC(2,SCAlO,MOT1,Q)
LET TMASSO=MDT1/500 ; PROD1=PROD1+TMASSO

Et'W 1F
IF SRVD2=0 AND SRVN2=1

THEN CALLCAMAC(2,SCAL1,MOT2,Q)
LET TMASSD=MDT2/500 ; PROD2=PROD2+TMASSD

niD IF
LET PROD=PROD+TMASSD ; SRV01=SRVNl ; SRV02=SRVN2
LET MASS.HOUR=MASS.HDUP+TMASSO
CALL TINT<DELS,TPREV)
LET DELH=DELS/3600
FOR 1=90 TO 2 STEP -1

LET -1:=1-1 ; nlASS(1,D:=Tt1A:S::~:(j • .J) H1ASS(c',D=H1A'S':S:<c',,J)+DELH
t'iD::T I 45 Cl
LET TMASS<l,l)=TMASSO ; TMASS(2,1)=O
LET K=1 ; MASSRATE=O
DOWHILE TMASS<2,K){=1 AND K{='30

LET MASSRATE=MRSSPPTE+TMASS<l,k) K=k+l
Et'HiDD
LET MASSRATE=MASSRATE/TMASS(2,K-l)

ENDREGION SERVDD
Et'iD .~.EP\iOT 1P
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50
60
70
:30
':.+0

100
110
120
130
140
150
200
210

;:-40
300
:310
320
330
::::4 0
:~:50

360
400
410
420
430
440
441
445
450
452
454
456
4f,0
470
4::::0
500
510
520
5:~:O

540
550
560
f,OO
610
t.20
6:::::0
640
650
f,60
670
680
690

2

220
2:30

1 PROCEDURE SATFlOW
r:'Er'1E':301?:?BDP
COMMON SPECS~NADC~ES~DELT

COMMON ENG~ECES)

COMMON VOLTS~V(NADC)

COMMON BITS,CIN(4)~SCOP(2)

LET ACCESS(CSCOP)=READA+WRITEA
LET FMAF=153.5 ; HAFM=3.35299 ; HSSM=2.26099 HPLM=3.871
LET AAFST~6.59 ; ASS1=11.3999
LET VAFST=AAFST+HAFM ; VSST=ASST+HSSM
LET HAFSP=.5 ; HSSSP=.3 ; VPLR=5
LET GPA=.2 ; GIA=36 ; GPS=2 ; 6IS=50
LET W=I~50000E-03 ; DAMP=.7
LET HSSN1=E(I)/100 ; HAFFl=HAFF2=RAF=E(2)/100
LET SOLIDS=DLSSV=O ; ALPHA=.2
LET r,Wt'iF'T=1 OOO+E (7) ; FLmj=E (23) ; BI<'I::<=V (3)BRD-::2=E C::)
CALL FILTERCOEF(W~DAMP~DELT~CB~CC~CD~CE)

LET 6IAV=I/(60+6IA) ; GISV=I/(60+6IS)
:';:TAJ:H :S:ATFLmJ
LET HAFN=E(2)/IDO ; HPLN=E(5)/100
LET HSSN=E(I)+ALPHA/I00+ l I-ALPHA)+HSSNl
IF HSSN<5.00000E-02 CALL MESSAGE(7~1)

IF HSSN>.95 CALL MESSAGEC7~2)

IF HAFN<5.00000E-02 CALL MESSAGE(7~3)

IF HAFN>.95 CALL MESSAGEC7~4)

LET HAFF=CB+HAFFI-CC+HAFF2+CD+HAFN+C~+RAF

LET HFDOT=CHAFF-HAFFl)/DELT ; DELAF=HAFF-HAFFl
IF AK:CDELAF».l

THEN CALL MESSAGE(7.9)
LET HFDDT=.l+SGN(DELAF/DELT)

Et"H1 I F
LET HSDOT=fHSSN-HSSN1)/DELT ; DELSN=HSSN-HSSNl
IF AES (DEL:SlD ::- . 1

THEN CALL MESSA6EC7~9)

LET HSDOT=.l+SGNCDELSN)/DELT
Et-iDIF
LET EAFT=HAFF-HAFSP ; ESST=HSSN-HSSSP
LET HAFF2=HAFFl ; HAFF1=HAFF ; RAF=HAFN ; HSSNl=HSSN
L~T GPISST=6PS+lHSDOT+6ISV+ESST) .
LET I:;A I r'i= 0
IF HPLN<.5 AND HAFN<.5 LET GAIN=I.00000E-03
LET GPIAST=-GPA+CHFDOT+GIAV+EAFT-GAIN+C.5-HPLN»
IF HSSN::-HSSSP LET DLSF=GPIAST
IF HSSNfHSSSP AND GPIAST>O LET DLSF=GPISST
IF HSSN<HSSSP AND GPIAST<O LET DLSF=GPISST+GPIAST
LET DELN=DLSF+DELT ; DLSSV=DELN+DLSSV
IF ABSlDLSSV)}1.00000E-03

THEN LET NUMP=INTCDlSSV+I0(0)
LET DLSSV=DLSSV-NUMP/I000

EL:~:E LET NIA'lF'=O
niDIF
LET NPOS=f(7)+10nO ; DIF=NPOS-NUMPT
IF Af;:~: (DIF,:. >25

THEN CALL MESSAGEf?,7)
LET t'jUt'1PT=r'wm:

nHiIF

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

12
1

100
100
100
100

. 100
100
100
100
100
100

o
o

100
100
100

\')
o

100
100
100
100
100
100
100
lOO
100
100
100
100
100
100

(I

100
100
Ion

16
4

100
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700 IF AB2(NUMP»100
710 THEN CALL MESSAGE(7,8)
720 LET NUMP~100

730 Et-HiIF
740 IF NUMP+NUMPT<O
750- THEN CALL MESSAGE(7~5)

760 LET NUMP=~NUMPT

770 EttDIF
780 IF t-JUt'lPHiUP1PT>1000
790 THEN CALL MESSAGE(7,6)
800 LET NUMP=1000-NUMPT
~31 0 Er-WIF
820 LET NUMPT=t-JUMPT+NUMP

100(1 I F t-Wt'iP~~ 0 CALL CAt'iAC (16, I PUL, t-Wt1P, I)

1100 LET FLObi=FLOW.Cl-ALPHA)+ALPHA.E(23)
1110 LET BRIX=BRIX.CI-ALPHA)+ALPHA.V(3)
1120 LET SGPB=1.23+1.30000E-02.BRIX
1125 LET BRIX2=BRIX2.CI-ALPHA)+AlPHA.Fc3)
1130 LET RATES=FLOW.SGPB.BPIX2/100
1140 LET DSOLID=RATES.DELT/3600
1150 LET SOLIDS=SOLIDS+DSDLID
1160 LET SCOP(1)=SCDP(I) OR 1
1170 HiD :~:ATFLml

100
o
o

100
100

o
o

100.
100

o
o

100
100 .
500
100
100
100
100
100
100
100
100

-lE.
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VIPER REV A7 12/04/78 17:05:57.6 19/04/78

1 PROCEDURE CL FLOW
2 REM 230178BDR

50 COMMON SPECS,NADC,ES,DELT
60 COMMON ENG,E(ES)
70 COMMON BITS,CIN(4),SCOP(2)
80 LET ACCESS«SCOP)=READA+WRITEA

100 LET FMCL=10 ; HAFM=3.35299 ; HCLM=2.165
105 LET ACLT=4.67 ; VCLT=ACLT.HCLM
110 LET VPLR=5 ; GPC=2 ; GIC=60 ; W=I.50000E-03 DAMP=.7
120 LET HAFF1=HAFF2=PAF=E(2)/HAFM
130 LET HCLF1=HCLF2=PCL=E(27)/HCLM
140 LET DLLRV=O ; GICV=I/(60.GIC)
150 CALL FILTERCOEF(W,DAMP,DELT,CB,CC,CD,CE)
300 START CLFLOW
310 IF BIT(4,CIN(4»
320 THEN LET HAFN=E(2)/100
330 LET HAFF=CB.HAFFI-CC.HAFF2+Cn.HAFN+CE.RAF
340 LET HFDOT=(HAFF-HAFF1)/DELT
350 LET HAFF2=HAFFl ; HAFFl=HAFF ; RAF=HAFN
360 LET HCLN=E(27)/IDO
370 IF HCLN<S.00000E-02 CALL MESSAGE(S,I)
380 IF HCLN>.95 CALL MESSAGE(8,2)
390 LET HCLF=CB.HCLFI-CC.HCLF2+CD.HC~N+CE.RCL

400 LET HCDOT=(HCLF-HCLF1)/DELT ; DELCF=HCLF-HCLFl
410 IF ABS(DELCF».1
420 THEN CALL MESSAGE(8,6)
430 LET HCDOT=.I.SGN(DELCF)/DELT
440 ENDIF
450 LET HCLF2=HCLF ; HCLF1=HCLF ; RCL=HCLN
500 LET HFDOT=O ; HAFF=.3
510 LET DLLP=GPC.(CHCDOT-HFDOT)+GICV.(HCLF-HAFF»
520 LET DLLRV=DLLP.I0 ; VPLR=VPLR+DLLRV.DELT
530 IF ABS(DLLRV»1
540 THEN CALL MESSAGE(8,3)
550 LET DLLRV=1
560 ENDIF
600 IF VPLP<O
610 THEN CALL MESSAGE(S,4)
620 LET VPLP=.1
630 ENDIF
640 IF VPLP>10
650 THEN
660 LET VPLR=9.89999
670 ENDIF
680 ENDIF
700 CALL CDAC(O,VPLP)
710 LET SCOP(I)=SCOP(l) OR2
720 END CLFLOW

1
1
1
1
1
1
1
1
1
1
1
1

1
·~c

200
200
200
200
200
200
200
200 .
200
200
200
200

4
1

200
200
200
200
200
200

o
o

200
200

o
o

200
200
195
195
200
200

2000
200

-16
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50
foO
70
:::::0
90

5el f)

530
540
550
5E,(j
570
5S0
590
600
610
f,20
700
710
720
730

100
110
120
30ft
:310
320
:3:;: 0
340
350
360
:370
3:30
3':;' ft
400
410
420
430
440
450
460
470
4:::::0
4'~0 .
500
510

VIPER REV A7 12/04/78 15:26:24.8 19/04/78

1 PROCEDU~'E REt'lHT
2 REM 01027SBDR

COMMON SPECS,NADC,ES,DELT
Cmmml HH3, E o:ES)
COMMON BITS,CIN(4),SCOP(2)
LET ACCESS«SCOP)=READA+WRITEA
CALL DECLR(PULS,1,14,1)
LET HRMM=1.82 ; AREA=10.03 ; HRMNSP=~25 ; DELN=O
LET AlPHA=.2 ; GPP=l ; GIR=50 ; GIRV=1/(60+GIR)
LET HRMNS=E(28)/100 ; NUMPT=1000.E(S)

S:TRPT REt'iEL T
IF BIT (S, CH1 (4))

THEN LET HRMN=E(28)/100
IF HRMN>.95 CALL MESSAGE(9,1)
IF HRMN{5.00000E-02 CALL MESSAGE(9,2)
LET HRNDOT=ALPHA.O:HPMN-HRMNS)
LET HRMNS=ALPHA+HRMN+(l-ALPHA).HRMNS
LET ERR=HRMNS=HRMNSP
LET DELFSP=GPR.HRNDDT+GIRV+ERR+DELT
LET DELN=DElFSP+DELN
IF ABS(DELN)<1.00000E-03

THEN LET NUMP=O
ELSE LET NUMP=INT(DELN+I000)

LET DELN=DELN-NUMP/IOOO
ENDIF
LET NPOS=E(8)+1000 ; DIFF=NPOS-NUMPT
IF RBS nil FF) :> ;:::5

THEN CALL MESSAGE(9,3)
LET r'w t'W T=t'H::' 0 -::

Et-HiIF
IF AB:S:(NUr'lP»10ft

THEN CALL MESSAGE(9,4)
LET NUto1P=100

EtHt I F
IF t-HJt'iF'+r-jl_it'1PT <" 0

THEN CALL MESSAGE(9,S)
LET r-1Ut'1F'=-r-1Ut'1PT

Et'iD I F
IF NUMP+NUMPT:>=1000

THEN CALLMESSAGE(9,6)
LET t-jUriF'= 1 (I (I O-tH.lt'lF'T

EfJDIF
LET NUMPT=NUMPT+NUMP
CALL CAMAC(16,PULS,NUMP,O)

Et-W I F
LET SCOP(l)=SCOP(l) OR 4
Er-m f:;'Et'iEL T

1
1
1
1
1
1
1
1
1
1

300
300
300
300
300
:300
300
300
300
300
300

--,
,;)

.-,;,
:300
300
300

o
o

300
:300

(I

o
300
300

(I

o
:300
300

(I
(I

- :300
:300

1500
:300
:300

-16
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.. 1
.:'
'-

.:.":'

.... !--

50
60
70
80
90

100
200
21 0
220
230
300
31 0
320
330
340

PROCEDURE llMERATIO 1
REM 230178BDR 1
REM 1
COMMON SPECS~NADC~ES,DElT 1
COMMON VOlTS~V(NADC) 1
COMMON ENG~E(ES) 1
COMMON BITS~CIN(4),SCOP(2) 1
COMMON GASFLOW,GASAMRX~GASBMAX,GASCMAX~PHCSP,IZC 1
lET ACCESS«SCOP)=READA+WRITEA 1
LET ZR=O ; CCAO=10.314 ; GOR=2 ; ALPHA=.2 ; VOLTO=V(9) 1
lET BRIX=E(3) ; FLOW=E(23) ; SADV=V(3) PHC=E(22) 1
IF BITC7~SCOP(2» LET PHCSP=E(22) 1
LET ESF=I+DELT/C60+45)· 1

START LIMERATIO 103
LET BR I >::= BP I ::-:;+ (l-AL PHA) +ALPHA+E c:::) 103
LET FLDW=FLOW+CI-ALPHA)+ALPHA+EC23) 103
LET SADV=SADV+CI-ALPHA)+ALPHA+VC23) 103.
LET SGPB=I.23+1.3000bE-02+SADV ; SFP=FLOW.SGPB SLIDS=SFP+BRIX/ll)l)

103
400 LET LOOPSTAT=RITC6,CIN(4» 103
410 IF LOOPSTRT=O LET FLIM=E(9)/1.183 ~ FRCS=FLIM+CCAO/SLIDS 103
420 IF ABSCVOLTO-V(91)<.1 AND LOOPSTAT=l ,103
430 THEN LET NDGD=CSCDP(2) AND 112)+CCINC4) AND 448) 103
440 IF NDGD=560 103
450 THEN lET12=0102
460 LET PHC=E(22).ALPHA+Cl~ALPHA)+PHC 102
470 LET EF.~=PHC-PHCSP 102
500 LET ZA=E(24)/GASAMAX ; ZB=E(25)/GASBMAX ZC=E(26)/6ASCMRX

510 IF 2A>.97 AND 2B>.97 LET 12=1
520 IF ZA<.1 AND ZB<.97 AND 2C<.97
530 THEN
540 IF EP<O LET 12=1
550 IFER>O AND ZC<.l
560 THEN. CALL MESSA6ECI0,1)
570 END LIMERATIO
580 ELSE
590 IF EP>O AND ZC>.l LET lZ=-1
600 ENDIF
610 ENDIF
650 LET 2P=cI-ESF)+2R+ESF+IZ
660 LET FCR=FCRS+CI-GOR+2P+EP)
670 LET FLIM=FCR+SLIDS/CCAO
6::::0 LET :~:'PEED= 1. U::::::+FL IM ;. VOlTD=. 937+'~:PEED+. :336
690 ELSE CALL MESSAGECI0,2)
700 LET 2R=0 ; FLIM=E(9)/1.183 ; FCRS=FLIM+CCAO/SLIDS
71 I) HHiIF
720 ELSE lET VDLTD=V(91 ; ZR=O
730 Et'WIF
~OO CRLL CDACC2,VDLTO)
810 LET SCOP(1)=SCOP(I) OR'S
820 END LIMERATID

102
102

o
o
o
(I
(I

o
o
o

102
102

. 102
102
102

4
1

103
o

103
1030

10:;:
-16
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1 PROCEDURE GRSFLOWA
2 REM 010278BDR

50 COMMON SPECS~NADC,ES~DELT

60 COMMON ENG,ECES)
70 COMMON BITS,CIN(4),SCOPC2)
80 COMMON GASFLOW,GASAMX,GASMBMX,GASCMX,PHCSP,IZC
90 LET ACCESS(SCOP)=READA+WRITEA
91 LET ACCESSCGASFLOW)=READA+WRITEA

100 IF DELT<6 CALL MESSAGE(11,3)
110 LET GIRS=30 ; GPS=.25 ; GINDEP=3.12500E-02 GOA=l
120 LET PHA=PHACO=PHASP=E(20) ; PHC=E(22)
130 LET VPA=.55 ; VLIM=.65 ; GASA=.5
140 LET GASAMX=2720 ; ALPHA=.2
150 LET GIRF=GINDEP.DELT ; GIF=1/(60.GIRF> GIS=1/(60.GIRS)
300 START GASFLOWA
310 IF BIT(7,CINC4»
320 THEN LET EAPDOT=ALPHA.(EC20)-PHA)
330 LET PHA=E(20).AlPHR+(1-ALPHA).PHA
340 LET PHC=E(22).RLPHA+CI-ALPHA).PHC
350 LET ERPHC=PHC-PHCSP
360 LET PHAC=PHASP-GDA.IZC.ERPHC
370 LET SPPDDT=PHAC-PHACD ; PHACO=PHAC
380 LET ERAPH=PHA-PHAC
390 LET DELFA=GPS.CEAPDDT-SPPDDT)+GIS.ERAPH.DELT
400 LET GASA=GASA+DELFA
410 IF GASA.5436.6>GASAMX LET GASA=GASAMX/5436.6
420 IF GASA<O LET GASA=I.00000E-02
430 LET FLObiA=E(24)/5436.6 ; ERAF=FLOWA-GASA
440 LET DELVA=GIF.DELT.ERAF ; VPA=VPA-DELVA
500 IF VPA>VLIM LET VPA=VLIM
510 IF FLOWA<GASAMX/5436.6
520 THEN
530 IF VPA<O
540 THEN CALL MESSAGEC11,2)
550 LET VPA=O
560 ENDIF
570 ELSE CALL MESSAGE<11,1)
580 ENDIF
700 ENDIF
710 LET VPAD=10.CI-VPA)
720 IF VPAO<10.(1-VLIM) LET VPAD=10.<I-VLIM)
730 CALL CDAC<3,VPAOj
740 LET SCDP<I)=SCOP<I) OR 16.
750 END GASFLDWA

1
1
1
1
1
1
1
1
1
1
1
1
1
1

200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200

o
o

200
o

200
200
200
200

2000
200

-16
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VIPER REV A7 12/04/78 15:50:54.3 21/04/78

1 PROCEDURE 6ASFLOWB
2 REM Ol0278BDP

50 COMMO~ SPECS,NADC,ES,DELT
60 COMMON EN6,E(ES)
70 COMMON BITS,CIN(4),SCOP(2)
80 COMMON GASFLOW,GASAMX,6ASBMX,6ASCMX,PHCSP.IZC
90 LET ACCESS«SCOP)=ACCESS«GASFLOW)=READA+WRITEA

100 IF DELT<6 CALL MESSA6E(12,3)
110 LET 6IRS=30 ; GPS=O.25 ; GINDfP=3.12500E~02 ; GOB=l
120 LET PHB=PHBCO=PHBSP=E(21) ;PHC=E(22)
130 LET VPB=.55 ; VLIM=.65 ; 6ASB=.5
140 LET GASBMX=2720 ; ALPHA=.2
150 LET 13IRF=I::;ItHIEP.DELT ; GIF=I.····<6IHI;iIRF) GIS=I ..... (60. I;iIRS:)
300 START GASFLDWB
310 IF BIT(8,CIN(4»
320 THEN LET EPBDDT=ALPHA.E(21)-PHB
330 LET PHB=E(21).ALPHA+(I-ALPHA).PHB
340 LET PHC=E(22).ALPHA+(I-ALPHA).PHC
350 LET ERPHC=PHC-PHCSP
360 LET PHBC=PHBSP-GOB.IZC.ERPHC
370 LET SPPDDT=PHBC-PHBCD ; PHBCO=PHBC
380 LET ERBPH=PHB-PHBC
390 LET DELPP=GPS.(EBPDOT-SPPDOT)+GIS.ERBPV.DELT
400 LET GASB=GASB+DELFB
410 IF GASP.5436.6}GASBMX LET GASB=GASBMX/5436.6
420 IF GASB<O LET GASB=I.00000E-02
430 LET FLOWB=E(25) .... 5436.6 ; ERBF=FLDWB-GASB
440 LET DELVB=GIF.DELT.ERPF ; VPB=VPB-DELVB .
500 IF VPB>VLIM LET VPB=VLIM
510 IF FLOWB<GASBMX .... 5436.6
520 THEt'1
530 IF VPB<O
540 THEN CALL MESSAGE<12,2)
550 . LET VPA=O
560 ENDIF
570 ELSE CALL MESSAGE<12,1>
5:::0 HHiIF
700 EtHlIF
710 LET VPBO=10+<I-VPB)
720 IF VP~O<10.(I-VLIM) LET VPAD=10.CI-VLIM)
730 CALL CDAC(4,VPAO)
740 LET SCOP<I)=SCOP<I) OR 32
750 END GASFLOWB
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1 PROCEDURE GA~FLOWC

2 REM 010278BDR
50 COMMON SPECS~NADC~ES~DELT

60 COMMON ENG~E(ES)

70 COMMON BITS~CIN(4),SCOP(2)

80 com'mn ,::;fCFLOI.•! ~ 6ASAr'1:=< ~ GA:S:B~l::'=:' 6ASCrl::<, PHC::S:P, I ze
';,c 0 LET ACCES::S: CGA:S:FLOI!I) =PEADA+I.,JP I TEA
91 LET ACCESSCSCOP)=PEADA+WPITEA

100 LET VPC=.55 ; VLIM=.65 ; 6ASC=.5 ; 6ASCMX=1360
110 LET ALPHA=.c' ; IZC=O
120 LET PHCSP=PHC=E(22)
130 LET 61PS=30 ; 6PS=.5 ; 6INDEP=2.41700E-02
140 LET 6E=I .... (60+131[;;'5) ; '::;IRF=GUiDEP+-DELT ; I::iIF=I.···· (E.O+':;IRF)
30 OS:TAin 6A:S:FLDhiC
310 LET ECDD1·=ALPHA.(EC22)-PHC)
320 LET F'HC=E (;::'2) .ALPHA+ (i-ALPHA) .PHC ; HiC=PHC-PHCSP
330 LET DELFC=GPS.ECDOT+6IS.EPC.DELT ; 6ASC=GASC+DELFC.
340 IF GASC.2718.3>GASCMX LET GASC=GASCMX/2718.3
350 IF 6ASC<0 LET GA~C=1.00000E-02

360 LET FLOWC=E(26)/2718.3 ; ERFC=FLOWC-GA~C

400 LET DELVC=GIF.ERFC.DELT ; VPC=VPC-DELVC
410 IF VPC>VLIM LET VPC=VLIM
420 IF FLOWC>.96.GASCMX .... 2718.3
430 THEN LET IZC=l
440 CALL MESSA6E(13~1)

450 ELSE LET I?C=O
460 IF I,/PC<O
470 THEN LET VPC=O
480 CALL MESSAGE(13,2)
490 ErHtIF
500 HiDIF
600 LET VPCD=lO+(l-VPC)
610 IF VPCD<10+CI-VLIM) LET VPCD=10.(1~VLIM)

620 CALL CDRC(5,VPCO)
630 LET SCOP(1)=SCOP(1) OR 64
650 END. i::it=CFLmdC

1
1
1
1
1
1
1
1
1
1
1
1
1

200
200
200
200
200
200
200
200
200
200

o
o

200
200

o
o

200
200
200
200

2000
200

-lE,



APPENDIX B.2 VIPER PROGRAMS PAGE Bl.14

10
50
60
70
..,~

.. "_I

80
90

100
110
1;;:: 0
130
140
150
1E,O
:~:OO

310
320
3:::0
:::40
:350
360
370
3::::0
390
400
410
500
510
520
600
E.I0
620
630
640
650
6E.0
670
630

LIST FILTER. MONITOR

1 PROCEDURE FILTER. MONITOR
PEr'1 2'::: 017:3BDP
LET r'1H:=-::=4
COMMON SPECS,NADC,ES,DELT
COMMON BITS,CIN(4),SCOP(2)
COMMON FILTEP,FILDATCMAX.4,12),CYCLE(12)
Cm1r'10t'i Et'K~, E(ES)
DIM FSTIM{(2,12)
LET DELP=200 ; FILAR=117 ; IFILS=OSMAN=OSPRS=OSVAL=O
FOP K=1 TO 12

LET FSTIM(2,K)=-1 ; CYCLE(K)=1 ; FSTIMC1,K)=O
FOP J= 1 TO t'1A>::.4

LET FILDAT(J.K)=-1
r'iE::<T J 120

['iE>::T 1< 100
CALL TINTCTSTART,TPREV)

START FILTER. MONITOR
PEG I Ot'i F I LTEI<'

CALL TINT(TSART,TPREV)
CALL TIMEcY,MON,D,H,MIN,S)
LET HiEIoI=H+ d'1HH~:""'60) .·· .. E,O
LET t'Er'1A['i=C I r'i (1 )
LET NSPRS=SHIFTCCIN(I),-12) OP SHIFT(CIN(2j,4)
LET NSVAL=SHIFTCCIN(2),-8) OR SHIFT(CIN(3),S)
LET MAN.ONOF=OSMAN AND NOT NSMAN
LET MAN.OFON=NSMAN AND, NOT OSMAN
LET PPS.OFON=NSPRS AND NDTOSPRS
LET VAL.OFON=NSVAL AND NOT OSVAL
LET B=E (3) ; ZI=111-B ; 22=111+E 04:.
LET Z=-1.23399.B/Zl+246.527/Z2+659.S43.B/CZ1.Z2)
LET AMU=EXPtZ-2.?5699)
LET t'Klt'iB= 12
FOF-' I =1 TO le:

LET NU~B=N0MB-BJT(I.NSMAN)
t'iE><T I 610
LET FLOW=E(23)'NUMB
FOF J=l TO 12

LET FILPR=FLOW.FLOW.AMU
LET FSTIM(I.J)=FSTIM(I,J)+FILPR.TSTART

r'iE>::T J 650
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100(1
101 (I

10E'O
1100
1110
1120
1130
1140
1150
1160
1170
1180
1190
1200
1220
12:30
1240
1250
12E,O
1270
1300
1310
1320.
1:330
1340
1350
1400
1410
1420
14::::0
1440
1450
1460
1470
1500
1510
1520

FOP K=l TO 12
IF CYCLE(K) {MAX+4

THEt-i
IF BIT(K,MAN.ONOF)

THEN LET FSTIM(l,K)=O FSTIM(2,K)=TNEW
IF IFLS;~O

THEN LET STRTM=TNEW-FSTIM(2,IFLS)·
IF STRTM{O LET STRTM=STRTM+24
LET KNT=CYCLE(K).4-3
LET FILDAT(KNT,K)=STRTM

EI'WIF
LET IFIL>K

HiD IF
IFBIT(K,PRS.OFON)

THEN LET KNT=CYCLE(K)+4 ~

IF FILDAT(KNT,K)=-l
THEN LET FILDAT(KNT,K)=FILBY

PRINT "FILTERABILIT\' FOP FILTER "K"=FI~B\'"

HWIF
HmIF
IF BIT(K,YAL~OFON) AND FSTIM(2,K»=O

THEN LETVPOP=TNEW-FSTIM(2,K)
IF VPOP{O LET VPOP=24
LET KNT=CYCLE(K)+4-Z
IF FILDAT(KNT,K)=-l LET FILDAT(KNT,K)=VPOP

Et-WIF
IFBIT(K,MAN.OFON) AND FSTIM(2,K»=0

THEN LET CPOP=TNEW-FSTIM(2,K)
IF CPOP(O LET CPOP=CPDP+24
LET KNT=CYCLE(K)+4-1
LET FILDAT(KNT,K)=CPOP

Et-H:JIF
HWIF

NE::-::T K 1 I) I) 0
LET DSMAN=NSMAN OSPRS=NSPPS OSVAL=NSVAL

ENDREGION FILTER
END FILTER.MONITOR
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IC=IC-16

IC=IC-lE.

F=22

F=14

LET F=20
IC>16 LET

L.ET F=12
lC>16 LET

SUBROUTINE WCOUT(CHAN,STAT)
LET C= 1 ; DUr'1= 0

~:TART h!COUT
LET IC=ICHN ; N=10
IF IC>:;::1 LET N=11 ; IC=1C-:;::2
IF S:TAT

THEl~

IF
ELSE

IF
ElWIF
CALL DECLR(COUT~5,N,IC)

CALL CAMAC(F,COUT,DUM,Q)
IF F=c'O OP F=12

THEN CALL CAMAC(27,COUT,DUM,Q)
ELSE CALL CAMAC(28,COUT,DUM,Q)

Et'WIF
IF Q~~:~:TAT F'RItH "Cm-nACT OUT EF.:ROR, r'h A="t'j, lC
PETUPt'i

1
10

300
310
3'=:'0
:::::::0
340
:350
:3f.O
370
3:::::0
400
410
420
4:30
440
450
460
470

LI~:T CDAC

1 SUBROUTINE CDAC(CHAN,VOLTS)
10 CALL DECLP(DAC,1,1,CHA~)

20 LET I=VDLTS+25.5
:30 CALL CAMAC(16,DAC,I,Q)
5 (I PETl.IF.'t"l
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1 SUBROUTINE MESSAGE(MESN~CHAN)

10 LET MAX=10 ; MESMAX=13
50 DIM PM(MAX,2),REPT«MESMAX)
60 LET CPM=O ; MINDAY=60-24
70 FOR 1=1 TO MESMAX
80 LET REPT(I)=O
90 NEXT I 70

100 START MESSAGE
110 LET MESNC=100+MESN+CHAN
120 CALL TIME(Y,M~D,H,MIN,S)

130 LET TNEW=H.60+MIN
140 LET TOLDEST=-MINDAY ; IOLD=O
150 FOR 1=1 TO CPM
160 IF PMCI,I)=MESNC
170 THEN LET TDIF=TNEW-PMCI,2)/100
180 IF TDIF<O LET TDIF=TDI~+MINDAY

190 IF TDIF>PEPT(MESN)
200 THEN LET"NPEPS~PMCI,2)-100+INT(PM(I,2)/100)

210 LET PMCI,2)=TNEW+l00
220 CALL PRINT.MESSAGE(MESNC,TDI~,NREPS)

230 ELSE LET PM(I,2)=PM(I,2)+1
240 Et"1DIF
250 RETURN
260 Et"Hi I F
270 LET TCUR=PMcI,2)/100
280 IF TNEW<TCUR LET TCUR=TCUR-MINDAY
c'90 IF TOLDE:ST<TCUR LET TOLDE"S:T=TCI.IR ; IOLD=I
300 r"jE::-n I 150
310 CALL PRINT.MESSAGE(MESNC,O,O>
320 IF CPM<MAX LET CPM=CPM+l ; IOLD=CPM
330 LET PM(IDLD,l)=MESNC PMCIDLD,2)=TNEW+l00
34 Cl f?ETUFti
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VIPER REV A7 3/04/78

1 PROCEDURE STARTUP
50 COMMON SPECS~NADC~ES~DELT

60 LET ACCESS(SPECS)=READA+WRITEA
70 LET NADC=30 ; ES=30
80 LET DELT=30 ; DELTCS=5
90 CALL TIME(Y~M~D~HOU~,MIN,S)

100 RUN SCANCS EVERY DELTCS SECS
110 RUN SCANADC EVERY DELT SECS
120 RUN WATCH. DOG EVERY DELT SECS
130 RUt'j SEP',lOHOUP EVER ....· 1 HOUPS AT HOUF.:+l: (I
140 LET NEXTSHIFT=S.INT(HOUP/8)+6
150 RUN SERV08HDUP EVERY 8 HOURS AT NEXTSHIFT:(I
16(1 RUN FILTER.REPORT EVEPY 8 HOURS AT NEXTSHIFT:(I
170 PPItH "HULETT:~: FACTDP ....· SCFTIJ.IAPE S:TARTED UP AT" ;
1E: (I CAL L PTAD
190 Et·m. STAfHUP

LI :~:T :~:HUTDOI.o.lt'l

VIPEP REV A7 3/04/78

1 PRDCEDUPE SHUTDOWN
10 TURNDFF SCANCS
20 TUPNDFF SCANADC
30 TURNDFF WATCH. DOG
40 TURNDFF SERVOHOUR
50 TUPNOFF SERVD8HDUP
60 TURNDFF FILTER. REPORT
70 Et·m S:HUTDOI.olt'j



APPENDIX B.2 VIP.ER PROGRAMS PAGE B2.19

1 SUBROUTINE FILTERCOEF(W,DAMP,DELT,CB,CC,CD,CE)
100 LET WO=SQPcI-DAMP.DAMP).W
110 LET A=W.DAMP
120 LET EAT=EXP(-A.DELT)
130 IF WO<1.000uOE-06
140 THEN LET THETA=I.5708 ; CA=EAT
150 ELSE LET THETA=ATNC-A/WO)
1£0 LET CA=EAT-CDSWO.DELT+THETA)/COSTHETA)
170 HWIF
200 LET CB=2.EAT.CDSWO.DELT)
210 LET CC=EAT.EAT ; CD=I+CA-CB ; CE=CC-CA
220 PETUF.:N

50
t.O
70

200
. E:l 0
220
2c~5

2::::0
240
250
2E,O
270
280
290
300

1 SUBROUTINE ENGLIMITS
COMMON SPECS,NADC,ES,DELT
COMMON ENGLIM,ELCES,2)
LET ACCESsccENGLIM)=WRITEA
FO~' 1=1 TO E~:

LET EL(I,I)=-1.00000E-38 EL(I,2)=1.0000QE+38
r"~E::<T I 20(1
PETUPt"j
LET EL(3,1)=60 ; ELc3,2)=80
LET ELC7~1)=O ; EL(7 2)=1
LET ELCI0,1~=63 ; EL 10,2)=70
LET EL(18,1)=75 ; EL 18,2)=90
LET EL(20,1 =8.59999 EL(20,2)=9.3
LET ELC21,1 =8.59999 EL(21,2)=9.3
LET EL(22,1 =7.79999 EL(22~2)~8.59999

PETUPt"i
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VIPER REV A7 3/04/7S

1 PROCEDURE SERVOHOUR
50 COMMON SERVDD,DUMl (4) ,MASS.HOUR,MASSSH(S) ,DUM2(3)
60 LET. ACCES:S (SEf'·'·... OD> =f'·EADA+I.JR I TEA
70 FOR 1=1 TO S
80 LET MASSSH(I)=O
90 NE>::T I 70

100 STAPT SERVOHOUR
110 REGION SERVOD
120 FOP I=S TO 2 STEP -1
130 LET MASSSHCI)=MASS8H(I-l)
140 t'~E>::T I If'l)
150 LET MASSSH(l)=MRSS.HOUR
1'::.0 PRINT "SOLIDS 1'1EL T RATE="t·lA:S::S. HUUf"" TONS:····HOUP ..
170 LET MASS.HDUR=O
180 ENDREGION SERVDD
200 END SERVOHOUP

LIST :S:Ef<"·... O::::HOUR

VIPEP PEV A7 3/04/78

,. 1..
50
E.O
70
80
90

100
110
120
130
140
150
160
170
1::::0
190
200
21 Cl

PROCEDURE SEPV08HDUR
COMMON SEPVOD,DUM(5),MASS.SH(S).MASS.SHIFT(3)
LET ACCESS CS:E;;';"IOD) =PEADA+hlt<' I TEA
FOP 1=1 TO 3

LET MASS.SHIFT(I)=O
NE::<T I 70
LET SHIFH1=1

START SERV08HDUR
~'EG TOt'j 5:EP'·/oD

LET 1'1AS:E:= Cl
FOR 1=1 TO ::::

LET MASS=MASS+MASS.8H(I)
NE:>::T I 140
LET MASS.SHIFTCSHJFTN)=MASS
LET SHIFTN=SHIFTN+l
IF SHIFTN>3 LET SHIFTN=l

ENDREGION SERVDD
Et'jD :S:FP'·/O::::HDUR
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-. -,t="
·':·C·_i

4 0'=11_' _0

280

2~3 0

f
1

290

240
250
260
270

90
100
110
120
1:30
140
150
160
170
180
190
200
210
220

340
400
410
420
430
440
450
4';:,0
470
472
474
4:::: fI
4::;:3
4::::6

1 PROCEDURE FILTER. REPORT
10 LET MAX=4 ; M=4
50 COMMON FILTER,FILDAT(MAX.4,12).CYCLE(12)
60 START FILTER. REPORT
70 DIM AV«12,4),TAV«M)
80 REGION FILTER

F'RItH "FILTER DATA FOR SHIFT Et-mml::i AT"
'::ALL PTAD
FOP L=1 TO 72

PR I rH .. :,:: ..
Nf.>::T L 11 0
PfHtH
FOR 1=1 TO 4

FOR J=1 TO 12
LET SU"l=O
FOR K=O TO CYCLE(J)-l

LET SUM=SUM+FILDAT(4.V+I,J)
ND::T K 180
LET AV(J,I)=SUM/CYCLE(J)

NE::-::T J 16 (I

NE::-::T I 1 '5 (I

FOP ~1= 1 TO 4
LET TA'·... n·n =0
FOf;,' t-l= 1 TO 12

LET TAV(M)=TAV(M)+AV(N.M)
t-lE>::T N 260

t-~E>::T t'l 24 I)

F'f;,'UH TAB(2) ;
FOP L=l TIJ 12

PF.·UH L.
t-~nn L 310
PP ItH
PR ItH
FOR 1=0 TO MAX-l

FOR K=l TO 4
FOP J= 1 TO 12

LET X=INT(FILDAT(4.I+K,J)+.5)
IF >-::=-1 ppun .. .. ;
IF X~-1 PRINT X ;

t-lE>::T J 42 (I

f-1E>::T K 4 1 0
Pf"UH

~jE::-':T I 4UU
FOf" 1=1 TO 12

LET CYCLE(!)::!
FO;:: ~I= 1 TO t'18>':+4

LET FILDAT(j,I)=-l
492 NEXT J 486
495 NEXT I 480
500 ENDREGIDN FILTER
505 PF.·INT

:300
:310
320
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TO 12
I, A'...' .:" I, 1) ~ A'·,,' (I, 2) ~ A'·,.' (I, 3) ~ A'·,.' (1,4>
570

510
520
5::0
540
550

.560
570
5:::::0
590

594
f.OO
610
620

E.4 0
650
7::: 0
740

P~'HH

PPHH "A'.,.'EPAi:~E~: FOP EACH FIL TEP"
PF.: un
PPHiT "FILTER t·m" ; TA1:(1'5) ; A'·,.'.:s:T.HH. ; TABC=:O) ;
Pf'~ItH "A;"';. C. P. PEF.· .. ; TA"B(45) ; .. A...·'. C\·C. TH1E" ; TAB (E.O)
PPI tH
FOP 1=1

PPWT
nE::-n I
PPItH
PF.~ ItH
pp I tH .. D'·/EF.'-ALL A'·,.'EF.:A(:;E:~"

PPItH
PR I t-iT .. A'·,..EPAI:;E S:HHH ItHEF.:VAL=" ; TAV (1)

F'P ItH .. A\iEF.:AI:;E T H1E TO '·... AL'o.·'E FULL OF'HI=" ; TA'·'" (2)
F'P I tH "A\IEF.:AI:;E F I LTEP C\'CLE T I r'lE=" ; TA'·'! (3)
pp un .. A'·.iEPAI:;E F I LTEF.' AB I LI T'{=" ; TA'·... (4)
DIt'l A...i «(O)·~ TA'·... «I)

EnD FIlTEP.PEPDPT

·"A'·/, FIL TB\'"
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,. 1
2

50
60

300
31 0
320
340
350
360
362
364
366
370
380
400

CLOOP..

PROCEDURE CLOOP
REM 9-11-77
COMMON BITS~£IN(4),SCOP(2)

LET CO=O
START CLOOP
LET C=SHIFT(CIN(4),-1) ; DIF=XOR(C~CO) ; CO=C
LET MESN=4+BIT(1~C)

IF BIT(l~DIF) CALL MESSAGE(MESN~O)

FOR J=l TO NLDDP
IF BIT(J~SCDP(2» AND BIT(j.DIF)

THEN LET MESN=4+BIT(J~C)

CALL MESAGE(MESN.J)
ENDIF

NEXT J 350
SAVE BITS
END CLDOP

MESN=4 OP 5



APPENDIX B.2 VIPER PROGRAMS PAGE B2.24

800
;:::10
:::20
900
910
920

1000
1010
1020
10::::0
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140
1150
1160
1170
lE'OO
1210
1220
1230
1240
1250
1255
1260

1 SUBROUTINE PRINT.MESSAGE(MESNC,TDIF,NREPS)
50 COMMON SPECS,NADC,ES,DELT
60 COMMON ENG,E(ES)
70 COMMON VOLTS,V(NADC)
80 COMMON ENGLIM,EL(ES,2)
'30 LET LU= 1

300 START PRINT.MESSAGE
31 (I LET t'lE:S:t-i= ItH (t'IE:S:t-1C: ..... 100> ; J=f'lESNC-l OO-.MESf-i
400 CASE r'lESt'i= 1
41 0 PI" niT (L.U>" ADC" j" (.. ;

420 CALL PPINT.CHAN.t-iAM(J,LU)
4:::0 PPItH (LU)") OUT OF Rftr'if5b="VCJ)" '·lOLT:S:"
500 CASE t'lESti=2
510 PRItH (LW"Et'il::;"J" : " ;
520 CALL PRINT.CHRN.t-iRM(J,LU)
530 PF?HiT (LU>" OUT OF PAt·i(:;E,'·/ALUE"E(j)" LIt'iITSAj;,~E"EL('J,D ELej,2)
600 CAS:E t'iE:SJi=;::
610 CALL PPIt-iT.PF?OG.NAM(j,LU)
620 PR HiT (LtU" IS: t·mf.,J Dt-i L WE"
7 0 0 CA:S:E t'IE:Sl1=4
710 CALL PPINT.PROG.NAMCj,LU)
720 pp ItH (LU) " HA~: GonE OFF -LT t'lE"

CW:E t·1I:.=::':r·1:::5
CALL PPlt-iT.PPOG.NAMej,LU)
PPItH (LU:' "COtHF.~OL PODt-1 ·S:I..llTCH :S:ET TO LOCAL I'1DDE" ;

CASE t'lE::,:r'i=6
CALL PRINT.F'POG.t-iAM(J,LU)
PF.'ItH (lU:' "CDi'1T,"'Ol Roml :S:i..IITCH :S:ET TO CQto1FUTER t'lODE"

CA:S:E t'IESt"1=7
FRUiT (LU) "SATFlOI..J"Y' :" ;
IF .1=1 PPItH (lU) "SAT ·S:UPPLY TAt'H< Lm): "E(1)" \FULL"
IF J=2 FRItH (LU) "SAT :S:UpPL ...· TAN~:: HI6H: "E 0)" ~~FULL" ;
IF .1=3 pp I tn (lU)" AUTOF I L TH: SUPPLY TAt'HO:: L.OI...!:" E (2)" ~·~FUL.L"

IF J=4 p!<'rr-n (LU:. "AUTDFILTER SUPPL··,··TAt·ik HII;;H: "E(2)" ~'~FULL"

IF J=6 pI"rr-n ClU:. ":S:AT FLOIo.1 FUt L OPEN" ;
IF J=7 pF.·un (lU) "CALCULATED '·,·'Al'·...E POS DIFFEI?S F F.: Qtol ACTUAL"
IF .1=::: PPItH (LU:, "SAT FLOhi '·,·'AU·'Et·lO'·/Hil;; TOO FAS:TC>10~·~.:o"

IF )='3 pp I tH (LU:' " CHECI< VALUE:~: OF EPPOF.' DEF' I \IAT I ',"'ES"
.=: A:S: E t'l E :~: r'1 =::::

PR IrH (LLD" CLFL Ohl "J" :" ;
IF J=l F'fHtH (LU> "CLOUD'-r' LIOUDf<' TANK LOhi: "E (27) "~'~FIJlL" ;
IF J=;:: PPltH (LU:,"CLOUfi\' LIOUDP TAm::: HII:;H:"E(27)"~'~FULL" ;
IF J=3 pp I rH (LU)" L I C1UDP PETUP~E '·,,'ALVE PO:S: CHM4(::;E> 1 O~·~"

IF J=4 ppIt-n (lU:. "L!OUDF F.:ETUI<:r-E '· hL'·... E CLO~:E[I" ;
IF -1=5 pp Ir-n (LU:o" LI PUGF F.·ETUPr-E '· AU·'E FULL OPEt-i"
IF J=6 pp ItH (LU)" CHEC,K '::LT LEVEL. DEP n··AT I '.lE" ;

CA~E r'1E:s:n='3l
PPItH (LU:' "PEr'lEL T"J" :" ;
IF J=l PRItH (LU)"REt'lELT TAt'W' HIGH: "E (;;:::::) "\FULL"
IF ,)=2 PRItH (LU)·· PHiEL T TAW::: LOI..J:" E (2::;) "\FULL" ;
IF -1=3 Pf<'ItH (un "CALCULATED FLOhJS:ETPm~n mw FEEDBACK DIFFEW'
IF -1=4 PR I rH (lU)" CAL CULAl ED Hmi SETPO I rH CHArii;:iE> 1 O~·~"

IF J=5 F'PHiT (LU) " AL'·...E CLO:~:ED" ;
IF J=6 PPItH (lU:. AL'·/E FULL OPErr' ;
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1::::00
1'::: 1 0
13c:0
1:;::::::0
1400
1410
1420
1430 .
1440
1500
1510
1520
1530
1540
If.OO
1610
1 f.~:' 0
16.30
1640
1700
1710
1800
1810
1820
1:3:3 0

CASE t'lE:~ll= 10
P~:ItH (LU> "LH1EF'ATIO"J". :" ;
IF J=l PRINT (LU> "PHC;:PHC:~:P At-m CGA:~:<10\"

IF ,J=c' PPItH (LU> "GA~: 1::DtHROL OFF-tom LII'lE COtHPOL"
CFCE "'lE:~ll=ll

PRIt-n (LLD "'::;A:S:FLDl.dA" ,r :" ;
IF -1=1 PRItH (LU.:o"A :~:AT OUT OF GRS; FLOI..J:;:"E (24:0 "CFM"
IF ,J=2 pp Hn (LU) " A '~:RT GfC SUPPL')" '·/Al\·'E CLOSED" ;
IF -1=3 PRHn (LU> "DELT TOO :~:t'lALL" ;

I::A~:E t'lE:~:n= 12
pp niT (LU>" GA'~:FLOI.oIB".1" :" ;
IF .j= 1 PR ItH (LU:o" B 5:AT OUT OF GAS; FLOt...!=" E (2~i) .. CFM"
IF -I=E: PRItH (LU>"B :~:AT GI::C :SUPPL\' ',/AL'·/E CLOSED";
IF J=3 PF.· I tH (LU)" DELT TOO St1ALL" ;

CAS:E t'lE:~:r-l= 13
pp I tH (LU) "'::';A:S:FLDl.olC ....1.. :" ;
IF .j=1 PRINT (LU) "C~:AT OUT OF (:;RS:; FLOIJ.i="E (26) "CFM"
IF .j=c· PRUH (LU) "C~:AT I:;A:~: ::;:UF'PL'l \"ftLVE CLOSED" ;
IF J=3 PF.·HH <LU) "DUT TOO S,.,lALL" ;

CASE t'lE:~:N=t'lE:S:t-l

Pf"UH (LU) ",.,lE::;::SAGE: "'1E:~:n= .. t·lE:S:N" ~ "Ut'W:t-mi.o_l~l t·1E:S::S:AI;;E ....
Et-iDCASE t'lESt'l
CAL.L PTAfi
I F t'1PEP::;:~~ (I F'F.' I tH (LU)" 0::" N~'EPS" OCCURH1CES I t-1 LAST'" TD IF" MIt-E) ..
RETUPt'l
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400

240
250

.260
270
2:30
290
::::00
310
320
3'30
340
350
3~,O

:370
~;:B I)

" 1 SUBPDUTINE PPItH. PPQ'::;. t·~At·1(.Jd .. U::r
100 IF J<O DPJ'>7 PRINT '(un ....ut·Wt·ml.oIt·i NA~lE •• "
110 IF .J=O PRIt'lT (LU)" t'lA::;TEP " ;
120 IF J=l p~·lt'n (LU'" SATFLm.l .; ;
130 IF J=2 F'~'UH (LU::r ,. ELFLm.l .. ;
140 IF J=:::: PR ItH (LIJ)" REt'lEL T !' ;

150 IF J=4 pp ItH (UJ)" L H1E~:ATI0"
160 IF J=5 PRItH (LU)" I::;A~:FLDI.o.!A ..
17(1 IF J=6 pp HH (L.Ln" fiASFLDI.oIB "
1:? 0 IF J=7 PR ItH (Ltl)" GASFLOI...IC ..
200 k'ETUF:t'i

LIST PRINT.CHAN.NAM

1 SUBROUTINE PPINT.CHAN.NAM(J~LU::r

100 IF J<l 01" ..1>:30 PRItH (LU) ".Ur·jf::t·Wt..lt·j CHAt·H-iEL."
110 IF J=l PRINT (LU' "SAT :~UPF'L'-( TAm:: LE'·... EL .. ;
120 IF .J=2 PRItH (LU.' "AUTU-FILTER .SUFPL'i TANK LEVEL"
1:30 IF J=3 F'RItH (LU) "POl EH Hj('; BR!>':" ;
140 IF J=4 PRItH (LLI) "B!<'OhIt'i LIOUOF' E:f;,:I::-::" ;
15 (I IF J=S pj;:' I tiT (LU)" PRESSED L IOUOF TAt·W LEVEL"
160 IF J=6 PRHH (LU)" ";
170 IF.J=7 PRItH (LU::r"130l< F'EEDBACI<:" ;
180 IF J=:3 PRItH (tU) "PUt'1PED FILTEP :~:UPPL'l PRES::S:UPE"
190 IF j='3 PF.'ltH (LLn""·;C02" ;
200 IF J=10 pf<'Un (LU:o" ";
c:l0 IF J=11 PRHn (LU:'''A SAT TH1P"
c'20 IF .1=12 PRHiT (LU>",E: 'S:AT TEt'1P"
230 IF J=1:3 pj;:'un (Lu>"e SAT TEr'lp"

IF J=14 PPItH (LU) "RFS E:'·';IT TEt'1P"
IF J=15 P!<·ItH (lU:', "SRT TAt·W TEt'1P"
IF J=16. pRUn (LU::r "F'HiE UCtUOR TEt'IP"
IF --'=17 PF.'ItH ,:·LU:O"F.'Er1ELT TEt'!P" ;.
IF J= 18 pp ItH (LU) " ·~:I.J.lEET I...IATER TH1P"
IF .1=19 PRINT (LU)" ";
IF J=20 PRItH (LU) "A~:AT PH" ;
IF J=21 PPUH (LU)"E! :S:AT PH" ;
IF -'=22 F'RItH (LU;o "C SAT PH" ;
IF J=2:;: pp ItH (LU:o" REt"IEL T FLDI.oI"
IF J=24 PFU tH (LU)" A GA:S: FLQ!..V ;
IF J=25 PF.·ItH (LU)"B i;;A.S: FLOhi" ;
IF J=26 PR ItH o:'LU) " c: CiAS: FLOI.oI" ;
IF ..J=E'7 PR I tH (l U) "CLDUf!\" L II)I.i1Jf<' r;:'FHI F;,'t'E: TAtW·· L. E'....Et "
IF J=2:::: pj;:' I tH o:'LU,:." r;:'Et'lEL T TAr·w LEVEL" ;
F!EHwr'i
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P~1GE 0(101 FTt·j.

C~11...L. :;::I,j ITF';: 15)
IF(ISMUL.(1).LT.0) CALL EXEC(6,0,2)

COMMON ENG(64),ADCV(64),CDACV(24),
1 SAFCOD(2121),CLFLOD(10),REMLTD(10),CLIMED(10),
2 GASFAD(1C1),GASFBD(1121),GASFCD(10),FILCYD(1C1),
3 SERVOD(20),DUMMY(50), .
4 ISAt'lT, ISt'lUL(::::c:), IRN(4~), ICIt·j(4), ICOU1(4),
5 ISCOP(3),IDUMY(50)

ISAMT - MASTEP SAMPLING RATE (PACER FREQUENCY, SECS)
ISMUL - SUB-PATE SAMPLING TIMES (PERIOD(X)=!SAMT*ISMUL(X»
IRN RESOURCE NUM8EPS
ICIN CONTACT STATUS IN (UPDATED BY SCCS)
ICOUT - CONTACT STATUS WOPDS UPDATED 8YCONTROL PPbGRAMMES.
ISCOP(1)- FLAG USED BY WCHDG AND THE CONTROL PROGRAMMES.
ISCOP(2)- STATUS OF CONTROL PROGRAMMES. (I.E. RUNNING OR OFF)
ISCOP(3)- STATUS OF AUTO/MANUAL SWITCHES.

TI t'lE IT F.:UNS

::::: fl TUF.: AT 0R
:::: AT UF.: AT' 0 F.:
SATUPATOF.:

------ COMMON ------

ENGINEERING UNITS (CALCULATED BY ENGUN FROM ADCV VOLTAGES)
A/D VOLTAGES (UPDATED BY SCAD)
D/A VOLTAGES (UPDATED BY CDAC)

SATURATOR FLOW CONTROL. DATA
CLOUDY LIQUOR FLOW DATA
REMELT CONTROL DATA
CONTROL. L.IME DATA
GA:::; 1:::·1.... CH,.I C: CH'rn,: OL.. DAT A FOR "11"
GF~S FLO~,.I C:ot,jTROL DfiH~ FOR "B"
GAS FLO~I~ C:Or·iTr.:OL DATfi FOP II C11

FILTER CYCLE MONITER DATA
SERVOBALANS SCALE MONITOR DATA

::::AFCOD·­
CLFL.OD··
f,:EI"ILTD.···
CL I 1"1 ED··..
GASFAD ....·
GfiSFBD·­
GASFCD··
FI LC''I''D-·
:::;ER:',iOD-

PACIR CLEARS RESOURCE NUMBERS 1 TO 3 EACH
THESE ARE USED TO PACE THE SCAN PROGRAMS

IRN(l) - SCAD(SCAN A-TO-D'S)
IRN(2) - SCCS(SCAN CONTACT STATUS)
IRN(3) - NCHDG(WATCH-DOG)

THE RESOURCE NUMBERS ARE ALLOCATED BY STRUP

r-
C Et·jG
C ADC V
C CDAC',,.'
C
C
c:
c:
C
c:
c:
C
C
C
C
C
C
e,.
e
r-
C
C
1-'

C---------~------------------------ ~~ .
r­
C

FTtH, L:, T
PROGRAM PACIR(1,1121),031077?? 231277BDR

C-~------~-------------------~---------~-----------------~-----------~--
C PACIR - PACE THE MASTER SAMPLING RATE . '.
C
C----------------------------------------------------~------------------
C
c:
C
c:
c:
c:
c:
c:
C PACER SUSPENDS ITSELF IF ISMUL(l) IS NEGATIVE. ISMUL(l) IS SET ON AND
C OFF BY HANGO WHICH IS EITHER RUN DIRECTLY OR SCHEDULED BY STRUP
C--------~----------~--~~-----------~-------~---------------~---------- ..
C
r­
C

C10(:11
~)12I02 .
(1(103
012l~:::14

~::1 (1 ~::15

(1(H:::16
(H)~)7

121(10::::
C1 '21~) ':::~

\:1 ~~ 1 ~:1

(1(1:1. 1
O~~:I. ;;~

(101:;: .
'j(114
~:::H) 15
~:::H) 1,6
~)12I1 7'
121018
0(119
~)020

(u321
(1(122
(H)23
12112124
121(125
(H:::126
~)~) ,:: 7
~~1028
(H)29
(1121:;:0
~) ~::1 :::: 1
O~)::::;::!

(:1 ~~I::::::::

C1~)::::: ,::1·

'21(1 :::::~:'i

(1(1::::6
~)~::137

'21 ~::1:::::::

~)(1:::: '~

121(14121
(1041
12112142
012143
~~1044

CHH5
OI~H6

12112147
121(14::::
(HH9
(1050
(H)51
005~~

~::1~)53

~) \:1 ~5 4
(1 (1 !:i 5
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~21 (1 ::5 6 c::
o~21 ~::; '? c::
(1 ~~1 ~::; :::: C:
Ot1~::;')

ij ~~16 (~I

Ot16 :[
i;li~16:;::

(3 (;1 (:: J
~)~j64

~::IOI:::: ~::;

SUSPEND AND REMOVE FROM TIMFLIST

CLEAR RESOURCE NUMBERS 1 TO 3 WHEN DUE AS INDICATED BY ISMUL 2 TO 4
DO 10 I I;::N I :=: 1 :1 :::::

, ISMUL(IRNI+17) = ISMUL(IRNIt17) + :[
IF ( I ::::;t"IUL ( I 1:;':1',,1 I+,17) • LT" I:i:;t'll...IL ( I f;::I"~ I+ 1. ) ) G()"rO :1,1;::1
CALL RNRQ(4,IRN(IRNI),ISTAT)
ISMUL(IRNIt17) = [1

11;::1 C()I"~T I t,lUE
EI·,lD

FTN4 COMPILER: HP92060-16092 REV. 1726

** NO WARNINGS ** NO ERRORS ** PROGRAM - 00081
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F I LC:\'
F I 1.... C: \'
CLOOP

BIT-SIGNIFICANCE :

TO 16 IN ICIN(1) ­
TO 8 IN ICIN(2) ­
TO 16 IN ICIN(4) ­
IN ICIN(3) - SERVO
IN ICIN(4) - SERVO

............................, COI·'·II·'·I()t·j

I CIt~

E: I T:;:: :I.
BIT:;:;: :I.

BIT:::: :::
BIT 16
BIT J.

ENGINEERING UNITS (CALCULATED BY ENGUN F~JM ADC V VOLTAGES)
A/D VOLTAGES (UPDATED BY SCAD)
D/A VOLTAGES (UPDATED BY CDAC)

SATURATOR FLOW CONTROL DATA
CLOUDY LIQUOR FLOW DATA
REMEl...T CONTROL DATA
CONTROL LIME DATA
C;A~:; FLO~'J COt'HPOL DATA FOF.: "A" ::;RTUF.:I1TOP
GRS FLm·l CCiI··HF.:OL DATA FOf;;: "B" SATUPATOF.:
GAS FLm,l COtHPOL DATR FOP "C" :::;ATUF.:ATOP
FILTER CYCLE MONITEP DRTA
SEPVOBALANS SCALE MONITOR DATA

COMMON ENG(64),ADCV(64),CDACV(24),
1 SAFCOD(20),CLFLOD(10),REMLTD(10),CLIMED(10),
2 GASFAD(10),GASFBD(10),GASFCD(10),FILCYD(10),
3 SERVOD(20),DUMMY(50),
4 ISAMT,ISMUL(:32),IRN(40),ICIN(4),ICOUT(4),
5 I::::COP(3), IDI...Ir'1\'(::i(\)

EI··jG
ADCV
CDAC',/

ISRMT MASTER SAMPLING RATE (PACER FREQUENCY, SECS)
ISMUl... SUB-RATE SAMPLING TIMES (PERIOD(X)=ISAMT*ISMUL(X)
IRN, RESOURCE NUMBERS
ICIN - CONTACT STATUS IN (UPDATED BY SCCS)
ICOUT - CONTACT STATUS WORDS UPDATED BY CONTROL PROGPAMMES.
ISCOP(l)- FLAG USED BY WCHDG AND THE CONTROL PROGRAMMES.

::::AFCOD­
CLFLOD­
F,:Er'1LTD·..·
Cl... I r'1ED···
C;A~:;FAD­

GA::;FBD­
GA::::FCD­
F I LC''!''D-·
::::EF.:'·... OD-

CLEARS RESOURCE NOS 7 & 8.
CLOOP IS CALLED BY EXEC CALL IN ORDER TO BE ABLE TO PARSE PARAMETERS
TO IT AND TO ALLOW IT TO BE DORMANT WHEN NOT REQUIRED,
secs LOCKS ON RESOURCE NO. 2 WHICH IS CLEARED BY PACIR AND THEN CHECKS
ITS OWN RUN FREQUENCY AGAINST ISMUL(:]).
I.E. SCCS RUNS EVERY •..• ,(ISAMT*ISMUL(:3» SECONDS

FTtH,L,T
PROGRAM SCCS,1,20

C-------------------------------------------------------------------
C
C secs - SCAN CONTACT STATUS
C "/EF.: S IOt·j : 9-11,-,191'1'
C------------------------------------------------_------~---------------
C
f"'
C
C
C:
C
C
C
C
C
C

·C
C:
C
C
C
CC--------------------------------------------------- _
C
C:
C:

0~Z101

~)OOc:

~Z1 ~Z1 0:3
(1 ~~1 (1 ,::1·

~)~21(15

~)~3(16

(1 (H) 7
(11210::::
(1009
~:H31.121

(1(11 1.
0\::1:1.2:
(~(11 ::::
012lJ.4
~Z1015

(H316
~)12117

~301::::

~~1(119

(1(120
(H;l21
(H)22
~)1212:3

(H324
~3025

~)~Z126

(1 ~Z1,~ 7
~::1 ~j ~~ ::::
~J~3~~9

(Hj:::a)
~Z1 ~~1:;: 1
0~Z1::::2

~~10::::::::

0~~1:]4

~~1 ~J :::;: ~; C:
~J~~1 ::;:6 e
0121:31' ('.
(1(1:;: :::: C
(1121::::9 C
(112140 C
0041 C
(104~;: e
~J 121 4 :::;: C:
0(144 C
012145 C
0~346 r
(1(147 C
(11214:::: C:
0(149 C
0(1~50 C:
(10~:; J. C:
~3052 f"
0(15:3 r
~~HJ54 C
0(155 C
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I..-
C WAIT ON RESOURCE NUMBER
C

READ STATUS OF 64 CONTACTS:

WRITE LAM MASK FOR ALL 64 CHANNELS:

INITIALISE ALL BITS TO ZERO.

I t·jTEGEF.: CLOOP (:;:)

I PUH'''' I PUt·j + 1
IF(IRUN.LT. ISMUL(3»GOTO 40

CHECK RUN FREQUEHCY FOR SCCS
I F.: Ut·j=(1

CA LL CA t'1 AC( 0, I CS I.,j 1, I CI t·j ( 1) , +G! )
CALL CAMAC(O, ICSW2, ICIN(2), IQ)
CALL CAMAC(O,ICSW3,ICIN(3),IQ)

CALL RNRQ(2,IRN(2),ISTAT)
GLOBAL SET TO PERMIT PACIR TO CLEAR

CALL DECLR(ICSW1,1,12,0)
CALL DECLR(ICSW2,1,12,1)
CALL DECLR(ICSW3,1,13,0)
CALL DECLR(ICSW4,1,13,1)

ISCOP(2)- STATUS OF CONTROL PROGRAMMES. (I.E. RUNNING OR OFF)
ISCOP(3)- STATUS OF AUTO/MANUAL SWITCHES.

DO 10 1=:1,4
ICOUT(I)=(1

10 COtHIt·WE .
IFIL01=0
IFILO;2=0
IFILO:;:=(1
ISCOP(:~::) - 0
I ::; R'",'0 1=(1
ISR"l02=(1
Iet·jTO =0
.JCtHO =~:1

I F.: Ut·j =~:1

40 CALL CAMAC(1:::,ICSW1,IDUM,IQ)
CALL CAMAC(1:::,ICSW2,IDUM,IQ)
CALL CAMAC(1:::,ICSW3,IDUM,IQ)
CALL CAMAC(l:::, ICSW4, IDUM, IQ)

C

C

C
C
C:
C---------------------------~--------- ~ ~ _
C

(1056
(W57
OO~::i:::::

(1(159
~306(1

~:H:161

~:1062 C
0(163
~J064 C:
O~j65 f-'
0~366 C
O~367 C
(H36::;: ,-.
~:'1~~169

~J~~1? (1
~)(171

~3(172

~3(17::::

(1~:174

O~~ '?' ~::i

~3~~176

0(177
~:1 ~:17 ::;:
~:1(179

0~)::::(1

~~1 ~3 :::: 1
~][1:::2

0~3::::3

~3~3:::4

00:::::;
~3~3:::6 c:
0~:1:::7 C
~:1 (1::: ::: C
~30:::9

(1090
0091
~~10 9;::
~3~:19 :;:
(1(194
~:H395

~3096

0~)97 C:
~J 09 :::: c:
0099
~:1100

~:i1 ~:i1

o1~32

01C1:;: C
~J 10,::1·
o1~J5 C
(1106 C
~31(17 C
01~:1:::

(111;;)9
0110
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01 1 1
01 1-' t····

.::. '_.,

01 1'" C,.~l

01 14. r..
01 15 C
01 16
~] 117
~] 11':'1..;1

01 19 (~.

'-'
0120 1"'

'.'
0121
[1122
~) 12::::
C11 24 C
0125
0126
0127 I.-
~j 12::: .
0129 I~'·,

01:::0
01:::1
0132
0133 C
OD4 ...

L
01:::5
01% C
C11 ::::7
01:;::::: C
0139
0140
0141 I•.

0142 C
014:::: (.

0144
0145
0146
0147
C114::::
~) 149
0150
0151
0152 C
015::::
0154

CALL. CAr'lAC<O, IC::::~,j4, ICIH(4), 10)

MASK OFF SPECIFIC PORTIOHS:

FOR FI LC'r' :
IFILH1=ICHH 1)
IFI LH2::: ICI t·J <2)
IFILH:::: :::IAHD<ICIH(:;:),0000178)

FOR CLOOP
ICNTH - IAND<ICIN(4),1777768)
JCNTN ::: ISHFT(ICNTN,-1)

FOP· ::;EP1,lO
ISRVNl ::: IAND(ICIN<3),1000008)
ISRVN2 = IAND<ICIN(4),0000018)

LOOK FOR CHANGES IN STATUS & RELEASE APPROPRIATE RESOURCE NO,

IFILD::: I ::-:: 0F.: <IFILCl 1, IFILH1)+I ::':; 0R<IFIL02, IFIL t·J 2) +1::<: 0F.: <IFIL0::::, I f:' ILj·.1 ::::: :'
ISRVD=IXOR(ISRVCll, ISRVN1)+IXOR<ISRV02, ISRVN2)
ICNTD:::IXOR<ICNTO,ICNTN)

IF <IFI LD. ~'JE, 0) CFILl.. Pt·JRO <4, I Rt·J <?) , I :::;TAT)
CLEAR FILCY TO RUN

IF<jSRVD.HE.O)CALL RNRO<4,IRN(8),ISTAT)
CLEAR SERVO TO RUN

IF<ICNTD.NE.0)CALL EXEC<24,CLOOP,JCNTO,JCNTN)
QUEUE SCHEDULE WITHOUT WAIT

UPDATE OLD STATUS WORDS:

IFILO 1=: IFI UJ 1
IFIL02:::IFIUJ2
IFILO:3=IFIUJ::::
ISR'/O 1=I ::;F.: '",'t·J 1
ISp ll/02= I SF.: \r1t'i 2
I Ct·JTO= ICt·JTt·J
Jet·JTO =JCt·JTtJ
I :::COP (:::) =JCt·JTt·J

GO TO 40
nU!

** NO WARNINGS ** NO ERRORS ** PROGRAM - 00:::::::2
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I.E. PACIR SETS THE SAMPLING TIME OF ALL PROGRAMS.
AT THE END DF SCAN, SCAD1 CLEARS THE FOLLOWING PESOUPCE NUMBERS ~­

IRN(4) - EVERY SCAN (SPARE)
IPN(5) - EVERY ISMUL5 SCANS
IRN(6) - EVEPY ISMUL6 StANS

THIS RELEASES THE WAITING CONTROL PROGRAMS (VIZ. SDATA & ENGUN)

SECOt'iD~:

SECONDS
SECOt,iD:::;

------ COMMON ------

N2=MUX2 STATION NUMBER
N1=MUX1 STATION NUMBER
N =ADC STATION NUMBER
IC= CRATE t'Wt'1BER

RUNS EVERY .• ... (ISAMT*ISMUL(2)*ISMUL(6»
PUNS EVERY •.... (ISAMT*ISMUL(2)*ISMUL(S»
RUNS EVERY ..... (ISAMT*ISMUL(2»

SCAD1 - SCAN A TO D CONVERTOR

4

r···nt'H"W't'i Et·iG'" ,':;4 ') " ,:::,Df":',,',;' f::;4 ') • f":Dfil":"i,;'?4 ';0 •

1~- s~FC6D~i~);0l~C6ri~1~~;~E~Liri(i~),ClIMED(10),
GASFAD(10),GASF8D(10),GASFCD(10),FILCYD(10),
SERVOD(20),DUMMY(50),
I:::;At'1T, I::::t'1UL(32), IF.:t'i(4~), ICIt'i(4), ICOUT(4),
ISCOP(3),IDUMY(50)r:=

'-'

.-,

.:::.
::::

SAFCOD- SATURATOR FLOW CONTROL DATA
ClFLOD- CLOUDY LIQUOR FLOW DATA
REMLTD- PEMELT CONTROL DATA

ENG ENGINEERING UNITS (CALCULATED BY ENGUN FROM ADCV VOLTAGES)
ADCV A/D VOLTAGES (UPDATED BY SCAD)
CDACV - D/A VOLT AGES (UPDATED BY CDAC)

THIS IS A PROGRAM.FOR SCANNING 64 ADC CHANNELS. EACH CHANNEL
. IS ADDRESSED INDIVIDUALLY. THE VALUES ARE CONVERTED TO'
VOLTS AND STORED IN THE COMMON ARRAY ADCV(I).

SCAD1 RUNS AFTER A TIME INTERVAL DETERMINED BY THE FREQUENCY OFPACIR
AND A MULTIPLE THEREOF (I.E. ISMUL(2».PACIR CLEARS stAD1 EACH TIME
IT r.::Ut,i:; At'iD ::::CAD 1 CHECKS ITS O~',lt'i f':Ut,i Ff':EQUEt'iC'r'. SCAD 1· AL80 PEGULFiTE:::;
THE RUN FREQUENCIES OF SDATA AND ENGUN 8ASEDON THEIP SEPEPATE AND
INDIVIDUAL MULTIPLES (I.E.ISMUl(5) & ISMUL(6) RESP.) OF SCAD1'S RUN
I t'iTER"iAL.
I. E. Et,iGUt·j

SDAIA
::::CAD 1

FTH4,L.,T
PROGRAM SCAD1(1,2~),0::':1077?? 231277'BDR

("

C-------------------------------------- ~ ~ _,-,
-',-,
-'
C
C---------------------------------~-------- __-- ~ ~-------

C
C
C,-,
-'

C
C:
1
_,
-',-,
-'e
C
C:
C,-"
-'

C,-,
-'
C
C
f'",-,
-'

C
1

_,

-'
C
C:
C
r-'
e
e
C
C:
C-----------~------------~----------------------------------------------
C,-,
-'
C

(1001
0~3f::":::

[1(1[1:3
0004
(1005
O(H%
(1 ~:1 (1 i'
OI~11~1::::

(1 (1 (1 ':!
(H)10
(H::.'! 11
0012
(1 ~:11 :::;:
Of~114

0~:115

~:H:116

(1 ~:11 i'
~)(11 :::
121(119
~;.1~J;20

~:H)21

~)(122

0023
~::Hj24

(1 ,;~, ;;:~ ~::;

(1 ~~, c: 6
~:H327

~J(12::::

~J~3Z:9

(1~:1::':0

(1 f::1 :::;: 1
~:1~)32

(1~:133

(1(134
0(1:::;:5
~:1 ~:1 36
0(137'
~] ~~1:;: :::
00:::;:9
[1~:140

(1(141
O~;)4 ::::
[1~J4::::

0[144
(H)45
0(146
0~H7
o~:1 ,::1, :::: . C:
CH,H9 C
~)[15(1 C
0~351 C
~:H352 C
Of::15::': C:
(IC' ~:) 4 C:
(Hj55 C·
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:::ATUF.:ATOF:.
:::ATUF.:ATOP
::;fiTURATOF: .

"All
11 E: 11

lieu

DfiTA

DECLARFlT I Ot·~:::

CONTROL LIME DATA
GAS FLOW CONTPOL DATA FOR
GAS FLOW CONTROL DATA FOP
GAS FLOW CONTPOL DATA FOP
FILTEP CYCLE NONITEP DATA
SEPVOBALANS SCALE NONITOR

CAt'lAC
DECLP(MUX1A,IC,N2,0)
DECLR(MUX18,IC,N2,1)
DECLR(MUX2A,IC,N1,0)
DECLR(MUX2B,IC,Nl~1)

DECLR(NADC~ICjN,0)

..J:::4::':!:;2~:' (1 ....·:1. ,?')
t'l U::.:: 1= t'l U::-:; 1E:

J=17*(1--1)
t'lU::·:: 1= t'lU::<; 1A

t'lU >::2=t'lU::,:: 1A
GOTO 800

IF(I.GT.16)GOTO 200
ELSE

IF(I.GT.32)GOTO 400
E:I....::::E

t'~2=6

tH=7
t·~=:::

IC=1

CtiLL
CALL
CALL
CALL
CALL

CALL RNRQ(2,IRN(:I.), 18TAT)
GLOBAL SET SO THAT PACER CAN CLEAR IT

CALL ::;~'J ITF ( 14)

DO 1(100 1=1,64

I:::AMT MA:::TER SAMPLING RATE (PACER FREQUENCY~ SECS)
ISMUL SUB-RATE SAMPLING TIME::: (PERIOD(X)=ISANT*ISMUL(X»
IRN RESOURCE NUN8ERS .
rCIN CONTRCT STATUS IN (UPDATED BY SCCS)
IeOUT CONTACT STATUS WORDS UPDATED8Y CONTROL PPOGRAMMES.
ISCOP(1)- FLAG USED BY WCHDG AND THE CONTROL PROGRAMMES.
ISCOP(2)- STATUS OF CONTROL PROGRAMMES.(I.E. RUNNING OR OFF)
ISCOP(::::)- STATUS OF AUTO/NANUAL SWITCHES.

CL I t'lED-­
GA:3FAD-­
GA::;FBD­
GA:::FCD­
FILC\'D­
:::EP"iOD-

NAIN DATA SAMPLING LOOP

WAIT FOR PACER TO CLEAR RESOURCE NUN8ER1 (IRN1)

c:

c:
1-·~.

C
C
C
C
C
C:
C
C
C
1
_·
-'

C
C
c:
C
C----------------------------------------~--~-~-~-7----------------~---_C '

iJ(~ ~:i (;
~3€157

0~15::;:

(H)59
~3 €16 0.
~)061

~:::106;;:::

(1~:::16::::·

i)(164
0065
~)€166

~3067

006:::
(1~:::169

i~i21 '(' ~:I

l2Ii)71
~3072

~307::::

~3~:::174

(H375
~:::1(1?6

(1~:::177

C1 1:;:1 ? ::;: C:
~:::112179 C
0121:::1:::1
(1 (1 ::: 1
O(1:32
1211:::1:::3
(10:::4
~31:::1:::5 C
~3 ~:::1 ::: (; C:
~:::1 ~3 E: '( C
01:::1:::::: C
(1(1:::9 C
(109(1 C
~3~3'3'1 C
~30'3'2 C
~3(19::;:: :I. 121

iJ~:::194 C
~3~395

0096 C.
~3~:::197

~) ~3 '3' I:: ,-.
~30','3' r-
01 i~10

~3UH

0102
01~3~:

(1104
011215
~j1~36 C
~:::1107

~:' 1~3 ::: c:
0109
~j 110
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CALL CAP1D1.(26,MUX1,IDUP1,IQ,IERR)
IF(IERR.GE. 1)CALL CAto1ER(IE~R,26,to1UX2B)

CALL CAMD1.(16,MUX2,J,IQ,IERR)
IF(IERR.GE.l)CALL CAP1ER(IERR,16,MUX2A)

CALL CAND1(2,NADC,IDUM,IQ,IERR)
STA~:T COt·lVERS I Ot~

IF(IERR.GE.l)CALL CAto1ER(IERR,2,NADC)

CALL EXEC(12,0,1,0,-2)
WAIT FOR CONVERSION TO COto1PLETE
INCREASED FROto1 10 TO 20 to1S 24-11-76 BY A.D.HEHER
TO AVOID INTERto1ITTANT CONVERSION ERRORS

CALL CAto1Dl(0,NADC,ID,IQ,IERR)
F:EAD DATA

IF(IERR.GE.l)CALL CAP1ER(IERR,O,NADC)
COt·l'",'EF:T TO 'v'OL TS

SET UP to1ULTIPLEXOR CHANNEL

C
11211210 COI···i'1" II··lUE

C

::::(100

2(120

t'1U::-:;2A

. . CLEAR - RELEASES CONTROL PROGRAMS

t'1 U>:: 2=t'1 U::.:: 1A
GOTO :3~:10

.J= 17* ( 1-:;;::;::)
t'1U::·:: 1=P1U>::2A
t'1U ::< 2=t1U ::-:; 2A
GO TO 801;;j

ADCV(!)=(ID-32)/3273.5

GOTO 1~)

Et·Hi .

ISMUL(22)=ISto1Ul(22)+1
ISMUL(21)=ISMUL(21)+1
CALL RNRQ(4,IRN(4),ISTAT)

DUMMY RESOURCE NUMBER
IF':: 1::;t'1UL..':: 21) .LT·" I :;::!'1UL. (:':i» COTO

I ~::t'1UL (21 ) :::::~)

CALL RNRQ(4,IRN(S),ISTAT)
f;,:ELEA:::ES ::::DATA

. IF(ISMUL(22).LT.ISMUL(6» Goto
I :::t'lIJl (22) =~1

CALL RNRQ(4,IRN(6), 18TAT)
f;,:ELEA:::ES EJlGUt·l

COt·lT INUE

400 IF(I.GT.48)GOTO 600
ELSE

600 . .J=4352*(I-49)
to1U;:':: 1=t'1U::-:;2B
t'1 U::-:; 2=t'1 U::-:; ,:: A

1-'

200~)

~:1129

~j 1. :;;:0
013:1.

[112:::

[1111
~) 112
~) 1 :I. :;:: C:
(11:1. 4
I~Hl~5 C
0116
~:i11 7
01 H::
i~111,)

~)l:~O C
0121 C
0122
~~112::::

OL~4
~:j 1:;::~) c:
~1126 C
0127 C

0132 C
~:::11 ::::::::
~) 134 C
01.35
~) 1::;;:1;;;: C:
0137
til:;:::: r
~:11::::9 C
o14~1 C
~) 141,
(l14,:: C:
014:;::
0144
0145
0146
(114?
i) 14:::
0149
~:11 ::, (l
0151
015,::: C
IJ 1~j :;;:
o1~::;4

~) 155
0156
~)157

~~115:::

01:59
o16iJ C
>'~1161 202~~1

~i162 C
(j 16::::
0164

PAGE ~H~H34 ::;:CAD:I. :::: ;;:::4 At'1 :::Ut·1.,. 8 AUG., 19?6

FT 1'·14 C() 1"'1 PILER: \,,·IF',) ;?12161~1"'''1, 60') 2 r;:E ',,.' , 1726

- t ' - ET C I-I c' ,-. .... F' F'. (11-.• F'. H- t'1 ::: ':1 [1 :~: :~_·i ~3** t·W r,jAPt·j I t·H:;:::** '1 1_1 ".r::r<: _r'.·:' *"". • t - - -
COt'1t'10N - ~112i75:::



APPENDIX B.3 FORTRAN PROGRAMS PAGE B3.9

PAGE (H)Ol Fn~.

COMMON ENG(64),ADCV(64)~CDACV(24)~

28 - GAS C02 CONCENTRATION LESS THAN :::%
29 - GAS C02 CONCENTRATION LESS THAN 10%

FTtH~ L~ T
PROGRAM ENGUN(2~30),180178BDR 2301788DR 010278BDR

THIS PROGRAM CALCULBTES THE ENGINEERING UNITS OF THE FACTORY
DATA STORED AS VOLTS IN THE ADCV ARRAY.
THE PROGRAt;'j'S PESOUF.:CE t·lUt'lBER IS RELEA::;ED 8\' "SCAD".

SATURATOP PH OUT OF RAHGE
SATURATOR PH OUT OF RANGE
SATURATOR PH OUT OF RANGE

POLISHING BRIX MEASUREMENT OUT OF RANGE
BROWN LIQUOR BRIX MEASU~EMENT OUT OF RANGE

" fi " ::::; AT1...11:;;: 1:::1 T' () f<: TE1"1 PE~:: fi 'fUp.: E I:i El t,~ 0I;:: t'l f:1 L
"El" :::;I:::I'fIJI:;;:fIT'CIR TEI"lPERHTUf,:E HBI'"IOPt'lHl...
"C" ::::;I:::ITI...II:;;:AT'()P TEt'lPERATUF.:F FIBNOPt"IHL
HUTOFILTER SUPPLY TANK TEMPERATUPE ABNORMAL..
SATURATOR ~JPPLY TANK TEMPERHTUPE OUT OF RANGE
FINE LIQUOR TEMPERATURE ABNORMAL
REMELTLIQUOR TEMPERATURE ABNORMAL
SWEET WATER TEMPERATURE OUT OF RANGE

OUT OF SPECIFICATION ALARM MESSAGES *****

9 -

5

::::: _..

7 -
6 --

1':''-'

11
1

,-,
.::.

SATURATOR SUPPLY TANK LEVEL OUT OF RANGE
AUTOFILTERSUPPLY TANK LEVEL OUT OF RANGE
PRESSED LIQUOR TANK LEVEL OUT OF RANGE.

14 CLOUDY LIQUOR TANK LEVEL OUT OF RANGE
15 ~ RECOVERY REMELT TANK LEVEL OUT OF RANGE

25 - HAil
26 -- 11 E: 11

27 - lie"

16 SATURATOR FLOW CONTROLLER FEED-BACK SIGNAL OUT OF RANGE
17 REMELT FLOW CONTROLLER FEED-BACK SIGNAL OUT OF RANGE
16 MAGFLOW SIGNAL OUT OF RANGE
19 - REMELT RETURN FLOW OUT OF ~ANGE
20 CLOUDY LIQUOR RETURN FLOW OUT OF RANGE
:;:: 1. - "A" ::':;ffl"l...IpnTm': Gt,~:':; FLO~,l OUT OF PfHH:;E

"E:" ~:':;fi TUPFiT()I:;;: GAS FL O~'l OUT OF F.:At'~GE

,~:;: --, "C" ::;fiTUPffI'Or.;;: GA:;:'; FUH'l OUT OF r;:AHGE:
24 - LIME WHEEl... SPEED ( FLOW ) OUT OF PANGE

C:
C
C 11:";1;";':'*-;':'

C
C:
C:
c:
c:
C
C
C
C
C
("'

e
r-
r­
r­
C
C
C
C
C
C
C
C
C
c:
c:
c:
c:
C
C
e
C:
e
r-
e
1-'

C
("'

1-'

1-'

C----------------------------- ~---------_- __-- -_-----_----- _C . ,
. C . ------ COMMON --_---

C

(11)01 .
0(1~:12

0003 C****************************************************************
~)(104' C
0(105 C
~)(106 I"'

0007(**********************************************************************
~:1~30:::

~:1~3(1'="

0~:11 0
(11:111
(1 ~:11 :;:::
~)013

f.101.4
~J f.;11 ~:i

(1~~116

~301. '?'
(1 (11 I::
(11:119
(1020
~3021

£1022
t102:~:

(11:124
0~:125

0~)26

0~327

002:::
0029
~) (1 :::: ~:1

(1 (1:::: 1
0(132
~:1(1:33

~3~:134

00:::::~:)

(1~J:::::6

(1(1:::: ?
0~j :;::3
00:39.
~J040

(11:141
0(142
~:11343

~)044

(1(145
~]046

(11347
~::H14:::

0049
~3050

(1121·51
0052
0053
(11354
(113~55
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PAGE 0(102 Et·JGUH :3: 27 m"1 ::;Ut·j., ::: AUG., 1976

EHG - ENGINEERING UNITS (CALCULATED BY ENGUNFROM ADCV VOLTAGES)
ADC V A/D VOLTAGES (UPDATED BY SCAD)
CDACV - D/A VOL.TAGES (UPDATED BY CDAC)

ISAMT MASTER SAMPLING RATE (PACER FREQUENCY, SECS)
ISMUL SUB-RATE SAMPLING TIMES (PERIOD(X)=ISAMT*ISMUL.(X))
IRN RESOURCE NUMBERS
ICIN CONTACT STATUS IN (UPDATED BY SCCS)
ICOUT CONTACT STATUS WORDS UPDATED BY CONTROL PROGRAMMES.
ISCOP(l)- FLAG USED BY WCHDG AND THE CONTROL PROGRAMMES ..
ISCOP(2)- STATUS OF CONTROL PROGRAMMES.(I,E. RUNNING OR OFF)
ISCOP(::::)- STATUS OF AUTO)MANUAL SWITCHES.

SATURATOR FLOW CONTROL DATA
CLOUDY LIQUOR FLOW DATA
REMEL.TCONTROL DATA
CONTROL LIME DATA
GA:~ FLOl,j CotHF.:OL DAHi FOR "A "SATURATOR
GA!:; FLmj CotHF.:OL DATA FOF:'" B" ::;ATUF.:ATOF.:
GAS FLOt,j CotHF.:OL DATA FOF.: "C" SATUF.:ATOF.:
FILTER CYCLE MONITER DATA
SERV08ALANS SCALE MONITOR DATA

~,jA IT ( 1, :;:, IEF.: F.: )
ONE MINUTE WAIT TO SUPPRESS ERROR
START-UP DURING TERMINAL ENABLE.

RNRQ(2, IRN(6), IDUM)
, LOCK RESOURCE NUMBER

SAFCOD(20),CLFLOD(10),REMLTD(10),CLIMED(10),
GASFAD(10),GASFBD(10),GASFCD(10),FILCYD(10),
SERVOD(20),DUMMY(50),
ISt"1t'lT, I :::;t'lUL. (::.:,:) :' I F.:t·J (4~)) , ICI t·,1 (4) :' ICOUT (4) ,
ISCOP(3),IDUMY(50)

CALL StH TF ( 12:)
CALL ENGUS(ADCV,ENG)
DO 15(1 I = 11,21;)

CALL RNRQ(4,IRN(I),IDUM)
. RELEASE OF RESOURCE

CONT I t·JUE
GOTO 1O~)

om

CALL

1
.-,
.::.

~:;AFCOD­

CLFLOD­
F,:EMLTD-­
CLIMED­
GA~3FAD­

GASFBD­
GASFCD­
F' I LC''I'n-­
SER"/OD-

~j056

0057
~~1~j5:::

o(1 ~5 ':)
0(16(1
(1061 ,-.
0(162 C
(106:::: C
0(\ 6 ,::1· C:
~~1065 C
(1~~166 1-'

[H)67 C
0(16::;: C
O~~\69 C
~j070 C
0071 1-'

0072 C:
~::1 ~~\ -;:" ::;;: C:
(n;;74 C·
~j(175 C
0076· r
el~)7? . c:
O~21?C C:
(1079 C
~~10:::0 C
(H)::: 1 C
(1 ~~1 ::;: ;;;~ c:
~)0::::::: C
~)[1:::4 1""

0085 C------------------------------------------~---------------------------.
~::1 ~;:1 ::: 6 C
~)(\::::7 C
[1~~18:::

0~):::9 C
[H) 90 C
(1091
[H~192 C:
~)09::::

0094
(H)9~3

~)(1':::46

0(197 C
0~;;9:::

~:::1(19 '9
(11C.~10

** NO WARNINGS ** NO ERRORS ** PROGRAM = 00054

.-~
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/

C
c****************************************************************~.*****

C*******f**************'*~'***********************************~,**~,*~,*****
C THIS SUBROUTINE CALCULATES THE ENGINEERING UNITS OF THE FACTORY
C DATA STORED AS VOLTS IN THE ADCV ARRAY.
c:

DIMENSION ADCV(64),ENG(64)
If;': E: P ::::: t.::; ~Z1

c:
C ****TEMPERATURES****

DO ::::ij~:1 'I::::: 11. , 1. 8
Et·iG( I ):::::f,DC:',/( I )ili'1~i.

..J::::: I ,,'. 1(1
IF«AnCV(I).LT.0.).OR.(ADCV(I).GT.10.»CALL ERMES(J,

:I. IFIX(:l.00.*ADCV(I»,IREP)
C INSTRUMENT FAILURE CHECK

:~:: ~::I iJ CCl t·i TI t'i UE
C *~** SPECIFIC TEMPERATURE RANGE CHECK~OUT ****

IF«ENG(1S).LT.60.)iOR.(ENG(15).GT.90.»CALL ERMES(5,
1. IFI::{(ENG(15»,II:;':E:P)

IF«ENG(15).LT.60, ).OR.(ENG(15).GT.90. »ENG(15) ::::: 80.
C DEFAULT VALUE OF SATURATOR TEMP. FOR REPORTING
CC IF( (ENG( 1.:3)" L"I", ,?'~:::i,). OF.: " (ENG( 1::;:). GT." ':::10.) )CALL EF.:i"1ES(::;:,
CC :I. IF 1::·1, (Et·iG( :1.::;:»:1 I~::EP)

C:
. C **** SPECIFIC GRAVITY AT POLISHING BRIKER ****

SGPB=1.23+0.013*ADCV(3)
IF«SGPB.GT.l.2449),AND.(SGPB.LT.l,,:J889» GOTO :300

C . MINIMUM SG SET AT 60 DEG. BRIX AND 90 DEG. CELSIUS.
C MAXIMUM se; SET AT 80 DEG. BRIX AND 60 DEG. CELSIUS.

CALL ERMES(9,IFIX(1.00,*SGPB),IREP)
:::;GPB ::::: 1. ::::~:i

C DEFAULT VALUE AT 68 DEG, BRIX AND 80 DEG" CELSIUS,
C
C ****** TANK LEVELS *****

300 IF«ADCV(1),LT,0~).OR,(ADCV(1).GT.1.0.»CALl ERMfS(1.1l
1 IFIX(1.0(1.*ADCV(I»,IREP)

IF(AIIC',,.'( 1), LT .I~:I" ) I,DC'...' ( 1):::::(1"
IF (ADC',,.' ( 1). GT" 1. 0, ) FIDel",1 ( 1)=1f~l.

ENG(1):::::0, 3744*ADCV(1)/SGPB
ENG(1)=1.00,,*ENG(1)/Z,,261

C LEVEL AS % FULL
IF ( (ADC',,.' (;~:) "l... T" ~], ) "or::, (ADC'."I (2:)" CT. ll:~" ) ) CfiLI.... Efn"IE:::; ( 1:2,

IFIX(100.*ADCV(2»,IREP)
IF(ADCV(2).LT,,0.)ADCV(2):::::0.
IF(ADCV(2),GT,,10,,)ADCV(2):::::10.
ENG(2)=0,5573*ADCV(2)/SGPB
ENG(2)=100.*ENG(2)/:3.353

C LEVEL AS % FULL
IF ( (ADC',,.' (5) . LT" 0" ) " ()F.:. (ADCI",I (:5) , C;T . 1. Cl. ) ) C:HL.L E~::I"'IES ( j,.:::::,

1 IFIX(100.fADCV(S»,IREP)
IF(ADCV(S)"LT.O")ADCV(S)=0,,
IF(ADC'",'(5). GT'.1.0" )nDC'",'(5):::::1iJ"

SUBROUTINE ENGUS(ADCV,ENG),0:J01?8BDR :l.601?8BDR 2:30:l.?8BDR
c:

0101
[11. ~::I ::::
o1~:i:::::

ijll~1'1o

~~ :I. 0 ~::i

~:11 ~~16

(11 [17
~) 10::::
~Z11 ij ';::t

~) 11 0
0111
ij112::
ij 11 :;::
~~:I. :1,4
~:11 :I. ~:i

(1116
I) 1.17
ij 11 I:::
(111 9
~H 2~:1

ij 1:21
~~ 1~~ ~::~

~j 1;;~~ :::::
ij 1:::4
ij 125
[1L~6

01 :::?
12112::::
01::::9
01::::0
(11:::: :1,

~~ 1:J ::::
(11 ::::3
i~ll ::::: 4
[11 ::::!:i
~Z1:1. :::: 6
~:11 :::::,?'
[11 :::::::::
~) 1:::::9
ij 14[1
[1141.
~Z1142

~::1143

~Z1144

0145
~j 14 ~::;

[114';:"
ij 14::::

'[1149
~Z11 ~:i 0
[1151
~) 1~:i2

~Zl1 :5:3
[11~:j4

[11 ~5 ::)
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ERI"1E::;';: 19,

EF.:t'1ES>:: 1(:,

****** BRIXES ****

FLO~~ IN CU.M/~HR FOR A&B SATS~

IF(I,EQ.26)A=2718.3
FLON IN CU.M/HR FOR C SAT

ARG = CADCVCI)-2.)/8.
IF(ARG.LE,0.)GOTO 305

****** 130K FEED-BACK SIGNALS *****
Et·lG >:: 7) =>:: ADC'",' (7) -1. ::. ....·4.
IF«ADCV(7).LT.l.),OR.(ADCV(7').GT,5. »CAlL

1 I FI ::.,: >:: 1~)(J. *ADC'",' >:: i") ) , rPEP)
ENG(S)=(ADCV>::8)-1.)/4.
IF«ADCV(8).LT. 1.).OR. (ADCV>::8).GT.5. »CALL

1 IFIX(100,*ADCV(8»,IREP)

ENG(5)=0.4645*ADCVe5)/SGP8
ENG(S)=100.*ENG(S)/3.871

I.... E',... E:L 11:;;; ~.: FULL
IF(CADCV(27),LT.2.),OR.(ADCV(27),GT.10.»CALL

:I. IFIX(100.*ADCV(27»,IREP)· .
IF(ADCV(2i).LT.2.)ADCV(27)~2.
IF(ADCV(27).GT. 1,0. )ADCV(27)=10,
ENG(27)=0n4047*(ADCV(27)-2n)jSGPB
ENG(27)=100,*ENG(27)/2.165

LEVEL AS ~.: FULL
IF ( (ADC','" (2:::) . LT, 2. ) •OR. (ADC',... (2:::) , I~T. 10. ) ) CALL ERt'1E::; ( 15,

1 IFIX(100.*ADCV(2S»,IREP)
IF(ADCV(28)uLTn2n'ADCV(28) = 2.0
IF(ADCV(28)nGTh 10u)ADCV(28) = 10"·
ENG(28) = 0"2903*(ADCV(28)-2.)~~1.276

ENG(28)=100.*ENG(28)/1.82 .
I...E\"EL t'1S ~~ FULL

TEI·'·IP=EI··IG>:: 1!:i)
ENG(3)=100.*(SGP8-:l..l+.0022*TEMP)/(.2695*SGP8+~00229*TEMP)

THIS FORMULA IS INCORRECT.
IF«ENG(3).LT.60.).OR.(ENG(3).GT.80~»CALL ERMES(9,

:I. IFI i~: >:: :I. ~)O. *EHG (:;:) ) , IREI=')
ENG(10) = 63, + 7./4,*(ADCV(10)-:l..)
IF«ENG(10).LT.63,).OR.(ENG(10).GT.70.»CALL ERMES(10,

1 IFIX(100.*ENG(10»,IREP)

~~1156

~'H57

C:C
[11:::2 CC
[11 ::::3 I~:

C

[il?:::
~~11 7"3
~:11, ::: (;j
~~1UH

~j 1:::5
[11 :::::6
[11 ::: '?
(11 ::;::::
~~11 :::i 9
~~11 9 ~~1

~)1'~1 C:
0192 C ****** FLOW*****
0193 IF(ADCY(6).GT,0.)GOT0301
0194 ENG(6) = O.
0195 GOTO 302
0196 '301 ENG(6)=11,76*SQRT(ADCV(6)/10.)
0197 C. REMELT FLOW RATE IN CU.M/HR
0198 C IF«ADCVC6),lT.2. ).OR, CADCV(6).GT.10. »CALl
0199 C 1 IFIXC100.*(CADCVC6)-2.)/8.»,IREP)
0200 302 ENG(9) = (ADCVC9)-0.836)/0.937
0201 C LIME WHEEL SPEED C0-10 RPM)
0202 IF C(ADCV(9).LT,1.),OR.(ADCV(9).GT.10.»CALL
\:12(~1::: :I. I FI :,.,: CEt·IG C9) ) ~I I r;':EP)
0204 DO 310 1=24,26
0205 A = 5436.6
~)206 C
02~~i7

02()::: C
02(J')
(1210

c:
C1159 CC
~)160 CC
~) 161
0162
1211(:;3
(J 164
0165 C
(1166 CC
(1167 CC
[116:::
0169
0170
~~11 71
(1172 C
017':::: C
(1 J.74 C
01,7~:i

~) 17'6
01?7 C



APPENDIX B.3 FORTRAN PROGRAMS PAGE B3.13

PAGE ~X106 EHGU::: 8: 27 At'1 :::Ut·j., E: AUG., 1976

0211 EHG(I) = A*SQRT(ARG)
0212 305 IF(ADCV(I).LE.2.)CALL ERMES(I-3,IFIX(ADCV(I»,IREP)
0213 IF(ADCV(I).GE.10.)CALL ERMES(I-3,IFIX(ADCV(I»,IREP)
0214 310 CONTINUE . .
0215 ENG(23) = (ADCV(23)-2~)/8.*153N5

0216 r MAGFLOW METER, CU.M./H
0217 IF«ADCV(23).LT.2.).OR.(ADCV(23).GT.10.»CALL ERMES(17,
0218 1 IFIX(100.*(ADCV(23)-2.)/8.),IREP)
£1219
£122~J

£1221
0222
[12~:: :;:
'7, ,., ,., ,1
~:.r .::.•::. 1"1'

[1 ~:: ;;:: ~5
~~~2~~6

~Z1227

~J228

£1229
~Z12 :;: ~Z1

~Z12 :;: 1
~j2::::c:

~32:3:;:

£1234
~~12:35

(12::::6
~Z123?

~Z1239

024~J

~J241

~Z124Z~

~:::12 4:;:

CC
CC

cc
cc
CC
CC
C:
C:
C

CC

***** PH'::; *****
PH SETPOINT(A&B)=9.2 : MAX=9.7 : MIN=9.0 AT 20 DEG. C
PH SETPOINT(C) =8.2 : MAX=8.7 : MIN=8.0 AT 20 DEG. C
FACTORY VALUES =( LAB VALUES - 0.4) ASSUMED HERE.

ENG(20)=7.+(ADCV(20)-2. )*.625
IF«ENG(20).LT.8.6).OR.(ENG(20).GT. 9.3»CALL ERMES(25,

1 IFH( 1~ZH3. *Et,jG(2£O), IF.:EP)
ENG(21)=7g+(ADCV(21)-2.)*.625
IF«ENG(21).LT.8.6).OR.(ENG(21).GT.9.3»CALL ERMES(26,

1 IFIX(100.*ENG(21»,IREP)
ENG(22)=7.+(ADCV(22)-2.)*.625
IF«ENG(22).LT.7.8).OR.(ENG(22).GT.8.6»CALL ERMES(27,

1 IFIX(100.iENG(22»,IREP)

*i*** GAS C02 CONCENTRATION *****

ENG(30) = (ADCV(30)-2. )*2.5
IF(ENG(30).LT.8.0)CALL ERMES(28,IFIX(100.*ENG(30»,IREP)
IF(E~G(30).LT.10.)CALL ERMES(29,IFIX(100.*ENG(30»,IREP)
F.:ETUF.:N
Et'lD.

FTN4 COMPILER: HP92060-16092 REV. 1726

** NO WARNINGS ** NO ERRORS ** PROGRAM = 01365
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::::AFCO
CLFLO
PEt'lL T
Cl..It'1E
GASFA'
GA::;FB
GASFC

CONTROL PROGRAM NAME

4

7
6

c:-
'-'

BIT

1

------ COMMON ------

ENGINEERING UNITS (CALCULATED BY ENGUN FROM ADCV VOLTAGES)
- A/D VOLTAGES (UPDATED BY SCAB)

THIS PROGRAM CHECKS THE OPERATION OF ALL CONTROL PROGRAMS.
IF ANY OF THEM STOP RUNNING IT CAUSES THE CORRESPONDING
COt·jTPOL LOOP' TO BE: S~'1 ITCHED TO t'1ANUAL. I T ALSO CHECKS FOP
COMPUTER FAILURE AND USES THE WATCH-DOG TIMER. IF PACIR
STOPS RUNNING, ALL CONTROL LOOPS APE SWITCHED TO MANUAL USING
THE MASTER SWITCH.

EACH BIT IN THE WORDS ISCOPl AND ISCOP2 SIGNIFIES THE STATUS
OF A PPOGPAM. WHEN A CONTROL PROGRAM RUNS IT'SETS A BIT ALLO­
CATED TO IT, TO THE VALUE 1. WCHDG CHECKS TO SEE THAT THE BITS IN
ISCOPl HAVE BEEN SET TO 1. IF SO ,IT SETS THEM BACK TO ZERO.
IF NOT~ A COUNTER IS USED TO TIME OUT THAT PROGRAM BY COUNTING MAX
EF.:ROR Cot·Hi IT Iot·jS. IFIT" T!t'1ES OUT" (oH THOiJT BE ING F.:E:::;ET TO 1, THE
CONTROL LOOP IS SWITCHED TO MANUAL J A MESSAGE IS SENT TO THE
OPERATOR AND THE CORRESPONDING BIT IN ISCOP2 IS SET TO ZERO.
(THIS IS USED AS A FLAG IN PROGRAM CLOOP)

'WCHDG - WATCH-DOG.

4

COMMON ENG(64),ADCV(64),CDACV(24),
1, SAFCOD(20),CLFlOD(10),REMl..TD(10),Cl..IMED(10),

GASFAD(10),GASFBD(10),GASFCD(10),FIl..CYD(10),
SERVOD(20),DUMMY(50),
ISAt"IT, ISt'1Ul.. (32:;', IRt·j (4~~1:;', ICI t·j (4:;', I COUT (4:;',
ISCOP(3),IDUMY(50)

·2
::::

Et·jG
FlDC',,..

C

C
,C

C:
C MESSAGES:
C -1 = NOT READING ZERO FROM LAM GRADER.
C ~2 - NOT READING 32767 FROM LAM GRADER.
C 3 - SAFCO HAS GONE OFF-LINE.
C 4 = SAFCO IS NOW ON-LINE.
C 5 = CLFLO HAS GONE OFF-LINE.
C 6 - CLFLO IS NOW ON-LINE~

C ·7 - REMLT HAS GONE OFF-LINE
C 8 = REMLT IS NOW ON-LINE.
C-----------------------------------------------------------------------
C
C
C

0001 FTtH, L, T
0002 PROGRAM WCHDG(2,20),091177BDR 170178BDR
0003 C*********************************~*************************************
0(104 C
0(1(15 C
0~~~06 C
(H307 r-
~300:::: C
(1~~~:19 C
C~~Jl~3 C
0011
0012 C
(1~11,3 c:
~JC~14 C
~3~315 C
(H~116 C
0(11, 7 C
(101::: C:
~)O 19 C
(1132(1 C
~Jt121 C:
0022 C
0~32:::: C
~~1~324 C
C~ ~:1 c~ ~5 C:
(1026 C
[H)27 C
(1 ~~1 c~ :;:: C
~J~~129 C
O(r:::o C
~3 ~:1:;: 1
~~1 (1 :::: ;~~~

00::::3
0(134
(10:35
0~336

0(137
~~1~33::::

0039
0~1 '::J.~j

~~H341

[H)42
0043
O~~144 '
~)(145

[11:'::146
0047
0(14:::::
0049
[11:'::150
0(151
IZ1 (1~) ~::

~305:::: C
~3(154 C
~~11:155 C
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PAGE 00(12 ~,1CHDG 9: 1::: At'1 t'1Ot·~" 2:0 FEE:" .197-":::

C
C--------------------~-~------------------------~----- __---_------- _
~ 3, !R!GGER WATCH-DOG TIMER BY WRITING TO AND READING FROM THE LAM
l GRHDER. .

C
C------------------------------·------------------- ~ ~~------- .
C 1. INITILISATION.
C

SATURATQF.:
::; AT UF.:AT 0 F.:
:::ATUF.:ATOR

SATURATOR FLOW CONTROL DATA
CLOUDY LIQUOR FLOW DATA
REMELT CONTROL DATA
CONTROL LIME DATA
GAS FLO~'1 COtHF.:OL DATA FOR "A"
GAS FLm'1 CotHF.:OL DRTA FOF.: "B"
GAS FLO~'1 CONTROL DATA FOR "C"
FILTER CYCLE MONITER DATA
SERVOBALANS SCALE MONITOR DATA

INTEGER MFLAG(16)

NUMBER OF ACTIVE CONTROL LOOPS
MAXNO :::: 2*(ISMUl..(2)*ISMUL(6)/ISMUL(4» .

2 CYCLES OF THE CONTROL PROGRAMS RELATIVE TO WCHDG.

CALL ::aHTF( 11)

l..U :::: 1
I::;COP( 1):::: I2i
ISCOP (2:):::: 1:::1

'··iLOOP::; :::: ';:"

ISAMT - MASTER SAMPLING RATE (PACER FREQUENCY, SECS)
ISMUL SUB-RATE SAMPLING TIMES (PERIOD(X)::::ISAMT*ISMUL(X»
IRNRESOURCE NUMBERS
ICIN CONTACT STATUS IN (UPDATED BY SCCS)
ICOUT CONTACT STATUS WORDS UPDATED BY CONTROL PROGRAMMES,
ISCOP(1)- FLAG USED BY WCHDG AND THE CONTROL PROGRAMMES,
ISCOP(2)- STATUS OF CONTROL PROGRAMMES,(I,E. RUNNING OR OFF)
ISCOP(:3)- STATUS OF AUTO/MANUAL SWITCHES,

::;AFCOD..:..
CLFLOD-

.REt'1L TD-
CL I t'1ED­
GASFAD­
GASFBD­
GA::;FCD-­
FILC\'D­
:3ERl",'OD-··

DO 1(1 I:::: 1, 16
t'1FLAG ( I) :::: t'1f1::::t·iO

1(1 COt'~T I t'~UE

CALL WAIT(1,3,IERR)
WAIT ONE MINUTE FOR CONTROL PROGRAMS TO
INITIALISE ISCOP.

C

C CDACV D/A VOLTAGES (UPDATED BY CDAC)
C
C
C
C
C
C
C
C
C
c::
c::
c::
C
C
C
C
C
C
C
C
C-------------------~----------------------------------------- _
c::
c::

C
C
CC-------------------------------- _
C 2. WAIT ON RESOURCE NUMBER 3, CLEARED BY PACIR.
c::

(11;:;1 ~:::i6

iJ (1 ~5 '?'
~j 05 :::
~~1059

~j060

0(161
0(162
0063
~~1064

(1~~165

o~~16 f':;:
(1 ~~1 f5?
0(16:::
~)(16',

(107iJ
CH)? 1
(1(172
(1(17:::
~~1(174

~3(f?5

(1(176
(1~3??

(1ij-;:"::::
~)~~?9

~~1 (1 ::: iJ
(10::: 1
~Z1~3:3 2
(1£1:::::::
~~1~) ::: 4
~)(1:::5

(1 (1 ::: 6 r'
(H3:::7
~:1 ~3 ::::::
O~)::: ')
(11,190
o~3 '::~ J.
0(192
(1~~19:3 C
(1(1',4
(H395
(H~196

(H)':;l7
~)01~:::

~30';.t'::~

~)1(10

(1101
~)UJ2

(11 ~:1 ::;:
(1 UN
(1 1~35 C
la1~36

~~11(17

(11~~1:::

(11(1',
~~11 U:1
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PFIGE O~:::UJ:::: ~,jCHDG '3: 1I:: At'l t'10H., 2(1 FEE:., 19'1':::::

C
c----------------------------------------------------------------------
C 7. RESETABLE COUNT UP BEFORE SWITCH OVER TO MANUAL.
C

C
f-----------------------------------------------------------------------
E ::::. RE:::;ET COtHF.:OL.. F'POGPrit'1 ~'WPD "I ::;COP" ,
C

c:
(:-----------------------------------------------------------------------
C 6. CHANGE THE CONTACT OUTPUT STATUS AND SET FLAG IN ISCOP(2).
C

1
_,
-'

(:-------------------~---------------------~-----------------------------
C 4. CHECK ON BITS SET BY THE CONTROL LOOPS.
C

- (MFlAG(J) + 1)*(1-1)
INHIBIT COUNT UP IF PROGRAM IS RUNNING

(1 (I~)~) 1~1 0B
CAMAC(16,LMADR,ID,IDUM)

HPITE ZERO
CAMAC(O,LMADR,IDATA,IDUM)

READ BACK
IF(IDATA.NE.O)CALL MESAG(-l,O)

t'lFLAG (J)

ID =::

CALL

CALL

ID = 177777E:
CALL CAMAC(16,LMADP,ID,IDUM)

~~F.: ITE 32761'
CALL CAMAC(O,LMADR,IDATA,IDUM)

REFID DFICI<
IF(IDATA.NE.177777B)CALL MESAG(-2,O)

MAXNO = 2*(ISMUL(2)*ISMUL(6)/ISMUL(4»
DO 200 J=l,NLOOPS

I = JEilT(J,ISCOP(l»
NOTE:- I = 1 WHEN PPOGRAM RUNNING

IF(MFLAG(J).GT.100) MFLAG(J) = 100
PPOTECTION WHEN PROGPAMS NOT RUNNING.

ICNT = MFLRG(J) - MAXNO

OUTPUT MESSAGE TO TERMINAL.

IF(ICNT.LT.0)GOTO 120
IF«ICNT.GT.O).AND.(I.EQ.0»GOTO 120

JMES=2*J + 1 + I
K = J-l
CALL MESAG(JMES,K)

CALL ~,jCOUT (f::: ~I I)
. 1=1 CLOSE CONTACT, 1=0 OPEN CONTACT

CALL SET8(J,ISCOP(2),I)

COt'~T I t'~UE

I ::;;COP <1) =(~I

GOTO 10(1

2(10

C

C

C
C
C ~5.

C

c

(11.22
~31 ~:: :::: C

(1111
(j 1L~
OlD
~3114

011 :;
(1116 C
011.'1'
~) 11:::: C
0119
(11:2(1
~:1121

~J 1:;::::
0139
Cl 14~::1

~) 141
0142
0143
~:1144

~)145

0146
0147
014::::
t1149
~3150

~:1151,

~)1~52

~3153

0154
01:5:;
0156
0157
t11::;::::: C
0159
~316(j

~3161

0162
016::::
0164
~) 165

~)L~4

(1125
0126
0127
~312:::

(H29
. ~) 1:3 ~:1

01::::1
(11::::~: C
~:11 ::;: :::1

~31::':4 C
~) 1::;: ~5
0136 C
(11 ::::7
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PAGE 0004 WCHDG 9:18 AM MON., 20 FEB., 1978

0166 END

FTN4 COMPILERi HP92060-16092 REV. 1726

** NO WARNINGS ** NO ERRORS ** PROGRAM - 00293 COMMON 00758
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PAGE 0001 FHi. 9: 42 At'1 t"l0 t'j ", ;;::0 FEE:., 1'37:::

------COMMON ------

-ENGINEERING UNITS (CALCULATED BY ENGUN FROM ADCV VOLTAGES)
A/D VOLTAG~S (UPDATED BY SCAD)
D/A VOl...TAGES (UPDATED BY CDAt)

REAL SERV01!18ERV02~SERV03,SERV049S~RV05

INTEGER CHECK(3)
DOUBLE PRECISION PROD1,PROD2,PROD,SHIF,HOURLY,HOUR
DIMENSION TMASS(2,90),IT(S),IYEAR(I),SHIFT(3)

SERVOD(I) - PROD1 - CUMULATIVE TONS MELT ON SCALE 1.
SERVOD(2) = PROD2 = CUMULATIVE TONS MELT ON SCALE 2.
SERVOD(3) = PROD ~ CUMULATIVE TOTAL TONS MELT.
SERVOD(4) = HOUR = AVERAGE MELT RATE OVER THE IMMEDIATE PAST HOUR
SERVOD(S) - BLANK
SERVOD(6) - TMASS0= SCALE DUMP IN TONS.
SERVOD(7) - IMOTl = NUMBER OF PULSES FROM SCALE 1.
SERVOD(S) - IMOT2 = NUMBER OF PULSES FROM SCALE 2.
SERVOD(9) - DELT = TIME SINCE LAST DUMP (HOURS).
SERVOD(10)= SHIFT(I)= SHIFT THROUGHPUT RATE FOR 22H00-6H00.
SERVOD(1.1)= SHIFT(2)= SHIFT THROUGHPUT RATE FOR 6H00-14H00"
SERVOD(12)= SHIFT(3)= SHIFT THROUGHPUT RATE FOR 14H00-22H00.
SERVOD(13 TO 20)= HOURLY MELT RATES ON-THE-HQUR FOR THE LAST 8

HOURS. (SERVOD(13)=MOST RECENT VALUE.)

READS THE SERVO-BALANCE REGISTER AND STORES RAW FEED
::::TATISTICS"
DEF I t'j I TI Ot,j~;;;:

TOLD,TNEW,DELT ARE IN HOURS.
TMASS(l,K)=MASS OF K-TH TIP AGO(TONNES).
TMASS(2,K)=HOURS SINCE K-TH TIP AGO OCCURRED.
PROD1=TONNES MELT ACCUMULATED VIA 1ST SERVO-BALANCE.
PROD2=TONNES MELT ACCUMULATED VIA 2ND SERVO-BALANCE.
PROD=TOTAL TONNES MELT FOR THIS PRODUCTION RUN.
SHIFT(I)=HOURLYAVERAGE MELT RATE(TONNES) FOR LAST SHIFT(I)T.
HOUR=TONNES MELT PER HOUR FOR LAST HOUR. '
HOURLY=TONS PER HOUR ON-THE-HOUR.(AN ARRAY CONTAINING THE,

LAST 8 HOURS VALUES).,

4
£:'
,_I

COMMON ENG(64),ADCV(64),CDACV(24),
1 SAFCOD(20),CLFLOD(10),REMLTD(10),CLIMED(10),
2 GASFAD(10),GASFBD(10),GASFCD(10),FILCYD(10),
3 SERVOD(20),Dl,JMMY(50),

1~:;At'1T, I~:;;t'1Ul...<3~::), IF;:H(40) ,'ICll",1(4) ~I lCOUT(4),
ISCOP(3),IDUMY<50)

SAFCOD- SATURATOR FLOW CONTROL DATA
CLFLOD- CLOUDY LIQUOR FLOW DATA
REMLTD- REMELT CONTROL DATA

Et,jG
ADCV
CIt ~:I C'",'

C:

O(~~J 1 FTi"j4, L, T
0002 ' PROGRAM SERVO(2,30),1912778DR 0501788DR 310178BDR
0003 C*******************************¥***************************************
~]~](14 C
0~::105 C:
0i.306 C:
~]0(~? C
(1(10::: C
00(19 C,
~:H] 1 ~:1 C
(1~::111 C:
~:H:~ 1;:;~ C:
(H]13 C
0~314 C
0015 C
~]016 C
~:1~317 C
(H,31 ::: C
~]019 C
(1~:12(1 C
~:1~321 r
00,::~~ C

'0023 C
(H324 C
(H325 C
(H326 C
(1027 C
~:10 ;~~ ::;: C
0~:129 C
~3030 C
~]0:::: 1 C
(1~:132 C
0033 C***********~**********************~********~t**************************
oel34
0(1:3::
0(1::::6
0~337

~303:::

(1(139 C
(1''::140 C
(H)41 C
(11;:142
(1(14::;:
~]044

(H]45
~3'~146
~3(14 7
~3C14::: C
(1049 C
~:H350 C
la~)~) 1. C:
~:1l.::1 :: 2 . C:
0(153 C
0054 C
(1055 C
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C:
C----------~--------------------------------------- __-~ _
C 2, MAIN LOOP STARTS,
C:

C:C------------------------------- ~ _
C 3, SENSE SWITCH STATUS,
c:

C:
c:
C------------------------------------------------------------------_--__
C 1, INITIALISATION,
c:

SFl TUf': AT 0 ~::

:::;ATUfi::ATOfi::
SATUfi::t'1TOR1I C: 1I

lIBII

CONT~~L LIME DATA
GAS FLOW CONTROL. DATA FOR
GAS FLOW CONTROL. DATA FOR
GAS FLOW CONTROL DATA FOR
FILTER CYCLE MONITER DATA
SERVOBALHNS SCALE MONITOR

EQUIVALENCE(SERVOD(l),SERV01)
EQUIVALENCE(SERVOD(2),SERV02)
EQUIVALENCE(SERVOD(3),SERV03)
E;:',:TEf<:t·lAL.. IFB~:K
DATA CHECK/2HCH,2HEC,lHKI

::;H I F::::(1 .
IFLAG=(1
IFLAG2=[1
CALL DECLR(IREGO,1,16,0)
CAL.L DECLR( I~::EC;l, 1,16, l)
CALL EXEC(ll,IT,IYEAR)
TOLD=IT(4)+(IT(3)+IT(2)/60.)/60.
nlE~,j =TOLD
CALL CAMAC(9,IREGO,IDUM,1Q)
CALL CAMAC(9,IREG1JIDUM,IQ)

CI.... EI1f<: f<:EG I ::;TEf<:::;,
ICOUT(3) ::::. ICIN(3)
1COUT(4) :::: ICIN(4)

CALL ::3~,jITF( 1[1)

t·iUI·'18 :::: I C1t··I (::;::)
ISRVN1=IBIT(16,NUMB)

ISAMT - MASTER SAMPLING RATE (PACER FREQUENCY, SECS)
ISMUL SUB-RATE SAMPLING TIMES (PERIOD(X)=ISAMT*ISMUL(X»
IRN - RESOURCE NUMBERS . .
ICIN - CONTACT STATUS IN (UPDATED BY SCCS)
ICOUT CONTACT STATUS WORDS' UPDATED BY CONTROL PROGRAMMES.
ISCOP(1)- FLAG USED BY WCHDG AND THE CONTROL. PROGRAMMES,
ISCOP(2)- STATUS OF CONTROL PROGRAMMES,(I,E. RUNNING OR C~F)

ISCOP(3)- STATUS OF AUTO/MANUAL SWITCHES.

C:L I t'1ED-'
GH::;:FfID-·
GA::;FBD­
GHSFCD­
FIL.C''I'D­
:::;EPVOD·_·

lOO CALL RNRQ(2,IRN(8),IDUM)
RESOURCE NUMBER CLEARED BY SCCS

C:
C:
C:
C
C:
C:
C:
C:
C:
C:
C
C
C:
C:
C:
c:
C--------------------------------------------------------~--------------
C
C

~~1 ~~\ ~5 6
~Z1 ~Z15?

~~1 ~:1 ~::i :::::
i30!:i9
~Z1 ~3 f':;' 0
(106l
~3tH::2

la~Z16:3

(1(164
~Z1 ~Z16 ~:)

~Z1(166

~~1~36?

i~\ ~Z16 8
(1069
~3~Z1 i" ~J

(\(1;:' 1
~3 ~Z1? Z~

~Z1 ~Z1 ? :::::
~~H374

~~~Z175

~Z1(1;:'6

(1~3?1'

(10?::::
~Z1(1?9

~3(1:::[\

~) ~~1 ::;: 1
~)(1:::~~

0(1::;::;::
~Z1 ~Z1 :::: 4
(1 ~~1::: ~:i

(1~3::;:6

~)(1::;:7

~Z1' ~!1 ::: ::::
~3~~1:::9

[1 ~3 ,~" [1
[1 ~Z1 '::~ 1
~)~~1'n

~3(19::::

~3(1'::~ 4
~)095 C:
0~Z1'~ f5
(H39?
~Z1 ~Z19 ::::
0~~199

010~~1

~Z11i31

~Z11 ~:1 ::~

01 (I::;:: C:
01 (14
[1 H15
(11(16
~) 101'
~Z11 \~ :::
(1109
011(1
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PAGE 0(103 ~::EF.:',/O 9: 42 At'1 t'l0 t·1 " 2~3 FEE:., 197:::;:

C
c----~------------------------------------------------------------~-----
C 4. TEST FOR. CONTACT CLOSURE & IGNOR CONTACT OPENING,
C

f<:gFID I t·jG" ")

- Tt:1A~:;SI~1
'" It'1()Tl
= It'10'f2
= DEI....T

READ AND CLEAR REGISTER '0' ,

PERD AND CLEAR REGISTER

~::ERVOD (9)

t·1Ut'1E: = ICI t·j <4)
ISRVN2=IE:IT<1,NUM8)
t··IUt'1E: = ICOUT <:::.:)
ISRV01=IE:IT<16,NUMB)
t·WNE: = ICOUT< 4)
ISRV02=IE:IT<1,NUN8)

SEF.:I'lOD (6)
~:;E~~"lOD(?)
~3EF.~\"OD (:::)

IF(IF8RK(IDUN»305,310
~'.IF.: ITE (7, 1O(Hj)
PEAD (7, ~,) PF.:OD~:::

CALL WRIT(10,2,IERP)
CALL CANAC(2,IREG1,INOT2,IQ)
TNASS0= INOT2/1000.
PROD2=PROD2+TMASS0
SEF.:',/02 = PROD~:::

TEMPORARY USE FOR DEBUGGING:-

IF<ISRV01-ISRVN1)200,150,150
150 IF<ISRV02-ISRVN2)300,900,900

ACT IF ISRVN CHANGES FROM 0 TO 1

400 PROD = SERV03
PROD = PROD + TNASS0
SEF.:',/O:3 = PROD

310

::::0~:1

305

200IF<IFE:RK<IDUN»205,210
205 WRITE<7,1(00)

1~j~J~~1 FOF::I"1AT <"EtffEP 'fHE t··IE~,j ~:::CALE

READ<?, *)F'f<:OD1
CALL WAIT(10,2,IERR)
CALL CANAC(2,IPEG0,INOT1,IQ)
TNASS0= INOT1/I0GO.·
PROD1=PROD1+TNASS0
SEP',/O 1 = F'f<:OD 1
GOTO 4~::1[1

C

c
C
C .
r---------------------------------------------~----~-~------------------E6. RECORD THE DUMP INTERVAL. .

C
C
C---------------------~-----------------------------------------------
C 5. READ AND CLEAR REGISTERS,
C,-..
-',-.
-'

~3111

0112
(1113
0114
[1115
~311 6
0117
011 ::::
0119
~:112~:1

~3121

[11 ;~~;?

[1123
0124
0125
0126
~31;;~?

~312:::

0129
0130
[1131
[11 :;:2
01::::3
[11 34
~3135

01::':6
[1137
(11 :::::::
0139
[114(1 C
~3141 C
[1142 C
0143
(1144
o14~)

~3146

0147
~314:::

0149
~31~50

~3151

0152
0153
(115,'+
015!5 C
o1~56 C
(1157 C
~:::115:::

0159
0160
~3161

~J162

(1163
~:1164

0165
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C
r--------------------------~-------------------------------------------E8~ CHECK WHETHER· -A NE~ SHI~T HAS COMM~NCED.· ' . . '
r'

C
c-------------------~-------------------~-------~---~-----~----------~--

C 7" UPDATE THE TIP RECORDa'
c:

c
C----------------------------------------------~------------------------
C 9. CALCULATE AND STORE MEAN TONNES/HOUR.
C
c 9.1 AVERAGE MELT RATE OVER LAST SHIFT OR PART THEREOF:­
C

HOURS, EVERY HOUR

IFC(TOLD.LT.6.).AND.(TNEW.GE.6.)IFLAG=1
IFC(TOLD.LT.14.).AND.(TNEW.GE~14.»IFLAG=2
IF(CTOLD.LT.22.).AND.CT~EW.GE.22.»IFLAG=3

IFCIFLAG.LT.1)GOTO 600

IFCSHFT.LE.0.)GOTO 600
SHIFT(IFLAG) = SHIF/SHFT
SERVOD(9+IFLAG) = SHIFTCIFLAG)
SHIF = 0. .
~:;HFT = (1.

UPDATING OF HOURLY MELT RATES OVER THE LAST 8
ot·j- THE-HOUR:

IFLAG ::: (1

DO 6UZi 1=1,24
IF«TOLD,LT.I).AND.(TNEW.GE.I»IFLAG2 = 1
IF(CTOLD.GT.23).AND.(TNEW.LT.l))IFLAG2=1

COtHItmE .
IF(IFLAG2.NE.1)GOTO 630
DO 620 K=20,14,-1

...1 = K--1
SERVOD(K) = SERVODCJ)

CotHI~WE

:::;EF.:V05= HOURL'r'
SERVOD(13) = SERV05

DO 5~)(1 1='3(1,2, --1
. .J= 1-1

TMASSC1,I)=TMASSC1,J)
TMASSC2,I)=TMASSCZ,J)+DELT

COtHINUE
TMASSC1,1)=TMASSO
H1ASS(2, 1)::::(1.

.TOLD = Tt~E~,j

CALL EXECC11,IT,IYEAR)
TNEW=IT(4)+CITC3)tITC2)/60.)/60.
DEL..T=Tt·jE~~-TOLn .
IF(DELT.LT.(1)DELT=DELT+24.
SERVOD(9) = DELT' .
CALL EXECC~4,CHECK)

. 62(1

~) 1::::4 .
~) 1:::5
~:::11 :;::6
[11 :::?
01 ::::::
01:3',
(11 '30
(1191
(11 ',2
~) 19::::
0194
0195
(1196
~) 197
[11 1318
~:1199

(12 ~:1 ~:1

~:12(1 J.
~:12~)2

~)20::::

~)204

~:12(15 C
~)2~)6 C
02~)7 C
~)2(1::: C
~)2(19

~Zi21~~1

~3211

0212
~)213

~3214

(121 ~i

(1216
~J21 ?
(121 :::
(1219
0220

01661-'
(11671-'
~316:3

~) 16',
~;'\1,?(1

~J 1? 1
~) 172
~:::11 7::::
~) 174
~:1175

0176
~:1177

~:::11 ?:::
(1179
o1:::~3

~) 181
~31:32

~:::11 ::::3
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HOI..JF':L'r' ,,: ~~l"

IF(IDUMY(49)"NE,,:I.)GOTO 630
[,j 1<: ITE(6, 400~:~ ) I "1" ( !:::i ) !I I "1" ( ,::1, ) , IT( :;:: ) !I ~::; EP1,/ 0D( .1 ::::: ) , ::::; f~ FC: () D( ;~: 1;::1 )

,::1,001;) FOr.:: t'1 nT( "Df1 'r' "!I I :::::!I I !:::i!1 "H" , I~:, 5::.::, "I"'j ELT 1<: 1:::1 TE:::: " !I I:::' :::: , :::: , 4::.:: ,
:I. 11: SI:i T 11 ~:::; Cl 1.... :I: ]) ::::; ::::: 11 !I I:::' ::1" ::::: , 2::.:;, I1 TPHI1 , ,I'" )

HOUPLY MELT PATE OVER THE IMMEDIATE PAST HOUR:-

[·iUI"1B ::: ICOUT' (::::)
CALL SETBC:l.6,NUMB,ISRVN1)
I COUT C::;:) ,: [,jUI"'IE::
['ll...lt'18 ::: ICO 1...1 "1" C4)
CAll SET8Cl,NUMB,ISRVN2)
ICOUT C4) ::: ["II...It'1E:
GOTO 1Of:~

Et-W

HOI...I1<:=(1,
IFLAG2 ,,: f~l

SHIF = SHIF + TMASSO
SHFT ::: SHFT + DELT
HOURLY ::: HOURLY + TMASSO
DO ?f;Jf) f:::= 1, 90

IFCTMnSSC2,f:::),GT,I,)GOTO 800
HOUR=HOUR+TMASS(:I.,K)
IFCf:::,EQ,90)HOUR=HOUR/TMASS(2,90)

CO[·iT I [·iUE
:::; Ef;': '",I I) 4:::'H0UR
SERVOD(4) ::: SERV04

CURRENT RATE OVER IMMEDIATE PAST HOUR,

,?'CIO
:::: ~:~ f;J

C:
C:
C-----------------------------------------------------------------------
C 10, UPDATE WORDS FOR OLD CONTACT STATUS,
C:

~:~ ~~ ::::: :::::

1]2::':4
1~1 ~::; ::::: ~:i

O~:::::::6

iD :;:~ :::: '?

1~12:~:9

f:::124 0
(1~24 I
~)~~4 ;;:::
rJ2:43
f:::1244
(l245
C1246
rJ24?
~:1 ~:; 4 :::::
r'::1249
~)2~5C1

~~l2: ~'5 I
'~1 ~:: 5 ~:::
~:1~: !:i :::::

I~~ ~::: ;:::: :I.
[~ ~:~ ;;::: ;;::~

(~ ~:~ ~::~ :::::

(:~224

1~1 ;~~ ~:: ~)

~::12 ~::: 6 c:
O;~:;;:::'?' c::
~::I ;;::: ;;::~ :;;;: c::
[1~: ;;::~ 9
~:~ ~:: ::::: ~:~

0~::3 I

** NO WARNINGS ** NO ERRORS ** PROGRAM - 01380
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PAGE 000 1 Fn~.

------ COMMON ------

HAFST - AFST LEVEL
HSST SST LEVEL
HCL T - CL T LE'·... EL
___ M- MAXIMUM LEVEL
___ N - NORMALISED LEVEL
__ DOT - DERIVATIVE
___ SP - LEVEL SET-POINT
___ F - FILTERED VALUE

LEVELS ARE MEASURED IN METERS. FLOW IS IN CUBIC METERS/HR.
fl LAF.: "'1 "", E~:::; :::; AGE ~::; :

1=S~::;T Et'lPT'r'
2=~:;ST FULL
:3=AF~:;T Et'lPT'r'
4=AFSl FULL
5=SAT. SUPPLY CONTROL VALVE CLOSED
6=SAT. SUPPLY CONTROL VALVE FULL OPEN
7=CALCULATED SAT. VALVE POSN. DIFFERS FROM TRUE VALUE
:::=CHAt'~GE I t,~ SAT. SUPPL'"" \,'ALVE POSt,~. :> 1(1~':

9=CHECK THE VALUES OF THE ERROR DERIVATIVES
( I . E. SAFCOD ( 12) :j,: (1.:;:»

- ENGINEERING UNITS (CALCULATED BY ENGUN FROM ADCV VOLTAGES)
- A/D VOLTAGES (UPDATED BY SCAD)

TAt'~K

SAFCO ADJUSTS THE SATURATOR FLOW SET-POINT IN ACCORDANCE
WITH THE AFST & SST LEVELS AND THEIR DERIVATIVES. PROPORTIONAL
PLUS INTEGRAL CONTROL IS USED. THE AFSTLEVEL MEASUREMENT
IS PASSED THROUGH A SECOND-ORDER LOW-PASS FILTER TO
PREDICT THE TREND WHILE FILTERING OUT THE TRANSIENTS. THE AFST
AND SST LEVELS ARE NORMALISED BY DIVIDING ey THEIR
MAXIMUMS. THE REQUIRED FLOW CHANGE IS CALCULATED AND CON­
VERTED INTO A NUMBER OF PULSES WHICH ARE GENERATED 8Y THE
CAt'lAC PUL~;ER t'1CIDULE. VALVE POS ITI Ot,~ At,m TAt'n::: LEVEL LI t'1I TS FIRE
CHECKED. THE PROGRAM ONLY EXECUTES WHEN ITS RESOURCE NUMBER IS
CALLED. '

SAFCO - "SATURFITOR FLmJ COtHF.:OL".

COMMON ENG(64),ADCV(64),CDACV(24),
1 SAFCOD(20),CLFLOD(10),REMLTD(10),CLIMED~10),
2 GASFAD(10),GASFBD(10),GASFCD(10),FILCYD(10),
:3 SERVOD(20),DUMMY(50),
4 I:::;At'lT, I::;t·lUL..(:;:2) , IF.:t·~(40), ICIN(4), ICOUT(4),
5 ISCOP (:3) ~, ID1..11"1 '"" (~)O)

Et'~G

ADC'",'

,-,
-'
C
c::

"

.,
-'

C
C
C
1"",.'

C
C
C
C
C
C

"'"
-'
C
C
C
r'-'
C
C
C
C

'C
C
c::
C
C,-,
C
C
C
1""

C---------------------------------------------------~ ~ ~-----
I
~ .
-',-.
-'
C

00 :;: '3
~Z104~j
~Z1(141.

01342
~304:;:

01344
~3045

0046
(1~Z14?
~3e4:::

01349
~Je50

(H)51
~3e52

o~~1!'5:::: c:
~ZH354' C
~3055 C

~~~Z1r;j 1 F"rt'~4, L~, T
00~]2 PROGRAt'l Sf,FCO(~:, 4{1) , (1:::1277':0 1E:017:::E:D~;: 2:3(117:::BDF.:
0003 C*******************~'**************************************************
(10~]4 C
~3(W5 C
~3 ~3 ~~ 6 c::
(1(107 C
~ZH30::: C
~Z1 ~3 0 '3 C
~)01 0
(H311.
~Z1~) 1:::
~)01 :;:
0(114
(H) 15
~)016

~Z101 7
~~(11 I::
~]01'3

(H32 0
(H321
0(122
(1~Z12:::':

~3024

~3025

0026
002?
~Z102 f::
~)(129

(1 ~~1 :;: 0
~30:31

~30:;:2

00:3:;:
0(1:34
~Z1 ~~1 :;: ~:i

~3(1:36

(10:;:7
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~::i AT' UI;': fl TOF:
Sf1TI...IPf1 "1" Of,:
::::i AT' URfl TOR

SATUPATOR FLOW CONTROL DHTA
CLOUDY LIQUOR FLOW DATA
PEMELT CONTROL DATA
CONTROL LIME DATA
GAS F1.... () 1.,.1 C:()t··IT·RCiL. Df~TH FOI? .. f1"
GAS FI.... O~,.I C:()I··~Tf':OI..., DATfl FOP .. B"
GAS 1:::·1... 0~·,1 C:()I"~T'ROL. 'DATA FOF:: .. C"
FILTER CYCLE MONITER DATH
SERVOBHLANS SCAL.E MONITOP DATA

EQUIVALENCE (SAFCOD(l),GPA)
GAIN PROPORTIONAL, AFST

EQUIVALENCE (SAFCOD(2),GPS)
GAIN PRCiPORTIONAL, SSTL

EQUIVALENCE (SAFCOD(3),GIA)
INTEGRAL./GAIN, AFST

EQUIVAL.ENCE (SAFCOD(4),GIS)
INTEGRAL GAIN, SSTL

EQUIVALENCE (SAFCOD(5),W)
CUT OFF FREQUENCY, SECS

EQUIVALENCE (SAFCOD(6),D)
]) 1:::1 I"jp I t·jG FACTOR

EQUIVALENCE (SAFCOD(';::'),HSSSP)
STT LEVEL SET POINT (NORMALISED)

EQUIVALENCE (SAFCOD(S),HAFSP)
HFST LEVEL SET POINT (NORMALISED)

SAFCOD(9) = NUMP, THE NUMBER OF PULSES OUTPUT
EQUIVALENCE(SAFCOD(10),HAFF)

FILTERED AFST LEVEL(NORMALISED)
EQUIVALENCE (SAFCOD(18),ALPHA)

EXPONENTIAL SMOOTHING FOR CUMULATIVE SOLIDS FLOW.
EQUIVALENCE (SAFCOD(19),RATES)

INSTANTANEOUS SOLIDS FLOW RATE.
EQUIVALENCE (SAFCOD(20),SOLIDS)

CUMULATIVE SOLIDS FLOW .

****DECLARATION STATEMENT
CALL DECLR(IPUL, 1.14,0)

ISAMT MASTEP SHMPlING RATE (F~CER FREQUENCY, SECS)
ISMUL SU8-RHTE SAMPLING TIMES (PERIOD(X)=ISAMT*ISMUL(X»
IRN - RESOURCE NUMBERS
ICIN CONTACT STATUS IN (UPDATED BY SCCS)
ICOUT CONTACT STATUS WORDS UPDATED BY CONTROL PROGRAMMES.
ISCOP(l)- FLHG USED BY WCHDG AND THE CONTROL. PROGRAMMES,
ISCOP(2)- STATUS OF CONTROL PROGRAMMES.(I.E. RUNNING OR OFF)
ISCOP(3)- STHTUS OF AUTO/MANUAL SWITCHES.

:::::HFC()D ·
CLFLC)D ·
PE1"'1 1.... "1"]) ..

C:L I 1··jED· ..
GI:1~:;FHD ·
c;A~::iFE:D ·
GASFCD ·
FILC·/D ..·..
~:i Ef<: '...'0D·-

C CDACV - D/A VOLTAGES (UPDATED BY CDAC)
C:
C:
C:
C:
C:
C:
C:
C:
C:
C:
C
C:
C:
C:
C:
C:
C:
C
C
C:
C-----------------------------------------------------------------------
C:
C:
C:

0~~~::;6

o~:1 ~j-;::'

o~;1 ~:) :::::
~;1 (1 ~::i '~I

~~1(160

00(: :1.
OiJ(:;:::
1~1 ~::II::: :::::
~::lijl::::4

(1t16~)

~)i;:166

1)~:16?

1)~~6::::

0(1(:')
I;:~ ij .? ~:~

(1 ~Z1 '? 1.
12J~~I?~~

~7.1~3?:3

O~3'?4

~Z1 ~~1? ~:)

C1~3?6

~Z1 i;:1 '??
0(1';::':::::
(1~~!'?9

~3~Z1:::0

iJ (1 ::: 1.
(1 ~~1 ::: ;:::: C:
ij ~) ::::: :::::
~~~Z1::::4 C:
tHj:::5
~~1 [1 ::::: 6 C:
OO:::::'?
1;~1~S:I::::B C:
~:~i~l:::: 9
iJ~Z19[1 C:
(1 ~Z1':~ J:
[1i39:;:~ C:
i)~Z1':::1 :::::
1~1(1')4 C:
(1 e:1':~ ~:i

(1 ~Z1'~1 f5 C:
(1 (1 ') ';::' C:
e:1 (1') ::::
(:1~~199 C:
~31'OO

[11~;11. C:
~Z11 [1 ;:~

(11 ~J3 C:
~~H14

(110!;:i C:
(11 ~;16 C:
010? c:
~:~ 1 ~~I ::::
[1 11;::1'::~ C:
~jlH~ C
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PAGE 0003 SAFeO 9:30AM MON" 20 FEB" 1978

MAXIMUM LIQUID LEVELS (M)

MAXIMUM FLOW RATES (CU.METERS/HOUR)

TANK CROSS-SECTIONAL AREAS (SQ.M.)

HPl.. t'1:::::3 , 1::('1

HAFI"1:::::3, :3!:i:;::
HS ~:;t'l:: 2 iI 2: 61

C **** SPECIFICATION OF CONSTANT DATA FOR BOTH CONTROL LOOPS,****
C:
e

01 :1. l
01 L~

~Z111 ::;::
01 l4
(111~5 c:
0116 c:
~) 117
(1118
(1119
(\1 ;;::~ ~J c:
~Z11 ;::~ 1 C:

INTEGRAL RESET TIME, MINUTES

PROPORTIONAL GAIN

"CHHt'iGE I t'i SHT, :::;I...Ippl.... '( I",'AL.'",'E POSN."

AFST PROPORTIONAL GAIN

AFST INTEGRAL RESET TIME, MINUTES

CUT OFF FREQUENCY, RADIANS/SEC

EXPONENTIAL SMOOTHING FOR SOLIDS FLOWCALCULATIDN.

:DAt'1P I t·iG FACTOF.:

·,1, ';1,' ~i,. ';1, t,·, AI 1"·1 I' f"1 f"1 P FnP :::; r~ T' F' E':' E" Ill''': 1''',1.. 1"r I;:' nLeT I:::' 1:, "r I:' HE1:, f.::' .~:. 'I~ ,:~ .:,:..:;. .:;.. .... ... ... '" • .., ," .., .., .., 1 '....., "M' ',I ro, ....1 'P;,...... .. .. ' " .. "

c;PS::::2.

GI ::;::::5(1.

GIA=36.

NUMPT=IFIX(1000,*ENG(7'))
INlT. VALUE OF TOTAL NO OF PULSES::::VALVE POS*l000

ALPHA = 0, ;::~

HSSN·l=ENG(l)/lOO.
HAFF1=ENG(2)/10b.
HAFF2=HAFFl
F.:AF=HAFF 1

INITIAL CONDITIONS FOR THE PREDICTOR AND DIFFERENTIAL EQUATIONS,

C

0122 AAFST=6.59
0123 ASST::::l1.4
~]1;~~4 C
0125 C TANK VOLUMES (CU.M.)
0126 VAFST=AAFST*HAFM
0127 VSST=ASST*HSSM
~Z11 ~~ :::: C
0129 C DEFAULT SET POINTS AND CONTROL GAINS
0130 HAFSP=0.5
0131 HSSSP=0u3

'",IPLF.:=5. ~~\[11 :::: ~~
01 :;:::;:1 C:
~Z1134

~] 1::::15 c:
(\1 :::::6
01 ::::1-;:" c:
~~11 :::: :::
~) 1:;: '3' C:
(1140
(1141
~) 14::::
~Z1143 c:
~H44

(1145 C:
(1146 C:
~)147 C:
~)141:: e
~) 14'3'
~Z115 ~Z1

(\151
01!:i2~

~] 15:::: C:
(\1 :i4
~Z1155 c:
~] 156 e
~~11 ;:i 7'
~) 15::: c::
~] 159 C
~J 160
(116l C
~]16:::: C
0163 C***********************************************************************
~] 164 C
0165 C:
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0166 c:
01(;-;:" c:
(116:;:: C:
~:l169 c:
01 -;:"0 C:
':;'11 .? 1 C:
01-;:";;::: C:
01 -;:"::;;: C
1;;l1-;:"4 lOCI
o1 ?~::i C:
~:l1-;:"6 C
1~11-;:"?

o1'?::::: C
(;'11 -;:" ';;:1

(~\ 1::;: (~1

(\ 1:;:: 1 C
~3 1:::;: ~:: c:
1~11 ::::3

1. CALCULATE FILTER AND CONTROL CONSTANTS
2. READ NORMALISED LEVELS AND CHECK LIMITS
3~ ONE-STEP-AHEAD PREDIC1'ION OF MEAN AFST LEVEL
4. CALCULATE FLOW CHANGE
5. CHECK PUL~ER AND 130K OPERATION
6. WRITE TO PULSER

CALL RNRQ(2,IRN(11),TDUM)
LOCK ON RESOURCE NUMBER UNTIL CLEARED BY ENGUN

MASK=lAND(ICIN(4),4B)
IF(MASK.NE.4B)GOTO ?oe

**** ERROR MESSAGE SUPPRESSION PERIOD(MINUTES) ****
I F.: l:::: P '''' 60

***** 2. READ NORMALISED LEVELS & CHECK LIMITS *****

1.... E',... EI....·;';··;';··;';··;';··;I;..

l::::Rt'1E~::': ( 1. :1 IFI ;:':: ( :I. 01;:'1. ·;~·HS:31···I) , I I;;:EP)
ERMES(2,IFIX(:l.00.*HSSN),IREP)
ERMES(3,IFIX(:l.00.*HAFN),IREP)
ERMES(4,IFIX(100.*HAFN),IREP)

ONE-STEP-AHEAD PREDICTION OF MEAN flFST

Tl=FLOAT(ISAMT*ISMUL(2)*ISMUL(6»

HAFN=ENG(2)/:l.00.
HSSN=ENG(1.)*ALPHA/10B. + (1.-ALPHA)*HSSN1
HPLI···I::::Et·~G (5) ..... :1. OCI.
IF(HSSN.LT .. B5) CALL
IF(HSSN.GT .. 95) CALL
IF(HAFN.LT .. 1215) CALL
IF(HAFN.GT .. 95) CALL

HAFF=CB*HAFFI-CC*HAFF2+CD*HAFN+CE*RAF
CALCULflTE DERIVATIVES AND ERRORS.

HFDOT=(HAFF-HAFF1.)/T:I.
DELAF = HAFF-HAFFl

WO=SQRT(l.-D*D)*W
fI "" I.'.I·~;· D
THET'A= 1. ;:i?
IF(WO.GE.e.oee1) THETA=ATflN(-A/Ne)
EFt''!'' =E::.:: P( -'I:~ ';1;' T' 1. )
IF(THETA.EQ.1..5?) CfI=EAT
IF(THETA.NE.l.5?) CA=EAT*COS(WO*T1+THETA)/COS(THETA)
CB=2.*EAT*COS(W0*Tl)
CC::::EAT.;.:·EAT
CD::::::I. . +CFi-CI;;::·
CE::::CC'-CA

c:
r CONTROL LOOP VOLUME GAINS

GIAV=:I../(60.*GIA)
GISV=la/(60u*GIS)

~31::::4 C:
fi 1::;;: ~:::i

01:;::6 C:
121 1:;::? C:
~31 ::: :::: c::
1~11 :::: I:~

~3190

01';:'11
019;;;;:
01';)::;;:
~3 1':;:14
01. '):5
01')(;
019'?
~~~ 19::::
fj 199
121 ~~ (;l ~l
(1~:O 1.
(1~: ~J ;;~

~J 2: (\:3
f32fZ14 C:
1)20~:i C:
(1 ;:: ~J 6 C:
~) :~~ ~~\-;:"

0(.:(1[:
O~:O')

O;~::I. 0
fZ1~: 11
O~:: :1.2
0;:::1.:::;:
O~:14 C:
0:2:1.:5 c:
(1~:: 16 C:
(121. ?
fZ1;~ 1:;;;: c:
O~: 1';)
(1;::::;;:1:::1
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***** 5. CHECK PULSER AND 130K OPERATION *****

***** 4, CALC. FLOW CHANGE *****

1.IF CURRENT POSITION OF SET POINT IS NOT EQUAL. TO COMPUTED
POSITION~ MESSAGE 7 OUT AND RESET NUMPT .

2.IF NEXT COMMAND WILL DRIVE SET POINT UNDER OR OVER RANGE,
INHIBIT OUTPUT AND WRITE MESSAGE

3. LIMIT CHANGE TO 10%,
NPOS=ENG(7)*1000.

IF(ABS(DLSSV).GT.0.001) GOTO 300
t·~ Ut'lP=~3

GOTO 5(H3
NUMP~IFIX(DLSSV*1000.)

DLSSV=AMOD(DLSSV~0.001)

SAVE ROUND OFF OF LESS THAN ONE PUL.SE

DEU~=DL.SF f.. T1
DL ::;S","= DEL t·l+ DL S::;V

PICK UP ROUND OFF FROM LAST OUTPUT

GAH~=0 .
IF«HPLN.LT.0.5).AND.(HAFN.LT.0.5»GAIN=.001
GPIAST= -GPA*(HFDOT +GIAV*EAFT-GAIN*(0.5-HPLN»

AFST CONTRIBUTION .
IF(HSSN.GT.HSSSP) DLSF=GPIAST

IF SST IS ABOVE SP~ CONTROL ON AFST ONLY·
IF«HSSN.LT.HSSSP).AND.(GPIAST.GT.0»DLSF=GPISST

IF SST LOW (BELOW SP) AND AFST TREND IS DOWN
CONTROL ON SST ONLY (THIS MAY BE SHUT DOWN)

IF«HSSN,LT.HSSSP).AND.(GPIAST,LT.O»DLSF=GPISST+GPIAST
IF SST LOW AND AFST TREND IS UP
CONTROL ON BOTH SST AND AFST
(SHUT DOWN AND FILTER HOLD UP)

GPISST=GPS*(HSDOT+ GISV*ESST)
S::;T COt'~TR I BUT I Ot·l

HAFF2=HAFF 1 .
HAFF1=HAFF
RAF=HAFN
H~:;::;N 1=HSSN

UPDATE PAST VALUES

C
C
C
C
C
r··..'
C
C
C
500

0221 IF(ABS(DELAF).LT.0.1)GOTO 110
0222 CALL ERMES(9~IFIX(100.*HFDOT)~IREP)
0223 HFDOT = SIGN(0.1~DELAF)/Tl

0224 110 HSDOT=(HSSN-HSSN1)/Tl
0225 DELSN = HSSN-HSSNl
0226 IF(ABS(DELSN),LT.0.1)GOTG 120
0227 CALL ERMES(9~IFIX(100.*HSDOT)~IREP)

0228 HSDOT = SIGN(0.1~DELSN)/Tl

0229 120EAFT=HAFF-HAFSP
~32::::0

0231 C
~Z1232 C
(12:;::3 C
Ij234
02:35
0236
~~12:;: 7
~32::::8 C
02:39 C
(12413 C
(1241
IZ1242 C
13243 C
~3244

13245
(1246
~324 7 C
~Z124:::

0249 C
0250
0251 C
(1252 C
~j25::::

~Z1254 C
~3255 C
IZ1256 C
0257
~]25:::

~3259 C
13260 C
0261
~~1262

(126::::
0264
[1265
13266
~3267

~j26:::

~]2613

~327(1

0271
(1272
[127::::
0274
~j275
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[1 ~:~ 'r:' I:::;

~::1:2'??

[i~:? I::;
1~1~~?9

~J 2~ I;:: (;:1

(1~~:::: :I.
~] 2:::: ~:~

[1 ~~ :;;;: :::::
~~1 ~~ ::: 4
O;;:~:::::~5

~7.i~:;::::6

~3~:~:::?

IDIF::::HPO::::,.."I'"IUt'1PT
IFCIA8SCIDIF),LT.25) GO TO 600

CALL ERMESC?,IDIF,IREP)
t,~ Ut'1 PT:::: 1',,1 PO:;;;

c:
600 IFCIA8SCHUt'1P).LT.100)GOTO 610

CALL ERMESCS,HUt'1P,IREP)
t,~ Ut'1 P ::::: l (;:1 iJ

C
610 IFCCHUt'1P+HUt'1PT).GT.0) GOTO 620

CALL ERMESC5,NUMP,IREP)
t,~ U1"1 P:::: ,...,t,~ 1...1 t"1 P"1"

~;j 2: :;;: :;;:: c:
~~1 ~: :::: I:~ (; ;;::~ ';;:1

02';;~(1

i;:1;29l
I] ~~ '::;' ;~~ . C
~~12 I~ ::::: C
~3294 c:
~Z129~:i C
~~296 ,::'3121
~Z129'?' C:
1~~21::;1:::::

(1 ~~ 9 ';;:1 C:
0:30121
(1::;:(11 C:
(1 ::;: I;) ~:~ C:
(1 ::;: i) ::::: C:
0:3~j4 C:
i~1::':0~::i

0:;::(:16
0::;: I;) ?
(1::;:08
1~1::;:09

~:1:::: l 0
iJ::::t l

IFCCHUt'1P+NUMPT).LT.l000) GOTO 630
CALL ERMESC6,NUMP,IREP)
t,~U t'1 p:::: 101a i;) "... 1',,11...1 t'1 F' T

***** 6. WRITE TO PULSER *****

t',l 1...1 1"1 PT:::: t,~ Ut"1 P"1" +, t',l U",,\ F'
INCREMENT TOTAL HO OF PULSES

IFCNUt'1P,HE.0) CALL CAMACC16,IPUL,NUt'1P,IQ)
WRITE PULSE COUHT IF NOT ZERO

SAFCOD(9) :::: NUMP

**** CUMULATIVE SOLIDS FLOW CALCUlATIOH ****

FLOW:::: FLOW*Cl-ALPHA) + ALPHA*EHG(23)
8RIX ::::8RIX*Cl-ALPHA) + ALPHA*ADCV(3)
SGP8 :::: 1,23 + 0.013*8RIX .
BRIX2:::: 8RIX2*Cl-ALPHA) + ALPHA*ENG(3)
RATES :::: FLOW*SGP8*BRIX2/100.
DSOLID = RATES*ISAMT*ISt'1UL(2)*ISMULC6)/3600.
SOLIDS =SOLIDS + DSOLID

(1::;: 12 c:
~)::;: 13 C
0314 C UPDATE CONTROL WORD FOR AUTO/MANUAL WATCHDOG CPROGRAM: WCHDG)
(1::;: 1. ~::i c:
0316 ?00 MASK:::: ISHFTC1,0)
031? ISCOP(1) :::: IORCMASK,ISCOP(1)
~j :;1 ll::: C:
0319 c:
0320 GOTO 100
iJ3;~:~ 1 C
03~:~~~ Et'~D

** NO WARHINGS ** NO ERRORS ** PROGRAM - 0112?
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PAGE oon 1 FHi.

ClFlO - "CLOUD\'-,L I G!IJOR: FLCH,j CCitHROL".

THE CONTROL ACTION CAN 8E MADE TO ACT ON THE DIFFERENCE 8ETWEEN
THE AFST AND ClT lEVELS BY DELETING lINES 165 AND 166.

COMMON ENG(64),ADCV(64),CDACV(24),
1 SAFCOD(20),ClFlOD(10),REMlTD(10),ClIMED(10),
2 GASFAD(10),GASF8D(10)~GASFCD(10)~FIlCYD(10),
:::: SERVOD(20),DUMMY(50)~

4 ISAtH ~ I StKIU::::2), I R:tH 40) , I CHi( 4), ICOUr< 4) ~
5 ISCOP(3),IDUMY(50)

ClFLO ADJUSTS THE ABSOLUTE VALVE POSITION IN THE ClOUDY- .
lIQUOR RETURNS LINE USING PROPORTIONAL~PLUS-INTEGRAl CONTROL
ACT I t'iG m'i THE 1''iCIf':t'1Al ISED ERR:OF.: I t'i THE TAt'if::: l I OUOF.: lE","El.
LIMITS ON THE VALVE POSITION AND TANK lEVEL ARE CHECKED
AND MESSAGES SENT TO THE OPERATOR'S CONSOLE IF NECESARY.
THE ClT lIQUOR lEVEL IS PASSED tHROUGH A MATHEMATICAL FILTER
AS FOR ::::AFCO.
THE PR OGF.:At'l ot-i 1.... \' E::-::EC UT ES ~,jHEt'i ENGUt,,1 f7::ELEA::::ES ITS F.:ESOUI;':C:E 1",1 Lil"'IDE:F:"

------ COMMON ----~-

HAFST - AFST lEVEL
HClT - ClT lEVEL
___ M - MAXIMUM lEVEL
___N - NORMALISED lEVEL
__ DOT - DERIVATIVE
___ SP - lEVEL SET-POINT
___ F - FILTERED VALUE

SATURATOR FLOW CONTROL DATA
CLOUDY LIQUOR FLOW DATA
RENELT CONTROL DATA
CONTROL LIME DATA
GAS FLm·j CCitHF.:OL DATA FOF.: "A" :::iFITUF:ATOF:

lEVELS ARE MEASURED IN METERS. FLOW IS IN CUBIC METERS/HR.
ALARM MESSAGES :

1=Cl T Et'lPT'r'
2=ClT FUll
3=lIQUOR RETURNS VALVE POSN. CHANGE > 10%
4=lIQUOR RETURNS VALVE CLOSED
5=LIQUOR RETURNS VALVE FULL OPEN
6=CHECK THE VALUE OF'THE DERIVATIVE OF THE ClT lEVEL

( I . E. CL.FLOD (?) )

- ENGINEERING UNITS (CALCULATED BY ENGUN FROM ADCVVOlTAGES)
- A/D VOlt AGES (UPDATED BYSCAD)
- D/A VOLTAGES (UPDATED BY CDAC)

TAt'iK

HiG
ADC'",'
CDAC"",

::iAFCOIl-
. CLFLOD­

REt'1l TD­
CLINED":
GASFAD-

C
1
_,

-'

C
C
C
C
C
C
r-'
C
C:
C:
C--------------------------------~----------------------------- _
C
C:
C

00Ci1 FHi4, L, T
0002 PROGRAM CLFLO(2,40),040777? 2301788DR
0003" C***********************************************************************
~~i~104 C
00~i5 C
(1006 C
00~f? C
~1 ~1 ~3 ::: C
~~1 ~1 ~3 '3 C
~~1 ~11 (1 c:
iJ~JII C:
Ol:':.~ 1;::: C:
~~~) :l ::::: C:
0014 C:
~J~11 ~i . C
')~116 C
0~117 C
~10 1::: C
001'3 C
(102(1 C
(1~121 C
0~122 C
~102::::: C
0(124
0025
~3026

~)02?

~3028

0029
~)0::::0

~30:::: 1
~)(i:32

(1~~133

~1~134

~3~)3~5

~30::::f':;

0~3::::?

~~10 :::: :::
~)0::::9

Cl~340

~H341

~3042

0043
J3044
~)045

~)~346 I"
I:':.H347 C
~3~348 C
~i049' C
005~~i C
0051 C
0052 C
~~i053 C
~)054 C
~~1~155 C
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PAGE 000;2 CLFLO 9: ::::2 fit'1I"'ICit·j, ~ 2~J FEB., 1978

:3ATUf,:AT'OP
:;:; I:~ TUF.: AT 0F.:

OF FIL.TERED CLT LE"iEL.-

MAXIMUM LIQUID LEVEL (M)

MAXIMUM FLOW RATE (CU.METERS)HOUR)

eLT PROPORTIONAL GRIN
GPC=2. ~)

HAFt'1:::;::::. :35:3
HCU1=2. 165 .

EQUIVALENCE(CLFLOD(l),GPC)
CLT PRopdRTtOUAL GAIN

EQUIVALENCE(CLFL.OD(2),GIC),
CL.T INTEGRAL GAIN

EQUIVAL.ENCE(CLFL.OD(3)iVPLR)
L.IQUOr:: RETURNS VALVE

EQUIVALENCE(CL.FLOD(4),HCLF)
FILTERED CLT LEVEL

FI"1CL.= 10.

EG!U-I "iALENCE (CLFL.OD (5) , ~'1)

, CUT-OFF FREQUENCY
EQUIVALtNCE'::CLFLOD(6J,D)

, DAt'1P It-lG FACTOF.:
EQUIVALENCE(CLFLOP(7),HCDOT)

RfiTE OF CHAt'lGE

C;CI::;;FBD'~- CA::;; 1:::'1..,,01",1 C:()I"n"F':OL. DATA FOr:: "E:"
GASFCD:" Gfi::;; FL.m,,1 CCiI',lTPOL DATA FOP "C"
'FILCYD~ FILTER CYCLE MONITER DATA
SERVOD- SERVOBALANS SCALE MONITOR DATA

**** SPECIFICATION OF CONSTANT DATA

C
e DEFAULT SET POINTS AND CONTROL GAINS

\,opLR=5. et,

C:
C

c:
c:
C

'C
C
rISAMT -,MASTER SAMPL.ING RATE (PACER FREQUENCY, SECS)
C ISMUL SUB-RATE SAMPLING TIMES (PERIOD(X)=ISAMT*ISMUL(X»
r IRN - RESOURCE NUMBERS ' ' ' ,
C, ICIN ~ CONTACT STATUS IN (UPDATED BY SCCS)
CICOUT- CONTACT STATUS ~ORDS UPDATED BY CONTROL PROGRAMMES.
C ISCOP(l)- FLAG USED BY WCHDG AND THE tONTROL PRbGRAMMES.
C: I :::;CCiF' (2) ,,- "STAT'US OF CONTF::Ol... PF.:OGF.:At'H'1E :::;. ,:: I . E. F:Ut,{t',1 I t',IG - OF,: OFF )
C ISCOP(3)- STATUS OF AUTO/MANUAL SWITCHES.
C " '
C~-~-~-----~--~--~----------~-----~----------------------------~~-----~~
C '
C,
C

C
00:::2 C
~::10::::3

o£1:::: 4 C
(1£1:::5
0~):::6 C
~)0:::7

(1 ~3 ::: ::: C
~J ~::1 ::: " C:
0~)9() C:
O~J91. C:
0~)92 C
[109:3 C
00'34
~)(195 C
~)12I96 C,
012197
~)0'~:::

012199 C
(11~::10 C:'
(11(11.
~) H1~~

~::11 ~::1 J
0104
~)1~)5

(1106
OH,17
01~::1::: C
~)10',

011~::1 C

0(1~:;6

OO~57

~J~)5 :::
0[159
006(1

- [H)61
, (H) 6 c.:

0(16:3
~)064

~::H)65

, (H)66
, ~3~::16?

(1[16::;:
(1[16 '9
~) (17 ~::1

~::1071

(H)72
~307::::

0(174
[107~i C
0(176

,0~::177 C:
0(:;:17::::
~::1~)79 C:
[10::::(1
~::1 [1 ::: 1

, f
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INITIAL CONDITIONS FOR THE PREDICTOR AND DIFFERENTIAL EQUATIONS.

CUT OFF FREQUENCY, RADIANS/SEC

DAI"'IF' I I"~G' FACTOR

ClT INTEGRAL RESET TIME , MINS.

***** 1. CALC. FILTER CONSTANTS *****

MASK~IAND(ICIN(4)1108)

IF(MASK.NE.108)GOTO 720

****DETERMINE FILTERED AFST LEVEL *****

T1=FLOAT(ISAMT*ISMUL(2)*ISMUL(6»

CALL ~:;~'~ ITF (:::)

CALL RNRQ(2,IRN(12),IDUM)
LOCK ON RESOURCE NUMBER UNTIL CLEARED BY ENGUN

W0=SQRT(1.-D*D)*W
A=~'~*II

THETA=1.57
IF(W0.GE.0.0001) THETA=ATAN(-A/W0)
Ef,T=E:"::P(-A';I;''T'1 )
IF(THETA.EQ.1.57) CA=EAT
IF(THETA.NE.1.57) CA=EAT*COS(W0*T1+THETA)/COS(THETA)
C8=2. *EAT*CO::;O,W*Tl)
CC=EAT*EAT
CD=1.+CA-C8
CE=CC"-CA

DLLr::V=~] •

HAFF1=ENG(2)/100 ..
HfiFF2:::::HAFF :1.

RAF=Hf,FF 1
HCLF1=ENG(27)/100.
HCLF2=HCLF1 .
F.:CL=HCLF 1

D=0.7

GIC= 6~3.0

**** ERROR MESSAGE SUPPRESSION PERIOD(MINUTES) ****
IREP = 60

***** ONE-STEP-AHEAD PREDICTION OF MEAN AFST LEVEL*****

HAFF=CB*HAFF1-CC*HAFF2+CD*HAFN+CE*RAF
CALCULATE DERIVATIVES AND ERRORS.

C
r'
C
1. f.:1 r.~1

C
C:

0134
01::':5 C
(1136
~) 1:37
~3 1:~: ::: C:
01 :::':9 C:
0140
[1141 C
~) 142
~]14:3 C
(1144 C:
014!::; C
(1146
0147
[1148
~Z1149

~H 5~J

(1151
~] 152
0153
~] 154
01.55
~] 156
~Z115? C
015::: C
(115', 1-'

~]160

~]161 C:
016~: c:
0163 C
0164
0165 C

~) 111
~Z1112 C
(1113
~)114 C
\H 15
\:l116 C
~Z1117 C
~)11::: C
(1119 C
~Z112(1

[1L~1

~)122~

~:::11-2::::

(1124
~) 125
(1126 C
~)L~7

012:::
~)129

01:30
[1131
(11::;:2
~Z11 :3 :::::
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PAGE 0004 CLFLO 9=32 AM MON" 20 FEB" 1978

:j,: CHECK LI t'1 ITS
OF MEAN CLT'LEVEL
FOR AFST.
LIt'1 ITS

READ NORMALISED ClT LEVEL AND CHECK LIMITS,

READ NORMALISED CLT LEVEL
ONE-STEP-AHEAD PPEDICTION

USING SAME COEFFS. AS
CALC, FLOW' CHANGE & CHECk

. OUTPUT TO CONTPOL DAC,

1.

1.

2.

. 4.

HFDOT=(HAFF-HAFF:I.)/T1

UPDATE PAST VALUES

HCLN=ENG(2?)/100,
IF(HCLN.LT•. 05) CALL ERMES(1,IFIX(100.*HC~N),IREP)
IF(HCLN.GT,,95) CALL ERMES(2,IFIX(100_*HCLN),IREP)

HAFF2=HAFF1
HAFF1=HAFF
PAF=HAFt,j

CONTROL LOOP VOLUME GAINS
GICV==1./(60,*~IC)

******MAIN LOOP FOR CLOUDY-LIQUOR RETURNS RATE STARTS HERE***

**** 2.0NE~STEP-AHEAD PREDICTION OF CLTMEAN LEVEL.*****
(USES SAME CO~FFICIENTS AS FOR AFST LEVEL)

HCLF==C8*HCLFl-CC*HCLF2+CD*HClN+CE*RCL
HCDOT=(HCLF-HClFl)/T1
DELCF= HCLF~HClFl

IF(AB::;(DELCF),L'r,C1, l)GOTO .1.1(1
CALLERMES(6,IFIX(100.*HCDOT),IREP)
HCDOT == SIGN(O.1,DELCF)/T1

UPDATE PAST VALUES.

110 HCLF2==HCLF 1
'. HCLF1==HCLF

F.:CL == He L.Jj

****** 3, CAlC, FlON CHANGE & CHECK LIMITS **** .

HFDOT=(1,
HAFF:::;:~~1, :;:

MAY 8E DELETED IF DESIRED, ,
DLLR=GPC*«HCDOT-HFDOT)+GICV*(HCLF-HAFF»)
DLLP~=DLLR*10. .
VPLR=VPlR+DLLRV*Tl

. lIQ. RET. VALVE PQSN,(O TO to VOLTS)c

c

c:
c:
C

C
C
C

C
C
C
C'

C
C:
,'"-'

c:
C ':':'*"~":';

C

c:
C
I
"',
-'

C
C
1-'
-'
C .
,-,
-'
C
C

~31 :::2
(1-1 ::::;:

0166
0167
~316:::

016';)
0170
01'71
0172
017:;: C
~~1174 c:
01?5C
~~1176 C
0177 C***********************~,*************************,*~*********~****-*
J~l ?:::
017':'l
(11 ::::~~1

~~1181'

01 ::::4
~:11 :::5
~:11:::6

~]1:::7

~] 18::::
(11:::9
019(~

01 '31.
0192
(119::::
(1194
01 '35
t1196
0197
[11·'~:::

01 '39
(~~ ~~ (::1 (:~

0~::~J:I.

0202
(12~~13

0204
02~)5

~)206

~)207

(12~):::

02(19
02: H)
C1~~ 1l
~J ~:: 1. ~~
~)2l3

~]214

0215
~)216

~)21 7
(121 :::
(1219
(1220
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PfiGE 001;):5 CLFLO 9: 32 At'1 t"IOH" ~:(1 FEB" 197:::

0221 C
0222 C ****CHECK LIMITS *****
0223 C MAX. CHANGE = 10%
0224 C 0<VPLR<10,
~j2;;:~5 c
0226 IF(ABS(DLLRV),LT.l.)GOTO 700
1)227 DLLR'...'= 1,
0228 CALL ERMES(3,IFIX(100.*DLLRV),IREP)
0229 700 IF(VPLR.GT.0,)GOTO 710
0230 VPLR=0,1
0231 CALLERMES(4,IFIX(100,*VPlR),IREP)
0232 710 IF(VPLR.LT,10,)GOTO 720
0233 VPLR=9R9
0234 CALL ERMES(5,IFIX(100.*VPLR),IREP)
[1 ~: :::: ~5 C:
0236 C ***** OUTPUT TO CONTROL DAC, *****
0231' C
0238 720 CALL CDAC(0,VPLR)
IZ1239 r
0240 C ****UPDATE CONTROL WORD FOR AUTO/MAHUAL WATCHDOG (PROGRAM: WCHDG)***
1)241 C
0242 MASK = ISHFT(l,l)
024:~: I :;:;COP ( 1) = I OF.: (t'1A::;f:::, I ::;COP ( 1) )
0244 C
0245 C ****LOCK PROGRAM OUT UNTIL RELEASED AGAIN***
13246 C
0247 GOT0100
IZ124::: C
0249 END

FTN4 COMPILER: HP92060-16092 REV, 1726

** NO WARHINGS ** NO ERRORS ** PROGRAM - 00712 CO 1"'11"1 0 t··1 .... 00? ~5 :::::
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PAGE 00(:11 FTbl"

:::;t'1TI...IRATOP
::;nTUF::ATOF.:
::;t'1T UF::ATOF.:

TANK FULL (HRMN > 0.95
TANK EMPTY ( HRMN < 0.05 )
CALCULATED FLOW SETPOINT AND FEEDBACK DIFFER.
CALCULATED FLOW SETPOINT CHANGE > 10%.
VALVE CLOSED (0% OPEN )
VALVE FULLY OPEN (1.00% OPEN)

------ COMMON ------

GPR = REMELT PROPORTIONAL GAIN
GIR = REMELT INTEGRAL RESET TIME, MINUTES

1"1 ES::::: rJ GE~::: :: ._,
"1 -~ F~EI·I'IEI.. .. T
~:: f:;:I::::I"'IELT
:::: r;:Et'lELT
4 .,,;, F.:Et'1EL T
!:::i "'" f:;:EI"lEL'T·
I::' ..... I:;;:EI"IEI....T

ENGIHEERING UNITS (CrJlCULATED BY ENGUN FROM ADCV VOLTAGES)
A/D VOLTAGES (UPDATED 8Y SCAD)
D/A VOLT AGES (UPDATED BY CDAC)

SATURATOR FLOW CONTROL DATA
CLOUDY LIQUOR FLOW DATA
REMELT CONTROL DATA
CONTROL LIME DATA
GA:;:; FLO~,j COI'·jTROL DATA FOP "A"
GfiS Fl...O~,j C:Ot·jTROL.. DATfl FOP "D"
GAS FI...O~,j COt·jTF.:OL DATA FOR "C"
FILtER CYCLE MONITER DATA
SERVOBALANS SCALE MONITOR DATA

REMLT = RECOVERY REMELT RETURN FLOW CONTROL.

AI.... fi R1"1

RECOVERY REMELT TANK LEVEL IS USED TO CONTROL THE RETURN FLOW"
THE FLOW CONTROLLER SETPOINT IS AJUSTED 8YPULSE TRAIN USING
A TWO-TER~ PROPORTIONAL PLUS INTEGRAL CONTROL ACTION.

COMMON ENG(64),ADCV(64),CDACV(24),
SAFCOD(20),CLFI....OD(10),REMlTD(10),CLIMED(1.0),
GASFAD(10),GASFBD(10),GASFCD(10),FILCYD(10),
SERVOD(20),DUMMY(50),
r ~:::AI"lT, I ~::;t'll...IL (::::~~) !' I F.:t'j (4~3) , I CI t·j (4) , ICOUT (4) ,
ISCOP (::::) , ID1...1 1"'1 \' (!:::i(1)

4

....,
',)

ISAMT - MASTER SAMPLING RATE (PACER FREQUENCY, SECS)
ISMUL SU8-RATE SnMPLING TIMES (PERIOD(X)=ISAMT*ISMUL(X))
IRN RESOURCE NUMBERS
ICIN CONTACT STATUS IN (UPDATED BY SCCS)
ICOUT CONTACT STATUS WORDS UPDrJTED BY CONTROL PROGRAMMES.
ISCOP(1.)- FLAG USED BY WCHDG AND THE CONTROL PROGRAMMES,
ISCOP(2)- STATUS OF CONTROL PROGRAMMES.(I"E" RUNNING OR OFF)
ISCOP(3)- STATUS OF·AUTO/MANUAL SWITCHES.

EHG
ADCV
CDfiC'",'

~:;AFCOD"'''

CLFlOD .....
REI"lL TD­
Cl I 1"1 ED.....
GA:::;FAD­
GA::;FBD,­
GASFCD­
FILC''f'D­
::::Ef,:VOD-

I:::' Tt··14 , L, T
PROGRAM REMLT(2,::::O),081.2??BDR 2301.?88DR 0102?8BDR

C**~*************************************************************~,******c:
c:
c:
C
C
C:
C
c:
c:
c:
C
c:
c:
c:
C
c:
c:
C
C-----------------------------------------------------------------------
c:
c:
c:

0001
1~1 i,~1 ~~, :;~

(1 (1 f~1 :::::
~)~:104

(~'121 0 ~::i

i,:i(106
(1 ij 121 ?
(1(10:::::
(101;~19

~:1(,10

['01 :I.
f:'1 ~:'11. :~~

0121:1. ::.:
f;jI~114

fJiJ 1 !:::i

OiJ:l.6
i,~1 ij :I. 'i'
f:" ~:'11 ::;::
(1iJ 19
iJ0;~:i,:i

~:1 C1 ~~ 1.
~~, ~3 (~Z~

~) i'::1 :;:~ :::::

[,i,~12 4·
OiJ ~:: ~::i

0(12:6
(1 ~:1 ~~?

0(12::::
(10c:9
~3 f21:::: i,:i
O~:'1::::: 1.
f2n:1 ::::,~ C:
1~'(1:;:::::: C:
~:1 ~) ::::: 4 C:
o~~I :::: ~::i C:
OC136 C:
0~:'13? C:
iJ (1 3:;::: C:
0(13':) C:
~~,iJ40 C:
Oe:141 C:
~](142 C:
(1 ~:14 ::::: C:
('~344 C:
Oi'::14~:i C:
0i.::146 C:
~3(14? C:
(1~34n C:
(, (14 ':;,1 C:
o\)!:i i;j C:
~~'121 !:::i 1 C:
00 !:::i ~~: c:
Oij~5:::: c:
~:1(,54 C
O~:15~) C



APPENDIX B.3 FORTRAN PROGRAMS
PAGE B3.35

PAGE 00(1;2 F.:Et'1LT '31:::::4 At'1 tiIOH., 21a FEB., 1'378

1-·-'

C------------------------------------------------------~--~-------------
C 4" CONVEPT AND CHECK INPUT DATA.
C

INITIALISED ROUND-OFF VALUE.

MAXIMUM TANK LEVEL, METERS

DEFAULT NORMALISED LEVEL SET-POINT

CROSS-SECTIONAL TANK AREA, SQ. METERS

EXPONENTIAL SMOOTHING FACTOR.

PROPORTIONHL GAIN.

1(1 " I~) :;::

= 0.25

50.

- 1.82

MASK=IAND(ICIN(4::O,20B)
IF(MASK.EQ.O::OGOTO 200

AUTO/MANUAL SWITCH STATUS CHECK

INTEGRAL PESET TIME, MINUTES
NUMPT = IFIX(1000.*ENG(:::))

FEEDBACf::: SI Gt·iAL.

CALL. ~:;~,j I TF (?::o
IREP = 6~3

GIRV - 1./(60.*GIR)
= ENG(2::::::O ..... 1(1~:1.

GIP =

DELT = FLOAT(ISAMT*ISMUL(2::O*ISMUL(6))

GPP = 1..

HLPHA

t1F.~EA .-

HF.: t'1 t·i SP

DELN = (1.

EQUIVALENCE (REMLTD(l),GPR)
EQUIVALENCE (REMLTD(2),GIR)
EQUIVALENCE (REMLTD(3);ALPHA)
EQUIVALENCE (REMLTD(4),NUMP)
EQUIVALENCE (REMLTD(S),HRMNSP)

**** DECLARATION STATEMENT
CALL DECLR(IPUL,l,14,1)

100 CALL RNRQ(2,IRN(13),IDUM)
LOCKS ON PESOURCE NUMBEP UNTIL RELEASED BY ENGUN

C
C
C---------------------------------------------------------------~-------
C 2. MAIN CONTPOL LOOP STAPTS
C

C

c:

C
C:
C-----------------------------------------------~-----------------------
C 3. CALCULATE CONTPOL CYCLE INTERVAL.
C

CC-----------------------------------------------------------------------
Cl. INIT IAll :::;AT I ON "iALUE~::;

C
I····-'

c-------------------------------~---------------------------------------

C
C .'
C'

~j~1:::2

~:1 ~:1 I:: :::: C
~3~:184

~)~1:::5 C
0(1:::6
~)0:::7

~3~1::::::

~)\,::1::::9

009~)

(1(191
(1(1'312
00'31:;:: C
0(194
~) ~:1'3IS

~3096 C
~3.397

0.)9::::
00'319
0100
~) U3 1
0102
o1~3:;::

~31(14

~31(15

01(16
OU::17
~31(1:::

OU39
~311O

tll:::156
0~157

(;:105::::.
~3059

~3~360

0061
~306;:::

~:106 :;::
~3~164

(H365
(1066
~H367

~3~36:::

~3069

~3(17 ~:1

~1071

0072
~:107:;:: C
~:H374

~307:i C
(H376
~3(1?7 C
~1~37:::

~3079 C
~:1 ~3 ::: Cl
(10:::: 1
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DELFSP = GPR*HRNDOT + GIRV*ERR*DELT

HRNDOT = ALPHA*CHRMN-HRMNS)
HRMNS = ALPHA*HRMN + (l.-ALPHA)*HRMNS
ERR = HRMNS- HRMNSP

c
C--------~------------~------------------------~------------------------
C 6. CONTROL EQUATION.
C

c
C-----------------------------------------------------------------------
C 7. CONVERT TO PULSES AND CHECK LIMITS OF ACTION.
C

10%.

NUMPT = NPOS

NUMP = -NUMPT

NUMP = 100

IFCHRMN.GT.0.95)CALL ERMESC1,IFIXC100.*HRMN),IREP)
IFCHRMN.LT.0.05)CALL ERMESC2,IFIXC100.*HRMN),IREP)

IFCCNUMP+NUMPT).LT.1000)GOTO 160
CALL ERMESC6,NUMP,IREP)

INHIBIT OUT OF RANGE OUTPUT
NUMP = 1000-NUMPT

DELN = DELFSP +DELN
PICK UP ROUND-OFF FROM LAST OUTPUT

IFCABSCDELN).GT.0.001)GOTO 110
NUMP = 0
GO TO 120
NUMP = IFIXCDELN*1000.)
DELN = AMODCDELN,0.001)

SAVE ROUND OFF OF LESS THAN ONE PULSE
NPOS = ENG(8)*1000.
IDIFF = NPOS - NUMPT
IFCABSCIDIFF).LT.25)GOTO 130
CALL ERMESC3,IDIFF,IREP)

CHECK CALCULATED SETPOINT POSITION AGAINST ACTUAL.

160 NUMPT = NUMPT +NUMP
CAll CAMACC16,IPUl,NUMP,IQ)

150

140 IFCCNUMP+NUMPT),GT.0)GOTO 150
CALL ERMESC5,NUMP,IREP)

INHIBIT OUT OF RANGE OUTPUT

110

120

130 IFCIABSCNUMP).LT.100)GOTO 140
CALL ERMESC4,NUMP,IREP)

LIMIT CHANGE TO

c

rJ
I
~

J

C-----------~-----------------------------------------------------~-----
C 8. OUTPUT TO PULSER MODULE. .
I
~

J

C

C
C-----------------------------------------------------------------------
C 5. CALCULATE ERROR AND DERIVATIVE ERROR OF SMOOTHED INPUT DATA.
C

0111
0112
0113
0114
0115
0116
0117
0118
0119
0120
0121
0122
0123
0124
0125
0126
0127
0128
0129
0130 C
0131
0132
0133
0134
0135
0136 C
0137
0138
0139
0140
0141
0142
0143 C
0144
0145
0146C
0147
0148 C
0149
0150
0151
0152
0153 C
0154
0155
015~ C
0151'
0158
0159
0160
0161
0162

. 0163
0164
0165
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0166 C----------------------------------------------------~------~-----~-----
0167 C 9. UP-DATE CONTROL WORD FOR AUTO/MANUAL WATCHDOG (PROGRAM: WCHDG).
016& C
0169 200 ISCOP(1) = IOR(4,ISCOP(1))
0170 C
0171 C------~~--------------------------------~-------------------~----------
0172 C 10. LOCK REMLT ONTO ITS RESOURCE NUMBER AGAIN
0173 C
0174 GO TO 100
0175 C
0176 C------------------------------------~----------------------------------
0177 END

FTN4 COMPILER: HP92060-16092 REV. 1726

** NO WARNINGS ** NO ERRORS ** PROGRAM = 00408 COMMON = 00758
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PAGE O(1~:11 FTt'l.

------ COMMON ------

ENGINEEPING UNITS (CALCUL.ATED BY ENGUN FROM ADCV VOLTAGES)
A/D VOL.TAGES (UPDATED BY SCAD)
D/A VOLTAGES (UPDATED BY CDAC)

ZP=SWITCHING FLAG (EXPONENTIALLY
ESF=EXPONENTIAL SMOOTHING FACTOR

ZA=OUT-OF-GAS FLAG FOR A-SAT.
ZB=OUT-OF-GA8 FLAG FOR B-SAT.
ZC=OUT-OF-GAS FLAG FOR C~SAT.

GOR=OVER-RIDE PROPORTIONAL GAIN
PHCSP=SET-POINT FOR C-SAT PH CONTROL

FCR=LIME/SOLIDS FLOW ,CONTROL RATIO
FCRS=SET-POINT FOR FCR

t'j 0t'1 Et'j CL. Fi TUPE

COMMON ENG(64),ADCV(64),CDACV(24),
1 SAFCOD(20),CLFLOD(10),REMLTD(10),CLIMED(10),
2 GASFAD(10),GASFBD(10),GASFCD(10),FILCYD(,10),
3 SERVOD(20),DUMMY(50),
4 ISAtH, I ~:;t'1UL <:;:2) , IR:t'H 4(1) , ICHH 4) , ICO UT (4) ,
5 ISCOP(:3),IDUMY(SO)

ISAMT - MASTER SAMPLING RATE (PACER FREQUENCY, SECS)
ISMUL SUB-RATE SAMPLING TIMES (PERIOD(X)=ISAMT*ISMUL(X»
IRN RESOURCE NUMBERS
ICIN CONTACT STATUS IN (UPDATED BY seCS)
ICOUT CONTACT STATUS WORDS UPDATED BY CONTROL PROGRAMMES.
ISCOP(l)- FLAG USED BY WCHDG AND THE CONTROL PROGRAMMES.
ISCOP(2)- STATUS OF CONTROL PROGRAMMES.(I.E. RUNNING OR OFF)
ISCOP(:3)-STATUS OF AUTo/MANUAL SWITCHES.

Et'le;
HDC"",
C1I11C"",

SAFCOD- SATURATOR FLOW CONTROL DATA
CLFLOD- CLOUDY LIQUOR FLOWD~TA
REMLTD- REMELT CONTROL DATA
CLIMED- CONTROL LIME DATA
GASFAD- GA~:: FLm,j CCitHROL DATA FOR "A" ~:;ATUF.:ATOF.:

GA::;FBD- GA~:; FLm,j CotHF.:OL DATFI FOR "E:" SATUF.:ATOR
GASFCD- GAS FLm,j COtHF.:OL DATA FOF.: "C" ~::ATUF.:ATOF.:

FILCYD- FILTER CYCL.E MONITERDATA
SERVOD- SERVOBALANS SCALE MONITOR DATA

FT'U.::j,~, I...~, T
, PROGRAM CLIME(2~30),05017:::8DR 2301788DR

C,- - - - - - - - - - - - ,- -.- '•• _. - - - .,. - - - - - -..,.. - - - - _. - - - - - - -._..,.. - -,- - - - -, - - - - - -..,.. - - - _. - - _. ",. - - - - ".,-,
C CLIME - CONTROLS THE LIME-SOLIDS RATIO BY REGULATING THE'
~ LIME-WHEEL SPEED. LINEAR PROPORTIONAL CONTROL WITH
l OVER-RIDE IS USED. THE RATIO IS REDUCED WHEN ALL
C THREE SATS. ARE OUT OF GAS. '
C
C
C
C
(:
c:
r·'-'
C
I'-'
C
1
_,

-'
1

_,

.'
C
C
C------------------------------..,..----------------------------------------
c:
C
C

~J 1~1 (11
f:1 f:1 ~:l ;2
00~l3

0(1(14
Of) f:15
0(106
Of:107
(100::::
00f:19
0(110
Of)ll
~:1 f3 :I. ;;:::
[1[1:1. :::::
(1 f)1 "f
f)015
0(116
0017
f:1f31:::
f:H,H 9
(10,::0
f)I:121
002,:':
Ot1~:::::::

f)0~::4

f)t12~5

f)(126
(1(127
002:::
(1(129
(1f3:3f)
[1(1:::: 1
f)0:32 C
(H:n3 C
0034 c:
0~33~:i c'
(1f:136 C
0(137 C
f) f):;:::: C
Of):39 C
Of:140 C
(1(141 C
f:1042 C
f)04:;: C
(1(144 C
(1f:145 C:
f)~:146 C:
0(147 C
~3f34::: C
f)f349 C
f)f:15(1 C
00~51 C
Of:152 C
0(153 C
f:1(154 C,
(1(1~55 C
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c::C----------------------------- - _
~ CHECK AUTO/MANUAL STATUS & FEEDBACK SIGNAL FOR CHANGES,
I...:

c-----------------------------------------------------------------------
c::
c::

c::C--------------------------------- _
C CALCUL.ATE SAT, FEED RATE IN TONS/HOUR,
C

BRIX*(l,-ALPHA) + AL.PHA*ENG(J)
FLOW*(l,-ALPHA) + AL.PHA*ENG(23)
SADV*(l.-ALPHA) + AL.PHA*ADCV(3)

EXPONENTIAL SMOOTHING OF INPUT DATA

Zf;'~::::~jn

IREP = 6~j

EQUIVALENCE(CLIMED(1),FCRS),(CLIMED(2),GOR)
EQUIVALENCE(PHCSP,GASFCD(3»
EQUIVALENCE(CLIMED(3),FCR),(CLIMED(4),VOLTS)
EQUIVALENCE(CLIMED(S),ALPHA),(CLIMED(6),ZR)

CLII"'IE])('(') ~~ IZ

WAIT UNTIL RESOURCE NUMBER RELEASED BY ENGUN

ccnO=1C1,314
%CAO IN LIME SLURRY AT DENSITY 1,1219121 TONCU.M,

PHC "~ ENG (:;::::;:::)
IGASC = IAND(ISCOP(2),00C11008)
IF(IGASC,EQ,O)PHCSP =. ENG(22)

1"·10 OI"",:::r;;:~'.IF.: I TE IF" GliSFC" f':Ut·H·j I1··jG,

j=II....PHfl=0, ,~

E: f,: I ::.:::::: Et··1 G( ::::: )
FLOI.,J::::ENG (~:::;;:)

~:;AD"l::::f1DC"l (:~::)

BF.~ I ::.:; .....

FL.O~'J ::::

~:;ADII/ -

SGPB - I,23 +0,0I3*SADV
SFF.: ::::: FLO~,J;~':::;GPD

SLIDS :::: SFR*E:F.:IX/I00,

MANl :::: lAND(ICIN(4),40B)
MANL EQUALS ZERO ON MANUAL.

IF(MANL,EQ,40B)GOTO lIe

INITAILISE CONSTANTS

10121 CALL RNRQ(2,IRN(14),IDUM)
CAL.L SI.,J ITF (~:i)

c::

c::

c::
C----------------------------------------------------------------------
c::
C
c::

c::
c::C------------------------------------_-------- _
c::
c::
c::

~3 ~~1 :::i 6
(1(15?
~3 (1 :::i :::::'
~:1 ~:15 9
0~211::::~j

~:106I

1':'11216 ~:::

C1 ~:16:;;: C:
(1 ~~If':: 4
(1 ~~11:::: ~5

~)~)66

~31'~16?

1'~1 ~) 6 :::::
0~~169

1'~1~j?O

(1 ~~1 -;:" 1.
(1~3?,~

[11'~1'?J C:
[1~j?4

~3121'?~i C
~:1~:1? 6
~3 ~~1 '? '?
(\(1?::::
(1121-;:"9
121121:::::0
~;) (\ :::: I
[1 ~~1:::: 2~

~) ~:1 :::: :::::
~)~3:::: 4
121(1::: :i
0~3::::6

(\(18?
~Z1 ~3 I:: :::
~)~3:::: 9
121(1'::1 ~j

~:1[19I

~~1 ~3 9 :~:

~:1 ~:1 " 3
(112194
~3~39~i

~:1 ~:19 6
(1 ~39 '?
~3 ~3 '31:::
(1~399 c::
(11[1121 c::
[111211.
(11 ~j ~:::

1211 (1:::
0104
(11~j~5

(11(\6
~31C1?

~) 1(1:::;:
~)109 c::
[111.121
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C
C---------~-------------------~------------------------~ _
C CHECK IF GAS FLOW CONTROL LOOPS RUNNING.
r'"-'

~J 111
(1112
(111 ::::
~3114 C
011 :i
(1116
(1117
(11 U::
0119
(1120
(1121
~J 122
~] 1~:;:3

0124
0125 C
~J 126
~3127

~;J 12 ::;:
. (1129

01::::(1
~:U :31

FLIM = ENG(9)/1.183
FCRS = FLIM*CCAO/SLIDS
IF(ABS(VOLTS-ADCV(9),LE.0.100)GOTO 110

ZR NOT RESET IF NO CHANGE MADE IN MANUAL MODE.
VOLTS ::: ADCV(9) .
ZR :::: (1.
GOTO 25~~1.

110 NOG01 ::: IAND(ISCOP(2),000160B)
NOG02 ::: IAND(ICIN(4),0007008)
NOGO ::: NOGOl + NOG02

NO LIME CONTROL IF GAS CONTROL OFF.
IF(NOGO.EQ.0010608)GOTO 140
CALL ERMES(2,0,IREP)
ZR:::~3 .
FLIM = ENG(9)/1.18::::
FCRS =FLIM*CCAO/SLIDS
GOTO 25~~1

(11::::2 C
0133 C--------------------------------------------------------------~--------
01:34 C
01::::5 C CALCULATE SAMPLING INTERVAL, SMOOTHING FACTOR &8ET DEFAULT
~~1136 C

C
C--------------------------------------------7--------------------------
C TEST FOR OUT-Of-GAS CONDITION
C

DEFAULT ON OUT-Of-GAS SWITCH

GET ERROR IN C-SAT PH

DELT=FLOAT(ISAMT*ISMUL(2)*ISMUL(6»

PHC=ENG(22)*ALPHA + (l.-ALPHA)*PHC
EF.:=F'HC -"PHC ::;;p

ZA ::: ENG(24)/GASFAD(S)
Z8 ::: ENG(25)/GASFBD(8)
2C ::: ENG(26)/GASFCD(S)
IF«ZA.GE.O.97).AND.(ZB.GE.O.97»IZ=1
IF(.NOT. «ZA.l...E.~3.1).At,m. (ZB.LE.0.1»)GOTO
IF(ZC.GE.0.97)GOTO 200
IF (EF.:. LT. ~J. :n Z::: 1
IF( .NOT. «ER. GT, 0.). AND. C2C. LT. 0.1» )GOTO
CALL ERMES(lt0,IREP)
GO TO 10~J

IF«EF.:.GT.I~1" ),I::II"m. <ZC,GT,(1" l»I:2~.='-l

14~3 I Z:::~~1

C

C
C----------------------------------------------------------------------
C
C,-,
-'

~31:~:7

~31::::8 C
C(1139

~~1140

~) 141
. ~3142
~,)14::::

~~1144

0145
0146
~~1147

0148
~314'3

13150
(1151
~3152

015:3
~~1154

(1155
~3156

(1157
t115:::
~~115'::l

~~i160

~3161

(1162
oi6::::
~3164

~3165 C
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,-

PAGE 0004 CLIME 9:36 AM MON.~ 20 FEB.~ 1978

0166 C-------------------------------------~--------------------------------

0167 C ADJUST LIME-SOLIDS RATIO SMOOTHLY
0168 C
0169 200 ZR=(l.-ESF)*ZR+ESF*IZ
0170 FCR=FCRS*(l.-GOR*ZR*ER)
0171 C
0172 C-----------------------------------------------------------------------
0173 C
0174 C CALCULATE LIME FLOW RATE IN TONNNES/HR
0175 C
0176 FLIM=FCR*SLIDS/CCAO
0177 C
0178 c-,-------------··~·_--~·--·-~·-·""·--,--~-~--,--··-- '_.~~'--'---._.--__----'""""'----.."""'...n-.'-_
0179 C
0180 C CONVERSION TO VOLTS FOR OUTPUT TO DAC.
0181 C
0182
0183 C
0184 C

SPEED=1.183*FLIM
AT LIME FLON=0.01292 CU.M./MIN./REV.

LIME DENSITY= 1.090 TON/CU.M.
0185
0186
0187
0188
0189
0190
0191
0192
0193
0194
0195
0196
0197
0198
0199
0200
0201
0202
0203
0204
0205
0206
0207
0208
0209
0210

VOLTS=0a937*SPEED+0A836
C
C----------~-----~-----------------------------------------------------
C
C OUTPUT CONTROL ACTION
C

250 CALL CDAC(2~VOLTS)

CLIMED(7) = FLOAT(IZ)
C
C-----------------------------------------------------------------_----
C
C UPDATE 4-TH BIT IN ISCOP(l) FOR WCHDG
C

ISCOP(1)=IOR(108~ISCOP(1»

c
C----------------------------------------------------_-------- _
C
C LOCK ON RESOURCE NUMBER
C

GOTO 100
I
~

~

C-----------------------------------------_--------- __- _
C
C

300 CONTINUE
END

FTN4 ~OMPILER: HP92060-16092 REV. 1726

** NO WARNINGS ** NO ERRORS ** PROGRAM - 00646 COMMON = 00758
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PAGE 000 1 FH~.

I,-SA"I" PH)

SATUPfiTOP
SATUF.:ATOF.:
:::;ATUP,:,TOR

------ COM~)N ------

GP~ = PROPORTIONAL GAIN FOR GAS FLOW SETPOINT
GIRS - INTEGRAL GAIN FOR GAS FL.OW SETPOINT
GIF = INTEGRAL GAIN FOR FLOW CONTROL
PHAC = CONTROL. POINT FOR A-SAT. PH
PHASP = PH SET-POINT
VPASP = VALVE POSITION SET-POINT
IZC = OUT-OF-GAS FLAG FOR C-SAT(OVER-RIDES
GOA = OVER-RIDE PROPORTIONAL GAIN

SATUPATOR FLOW CQNTPOL DATA
CLOUDY LIQUOR FLOW DATA
REMELT CONTROL DATA
CONTPOL LIME DATA
GA:::; FLcn,l CotHPOL DATA FOP "A"
GAS Fl...m,l CCltHF.:OL DATA FOP "B"
CA:::; FLO~'l C:OI"~Tr;':OL DATf1 FOR "C"
FILTER CYCLE MONITER DATA
~::;EF.:V08ALAt·~:3 :::;CALE t'10H I TOF.: DATA

l=A-SATURATOP OUT OF GAS.
2=A-SATUPATOR GAS SUPPLY VALVE CLOSED.
3::::~'lAf;:NIt'~G ..... "])EL'1"" REDUCED TOO LO~'l - "iAI...","E C:OI··~TF.:OL.. AFFEC:TE:D

EPF.:OR

t·~OI·'1ENCL.ATURE :

2

4

COMMON ENG(64),ADCV(64),CDACV(24), .
1 SAFCOD(20),CL.FL.OD(10),PEMLTD(10),CLIMED(10),

GASFAD(10),GASFBD(10),GASFCD(10),FILCYD(10),
SERVOD(20),DUMMY(50),
ISA t'1 T, I ~::; t'1 UL( :::::::: ) , IPt·~ ( 41] ) , ICIN(4) , ICO UT(4) ,
ISCOP(3),IDUMY(50)

~::;AFCOD­

CLFLOD­
r;':EI"1LTD-·
CL !t'1ED­
GASFAD­
GI,SFBD­
Gf1~:;FCD-"

FILC'r'D­
SEF.:VOD-

ENG - ENGINEERING UNITS (CALCULATED 8Y ENGUN FROM ADCV VOLTAGES)
ADCV A/D VOLTAGES (UPDATED 8Y SCAD)
CDACV - D/A VOLT AGES (UPDATED BY CDAC)

FH~4, L
PROGRAM GASFA(2,30),230178BDR 310178BDR 0102788DR

c------------------------------------------------~----~-----------------
C GASFA - CONTROLS THE PH OUT OF A-SATURATOR 8Y REGULATING
C THE GAS FEED RATE. A CASCADE CONTROL SYSTEM IS USED
C WHERE THE GAS FLOW RATE SET-POINT IS ADJUSTED 8Y
C PROPORTIONAL PLUS RESET ACTION FROM THE A-SAT PH
C ERROR. THE GAS FLOW CONTROL VALVE SETTING IS ADJUSTED
C 8Y RESET-ONLY ACTION TO MAINTAIN THE FLOW
C SETPOINT. THE A-SAT PH SETPOINT IS REDUCED ONLY WHEN
C C-SAT IS OUT OF GAS, IN WHICH CASE A SIMPLE PROPORTIONAL
C OVER-RIDE IS BROUGHT INTO ACTION. .
C
C
C
C
C
C:
C
C
C
c:
C
C
C
C
C
C
C
C
CC-----------------------------------------------------------------------
c:
C
C

0001
(11Z1 (~12

O\~IO:::::

0(1(14
(1 (H35
IZ11] ~Z16
fj~Z10;::'

~:.H2H3::::

~Z10 ~Z19

(1131 C1
·CHZ111
(H]12
C1el ::.:
0\) 14
0fj1~5

0016
~3017

~Z1 ~:11 ::;::
(1(119
(1~32(1

~ZH]21

f) (1 ;~: ~~

0~]2::::

0(124
(H)25
f)(126
0027
(102:::
~Z1 (1 ~:: '3
0~):::;:0

~)~] :::;: 1
0032
(1 ~Z1 :::;:::.:
(11Z134
~~1035

~Z1\~1:36

0(1 ::: i'
~](13::::

(1IZ1::;:9
(1(14(1
1]04 :I.
~3(142 C
(11]4:3 C
0044 C
(1f)4:i . C:
(H;146 C
~]047 C
(1\)4:::: C
IZ1f)49 C:
0(150 C
(1IZ151 C
(1(1~i2 c:
(1(1~5::: C
1:1(154 C
1](155 C
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PAGE 0002 GASFA 9:37 AM MON., 20 FEB., 1978

C FLOW SETPOINT ADJUSTMENT INTEGRAL RESET TIME IN MINS.

C
C-------------------------------------------------------~---------------
C
C INITIALISE CONSTANTS
C

EQUIVALENCE(GASFAD(1),PHAC),(GASFAD(2),GINDEP)
EQUIVALENCE(GASFAD(3),GPS),(GASFAD(4),GIRS)
EQUIVALENCE(GASFAD(5),GOA),(GASFAD(6),PHASP)
EQUIVALENCE(GASFAD(7),GASA),(GASFAD(8),GASAMX)
EQUIVALENCE(GASFAD(9),VLIM),(GASFAD(10),VPA)
EQUIVALENCE(~ASFCD(3),PHCSP)

ISAMT MASTER SAMPLING RATE (PACER FREQUENCY, SECS)
ISMUL - SUB-RATE SAMPLING TIMES (PERIOD(X)=ISAMT*ISMUL(X»
IRN RESOURCE NUMBERS
ICIN - CONTACT STATUS IN (UPDATED BY SCCS)
ICOUT - CONTACT STATUS WORDS UPDATED BY CONTROL PROGRAMMES.
ISCOP(l)- FLAG USED BY WCHDG AND THE CONTROL PROGRAMMES.
ISCOP(2)- STATUS OF CONTROL PROGRAMMES.(I.E. RUNNING OR OFF)
ISCOP(3)- STATUS OF AUTO/MANUAL SWITCHES.

C
C
C
C
C
C
C
C
C
C
C------~-----------------~----------~--------------~--------------------
C
C

0056
0057
0058
0059
0060
0061
0062
0063
0064
0065
0066
0067
0068
0069
0070
0071
0072
0073
0074
0075
0076
0077
0078
0079
0080
0081
0082
0083 C
0084
0085 C
0086
0087 C
0088 C
0089
0090 C
0091
0092 C
0093
0094 C
0095
0096 C
0097 C
0098
0099
0100 C
0101
0102
0103
0104 C
0105
0106 C
0107 C
0108
0109 C
0110

GPS = 0u25
FLOW SETPOINT ADJUSTMENT PROPORTIONAL GAIN

GINDEP = 0.03125
FLOW BONTROL VALVE INTEGRAL RESET TIME IN MINS/SEC.

GOA = 1.0
A-SAT. PH SET-POINT OVER-RIDE GAIN

PHA = ENG(20)
A-SAT. PH FOR EXP. SMOOTHING

PHACO = PHA
SET POINT PH LAST CYCLE (INITIALISED)

PHC = ENG(22)
C-SAT PH FOR EXP. SMOOTHING

PHASP = ENG(20)
A-SAT PH SETPOINT

IGASFC = IAND(ISCOP(2),000100B)
IF(IGASFC.NE.1008)PHCSP = GASFCD(3)

VPA = 0.55
VLIM = 0.65
GAS A = 0~5

GASAMX = 2720u
MAXIMUM FLOW CONSTRAINT - 4350 CU.M/HR(1600CFM)

ALPHA = .2

IREP=60
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PAGE 0003 GASFA 9:37 AM MON., 20

SUPRESSION PERIOD (MINS.) FOR ERNES

IFLAG = IAND(ICIN(4),1008)
AUTO/MANUAL SWITCH CHECK

IF(IFLAG.NE.100B)GOTO 300 .

100 CALL RNRQ(2,IRN(15),IDUM)
WAIT UNTIL RESOURCE NUMBER RELEASED BY ENGUN.

CALL S~oJI TF (4)

c:
C
C---------------------~-------------------------------_p---------------_
C

C

01:1. :1.

~3112

011:::::
~~1114

~~1115

~'H 1.6 C
lail? c:
(11 H:
~~1119' C
012(1
~3121

~~11 ;~~ ~::

(11;23 C
0124 c-----------------------------------------------------------~-----------
0125 C CALCULATE SAMPLING INTERVAL
(1 L~6 C
012? DELT=FLOAT(ISAMT*ISMUL(2)*ISMUL(6))
0128 IF(DELT.LT.6)CALL ERMES(3,0,IREP)

EF.:APH :::: PHt'1-PHfIC

PHAC=PHASP-GOAfGASFCD(4)*ERPHC
SPPDOT = PHAC-PHACO .
PHACO :::: PHAC

EAPDOT = ALPHAf(ENG(20)-PHA)
PHA=ENG(20)*ALPHA·+ (l.-ALPHA)fPHA
PHC=ENG(22)*ALPHA + (1.-ALPHA)*PHC
ERPHC = PHC-PHCSP

DEL FA = GPSf(EAPDOT-SPPDOT) + GIS~ERAPH*DELT

GASA = GASA + DELFA
IF«GASA*5436.6),GT,GASAMX)GASA :::: GASAMX/5436.6
IF(GASA.LE.0.)GASA=0.01

GIRF = GINDEP*DELT
INTEGRAL RESET TIME FOR CONTROL VALVE,MINS.

GIF = 1./(60.*GIRF)
GIS = 1./(60.*GIRS)

C:
C-----------------------------------------------------------------------
C CALCULATE A-SAT CONTROL PH SETPOINT IN CASE C-SAT IS OUT OF GAS
C

,...
-'

C------------------------------------~--~-------------------------------
C CALCULATE SMOOTHED A&C PH'S, C-SAT PH ERROR & A-SAT PH CHANGE
I..··-'

C
C-----------------------------------------------------------------------
C A-SAT GAS FLOW SETPOINT
C

C
C-----------------------------------------------------------------------
C CALCULATE A-SAT ERROR
C

012'3 c:
0130 C-----------------------------------~-----------------------------------

0131 C CALCULATE INTEGRAL GAIN
01:3~:: c
~Z11 :~:::.:

(11 ::::4 C:
~3135

0136
~31 ::;::?
01 :3:::
01 ::::,;::.
~J 140
0141
~3142

(1143
0144
014~:i

0146
0147
~314:::

(114'3
0150
(11~:il

(115,:
(115:3
£1154
0155
01 ~56

£11~i?

~~115:::

0159
016(1
0161 .
~3162

~J 1t,:;:;:
(1164
0165 C
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I..··..'C-------------------------------------- _
C

r-------------------~--------------~------~-----------------------------
:::: '•... t j It .. "I" f.::' f::' f;;' f.:' ::. f.~: I', I T 1": I:l :::; FL f"1 ~,j PnT' F .L LH .. !... H ' •. 1 .3 ..

C:

C:
C--------------------------------~-------------------- ~----~-----
C UPDATE 4-TH BIT IN ISCOP(l) FOR WCHDG
C

C
C---------------------------------------~-------~-------------~------~--
C CHECK IF VALVE POSITION LIMITING.
c:

VPA :::: VPA - DELVA
IF(VPA.GT.VLIM)VPA :::: VlIM

IF(FLOWA,LT.(GASAMX/5436,6»GOTO 200
CALL ERMES(l,0,IREP)
GOTO 3~:::10

DELVA :::: GIF*DELT*ERnF

ARG = (ADCV(24)-2")/8~

IF(nDCV(24),GT,2.)GOTO
FL()~,JA :::: ~:::1.~~1~31

GO TO l :'~:(1

FLOWA = SQRT(ARG)

120 ERAF :::: FLOWA-GASn

ll0

200 IF(VPA.GT.0. )GOTO 300
'l/PA :::: ~] If

CALL ERMES(2,0,IREP)

300 VPAO=10,*(1.,-VPA)
IF(VPAO.LE.(10.*(I.-VLIM»)VPAO::::(10,*(l,-VLIM»
CALL CDAC(3,VPAO)

400 ISCOP(l) :::: IOR(20B,ISCOP(1»

c:
C------------------------------------------------------------~----------
C CALCULATE FLON ERROR .
C

C
C------~----------------------------------------------------------------
C CALCULATE VALVE POSITION.
C:

C:
C----------------------------------------------------------------------_
C OUTPUT CONTROL ACTION
c:

C:
C-----------------------------------~------------ _
C LOCK ON RESOURCE NUMBER
c:
CC WRITE(?,1000)ERPHC,ERAPH,EAPDOT,SPPDOT,DELFA,GASA,ENG(24),FLONA,
CC 1 GASFCD(4),ERAF,DELVA,VPA
C1000 FORMAT(//,2(6FI2,6,/»

GOTO 10~3

~3166

016?
~~116::::

Ol69
01?~:~

~:::11?1

~)17c.:

~)1?:3

(11 ?4
~:::11?~5

(11 ?6
~;:il'??

'~11 '? l::::

[11 ?9
~;:i 1I::: ~7.1

~7.11 I::: 1.
1~11 82
~) 1::::3
(11::::4 C:
~Z11 :::~::i

~Z11:::6

~) 18?
~J 1::;::::
(11 :;::9
o19(~

I~~ 19:1.
~7.11 ':"2
~7.11 9:::::
~;:i194 C:
(119~5

~;:i 196
01 '3'?
~~ 11~~ ::::
0199
~:::12 ~~~ 0
~:::120 1.
~:::1202

~;:i2~J3

~:::12~34

~)2~35

(12i.~6

~:::12 ~3 7'
~~12 (1::;:
02(19
~}2H1

0211
~;:i21 ,7~

~n1.::':

(~214

~;:i2: 1. ~:i

(1216
(121 '?'
(121 :::
0219
~:'12:;;~O
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PAGE 0005 GASFA 9:37 AM MON., 20 FEB., 1978

0221 500 CONTINUE
0222 END

FTN4 COMPILER: HP92060-16092 REV. 1726

** NO WARNINGS ** NO ERRORS ** PROGRAM = 00557 COMMON = 00758
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B.... ~:::; n..'" F'I..,I)

~::: fl T1...1 f,: A'T' () F,:
::::: fl TUF: A"1" 0r;;:
~:; I:::' TUI,: fi T0F.:

------ COMMON -~----

GPS - PROPORTIONAL GAIN,FOR GAS FLON SETPOINT
GIRS = INTEGRAL GAIN FOR GAS FLON SETPOINT
I..:.If= INTEGRAL GAIN FOR FLON CONTROL
PHBC = CONTROL POINT FOR B-SAT,PH
PHBSP =PH SET-POINT
VPBSP = VALVE POSITION SET-POINT
IZC = OUT-Of-GAS FLAG FOR C-SAT(OVER-RIDES
GOB = OVER-RIDE PROPORTIONAL GAIN

SATURATOR FLOW CONTROL DATA
CLOUDY LIQUOR FLON DATA
REMELT CONTROL. DATA
CONTROL LIME DATA
GriS FL..CI~',I C:OI"jT·[':OL.. DATfi FOP "11"
GAS Fl...O~'~ C()HT'f,:OL DATn FOf,: "I::::"
GAS FLO~',I C:OI"jT'F.:OL. DATA FOR "C"
FILTER CYCLE MONITER DATA
SERVOBALnNS SCALE MONITOR DATA

:I.=B~SATURnTOR OUT OF GAS.
2=B-SATURnTOR GAS SUPPLY VnLVE CLOSED.
::::=NARNING - DELT REDUCED SO LON THAT VALVE CONTROL AFFECTED

t'j () 1"'1 EN CL AT 1...1 F.: E :

COMMON ENG(64),nDCV(64),CDnCV(24),
1. SAFCOD(20),CLFLOD(10),REMLTD(1.0),ClIMED(10),
2 GASFAD(10),GASFBD(10),GASFCD(10),FILCYD(10),
:::: SERVOD(20),DUMMY(50),
4 I ~:;At'1T, I ~::;t'1UL (32::::0, I f<:N (4[1) , ICI t,,1 (4) , ICOUT'( 4) ,
!::i ISCOP (::::) :' I DUI"1'r' (!:;~J)

ENG - ENGINEERING UNITS (CALCULATED BY EN GUN FROM ADCV VOLTAGES)
ADCV - A/D VOLTnGES (UPDATED BY SCAD)
CDACV - D/A VOLTnGES (UPDATED BY CTIAC)

~:;AFCOD·­

CLFL.OD·­
[,:Et"ILTD­
CL It'1ED-·
GI1SFAD·,·
GASFBD·~

GA~:;FCD-·

FIL.C'r'D-·
~::; EF.: V0D-,

' .
..,'
C:
C
C:
C:
C
C:
c:
c:
C--------------------------------------~--------------------------------
C:
C
c:

F' 'T' 1"·14 :' I...
PROGRAM GASFB(2,30),230:1.?8BDR ::::10:l.?8BDR 0102?8BDR

r--------------------------------------~--------------------------------
.:::: ... ::: ':. FE' .... 1.... ' 11.. 1..,.. r;:' 1"'11 '::. "1"1''',11:::' F" H ,1-11 1"1" ne:' I:;:' ..,.. ~::; cl·I'" Ir;' I:~ ..[' nI:;,' 1::::0-" t:;, E-"'''' 'I 1:::'-1" I I', 'I":'I.... 1..:.11,_" ,., 1 '.•' ,. _ '" _f' ..,' ,,' •• ·.1 _ ' ~. I P', .~.,.... ,,1 ..,'

C THE GAS FEED RATE, A CASCADE CONTROL SYSTEM IS USED
C WHERE THE GAS FLON RATE SET-POINT IS ADJUSTED BY
C PROPORTIONAL PLUS RESET ACTION FROM THE B-SAT PH
C ERROR, THE GAS FLOW CONTROL VALVE SETTING IS ADJUSTED
C BY RESET ACTION ONLY TO MAINTAIN THE FLON
C SETPOINT, THE B-SAT PH SETPOINT IS REDUCED ONLY WHEN
C C-SAT IS OUT OF GAS, IN NHICH CASE A SIMPLE PROPORTIONAL
C OVER-RIDE IS BROUGHT INTO ACTION,
C:
C:
C
C:
,-:

(~\::I(I1.

0(1(1;:::
(1 ~Z1 (~ :::::
0~Z104

(1(10~5

(\~jO(;

(1(10';:"
~Z1 ~Z1 0 I:::
(1 ~::1121 ':l
~j ~21 :I. ~j

O~Z11.1.

O() 1 ;;::
n~~1 1:::::
(~\ \:\ 14
O(~ 1. ~::i

~Z1 (1J. 6
~:\ ~Z1 1'?'
[1(11::;::
()(119
(:1~~12(J

(,0;;::1
~j \::12 2~

~Z1(1,:::::::

~J(1;24°~Z1 ;;:: ~:i
(1(1;~:: (;
~j~Z1;~ ?
[t~Z1;;':~ :::
~j ~\;;:~ ':l
[1 ~Z1:::: ~j

~Z1[1:::: 1
[1 (1 :::: ,::.:
(\~Z1 :::::;;:
[1~Z1:::: 4
[11:::1:::: ~5

~Z1(1:::: t:;
~Z1 ~Z1::::?

(\ ~Z1 :;;: I:::
[1 ~Z1 :;: '3
0\::140
0(141
[11Z142 C:
IZ11Z143 C
~]~Z14<J. C
(\ ~Z14~) C:
0[146 C:
~)~Z14? C:
\::1 ~~14 I:: C:
(1\::149 C:
C1~j50 C:
0~Z1~51. c:
o\) ~::i 2:: C
[1 ~:::1 !:;i :;;: C:
~Z1IZ1 ~5 4 C:
(\ ~:::1 ~j~) C
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C
C--------------------------~--------------------------------------------

C
C INITIALISE CONSTANTS
C

1. 600 CFt'1.
::: ~~~ '? ~~~ ~::I 11

MAXIMUM FLOW CONSTRAINT -

ALPHA = .2

I ~:EP=6(i

IGASFC = IANDCISCOP(2),000100B)
IFCIGASFC.NE.100B)PHCSP = GASFCD(3)

I/F'E: = (111 55
VLH1 = 0.65
GA:::;B = ~3. 5

FLOW SETPOINT ADJUSTMENT PROPORTIONAL GAIN
GHmEP = O. 0312~5

FLOW CONTROL VALVE INTEGRAL RESET TIME IN MINS/SEC.
GOB = 1. '

8-SAT. PH SET-POINT OVER-RIDE GAIN

PHD = Et·lG C;;::: J. )
B-SAT. PH FOR EXP. SMOOTHING

PHBCO = PHB
SET POINT PH LAST CYCLE (INITIALISED)

PHC = Et'jG C22)
C-SAT PH FOR EXP. SMOOTHING '

PHE:~:;P = Et·jG C21 )
B-SAT PH SETPOINT

EQUIVALENCECGASFBD(1),PHBC), CGASFBD(2)1GINDEP)
EQUIVALENCECGASFBD(3),GPS),CGASFBDC4),GIRS)
EQUIVALENCECGASFBDCS),GOB),CGASFBDC6),PHBSP)
EQUIVALENCECGASFBD(7),GASB),CGASFBDCg),GASBMX)
EQUIVAlENCECGRSF8D(9),VLIM),CGASFBDC10),VP8)
EQUIVALENCECGASFCD(3),PHCSP)

GIRS=:;:O.
FLOW SETPOINT ADJUSTMENT INTEGRAL RESET TIME IN MINS.

,ISAMT MASTER SAMPLING RATECPACER FREQUENCY, SECS)
ISMUL SUB-RATE SAMPLING TIMES CPERIODCX)=ISAMT*ISMULCX»
IRN RESOURCE NUMBERS
lelN - CONTACT STATUS IN CUPDATED BY seCS)
IeOUT CONTACT STATUS WORDS UPDATED BY CONTROL PROGRAMMES.
I :::;eop C1) - FLAG U:::;ED B',!, ~KHDG At·m THE COtHROL P~:OG~:Am1E:::;.
ISCOP(2)- STATUS OF CONTROL PROGRAMMES.CI.E. RUNNING OR OFF)
ISCOP(3)- STATUS OF AUTO/MANUAL SWITCHES.

c

C:

C
C
C
c:
C
C
C
e
C
1""-'C-----------------------------------------------------------------------
c:
e

(1[156
[H~157

~~1 ~~15 :::: .
(1~~1 ~::i '3
0[160
(H~161

~~1062

·(1~~16:3

~]064

[1(165
..::1(166
~]"::16?
[1(16:::
0069
0(170
~]071

~]072

(1(17:::::
(1IZI,?'4
0~3?:i

~]076

(1(177
~]~37 ::::
(1079
~]~~1::: 0
O~~1::: 1.
0~3:::: ,~

~~1 (1::: :::;:
~]0::::4

~](1::::S e
~]0:::6

~~1~3:::? C
~~H3:::':::: C
~J (1 E: ':'l
~~1090 c:
00'31
~](192 C
0093
0094
(HZ195
[1[196 C:
~)C19? C
~Z109 :::
~]099

(1100 C
~:H ~31

0H)2
0103
..::11 ~::14 C:
~J 11)5
~j106 C
~31 07 C
~3 HH::
0109
011.0
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C
C-----------------~-----------------_-~--_----------- ~ _
C B-SATGAS FLON SETPOINT
C:

C
C----------------------------------_--~----------- ~--------------
C CALCULATE 8-SAT ERROR
C

c:
C-----------------------------------------------------------------------
C CALCULATE SMOOTHED B&C PH'S, C-SAT PH ERROR & B-SAT PH CHANGE
c:

c:
C-----------------------------------------------------------------------
C . CALCULATE SAMPLING INTERVAL
1""....

SUPRESSION PERIOD (~INS.) FOR ERMES

GIRF = GINDEP*DELT
RESET TIME FOR CONTROL VALVE,MINS.

GIF = 1./(60.*GIRF)
GIS = 1./(60.*GIRS)

IFLAG = IAND(ICIN(4),2008)
AUTO/MANUAL SNITCH CHECK

IF(IFLAG.NE.2008)GOTO 300

DELT=FLOAT(ISAMT*ISMUL(2)*ISMUL(6))
IF(DELT.LT.6.)CALL ERMES(3,0,IREP)

EBPDOT ::: ALPHA*(ENG(21)-PHB)
PHB=ENG(21)*ALPHA + (l.-ALPHA)*PHB
PHC:::ENG(22)*AlPHA + (l.-ALPHA)*PHC
ERPHC = PHC-PHCSP

CALL S~'.I ITF (:::::)

PHBC:::PH8SP-GOB*GASFCD(4)*ERPHC
SPPDOT ::: PHBC-PHBCO
PHBCO ::: PHBC

EF.~BPH = PHB·.... PHBC:

DEI FE:::::: I~P::::~:' (' EI::PDn"l" ·.... ·:;PPDnT ", + 'I~; I '::·,:,:·EPPPH":· DEL T
I·~ f'~ ,; E' .- 1- f'''j ,~. E" ~ + .'/"1' 1::.:'1 I·.... ~:, .... ~.' ... ....,.. . '. ..' .. .
,.:a-,,_I. I .... ..:I .j I ... ::~ .... '"~ ,:.

IF«GASB*5436a6)"GTnGAS8MX)GASB = GASBMX/5436a6
IF(GAS8.LE.0.)GAS8=0.01

100 CAll RNRQ(2,IRN(16),IDUM)
NAIT UNTIL RESOURCE NUMBER RELEASED BY ENGUN.

C

C
C------------------------------------------------------------~---~------
C CALCULATE INTEGRAL GAIN
C

c:
C-----~------------------------------------------------_-- _
C CALCULATE 8-SAT CONTROL PH SETPOINT IN CASE C-SAT IS OUT OF GAS
C

c:
C:
C--------------------------------------------------------------------~~-
C:

~H 11
~~1112
~HU

~~1114

[11 1~::;

~~1116 c:
~311? C
[111 :::::
0119 C:
[11 2: ~~1

(,112: :I.
~~112 ~::

~Z112:~:

[112,:1­
~~1125

(1126
(112?
~Z112:3

~~1129

~~11 :;: (1
[11:::: 1
(11 :;:;;::~

~~11 :;: :~::

~Jl:;:4 C
~:1 1 ::::~)

(11 ::::6
~J 1:3';:"
~~11 :::: :::
~~11 :;: ';'l
~~114~~1

~~1141

12t14~~

~~114 ::::
~J 144
(114~:)

(1146
(114?
~~1 14:::
~J 149
~J15J21

~J 151
~Jl~.52

~~115::::

1-)154
015~)

~J 156
~~1157'
~Z115:::

~Jl~5,)

(116~~1

~~1161

~]162

~J 16:;:
~J 164
016~:) c:
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PAGE 0004 GASH: 9: 39 FH'l t'lOt'j., 20 FEB., 197:::

0166 C------------------------------ _
0167 C CALCULATE PRESENT GAS FLOW RATE
016:::: C

110
ARG = (ADCV(25)-2_)/8.
IF(ADCV(25).GT.2.)GOTO
FLO~,jS ::: ~~1. f~I~~11

GO TO 12~3

FLOWS = SQRT(ARG)110

120 ERSF ::: FLOWS-GASB

0169
0170
0171
(1172
017:3
~~11 '74 C
0175 C-------------------------------------------_~-------- __ ----~-- _
0176 C CALCULATE FLOW ERROR
~~11?'7 C
~] 17::::

C
C-------------------------------------------~---------------------------

C

I
'·,
-'f-----------------------------------------------------------------------
:: IIF'IH'·"rE: t::'·",'"H E"'I'''''' '1'1,·1 IC'I'":nF"'(l':i Fnp ~,jl-:HDr' .1_, _ I ,.,.I , "1,,",',"_,, _. _ ",I

C

c:
c--~--------------------------------------------------------------~-----
C CHECK IF VALVE POSITION LIMITING.
C

I t'H!EPENDEtn OF DEL T! ! !

VPB ::: VPB - DELVE:
IF(VPB.GT.VLIM)VPB ::: VLIM

IF(FLOWB.LT.(GAS8MX/5436.6»GOTO 200
CALL ERMES(1,0,IREP)
GOTO :3(1[~

GOTO 1(10

cotn I t'~UE

EtHi

CALCULATE VALVE POSITION.

DEL VB = GIF*DELT*ER8F
GIF*DELT I::;

200 IF(VPB.GT.0. )GOTO 300

400 ISCOP( 1.) = IOF:(40B, I::;;COP( 1»

:300 VPSO=10.*(1.-VPB)
IF(VPBO.LE. (10.*(1.-VLIM»)VP80=(10.*(1.-VLIM»
CALL CDAC(4,VPBO)

C
c:

c
c-----------------------------------------------------------------------
C OUTPUT CONTROL ACTION
C

c
C---~-------------------------------------------------------------------
C LOCK ON RESOURCE NUMBER
c

017'3 C
0180 C--------------------------------------------~--------~ _
(11::H
[11 ::::: ~:~

~J 1::::3
0184 C
t~ 1::::!::i C
~] 1:::6
0187
(11 ::::::
0189
0190
~) 1':;J1
0192
01 '~::::

~) 194
(1195 C
~) 196
~)197

'319:::
019':::1
0200
02~) 1
0202
(12(1:3
~)204

(120:;
02~)6

. (12~~17

~~12(1:::

~)2~)9

0·21 ~)

~)211

~)212

021 ::::
(1214
~Z1215

0216
~3217

~)21:::

(1 ~~: 1':.<

~3220
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PAGE 0005 GASFB 9:39 AM MON", 20 FEBu' 1978

FTN4 COMPILER: HP92060-16092 REV. 1726

** NO WARNINGS ** NO ERRORS ** PROGRAM = 00556 COMMON = 00758
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PROPORTIONAL GAIN FOR GAS FLOW SETPOINT
PROPORTIONAL GAIN FOR GAS VALVE CONTROL
INTEGRAL GAIN FOR GAS FLOW SETPOINT .
INTEGRAL GAIN FOR GAS VALVE CONTROL
C-SAT PH SET-POINT
OUT-OF-GAS FLAG FOR C-SAT.

1 :::: C-SATURATOR bUT OF GAS.
2 :::: C-SATURATOR GAS SUPPLY VALVE CLOSED.
3 :::: SAMPLING INTERVAL TOO SHORT FOR CONTROL ALGORITHM.

, ,------ COMMON -----~

tl1ESSAGES :

GP:::: ,."
GPF ..,
GI F.~::: ...,
GI F.~F -,
PHC::;P',;:;

IZC ::::

ENGINEERING UNITS eCAL.CULATED BY ENGUN FROM ADCV VOLTAGES)
A/D VOLTAGES'eUPDATED BY SCAD)
D/A VOLTAGES (UPDATED BY CDAC)

SATURATOR FLOW CONTROL DATA
CLOUDY LIQUOR FLOW DATA
REMELT CO~TROLDATA
CONTROL LIME DATA
GAS FLm,~ COfHF.:OL DATA FOR "A" ::::ATUF.:ATOP
GA:::; FLO~~ COfHROL DATA FOR "B" ::::ATUF.:ATOF.~·

GAS FLm,~ COfHF.:OL DAHl FOR "C" SATURATOR
FILTER CYCLE MONITER DATA
SERVOBALANS SCALE MONITOR DATA

MASTER SAMPLING RATE ePACER FREQUENCY, SECS)
SUB-RATE SAMPL.ING TIMEsePERIODeX)::::ISAMTfISMULeX»)
RESOURCE NUMBEPS

- CONTACT STATUS IN (UPDATED BY SCCS)
CONTACT STATUS WORDS UPDATED BY CONTROL PROGRAMMES.

EF.:ROR

t,~ 01"'1 EHCLAT UI:::~ E:

COMMON ENG(64),ADCVe64),CDACVe24),
lSAFCOD(20),CLFLODe10),REMLTDe10),CLIMEDe10),
2 GASFAD(10)lGASFBDe10),GASFCDe10),FILCYDe10),
3 SERVOD(20),DUMMye50),
4 ISAt'lT, I:3t'lUl...e:::::,::), 1~:t'le4~3), ICIt,l(4), ICOUT(4),
5 ISCOp(3),IDUMyeS0)

I'::Atn
I :::;t'lUL. ­
IF:t,~

I CI I"l
ICOUT

Et'~G

ADCV
CDAC',,..

:::AFCOD­
CLFLOD­
F.:EML TD­
CLIt'lED­
GA:::;FAD­
GASFBD­
GFI:SFCD­
FILC,,!,'D­
::;EF.:VOD-

Fn~4, L
~ PROGRAM GASFCe2,30),050178BDR 23017:::BDR 01027:::BDR .
L------------------------------------~----------------------------------
C . GASFC - CONTROLS THE PH OUT OF C-SATURATOR BY REGULATING
C . THE GAS FEED RATE. PROPORTIONAL PLUS INTEGRAL
C CONTROL IS USED.
C WHEN OUT OF GAS, THE FLAG IZC eEQUIVALENT TO
C GASFCD(4) IN COMMON) IS SET TO 1,e . .
c:
C
e
c:
e
C
C
C
C
(' .

C
C
C
C
C
C
C--------------------------~--------------~--------------------------~--

C
C
C

0(101
0002
(10(13
~)004

(1~3(15

(1~1[16

0~Z107

0[10:='::
~j ~Z10 ':::1

~:1~110

O~~ll1

~) ~Z11 ~::

~j~Z113

[HZ114
~ZH315

~ZH) 16
(1(117
(101 :::
0019
[1~1c:0

(1(121
~) (1 ,:: ,::

0£123
[H324
0025
0(126
~ZHZ127

~~1 ~Z12 :::
~Z1~12':i

[1~1:~:t1

0t1:~: :I.
~jt1:::::2

1)(1::::::)
·0~:1:::4

~) ~1:::: ~::;

~Z1(1::::6 C
[1~f'::7 C:.
0(1::::::: C
0103:39 C
~3040 C
~)041 C
0042 C
[H)43 C
~3t144 C
~3~Z145 C
~3~346 C
~3047 C
0(14::: C·
(1049 C
0~150 C
~3(151 C
~Z1052 C
~3~Z15:;:: C
t1~1~:'4 C:
005~5 C
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PAGE 0002 GASFC 9:40 AM MDN" 20 FEB" 1978

INITIALISED GAS FLOW SETPOINT (NORMALISED)

INITIALISED VALVE STEM POSITION

VALVE OPENING LIMIT

EXPONENTIAL SMOOTHING DEFAULT VALUE

DEFAUL TED TO "t'WT OUT OF GAS"

C-SAT PH SETPOINT,

C-SAT PH (EXPONENTIALLY SMOOTHED)

:::: 13150,
C-SAT MAXIMUM FLOW RATE, CU.M/HR.

ALPHA

IZC::::0

'",IL I t'1

I F.:EP=60
SUPRESSION PERIOD (MINS,) FOR ERMES

PHC=Et,jG (22)

SETPOINT INTEGRAL RESET TIME IN MINS.
GP:::;=~). 5

SETPOINT PROPORTIONAL GAIN
GHlDEP = ~), 024 J.?

INDEPENDENT GAS VALVE INTEGRAL RESET TIME,MINS/SEC
NOTE:- THIS RESET-ONLY ALGORITHM IS POSSIBLE ONLY BECAUSE

THE NORMAL VALVE RESPONSE, (INCLUDING DEAD-TI~E),
IS OF THE ORDER OF6-? SECONDS. THE ALGORITHM
DETER IORATE::; IF" DEL T" IS PEF.:t'1 I TTED TO FALL TO
BELOW THIS RESPONSE TIME,

EQUIVALENCE(GASFCD(1),GPS),(GASFCD(2),GIRS)
EQUIVALENCE(GASFCD(3),PHCSP),(GASFCD(S),GASCMX)
EQUIVALENCE(GASFCD(7),ALPHA),(GASFCD(8),GINDEP)
EQUIVALENCE(GASFCD(9),GASC),(GASFCD(10),VLIM)

GASFCD(4) :::: FLOAT(IZC)
GASFCD (6) :::: '",'PC

PHC::;P=Et'lG (22)

CALL SmTF(2)
IFLAG :::: IAND(ICIN(4),400B)

ISCOP(1)- FLAG USED BY WCHDG AND THE CONTROL PROGRAMMES,
ISCOP(2)- STATUS OF CONTROL PROGRAMMES,(I,E, RUNNING OR OFF)
ISCOP(3)- STATUS OF AUTO/MANUAL SWITCHES.

100 CALL RNRQ(2,IRN(17),IDUM)
WAIT U~TIL RESOURCE NUMBER RELEASED BY ENGUN.

C

C

C

C
C
1-'

C------~---~------------------------------~-----------------------------
(",
-'

C
CC------------------------------------------------- _
1

_,

-'

C
C
C
C
C------------------------------------~----------------------------------

C
C

(109(1
~)091

0(1'~2

~)~)93 C
~Z1~Z194 C
~)~Z195 C
~)(196 C
0~)97 C
~)(19::: C
0099 C
~)1~)0

01 (11
0102
~) 103
01 ~)4

~)1~)5

0106 . C
0107 C
~)1(1::: C
~)1~)9

(111 (1

(1(156
~)~Z15?

0~)5::::

0(159
(1~)6~)

(H)61
~ZH)62

0~Z163

~)~)64

0065
. (H366

~ZH:t6?

006::::
0069
~)~)?(1

~)(1? 1
~)072:

(H) 7:::: C
0074
~ZH)75 C
(1(176
~)077 C
(1~Z1 7::::
~)(179

(1(180
(H)81
~Z1 (1::: 2
~ZH3 ::: :::: . r
~)084

(H)::: 5 C
~)~)::: 6
~)(1:::7 C
~~1 t1::: :::
[1(1:::9 C
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C
C------------------------------------------------~-~--------------------
C CALCULATE NEW FLOW SETPOINT

C
r--------------------------------------------------~--------------------6 CALCULATE FLOW ERROR AND ITS DERIVATIVE
C

C .
r-----------------------------~-----------------------------------------E CALCULATE VALVE STEM POSITION
C

IF(IFLAG.EQ.0)GOTO 500
PROTECTION AGAINST INTEGRAL CONTROL WIND-UP

DELT=FLOAT(ISAMT*ISMUL(2)*ISMUL(6))
IF(DELT.LT.6.)CALL ERMES(3,0,IREP)

EF.:C=PHC-PHC::;P

ECDOT=ALPHA*(ENG(22)-PHC)
PHC=ENG(22)*ALPHA + (l.-ALPHA)*PHQ

DELFC=GPS*ECDOT+GIS*ERC*DELT
GASC = GASC + DELFC
IF«GASC*2718.3).GT.GASCMX)GASC=GASCMX/2718.3
IF(GASC.LE.0.)GASC=0.01 ..

DELVC = GIF*ERFC*DELT
GIF*DELT IS INDEPENDENT OF DELT!!!

'I"PC = '",'PC - DEL '",IC

ARG = (ADCV(26)-2.)/8.
IF(ADCV(26).GT.2.)GOTO
FLO~,JC = (1. (l~J 1
GOTO 170
FLOWC = SQRT(ARG)160

170 ERFC = FLOWC-GASC

C
C
c-------------------------------------_-----~------- -----_
C CALCULATE SAMPLING INTERVAL
C

C
C-----------------------------------------------------------------------
C CALCULATE INTEGRAL GAINS

GIS=1./(60.*GIRS)
INTEGRAL GAIN FOR GAS FLOW SETPOINT

GIRF = GINDEP*DELT
CONTROL VALVE INTEGRAL GAIN,MINS.

NOTE:- GIRF IS DEPENDENT ON SAMPLING INTERVALr
GIF = 1./(60.*GIRF)

INTEGRAL GAIN FOR CONTROL VALVE ACTION.I·..·-',-.
-'
C------------------------------------------------------------------~----
C CALCULATE C-SAT ERROR & ITS DERIVATIVE,-.
-'

~J III
0112
~31 D
~3114

~~11 :l ~5

(1116
0117
Cll U::
(1119
~312(1

~3 L-:: l
(1122
~312:::: C
~3124

012::i C
0126 C
0127'
~J12:::

~~112 '31
(1130
(\1::;:1
(11 :32
t11:=::;:
0134
(1135 C
0136
~~11 ::::7
[11 :3:::
~~11 :::: '3
(1140
0141
~3142

~3143

~J 144
(1145 C
0146 C------------------------------------~----------------------------------
0147 C CALCULATE PRESENT GAS FLOW RATE
~~114::: C
~~114'3

~3150

(1151
0152
(115:;::
0154
0155
(1156
~Jl::i?

~~115:::

~315'3

~3160

0161
~~1162

~316::::

0164 C
0165
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PAGE 0004 GASFC 9:40 AM MON., 20 FEB., 1978

C
C----~------------------------------------------------------~--------~--
C

C
C-----------------------------------------------------------------------
C LOCK ON RESOURCE NUMBER
C

C
C---------------------------------------------------------~-------------
C UPDATE 6-TH BIT IN ISCOP(1) FOR WCHDG
C

IZC=l
CALL ERMESC1,O,IREP) i
GOTO 300

VPC=0.
CALL ERMES(2,0,IREP)

VPCO=10.*Cl.-VPC)
IFCVPCO.LE.C10.iCl.-VLIM)))VPCO=

AIR-TO-CLOSE
CALL CDACC5,VPCO)

IFCFLOWC.LT.C0.96iGASCMX/2718.3))GOTO 200

GO TO 100

GASFCD(4)=FLOATCIZC)
GASFCD(6)=VPC

IFCVPC.GT.VLIM)VPC = VLIM

500 ISCOP(1)=IORC1008,ISCOPC1))

200 IZC=0
IFCVPC.GT.0.)GOTO 300

300

400 CONTINUE
END

C
C--------------------------------------------~--------------------------
C OUTPUT CONTROL ACTION
C

C
C----------------------------------------------------~------------------
C CHECK IF VALVE POSITION LIMITING.
C

0174
0175
0176 C
0177
0178
0179 C
0180
0181
0182
0183
0184
0185
0186
0187
0188 C
0189
0190 C
0191
0192
0193
0194
0195
0196
0197
0198
0199
0200
0201
0202
0203
0204
0205
0206
0207

0166
0167
0168
0169
0170
0171
0172 C
0173

FTN4 COMPILER: HP92060-16092 REV. 1726

** NO WARNINGS ** NO ERRORS ** PROGRAM - 00482 COMMON- 00758
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'3: 25 m'l t'1Ot·~" a:i·. FEE:" 197::::

WHEN THE PROGRAN RUNS FOR THE fIRST TINE, THE ARRAYS
"IFCT" mm "F:::;;,r Hl" 1=tF.:E I tH Tl All SED TOZEF.:O mm -1. FOLL.mU NG
THIS SECTION IS A RESOURCE HOLD STATEMENT WHICH LOCKS THE
F'ROGRAN OUT UtfT' IL IT IS RELEASED B'l "SCCS". THE TJtolE SWCE NI DtH GHT
(TNEW) IS THEN IMNEDIATELY DETERNINED, . .

R FILTERABILITY PARANETER IS UPDATED EVERY TINE FILCY IS
RELEASED,

THE ORIGIN AND NATURE OF THE CONTACT
CHANGE IS ANALYSED BY CONPARING THE PRESENT STATUS
H~ ICt'~E~'J ~HTH THE OLD STATUS H~ ICOLD. IF FILTEF.: K ~,jEtfT' "ON"
ITS START TIME IS STORED IN FSTIM(2,K) AND DIFFERENCED FRON
THE NEXT NOST RECENT START TIME, STORED IN FSTIN(2,IFILS).
IFILS IS THEN UPDATED TO K.

WHEN THE PRESSURE SWITCH IS TRIGGERED THE FILTERABILITY
IS CALCULATED AND STORED IN IFCT,·

WHEN THE VALVE SWITCH IS TRIGGERED
OR THE FILTER GOES OFF-LINE, ITS OPERATING
TINE IS CALCULATED BY SUBTRACTING FSTIN(2,K) FRON TNEW
(A TEST FOR PASSING NIDNIGHT IS DONE UsiNG TOLD). THIS VAL.UE IS
·fHEt·~ :::TOF.:ED I t·~ THE fiF'F'F.:OF'~: I ATE A~::F.:A'l POS ITI ot·~ IN" I FCT" ,

IF THE PRESSURE AND VALVE SWITCHES ARE NOT TRIGGERED,
A ZERO WILL APPEAR AT THE POSITION IN THE IFCT ARRAY WHERE
THE DATA FOR THAT CYCLE WOULD NORMALLY GO.
IF ANY COLUt'1t·~ I t·~ "I Fcr" IS FULL, THE ~·jHOLE AF.:F.:A'r'· IS DUt'lF'ED
ONTO DISC, THE CURRENT VALUE IS THEN PLACED IN THE 2ND ROW
OF THE "CL.EFH··I" IFCT 1=tF<:F.:A\', TOLD IS UPDATEII Flt·m 'fHE PF.: 0Gf;':A t'l
WAITS FOR THE NEXT CALL.

LA:::;T,

,

IN THE AF.:RA'.,.' "F::::;r 1t'1" ,
FSTIN(l,K) ACCUMULATES THE FILTRATION PARANETER
FSTIN(2,K) STORES TIME WHEN FILTER STARTED.
IFILS STORES THE NUNBER OF THE FILTER WHICH STARTED

. PROGRANMED BY P,S,HUSSEY,

F·TI···I",", L
PROGRAM FILCY(3,60),141277PSH,010278PSH

(I (1 (:1 :I.
~;:1~)02

oe~):::: C
(1~3~)4 C
(1e~;:15 C
~)(1[16 c:
rjlj~)? C
01308 C*******************************************************
013139 C THIS PROGRAM CALCULATES FILTER CYCLE TIMES ~ND STORES THEM IN
[11310 C A FILE CALLED "F ILDAT" Ot·~ THE DI:::;C AT ::::H~;:H) EVEF.:'r' t'lOF:t·~ I t·~G.

~)(111 C "F ILDA T" cm~s I STS OF THE SEG!UEt'JCE OF RECOF<:DS FORNED E:Y THE
0~}:I. ;~~ c: HF.: F.: fi\' "I Fcr" t'H1DE UP OF THE: FOLLOI.·J I t:~G, FOF.: 1= 1, 12 B., ...I= 1, 1,~:
0013 C IFCT(l,K)=TIME AT WHICH DATA WAS STORED,K=l TO 5.
0014 C IFCT(1,6)=SANPLING FREQUENCY (SECS.).
0015 C . .
0016 C IFCT(4I-2,j)=TINE SINCE NOSI RECENT START(NINS).
001? C IFCT(4I-l,j) =VARIA8LE PRESS,(CONST, FLOW) OPERATING PERIOD(NINS)
0018 C IFCT(4I,J)=TOTAL FILTER CYCLE OPERATING PERIOD(NINS).
01319 C IFCT(4I+l,j)=FITERA8ILITY(% OF NAXINUN)
0e2f;:1 C
~::H)21 1-'

~)022 C
~} 0,:: ::::: C
~)~::124 C:
(1(125 C
~Je26 1-'

(1(127 C
0(128 C'
~)\}29 C
~J~)3rJ C
~::1e31 r'
0(132 C
0(133 C
~J(134 C
orJ35 C:
0~::136 C
~)t1:37 C
(1038 C
~J~::139 C
0(140 C:
(1(14 j, C:

01342 C
(1~)43 1-'

0044 C
(HJ4~5 C
~::1(146 C:
(1~J4? C:
~J04::: C
0~J49 ,-.
(1(15(1 C
~::H351 C
~::1 (15 ;::: C
~::1 rj ~i :;:: C:
~::Hj54 C
0(155 C
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(1 ~~I ~:16 C:
~J(1~::;(' C
(1 [1 ~:) I::: C:
~J ~3 ~:i 9 c:
(1(,~16(1 C:
(1 ~~1 (;; 1 C:
(1 ~j 6 ;~~~ C:
rJ (1 (; ::::: C:
(1~~164 C:
l~lt165 C:
[1~366 C:
~~1 ~~16 7' C:
[1~~16::: C
O~J6':::~ C:
0[1('(,:;1 C:
~3 ~~17' 1. C:
~~1 ~3 7' ;;:~ C:
[1rJ-;:":;;: C:
[1(,~1 -;:",::1· C:
~~1(1?:i C
0(17'6' C:
~~1~3';:"? C:
~:::107::: C:
(1~J79 C:
~~1 [1 :::: (1 C
[1[1::;:1 C
[10::::;~ C:
~3 ~~1 :3 :;: C:
~3~3:::4 C
~~1 (1 :::: 5 c:
O~Z1::;:6 c:
~30::::? C
~~1 ~j ::: :;;;: C
[1[1:::::9 C
~~1090 C:
~3091. C:
[1[19;~ . C:
[1[19:::: C

. 00'~4 C:
0(195 C:
~3~Z196 C
[1~3':'? C:
0(19:::: C
~~1~Z199 C
~~11[1[1 C
01 ~J 1 C:
[11 ~:) ;;::: C:
[1 1rJ ::::: c:
~31 ~~14 C:
(11[15 C:
~31 [1(; C:
01 ~J? C
~Z11 rJ ::;: C:
~3109 c:
011,0 C

AL~::;O t'~OTE THFIT :
IRAY(1,~K)=STATUS OF FILTER K

=-1 IF ON-LINE & PRESSURE VARIABLE
::::: 1;:;1 I F CII"~ "... LI t,~ E 8,: PF.: ESSUF.: E C: 0 I"~ ::::; TAt'fr"
:.::+·1 IF OFF-LIt··IE.

THE DATA IS STORED IN THE IFCT ARRAY IN BLOCKS OF :;;: WORDS.
IRAY(2,K)=POSITION OF BLOCK IN ARRAY
ISTAT =POSITION OF WORD IN BLOCK
ICNT =POSITION OF WORD IN ARRAY.

NNEW1/NOLDl - STATUS OF ON/OFF SWITCH
NNEW2/NOLD2 - STATUS OF PRESSURE SWITCH
NNEW:;;:/NOLD3 - STATUS OF VALVE SWITCH

. FILCY ONLY STORES DATA FOR A GIVEN FILTER FROM THE FIRST
FILTER START-TIME ONWARDS. ALL PREVIOUS DATA IS
TREATED AS GARBAGE AND OVER-WRITTEN. FILCY ALSO DOES ON-LINt
t'1EA~::;I.JR Et"IEtrr OF THE FIL"rEf':AB ILI '1""1", "F II.... BY" . H~ GEJ~Ef':I:,L :

FILBY=FILPR/(FILAR*FILAR*DPDT)
1.,jHEf':E .•...

F I LP f;,: :.:: t"1 U.,,, F ~:;; "'" FS
MU=VISCOSITY(CENTIPOISE)
FS=SET-POINT FLOWRATE TO A SINGLE FILTER(CU.M/HR)

. FILAR=FILTER AREA(SQ.M)
:::NI.... FIL(K) *APEF~L

NLFIL=NO. OF OPERATIVE LEAVES PER FILTER
APERL=AREA PER LEAF
DPDT=RATE OF CHANGE OF PRESSURE DROP ACROSS

FILTER UNDER CONSTANT FLOW CONDITIONS(KPA/S)

APPROXIMATING DPDT=VPP/DELP
WHERE VPP=OPERATING PERIOD UNDER VARIABLE PRESSURE(S)

DELP=RANGE OF VARIABLE PRESSURE(KPA)
AND SINCE MEAN(FILPR)=INTEGRAL(FILPR)/VPP
THE PROGRAM USES THE FORMULA ~

FILBY=INTEGRAL(FILPR)/(FILAR*FILAR*DELP)
IF FILAR AND DELP ARE SET EQUAL TO UNITY,FILBY WILL BE EQUAL
TO THE VARIABLE PRESSURE PERIOD IN HOURS.

THE SUMMATION OF FILPR IS DONE OVER THE PERIOD VPP AND
~:::; T0 F.: ED H~ F~:;; TH'I ( 1, , K). ~,j HEt,~ FILTEf? K "~:rrA f': TS", F::: TI t'H 1, 1< )
IS INITIALISED TO ZERO AND INCREMENTED BY FILPF.:,DELT
EVERY TIME THE PROGRAM IS RELEASED. (DELT = TIME SINCE
LAST CONTACT STATUS CHANGE (SECS.» FILPR IS TRANSFERRED
FROM ENGUN VIA COMMON. EVERY TIME A VARIA8LEPRESSURE
PERIOD TERMINATES FIL8Y IS CALCULATED AND PRINTED.

Ef': f': 0F,: t'1 E~:::; ~:::; AC; ES :
K=FILTERABILITY OF FILTER K(%),K=1,12

13=UNA8LE TO OPEN FILE FILDAT.
14=UNABLE TO WRITE TO FILEFILDAT.
15=UNABLE TO CLOSE FILE FILDAT.
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PAGE 0(1']3 FILer' 9: 25 At'1 . t'1CIN., 20 FEB., l'n::::

(1111, C:
011,2 c-~---------------------------------------------------------------------
011:::;: C
e114 C ------ COMMON ------
e11.5 C
0116 COMMON ENG(64),ADCV(64),CDACV(24),
0117 1 SAFCOD(2e),CLFLOD(I~),REMLTD(10),CLIMEDe10).
0118 2 GASFAD(10),GASFBD(10),GASFCD(10),FILCYDel~)~
el19 3 SERVOD(20)rDUMMY(50),·
0120 4 ISAMT,ISMUL(32),IRN(40),ICINe4),ICOUTe4),
0121 5 ISCOp(3),IDUMye50) . .

SATURATOR
:;:;ATURATOR
::;ATU~~ATOR

SATURATOR FLOW CONTROL DATA
CLOUDY LIQUOR FLOW DATA
REMELT CONTROL DATA
CONTROL LIME DATA
GAS F-LOl~ CONTf;.:OL DATA FOr;.: 11 A11

GAS FLm~ COtHF.~OL IIATA FOR "B"
GA~:; FLO~IJ COt·tTf:::O"L DATA FOr;,: 11 c: 11

FILTER CYCLE MONITER DATA
SERV08ALANS SCALE MONITOR DATA

DO 2m] K= 1, 12
F::n ItH h f:::) ::::(1:
FSTH1(2, K)=·..·l.

INTEGER IFCTe50,12),IT(5), IRAY(2,12),IDC8(144),IBUFe60e)
INTEGERNNEW1(12),NNEW2(12),NOLD1(12),NOLD2(12),NLFIL(12)
INTEGER FILDAT(3),IDUN(12) . .
DIMENSION FSTIM(2,12),STRTS(10),NNEW3(12),NOLD3(12)
EQUIVALENCE (FILgY,FILCYD(I»

DATA NLFIL/12*56/,FILDAT/2HFI,2HLD,2HAT/

. ****INITIALISATION SECTION ******

ISAMT - MASTER SAMPLING RATE (PACER FREQUENCY, SECS)
ISMUL - SUB-RATE SAMPLING TIMES (PERIODeX)=ISAMT*ISMULeX»
IRN - RESOURCE NUMBERS
ICIN CONTACT STATUS IN (UPDATED BY seCS)
ICOUT - CONTACT STATUS WORDS UPDATED BY CONTROL PROGRAMMES.
ISCOpel)- FLAG USED BY WCHDG AND THE CONTROL PROGRAMMES.
ISCOp(2)- STATUS OF CONTROL PROGRAMMES. (I.E. RUNNING OR OFF)
ISCOP(3)- STATUS OF AUTO/MANUAL SWITCHES.

ENG - ENGINEERING UNITS eCALCULATED BY ENGUN FROM ADC V VOLTAGES)
ADCV - A/D VOLTAGES (UPDATED BY SCAD)
CDACV - D/A VOLTAGES (UPDATED BY CDAC)

SAFCOD­
CLFLOD­
REMLTD­
CL I t'lED­
GASFAD­
GASFBD­
GA::WCD­
FILC'r'D··..
SEF.~',iOD-

C:c---------------------------------------------------------------
I···-'
C,-.
-'
C

,-.
-'
C
C
C----~-----~------------------------------------------------------------

C
C
C

~] 129
~]13~3

~~1131

~31 ::::2
~) 1:~::3

(:j 134
(11 :::::~:i

(11 ::::6
~] 137
~Z11 :3:::
~] 13'3
~::114~]

~] 141
~] 142
0143
~] 144
~]14~:i

CH46
~J 147
~] 148
(1149
~:1150

0151
(1152
~] 15:;:
0154
~~115:5 C
(1156
~]I:S?

[11 ~:i:::::

0159
0160
~~1161

(1162
(1163
0164
0165

(11 ;;:::;;:~ C:
01;~3 C:

C
C
C
C
C
C
C
C
C
C
c:
C:
C
C
C
C
C
C
C

~]1;24

(1125
~]126

(1127
~~112 :::
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PAGE 0004 FIlCY 9:25 AM MON" 20 FEB" 1978

0166 IRAY(I,K)=1
0167 IRAY(2,K)=1
0168 DO 200 j=I,50
0169 IFCT(j,K)=0
0170 200 CONTINUE
~:::117l IFCT( 1,1,:::) .... l
0172 C F~AG TO RFlDT ON FIRST DUMP OF DATA
0173 TOlD=-l,
0174 APERl=2,089
0175 C SQ,M/FIlTER lEAF
0176 DElP=200,
0177 C ASSUMING A START POINT OF 50KPA WITH A SWITCH POINT
0178 C OF 250KPA.

*****MAIN PROGRF~ ******

IFIlS::::0

C

::::: 10 DEL T;:::; Tto~Er'Joo- TO()LD
IF(DELT.LT.0,)DELT=DELT+24.

I f":Tto~;:::;:31 Cl
COTO 1 ~:('~:::1

I Cto~Er'J 1:::-' I CI to~ (1 )
I Cto~Er,J2;:::; I CI to~ (~;:)

I Cto~Er'J3::." I CI to~ (:3)

DO :::::4~3 j:::: 1!1·1 ;~:

c:
C *********CAlCUlATE HOURS SINCE MIDNIGHT****

TNEW=IT(4)+(IT(3)+IT(2)/60,)/60.
C
C ***** COLLECT LATEST STATUS VALUES ****
c:

*********WAIT UNTIL RESOURSE NUMBER RELEASED *******
300 CAll RNRQ(2,IRN(7),IDUM)

CALL ~:;r'J I TF (I:;;:)
C
C **********WHAT TIME IS IT?

CALL EXEC(11,IT,IYEAR)

c::

C

c:
C----------------------------------------------------------------
C
C:
C:
C:
C:

c:
C:
C------------------------------------------~---------- _
C:
C ***MASK OFF SECTIONS OF STATUS WORDS ****
C:

~:::1179

~'":l18~~'
121 1::::1
~Z11 ::::~:

~31 l:::::::
(11 :::4
~~11 :::5
~Z11 :::6
~~11 :::?
~~ 1::: :::
~j 1::: l:~

~]19~::1

~:::1l ':"1
~:::1l92

~j 19::':
~:::1l94

~] 19~5

[11 '::~ (;
~] 19-;:"
[119:::
[1199
[12~~'0

~:::12~j l
~:::120;;:;:

~]2~J :;;:
0204
02~)~:i

02~j6

~]2[1?

~)2~3 :::
02[19
~]2 U::1
0211
~321 :?
~]21 ::::
[12: 14
[121 :5
~J21 (;
02: 17
~::'i21 :::
~:::1219

(12:;;::0
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PAGE 0005 FI LC"!' '31: 25 At'1 1"1Ot·L, 20 FE8., 197:::

C
c::
C--------------------------------------------~---------------~------

C

C
c
CC--------------------------------,....-----------------------------
r,~..

CHECK STATUS OF MECHANICAL SNITCH ******

IF(NNEN1(f';:).EQ,NOLD1(f';:»GOTO 400
IF(NNEW1(K).EQ.1)GOTO 490

DO 10~)[1 f';:=1, 12

35(1 COt·lT I t·lUE

*** HOW MANY FILTERS ARE ON? ***
t·HJMB = ~Z1

DO 32(1 J= 1, 12
NUMB = 12 - NNEW1(J)

320 COt·lT I t'~UE

C *** CALCULATE THE AVERAGE FLOW RATE PER FILTER ***
DO ::::::::1) ...1= 1, 12

ENG(J+32) = ENG(23)/NUM8
FILPR = ENG(J+32)*ENG(J+32)*AMU
FSTIM(1,J) = FSTIM(1,J) + FILPR*DELT

:330 COt·lT I t'~UE

0244
~3245 C
~3246 C
0247 C

C[124:::
t'::1249
~3250 .
0251
~)252

~Z125::::

0,::54
~32~5~5

0256
~:1257

0258
~Z1259

(126(1

0~:61

~~1262

~j26::::

[1264
0,~65 c::
[1266 C
t326'?' C
~Z126::: C
~3269

027(1
02?1
l]~~'?;;::

[12?:3
0274
(1275

0221 NNEW1(J)=IBI1!(J,IC:NEW1)
0222 NOLD1(J)=I8IT(J,ICOLD1)
0223 IF(J.GE.5)GOTO 340
0224 NNEW2(J)=I8IT(J+12,ICNEW1)
0225 NOLD2(J)=I8IT(J+12,ICOLD1)
0226 NNEW3(J+8)=I8IT(J,ICNEW3)
0227 NOLD3(J+8)=IBIT(J,ICOLD3)
0228 GOTO 345
0229 340 NNEW2(J)=I8IT(J-4,ICNEW2)
0230 NOLD2(J)=I8IT(J-4,ICOLD2)
0231 NNEW3(J-4)=IBIT(J+4,ICNEW2)
0232 NOLD3(J-4)=IBIT(J+4,ICOLD2)
0233 345 CONTINUE
02:34 C
~)2::::5 C
(12:36 C---------------.- .•.-.... - ------ ,....---- - - - -- ----.-- --------- - -. -----------
~Z12::::7 C
0238 C ***** CALCULATE PREREQUISITE FILTERA8lLITY INFORMATION
~Z1239 C
0240 C
0241 8=ENG(3)
0242 T=ENG(14)
0243 Z=-1.234*8/(111-8)+246,527/(111+T)+659.543*8/«111-8)* (111+T»

A"11 U::: E:;.:: P( Z,,~. ;;::: 11 ~: ~:i '? )
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PAGE 0006 F I LC\' 9: 25 At'1 t'10t,~., 20 FEE:" 197:::

C
C
C-------------------------------~--------_----- ~ _
C
C ****** CHECK STATUS OF PRESSURE SHITCH *****
C

400 IF(. t·~OT.':: .::t,~t'IE~,j2(f<).EG!. 1.). At'ID. (t-lOLII2:(f:::). Et). 0» )GOTO 45[1
C ****** I GtKIF: PRE:3:=:UF.:E ::H,j I TCH OFF STATU::; .,.,,**-***
C
C **** DO HE HAVE A START TIME? ****
C

(21276 C:
~)2?7' C
(127::: C
~]27"3

02:::[1
~~12::: 1
(12:::2
(12::::;:
~32:::4

~::12:::5 C
0~~::::6

~j2:::?

~~i 2::: l:;t

~:::12'30

~)291

(12 132
~)293

02'3'4
0295
~)296

~~12137

~~121:=t:::

(12 '3' '3'
0:3[1~)

0301
~::1:302

0:3~:::13

(1:3~::14

~)305

03(16
~::1:3(17

[1:3~::1 :::
~):~: ~::19

(\:::: 1(:J
0::;: 11,
0312
~)31 :;:
~)314

0:315
0:316
~::1:31 7
~::1 :31 :::
~):319

0::;:2(1
(1::::21,
~):::l2~~

(1::::23
[1:324
~3~:25

0326
~3327

0:;:28

1
_,

-'

C
C:
C:

C

r-'

****** THEN FILTER BROUGHT ON-LINE (PRESSURE VARIABLE) *****

ISTAT=-1
IF(IRAY(1,K).EQ,1)GOTO 360
WRITE(1,3000)K,IRAY(1"K),ISTAT

::::0~30 FORt'lAT ( "F I LTEF.: OPE RAT U~G SEG!UEt'lCE A~,jF.:'r'. FI LTER #", I::::,
1 "LAST STATE::!', 13, ". CUF.:F.:ENT ~;TATE=", 1:3)

GO TO . 1 (10~:::1

360 FSTIM(l,K)::O.
I DUI"~::: K) ::"~;j

F:::;T I t'l::: 2, f() =Tt'~E~,j

IF(IFILS.EG!.O)GOTO 370

TINT=TNEN-FSTIM:::2,IFILS)
IF(TINT.LTi0.)TINT=TINT+24.
ICNT=IRAY:::2,K)*4-2
IFCT:::ICNT,K)=IFIX(TINT*60.+0.5)
IFILS=K

**** RUNNING AVERAGE OF 10 FILTER STARTS ****

IF(ISTAT.NE.-l)GOTO 800
DO 7~)0 ,J= 1, , ':';'

STRTS(ll-J) = STRTS:::10-J)
7~:::10· CONT I t'~UE

STRTS:::1) = TINT*60.
A'llST = ~J 11

DO 710 J=l, HI
AVST = AVST + STRTS:::J)

71 (1 COtn I t,WE
A"lST = A\11

::: T..... 1~3 11

F I LC\'D::: 2) ::: A',,.':::; "1"

HR I TE::: 1,40\)0) 1<, rT::: 0::/.) , IT (::.:) , ST'I;':T:::: ( 1, ) :' 1=t',,"::::T
400 I) FOR t'l AT::: "F I Le \' *** F I LT' EF.: #", 12," ON AT ", 12, "H" , r2 ,

1 11 ::;TA~;T::;= 11 ~ F6" 1 ~ 11 : Alii 11 :3TAF::TS=" , Ft: _..1 ~ 11 tl1I t.~s 11 11 ~ ,.... ::.

GOTO 900

:370 I F I LS=K
GO TO '30(1

~):329

~:::13:30 C
IF(FSTIM(2,K).LT.0.)GOTO 1000
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PFiGE 000? . FI LC'l 9: 25 At>1 t'1CIH., 20 FEB., 19?:::

*****

Br.: I ::':::::::68

ELSE CALCULATE FILTERA8ILITY*******

***IGNOR CONTACT BOUNCE ***

**** ELSE VARIABLE PRESSURE PERIOD TERMINATED ****

IF(IRAY<l,K).EQ.O)GOTO 1000

IF< IDUH<I<)" 1::::(;!".1 )CCIT() 1('0'~'
ICNOR CONTACT BOUNCE

GOTO 560

ICNT=4*IRAY<2,K)+1
IFCT<ICNT,K)=IFBY

IDUt,j<K)=l
GOTO 1(1~)(1

***** CHECK STATUS· OF VALVE SWITCH ****

FILAR=NLFIL<K)*RPERL
FIL8Y=FSTIM<1,K)/<FILAR*FILAR*DELP)
IF8Y = <FIL8Y*100./:;:.1432E-0:;:) + 0.5

:;:.1432E-:;: = MAXIMUM ESTIMATED FIL8Y VALUE WHEN:­
FLON=J.l CU.M/FILTER/HOUR
T :::::;12 DEG. C

450 IF<.NOT.«NNEW3<K).EQ.l).AND.<NOLD3<K).EQ.0»)GOTO 1000
IGNOR VALVE SWITCH OFF STATUS

AMU = 11.85 c.paISE
DELP= 2(H~1 KPA
NLFIL= 56 LEAVES/FILTER
APERL= 2.089 SQ. M/LEAF
SIGMA<DELT)= 6 HciuRS

:;:.1432E-3= FLOW*FLOW*AMU*SIGMA<DELT)/<DELPtNLFIL*NLFIL*APERL*APERL)
~,jRITE< 1, 2~)00H<, 11(4), ITO), IF8'l

2[H)0 FOF.:t'1FH< "FILC\'*** FILTEF.: ,,*",12," T!t'1E-", 12, "H", 12,
1 " :FILTEF.:ABILITY=",I6,./)

**** OUTPUT FILTERABILITY AS % OF EXPECTED MAXIMUM

c

,".-'C----------------------------------------------------------------
C
C:
C:
C

~J:::::::: 1
[1::::::::~~ C
~Z1 :;: ::: :;: C

C
C
r·

~~~:;:4~~ C
'3::::4:;: C
[1:344 C

C
C
C
C
C

0346
~)::::4 7
~j:34:::

[1:349
~)35(1

~):351

~j::::5:2

(1:353 C:
~::":354 C:
~):355 C
0:356
[1;357
[1:~:5::: C'
~)::::59

~)36(1

0:361
~J~:62

[1::::6:;:
0:364
~~1 :;: 6~)
0:366
0:367
~~1;36::: C
~):369 C
(1:37(1 C
(1:;:71 C
0372 C
~)37:;: C
(1::::74
~:1 :::: 7' ~5

~):3?6 C:
(1:;:?'? C:
[1:37::: C
[137 13
~~1380 C
~J:3::: 1

0:3:;:4
(1:3:;:5
~j:~:::::6

~~13:::: 7
[1:3:;::::
~~13:3 '3
(1:;:40 C
[1:;::4 J.

~)3::12 C
0383 c------------------------~------------------------~------

~]3:34 C
0385 C ******** ELSE FILTER TAKEN OFF LINE *****

~.
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TINT=TNEW-FSTIM(2,K)

IF(FSTIM(2,K)"LT"0,, )GOTO 900

IRAY(2,K)=IRAY(2,K)+1
I f;':A'/ ( 1. , f:::) =I STf,T'
COt'~T I NUE

**** UPDHTE AND WAIT FOR NEXT PROGRAM CALL**~
TO LD= Tt··IE ~'.I

I COLD 1'~" I Ct'~E~,~ 1
I COLD2= I Ct'~E~'~,::

I f;':Tt'~=~56(1

C;;OTO 12(\(1

~:::i60 C:OI"~T I t·~I...IE

C ******DO WE HHVE A STHRT TIME? *****
C:

C:
C:
C ***** GET STHRT TIME OF FILTER K *****
C:
C:

c:
c:

c:
c:
c:
C ******* IS THE IFCT APRHY FULL? *****

IF(IRAY(2,K)"LE.12)GOTO 560
C ****** IF >1.2 DUMP ON DISC ******
c:

C:
C----~---------------------------------------------------~-------
c:
C *** STORE OPERHTING TIME OF FILTER K IN MINUTES ****
C

:::':00
90(1

. 1. ~~\~JC1

c::
c:
C---~-------------------------------_--------------- __------_--
c:
C

:I. I;) ~:::i (\

c:
'::1·90 I :::;TFiT:::: 1

IF ( I PR"!" ( 1,1<) ,I···IE:" 1;::1) ~,.If;': I "rE':: 1, :::::0~~11;:'1) f:::, I F:FI"!" (1,1<) , I :::;;THT
IF':: IF.:A"!"( 1!,I<)" EC!, 1. )c;;OTO 1~)~)~)

c:
C-------------------------------------------------------------
c:
c:
C ****** LOOK BEFORE YOU LEHP! ****
C
c:

~j:~::::::9

~:::1:;: '~~°
0::=.:91
~] :;:9 ~~

~J:~19::::

~::1:394

(\::::9~5

(\396
(1:~:9?

~J:::II::;I::::

[1::::'::'~9

~~14 ~i ~J

~)4~:::1 1.
[140,::
~:::14 ~~I::::

~)4~:::14

~:::1405

~::14~%

(\4~:::1i"

[14[1::::
~)409

04 :I.~i

~:::14 1. 1.
~:::14 1. ::~

~:::14 1. ::.:
[14:1. 4
~)41 ~::i

[1416
~J41 ?
[141 ::::
0419
0420
~}4,:1

~)422

04~~:~:

04::~4

~:::14 :=.: ~5
[1426
[142i"
(142::::
~)429

[14 ::=':~i

[14:::: 1.
~~14 ::::;;::
~)4::='::::::

~j4::::4

[14::=':~)

[1436
~)4::::?

~J4::':::::

04:39
~:::14 4~:i
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PAGE (H~H39 FI LC\' 9: 25 AN t'·IOt·L, 2(1 FEB., 1. 97::::

I COLD:3= I Ct'lEI.'l:~:

I~OTO :3~::IO

DO 1450 1=1,12
I RA"f' (2, n = 1
DO 1450 L":6, 50

IFCT(L, I) :::: (1

COt·lT I NUE
IFCH 1,12) :::: 'J

IF(IRTN.EQ.310)GOTO 310
IF(IRTN.EQ.560)GOTO 560

RE-INITIALISE ARRAYS

DO 1420 f:::=1!,1.2
DO 1420 1=1,4
M=4*IRAY(2,f:::)+I-3
IFCT(I+l,f:::)=IFCT(M,f:::)
COt·jT I t·jUE

D() 1.250 I':::I.~, ~::i

IFCT(l, I) ,,: 1"1"(1)
COt·lT I HUE
IFCT(1,6) = ISAMT
I") 141(1 .J=1, 50
DO 140(1 1=1,12

LAST = 4*IRAY(2,I)
IF( IFCT(LAST, I). t·lE. ~~1) IF.:A''f'(2, I) = IF.:A'r'(2, 1)+1

t'1 = ('j-1) id 2 + I
L!t'1=4*( IF.:A'r'(2, 1)-1::0+1

IFCT(5~J, 1> = I PA''!''C2 , 1>-1
IF«.J.GT.LIM),AND,(.J,LT.50))GOTO 1300

I8UF(t'1) :::: I FCT·( ....I, I)
GOTO 14~J(1

IBUF(t'1)=~J

COtHI tKIE
COt·lT I t'~UE

CALL OCEND(1DCB,FILDAT,IEPR)
IF(IERR.LT,O)CALl MESAG(-l::::,IERP)
CALL WRITF(IDCB,IERP5,IBUF,600)
IF(IERR5.LT.0)CAlL MESAG(-14,IERR5)
CALL CLOSE(IDCB)

******ROUT HlE FOP DU t'1 PHH:; I FCT DATA ItHO DISC F I LE "F I LDAT"

(PETUPNS TO STATEMENT NUMBEP GIVEN BY IRTN)

1250

1. :;:0(1
14~J(1

14 P~1

I"·-'

142(1
C

c,-.
-'

C-~--------------------------------------------------~------------
1-'
-'
C
C
C
C
C

1:20~j

~~14:::2

048:3
~~14:::4

~j4:::5

~Z14:::6

~J4:3?

[14 ::: E:
~j48'~

~~1490

~~1491

(1492 C
~J49::::

044:1.
(144:~::

044:;;:
0444
~J445

~J446

(1447
~~144:::

(1449
(145~~1

~~1451.

(145;::
(14~i:;:

~J454

~J455

~j456

0457
~)45:::

~~1459

(1460
0461.
(146,::
(146::':
0464
(14(::~i

~~1466

0467
~J46:::

0469
0470
(1471
0472
(1473
0474 C:
047~) C:
(14;:"6 C
~~14 7'7
~]4 78

,0479
~~14 ::: ~~1

~J4::: 1
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PAGE· (1[11 [1 FIL.C'r' "::I: 25 nt'1 1"101"~" ~~~j FEE:,,!I 1'~7::::

FTN4 COMPIL.ER: HP"::I2060-16092 REV, 1726

** NO WARNINGS ** NO ERRORS ** PROGRAM = 03247 COt'1t'10t·~ = 0.2175::::
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F'nGE: I)OCI1 FT·I···I" 9~22 AM MON", 2121 FES", :t 9?:~:

Pi RECORD OF ALl.... t'lE:;:;::;AGES IS ALSO KEPT Hi THE FILE "EPF.:OF.:"
TO LIMIT THE DISC SEARCHING TIME THE ERROR FILES ARE LIMITED TO 500
RECORDS. A NEW FILE WITH AN INCREMENTED SERIAL NO I.E. ERROR 1,
ERPOF.: 2, ...• ETC. H:; CREATED

:::;AT Uf~:AT' OR
~:;ATUF.:ATOF.:

(OPIGINATING PPOGPAM)

------ COMMON ------

SATURATOR FLOW CONTROL DATA
CLOUDY LIQUOR FLOW DATA
REMELT CONTROL DATA
CONTROL LINE DATA
GAS FLW,j CotHF.:OL DATA FOF.: "A"
Gm:; FLm,j CCitHF.:OL DATA FOF.!. "B"

- EHGINEERING UNITS (CALCULATED BY EHGUN FPOM ADCV VOLTAGES)
A/D VOLTAGES .(UPDATED BY SCAD)
D/A VOLTAGES (UPDATED BY CDAC)

1. t'10D IFlED TO r;ICCEPT t·iEGtiT I ',iE ERI::::OF.: t'lESSAGE~:; FF.:Cit'l "EPt'1f.::~3".

THESE: ARE DECODED AND HANDLED AS POSITIVE ERROR CALLS, BUT
THE NEGATIVE VALUE IS SENSED FOR SENDING NEGATIVE MESSAGES
TO LU=l ONLY, WHILSt OTHEP MESSAGES CAN BE SENt ELSEWHERE.

2.COMMON HAS BEEN ADDED FOR ACCESS to ISAMT & ISMUL VALUES.
THEREFORE: LOAD WITH REVERSE COMMON. (:RU,LOAD,38)

INTEGEP IP(S),ITIME(S),ERROR(:3),ERPORX(3)
INTEGER IBUF(11),IDCB(400),JBUF(40)

4
5

QUEUE SCHEDULE WITH NAIT
PARAt'lETEF.:~:; :

IP1,IP2,IP:3 - 6 LETTER NAME
IP4 . >0 - MESSAGE NUMBER

<0 - EPROR NUMBEP
IPS - PARAMETER (OPTIONAL)

COMMON ENG(64),ADCV(64),CDACV(24),
1 SAFCOD(20),CLFLOD(10),REMLTD(10)~CLIMED(10)~

2 GASFAD(10),GASFBD(10),GASFCD(10),FILCYD(10),
SERVOD(20),DUMMY(50),
ISA t'l T, I::; t'l ut... ( ::.: ,: ) , I F.: ~i ( 4(1 ) , ICIH(4 ) , ICOUT(4 ) ,
ISCOP(3),IDUMY(5(1)

EHG
ADC'.,!
CDAC"i

SAFCOD­
CLFLOD­
F.: Et'1 LTD­
CL I t'lED···
GA~:;FAD­

GA~:;F8D-

FHi4, L, T
. PPOGPAt'l

C
C----------------------------------~--------------------~------------~--
C
C MESEG - SCHEDULED BY MESAG TO PPINT E1THEP INFORMATivE OR
C ERPOR MESSAGE" . ..
C . VERSION: 4-10-19?7~ .
C-------~---------------------------------------------------------------
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C 1··iOTE: ....
C
C

@~j@1

121~~1121;~:

~=1 ~=1 ~=1 :;:
(Hj~j4

1211211215
~j006

(1 el ~~1?
o~Z10:::

(101219
~j£1H1

~:::1 ~:::111

(H312
~j01 :;:
(1(114
~312115

~J~:::116

(1(11 ?
121~31 :::
(1019
0(120
~3(121

(Hj22
~302:3

~=1(124

(1 ~:1 ;~: ~5

~j~j26

002?
~j ~Z12 ::: C
0~:329 C
0~~I::::O C
012131 C
0032 c***********************************************************************
(1121:3:::: C
0~~1:::4

0~3:;:5

0~3:36 C
121 121:;: ? C
~=10:;:::: C
~:::1(1::::9

0~=14~J

012141
~3~342

(Hj43
~3(144

~312145 . C
~j046 C
~j(14 7 C
(1(14:::: C
~jt149 C
0£150 C
012151 C
(1(152 C
~j ~Z15 :::: C:
(U354 C
(1(155 C
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FILES TO I"'IT")

SKIP OVER ROUTINE TO LOG ERRORS ON DISC FILE,
(REMOVE AT A LATER STAGE IF/WHEN FOUND NECESSARY)

ROUTINE TO OPEN A NEW FILE.

IFIU~:::O

I FI Lt'j::: I FI LH+:I.
IF( IFILt,~" C;1",';) 1",IHI1"E( 1., :1.0:::::[1)
ERRORX(3)=2HRO+IFILN
F0 F.: t'l AT':: "1"'1 f~ ;:':: t',l (J 0F' EF.: F.: 0 F.: FI L.. E:::; E;:':; CEE:]) E:])

"DELETE FI I.... E::=:; EF.: F.: 0F,:;:,:; .:: ;:':;= 1 "1"0 ':;") OF:: COF'''!''

CALL EXEC(ll,lTIME)

CI=iLL RI"lPAf;: (I P)

CALL OPEN(IDCB,IERR,ERROR,1,,0,0,400)
IF(IERR,NE,-6)GOTO 1,5

CALL CREAT(IDCB,IERR,ERROR,100,10,O,-2,400)
IF(IERR.LT,0)WRITE(1,1021,)IERR

FOF.:~lAT ( "Ut,U::IBLE ''1''0 Cf;,:EATE EF.:~::OF.: FILE" 16)
CALL OPEN(IDCB,IERR,ERROR,1,0,O,400)

IF(IERR,LT,O) WRITE(1,1020) IERR
FORt'lAT( "CANt'~OT ()PEt,~ EI;':ROF.: FILE, ERROF.: t,~o" 16)

DO 2:(1 IF.:EC= 1. , ~:il;)I;)

CALL READF(IDCB,IERR,IBUF,11,LEN)
IF(LEN.lT.O) GOTO 30

COt'~TI NUE
IF(IREC.LT,500)GOTO 30

ISAMT MASTER SAMPLING RATE (F~CER FREQUENCY, SECS)
ISMUL - SUB-RATE SAMPLING TIMES (PERIOD(X)=lSAMT*ISMUL(X)
IRN - RESOURCE NUMBERS
ICIN - CONTACT STATUS IN (UPDATED BY SCCS)
ICOUT CONTACT STATUS WORDS UPDATED BY CONTROL PROGRAMMES,
ISCOP(l)- FLAG USED BY WCHDG AND THE CONTROL PROGRAMMES.
ISCOP(2)- STATUS OF CONTROL PROGRAMMES,(I,E. RUNNING OR OFF)
ISCOP(3)- STATUS OF AUTO/MANUAL SWITCHES,

C;;I:~::::;FCD"- CAS F1.... ()I.I;1 C:CII'··'''l''f;;:OL. DATH FOf~: ,lie 11

FILCYD- FILTER CYCLE MONITER DATA
SERVOD- SERVOBALANS SCALE MONITOR DATA

OPEN ERROR FILE AND SKIP TO END, PICKING UP LAST ERROR MESSAGE
IF THEF.:E I::;;; Ot',II:::: ~

1!:::i
11;) ;~:~)

c:
C SEARCH FOR END OF FILE, CREATE NEW FILE rn= MORE THAN 500 RECORDS
c:

c:
C
c:
c:
c:
c:
c:
c:
c:
c:
c:
c:
C
C---------~-------------------------------------------------------------
c:

Cl ') ~:i 6
~::H35?

O\~I~):::::

O~Z1!:i9"

(l~Z16'~l

'~1~36l
(~ ~Z1 I.:; ~:::

1)~216::::

(l~Z164

~3 \::16 ~::i

~)'~166
~31~16?

~Z1 (11:;; I:::
(1~jl':;9

(le~n~

(1~)? 1
(l~Z1? ~:: C
~Z10?3

~ZHr?4 C
~Z1~) '? ~5

~j~Z1?6 C:
~)e:1?? C
~;:1e:1?:3

(1~Z1?9 C:
(1 e:1 I:: ~Z1 C
~j(1::: 1 C

C:
C:
C:
C

~~1 ~!1 ::: c~

~j0::::::::

~Z1 ~Z1 ::! 4
(1~Z1:::5

0~Z1:::6

(1~::j:::?

(1~~1::::::

~Z10:::':;"

~)~j9rJ

~Z1 ~;:19 1
~~l')9 ~::

\;:i~Z19::::

~)~Z194

~)~Z195

(1\::1915
~j097

(1~Z19:::

o~;:1 '::.- 9
~j 1(~\:.~ ;;;:: 0
~~1UH

01')2: C
(110:::: C:
~jl04 C:
(11'J~)

~) 106
~;:11~)?

~;:110 I:::
. 0109

011, 0
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IBUF (9)::::: I t'l IN·

C
C***********RECORD ERROR/MESSAGE ON DISC**********
C

CALL NAMF(IDCB,IERR,ERROR,ERRORX)
C . . RENAME .

IF(IERR.EQ.-2) GOT025
C DUPLICATE NAME, GO TRY NEXT ONE

IF(IERR.LT.0) WRITE(1.,1040)IERR
112t4ti FOF.:t'lAT ( "f;,:ENFlt'lE Ef;,:ROF: "16)

WRITE(1,1050) ERRORX
105(1 FORt'lAH 7'2: ( "*" ) , ......"", "NHJ EF:F.:OR FILE CF.:EATED - FILE t·~At'lE - ", 311:~'

IFLAG :::::0
..JIP ::: IP(,::I,)
IF(..JIP.LT,0)IFLAG=:I.
IF(IABS(JIP).GT.100)GOTO 40
I CI"~T ::: °
I Ef,: ::: IA8:::i("..IIP)
GOTO 70

40 leNT = IA8S(..JIP)/100
IER = (IA8S(JIP) - ICNT*le0)

REMNDER OF FILE NO CURRENTLY IN USE
.......... , 7 ~~ ( 11 ~I~ It ) )

c:
C:

CALL CREAT(IDCB~IERR,ERROR,100,10,0,-2,400)

C 100 BLOCKS ON LU2 (SYSTEM DISC)
IF(IERR.EQ.-6) CALL CREAT(IDCB, IERR.ERROR,100,10,0,-13,4(0)

C NO SPACE, TRY REMOVABLE PLATTER .
IF(IERR.LT.0) WRITE(1,le6e)

1060 FORI"lATC··", ?2( ",~,"), ,,"', 5i'(, "NO rlI~:;c ::iPACE FOUt·Ht ON EITHEF.: DI:;;C FOR"
1 "t'lE~'J EPf;,:OF~ t'lES~::::AGE FILE. ", ".", 5::-::, """'H,** HELP !!! *****"
2 " ******** Uf;,:GEtH *iHH!+:H", ,.... ,5::·':, "PUf;,:GE f;,:EDUt,HtAtH FILES."
:~: ",",72("*"»

C NOGO, GIVE up·
CALL OPEN(IDCB,IERR,ERROR,I,0,0,400)

C NON- EXCLUSIVE OPEN
C . THIS ALSO REWINDS FILE, I.E. OPENS AT RECORD NO 1
C

30 COt'~T I t-lUE
C**********EXTRACT THE PACKED REPETITION COUNT******
C
C Ut·lPACK TO FHHt THE tKlt'1E:H: OF COUtHS Tf':At'~~:it'1I TTED B')" "EF.:t'lES"
C AND A POSITIVE ERROR NUMBER
C

70 DO 75 I::: 1, :;:
IBUF(I)=IP(I)

7'5 IBUF(I+5)=ITIME(6-I)
I8UF(4)=IEF.:·
IBUF(S)=IP(5)
IRATE = 60/(ISAMT*ISMUL(2)*ISMUL(6)
IMIN = leNT/IRATE

C MEANINGFUL CHANGE OF A COUNT TO TIME,
C APPLYING ONLY TO THE FACTORY CONTROL
C PROGRAMMES.
C

0111
0112
0113
~3114

0115
13116
Cll1 ?
01 U:::
C111':;4
o1;;:::~j

(11;2 :I.
OL~2

~J 1. ;::::3
(1 1~~4

(11;:'::::;
~~1126

~~1127

~Z1128

~3129

(1130
(1131
(11 :;:2
[11 :3:3
(1134
0135
(1136
~~1137

[11 :;:8
(11 3'~

~3140

0141.
til ,::1· ~~

014:::::
~~1144

(1 1,::j.~::i

01,::I·t:;
~::114 7'
(114:::
~~i149

~31~50

f'151
0152
015:3
0154
0155
~3156

0157
~) 15:::
~3159

0160
~3161

0162
016:3
(1164
o16~:i
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PAGE 0004 MESEG 9=22 AM MON., 20 FEB., 1978

c: " ••• " ••• , • , , " , " " " " " , ,PUT LU=9 Hl pF.:E',nc)US LI t··IE 1·,jHEN TEr.:: 1"'1 II···II=IL
C BECOMES AVAILA8LE.

01::::2 C***
[11 ::: :;:. C

c:

C
r'
C **********PRINT ERROR MESSAGE*************
C

? ! )( TEt'1PORAF:\'

SEARCH FILE FOR A SPECIFIED ERROR NUMBER AND PRINT IT.

IF(IFLAG.EGL l)LU=l

?'?' L.U::::: 1

GO'ro ??
SUPPRESSION OF ERROR FILING ON DISC

76 CALL WRITF<IDCB,IERR,I8UF,11)
IF(IERR.LT.0) WRITE(1,1031) 'IERR
FOF.:t1AT (" ~,jF:: ITE EF.:POF.: "I 6" I t·l PPOGF:At'1 t'1ESEG")

CALL CLOSE(IDC8)
10::::1

c
0166
016? '
~j16:::

~~116 ';"
0170
~~1Pl

~) 1?2
~~11 7:3
(1174
~) 175
~) 1?6
~::'~1'??

(11'?:::
017';"
~) 1::::(1
~~1181

0184 IP(3)=IOR(IAND(IP(3),1774008),0000778)
~) 185 C ****** APPEND "?" TO PROGRAt'1 t·lAt'1E FOR EF.:F.:OR FILE t·mt'1E.
0186 KHC=0
018? CALL OPEN(IDC8,IERR,IP,1)
0188 IF(IERR.LT,0)WRITE(LU,?000)IERR
~j 1::;::9 ?OO~j FORMAT ( "Ef;':ROF: I I··l OPEt·l I I··le; Ef;;: F.: 0f;': FILE AS:30C I f:IT'ED ~,j ITH CI::IL.L. I 1'·,le" "
(11 '::I~) 1" PROGF.:At'1", ..... , :;~m·::, "( IEF.:F.: = ", 14," ) " )
~)191 C
~~1192 C
0193 80 CALL READF(IDC8,IERR1,J8UF,40,LEN)
0194 IF(LEN.LT.0)GOTO 90
0195 C THEN EOF FOUND
0196 IF(IXOR(IAND(J8UF(1),177400B),0214008).EQ.0)KHC=KHC+1
0197 C LOUK FOR # IN FIRST CHARACTER.
0198IF(KHC.GT.IER)GOTO 90
0199 IF(KHC.LT,IER)GOTO 80
0,:00 C:
0201 WRITE(lU,1000)
0202 1. OO~) FOF.:t'1AT (" ")
0203 CALL EXEC(2,LU,J8UF,LEN)
0204 C OUTPUT CONTENTS OF THIS RECORD.
0205 WRITE(LU,1010)(IBUF(J),J=1,9)'
~)2~)6 1010 FORt'1AT (2A2, A1," (#", 12, ", "iALUE=", 14," DA\''', 14, ", TI t'1E" , I:;:,
~)2(17 ' 1" H" , 12, " ) 'FOF.: ", 13," t'1 I t·WTES ::; UlCE LWH REPOfnED")
0208 GOTO 80
~3209 C
0210 90 CALL ClOSE(IDCB) ,
0211 C
(121~~ c:
~j21 :~: Et·Hi

FTN4 COMPILER: HP92060-16092 REV. 1726

** NO WARNINGS ** NO ERRORS ** PROGRAM - 01315
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(100:1. ·1::: 'f 1",1 ,::1, , L, T
0002 SUBROUTINE ERMES(IERR, IPRAM, IREP)
1~:II~1(13 C
0004 C*******************~,*******************************************.********o(1 05 C: "EF.: t'l E::; " :c, EI:;,: I:;,: () F.: t'l E::::; Sfi GE::::; ,
0006 C ERMES SUPPRESSES ERROR MESSAGES PRINTED BY MESEG.
f.:l el 0-;:" C:
0008 C IERR = A POSITIVE MESSAGE NUMBER OR
0009 C A NEGATIVE ERROR MESSAGE NUMBER
0010 C (SEE LISTING IN CALLING PROGRAM)
00:1.:1. C ICNT(N:I.,N2)=NUMBER OF COUNTS OF ERROR MESSAGE NUMBER
f.:1~~1 1;::: C "t'42", Ff<: 01"1 Cttll.... LIHG Pf<:OGF.:At'l CIF CODE ::::: I",j :1, !I

1)(11::::: C: . SINCE Lf~ST f<:EPOf<:TIt,4G THE t'lESSAGE.
0014 C IREP = PERIOD (IN MINUTES) DURING WHICH THE
0015 C MESSAGE IS TO BE SUPPRESSED,
0016 C THIS SUBROUTIHE WILL SUPPRESS ERROR MESSAGES IN THE CONTROL
0017 C PROGRAM FOR .A PERIOD EQUAL TO IREP (IN MINUTES). THE INFORMATION
0018 C PASSED TO MESAGt FOR PRINTING & STORING ON DISC FILE, IS PACKED
0019 C INTO AN INTEGER NUMBER WHERE THE TWO LEAST SIGNIFICANT DIGITS
0020 C ARE THE ERROR MESSAGE NUMBER AND THE NEXT DIGITS ARE THE NUMBER
002:1. C OF OCCURRENCES SINCE LAST REPORTING THE MESSAGE.
~~~~~;;:~c~ C: "lEF.:S I Ot·~ ': 1:::'~":::"'''1'137?

0023 C********************,~***************,**************************f***'*****
0024 INTEGER IERA(60),ICNT(60),IT(5)
0025 DATA lCNT/60*0/
0026 DATA IERA/60*0/
0027 CALL EXEC(11,IT,IYEAR)
0028 IF(IERR.EQ.0) RETURN
0029 IZ=ISIGN(l,IERR)
0030 IERR=IABS(IERR)
0031 IER = IERR*IZ
0032 TNEW=FLOAT(60*IT(4)+IT(3»
0033 IF(IERA(IERR),EQ.0)GOTO 200
0034 TOLD=FLOAT(IERA(IERR»
0035 IF«TNEW-TOLD),LT.0. )TOLD=TOLD-1440.
0036 IF(IFIX(TNEW-TOLD),GE.IREP)GOTO 100
0037 ICNT(IERR)=ICNT(IERR)+l
0038 RETURN
0039 100 IER =IZ*(100*ICNT(IERR)+IERR)
0040 200 CALL MESAG(IER,IPRAM)
004:1. IERA(IERR)~IFIX(TNEW)

0042 ICNT(IERR)=0
0043 RETURN
1~~e:144 Et'4D

FTt'i4 C:()I"'IP I I....E:R: HP9 2::06121""':1. 61;)');:::: I:;,: E: \' " :I. ?~~6

** HO WARNINGS ** NO ERRORS ** PROGRAM - 00269
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MESAG - MESSAGE OUTPUT

GEPt·jl"1 (t"lnt"IE)
GET EXECUTING PROGRAM NAME

EXEC(24,MESEG,NAME(l),NAME(2),NnME(3),MESN,IPRAM)
::::;C:HEDULE to1E::;EG
QUEUE SCHEDULE WITHOUT WAIT [0 AVOID
TIME OUT IN WCHDG AND CONTROL PROGS

INTEGER MESEG(3),NAME(3)
DATA MESEG/2HME,2HSE,2HG /

CALL

C:AL,L

F.: E: TU F.:N
Et,m

U:;:;E:
CALL MESAG(MESN,IPRAM)

1"1 E:::; t-i ,-, 1"1 ES::;; AGE: j'-,j U1"1 BEF:: <~) EF.: F,: () F,: ""-1"'1 E::::; t'j " I t,j F:' R0GF:: FI 1"1 "1',,1 A1"1 E: "
:> ~j 1"1 ES::::; fl GE "j"j ESt·j " I 1",1 PF;~ 0Gr.;;: A1"1 "t·j fH'1 E"

IPRAM - AN OPTIONAL PARAMETER TO ENABLE ADDITIONAL INFORMATION
TO BE PASSED (E.G. THE IERR FROM A FMGR PROGRAM CALL)

MESAG PROVIDES A GENERAL PURPOSE METHOD OF OUTPUTTING AN INFORMATIVE
OR ERROR MESSAGE TO THE SYSTEM CONSOLE. IT SCHEDULES THE BACKGROUND
PROGRAM MESEG TO PRINT THE ERROR AND THEREFORE AVOIDS FORMATTED I/O
STATEMENTS IN FOREGROUND PROGRAMS.

C:
C-----------------------------------------------------------------------
C:
C:
C:
C VERSION : 24-5-l977
C MOD 5-l-7::::: : QUEUE SCHEDULE WITHOUT WAIT
C------------------------------------------------------------~----------
C:
C:
C:
C:
C:
C:
C:
C:
C:
C:
C:
C:
C:
C SEE MESEG LISTING FOR ADDITIONAL FUNCTIONS PERFORMED.
C

01211;::1 :I.
000;;:::,
\:~ \;:1 (~3

O(~04

~~1 ~) 1;::1 ~::i

~) ~~1 (16
~~\~~I 07
~j~)O:::::

\:1 ~~11~:1 9
0(1:1. 0
CH;:I:I. :I.
~)(~:I. 2
~)01 :::::
C1~j14

1~1(1l ~:i

C1~jl6

(1~~11 7
~) ~~1l :::::
(~~jl9

0~j2(:1

1~10;2: l
[10 ~::: ~:~

(1 ~~1 ;;::: :::::
(~(1 ;~: 4
~) ~~I;~ ~5

~J ~J ;~: 6
~~1~j;2:7

~j~j2:::: C:
~)(:1;2:9

1~1 ~) ::;: \:~ C:
(1(1::::: j,
~) (1 :::: 2 C:
~j(1:::::::: C
\:10::;:4 C
[1 (1 ::::: ~5
f~1~j36

FTN4 COMPILER: HP92060-j,6092 REV. l726

** NO WARNINGS ** NO ERRORS ** PROGRAto1 - 00042
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COMMON ENG(64),ADCV(64),CDACV(24),
1 SAFCOD(20),CLFLOD(10),REMLTD(10),CLIMED(10),
2 GASFAD(1.0),GASFBD(10),GASFCD(1.0),FILCYD(10),
3 SERVOD(20),DUMMY(50),
4 ISAt'lT, I~::;t"IUL(::::2), IF.:t',1(4~J), ICIH(4), ICOI.IT(4),
5 ISCOP(3),IDUMY(5C1)

ISAMT MnSTER SAMPLING RATE (PACER FREQUENCY, SECS)
ISMUl... SUB-RATE SAMPLING TIMES (PERIOD(X)=ISAMT*ISMUL(X»
IRN RESOURCE NUMBERS
ICIN - CONTnCT STATUS IN (UPDATED 8YSCCS)
ICOUT CONTACT STATUS WORDS UPDATED BY CONTROl.... PROGRAMMES.
ISCOP(1.)- FLAG USED BY WCHDG AND THE CONTROL PROGRAMMES,
ISCOP(2)- STATUS OF CONTROLPROGRAMMES.(I,E. RUNNING OR OFF)
ISCOP(3)- STATUS OF AUTO/MANUAL SWITCHES,

(BDF: )

!::; fi TUr;,: Ft T0 F.:
SFiTUF.:ATOF.:
SATUF.:F1TOF.:

4 ..··10-.. 1977

STRUP - START UP PROGRAM,

------ COMMON ------

SATURATOR FLOW CONT~OL DnTA
CLOUIIY LIQUOR FLOW DATA
REMELT CONTROL DATA
CONTROL LIME DATA
GAS Fl...OI",1 C:OtfI"ROL DAH'i Few "A"
Gns Fl...O~',1 C:()NTF.:OL DATA FOF.: "B"
GAS FLO~,J C()NTF:OL. DATA FOF.: "C:"
FILTER CYCLE MONITER DATA
SERVOBALANS SCALE MONITOR DATA

- ENGINEERIHG UNITS (CALCULATED BY ENGUN FROM ADCV VOLTAGES)
- A/D VOLTAGES (UPDATED BY SCAD)

D/A VOLTAGES (UPDATED BY CDAC)

IHTEGEF: t'l ( 1. ~~) :' ::; «(:) l' ITI t'lE <5) :' Et,jGUt·j (:::;:) , HI,t·jGO (3)
·IHTEGER SCAD(3),FMGR(3),SCCS(3),PACIR(3),SAMT(3)

INTEGER YDAY,YEAR,HOURS,DAY,SECS .
EQUIVALENCE~ITIME(2),SECS),(ITIME(3),MIHS),(ITIME(4),HOURS),

1. (ITIME(S),YDAY) ..
DATA M(1.),M(2),M(3),M(4),M(5),M(6),M(?),M(S),M('3),M(1.C1),M(1.:I.),

1 M(12)/31,28,31~30,31,30,31,31,30,31,30,31~

DATA S(1),S(2),S(3),S(4),S(5),S(6)/2'H0 ,~Hl ,2H2 ,.2H3 ,2.H4 ,2H~~ /
DnTA SCAD/2HSC,2HAD,2Hl /,FMGR/2HFM,2HGR,2H /
DATA SCCS/2HSC,2HCS,2H /,PACIR/2HPA,2Hcr,2HR /

Et·jG
'=tIlC"",
CDf=IC',,.'

~::; I=,FC()D­
C:LFLOD­
1::::Et'll... TD ..­
C:I.... I t'lED·­
Gn~:;FnD··"

GflSFBD­
GnSFCD­
FILC'lD-',
~::; EF: '",' 0D···

c:
C:
C:
c:
C:
C:
C:
C-----------------------------------------------------------------------
C:

0(:)1):1. F·T·I··j4, L., T

0002 PROGRAM STRUP(:I.:I.,80),Q?ADH A41A77BDR A4A17RADH
:::~ ~------------------------~-~-----:-_: __:~~_:_: __:_-----------~---------*
(1 ~'::I f) ~5 C
f:1 ~j 01:::: c:
OI;~(::I'?' C:
(1~)O::: C:

0009 C LOAD IN BACKGROUND, USING REVERSE COMMON00:1.0 C-----------~-------------- _
O(~ :1. :1. C
(1(11. ~~ C:
(1(11 ::;:: C:
[if) 1. ,::1·

OI;~1:1. !:::i
!21(H 6
·(1~j1.?

~~1 (~ 1. :::::
C1~~1:1. 9
~~1 (1 ,:: Cl C:
[1 (;) ,::: :I. C:
~~1 [1 ~::: 2 C:
f:l e) ;;:~ :::: C:
(1\:1;24 C:
(~1 \;:'1 ~~ !:::i C:
(~ (1 ;;:~ 6 C:
[1 (1 ~:: 7 C:
f;:'l (~ :;:~ ::::: C:
(1 (~1 :;:~ '3 C:
01;~1 :::: 1~1 C:
(~0::::: 1. C:
(:11;~ ::;:: ~:: C:
(1 (:1 ::;: :::: C:
(1~~1::::4 c:
(1 (1 :::: ~::i C:
0~~1::::6 C:
0~33?

~3 ~:'13 ::::
I~) ~J :::;: '::~

0\;:'14(;:1
01:14 :I.
C1 ~J ,::1· ~:::

0(14:::::
~,::I~j44

~j(i4~5

()(146
~J~~14 '?'
~JI;:),:+::::

(11214':>1
(1 ~) !:::i [1
ne1!::;1.
[1~)5:;:~

01;::I~:i3

(1~3~::i4

(1 ~~1 ~5 !::;
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PAGE ono::: ~:;TF.:UP 9: 1~5 Fll"l 1"'1 () t'j ., ;~:f;,1 FEE:., t9?:::

l PRINT TIME AND DATE TO VERIFY
C
C--~-------------------_------- _
C 2.-ItUT IAll ZE CAt"IAC CF.:ATE AtHi DO LAt'l Gr::ATIER TEST
C

UP PROGRAM PERFORMS THE
FUNCTIONS:

1. WRITE HEADING AND GET TIME AND DATE
2. I tH TI All SE CAt'lAC CRATE
:3. ALLOCATE RESOURCE NUMBERS
4. SCHEDULE HANGO TO START PACIR AND TO

I I'j ITI AL ISE CCit'H'10t·j FRot'l THE FILE "CCit'1Drrl"".
5. START CONTROL PROGRAMS

C: Al... 1.... PTAD ( :I. >

CALL RMPAR(ITIME)
\'EFIF:= IT H1E ( 1 )
IF(YEAR.LT.1978)YEAR=1978

THE STAF.:T
FOLLm,j I t,jG

ICr::AT= 1
CALL CAMCO(2**(ICRAT-1),IERR)
IF(IERR.NE.0>CALL CAMER(IERR,0,ICRAT*512)
CALL CAMZC(ICRAT,IERR)
IF(IERR.NE.0)CAlL CAMER(IERR,0,ICRAT*512)

CALL DECLR (ILAMG,ICRAT,23,0)

C
to WRITE(1,1.900)

READ(1,*)IDAY,MONTH
IF ( (t'10t,jTH. 1.... T. 1> . OF.:. (!"101,jTH. GT. 1. ,:: >) GO TO t ~')

IF(MOD(YEAR,4>.EQ.0>M(2> = 29
IF«IDAY.LT.l>.OR.(IDAY.GT.M(MONTH»> GO TO 10
\'DA\' = I DA\'
IF (MONTH .EO.l> GOTO :39
DO 20 I=l,MONTH-1.

20 YDAY=YDAY + M(I>
::::~3 ~'H:::I TE ( 1 , if3 H1 > '

READ(l,*> HOURS,MINS,SECS
C GET TIME

CALL SETTI(YEAR,ITIME,IRESP)
IF(IRESP.NE.O> GOTO 10

C SET TIME

C:

C:
DO 50 .j=1,16

I=ISHFT(l,.j-l)
CALL CAMAC (16,ILAMG,I,IQ)
CALL CAMAC (0,ILAMG,I1~IQ)
IF ( I . t·j E; I 1.) ~,j RITE ( 1. , :::: 40;' I, I 1

50 COt-n I~WE'
C

:340 FOF.:t'lAT ( "LAt'l GRADEF.: TEST Er::ROR: ~,jr::OTE ", I ~5," BUT READ "~I 15)

'~H)~:; 6 '
[1~15? C
f;:105::: C
O~1~59 r
0£16[1 C
9£161 C
f:1f)62 C
(H)6:::: C
[1[164 C
Of)65 C
0[166 C:
906? C------------------------------------------ ~ -- _
£1068 C 1.HEADING AND DATE,TIME
f:H) 69 C
[H)? 0
[H:1i' 1
[H:1?2
f:1 f) 7::::
0~174

Of375
[H;,176
Of)7';:"
~)i)?G

~;,1[1?9

0f:18~3

[11381
f:10:::2
[1£1 ::::3
0[1::::4
f) f3::: 5
f)[1:::6
(1~~1 ::: 7
(11~1:::::::

\)f:189
0f:19(1
~3[1 '31.
~)~192

[1[19::::
0094
f) ~:1 '31 5
0(196
~3[197

(109:::
0~399

0t O~3

01 (it
'JW2
010:3
f31 [14
[1105
~)1[16

01 f3?
910:::
91 [19
[1110
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c----------------~----------------------------------- _
C 3.DE-ALLOCATE AND THEN RE-ALLOCATE ALL RESOURCE NUMBERS
C

Pf':O ....IECT" .......... "::::;ET IHnE mm TII"'IE"

SUEH1ULTI F'LES"

IGt·WRE EI'~ROI'::::;

E:'·':EC(: 10~ :::CAD)
SCAH A TO D - IMMEDIATE SCHEDULE' HO WAIT

E:'·':EC (1(1, SCC:::::)
SCAN CONTACT SENSE - IMMEDIATE SCHEDULE NO WAIT

E:'<EC ( 1~], Et·~GUt·~)

ENGINEERIHG UNITS CONVERSION

E:'·':EC ('3 ~ HAt'~GO ~ 1. )
. SCHEDULE HAHGO WITH PARAMETER = 1 TO START PACIR

IMMEDIATELY. THIS ALSO READS COMMON FROM DISC FILE.
START AHD STOP TIMES ARE NOT REQUESTED. RUN KANGO
DIRECTLY TO DO THI~ WITH PARAMETER = 0.

CALL RNRQ(140020B,IRN(IRNI),ISTAT)
GLOBAL ALLOCATE + ~O WAIT +NO ABORT

GOTO 51 (1
IIDIOT=~:::1

GOTO 52~:::1

IIDIOT=O
COHT I t'~UE

DO .5~]t1 I I'~t·~ 1=1 ~ 20
CALL RNRQ(140040B~ IRN(IRNI)~ISTAT)

CLEAR (DE-ALLOCATE) + NO WAIT OR ABORT

CALL

CALL

CALL

CALL

COt'~T I t·lUE

::::;TOP
FORi"1AT ( "I"H..IL.Er"I":::: PEF I t··IEf;':'l Cot··ITF:OL

1 "DA'-c' ~ t'101'HH '? ")
FORt'lAT ( "HOUR::';; ~ t'l I I"~:::: ~ (SEC::::) ? ")
FOPt'lAT ( "SAt-1PL I I"~G TI t'1ES-t'1A::; TEF.: AtoHi

:I. " I:::::Atn ~ ::::t'lI.JI....5 ~ ::::;t'lUL..6" )
Et'~D

:::;ET PAC I F.~ G() I t·~C;

10 if]
1(1;;::0

C
C
c::
C
C---------~------------------------------------------------------------

C

C
510
C

50'3

C
C
C
C,-.
-'

C-----------------------------------------------------------------------
C 5.CONTROL PROGRAMS
C

0111
~2111~:~

t111 ::;::
0114
0115
0116 C
o11'?
t11 1:::
011'3
(112:0
0121
~j122

0123 C
~] 124
01.,'2:5 519
~~1126 ~5:20

0127 C
0128 500 CONTIHUE
0129 C----------------------------------------------------------------------
~:::1 13 ~21 C ":1·"
~]Dl C
~Z11":::: 2
t113::::
~:::1134

o1::::~i

OD6
OD7
~:::11 :;::::
~i 1::::9
~j 14~;j

~:::1141

~j 142 C
0143
~j 144 C
t1145
~j 146
~:::114 7
~j 14::;:
014':!
0150
0151
~j15~::

(11 ~~i :::::
~j 154
0155
0156
0157
(1 1 ~:i:;:

** NO WARNINGS ** NO ERRORS ** PROGRAt'1 = 00469 COt'lt'10t·l = ~]075E:
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9: 15 At'l t'lOr'j" 21~1 FEB., 197:::

PAGE B3.75

C

I"',-'
C

~j 15':!
016(1 . C
(1161, C
~~116 ::~ C:
(111::':3 C
~~1164 C
(1165 C
0166 C
~j 167
~j 16::::
016')
(11'?0
~j 1i" 1
~]172

~~i 17 :;:
~j 174
0175
0176
01 ,?"?
[117::::
0179
1~11 :::0
OH::1
~) 1:::2
01::::::: C
~j UN
01:::5 C:
[11 :::t'::
~) 1:37
~) 1:3 :::

SUBROUTINE SETTI(IYEAR,ITIME,IRESP)

--- SETTI --- SET TIME BY CALL TO MESSS

ITIME HAS SAME FORMAT AS EXEC(11) COMMAND
IRESP IS RESPONSE TO SET TIME COMMAND, ERROR IF,NE.O

DIMENSION IPB(33),ITIME(S)
DATA IPB( 1), IPE:(2), IPSC;:), IPS(4),/2, :::HHh 2H , ~~H ,/
DATA I PE: (!:i) !I I PE: (';;:1) , IPE: ( 1.3) , I PE: ( 17) , I PE: (;;~ 1. ) I1 IPE: (3:::::) ,/ 1. , 1.11 :I. I1 :I. I1 :I. , 1::::,/
DATA IP8(25),IPE:(26),IP8(29),IPB(30)/4*0/

FINISH SETTING UP PARSE BUFFER
I PE: (6) = I 'lEAF.:
IPB(10)=ITIME(5)
I PE: ( 14);" IT 1t'lE (4)
I PE: ( 1:3) = I TI t'lE (:;::)
I PE: (22) =: I TI t"IE (:?)

DO INVERSE PASS TO CONVERT DATA TO ASCII COMMAND
CALL INPRS(IPE:,IP8(33»

EXECUTE COMMAND BY CALL TO MESSS
IRESP=MESSS(IP8,48)

INPRS RETURNS 8 CHARACTERS/PARAM I.E. MESSS CNT =8*6
IF(IRESP.EQ,0)RETURN

INVALID CALL, PRINT RESPONSE ON SYSTEM CONSOLE
CALL EXEC(2, 1, IPB,-IRESP)
F.:E TUF.: r'j
EHD

FTN4 COMPILER: HP92060-:l.6092 REV, 1726

** NO WARNINGS ** NO ERRORS ** PROGRAM = 001.24
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0001 FTI··/4,L,T
0002 PROGRAM HANGO
0003 C'~~'*+***********************f*********************** ***************-*****
OO~::i4 I" HFIHGO - ,. HAt·~C;····UF'·· r=lt·jIl.····OR "GO"
0005 C FOR SCHEDULING TEMPORARY SUSPENSION OF PACIR.
0006 L ALSO USED FOR COLD START BY SHEDULE FROM STRUP WITH PARAM 1=1
0007 r NOTE ; HANGO MUST BE LOADED INTO FOREGROUND
Jj l;~j ~~:! e I

IDCi 0') I..

:?!:I:! Cl f"
HANGO CAUSES PACIR TO SUSPEND ITSELF BY SETTINGISMUL(l)=-l .
PACIR IS SCHEDULED IN SUBROUTINE RCDSP.

(:i[l:l. :i.
i::'!CI :1. ;::::

0014

I"'·
I....

C: . i,/ EF: ~:::; I 0 1"·1 :: . ,::j...... :I. (I ..··· 19 -;:' ?' ( E: DP )
(:'i:'*0~~'~'0~*~'*********~"~*~~'~'*****'~*******'~*****'~********************~'****0~'~*'~' .

0015 INTEGER PACIR(3),IT(S),IP(S),COMDAT(3),IDC8(400),ITOT(358),IC(38)
0016 DIMENSION CMC(160)
01:)171_
0018 C ------ COMMON ------
00191-'
0020 COMMON ENG(64),ADCV(64),CDACV(24),
0021 SAFCOD(20),CLFLOD(10),REMLTD(lO),CLIMED(10),
0022 2 GASFAD(lO),GASFBD(10),GASFCD(10),FILCYD(10),
0023 3 SERVOD(20),DUMMY(50',
0(j:~4 4 I~:;At'lT, I~:;t'lUL(3;2), IPt·j(40):i ICIt·j(4), ICOUT(4),
0025 5 ISCOP(3),IDUMY(50)

Ei···IG - Et··iG I j··iEEF.: I t--IG Uh IT':; (C: nLC:UL.A·rED B\' Et·jGUI··~ FF.:Ot'1 tiDC"i ",,'OL TAC;E::;)
ADC V A/D VOLTAGES (UPDATED BY SCAD)
CDACV D/A VOLTAGES (UPDATED BY CDAC)

.........---'- -"- - _. , -,.- .-- - _.- - - -- -,- - - _..- ..-..-_. - - - -_ ..- _-

SATURATOR FLOW CONTROL DATA
CLOUDY LIQUOR FLOW DATA
REMELT CONTROL DATA
CONTROL LIME DATA
c:; fl I:::; FI.... Cl 1...1 I::: Cl !··II' I:::: 0 1.... ]) f:1 Tf:1 F' () F: ,. 1::1 " ~::; f:1 'T '...11:;:: ATCl F:
C;A~:; I:: L. Cl 1..1 COHTF:C)L.. Di:::,'fA F()F: "B" ~::;f:ITUI:;;:ATOR

Gn~::: FLCI!.! C:OI·jTPOL DHTA F()R "C" :::;i:I·I'I...IRriTOF.:
FILTER CYCLE MONITER DATA
SERVOBALANS SCALE MONITOR DATA

MASTER SAMPLING RATE (PACER FREQUENCY, SECS)
SUB-RATE SAMPLING TIMES (PERIOD(X)=ISAMT*ISMUL(X»)
RESOURCE NUMBERS
CONTACT STATUS IN (UPDATED BY seCS)
COHTACT STATUS WORDS UPDATED BY CONTROL PROGRAMMES.

FI.JiG I...!I:::ED B'":" ~,KHDG Atm TI ..!I:: COHTPOL PROGPf=tt·1t'1ES.
.- I:::;TATCI::: OF COijTROL PF-::OGI?AI"'lt'1E::;" <I, E, put·jt·jING OF.: OFF)
- STATUS OF AUTO/MANUAL SWITCHES.

T r'. I. i
J. 1". ;'1

I ~:; 11 t'1 T
I ':;;i'·II...IL

ICHJ
ICOUT
I ::;COP <1.
I ::;COP (;2
I ~:;COP {3

1:;':\ F' CCl D·····
CL.FL..CJD····
I::::EI·'·!L.. 'T·:D·..
C:I... I I·'·!F·:D····
::;;,:::, ~:::; F·I:::I.D ..,
c; '::1 ~:::; F ~:: :D .....
GH~:::FCD"'"

.F I LC'":":!) ..···
'::EP\iO:J .....

,"',

t.-

C:

C
C
C
C

c: .

1"
'-'
C
C
C
C

C

C:
C
C:
C
C
l..··.'

(",
I ....

1...:

C:
C:
C
C:

~j04:::

~)049

0050
0(:1::5l
005;~~

i21(:l~i:3

(1!?J ~5 I::!.

t;::l (:i ~:::i ~:::i

!~::1 i?l :::::;?
[1[1::::::::::
I?II:'!:;:: ':l
1:::/ I:).:: ~5
O(l::::.:~::;

0037
~~1 (1 :::: :::
0(139
~:~ ~?14121

004:1.
0;::'142
~]~~~43

0(j44
0045
0046

O~~i;26

OO;??
oo;~::::::

(!O;;::~l:::i

. 1::j0:::::0
01::/:::::1.
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C-.
'--

1. CHECK FOR IMMEDIATE STARTUP REQUESTED BY STRUP.

IJ 121 ~:;;:::

f) f:i ~~; 9
111216121
1~:i061

01~16::

(11;363
0064
IJ 1:::1(: ~:::;

0066
I2!06?
Of:16:::::
012169
00;::'121
0071
007;;:::·
0073
I2IO-::",::i·
00?5
0076
~jl17?

007:::::
iJj?i'?9
OO:::::~')

00::::: 1.
IJ IJ I:: 2
OI?I::::::3
l;~l ~~1 :::: 4
OO:::::~5

~~1~):::6

1;::10:::::':::;:

0[1:::9
009()
0091
121 12I9;~:

009:::
0094
009::,

CAll.. Pt'1PAP ( I P>
LU :::: 1
IF( IP( 1'>. [1).1. > GOTO 110

START IMMEDIATELY
C
C....._...... -.-.- -.- - - - _._...- - _. ..:. - _. _.- .._.- - - - - ... - .._.- - .._- ._....._; - - - - - - - - -.:.. -.,;.. _...- -- ._--._. - - _.- --.- .... _. - _..;- -.-
C ~. REQUEST SUSPEND & RESTART TIMES FROM THE OPERATOPi
c:

CALL EXEC(11, IT, IYEAP>
10 ~,~F.:ITE(LU, 100f) IT<5>

READ(LU,*>ISTOP,IY,IZ
ASTOP = IZ + 60.*(IY + 24.fISTOP).
~,.IR I TE( LUI' 1(00)
READ(LU,*>ISTART,IY,IZ

.. STAPT = IZ + 60.f(lY + 24.*ISTAPT>
IF«ISTOP.GT.O).AND.(ISTART.GT.0).AND,«START-ASTOP).LT.0»

I I.::;OT'O 1121
i.M •

C"------------~--------~-----_·_------~_·_~,-"--_·~-----~--"---------------_._._--,-_ ...
C :::. ACT ON IMMEDIATE RESPONSE REQUESTS.
C

IF(ISTOP,EU.O)GOTO 40
IF(ISTART.EQ.0>GDTD 110
IF«ISTOP.LT.O>.AND.(ISTART.lT.0»STOP 0001

C . END IF NO STAPT TIME AVAILABLE.
c:
C- .. -----------------------------.--------------------------------------
C 4. CHECK CURRENT TIME AGAINST INPUT TIMES.·

?0 COt,·iTINi.JE
. C:I:::II.:.L E:::,::E:C: (·:l:l ~I IT', J \'E:HF: >
[F«IT(5>.NE. I::::;TOP).AND" (IT<~:;>,HE. I:::::THRT»GOTO :::(1
TNOW = IT(3) + 60.*(IT(4) + 24.*IT(5» .

IF«TNOW.LT.HSTOP>.AND.(lSTOP.NE,,-:l»GOTO 30
IF«TNOW,GE.STHRT)"AND. (ISTART.NE,,-l»GOTO 110
IF ( .:: I :::;!"1ULi . HE .-.. 1) • Ht{Li" Cl' "·IUiL CEoo H::: TOP> . At··ID" (I ::::;TOP .HE" - 1) >GOTD 40

c----------------------------------------··.. ----------_-_-----------------
0096 C 5. WAIT FOR ONE MINU1'E IF NO ACTION REQUIRED ..
1211:::1'::;1';:" f'

009J
0100 ,."
01 [11
IJ:/.O::::: C
0103 C
0104
oH,1;:;
IJ106· C
010;::'

0109 C
0110 ..

30 CALL WAIT(60,2,lDUM>
GOTO 20

6. UPDATE COMDAT FILE"

40 CALL OPEN(IDC8, IERR,COMDAT, 10,0,0,400)
IF(IERR.LT,O>WRITE(LU,1500>COMDAT

:00 '50 I'" 1. , 3276';::'
CALL READF(IDCB~IERR~ITOT,35:::,LEH)

SKIP TO END OF FILE
IF(lEN.EQoo-l)GOTO 60
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0111 50 CONTINUE
!:):I. :1, ;:::; C

CALL CLOSE(IDCB)

0::: 1i 0:::' p' i:::' !'"In p' Ai': TI:;:', 1',1 j'''IT' P' ''I'' I'i 1:::1 ''I'' 'r 1",1 T::::; I": AH1",11"1 T BE' DO 1",1 E 1..,1 I T1,,,1
~~(L-~:EC(~;0~CI~;i) B~CAGS~-P~CIR-IS'~ BASTARD AT
Ti"! I I:::; ::::;'1" i:::1 ::::: E: ! IT' I:;;: \' I 'i" I F' \' 0 I...! ]) () 1",1 T' E: EL. J: E1,/ E t'l E ! <HDH::.

I ::::i'li...!L;; :I.' ,::: ..,.. :1.

i,,! r;:: Tr E: ( L, I...!!! :I ;:::' Ij 0 ::.
C::::ILL, F:' T'fl:U <!.."I".i::O

CALL WAIT(:i.O'2i~D~~~OND WAIT UNTIL SDRTA SUSPENDED BEFORE RUNNING
IT ONCE MORE TO CLOSE THE CURRENT FDHTA FILE.

C: i::1 i.." i " I:::: il F: Cl <,'1-:, I i:;;: i'! <:::i ::0 :1 I I:::; T' I:::' 'r ::0

CALL WRITF(IDCB, IERR, ITOT,358)
WRITE UPDATED COMMON INTO COMDAT FILE

IF(IERR,LT.0)WRITE(LU, :i.(00)COMDAT

7, SUSPEND PACIR AND NOTIFY THE OPERATOR.

;::,1::.1 :Ui) ::::CI I::::: 1. !' ::::::::;

IF(I.GE.6)GOTO 70
IC:(I) ::::: IT'(I)
I C: «(:) :::: I ::::;HI'lT
IF(I.LT.7)GOTO 80
IC(I) = ISMUL(I-6)

c: 1::1 C: 0 j",i"I' I t·j I...! E:
:UO 90 1':::::,:1.:1 :I.()

CMC(I) - SAFCOD(I)
CMCfI+10) - SAFCOD(I+10)
CMC 1+20) - CLFLOD(I)
CMC 1+30) - REMLTD(I)
CMC 1+40) - CLIMED(I)
CMC 1+'50) - GHSFAD(I)
CMC 1+(0) - GASFBD(I)
CMC 1+70) - GASFCD(I)
CMC 1+80) - FILCYD(I)
CMC.I+90::! - SERV()D(I)
CMC(I+:l.00) - SERVOD(I+10)
CMC(I+l:i.0~ - DUMMY(I)
CMC(I+120) - DUMMY(I+10)
CMC(I+:i.30~ - DUMMY(I+20)
CMC(I+:l40) - DUMMY(I+30)
CMC(I+:l.50) - DUMMY(I+40)

'::) Cl C: i) i",lT' I I"j 1...1 F:

IF(ISTART,LE.0::OGOTO :120
i',1 F: I "1" F: <!.." I.I!, 1.::; Cl Ij ::0 I ::;:;'1" 1:::1 i::::r!1 I \':1 I ;::::

.i. ::;:1 Cl :::::::::II",IT' I i",II...iE:
C;()'T'I) ;:::: I:)

("
'".'

1"',
1

I:"

C:

c:

C:

I,'

i....

("
I....

ij :!, I::::::::
Ci:l. (,;::1·
Cl :l.1::;:j

Ci:l :;::;:::;1

Ij:l:j :I
I:):i. '5:::::
CI:I. :;::i::::

(;11 :::::'?
C):I. 3:::::

1:;::1. '::i,';'
Ij:l. ,::!:3

Ij:l. :3';;
I:) 1,::i,Ci
Ij:i. ,::11
Ci:l ,::; I::::
1):1. ,::i:,
1::1 1,::1 ,:i
1:::11 ;::1· ::::;

i:::l :I,l::j.i::::

i::'l1,:I. ,::i,

e!:I. :I. ::;;:
i):I. 16
C! 11 ';'
Cl :I. :I. :::;
!):I. l ')
CI:I. :?Ci

1;::1 :l. ~:::; (;
l;::i:l. :5'?
!:::! 1 ::::i C;
':) 1'j'::::

(:j:l. ;?;?
!?i 1 ;:::~ :::::

I) :i, ;?')
Ij:i. :::::::)
!:;:i:l. ::::::1.

1):1. ;::::,:!'
!):I. ;:::' '5
la :I. ;~::~ (::;
I:) :i, ;::::';'

:j:l. ::::::::;
:j 1. :34
Cl 1. ::::':::
Ij:l. :::::(:
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-~_.~_._-_.-.------_._--------~-_._-~_.~~---------------------

9. SCHEDULE PACIR t NOTIFY THE OPERATOR.

110 CfiLL I,:CD:::;P
~,jP 1TE (LU, 140()
C1:11... !.... PT~:ID(I.. .. I..J)

:I. ;::::0 ::::;·TOF'. 01;:'10;;:::

c:

C
c----------------------~--~-----------------------~---------------------

C 1.:1, FORt'1AT::'::
C

:[ ;J 0 1:::1 FCl F: 1'1 A'T ( "'I" Cl DH\' IS DA\' HUt'l E: ER", I ::i;, ". ",./ ,
1 "Et·1T EP ::'::T OF',/ ::'::TART T1t'1E::':: 't'~Cl~'l. ([1 == 1t'II"1ED 111TE RE::':;F'Ot'~:::;E , -1 = I Gt·10PED )"
I::; , , "::::TOP T1t'IE (Dfl'y', HOUR" t"1 I t·1UTE) ,~", )

',','. :I.I~.'IO Fnf;'t'l- T >:' "I;:'E:·::;·T··· PT 'f:[ t'lE' >:' D'~ "", Hn119" 1"1'1' t··II ....·!"; ", ,;, '" ",..... J-i , ...... H. .. ... .. 1-1,. ... ... r;.. .. L. I c, ,', "

:I. ;;::: 0Cl F0I:;,: 1"11:::1 "j" >: " P1'::1 CI I:;,: ::::: 1...1 ::::, F' E1"·1 :[1 E:[1 01',1 CCl 1"'11"'1 1":11"·1 D" )
1::::(1') FORt'1FI"'( ":::;CHEDUL.ED TO F.:E·... :::;HiRT ot·{ DI1''( ",15," FIT", 12,"H", U:)
1400 FOPt'1AT>:" F'AC I R COt'1t'IEt·1C I t'~G Ot·1 :;::;CHEDULE")
1:5~W FOf;:I"'IAT ( "F I L.E OPEt~ I t·1G EPROF: I t·1 "" HAI···IGO" " ( " , 311;2, "-)" )
:i. (;00 FOF.:I"·lfIT ( "F':r L.E I...IF:: ITII,le EF,:F:OI,: 1"'·1 "" HHI···ICO" " (" ~, :::::A;~:, ") ")

C

~j :I. '? :::~

01 '?'~

01 ::::0
0t C:: 1
1:::1:1. :::::;::::
01::::::::
01 ::::4
~:11 ::::;
01 ::::6
01::::7

[1166
0167 C------------­
1;:'116::::: . (:
0169
(i 170
CH? i
Ot 7;;::
01 ,?'::::
0174
[117:'=,
.:11 '76
1;:'1177

0188 C---------~-------------------···------------·~-----~--~--------~------------
C1:[ ::;::9 C
1;~!19C1 EHD

** NO WARNINGS ** NO EPRORS ** PROGPAM - 01672
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GISt SUBROUTINE RCDSP
C l'~!;2 ' _- .. -- - _ --- - - -.- - -. ----- ------.------- -.-- ..- -.!..-

01 Q ? C RCDSP READ COMMON DATA AND SCHEDULE PACIR

I....

c::
------ COMMON ------

ENGINEERING UNITS (CALCULATED BY ENGUN FROf'i ADCV VOLTAGES)
AID VOLTAGES (UPDATED BYSCAD) .
D/A VOLTAGES (UPDATED BY CDAC)

COMMON ENG(64),ADCV(64),CDACV(24),
SAFCOD(20),CLFLOD(lO),REMLTD(10),CLIMED(10),
GASFAD(iO),GASF8D(lO),GASFCD(10),FILCYD(10),
SERVOD(20),DUMMY(50),
I::::f11'rT':, I~:::f'iI..!l.J3;:::), IRN(40), ICa·I(A), ICOUT(4),
ISCOP(3),IDUMY(50)

EJ'~i:;

H.JC\I
C:{JI:::jC:illll

INTEGER RCOMD(3),PRCIR(3)

C
C
C

(~ -I 1"'1 ;''';
!:;.11 ::: c:

0199
0200
1;::1 ~::~ 1;::1 J
O:~02

C20:~:

~:i;~:04

O:~O~::;

0206
0;:~07

020::::
~~)~~09

.;j J')4

Ci i ') ~~!

Cl I '36
Ij 1'::::;:'

U213

("
I,..'

c:
t',

'-',-.
t.·

c

~:; I;; Feu D·····
C: L.. FL. O:[i .....
PEI'lLTn ..·..
CLII'lED···
GA:::;FAD ..·..
C;I:::I:::::FB:D ....
C:fi:::FCD·..··
F I LC'/D'­
~:; E!:;:~ \.1 (I :D _R'

SATURATOR FLOW CONT~OL DATA
CLOUDY LIQUOR FLOW DATA
REMELT CONTROL DATA
CONTROL LIf'iE DATA
Gn~::: FLOI,.i COt·4lF:OL. DAT r'i For;;: "I~" ::::,:::,TUF.:Aror;:
1:;':1:::; FL.C)I.'I C::O!···ITI?OL. :DATA FOi:::: "E:" ::::I::,·T'i.JF:ATOP
c;r:j::: FLOi'.! COHrr:,:OL DATFI FOF: "C" ::::HT·UF.:ATOP
FILTER CYCLE MONITER DATA
SERYOBALANS SCALE MONITOR DATA

l?j ;;:~ ;::~ 1;::1

121 2 ;;:~ 1

c! ;;::~ ;;::~ ::::;
j?1;?;;:;~4

C2~~~:;

!?i ;~:~;? 6

l ISAMT MASTER SAMPLING RATE (P~:ER FREQUENCY, SECS)
C ISMUL SUB-RATE SAMPLING TIMES (PERIOD(X)=ISAMT*ISMU~(X»
C IRN RESOURCE NUMBERS
C IeIN CONTACT STATUS IN (UPDATED BY SCCS)
C ICOUT CONTACT STATUS WORDS UPDATED 8Y CONTROL PROGRAMMES.

ISCOP(l FLAG USED BY WCHDG AND THE CONTPOL PROGRAMMES.
l ISCOP(2 - STATUS OF CONTPOL PROGPAMMES.(I.E. RUNNING OR OFF)
C ISCOP(3 STATUS OF AUTO/MANUAL SWITCHES.

1;::1 ;~~ ::~: 0
!?J ;;::~ 3 :I.

f_.
c-·----···---------------·_---------------·-·-----------.--------------.-------------..... ---.-
i....

l....

0235 C SCHEDULE RCOMD TO GET LAST SET OF COMMON DATA

E:::t:C I ;2:::::, r-;::COI"ID >
QUEUE SCHEDULE WITH WAIT

RNDTM(ISAMT,O,NSECS,NMIN,NHOUR>
ROUND TIME UP TO NEXT HALF MINUTE OR WHATEVER

SET FLAG FOR PACIR
CALL EXECI12,PACIR,2, ISAMT,NHOUR,NMIN,NSECS,O)

(:fi! ... L

CrlL.L..

Cl;;::::::::'::;l
~:j;? 4 (i

~]~~~41

!~:!244 t.·
~::i ;~~ ,::j. ~=; :~~ U
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F:["j'ljRI",1
E:I'"I])

SET PACIR TO RUN E~ERY ISAMT SECONDS

** NO WARNINGS ** NO ERRORS ** PROGRAM - 00048
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PAGE (H]O 1 FHj" 9: ;:::9 At<1 t'1ot·j" 2~3 FEE:", 197:::

F'ILE", .......... :' :::(l( ";,,"), .... )

","EF:S ION: 15-- 12-1977.

IF(LEN,EQ.-1)GOTO 2000

DO 5(10 .J:: 1,50
DO 5~)(1 I=1!, :I.:::':
K:::(.J-1 )',:-12+1
IFCT(.J,I)=18UF(K)
COt·jT I t·j UE
IN ::: IFCTO,12)

CALL. OPEN(IDCB, IERR,FILDAT, 1,0,0)
IF(IERR.GE,O)GOTO 1,00

I t·jTEGEf;': FI L.DHT (::;:::;, , I DC:E: ( 144) :' IFCT (~iO, 1;;::::;, , IBUF (t.:::I2'O) , I BLI< ( 1, 2)
DIMENSION HV(12,4),SDV(12,4),TAV(4),TSDV(4)
DATA FILDAT/2HFI,2HLD,2HAT/

I'JP I TE (,:::;, 11:~4n')

f~'(:iF.:I·'1AT(:~:[1(: "':;;;')~' ,//:, ~~::::::.::, "FIL'fEF: DHTf:,
CALL READF(IDC8,IERR,I8UF~600,LEN)

IF(IERR.GE,O)GOTO 200
I

FINALLY THE OVER-ALL MEAN AND STANDARD DEVIATION OF EACH
PARAMETER FOR ALL FILTERS TAKEN TOGETHER ARE CALCULATED & LISTED,

THIS PROGRAM READS THE FILE FILDAT GENERATED BY FIlCY AND LISTS
THE DATA ON THE PRINTER. IT THEN CALCULATES THE MEAN AND STANDARD
DEVIATION OF THE FOUR PARAMETERS :

"STAF:T I tHS" =::nART I tHERVALS
"'...'AF: PF: PEF.:D::;" ::::',/AP IABL.E PF:ES::;UF:E PEF: IOD:;:;
"C'/CL.E PE F.:D::;; " ;: T' ()TFIL C'/CL_ E PEF: I OD::;;
"F ILTF:AB ILI 1'/" ;:F ILTEF:AB ILI 1'/

FOR EACH INDIVIDUAL FILTER AND LISTS THEM.

DO 50 t·j::: 1,4
Tf=t"/ (t·j) ::::[1,

TSD"", (N·)::::O,
50 CONT I t·jUE

WRITE(1,1030)IERR
11:::1:::::0 F'ORt'1AT ( "Ut·jADL.E TO F:EAD F~,:Or"l FI1....[ FI L..Df:IT ..... I EF:I;,:;:" , 16:;'

GOTO 2('00

:I. OI~:1

1~J4~]

150

WRITE(1,1020)IERR
1020 FORt'HH ( "Ut·jABLE TO OPEt·j FILE FIL.DAT -- IEF:F:=" , 16)

GO TO 2000

c

C
C:,-.
-'
C---------------------------------------------~-~-~----------

C
C

FTtH, L
PF:OGRAt'l RFLDT

C---------------------------------------~----------~----~----
C RFLDT - READ FILE "F ILDAT" Ot·j DISC
C:
C
C
C
C
C:

'C:
C
C,-'
-'

(1[101
tHZi02
012103
~~HZi04

~~ 121 ~~15;

(l~Zi06

[112107
O~ZiO:::

[11210'::~

0[11.(1
(1 (11 :1.

[1 ~Zi 1. ;2
(1[113
(Hj14
~j015 C
~]~Zi1.6

0(1 :I.?
[11~11 :::
(Hj19
002[1
[1(121
[1 ~~I ~:: ~::

0~~12 ::;::
[H~124

. ~~H325 C.
0(126 C
~~1 (1;;::: 7
~~l ~~, ;;::: :::::
0~329

[1[130
~Zi03 1
~Zi ~j:;:;;:::

(1 ~Zi ::;::::::
~~10::::4 C:
(10::::5
0(136
0037
[1~Zi3::::: C
O~:1:39

i.~l~~14 0
~3041

[H342
0(14::;: C
~3Ci44

[1 ~~ 4 ~::;

~Zi~)46

[HZi47 C.
o~~1 4:::2 ~~1 0
~~1~~149 C
~)(15~)

0~~1!::; 1
(Hj5c:
012153
0054
[Hj5::)
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I;:l ~~I ~:i 6
~)~J~:i?' c:
(10~:':::

~:l ~) ~:) '::~

~:'leI60

~:l(161.

~] ~~1 t:; 2:
~J ~~16 :::::
(1~~164

1~1 ~~l6 ~::i

~~1~J66

(1~:16?

~) ~~11::~ I;::
~~l(169

~~10?O

(1(1"71.
~~1 (1? ;;:~

~~1~]?3

~~1(1?4

~~10?5

~]076

(1~J??

~~1 (1 '7 ::;:
~]1~1?9

(1~:1::::0

(1~~1::::1.

~) (1 I:: ::::
~.3 ~Z1 ::: :~~:

(1(1:::4
~J~J:::5

(11~1:::6

1~11~1 :::;: 7
[1 ~~1 :~~::::

(1~:1:::9

(11~1 'Si (1
~](1'Si 1.
~~1 ~) ':~ ;:~

01~l9::::

1~11]94

01~19:;

~](196

~]~~19?

01~19:::

0~Z199 C:
~Z110fl C
0117.11
~310c.:

iJ 1(1:;::

0104
(1 1(~:i

~3H~6

(Il (1-;:"
~) 1(~:::

(111)9
~:l11O

1....1::::: 1. +.It'1

~,j PITE::: 6, 11;) !:::'{:I ) ::: I Fe: T' ::: :I. , I ) , I ",:i, 2: , "".1. )
:I.I;::I!:::;O FOf~:NAT (~)::.::, I1 DA''f' I1 ~I I:::::!I 4::.::,.1 ~~, I1 H11_, I ~~ ~I 11: I1 !I -I ~::, ::=:::.::,_ I' :: ..... 11, ,/)

~,jF.: I TE::: 6, 1(1(;~::1)

:I. ~::16 0 FOP t'1 AT::: 15::.::, """. ':';' ';1;' ';1;' ';1;' .;* S"I" 0 I:;': ED 0F' EPA"I" I I"~ G DFi T' f:1 F0 F;: EA C1·-/ F' I l... TEI::,: ';';' .,* ';1,· .,,:, ';';' ';1;' " :' .......... )

~,.IF.:1TE:::6, 11)'70)::: 1,1:::::1.,12)
:1.1;)-;:"1;) FOf:,:t'1AT::: ::::::::::.::, "F I I.."T·EI~: t·~UI·'1BEP,"!I ..... , 4::·::, 12: I 6, ..... )

WRITE(6, 10(0)(:::IFCT(J,K),K::::::I., 1.2),J:::::2+4*IM,49)
:1.000 FOPMAT:::1.2:::4:::4X,1.216,/),/),//)

~'.IF.: ITE::: 6, 11 'Sii~l)

1. l 9fl F0 r~: t'1 AT::: 15:~:::1 "~I;' * "". ':';' ';1; S''1'' f:1 TI ::; TIC :;:; F0F.: F' I 1.." TEf;': ::: "I" fI TI 0 1"·1 0F' E: I~: ATI () I"~ ~I;' ';1;' ';';' ';';' .!; " :' .......,., :1
l ::::: 1. ::.::, " I t·lD I I,,.' I D1...1 fi I.... F I I.... TEF.:::::;" , ..... )
WPITE:::6, 1~]::::~:l)

1. (1::::[1 FOF.:t'1AT::: 22::·10, "f::I',,.'ERI:::I(;E::::" , 14::·10, "*" , 9::<, "::;TFII"~DAPD DE',,.' I R'T I Ol"~:::::" " , ..... )
~,H;,: I TE::: 6, 12fl(l)

1. ;;::~:l[1 FOF.:t'1AT:::" FI L.. TEf:,:" , ;;::::.::, "F I I.... TEf<:" , 2:;:'::, "",.'FiF': I ABLE" , ::::~.::

1, I1 C\'CLE 11,2::,::, If F I LTEf;;:,,", If , 6:>~, I1 F I L. 'rEF.~ II !I ,:::.::, 11 I'lAF.: I HE:LE I1 , :~:::.::

2, 11 C'iCLE 11,2::'::!1 II FI LTEf;;~"'" 11, ••••• , 11 ~'~UtllE:EF.~ 11, ~:~::.::, " STAF.~TS 1" ~2::'::' ·11 PF;~ES:~i;I...If:;;~E II ~I ::::::.::,
:~: 1I T I tllE~:; 11,2::,:;, III:~B I LrT\III , 6::·::, 11 ~:;TI1r~~T~:; 11 , ;~~::.::, 11 PF.~E:SSI..JRE 1', :;:;:.::, 11 TT l'ilE~::; 11 !l ;;::;::.::,
4 11 HE: I LI 1"1'(' 11 ~I ",", ::::l;:'::, I1 I:: tl" I t·~S) 11 , :;:::.::, II (tll II"~~:::;) I1 , :3::<, '11 (t'l I t.~~::;) 11 ,4::,::, II( ::.~) 11 !I :::::::'::!I
5 II ( tl1 I ~.~ :E; ) 11 , ::::1 ::.::, I1 ( 1'''1 I "'.1 :;:;; ) 11 , :;: ::.:: , .11 ( tll I t.~ S>11" , a:.t ::.::, II ( :..~ ) 11 , ./ )

HUt'1:::::~:1

DO 25~:) 1=1, 12
IBL..K:::I)=IFCT:::50,I)-IM
IF::: IBLK(I)"I....T,0) IBL..K(I):::::0
t·~UI·'1=t·lUt'1+ I E:l...K::: I )

;:~~:iO COt·lT I t'~UE

IF:::NUM,L..T,:I.)NUM::::: 1.
DO 4(H:) t·l= 1. :' 4
TA'...':::t·~) = f~,

DO :::::50 1=1, L~
SUt'1:::::(1,
DO ::::00 J=IJ,IBl...K:::I)+IM
L. =4*.JH~ - ::;:
SUM=SUM+IFCT:::L..,I)
TAV:::N)=TAV:::N)+IFCT(l...,I)

:::::O~J COt'~T I t·lUE
IF( IBLK::: I), LT" :1.:;' IBI.."K::: I ):::::1
AV::: I, N)=SUM/FL..OAT::: IBI....K::: I))

::::~50 COt'~T I t·lUE
TAV:::H):::::TAV:::N)/Fl...OAT:::NUM)

'::1-(10 COt'~T I t'lUE

DO ?(1~3 t·~= 1., 4
"j":::;DV:::H) '"~ 0"

DO 65~:) 1=1,12
SUI"·I:::::(1.
DO 600 J:::::IJ,IBl...K:::I)+IM
l... '.::4 *.JHl-::::
DUM1=IFCT:::I....,I)-AV:::I,N)
DUM2=IFCT:::L..,I)-TAV:::N)
SUM:::::SUM+DUM1*DUM:I.
TSDV:::N):::::TSDV:::N)+DUM2*DUM2
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PAGE 0003 PFLDT 9: :29 At'1 1"10t,~,:, 213 FEE:" 197:::

0111 600 CONTINUE
0112 IF(IBLK(I).GE,2)GOTO 610
0113 SDV(I,N) = 0,
0114 GOTO 650
0115 610 ARC = SUM/FLOAT(IBLK(I)-l)
0116 SDV(I,N)=SQPT(ARG)
0117 650 CONTINUE
0118 IF(NUM.GE.2)GOTO 660
0119 TSDV(N) = O.
0120 GOTO 700
0121 660 APG = TSDV(N)/FLOAT(NUM-l)
0122 TSDV(N)=SQRT(ARG)
0123 700 CONTINUE
0124 DO 550 1=1,12
0125 ~'~f':ITE(6, 11~19(1) I, (A',,.'( I, t'l), t'l=l, 4), (~::;D'·,.'( I, f'1), f'1=1, 4)
0126 1090 FOF.:f'1AT ( 14, 2F 113. 1, ~~F8. 1,4>::, ~~F H1. 1, 2F:::. 1)
0127 550 CONTINUE
[11~:~::: C
0129 WRITE(6,1180)
1~ll :;:: (::1 11 I;:: 1;::1 FOF:: f"1 AT ( ,.... ,.... :' ::::: 2: ::'::, "0 ',,.' EI:::: fl LL r': E~::; ULT::;;, " :' ./ :' ~~ ::::: ::.::, ., Fi ",,' EPf' GE::;; " , :::: 1i< :'
13131 1 "STAt'~DAf;':D DE',iIATIOt'lS", ..... )
0132 WRITE(6,1220)TAV(I);TSDV(1)
013:;: 12~~0 FOPf'HH ( "STfiPT::;" , 14;:'::, F::::. 1, 2n::, F::::. 1)
0134 WRITE(6,1230)TAV(2),TSDV(2)
(1135 12:;::0 FOPf'1AT 0:: "'",IAP I ABLE F'RES~:;URE", 3::·::, F::::. 1:' 27;:'::, F:::" 1)
0136 WPITE(6,1240)TAV(3),TSDV0::3)
(~11 :::::-;:" , :I. ;,:41::j FOPI"IAT ( "C,,!,'CLE "1'11"'11::::::;", '31::,::, F::::" :I. :' ;;~?;:'::, F:::::" 1. )
0138 WRITE(6,1250)TAV(4),TSDV(4)
(11 :;:9 1.:25(1 FOF.:t'1AT ( "F I LTEF.:AE: ILI T"!'''' , 7::-::, F:::. 1,2:7>\, F:;::. 1)
0140 WRITE(6,1260)
13141 12:60 FOF.:f'1AT (·.... ,80 ( ",:." ) , .'" ...... )
0142 GOTO 150
0143 2000 CONTINUE
0144 CALL CLOSE(lDCB)
o14~:::; Et'lD

FTN4 COMPILER: HP92060-16092 REV. 1726

** NO WARNINGS ** NO EPRORS ** PROGPAM - 02895
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ERROR MESSAGES :

THE DATA IS STORED IN A 5-WORD ARRAY WHERE:

INTEGER IDC8(144),I8UF(5), IT(5),IP(5),SMAUTS0::3~
C ------ COMMON ------
C

FTtH, L
PF.:OGF.:Ftt'1 CLOOP

c***************~,**~,~,*****,******-***********,******************,~,**********

MASTER CONTROL SWITCH TO LOCAL MODE.
MASTER CONTROL SWITCH TO CPMPUMODE.
SATURATOR FLoW ON LOCAL CONTROL'
SATURATOR FLOW ON COMPU CONTROL .
CLOUDY LQUOR FLOW ON LOCAL CONTROL
CLOUDY LQUOR FLOW ON COMPU CONTROL
REMELT FLOW ON LOCAL CONTROL
REMELT FLOW ON COMPU CONTROL
A-SAT GAS FLOW ON LocAL tONTROL
A-SAT GAS FLOW ON COMPU CONTROL
8-SAT GAS FLOW ON LOCAL CONTROL
B-SAT GAS FLOW ON COMPU CONTROL
C-SAT GAS FLOW ON LOCAL CONTROL
C-SAT GAS FLOW ON COMPU CONTROL
LIME ADDITION RATE ON LOCAL CONTROL
LIME ADDITION RATE ON COMPU CONTROL

1,-,
0:::.

::;:

4
5
6
""",
S
'3

1[1
11
1'-'0:::.

1:3 ...

14
1,,''-'16

IBUFO::l)=SWITCH NUM8ER0::1=MASTER OVER-RIDE SWITCH)
(2=SAFCO LOCAL/COMPUTER SWITCH) .
0::3=CLFLO LOC~L/COMPUTER SWITCH)
0::4=REMLT LOCAL/COMPUTER SWITCH)
0::5=CLIME LOCAL/COMPUTER SWITCH)
0::6=GASFA LOCAL/COMPUTER SWITCH)
0::7=GASFB LOCAL/COMPUTER SWITCH)
0::8=GRSFC LOCAL/COMPUTER SWITCH)
('3-15 = BLANt:::)

IBUF0::2)=CURRENT STATUS.0::0=ON LOCAL)
0:: 1=Ot'j COt'1PUTEF.:)

I8UF0::3-5)=DAY,HOUR,MIN AT TIME OF SWITCH.

CLOOP - MONITORS THE CHANGES IN STATUS OF THE CONtROL LOOP
OPERATOR'S SWITCHES. IF CONTROL PROGRAMS ARE

RUNNING THE SWITCHES S~OULD ONLY BE 'OFF'-ED IN AN EMERGENCY.
SUCH AN OCCURENCE IS LOGGED AND STORED IN THE DISC FILE

"St'1AUTS" 0:: :::TATI,Y:; oFt'1At'JUAL>'AUTOt'1AT IC S~,l ITCHES) FOR REn:: IEVf:IL
IN THE PROCESS MANAGER'S REPORT. . .

COMMON ENG(64),ADCV0::64),CDACV(24)l .
1 SAFCOD0::20),CLFLOD0::10),REMLTD0::10),CLIMED(10),
2 GASFAD0::10),GASF8D0::10),GASFCD0::10),FILCYD(io),
3 SERVOD0::20),DUMMY0::50), '. .'.
4 ISAMT,ISMULO::::':2),IRN0::40),ICIN(4),rCOUT0::4),

C
C
C
C,-,
C
C
c:
C
C
C,-,
C
C
C
C
C
C
C
C
C
C
c:
c:
C
C
C
C
C
C
c:
c:
C
C
C
C
C
c:
c:
c::
C
C \,' EF.:::; Iot'j : 9-11-1 '377.
:~>:~. *;1, ******** ********"H·***********+. ******.;.;, ****;~****** .;.;,** *.;.;,;~** **,~,,,,; ********

(H:::10 1 .
0~:::10Z~

C1 ~j 1;::1 ::::: .

(1(104
~3a~]5

(1 (1 ~:16

aCH]7 .
O~JO:::

OC109
~3~::tl(1

(1~:::11 :I.
~:::1~J12

~:::1 C11 :;:
01314
~:::11315

~3~J 16
0(117
(1 ~:::11. ::::
(1(119
0(1;~(1

0021
~:::H:::122

0(123
(1024
~3~:::125

(1 ~:::1 :~~ I::::

(1~J2?

[1[1c~:::

~3(12'3

0~]30

01331
o~:::1:;: ,::
(1(1::':::~:

(1~J::::4

0~:::1:::5

13(136
~J0:;:7

~:::1 (1 3 :::
0(139
~3(140

(1(141.
iJiJ42
~JJ:,H::::

~Ja44

~3~345

0~:::146

(HH7
(1(14:::

O~34')

(1~J~30

0~:::151

(H352
(105::':
~3054

~:::1055
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:;i:; 1:1 T 1...1 F.~ A"j" 0 I:;;~

:;::; f~1 T1...1 F~ 1:1''1'' 0 F;~

::::;ATI...IF;~ATOR

SATURHTOR FLOW CONTROL DATA
CLOUDY LIQUOR FLOW DHTA
RENELT CONTROL DATA
CONTROL LIME DATA
GHS FLO~'~ C:OI··~"j'·f;':OL. DFlTfl FOP "A"
GAS FI.."O~,~ COI···ITF::OI.. DATI:l FOf;;~ "B!'
GAS FI.."O~I.I C:C)I··~TF.:OL DATH FOf;;~ "C:"
FILTER CYCLE NONITER DATH
SERV08ALANS SCALE NONITOR DATH

I :;:;"l"f'T::::::I.
FLnG THnT nT LEnST ONE CONTROL PROGRHM IS RUNNING"

K:::: 181 "j" ( I !' ....IC:I,·I"I"I···I)
L::= IBIT ( I !I ,...IC:I···ITCI)

CHI... 1.." F~I"'IF'f::IR ( IF')
...IC:t·~TO::::: IP( :I. )
,J Ct·~ Tt,·1 ::::: I P( ;:::: )

ISCOP(3),IDUMY(50)

1F' ( ( I • EC!.1 ~::i) " r:II··I:D" ( 1::::;"j'·nT. EC!" :I. ) ) G(JT'()
~F(I.EC!.:I.)GOTO 100
.".1 ::::: 1·-:1.

...I=IBIT(J,ISCOP(2»
IF(...I.EQ.0)GOTO 200

1STAT:::::0

DO ;:~O(1 I:ol!, :I.~5

CAllOCEND(IDCB,SMAUTS,IERR)
OPEN FILE SMAUTS AND STEP TO END

DATA SMAUTS/2HSM,2HAU,2HTS/

PICK UP PARAMETERS FRON CALLING PROGRAM (SCCS)

lEANT - NASTER SAMPLING RATE (PACER FREQUENCY, SECS)
ISNUL - SUB-RATE SAMPLING TINES (PERIOD(X)=ISANT*ISNUL(X»
IRN - RESOURCE NUNBERS
ICIN CONTACT STATUS IN (UPDATED BY SCCS)
ICOUT - CONTACT STATUS WORDS UPDATED BY CONTROL PROGRAMMES.
ISCOP(1)- FLAG USED BY WCHDc; AND THE CONTROL PROGRAMMES.
ISCOP(2)- STATUS OF CONTROL PROGRANMES.(I.E. RUNNING OR OFF)
ISCOP(3)- STATUS OF AUTO/NANUAL. SWITCHES.

ENG - ENGINEERING UNITS (CALCULATED BY ENGUN FROM ADCV VOLTAGES)
ADCV A/D VOLTAGES (UPDATED BY SCAD)
CDACV - D/A VOLTAGES (UPDATED BY CDAC)

::::;HFCOD­
C:LFLOD",,·
RENL·'I"D­
CL I t"IED­
Gli:3FAD,,­
GA::iFBD­
GI:,SFCD·­
FILC'r'D­
:;::;ER',i()D-

C:
C:
C:
C:
C:
C:
C:
C:
C:
C:
C:
C:
C:
C:
C:
C:
C:
C:
C:
C:
C:
C:
C:
C:C-----------------------------------------------------------------------
C:
C:
C:

00~::il:ii;

1:1 ~;~ ~:i '?'
I:l ~:I !::i :i:::

1;3~1!:::i9

I~~ ~j (:; \:~

\:~ ~Z16 :I.
o~Z16 ;;:i~

\~~j6::::

CH%4·
~1~16~5

~:l ~~16 6
0~Z16';:"

(1~16 :::::
~Z1 ~Z1 (;. 9
~j~j';:" ~j

~~l ~3 '?' 1.
~~1 (1';:" ;;ii~

(1~1?:;i:

0(174
(1 ~1 '?~)

1:1el '? f';:;

~)I;~I'?'?

~)~1'?':::::

~~1'21? ,)
~21(j:::::\::1

~~1 ') :ii:: 1.
~~1 '3 c: 2:~

~)~:1 ::::::::
~)13::ii: 4
(1 (1 ::::: !:i
l~l\::3 6 C:
'3 (1 :::i: ? C:
~:1 ~1 :::: ::: C:
C1~1::::9

(1~~190

1;:l~19 :I.

'3''::192 1...,

~:l (1 '::1:::::
(1'2194 C:
13 (19 ~:i C:
~~~196

(1 ~Z1 'i;1 ? C:
[1~219:::::

(1~)99 C:
~3:lIjO

[11(1 :I.

(1 1C1:::~

01.0:::::
(111;;:1,::1·
01 1::1 ~5 I:::
I~ 1(11:::;
010;:" i

01 (in I""
~) 11;::1 '::;1

01:1. Cl
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PAGE 000:;:: CLOOP '3: 20 HI"I !·'1Ot·i., 2~) FEE:. , 197:::

I..··-'

01:1.1
~) 1 L::
011:;: .
~) 114
o11 ~:i

~:H 16
0117
f.) 1u:::
~) 11 '::1
~)12[1

~~1121 C
0L':::2
012:;:: f'"

0124
~~1125' C
~) L':::6
~] 127
~) 12:::

IF«K.EQ.0),AND,(L,EQ.0))GOTO 200
IF«K.EO.1).AtHL O::L.EO.1))GOTO 2~)0

,J=2*I-0::1-K)
CALL t'lE~:;AGO::-,J, I)

CHLl... [:)::ECO:::[:[, IT, I"!")
IBUF0::1)=I
IBUF0::2)=K
I BUF 0:: ::,:) = I T 0:: 5)
IBUF0::4)=IT'0::4)
IBUFO::S)=ITO:::;:)

200 COt·iT I t·1UE

CAI.... l... CL.OSE 0:: I DCB)

FTN4 COMPILER: HP92060-16092 REV. 1726

** NO WARNINGS ** NO ERRORS ** PROGRAM = 00:;:59 COt'lt'10t·l = 0075:::




	Heher_Anthony_Douglas_1978.front.p001
	Heher_Anthony_Douglas_1978.front.p002
	Heher_Anthony_Douglas_1978.front.p003
	Heher_Anthony_Douglas_1978.front.p004
	Heher_Anthony_Douglas_1978.front.p005
	Heher_Anthony_Douglas_1978.front.p006
	Heher_Anthony_Douglas_1978.front.p007
	Heher_Anthony_Douglas_1978.front.p008
	Heher_Anthony_Douglas_1978.front.p009
	Heher_Anthony_Douglas_1978.front.p010
	Heher_Anthony_Douglas_1978.front.p011
	Heher_Anthony_Douglas_1978.front.p012
	Heher_Anthony_Douglas_1978.front.p013
	Heher_Anthony_Douglas_1978.front.p014
	Heher_Anthony_Douglas_1978.p001
	Heher_Anthony_Douglas_1978.p002
	Heher_Anthony_Douglas_1978.p003
	Heher_Anthony_Douglas_1978.p004
	Heher_Anthony_Douglas_1978.p005
	Heher_Anthony_Douglas_1978.p006
	Heher_Anthony_Douglas_1978.p007
	Heher_Anthony_Douglas_1978.p008
	Heher_Anthony_Douglas_1978.p009
	Heher_Anthony_Douglas_1978.p010
	Heher_Anthony_Douglas_1978.p011
	Heher_Anthony_Douglas_1978.p012
	Heher_Anthony_Douglas_1978.p013
	Heher_Anthony_Douglas_1978.p014
	Heher_Anthony_Douglas_1978.p015
	Heher_Anthony_Douglas_1978.p016
	Heher_Anthony_Douglas_1978.p017
	Heher_Anthony_Douglas_1978.p018
	Heher_Anthony_Douglas_1978_Chp2.p001
	Heher_Anthony_Douglas_1978_Chp2.p002
	Heher_Anthony_Douglas_1978_Chp2.p003
	Heher_Anthony_Douglas_1978_Chp2.p004
	Heher_Anthony_Douglas_1978_Chp2.p005
	Heher_Anthony_Douglas_1978_Chp2.p006
	Heher_Anthony_Douglas_1978_Chp2.p007
	Heher_Anthony_Douglas_1978_Chp2.p008
	Heher_Anthony_Douglas_1978_Chp2.p009
	Heher_Anthony_Douglas_1978_Chp2.p010
	Heher_Anthony_Douglas_1978_Chp2.p011
	Heher_Anthony_Douglas_1978_Chp2.p012
	Heher_Anthony_Douglas_1978_Chp2.p013
	Heher_Anthony_Douglas_1978_Chp2.p014
	Heher_Anthony_Douglas_1978_Chp2.p015
	Heher_Anthony_Douglas_1978_Chp2.p016
	Heher_Anthony_Douglas_1978_Chp2.p017
	Heher_Anthony_Douglas_1978_Chp2.p018
	Heher_Anthony_Douglas_1978_Chp2.p019
	Heher_Anthony_Douglas_1978_Chp3.p001
	Heher_Anthony_Douglas_1978_Chp3.p002
	Heher_Anthony_Douglas_1978_Chp3.p003
	Heher_Anthony_Douglas_1978_Chp3.p004
	Heher_Anthony_Douglas_1978_Chp3.p005
	Heher_Anthony_Douglas_1978_Chp3.p006
	Heher_Anthony_Douglas_1978_Chp3.p007
	Heher_Anthony_Douglas_1978_Chp3.p008
	Heher_Anthony_Douglas_1978_Chp3.p009
	Heher_Anthony_Douglas_1978_Chp3.p010
	Heher_Anthony_Douglas_1978_Chp3.p011
	Heher_Anthony_Douglas_1978_Chp3.p012
	Heher_Anthony_Douglas_1978_Chp3.p013
	Heher_Anthony_Douglas_1978_Chp3.p014
	Heher_Anthony_Douglas_1978_Chp3.p015
	Heher_Anthony_Douglas_1978_Chp3.p016
	Heher_Anthony_Douglas_1978_Chp3.p017
	Heher_Anthony_Douglas_1978_Chp3.p018
	Heher_Anthony_Douglas_1978_Chp3.p019
	Heher_Anthony_Douglas_1978_Chp3.p020
	Heher_Anthony_Douglas_1978_Chp3.p021
	Heher_Anthony_Douglas_1978_Chp3.p022
	Heher_Anthony_Douglas_1978_Chp3.p023
	Heher_Anthony_Douglas_1978_Chp3.p024
	Heher_Anthony_Douglas_1978_Chp3.p025
	Heher_Anthony_Douglas_1978_Chp3.p026
	Heher_Anthony_Douglas_1978_Chp3.p027
	Heher_Anthony_Douglas_1978_Chp3.p028
	Heher_Anthony_Douglas_1978_Chp3.p029
	Heher_Anthony_Douglas_1978_Chp3.p030
	Heher_Anthony_Douglas_1978_Chp3.p031
	Heher_Anthony_Douglas_1978_Chp3.p032
	Heher_Anthony_Douglas_1978_Chp3.p033
	Heher_Anthony_Douglas_1978_Chp3.p034
	Heher_Anthony_Douglas_1978_Chp3.p035
	Heher_Anthony_Douglas_1978_Chp3.p036
	Heher_Anthony_Douglas_1978_Chp3.p037
	Heher_Anthony_Douglas_1978_Chp3.p038
	Heher_Anthony_Douglas_1978_Chp3.p039
	Heher_Anthony_Douglas_1978_Chp3.p040
	Heher_Anthony_Douglas_1978_Chp3.p041
	Heher_Anthony_Douglas_1978_Chp3.p042
	Heher_Anthony_Douglas_1978_Chp4.p001
	Heher_Anthony_Douglas_1978_Chp4.p002
	Heher_Anthony_Douglas_1978_Chp4.p003
	Heher_Anthony_Douglas_1978_Chp4.p004
	Heher_Anthony_Douglas_1978_Chp4.p005
	Heher_Anthony_Douglas_1978_Chp4.p006
	Heher_Anthony_Douglas_1978_Chp4.p007
	Heher_Anthony_Douglas_1978_Chp4.p008
	Heher_Anthony_Douglas_1978_Chp4.p009
	Heher_Anthony_Douglas_1978_Chp4.p010
	Heher_Anthony_Douglas_1978_Chp4.p011
	Heher_Anthony_Douglas_1978_Chp4.p012
	Heher_Anthony_Douglas_1978_Chp4.p013
	Heher_Anthony_Douglas_1978_Chp4.p014
	Heher_Anthony_Douglas_1978_Chp4.p015
	Heher_Anthony_Douglas_1978_Chp4.p016
	Heher_Anthony_Douglas_1978_Chp4.p017
	Heher_Anthony_Douglas_1978_Chp4.p018
	Heher_Anthony_Douglas_1978_Chp4.p019
	Heher_Anthony_Douglas_1978_Chp4.p020
	Heher_Anthony_Douglas_1978_Chp4.p021
	Heher_Anthony_Douglas_1978_Chp4.p022
	Heher_Anthony_Douglas_1978_Chp4.p023
	Heher_Anthony_Douglas_1978_Chp4.p024
	Heher_Anthony_Douglas_1978_Chp4.p025
	Heher_Anthony_Douglas_1978_Chp4.p026
	Heher_Anthony_Douglas_1978_Chp4.p027
	Heher_Anthony_Douglas_1978_Chp4.p028
	Heher_Anthony_Douglas_1978_Chp4.p029
	Heher_Anthony_Douglas_1978_Chp4.p030
	Heher_Anthony_Douglas_1978_Chp4.p031
	Heher_Anthony_Douglas_1978_Chp4.p032
	Heher_Anthony_Douglas_1978_Chp4.p033
	Heher_Anthony_Douglas_1978_Chp4.p034
	Heher_Anthony_Douglas_1978_Chp4.p035
	Heher_Anthony_Douglas_1978_Chp4.p036
	Heher_Anthony_Douglas_1978_Chp4.p037
	Heher_Anthony_Douglas_1978_Chp4.p038
	Heher_Anthony_Douglas_1978_Chp4.p039
	Heher_Anthony_Douglas_1978_Chp4.p040
	Heher_Anthony_Douglas_1978_Chp4.p041
	Heher_Anthony_Douglas_1978_Chp4.p042
	Heher_Anthony_Douglas_1978_Chp4.p043
	Heher_Anthony_Douglas_1978_Chp4.p044
	Heher_Anthony_Douglas_1978_Chp4.p045
	Heher_Anthony_Douglas_1978_Chp5.p001
	Heher_Anthony_Douglas_1978_Chp5.p002
	Heher_Anthony_Douglas_1978_Chp5.p003
	Heher_Anthony_Douglas_1978_Chp5.p004
	Heher_Anthony_Douglas_1978_Chp5.p005
	Heher_Anthony_Douglas_1978_Chp5.p006
	Heher_Anthony_Douglas_1978_Chp5.p007
	Heher_Anthony_Douglas_1978_Chp5.p008
	Heher_Anthony_Douglas_1978_Chp5.p009
	Heher_Anthony_Douglas_1978_Chp5.p010
	Heher_Anthony_Douglas_1978_Chp5.p011
	Heher_Anthony_Douglas_1978_Chp5.p012
	Heher_Anthony_Douglas_1978_Chp5.p013
	Heher_Anthony_Douglas_1978_Chp5.p014
	Heher_Anthony_Douglas_1978_Chp5.p015
	Heher_Anthony_Douglas_1978_Chp5.p016
	Heher_Anthony_Douglas_1978_Chp5.p017
	Heher_Anthony_Douglas_1978_Chp6.p001
	Heher_Anthony_Douglas_1978_Chp6.p002
	Heher_Anthony_Douglas_1978_Chp6.p003
	Heher_Anthony_Douglas_1978_Chp6.p004
	Heher_Anthony_Douglas_1978_Chp6.p005
	Heher_Anthony_Douglas_1978_Chp6.p006
	Heher_Anthony_Douglas_1978_Chp6.p007
	Heher_Anthony_Douglas_1978_Chp6.p008
	Heher_Anthony_Douglas_1978_Chp6.p009
	Heher_Anthony_Douglas_1978_Chp6.p010
	Heher_Anthony_Douglas_1978_Chp6.p011
	Heher_Anthony_Douglas_1978_Chp6.p012
	Heher_Anthony_Douglas_1978_Chp6.p013
	Heher_Anthony_Douglas_1978_Chp6.p014
	Heher_Anthony_Douglas_1978_Chp6.p015
	Heher_Anthony_Douglas_1978_Chp6.p016
	Heher_Anthony_Douglas_1978_Chp7.p001
	Heher_Anthony_Douglas_1978_Chp7.p002
	Heher_Anthony_Douglas_1978_Chp7.p003
	Heher_Anthony_Douglas_1978_Chp7.p004
	Heher_Anthony_Douglas_1978_Chp7.p005
	Heher_Anthony_Douglas_1978_Chp7.p006
	Heher_Anthony_Douglas_1978_Chp7.p007
	Heher_Anthony_Douglas_1978_Chp7.p008
	Heher_Anthony_Douglas_1978_Chp7.p009
	Heher_Anthony_Douglas_1978_Chp7.p010
	Heher_Anthony_Douglas_1978_Chp7.p011
	Heher_Anthony_Douglas_1978_Chp8.p001
	Heher_Anthony_Douglas_1978_Chp8.p002
	Heher_Anthony_Douglas_1978_Chp8.p003
	Heher_Anthony_Douglas_1978_Chp8.p004
	Heher_Anthony_Douglas_1978_Chp9.p001
	Heher_Anthony_Douglas_1978_Chp9.p002
	Heher_Anthony_Douglas_1978_Chp9.p003
	Heher_Anthony_Douglas_1978_Chp9.p004
	Heher_Anthony_Douglas_1978_Chp9.p005
	Heher_Anthony_Douglas_1978_Chp9.p006
	Heher_Anthony_Douglas_1978_Chp9.p007
	Heher_Anthony_Douglas_1978_Chp9.p008
	Heher_Anthony_Douglas_1978_Chp9.p009
	Heher_Anthony_Douglas_1978_Chp9.p010
	Heher_Anthony_Douglas_1978_Chp9.p011
	Heher_Anthony_Douglas_1978_Chp9.p012_Appendixe
	Heher_Anthony_Douglas_1978_Chp9.p013_Appendixe
	Heher_Anthony_Douglas_1978_Chp9.p014_Appendixe
	Heher_Anthony_Douglas_1978_Chp9.p015_Appendixe
	Heher_Anthony_Douglas_1978_Chp9.p016_Appendixe
	Heher_Anthony_Douglas_1978_Chp9.p017_Appendixe
	Heher_Anthony_Douglas_1978_Chp9.p018_Appendixe
	Heher_Anthony_Douglas_1978_Chp9.p019_Appendixe
	Heher_Anthony_Douglas_1978_Chp9.p020_Appendixe
	Heher_Anthony_Douglas_1978_Chp9.p021_Appendixe
	Heher_Anthony_Douglas_1978_Chp9.p022_Appendixe
	Heher_Anthony_Douglas_1978_Chp9.p023_Appendixe
	Heher_Anthony_Douglas_1978_Chp9.p024_Appendixe
	Heher_Anthony_Douglas_1978_Chp9.p025_Appendixe
	Heher_Anthony_Douglas_1978_Chp9.p026_Appendixe
	Heher_Anthony_Douglas_1978_Chp9.p027_Appendixe
	Heher_Anthony_Douglas_1978_Chp9.p028_Appendixe
	Heher_Anthony_Douglas_1978_Chp9.p029_Appendixe
	Heher_Anthony_Douglas_1978_Chp9.p030_Appendixe
	Heher_Anthony_Douglas_1978_Chp9.p031_Appendixe
	Heher_Anthony_Douglas_1978_Chp9.p032_Appendixe
	Heher_Anthony_Douglas_1978_Chp9.p033_Appendixe
	Heher_Anthony_Douglas_1978_Chp9.p034_Appendixe
	Heher_Anthony_Douglas_1978_Chp9.p035_Appendixe
	Heher_Anthony_Douglas_1978_Chp9.p036_Appendixe
	Heher_Anthony_Douglas_1978_Chp9.p037_Appendixe
	Heher_Anthony_Douglas_1978_Chp9.p038_Appendixe
	Heher_Anthony_Douglas_1978_Chp9.p039_Appendixe
	Heher_Anthony_Douglas_1978_Chp9.p040_Appendixe
	Heher_Anthony_Douglas_1978_Chp9.p041_Appendixe
	Heher_Anthony_Douglas_1978_Chp9.p042_Appendixe
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