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Abstract

In logic-based Knowledge Representation and Reasoning (KRR), ontologies are used to
represent knowledge about a particular domain of interest in a precise way. The building
blocks of ontologies include concepts, relations and objects. Those can be combined to
form logical sentences which explicitly describe the domain. With this explicit knowledge
one can perform reasoning to derive knowledge that is implicit in the ontology. Description
Logics (DLs) are a group of knowledge representation languages with such capabilities that
are suitable to represent ontologies. The process of building ontologies has been greatly
simplified with the advent of graphical ontology editors such as SWOOP, Protégé and
OntoStudio. The result of this is that there are a growing number of ontology engineers
attempting to build and develop ontologies. It is frequently the case that errors are
introduced while constructing the ontology resulting in undesirable pieces of implicit
knowledge that follows from the ontology. As such there is a need to extend current
ontology editors with tool support to aid these ontology engineers in correctly designing
and debugging their ontologies. Errors such as unsatisfiable concepts and inconsistent
ontologies frequently occur during ontology construction. Ontology Debugging and Repair
is concerned with helping the ontology developer to eliminate these errors from the ontology.
Much emphasis, in current tools, has been placed on giving explanations as to why these
errors occur in the ontology. Less emphasis has been placed on using this information to
suggest efficient ways to eliminate the errors. Furthermore, these tools focus mainly on the
errors of unsatisfiable concepts and inconsistent ontologies. In this dissertation we fill an
important gap in the area by contributing an alternative approach to ontology debugging
and repair for the more general error of a list of unwanted sentences. Errors such as
unsatisfiable concepts and inconsistent ontologies can be represented as unwanted sentences
in the ontology. Our approach not only considers the explanation of the unwanted sentences
but also the identification of repair strategies to eliminate these unwanted sentences from
the ontology.
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Chapter 1

Introduction

1.1 Ontologies

An ontology (also referred to as a terminology, knowledge base) is an entity used to represent
some domain (field of knowledge). To be more specific, an ontology precisely depicts some
representation of the domain. Usually the building blocks of an ontology include categories
(concepts), relations (roles) and objects (individuals). If we were to consider the domain of
a university, we could use concept names such as Lecturer, Student and Module, and role
names such as teaches and enrolledFor, and combine these constructs to form sentences
which describe the domain, like “A Lecturer is someone who teaches a Module” or “A Student
is someone who enrolledFor a Module”. An ontology can be viewed as a set of such sentences
or as a taxonomy in which the concepts are classified as more general (super-concepts) or
more specific (sub-concepts) in relation to one another. For example the sentence “Every
Student is a Person” means that the Person concept is more general than the Student
concept. There are many different formalisms for representing ontologies. These include:
Semantic Networks [Woods, 1975; Sowa, 1991], Conceptual Graphs [Sowa, 1976], Unified
Modelling Language (UML) [Rumbaugh et al., 1997], frame-based systems [Bobrow and
Winograd, 1977; Brachman and Schmolze, 1985; Fikes and Kehler, 1985] and Description
Logics (DLs) [Baader et al., 2003].

1.2 Description Logics

The purpose of an ontology, as mentioned, is to provide a precise description of the domain.
In this description one can classify the individuals in our domain into concepts and we
can also represent relationships that may occur between these individuals. DLs, which
are a group of logic-based knowledge representation formalisms, are suitable languages for
representing ontologies in this way. They have an advantage over representations such as
Semantic Networks and frame-based systems in that they have precise logic-based semantics.
This eliminates ambiguity in the meaning of sentences in the ontology. Conceptual Graphs
and UML formats may also be used to represent ontologies but DLs provide a richer
language for this purpose and are thus preferred in most cases.

The basic building blocks of DLs are atomic concepts, atomic roles and individuals. An
atomic concept is a unary predicate which defines a collection of objects from the domain.

2



§1.3 Semantic Web & OWL 3

An atomic role is a binary predicate indicating objects from the domain which are related
in a certain way. Individuals denote the actual objects in the domain. DLs also have
concept and role constructors to define more complex concepts and roles.

DLs allow us to represent the domain using logical sentences. Collectively this set of
sentences is known as a knowledge base (KB). DLs allow us to perform automated
reasoning over the KB to gather information from it that is not explicitly shown (in the
form of implicit sentences). The KB is sometimes viewed in two separate parts: the
Terminological Box (TBox) storing so-called intensional information about the ontology,
and the Assertional Box (ABox) storing so-called extensional information. The intensional
information in the TBox defines the different concepts in the domain and, with the use of
role names, it also defines how these concepts are related in the domain. The ABox stores
assertions about individuals in the domain, that is, given a concept, which individuals
belong in its extension.

DLs vary according to their expressive power. Less expressive DLs have restrictions on
the kinds of sentences one can represent in the language, and in turn this reduces the
complexity of reasoning [Levesque and Brachman, 1985]. More expressive DLs allow for
the representation of more detailed information but in doing so reasoning becomes much
more complex. The choice of which DL to use will differ according to the application.
For example, in more performance driven applications, tractability may be a required
characteristic for the DL used. A more detailed introduction to DLs is given in Chapter 2.

1.3 Semantic Web & OWL

Tim Berners-Lee, the inventor of the World Wide Web, had a two-part vision for its
development. The first part was to establish a “common information space” which could
be used by people for communication and information sharing purposes. The World Wide
Web, as we know it today, provides an excellent framework which achieves this. However
with the sheer amount of information (which is increasing every day) available on the web
today, it is becoming more difficult for users to isolate information that is relevant for
their purposes. The second part of Berners-Lee’s vision was to be able to use computers
to analyze and process the information on the Web. The reason for this was to enable us
to collaborate better and understand our context. The idea was conceived that somehow
we should enrich the information across the World Wide Web with meaning (semantics).
This would allow machines (computers) to attach meaning to information and thus enable
better communication between computers, between computers and humans and therefore
between humans. Thus the Semantic Web was born.

The Semantic Web is an extension of the World Wide Web based on the Resource Description
Framework (RDF) [Lassila and Swick, 1998] which encodes meaning (semantics) into
web content. The motivation for this is that computers cannot inherently understand
semantics [Berners-Lee et al., 2001]. Sentences like “Professor Anderson is a Lecturer”,
“Professor Anderson teaches Physics” and “K. Wright is enrolled for Physics” can be
understood by humans but not by computers. To facilitate the processing of meaning in the
Semantic Web, web pages are enriched with semantic information. The Semantic Web uses
ontologies (introduced in Section 1.1) to represent this semantic information. With the use
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of ontologies and the Semantic Web, computers are able to create a shared understanding
of web content so that tasks such as querying of information is more powerful and returns
much more meaningful and relevant results.

In keeping with Tim Berners-Lee’s vision for the Semantic Web, the OWL (Web Ontology
Language) family was developed as a series of languages for representing Semantic Web
ontologies. OWL languages are based foundationally on description logics (introduced
in Section 1.2) although they borrow syntactically from the popular RDF/XML formats
and have certain language varieties which differ considerably from DLs by allowing more
expressive constructs.

Initially when developing Semantic Web technologies, the focus was on RDF schema but
because of its limited expressive power a more suitable language was required. The World
Wide Web Consortium (W3C) then initiated development on what would become the
OWL 1 set of languages. There are three “species” of OWL 1: the less expressive OWL
Lite, more so OWL DL and the most expressive OWL Full. OWL 1 was identified to have
some minor shortcomings in the expressivity, syntax and semantics and it was decided
that a new standard should be developed to resolve some of these issues [Cuenca-Grau
et al., 2008]. This resulted in OWL 2: the latest revision of the OWL standard which
is, at the time of writing, the World Wide Web Consortium (W3C) recommendation for
the representation of Semantic Web ontologies. OWL 2 has two main ‘flavours’ namely
OWL 2 DL and OWL 2 Full.

There are three OWL 2 profile languages tailored for specific ontological applications. These
are essentially subset languages of OWL 2 Full which simplifies the reasoning for their
respective applications.

OWL 2 EL is based on the description logic EL++ [Baader, 2003]. EL++ is an extension
of the EL [Baader, 2003] language which is the foundation for many large-scale ontologies
such as the biomedical ontology SNOMED CT1. SNOMED CT, which has thousands of
concepts and roles, does not require the highly expressive features available in certain
DLs which would make reasoning potentially very complex. This is where EL becomes
an appropriate choice [Baader et al., 2005a] for representing the ontology. Because of its
limited expressivity, reasoning is tractable with EL which makes the huge task of reasoning
over an ontology like SNOMED that much easier.

OWL 2 QL (Query Language) is another OWL 2 Profile formulated for applications which
require a lot of querying of instance data (individuals). Relational Database systems also
use OWL 2 QL for ontology-based data access (OBDA) [Calvanese et al., 2007; Poggi et al.,
2008]. OWL 2 QL makes it possible in OBDA to translate ontological queries into standard
relational query languages such as SQL. The OWL 2 RL (Rule Language) is designed for
specifying reasoning systems which implement reasoning tasks as a set of ontology rules.

1.4 Ontology Debugging and Repair

The process of building ontologies has been greatly simplified with the advent of graphical
ontology editors such as SWOOP [Kalyanpur et al., 2005a], Protégé [Knublauch et al.,

1http://www.nlm.nih.gov/research/umls/Snomed/snomed_main.html

http://www.nlm.nih.gov/research/umls/Snomed/snomed_main.html
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2004] and OntoStudio2. The result of this is that there are a growing number of ontology
engineers – in conjunction with experts in the domain – attempting to build and develop
ontologies. It is frequently the case that errors are introduced while constructing the
ontology resulting in implicit knowledge from the ontology which is not desired. As such
there is a need to extend current ontology editors with tool support to aid these ontology
engineers in correctly designing and debugging their ontologies.

Errors such as unsatisfiable concepts and inconsistent ontologies frequently occur during
ontology construction. Ontology Debugging and Repair is concerned with helping the
ontology developer to eliminate these errors from the ontology. Much emphasis, in current
tools, has been placed on giving explanations as to why these errors occur in the ontology.
Less emphasis has been placed on using this information to suggest efficient ways to
eliminate the errors. In addition, the existing approaches tend to focus only on certain
types of errors such as those of unsatisfiable concepts and ontology inconsistency.

Motivation

The motivation of this dissertation is that firstly, we would like to generalize the existing
principles for debugging and repairing DL ontologies to deal with all types of unwanted
consequences (errors) which arise in the ontology. Secondly we would like to develop
an approach to ontology repair which aids the ontology engineer in eliminating all the
unwanted consequences from the ontology and not just explaining why they follow from
the ontology.

Contribution

The main contribution of this dissertation is an alternative approach to debugging and
repair for DL ontologies. This approach generalizes all the different (“heterogeneous”)
errors which occur in DL ontologies to one type of error which we call an unwanted axiom.
Therefore, the problem which we try to resolve is how to eliminate a list of such unwanted
axioms from the ontology. Our approach generates a list of alternative repair strategies.
Each of these may be applied to the ontology to eliminate the entire list of unwanted
axioms from the ontology.

Scope

In this dissertation we focus only on semantic defects in DL ontologies. Specifically, in
our ontology repair solution, we focus on eliminating a list of unwanted axioms from the
ontology. Each of these unwanted axioms is derived from a semantic defect in the ontology.
That is, we focus on resolving unwanted axioms that are derived from unsatisfiable concepts,
inconsistent ontologies and unintended inferences and not other types of error. In addition,
we only consider TBox unwanted axioms in the ontology and not any unwanted assertions
in the ABox of the ontology. The list of repair strategies which are generated by our
solution serves as a list of alternatives from which the ontology engineer and domain expert
may choose. That is, we do not aid the ontology engineer and domain expert in selecting
from these repairs.

2http://www.ontoprise.de/en/home/products/ontostudio
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1.5 Organization of the Dissertation

The rest of this dissertation is organized as follows:

- Chapter 2 gives an introduction to DLs including syntax and semantics of the basic
DL ALC. This chapter also lays the foundation for the terminology which will be
used throughout the dissertation.

- Chapter 3 introduces the problem of Ontology Debugging and Repair. This chapter
examines the different types of errors that occur in the ontology during development
and also looks at some of the established approaches to identifying, explaining and
repairing these errors.

- Chapter 4 constitutes the main contribution of the dissertation. In this chapter we
generalize the problem of repairing different types of semantic defects in the ontology
to the problem of eliminating a list of unwanted sentences (axioms) from the ontology.
We also present an alternative approach for resolving this problem in the ontology.

- Chapter 5 presents the other contribution of this dissertation: the implementation
and evaluation of a Protégé plugin (OntoRepair) which demonstrates the approach
to ontology debugging and repair that is presented in Chapter 4. The plugin collects
a list of user-specified unwanted axioms in the ontology and computes a list of repair
strategies. Each of these repair strategies are such that if it is applied to the ontology,
then the entire list of unwanted axioms will be eliminated from the ontology.

- Chapter 6 gives a summary of the contribution and findings of the dissertation and
concludes with some open issues and future work.

- Finally, the Appendix gives a short tutorial on how to get started with using Protégé
and the OntoRepair plugin.



Chapter 2

Description Logics

This chapter gives an introduction to Description Logics (DLs) and some of their appli-
cations. Firstly, we give some background and history to DLs. Thereafter, we give an
overview of some their constructs by introducing the basic description logic ALC together
with its formal syntax and semantics. DL characteristics such as expressivity and reasoning
complexity are also briefly discussed by mentioning some popular extensions and fragments
of ALC. The chapter concludes with a summary of the common reasoning tasks or inference
problems that are relevant for DLs.

2.1 Background

Description Logics [Baader et al., 2003] are a set of logic-based knowledge representation
languages that are most commonly used to represent information about some domain of
interest in a formal and structured manner. DLs are designed to be decidable subsets
of First-Order Logic (FOL) [Kleene, 1968] and, as a consequence, they have a precise
model-theoretic semantics. This formal semantics eliminates ambiguity in the meaning of
terms and sentences represented using DLs.

The basic building blocks of DLs are atomic concepts, atomic roles and individuals. An
atomic concept (also called a concept name) is a unary predicate which intuitively represents
a collection of objects from the domain. For example, a concept name Student could
represent the set of all students in a particular university. An atomic role is a binary
predicate indicating ordered object pairs which are related via the role. For example, the
atomic role marriedTo could represent the set of all married couples in a particular domain.
Therefore the sentence john marriedTo susan formally indicates that the objects in the
domain which are referred to respectively by the names john and susan are related to each
other via the role which is represented by the name marriedTo. Individuals (also called
instances) refer to the actual objects in the domain. The objects which the names john and
susan refer to are examples of individuals. In addition to the basic building blocks of DLs,
there are also concept and role constructors which are used to define complex concepts and
roles. We shall discuss these in the sequel.

An important application of DLs is in the formal specification of ontologies. DLs have a
precise model-theoretic semantics and a capacity to allow for reasoning about the ontology.
The former means that each DL sentence in the ontology specification has a precise meaning

7
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and there is no confusion or ambiguity about what the sentence represents. This is the
main advantage of DLs over other formalisms for representing ontologies such as Semantic
Networks [Woods, 1975; Sowa, 1991] and Frame-based systems [Bobrow and Winograd,
1977; Brachman and Schmolze, 1985; Fikes and Kehler, 1985]. DLs allow one to represent
the ontology in terms of logical sentences. These logical sentences are known as axioms or
more specifically, DL axioms.

Reasoning is the task of deriving implicit knowledge from the explicitly stated facts in the
ontology. Automated reasoning can be performed over DL ontologies by software inference
engines called DL reasoners. The reasoners identify implicit consequences in the ontology
through application of inference rules. For example if “tweety is a bird” and “birds fly” then
one can infer that “tweety flies”. DL reasoning is discussed later in this chapter. Another
important aspect of DLs is their expressivity. The constructors included in a particular
DL determines the expressivity of that DL. Furthermore, the expressivity of a DL has an
effect on the complexity of reasoning for this DL. The issues of DL expressivity and DL
complexity are discussed briefly in Section 2.2.2.

The rest of this chapter is structured as follows. Section 2.2 introduces the syntax and
semantics of the basic Description Logic ALC [Schmidt-Schauß and Smolka, 1991] and
discusses some popular variants of the ALC language. Issues concerning the naming
convention of DLs, DL expressivity and reasoning complexity are also briefly discussed in
this section. Finally, Sections 2.3 and 2.4 conclude the chapter by introducing some of the
popular reasoning services provided by DLs.

2.2 The Description Logic ALC

ALC (Attributive concept description Language with Complements) [Schmidt-Schauß
and Smolka, 1991] is an important basic DL which may be extended or restricted to
form others. ALC includes all the basic constructors one would need for most common
applications and thus is often used as an example in introductory literature for DLs. The
following section presents the syntax and semantics of the DL ALC. Please note that the
definitions and theorems presented in the remainder of this chapter are adapted from the
DL Handbook [Baader et al., 2003].

2.2.1 Syntax and Semantics

ALC includes the following DL constructors: the > (Top) and ⊥ (Bottom) special concepts,
u (concept conjunction), t (concept disjunction), and ¬ (concept negation). In addition,
the complex concept constructors ∃ (existential restriction) and ∀ (value restriction) are
also available. The syntax and semantics for these are given below.

ALC syntax is defined as follows. ALC concept syntax is defined first, followed by the
syntax for ALC sentences (axioms). Let NC be a set of concept names. Examples of
concept names are Bird and Male. Let NR be a set of role names. Examples of role names
include hasChild and marriedTo. The set of ALC concept descriptions is the smallest set
such that:
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- >, ⊥, and every concept name A ∈ NC is an ALC concept,

- If C and D are ALC concepts and R ∈ NR, then C t D, C u D, ¬C, ∃R.C, and
∀R.C are ALC concepts.

Some examples ofALC complex concepts are: ¬(Bird u FlyingAnimal) (representing the set of
entities in the domain which are neither birds nor flying animals) , ∃hasChild.> (representing
the set of entities in the domain which have at least one child) and ∀hasChild.Male
(representing the set of entities in the domain which have only male children). Any concept
following the role name in a concept description is called a filler concept for the role
name. For example, the filler concept for the role hasChild in the concept description
∀hasChild.Male is Male. In the particular case when the filler concept is >, the concept
description can be abbreviated to omit > because the description has the same meaning
without >. Therefore, ∃hasChild has the same meaning as ∃hasChild.>. In DLs, sentences
are usually classified as axioms and assertions. The syntax of ALC sentences is now defined.

Given two ALC concepts C and D, a role name R and individual names a and b:

- C v D and C ≡ D are axioms, where v is the subsumption symbol and ≡ is the
equivalence symbol.

- C(a) and R(a, b) are ALC assertions.

Some examples of ALC axioms are: Penguin v Bird, Parent v ∃hasChild.> and Man ≡
Person u Male. Examples of ALC assertions are: Student(peter) and marriedTo(john,
susan).

The meaning (semantics) for ALC concepts and ALC sentences is now given. Let I =
(∆I , ·I) be an interpretation with the non-empty set ∆I denoting the domain of I (A set
of objects or individuals), and function ·I which maps every ALC concept name to a subset
of ∆I , every role name to a subset of ∆I ×∆I and individual names a and b to elements
aI ∈ ∆I and bI ∈ ∆I respectively. The interpretation function ·I is extended to complex
concepts in the following way. For every ALC concept C and D and every role name R:

Definition 2.1 (ALC complex concept semantics)
Let I = (∆I , ·I) be an interpretation. Then:

- >I = ∆I , ⊥I = ∅

- (C uD)I = CI ∩ DI

- (C tD)I = CI ∪ DI

- (¬C)I = ∆I\CI

- (∃R.C)I = {a ∈ ∆I | There is a b ∈ ∆I s.t. (a, b) ∈ RI and b ∈ CI}

- (∀R.C)I = {a ∈ ∆I | For all b ∈ ∆I , (a, b) ∈ RI implies b ∈ CI}

For example, the complex concept ∃hasChild.> represents the set of individuals in the
domain such that each of these individuals is related to at least one individual in the
domain via the role represented by hasChild. The concept description ∃hasChild.> can
therefore be represented in natural language as “the set of all entities which have at least
one child”.
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As another example, we have the complex concept ∀hasChild.Male, which represents all
the individuals such that, if they have one or more children, then these children are only
males. Note that, an individual which is not related via the role represented by hasChild,
to any individual in the domain, also appears (by vacuity) in the concept referred to by
∀hasChild.Male. This is confirmed in the semantics of ∀R.C given above. The meaning for
ALC axioms is now given.

Definition 2.2 (Satisfaction of ALC sentences in an interpretation)
Given ALC concepts C and D, a role name R, and individual names a, b. Let I = (∆I , ·I)
be an interpretation. Then:

- I satisfies C v D if and only if CI ⊆ DI

- I satisfies C ≡ D if and only if CI = DI

- I satisfies C(a) if and only if aI ∈ CI

- I satisfies R(a, b) if and only if (aI , bI) ∈ RI

For example, the axiom Parent v ∃hasChild.> (subsumption axiom) means that “if some
individual in our domain is a Parent, then this individual has at least one child”. The
axiom Man ≡ Person u Male (equivalence axiom) means that “an individual of the domain
is a Man if and only if it is a Person and a male”.

For the assertions, C(a) is a concept assertion which means that “the individual referred to
by a belongs to the set referred to by C”. For example, if peter is an individual name and
Student is a concept name, then the concept assertion Student(peter) means that Peter
is a student (“Peter is an instance of Student”). R(a, b) is called a role assertion which
means that the individual referred to by a is related to the individual referred to by b via
the role represented by R. For example, if marriedTo refers to a role and john and susan
refer to individuals John and Susan, the role assertion marriedTo(john, susan) means that
John is married to Susan. Table 2.1 below gives a summary of ALC syntax and semantics.

Name Syntax Semantics

Top concept > ∆I (all individuals)

Bottom concept ⊥ ∅ (no individuals)

Conjunction C uD CI ∩ DI

Disjunction C tD CI ∪ DI

Concept negation ¬C ∆I\CI

Full existential restriction ∃R.C {a ∈ ∆I | There is a b ∈ ∆I s.t. (a, b) ∈ RI and b ∈ CI}
Value restriction ∀R.C {a ∈ ∆I | For all b ∈ ∆I , (a, b) ∈ RI implies b ∈ CI}
Subsumption C v D CI ⊆ DI

Equivalence C ≡ D CI = DI

Concept instance C(a) aI ∈ CI

Role instance R(a, b) (aI , bI) ∈ RI

Table 2.1: Summary of ALC syntax and semantics.

The sentences which constitute a DL ontology are usually separated into the set of sentences
which represent information about the relationships between concepts (called axioms) and
the set of sentences which represent assertions about individuals in the domain (called
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assertions). This separation is essentially made because there are good reasons to make a
distinction between axioms and assertions and there is a difference in terms of the purposes
that they serve in the ontology representation.

Definition 2.3 (Ontology, TBox and ABox) A TBox T is a finite and possibly empty set
of axioms. An ABox A is a finite and possibly empty set of assertions. If T is a TBox and
A is an ABox, then O = T ∪ A is an ontology.

In theory, an ontology need not contain both a TBox and ABox. It is down to the specific
application which the ontology is used for which determines if it will contain both a TBox
and an ABox, purely a TBox or purely an ABox.

If an interpretation I satisfies a sentence, then it is a model for that sentence. Furthermore,
I is a model for a TBox T (resp. ABox A) if and only if it is a model for each sentence in
T (resp. A). I is a model for an ontology O (which is the union of the TBox and ABox) if
and only if it is a model for the TBox and ABox of O. The notion of entailment is now
defined.

Definition 2.4 (Entailment)
Given a TBox T (resp. ABox A, resp. ontology O) and a sentence α, T (resp. A, resp. O)
entails α, written T |= α (resp. A |= α, resp. O |= α) if and only if every model of T (resp.
A, resp. O) satisfies α.

TBox axioms of the form C v D are known as subsumption or inclusion axioms. When C
and D are concept descriptions (i.e., complex concepts built from concept names), then
C v D is a general concept inclusion (GCI) axiom. Axioms of the form C ≡ D are called
equivalence axioms. If the left hand side (LHS) of a subsumption axiom or equivalence
axiom is a concept name then the axiom is a concept definition axiom (CDA) for this
concept name. A special case of equivalence and inclusion axioms, known as disjointness
axioms, are of the form C uD v ⊥ or C uD ≡ ⊥. In both these cases we say that “C is
disjoint with/from D” or “C and D are disjoint”, which semantically reflects the fact that
C and D have no elements in common. From hereon, thoughout this dissertation, we refer
to general sentences (axioms or assertions) in the ontology as axioms.

Some applications of DLs require more expressivity (more constructors) than ALC offers.
On the other hand, for other applications, some ALC constructors are not required. The
next section discusses issues related to expressivity and complexity of reasoning with DLs
by introducing some popular variants of the ALC DL.

2.2.2 DL Expressivity and Reasoning Complexity

ALC includes some basic features such as full concept negation, concept conjunction,
concept disjunction, existential quantification and value restriction quantification. Despite
the inclusion of all these constructors in the ALC DL, it is generally not considered as an
overly expressive DL. For example, it does not include features such as role hierarchies (to
express that a role is included in another one e.g. hasParent v hasAncestor [Horrocks et al.,
2000; Horrocks and Sattler, 1999] and cardinality restrictions (to express the concept of
being in at most/at least n relationships via a role) [Baader et al., 1996]. Therefore, for
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some applications one may require additional features for more accurate representation of
the domain. The feature of role transitivity [Horrocks and Sattler, 1999], for example, may
be desired in certain medical domains. Role transitivity can be defined as follows:

A role R is transitive if, for every interpretation I, (aI , bI) ∈ RI and (bI , cI) ∈ RI implies
that (aI , cI) ∈ RI , where a, b and c are individual names.

Part-whole relations [Winston et al., 1987; Varzi, 1996; Artale et al., 1996; Keet, 2008] are
examples of roles which exhibit this transitivity. These relations are used in various fields
such as that of anatomy for categorizing the parts of the human body. For example if
aorta isPartOf heart and heart isPartOf chestCavity then if the role represented by isPartOf
is transitive, it follows that aorta isPartOf chestCavity. The symbol for the role transitivity
feature in DLs is S. If one applies this convention, then the DL ALC with the additional
feature of role transitivity would be called ALCS. However, for brevity and since ALC is
widely considered as a “base” DL for building more expressive DLs, ALC, together with the
transitive roles feature, is known by the abbreviation S. This is the starting base for a class
of other expressive DLs such as SHOINwhich forms the basis for OWL-DL [Horrocks,
2005] (as of writing, superceded by OWL 2 [Cuenca-Grau et al., 2008]) as well as the
SHOIN extension, SROIQ [Horrocks et al., 2006].

As mentioned, DLs are named according to the features they include. Usually each feature
is represented by a unique letter (symbol) in the name of the DL. The more features a
DL includes, the more expressive it is and vice versa. For SHOIN , the H represents the
feature of role hierarchies or role inclusion. For example one can state that R v S where R
and S refer to atomic roles. The O represents usage of nominals [Schaerf, 1994]. Nominals
allow one to represent further information about the actual elements in the domain. The
symbol I represents the feature for expressing inverse roles [Horrocks and Sattler, 1999].
N represents unqualified number restrictions [Tobies, 2000]. R and Q, which are included
in SROIQ, represent complex role inclusions [Horrocks and Sattler, 2004; Horrocks et al.,
2000] and qualified number restrictions [Tobies, 2000; Baader et al., 2003], respectively.
The features mentioned here are formally defined in Table 2.2.

Feature Syntax Semantics

C Complex concept negation ¬C ∆I\CI (C is complex)

E Full existential quantification ∃R.C (∃R.C)I = {a ∈ ∆I | There is a b ∈ ∆I s.t. (a, b) ∈ RI and b ∈ CI}
F Functional roles (funct R) (funct R)I iff

(aI , bI) ∈ RI and there is no cI 6= bI s.t. (aI , cI) ∈ RI

S ALC with transitive roles (trans R) (trans R)I iff

(aI , bI) ∈ RI and (bI , cI) ∈ RI implies (aI , cI) ∈ RI

H Role hierarchies R v S (R v S)I = RI ⊆ SI

R Role composition R◦S (R◦S)I = {(a, c) | There is b ∈ ∆I s.t. (a, b) ∈ RI and (b, c) ∈ SI}
Complex role hierarchies R◦S v R (R◦S v R)I = (R◦S)I ⊆ RI

O Nominals {a1, . . . , an} ({a1, . . . , an})I = {aI1 ,. . . ,aIn}
I Inverse roles R− (R−)I = {(b, a) | (a, b) ∈ RI}
N Number restrictions ≤ nR (≤ nR)I = {a ∈ ∆I | #{b ∈ ∆I | (a, b) ∈ RI} ≤ n}

(# means cardinality of a set) ≥ nR (≥ nR)I = {a ∈ ∆I | #{b ∈ ∆I | (a, b) ∈ RI} ≥ n}
Q Qualified number restrictions ≤ nR.C (≤ nR.C)I = {a ∈ ∆I | #{b ∈ CI | (a, b) ∈ RI} ≤ n}

(# means cardinality of a set) ≥ nR.C (≥ nR.C)I = {a ∈ ∆I | #{b ∈ CI | (a, b) ∈ RI} ≥ n}

Table 2.2: A list of common DL feature symbols

In addition to very expressive DLs such as SHOIN and SROIQ, there are also classes of
DLs which are designed for applications which require tractability (polynomial decidability)
for reasoning tasks and that do not require the full expressive power of ALC. These
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inexpressive DLs include a smaller number of constructs which limits the kind of information
one can represent but ensures lower complexity of reasoning. It is important to note that
even though the expressivity of these DLs is limited, it is sufficient for numerous applications.
For example, in the biomedical field, there are various large-scale ontologies being developed.
These ontologies represent information and terminology from the biomedical domain for
use in medical information systems and contain on the order of thousands of axioms.

SNOMED CT1 (Systematized Nomenclature of Medicine, Clinical Terms) is a medical
terminology which is an example of such an ontology. SNOMED is represented using a DL
from the inexpressive EL family of DLs [Baader, 2003]. This DL is perfectly suitable for
representing the kind of information that SNOMED CT requires and at the same time
provides efficient reasoning properties. Roughly speaking, EL can be seen as a Horn [Horn,
1951] fragment of DLs. Its complexity is polynomial.

It is to be noted that SNOMED CT is an extremely large ontology having in the region of
half a million terms (concept and role names)! Reasoning over such large-scale ontologies
is an extremely complex task because of the sheer amount of information. The use
of inexpressive DLs (such as EL) for representing these ontologies simplifies the task
considerably. Although EL provides few constructs (existential quantification, concept
conjunction and the > concept), it has nevertheless proved to be extremely versatile in
numerous applications where more expressive features are not required.

DLs were designed to be used in Knowledge Representation Systems where reasoning can be
used to derive implicit information from an ontology. Important TBox reasoning services,
provided by DLs, include checking if a concept description could contain any individuals
(Satisfiability testing for concepts) and determining if one concept is a sub-concept or
super-concept of another (Subsumption testing). Important ABox reasoning services include
checking if a particular individual belongs to a certain concept (Instance checking) and
checking if ABox statements are consistent with TBox statements (Consistency checking).

The computational complexity of these reasoning tasks vary with the expressivity of the
DL [Levesque and Brachman, 1987]. ALC is an example of a DL which has a good
balance between expressivity and complexity of reasoning. Concept satisfiability and ABox
reasoning are applicable reasoning tasks for ALC because ALC includes both concept
negation and ABox axioms. The computational complexity for concept satisfiability in
ALC is pspace-complete [Schmidt-Schauß and Smolka, 1991]. Some popular extensions of
ALC retain pspace-complete reasoning complexity (with respect to concept satisfiability).
These extensions include DLs such as SI [Horrocks et al., 2000; Baader et al., 2008],
SIN [Horrocks et al., 1998] and ALCQO [Baader et al., 2005b]. Complexity of reasoning
increases considerably when role hierarchies are included in the DL. Therefore in DLs
such as SHIQ, SHIO and SHOQ, the reasoning complexity increases to exponential
time [Tobies, 2001; Hladik, 2004] with respect to concept satisfiability.

Less expressive DLs such as those in the EL family enjoy polynomial time reasoning
complexity [Baader, 2003] because of the fewer constructors which are included in these
logics. Even though EL does not include certain common constructors, most notably value
restrictions (∀), the expressivity is sufficient for a variety of applications. SNOMED CT,
for example, is represented entirely in EL. Large portions of Galen [Rector and Horrocks,

1http://www.nlm.nih.gov/research/umls/Snomed/snomed_main.html

http://www.nlm.nih.gov/research/umls/Snomed/snomed_main.html
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1997] and the Gene Ontology [Consortium, 2000] can also be represented using EL. In the
next section, we give an overview of the basic reasoning services which DLs provide, some
of which were mentioned during this section.

2.3 Standard Reasoning Services

This section gives a brief overview of the common standard reasoning tasks for DLs.
Many of these services are implemented in various DL reasoners (mentioned earlier). It is
important to note that some of these reasoning tasks are applicable only to certain DLs.
For example, the task of checking concept satisfiability (Section 2.3.1) is only applicable
to DLs which include concept negation. Other important inference services which are
discussed in this section include subsumption testing (checking whether a certain concept is
more general than another), ontology classification (a special case of subsumption testing)
and consistency checking (checking if an ontology has a model). It is worth mentioning
that some of these reasoning tasks can be represented as special cases of other tasks. This
principle of reducing one reasoning task to another is illustrated and discussed where
applicable in this section.

2.3.1 Satisfiability

Satisfiability testing refers to the process of determining the possibility of (the extension of)
a concept having any individuals (instances). This means that a concept C is unsatisfiable
with respect to an ontology O if there is no model in which the interpretation of C is
non-empty with respect to O. More formally:

Definition 2.5 (Unsatisfiable concept)
Given an ontology O, a concept C is unsatisfiable with respect to O if and only if there is
no model I of O for which CI 6= ∅. For brevity, if a concept A is unsatisfiable with respect
to an ontology O, we say that O is A-unsatisfiable [Meyer et al., 2010] or equivalently we
may refer to the A-unsatisfiability of O.

In general, unsatisfiable concept names are seen as erroneous consequences of ontologies. In
the context of debugging an ontology, one of the common tasks is to resolve the unsatisfiable
concept names in the ontology. Note that there are many unsatisfiable concept descriptions
(e.g., A u ¬A) in the ontology as well, but from a debugging perspective, the focus is
primarily on repairing unsatisfiable concept names. Therefore, when we talk about an
unsatisfiable concept in this dissertation, we refer to an unsatisfiable concept name A or C
(unless otherwise stated).

Definition 2.5 has a useful consequence. That is, C is unsatisfiable with respect to an
ontology O if and only if: O |= C v ⊥ (if and only if O |= C ≡ ⊥).

This consequence illustrates that the unsatisfiability of a concept can be represented as an
entailment test and is useful for certain approaches to ontology repair. This is elaborated on
in Chapter 4. Unsatisfiable concept names usually arise because of inconsistent definitions
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for entities in the ontology. Consider the following example. (Throughout the example
ontologies in this dissertation, we may refer to axioms by their provided indices).

Example 2.1 Consider the following ontology:

O =


1. A v B,
2. A uB v ⊥,
3. B v C


It turns out that A is unsatisfiable with respect to O. This can be verified as follows: for
Axiom 1 to be satisfied in an interpretation I, it means that AI ⊆ BI . For Axiom 2 to be
satisfied in I, it means that AI ∩BI ⊆ ∅. It is clear from these two statements that the
only interpretations I which satisfy these two axioms are ones in which AI = ∅. Therefore,
the concept referred to by A is unsatisfiable. 2

Unsatisfiable roles are another class of possible defects in ontologies, although they are not
as prevalent as unsatisfiable concepts. Role satisfiability will not be explicitly characterized
and discussed. However it can be demonstrated that the problem is reducible to concept
satisfiability for ontology repair purposes [Kalyanpur, 2006]. This is illustrated by the fact
that checking if a role R is satisfiable, is equivalent to checking if the concept ≥ 1.R or
∃R.> is satisfiable. Therefore the existing techniques for checking concept satisfiability are
applicable to checking role satisfiability as well.

2.3.2 Subsumption

In DL systems, the “is-a” role [Brachman, 1983] has special significance. The reason for
this is that the meaning of the is-a relation is so applicable in various application domains.
In the context of a university, for example, a Lecturer can be represented as a type of
Employee. In academia, the Artificial Intelligence Discipline can be seen as a type of Computer
Science Discipline. The is-a relation is used in DLs to represent this kind of relationship.
The specification and definition of roles in an ontology is usually left up to the ontology
engineer but because the is-a role is so inherent in many application domains, it is encoded
into the syntax and semantics of DLs as subsumption (as we have seen in Section 2.2.1).

It can be shown that concept subsumption (as well as concept equivalence and disjointness)
can be reduced to concept satisfiability in DLs permitting full negation [Horrocks and
Patel-Schneider, 2004]. This reduction is illustrated by the following validities [Baader
et al., 2003]:

(i) C subsumed by D if and only if (C u ¬D) v ⊥
(ii) C equivalent to D if and only if (C u ¬D) v ⊥ and (D u ¬C) v ⊥
(iii) C disjoint with D if and only if (C uD) v ⊥

Statement (i) means that the subsumption axiom C v D follows from a particular TBox if
and only if the complex concept C u ¬D is unsatisfiable (necessarily empty) in that TBox.
Therefore, in this case, the problem of subsumption can be reduced to the problem of
satisfiability as long as the DL includes (full) concept negation. The obvious intuition here
is that if every individual in the interpretation of C is included in the interpretation of
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D, then there cannot be an individual which is in the interpretation of C but not in the
interpretation of D. The same applies for (ii) but in both directions since C ≡ D captures
the meaning of both axioms C v D and D v C.

The subsumption problem for concepts is defined in a similar way for roles [Horrocks et al.,
2000] although this is not discussed in further detail here.

2.3.3 Classification

A special case of the problem of subsumption testing discussed in the previous section, is
the problem of classifying an ontology. The problem is known by various other names in
the literature such as: computing the subsumption hierarchy of the ontology, computing
the concept hierarchy of the ontology or computing the taxonomy of the ontology. What
the process essentially entails is determining the sub-concepts and super-concepts for all
concept names in the ontology. The ontology engineer is (generally) not interested in the
subsumption hierarchy of complex concepts because there are an infinite number of these in
the ontology and the engineer is more interested in the relationships between the concept
names which are asserted by him/her in the ontology. Being able to classify an ontology is
a primary capability of most DL reasoners. The complexity of classification depends on
the complexity of the particular DL. Therefore much emphasis in the literature is placed
on optimizing the process, especially in reasoners designed for more expressive DLs [Sirin
et al., 2007; Tsarkov and Horrocks, 2006; Shearer et al., 2008]. Figure 2.1 depicts the
subsumption hierarchy for the Pizza ontology [Rector et al., 2004] in the Protégé2 ontology
editor.

Figure 2.1: Portion of the concept hierarchy for the Pizza ontology in Protégé 4.

2.3.4 Instance Checking

Given an individual name a and a (possibly complex) concept C in an ontology, instance
checking determines if the individual a belongs to C. A formal definition:

2http://protege.stanford.edu

http://protege.stanford.edu
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Definition 2.6 (Instance)
An individual a is an instance of some concept C with respect to ontology O if and only if
aI ∈ CI for all interpretations I of O if and only if O |= C(a) (also written O |= a : C).

The problem of instance checking has been proven to be reducible to the problem of
consistency checking [Baader and Sattler, 2001]. This can be observed in the following
proposition: There exists a model I for C(a) in ontology O if there is no model I for
O ∪ {¬C(a)}. This translates to the fact that an individual a is an instance of some
concept C with respect to the ontology O, if adding the negated assertion (a is an instance
of the complement of C) to O, makes O inconsistent. The notion of ontology consistency
checking is introduced in the next section.

2.3.5 Consistency Checking

Consistency checking is the task of determining if an ontology has a model (if there is an
interpretation which satisfies all the sentences in the ontology). If an ontology does not
have a model, it is inconsistent. An inconsistent ontology is an erroneous situation because
in such an ontology, “everything is false”, i.e., > v ⊥ holds. In ontology development,
there are various reasons why an inconsistent ontology may occur. All the reasons boil
down to contradicting statements specified in the ontology but the most common culprits
are incorrect ABox assertions. For example, if the ontology engineer specifies that a is
an instance of C in the ABox, i.e., C(a), and if C turns out to be unsatisfiable, i.e.,
O |= C ≡ ⊥ then a logical contradiction arises, namely “a is an element of ∅”.

DL versions of Tableau algorithms [Baader and Sattler, 2001] for determining if an ontology
is consistent try to construct a model of the ontology. That is, the algorithm tries to
construct a finite interpretation I that satisfies each sentence in the ontology. If it does
not find such an interpretation then the ontology is inconsistent. If such an interpretation
is found then the ontology is consistent.

Tableau algorithms for various other reasoning tasks are closely related to the one for
consistency checking. This is the reason why certain reasoning problems can be expressed
in terms of others. For example, the tableau algorithm for satisfiability in ALC works by
trying to construct a finite interpretation in which the concept under consideration, is
non-empty. It does this by applying a series of transformations to a starting ABox which
contains a single statement C(a) where C is the concept being checked for satisfiability and
a is an individual. If C is empty in all interpretations then it is clear that the assertion C(a)
will generate an inconsistent ontology. Therefore the algorithm checks the satisfiability of
the concept by trying to generate an inconsistent ontology. It is clear then, that the two
tasks of checking ontology consistency and concept satisfiability are related. It is fairly
straightfoward to see that the problem of instance checking can be related in a similar way.

The interested reader is referred to the references for details on the tableau algorithms [Baader
and Sattler, 2001] and the alternative methods to the tableau approach (structural al-
gorithms [Nebel, 1990]) for the reasoning tasks described. The most common standard
DL reasoning services were introduced and discussed in this section. It was mentioned
that many of these services can be expressed as other related reasoning problems. Certain
tasks such as consistency checking and instance checking are only applicable for DLs which
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include the use of ABox assertions. Satisfiability testing is only applicable in DLs which
are able to express unsatisfiable concept names. In the next section we introduce some of
the relevant non-standard reasoning services for DLs.

2.4 Non-Standard Reasoning Services

The standard reasoning services are primarily concerned with identifying different kinds of
consequences from the ontology. Non-standard reasoning services are another category of
inference services which have various applications in ontology development and maintenance.
The most widely used non-standard reasoning services for ontology debugging and repair are
those of explanation [Kalyanpur et al., 2007; Horridge et al., 2008] and repair [Kalyanpur,
2006; Kalyanpur et al., 2006b].

Explanation services are concerned with discovering why certain (possibly unwanted)
consequences follow from the ontology, while repair is involved with formulating methods
to modify the ontology in an intelligent way, so as to eliminate the unwanted consequences.
A brief overview of these two services is given in this section. The focus is only on these
specific services because they form part of existing methods for ontology debugging and
repair, which is the subject of this dissertation. There are various other non-standard DL
reasoning services available such as finding the least common subsumer [Baader et al., 2003],
concept approximation [Baader et al., 2000; Brandt et al., 2002] and modularization [Herzig
and Varzinczak, 2006; Cuenca-Grau et al., 2006]. However the details of these services are
beyond the scope of this dissertation.

2.4.1 Explanation

Explanation is a service within the broader area of ontology debugging and repair which
focuses on explaining why selected consequences follow from the ontology. A basic kind of
“explanation” for some entailment O |= α, where α is an axiom (recalling our convention
from Section 2.2.1, of referring to a general sentence in the ontology as an axiom), is a set
O′ ⊆ O such that O′ |= α. O′ is seen as a “reason” for α following from O.

Explanations provide information to ontology engineers which helps them understand why
certain entailments hold. Therefore if the ontology engineers discover certain undesired
entailments, they are able to use explanation to identify which axioms in the ontology cause
the entailment. This information is very useful when developing a method to eliminate the
undesired entailment.

A special kind of explanation, which is central to ontology debugging and repair, is
called a justification (also known as a Minimal Unsatisfiability Preserving Sub-TBox
(MUPS) [Schlobach and Cornet, 2003] or Minimal Axiom Set (MinA) [Baader et al., 2007]).
A justification is a minimal explanation for some ontology consequence. More formally:

Definition 2.7 (Justification for entailment)
Let O be an ontology and α an axiom such that O |= α. A set of axioms J ⊆ O is a
justification for O |= α if and only if J |= α and there is no J ′ ⊂ J such that J ′ |= α.
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This principle of a justification is illustrated with the following example:

Example 2.2 Consider the following ontology:

O =


1. A v B u ∃R.C,
2. D v G uB,
3. C v F


One can see that O |= A v ∃R.F . It is clear that this entailment follows from Axioms 1
and 3. Therefore {1, 3} ⊆ O is an explanation for O |= A v ∃R.F . It is also clear that
A v ∃R.F does not logically follow just from {1}. Similarly it does not logically follow just
from {3}. These two sets are the only two proper (non-empty) subsets of the explanation
{1, 3}. Therefore, by Definition 2.7, one can conclude that {1, 3} is a justification for
O |= A v ∃R.F . 2

The next section introduces the subject of repair which deals with resolving an erroneous
entailment once the reason for its existence is discovered.

2.4.2 Repair

Repair is the name given to the process of analyzing generated explanations for unwanted
consequences and using this information to identify appropriate modifications to the
ontology which will eliminate these consequences. In Example 2.2, it is clear that Axioms 1
and 3 are responsible for the entailment O |= A v ∃R.F . If one considers this entailment
as an unwanted consequence, one can eliminate it by removing Axiom 1 or Axiom 3 (or
both) from O. Although the example is trivial and not realistic in terms of the number of
axioms in the ontology, the same principles hold in a larger context.

An important aspect of repair is reducing, as far as possible, the amount of modifications
to the ontology to eliminate the entailment. Therefore, in Example 2.2, removing Axiom 1
or Axiom 3 (rather than both) is a better repair strategy for O |= A v ∃R.F . The notion
of repair is characterized further in the next chapter.

This chapter has introduced the family of knowledge representation formalisms known as
Description Logics. The basic DL ALC was presented and some common extensions to
this language were mentioned and discussed. Issues about DL complexity, DL expressivity
and DL reasoning tasks were also briefly discussed. The next chapter outlines the problem
of ontology debugging and repair and explains in detail some of the existing approaches
which address the issue.



Chapter 3

Ontology Debugging and Repair

The process of identifying errors in the design of an ontology, understanding why they arise,
and devising strategies to fix them is generally known as ontology debugging and repair.
There are various approaches to addressing these issues as described in the literature. The
most widely used strategies are discussed in this chapter. The first part of the chapter
presents the existing approaches for explanation for semantic defects (unsatisfiable concept
names and inconsistent ontologies) in DL ontologies. In the second part of the chapter, the
attention is turned to identifying strategies to repair (eliminate) these defects.

3.1 DL Ontology Errors

Errors in ontologies represented using OWL languages generally fall into three categories.
These are syntactic, semantic and style defects [Kalyanpur, 2006]. Because OWL is based
on DLs, these same terms are used here to describe error categories for DL ontologies.

Syntactic defects in DL ontologies imply the inclusion of illegal syntax used in the ontology
which falls outside the expressivity of the particular DL chosen for the application. For
example in the Description Logic EL, the constructs included in the language are the >
concept, the conjunction (u) concept constructor and the existential (∃) quantifier. The
concept description ¬C is therefore not a valid EL concept description because concept
negation is not included in the EL language.

Semantic defects are the most extensively studied defects and are the target for the bulk
of research on ontology debugging and repair. These defects are logical errors arising in
the ontology description due to modelling errors. The main examples of these defects are
unsatisfiable concepts and inconsistent ontologies. Another interesting semantic defect is
the unintended inference or unwanted axiom. An unwanted axiom is one that follows from
the ontology but is not intended to do so by the ontology engineer and the domain expert.
The meaning of such an axiom is inconsistent with what is known about the domain of
interest. Unwanted axioms are categorized as style defects in OWL ontologies [Kalyanpur,
2006]. The definition of a semantic defect (with respect to a DL ontology) which is used in
this dissertation is: any logical consequence of the ontology which is not desired by the
ontology engineer and domain expert. It is clear from this definition that an unwanted
axiom is better classified as a semantic defect and not a style defect.

20
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Style defects do not necessarily imply logical inconsistencies or invalid syntactical descrip-
tions in the ontology. These defects are simply symptoms of untidy ontology modelling.
They do not impact to a large extent on the meaning of terms in the ontology. Examples
of style defects include: unreferenced entities, cyclic definitions and conflicting ranges in
terms [McGuinness et al., 2000].

Existing ontology debugging and repair approaches focus primarily on semantic defects
such as unsatisfiable concepts and inconsistent ontologies. The remainder of this chapter
presents some of the existing approaches to correcting specifically these types of errors.
Syntactic and style defects are disregarded for the remainder of this dissertation. The usual
first step of debugging is to ascertain why the error holds in the ontology. This means
finding the information in the ontology which is responsible for these errors. This task is
dealt with by explanation. The field of explanation is concerned with finding the assertions
in the ontology which cause the unsatisfiability or inconsistency.

Therefore, the need for explanation in ontology debugging and repair is motivated and
discussed. After this, the special explanation known as a justification, is characterized.
Justifications are the most widely used explanation because of their conciseness. The
existing methods for computing justifications, which feature in many state-of-the-art
ontology debugging tools, are presented in detail.

Lastly, in Section 3.7, the usefulness of justifications for identifying repairs (ontology
modifications for eliminating the error) is then discussed, along with some existing methods
for identifying repairs. A few approaches for resolving multiple errors are also presented.
Finally, in Section 3.8, some of the limitations of existing explanation and repair methods
are outlined and discussed.

3.2 Explanations for Errors

During ontology repair, a natural step after detecting errors in the ontology is to under-
stand why they have occurred. This understanding helps the ontology engineer to make
appropriate plans to correct the errors. In large ontologies with many axioms and terms
(concept, role and individual names), the task of locating the causes of the errors is very
tedious and hence automated tools which perform this task for the ontology engineer are
very useful.

The idea of explanation is to do just that, locate and explain the causes of the errors in the
ontology. Explanation methods can be used to find the causes of any logical consequence
of the ontology hence the same methods may be used to understand why the erroneous
consequences of the ontology occur. This information, in turn, helps the ontology engineer
to develop strategies to eliminate these consequences.

The intuition behind explanation methods is that any consequence of the ontology is
supported (caused) by some subset of axioms from the ontology. This set of axioms which
is responsible for the error in the ontology is called an explanation. An explanation is
therefore any subset of the ontology from which the error logically follows.

The identification of explanations for errors is now a widely used ontology debugging service.
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Many existing ontology editors/browsers such as Protégé1, OWLSight2 and SWOOP3

include or have support for explanation services. The majority of these tools generate
special types of explanations called justifications [Schlobach and Cornet, 2003; Baader and
Hollunder, 1995; Kalyanpur et al., 2007; Suntisrivaraporn et al., 2008].

The term justification is also referred to by the name Minimal Unsatisfiability Preserving
Sub-TBox (MUPS [Schlobach and Cornet, 2003]) and Minimal Axiom Set (MinA [Baader
et al., 2007]). Intuitively, a justification for some unsatisfiable concept in the ontology
is a minimal subset (with respect to set inclusion) of the ontology from which it follows
that the concept is unsatisfiable [Horridge et al., 2009a]. A definition for justification for a
general entailment has been given in Section 2.4.1.

A specialized definition for a justification for an unsatisfiable concept is given below. Note
that in the rest of this chapter, the focus will be on presenting the existing methods for
generating justifications for and repairing of unsatisfiable concepts and general entailments
in the ontology. However, the notion of justifications and repairs can be easily extended
for inconsistent ontologies as well, as we will briefly see later in the chapter.

Definition 3.1 (Justification for unsatisfiable concept)
Let O be an ontology and C a concept name in O such that O is C-unsatisfiable. A set
of axioms J ⊆ O is a justification for the C-unsatisfiability of O if and only if J is also
C-unsatisfiable and there is no J ′ ⊂ J such that J ′ is C-unsatisfiable.

An example is given to illustrate the above definition. Recall that the ontology in Ex-
ample 2.1 is A-unsatisfiable. The only justification, J , for the A-unsatisfiability of O is
{A v B, A u B v ⊥}. For J to be a justification, J has to be A-unsatisfiable and no
proper subset of J should be A-unsatisfiable. It is clear that J ⊆ O is A-unsatisfiable and
that all the non-empty proper subsets of J , namely, {A v B} and {A uB v ⊥} are not
A-unsatisfiable. 2

In general, because justifications are minimal subsets of the ontology from which the
unsatisfiability follows, they are a more concise kind of explanation. This makes them
better suitable for use in generating concise repairs. The relationship between justifications
and repairs will be discussed later on in this chapter. Suffice it to say for now that a repair
for some error in an ontology is a set of changes that may be applied to the ontology to
correct the error. The first notions regarding computation of justifications (also known as
axiom pinpointing) in DL-based Knowledge Representation, were introduced by Baader
and Hollunder [1995] and Schlobach and Cornet [2003]. In general, methods for computing
justifications are divided into Black-box [Kalyanpur et al., 2007; Horridge et al., 2009a;
Wang et al., 2005] and Glass-box [Kalyanpur et al., 2005b; Meyer et al., 2006; Schlobach and
Cornet, 2003; Lam et al., 2008] approaches. However, there are also approaches which use
a combination of these. These are known as Hybrid [Kremen and Kouba, 2009] approaches.
This categorization of methods depends on how the reasoner is used in the computation of
the justifications.

Black-box methods use the reasoner solely for checking if an entailment holds (or if a
1http://protege.stanford.edu
2http://pellet.owldl.com/ontology-browser
3http://www.mindswap.org/2004/SWOOP

http://protege.stanford.edu
http://pellet.owldl.com/ontology-browser
http://www.mindswap.org/2004/SWOOP
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concept is satisfiable) in an ontology or not. The internals of the reasoner (how it performs
this check) is not seen as important. The reasoner is therefore treated as a “black-box”
entailment/satisfiability checker whose sole function is to say ‘yes’ or ‘no’ to queries.
Black-box methods, therefore, can be used regardless of the choice of reasoner. They are
known as reasoner independent methods. Glass-box methods, on the other hand, involve
a modification of the procedures inside the reasoner which is usually non-trivial. This
requires an awareness of the inner-workings of the reasoner, hence the “glass-box” name.
Glass-box methods are bound to a specific reasoner (they are reasoner dependent).

DL reasoners are usually designed for a specific subset of DLs and therefore their reasoning
algorithms are tailored specifically for these DLs. One example of such a pairing is the
CEL reasoner4 developed for the EL family of DLs. For example, if a Glass-box method
for finding justifications uses a modified version of CEL’s reasoning algorithms, then this
method is bound to that reasoning implementation and cannot be used with a different
reasoner.

The following three sections describe some existing Black-box, Glass-box and Hybrid
methods for computing justifications. More detail is presented for the Black-box approaches
while a much more general presentation of existing Glass-box and Hybrid approaches is
given. The reader of this dissertation is referred to the references provided for detailed
descriptions of Glass-box and Hybrid approaches. The reason for focusing on Black-box
methods is that the main contribution of this dissertation (discussed in Chapter 4) is to
provide an alternative method for ontology debugging and repair and this method uses a
Black-box approach with regards to computing justifications.

3.3 Computing Justifications: Black-box Approach

Black-box methods for computing justifications are so named because the reasoner is used
solely as a “black-box” for checking if an entailment holds in an ontology or not. There is
no concern about the internals of the reasoner. Since the service of checking entailment
(or checking satisfiability) is a standard capability of most existing DL reasoners, the only
requirement for Black-box methods is a sound and complete reasoner for the particular
description logic being used.

The existing Black-box algorithms are centered around removing axioms from the ontology
that are irrelevant to the unsatisfiability of the concept under consideration. This is done
using sophisticated expand/contract or expand/shrink [Kalyanpur et al., 2007] techniques
until the remaining axioms in the ontology constitute a justification for the entailment.
The upside to this approach is that it is applicable regardless of the reasoner being used
(reasoner independent). A down-side to this approach is that each time axioms are removed
from the ontology, the reasoner has to be called to check satisfiability. This check is,
in general, computationally expensive and many such checks are typically required to
compute a justification. As such, Black-box methods have various optimization techniques
to increase the general performance of computing justifications.

The rest of this section shows how justifications are computed using the Black-box approach
4http://lat.inf.tu-dresden.de/systems/cel

http://lat.inf.tu-dresden.de/systems/cel


§3.3 Computing Justifications: Black-box Approach 24

including the optimization techniques mentioned above. The section is split into two
subsections. The first discusses computing a single justification for an unsatisfiable concept.
The second presents the methods for computing all justifications for an unsatisfiable
concept.

3.3.1 Computing a Single Justification

This section begins with a presentation of one of the simpler (albeit unoptimized) algo-
rithms for determining a single justification. It is commonly known as the näıve pruning
algorithm [Suntisrivaraporn et al., 2008]. The algorithm’s simplicity makes it a good
place to start when formulating a better performance Black-box method for computing a
justification.

Naive Pruning Algorithm

Given an ontology O which is C-unsatisfiable, Algorithm 1 extracts a set of sentences
from O with the property that this set is a justification for O being C-unsatisfiable.

Algorithm 1: slowContract (Single justification)
Input: Ontology O and concept C such that O is C-unsatisfiable
Output: Justification J for O being C-unsatisfiable
J := O;1

foreach α ∈ J do2

if J\{α} is C-unsatisfiable then3

J := J\{α};4

end5

end6

return J ;7

Algorithm 1 works by moving in a stepwise fashion through each axiom α in the ontology.
At each step it removes the current axiom from the ontology and then invokes the reasoner
to check if C is still unsatisfiable in the ontology. If the ontology is still C-unsatisfiable,
then the removed axiom is not critical to the entailment and can be discarded. If the
ontology is no longer C-unsatisfiable then it means that the removed axiom is critical to
the C-unsatisfiability of O and is therefore added back into the ontology. After one pass
through the ontology the algorithm returns a justification for C-unsatisfiability of O. This
method (removing axioms from the ontology until we arrive at a justification) is sometimes
known as contraction5.

A brief study of Algorithm 1 shows its correctness. It is obvious that any ontology O which
is C-unsatisfiable has some subset (J ⊆ O) which is also C-unsatisfiable. Examining Lines
1 and 2 of Algorithm 1 one can see that the algorithm considers each and every axiom in
the ontology when searching for the justification. Lines 3 and 4 ensure that the axioms
which have no effect on the satisfiability of C (when removed from the ontology), are
discarded. These two properties prove that J as returned by Algorithm 1 is a justification
for O being C-unsatisfiable.

5The term contraction refers to the reduction of the ontology in size.
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Note that the condition on Line 3 of Algorithm 1 asks the reasoner to check if C is
unsatisfiable with respect to the current J . This check is equivalent to asking the reasoner
if the entailment J |= C v ⊥ holds. This can be done because subsumption testing can
(in DLs which include concept negation such as ALC) be reduced to satisfiability checking
and vice versa. This is mentioned in Chapter 2. As an example, if one wants to test if
O |= A v B then it is equivalent to checking if O is (A u ¬B)-unsatisfiable (as stated in
Section 2.3.2). The following example illustrates how Algorithm 1 works to compute a
single justification for a general entailment.

Example 3.1 Consider the following ontology:

O =


1. G v H,
2. A v D u ∀R.E,
3. A v B u C,
4. C ≡ ∀R.E,
5. F v ∃S.G


It is fairly straightfoward to see that O |= A v C. The most obvious reason for this
consequence is Axiom 3. The axiom A v B u C implies that A v B and A v C. But if one
examines O more closely one can see that Axiom 3 is not the only reason for O |= A v C.
In fact it can be shown that O\{A v B u C} |= A v C. From Axiom 2 and Axiom 4 it
follows that A v D u C, and through a similar argument for Axiom 3, one can arrive at
the consequence A v C. Thus, there are two justifications for the entailment O |= A v C,
one justification being {A v B u C} and the other {A v D u ∀R.E,C ≡ ∀R.E}. 2

A demonstration of Algorithm 1 will now be given to compute one of the established
justifications in Example 3.1. With input ontology O and α = A v C, Algorithm 1 works
in the following way:

Firstly the output justification set J is assigned the set of axioms from O (Line 1). Because
O |= α, it is known that J |= α. Lines 2 to 4 remove the axioms that do not form part
of the justification. First, Axiom 1 is removed from J and the reasoner is asked whether
J\{1} |= A v C (Line 3). In this example it does and so Axiom 1 is discarded permanently
from J (Line 4).

J is now the set of axioms {2, 3, 4, 5}. Next, Axiom 2 is removed from J . J\{2} |= A v C
holds because of Axiom 3. Axiom 2 is therefore permanently removed from J . J is now
reduced to {3, 4, 5}. After removing Axiom 3 it follows that J\{3} 6|= A v C. Axiom 3 is
therefore added back to the ontology and J remains {3, 4, 5}.

The next axiom (Axiom 4) is removed. The reasoner should tell us that J\{4} |= A v C.
This is due to the presence of Axiom 3 in J . Axiom 4 is therefore discarded and J becomes
{3, 5}. The last axiom (Axiom 5) is then processed similarly. All the axioms in O have
thus been processed and the loop in Line 2 terminates. The set J = {3} is returned by the
algorithm. This set is indeed a justification for O |= α as shown earlier. 2
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Sliding Window Technique

Although Algorithm 1 is correct it is also computationally expensive because it requires
the same number of entailment checks as there are axioms in the ontology. An entailment
check is a complex task and thus one should try to reduce the number of these checks
as far as possible when computing justifications to achieve acceptable performance. One
optimization that could reduce the number of entailment checks is to remove a set of axioms
(more than one) from the ontology before performing the entailment check. Algorithm 2
uses this key optimization when computing a justification:

Algorithm 2: fastContract (Single justification - Sliding window)
Input: Ontology O, axiom α such that O |= α and window size k ≥ 1
Output: Justification J for O |= α
J := O;1

W := ∅;2

while k ≥ 1 do3

W := getNextWindow(J, k);4

while |W| 6= 0 do5

if J\W |= α then6

J := J\W;7

W := getNextWindow(J, k);8

k := bk/2c;9

return J ;10

Algorithm 2 uses an optimization which removes sets (a “window”) of axioms at a time
from the ontology instead of a single axiom. This set is chosen by the getNextWindow
procedure and the number of axioms in this set is determined by the input window size k.
The benefit of the above mentioned optimization is that if the removal of the set of axioms
has no effect on the entailment under consideration, then the axioms can be permanently
discarded from the ontology. And because a set of extraneous axioms is removed at once,
instead of just one, the algorithm is that much closer to pinpointing the justification.
Most importantly, k − 1 entailment checks have been saved, where k is the number of
axioms removed. Thus the overall number of entailment checks required to compute the
justification is reduced. The sliding window technique [Kalyanpur, 2006] is an example of a
method which employs this kind of axiom pinpointing strategy.

The question arises: what value is appropriate to use as a starting window size? In theory,
k can be any positive integer. However, in practical terms there have been experiments
conducted which indicate that, in the context of ontologies with a large amount of axioms,
the greater of two numbers, |O|10 or 10 is chosen as the starting window size where |O| is the
number of axioms in the ontology. These values have been shown empirically to provide
optimal performance when applied to real-world ontologies [Kalyanpur et al., 2007].

Algorithm 2 uses a version of the sliding window technique described above, and is
demonstrated here with the aid of an example.
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Example 3.2 Consider an ontology O =
5⋃
i=1

wi, where each wi is as follows:

w1 =


1. A v C,
2. A v ∃R.E,
3. E v H

 , w2 =


4. D ≡ F tG,
5. F v C,
6. G v C u ∃R.H

 , w3 =


7. H ≡ E t L,
8. L vM,
9. M ≡ N u ∃R.H

 ,

w4 =


10. N v P,
11. B ≡ D u ∃R.E,
12. C v D

 , w5 =


13. P ≡ Q u U,
14. Q v H,
15. U v L t P


Axiom A v B follows from O, therefore the entailment O |= A v B holds. This consequence
can be deduced from Axioms 1, 2, 11 and 12 in the following way: from Axioms 1 and 12 it
follows that A is included in D (A v D). From Axiom 2 it is known that A is also included
in the complex concept ∃R.E (i.e., A v ∃R.E). Therefore it follows that A v D u ∃R.E.
Finally Axiom 11 tells us that B is equivalent to Du∃R.E and thus it is found that A v B.
In conclusion, it follows that the set {1, 2, 11, 12} is a justification for O |= A v B. This
set also happens to be the only justification for O |= A v B.

Algorithm 2 will now be demonstrated to be able to compute this justification. The input
ontology is O = w1 ∪ . . . ∪ w5, the input axiom A v B and a starting window size of
three is chosen. The value three for the starting window size is chosen because it is more
appropriate for the unrealistically small ontology in the example. The starting window
size of three also indicates the reason for the example ontology O being broken up into the
“windows” w1 – w5, each having exactly three axioms. The output justification J is assigned
the set of all axioms in the original ontology O. The sliding window analogy now becomes
apparent as the focus is now on a certain portion (window) of the ontology. A window size
of three means that at each iteration a set of at most three axioms is considered.

In the example ontology, the window w1 consisting of Axioms 1, 2 and 3, is first considered.
This set is temporarily removed from J . The entailment check J\w1 |= A v B is performed.
If this holds then J can be reassigned as being the axioms in w2 ∪ ... ∪ w5, permanently
discarding w1. Otherwise, if this entailment does not hold, w1 is added back to J . In the
current example it is the case that J\w1 6|= A v B. w1 is therefore added back to J . The
window of focus then “slides” to w2 (the next three axioms), which is processed in a similar
fashion. In this way the procedure continues until the window in focus is empty (reached
the end of the ontology). After this, J potentially has much fewer axioms than the start.
After applying this initial procedure to the example, J is reduced to {1, 2, 3, 10, 11, 12}.

The next step is to shrink the window size by some factor so there is a finer-grained view
of the new J . Then the same sliding window technique is applied again on J with the new
window size. This is repeated until the window size is equal to one. It is easy to see that
in this particular case Algorithm 2 performs in exactly the same way as Algorithm 1. It
is important to note that, to ensure computation of a justification, there has to be one
pass of Algorithm 2 executed with a window size of one. Therefore the factor to reduce
the window size by, between passes, must be chosen such that the window size is reduced
to one at some stage.

In the example, the factor which is chosen is half (1
2) [Kalyanpur et al., 2007]. Again,
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this particular factor is chosen because it is shown to provide reasonable performance
in practice. Returning to the example, the new window size becomes b3

2c = 1. In this
case, one axiom is removed at a time and the entailment is monitored after each removal,
exactly like Algorithm 1. Algorithm 2 terminates once the window size is halved again and
becomes b1

2c = 0. This is because (Line 3) requires k ≥ 1. Notice that Axioms 3 and 10 are
discarded during this last step and the output ontology J = {1, 2, 11, 12} is a justification
for O |= A v B as shown earlier. 2

Example 3.2 shows the performance advantage that may be gained when using Algorithm 2
over Algorithm 1. Eleven entailment checks are required when using Algorithm 2 to
compute a single justification in this example, whereas Algorithm 1 would require fifteen
entailment checks. The four entailment checks saved in this example may not sound
significant but in practice, when applied to much larger ontologies, the gains become more
substantial.

There are other variations of the sliding window technique. For example, the binary chop
(divide and conquer) method [Baader and Suntisrivaraporn, 2008]. This method partitions
the ontology into two halves and checks if the entailment is preserved (holds) in one of them.
If it does then the other half can be discarded. For details, the reader is pointed to the
reference provided. Sliding window and binary chop fall into the general category of axiom
pinpointing optimizations called expansion or contraction techniques. These techniques
essentially expand (add required axioms to) and shrink (remove irrelevant axioms from) the
ontology in a controlled manner until a justification remains. Another useful optimization
which may be used, as a preprocessing step, to prune irrelevant axioms from the ontology
is the technique of module extraction.

Module Extraction

One of the driving forces behind the development of module extraction [Konev et al., 2008;
Suntisrivaraporn, 2008; Cuenca-Grau et al., 2007; Doran et al., 2007] techniques is the
need for ontology reuse [Jimenez-Ruiz et al., 2008]. While developing an ontology the
user may want to incorporate terms in the ontology that have already been defined (to
his/her satisfaction) in other ontologies. Instead of manually adding these terms and their
defining constructs into the ontology, module extraction provides an automated method to
extract the relevant axioms (module) from these “foreign” ontologies. This set of sentences
can then be easily imported into the user’s ontology. Module extraction approaches are
generally divided into two categories, i.e., syntactic and semantic approaches [Konev et al.,
2008].

To perform module extraction, one requires an ontology from which to extract the module
and an input signature. The ontology from which the module is extracted is known as
the “foreign” ontology. A signature with regards to module extraction is a list of terms
(concept, role and individual names). The signature of an axiom α, for example, is the list
of all terms in α which we denote by Sig(α). Similarly, the signature of an ontology O is
the list of all terms in O denoted by Sig(O). Therefore the specified input signature for
module extraction is a list of terms whose meaning is to be fully captured in the module
which is extracted from the foreign ontology.

This signature influences which axioms from the foreign ontology are to form part of
the module. Furthermore, the axioms in the extracted module have to be sufficient to
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fully define the terms in the input signature. For example, if the ontology engineers are
developing an ontology describing the functioning of the human brain, they may discover
that the SNOMED CT medical terminology defines this functioning as they would like. To
capture this information in their ontology, a näıve approach would be to import the entire
SNOMED terminology into their ontology. However, SNOMED contains many thousands
of axioms (a lot of them not pertaining to the human brain) and this would make the
user’s ontology unnecessarily large.

Module extraction is a solution to this problem because it allows one to extract a subset of
the terminology which is required for the specific application. In the example, the ontology
engineer could use a module extraction technique with SNOMED being the foreign ontology
and the input signature being {Brain}. This would provide the engineer with a much
smaller subset (module) of SNOMED which fully captures the meaning of the Brain term
and all related terms. Ideally a module should be as small as possible while retaining this
property of fully capturing the meaning of the input terms. There are several different types
of modules in the literature. The definitions and methods for extracting these modules are
not given here. The reader is referred to the provided references for details on these issues.

The question arises: how is module extraction useful in the context of axiom pinpointing?
The answer can be found in notions such as conservative extensions [Cuenca-Grau et al.,
2007] and reachability-based modules [Suntisrivaraporn, 2008]. These kinds of modules
preserve entailment and justifications. This can be explained as follows. Suppose we are
given an entailment O |= α and the task is to compute a justification for this entailment.
One can use module extraction to extract only those axioms from O which pertain to α.
If the input signature is Sig(α) and foreign ontology is O, the module M for Sig(α) with
respect to O is such thatM |= α if and only if O |= α [Suntisrivaraporn, 2008]. M preserves
entailment of α and M is called an α-module [Suntisrivaraporn, 2008] for O.

From the preservation of entailment property of a module we know that the module
preserves at least one justification for the entailment (Otherwise the entailment would
not hold in the context of the module). However certain modules also preserve all
justifications [Suntisrivaraporn et al., 2008]. This means that, every justification J for
the entailment is such that J ⊆ M. Note that M is not necessarily a justification for
the entailment but it serves as a relatively small subset of the original ontology in which
to start searching for the justifications. Those axioms which do not pertain to the input
signature are not included in the module and depending on the number of these axioms
one can save heavily on the number of entailment checks required to find the justifications.
Module extraction is thus very useful as a preprocessing step (and important optimization)
for axiom pinpointing.
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Figure 3.1 gives a visual representation of the properties of preservation of entailment and
justifications in certain modules.

O |= α

M |= α

J1

J2

J3

Figure 3.1: α-module M for O preserves entailment and justifications

J1, J2 and J3 represent sets of axioms which are the justifications for the entailment O |= α.
The larger unshaded circle represents the set of axioms which constitutes the ontology O.
The smaller shaded circle represents the set of axioms which constitutes the α-module, M,
for O.

Expansion

In addition to module extraction, expansion [Horridge et al., 2009a] is another useful
technique for optimizing Black-box algorithms for computing justifications. Consider the
task of computing a justification for an entailment O |= α, where α is an axiom. Expansion
works by creating a new ontology (with no axioms), O′. After this, subsets of axioms are
carefully selected from O to add to O′ until O′ |= α. From this description, expansion
seems to extract a kind of module for the entailment similar to that of module extraction.
But a key difference is that the “module” which the expansion procedure extracts does
not necessarily preserve all justifications. However, it is clear that expansion arrives at a
module which preserves the entailment and therefore at least one justification. Expansion
is therefore suitable as an optimization for computing a single justification.

During the expansion procedure, the addition of a set of axioms, as opposed to a single
axiom at a time, helps to save on the number of entailment tests. The criteria for selecting
the axioms to add are based on the entailment in question. This usually means that the
structure of the axioms from O are studied to determine which of these are related to the
axiom in the entailment. For example if the entailment in question is O |= A v B then
one may start by adding the CDAs for A and B.

This particular expansion technique can be illustrated by means of the following example.
Consider the ontology in Example 3.2. A consequence of this ontology is A v B. To
perform expansion, one begins by creating an empty ontology (ontology with no axioms),
say, O′. Now one can add the CDAs for A and B to O′. In the example ontology, Axioms 1
and 2 are CDAs for A and Axiom 11 is a CDA for B. Now the question is asked, is it the
case that O′ ∪ {1, 2, 11} |= A v B? The answer is ‘no’ in this case. How does one proceed
from here? One option is to add the CDAs for the remaining concept names from Axioms
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1, 2 and 11 to O′. This continues until O′ |= A v B.

The remaining concept name in Axiom 1 is C. The only CDA for C in the example
ontology is Axiom 12. For Axiom 2, the remaining concept name is E, however, there are
no CDAs for E in the example ontology. For Axiom 11, the remaining concept name is D
and the only CDA for D in the example ontology is Axiom 4. These CDAs are added to
O′ and the resulting entailment O′ ∪ {1, 2, 4, 11, 12} |= A v B now holds. Therefore, the
resulting module from expansion is the ontology O′ = {1, 2, 4, 11, 12}.

The ontology in Example 3.2 has a total of fifteen axioms. After expansion is executed
(at the cost of two entailment checks), the resulting ontology contains only five axioms.
This latter ontology is much smaller and is thus a better starting ontology from which
to pinpoint a justification. The justification for the consequence A v B, in the example
ontology, is {1, 2, 11, 12}. This justification, incidently, contains only one axiom fewer than
the expansion module O′ = {1, 2, 4, 11, 12}.

Note that there are various other techniques (apart from the CDA technique described
here) that one could use for selecting the axioms to add during expansion. In the next
section, the module extraction and expansion optimizations discussed are put together
to present a typical optimized Black-box algorithm for computing justifications. This
algorithm serves as a guideline for what existing Black-box algorithms look like.

Optimized Black-box Algorithm

Algorithm 2 is an optimized version of Algorithm 1. In fact, executing Algorithm 2 with a
starting window size of one, is equivalent to executing Algorithm 1. The major difference
between the algorithms is that Algorithm 2 (potentially) prunes the ontology much faster.
It starts with a coarse approach to pruning, removing bigger subsets of the ontology at a
time and reducing the size of these subsets (by reducing the window size) until it reaches
the finest-grained subset being a single axiom. Although Algorithm 2 is much more efficient
than Algorithm 1, there are various other optimizations one could use to make axiom
pinpointing faster. For example, prior to executing Algorithm 2, a common technique
to trim away some irrelevant axioms from the ontology, is to use module extraction and
expansion. The following algorithm combines these optimizations with Algorithm 2 to
resemble a typical optimized Black-box approach for axiom pinpointing.

Algorithm 3: fastContract+ (Single justification — Optimized)
Input: Ontology O, axiom α such that O |= α and window size k ≥ 1
Output: Justification J for O |= α
J ,M := ∅;1

M := extractModule(Sig(α), O);2

while J 6|= α do3

J := J ∪ selectSubset(M);4

J := fastContract(J , α, k);5

return J ;6

In Algorithm 3, module extraction and expansion are used as preprocessing steps to
trim away axioms which are unnecessary to the entailment O |= α. First, an α-module
for O, preserving the justifications for O |= α, is extracted using any appropriate module
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extraction technique. The module M is then passed to an expansion technique (Lines
3 and 4). This expansion technique uses a procedure selectSubset to incrementally add
axioms which are relevant to the entailment, to J until J |= α. J is then passed to the
fastContract procedure (Algorithm 2) to pinpoint a justification for the entailment.

Algorithm 3 provides a method for computing a single justification for a single entailment
using the module extraction and expansion optimizations that have been discussed in the
previous sections. Algorithm 3 (fastContract+), also forms the base procedure that is used
in a method for computing all justifications for an entailment. This method is discussed in
Section 3.3.2.

Inconsistent Ontologies

In an inconsistent ontology O, there is no interpretation which satisfies any of the axioms
in O. Therefore every axiom follows from the ontology. The reason is that any ontology O
entails some axiom α if and only if every model of O satisfies α and if O is inconsistent,
then it means that O has no models and hence all models of O satisfy α and hence any
other axiom. It is therefore not very meaningful to reason with an inconsistent ontology
and therefore it is treated as an erroneous situation in the ontology.

Inconsistency in ontologies is usually caused by ABox assertions that are contradictory
with TBox statements (e.g., C(a) and C ≡ ⊥) in the ontology or by some ABox assertions
which conflict with each other (e.g., R(a, b), ∀R.C(a) and ¬C(b)).

It was mentioned in Section 3.2 that the notion of justification can be extended to
inconsistent ontologies. Essentially, the same general strategy for axiom pinpointing for
unsatisfiable concepts applies to axiom pinpointing for inconsistent ontologies. However,
any additional optimizations to this strategy, which analyze the signature of the erroneous
entailment in order to extract modules (such as module extraction and certain expansion
techniques) are not applicable to inconsistent ontologies. This is because, if an ontology is
inconsistent, the axiom > v ⊥ is entailed by the ontology and the signature of this axiom
(i.e., {>,⊥}) is not conducive for extracting a useful module for computing justifications
for the inconsistency.

Therefore to summarize how justifications can be computed for an inconsistent ontology,
the expand/shrink strategy, used for a general entailment, may be used again to continually
remove axioms from the ontology which are not relevant to the inconsistency until only a
justification for the inconsistency remains.

3.3.2 Computing All Justifications

We have seen that entailments may have more than one justification. Each of these
justifications is a set of sentences in the ontology that fully supports the given entailment.
That is, each of these sets of sentences is a sufficient condition for the entailment to hold.
Therefore, for repair purposes, if one wants to get rid of an erroneous entailment it is useful
as a starting point to know all justifications for that entailment.

This set of all justifications serves as the minimal (and at the same time complete) reason as
to why the entailment holds in the ontology. Hence this information is also sufficient for use
in devising a repair strategy to remove the entailment in question. This section discusses
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the widely used approach for pinpointing all justifications for a given entailment [Kalyanpur,
2006] using a variant of Reiter’s hitting set algorithm [Reiter, 1987]. This method assumes
that one already has a procedure for computing a single justification (an example of such a
procedure is given in Section 3.3.1 as Algorithm 3). We now explain how this method can
be used to compute all justifications for some entailment (or unsatisfiable concept).

Hitting Set Algorithm

In his theory of diagnosis [Reiter, 1987], Reiter refers to a system consisting of a set of
first-order sentences (system description) and a set of components U . These components
may be “plugged in” to the system description to elicit some desired behaviour from the
overall system. However, certain subsets of U , if added to the system description, may
cause a fault in the system. Such component subsets are called conflict sets. Given a
collection of conflict sets C for a certain system, Reiter’s algorithm identifies all minimal
hitting sets (smallest subsets of U which intersect every element in C) for C. These terms
are recapped as follows:

Universal set: The universal set U is the set of all components available in a system.

Conflict set: A set S ⊆ U that is responsible for a fault in the system.

Hitting set: A hitting set is some subset of the component set U that contains at least
one element of each conflict set in the given collection of conflict sets. More formally, a set
H ⊆

⋃
S∈C S is a hitting set for C if and only if H∩S 6= ∅ for every S ∈ C. H is a minimal

hitting set for C if and only if there is no proper subset of H which is also a hitting set
for C.

HS-tree: Reiter’s algorithm constructs a Hitting-set tree (HS-tree) for the collection of
conflict sets C. This tree is a set of nodes V and edges E . Each node v ∈ V has a label
v.label ∈ C, i.e., v.label is a conflict set and each edge e ∈ E has label e.label ∈

⋃
S∈C S,

i.e., e.label is an element of some S ∈ C. A function P (v), the path function, returns the
set of edge labels on the path from the root node to a node v.

The construction of an HS-tree T is carried out in a breadth-first fashion, according to the
following rules:

- Firstly, a root node vroot for T is generated. vroot is labelled with an arbitrary conflict
set S ∈ C.

- If a node v is labelled by a set S ∈ C then for each ϕ ∈ S a successor node vϕ is
attached to v via an edge eϕ labelled with ϕ.

- Each successor node vϕ is then labelled with a set S ′ ∈ C such that S ′ ∩ P (vϕ) = ∅.
If no such S ′ exists, vϕ is labelled with a ‘�’. A node labelled by ‘�’ indicates a
terminating node (leaf) which has no successors.

Each set P (v) such that v is labelled with ‘�’ is a hitting set for C. Therefore the
collection L of all hitting sets for C (paths P (v)), found in T , contains all minimal hitting
sets for C [Reiter, 1987, Theorem 4.8]. A minimal hitting set in the HS-tree corresponds to
a set P (v) for a terminating node v such that there is no other terminating node v′ in the
HS-tree where P (v′) ⊂ P (v). An example illustrating the construction of an HS-tree for
the collection C = {{a, b, d}, {b, d, e}, {c, e}, {f}} is given in Figure 3.2.
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Figure 3.2: HS-tree for collection C = {{a, b, d}, {b, d, e}, {c, e}, {f}}.

The minimal hitting sets for C depicted in the HS-tree of Figure 3.2 are {a, e, f}, {b, c, f},
{b, e, f}, {d, c, f} and {d, e, f}. The next section shows the applicability of the theory of
Reiter’s HS-tree to the problem of computing all justifications for an entailment.

Conflict Sets and Justifications

Reiter’s algorithm for computing minimal hitting sets was briefly described above. How
can this algorithm be used for computing all justifications for some entailment? We use a
special variant of Reiter’s algorithm to do this [Kalyanpur et al., 2007]. It works as follows.
Firstly, let us assume that the universal set U in Reiter’s algorithm corresponds to the set
of axioms which constitutes an ontology O in the variant algorithm. Secondly, one can
see the entailment of some axioms (or the unsatisfiability of a concept) as ‘faults’ in the
system. These are caused by one or more sets of axioms in U , i.e., the justifications for the
entailment. These are therefore, the ‘conflict sets’ in the variant of Reiter’s algorithm.

A crucial difference here is that at the start of Reiter’s algorithm we are given all the
conflict sets in the collection C, whereas at the start of the variant algorithm we have
no justifications. In Reiter’s algorithm we have a function which selects a conflict set
from C to label the particular node we are constructing. Therefore, in theory, if we have a
corresponding function which is able to generate a conflict set (justification) in the variant
algorithm, then we should be able to construct the HS-tree in its entirety.

Recall that in Section 3.3.1 a method for generating a single justification is given. This
function could be used to generate the justifications which we require in the variant
algorithm. The variant algorithm constructs a similar tree to the one in Reiter’s algorithm,
however the focus in Reiter’s HS-tree is on finding minimal hitting sets (the paths to
terminating nodes), whereas the focus in the variant algorithm is on finding the justifications
(the nodes) for the entailment of some axiom or the unsatisfiability of some concept.
Therefore the tree which is constructed in the variant algorithm is known as a justification
tree and not an HS-tree.
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Note: We know that Reiter’s original algorithm focuses on finding the minimal hitting
sets for the conflict sets and the variant algorithm focuses on finding the justifications
(“conflict sets”). However, the variant algorithm, as a consequence of constructing the
justification tree, also identifies the minimal hitting sets for the justifications computed in
the tree. These minimal hitting sets correspond to the repairs for the unsatisfiability or
entailment in question and is important for when we discuss repairs in the latter part of
this chapter. We now proceed with the description of the variant algorithm.

Justification Tree

A justification tree is analogous to an HS-tree. A justification tree, TJ , is a set of nodes
VJ and edges EJ . Each node j ∈ VJ has a label j.label which is a justification for the
unsatisfiability of a concept, say C, with respect to the ontology O. Each edge e ∈ EJ
has label e.label ∈

⋃
j.label∈TJ j.label, i.e., e.label is an axiom of some justification. The

function P (j), the path function, returns the set of edge labels on the path from the root
node to node j.

To construct a justification tree TJ in a breadth-first fashion, the following rules are
applied.

(i) The first step in Reiter’s algorithm is to generate a root node, labelled with an
arbitrarily chosen conflict set from C. The corresponding first step in the variant
algorithm is to generate a root node jroot for TJ which is labelled with a justification
for C. This justification can be generated with respect to the ontology O using any
method for computing a single justification (such as the fastContract+ procedure in
Section 3.3.1).

(ii) If a node j in the justification tree is labelled with a justification J , then for each
axiom α ∈ J , a successor node jα is attached to j via an edge eα which is labelled
with α.

(iii) Each successor node jα in the justification tree is labelled with a justification J ′ for C.
J ′ is generated using the same method as in the first rule. However the difference
now is that J ′ is computed with respect to the ontology O\P (jα) and not O. If
however, it turns out that O\P (jα) does not contain a justification for C it means
that O\P (jα) is not C-unsatisfiable and therefore we label jα with ‘�’ indicating a
terminating node with no successors.

The key difference between Reiter’s algorithm and the variant algorithm becomes evident
in rule (iii). In the justification tree, this rule ensures that for a node j and its successor
node jα, j.label 6= jα.label. In other words, the same justification cannot appear as the
label of a parent node as well as its direct children. In fact it is the case that for any two
nodes which are on the same path in the justification tree, they cannot share the same
label (justification). A similar property holds for an HS-tree in Reiter’s algorithm. This
can be verified from the rules for constructing an HS-tree given in Reiter’s work [Reiter,
1987]. Here we prove that this property, as extended for a justification tree, holds as well.
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Theorem 3.1 Given two nodes j1 and j2 in a justification tree TJ , if j2 is a successor of
j1, that is if P (j1) ⊂ P (j2), then j1.label 6= j2.label.

Proof:
Let us assume that Theorem 3.1 is false, i.e., we assume that j2 is a successor of j1,
i.e., P (j1) ⊂ P (j2), but that j1.label = j2.label. From the rules of the justification tree
construction we know that:

1. j1.label represents a justification for C with respect to O\P (j1) and j2.label represents
a justification for C with respect to O\P (j2). (From rule (iii))

2. There exists an axiom α ∈ j1.label such that α ∈ P (j2). (From assumption P (j1) ⊂ P (j2)
and rule (ii))

From statement 2 it follows that:

3. α 6∈ O\P (j2) and this implies that α 6∈ j2.label because the justification represented by
j2.label is a subset of O\P (j2) by Definition 3.1 of a justification.

Statements 2 and 3 lead to a contradiction with our assumption that if j2 is a successor of
j1, then j1.label = j2.label. Therefore our assumption that Theorem 3.1 is false is incorrect.
Hence, Theorem 3.1 is indeed true. 2

The major difference between the construction of the HS-tree and the justification tree is
that the operation/test performed to determine the label of a particular node is different.
In an HS-tree one scans the collection C for a set S ′ such that S ′ ∩ P (vα) = ∅. In a
justification tree, a justification is generated using any available axiom pinpointing method
and the node is labelled with the justification. To ensure that one computes a unique
justification for each node in a path, the ontology which is used to pinpoint the justification
depends on the path to the node. That is, the ontology is denoted by O\P (vα). We now
give an example which demonstrates the construction of a justification tree.

Example 3.3 Suppose we have an ontology O with ten axioms denoted by 1, . . . , 10:

Suppose that O |= α and we would like to compute all justifications for this entailment.
Let us assume that the justifications for the entailment are {1, 2, 3, 4, 5}, {1, 3, 4, 6, 7} and
{1, 3, 4, 8} (of course, before we begin constructing the justification tree we do not know
these justifications). Figure 3.3 depicts the justification tree for the entailment and our
analysis of its construction follows:

The first step is to generate the root node. The label for the root node should be a
justification for the entailment. We use a procedure for finding a single justification
(e.g., Algorithm 3) to find the first justification {1, 2, 3, 4, 5} which we label the root node
with. For each axiom β in the root node label we generate another node v such that
the label of v is a justification with respect to ontology O\{β}. This ensures that the
justification {1, 2, 3, 4, 5} is not computed again because β ∈ {1, 2, 3, 4, 5} is removed from
the ontology. The algorithm continues in this fashion until all leaf nodes are labelled with
‘�’. When the algorithm terminates, each unique node label represents a justification for
the entailment. Furthermore the set of all node labels in the tree represents all justifications
for the entailment in question [Kalyanpur, 2006, Theorem 4]. Therefore, in Figure 3.3, the
justifications for the entailment are {1, 2, 3, 4, 5}, {1, 3, 4, 6, 7} and {1, 3, 4, 8}. 2
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Figure 3.3: Justification Tree for O |= α in Example 3.3.

Justification tree minimization

One of the advantages of using Reiter’s algorithm as a framework for computing the
justifications is that the optimizations for pruning the HS-tree in Reiter’s algorithm can be
applied to pruning the justification-tree. In Reiter’s original algorithm, these optimizations
“close” nodes in a particular path of the tree much earlier. Specifically this is done when
it is discovered that a minimal hitting set cannot be found by extending this path any
further. Using this optimization in a justification tree we can avoid computing some
duplicate justifications and hence node labels in the tree. The optimizations for Reiter’s
original algorithm for constructing a HS-tree, that are relevant and applicable to the variant
algorithm for constructing a justification tree, are discussed here. Readers interested in
other optimizations for Reiter’s original algorithm may consult his work [Reiter, 1987].

(i) If there is a node v in the justification tree and another node v′ is about to be
generated such that P (v) = P (v′) then v′ is closed and labelled with ‘X’ (similar to
‘�’, both nodes cannot have any successors). The reason for this is that we are going
to generate the same justifications in the sub-tree under v′ as those in the sub-tree
under v (because O\P (v) = O\P (v′)) so we close the node ending the path here.

(ii) Similar to (i), another scenario in which we have a path P (v) in the justification tree
such that v is a leaf node (‘�’). If we are about to generate another node v′ such that
P (v′) ⊂ P (v) then we close v′ with ‘X’ for the same reason as (i): the justifications
which would have been generated under v′ already appear in the sub-tree under v.

The optimizations discussed in (i) and (ii) are known as early path termination optimizations
in Reiter’s original algorithm. This concludes the discussion on Black-box axiom pinpointing
methods. In the next section, the existing Glass-box approaches to computing justifications
are briefly discussed.

3.4 Computing Justifications: Glass-box Approach

Existing Glass-box methods for computing justifications [Schlobach and Cornet, 2003;
Kalyanpur et al., 2005b; Meyer et al., 2006; Lam et al., 2008] exploit the tableau algorithms
for satisfiability used in DL reasoners to identify the root cause for the unsatisfiability
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of the concept or unwanted consequence in the ontology. The “glass-box” name for this
approach comes from the fact that it requires awareness of the inner-workings (algorithms)
of the reasoner.

Recall from Chapter 2 that the tableau algorithm for determining concept satisfiability for
a concept C, works by trying to construct an interpretation for C in which C is non-empty.
It does this by repeatedly applying a set of transformation rules to some assertions about
C in the ontology. This process builds what is known as a completion graph with each
branch of the graph representing a different interpretation for C. Each transformation
adds new assertions to the completion graph and these additional assertions may result in
a contradiction or clash. An example of a clash can be found in the two assertions C(x)
and ¬C(x). This is clearly a logical contradiction since an individual x cannot belong to
a concept C and its complement ¬C. When a clash is detected in the completion graph
or no more transformation rules apply in the branch, the algorithm stops constructing
that particular branch and backtracks to construct another interpretation. This is because,
the clash indicates that an interpretation for C in which C is non-empty cannot be found
in that particular branch. The algorithm terminates when the transformation rules no
longer apply in the completion graph. C is satisfiable if an interpretation for C was found
in which C is non-empty. C is unsatisfiable if no such interpretation was found.

The Glass-box justification methods use the same algorithm discussed above. The difference
is that C is already known to be unsatisfiable and the focus is on locating the root cause of
the unsatisfiability. Therefore these algorithms keep track of the clashes in the completion
graph. The clashes (contradicting assertions) indicate the causes of the unsatisfiability.
After clashes are identified, a process of tracing [Kalyanpur, 2006] is performed to find
the axioms in the ontology which are responsible for the clashes. These axioms ultimately
form part of the justifications for the unsatisfiability of C.

A very brief discussion on the Glass-box approach for axiom pinpointing was given in
this section. Since the focus in this dissertation is on Black-box approaches, no further
details are given on the Glass-box methods and the interested reader should consult the
references provided for details. The next section gives a similar brief overview on a third
approach to axiom pinpointing which combines ideas from both Black-box and Glass-box
approaches. This is called the Hybrid approach to axiom pinpointing. Hybrid methods are
not as common as Black-box and Glass-box methods but a few of these approaches are
nevertheless introduced in the next section.

3.5 Computing Justifications: Hybrid Approach

We have seen that Black-box axiom pinpointing methods use the reasoner solely as an
“oracle” to determine if an entailment holds or not. Glass-box methods, on the other hand,
require a modified version of the reasoner’s tableau algorithm to determine the justifications
for the entailment. Hybrid methods fit somewhere in between these two approaches.

One particular hybrid method uses an incremental algorithm called singleMUPSInc to
compute a single justification for an unsatisfiable concept [Kremen and Kouba, 2009]. This
approach captures the current state (partially expanded completion graphs and axiom
assertions used for expanding the graph thus far) of the reasoner, hence the reasoner is
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not used purely as a “black-box” to test entailment and at the same time the tableau
algorithm for the reasoner is not modified in any way, therefore it is categorized as a Hybrid
method. There is also a similar incremental algorithm for computing all the justifications
or MUPSes for an unsatisfiable concept [de la Banda et al., 2003].

Finally, a partially Glass-box method exists for extracting relatively small subsets of the
original ontology which preserves the entailment in question [Kalyanpur et al., 2005b].
The method is used as a preprocessing step to a sound and complete Black-box axiom
pinpointing method to compute the actual justifications and hence it is classed as a partially
Glass-box or Hybrid method.

3.6 Fine-grained Justifications

Recall that a justification for some entailment is a minimal subset of an ontology which is
sufficient for the entailment to hold. However, if one assumes a finer level of granularity
and we examine the axioms of a particular justification, we may find that only certain
parts of the axioms in the justification contribute to the entailment and not the whole
axioms. An example of this intuition follows:

Example 3.4 Consider the following ontology:

O =


1. B v D,
2. A v ¬D,
3. A v B u ∃R.C


A consequence of O is the unsatisfiability of the concept A. It is clear that all the axioms
in O, i.e., {1, 2, 3}, form a justification for O |= A v ⊥. However the conjunct ∃R.C in
Axiom 3 is not relevant to the entailment. Therefore, even if one weakens Axiom 3 to
exclude the irrelevant part, the entailment O |= A v ⊥ still holds. 2

The following is a definition for what is meant when we say one axiom is weaker than
another:

Definition 3.2 (Axiom weakness)
An axiom α′ is weaker than an axiom α if and only if {α} |= α′ and {α′} 6|= α.

Therefore if one weakens Axiom 3 in Example 3.4 to exclude the conjunct ∃R.C from
the ontology, the justification for the A-unsatisfiability of O becomes {B v D, A v ¬D,
A v B} which is a finer-grained and more concise justification. However, observe that in
this scenario, by weakening Axiom 3, we are eliminating extra information from the ontology,
i.e., the axiom A v ∃R.C (even though it does not contribute to the unsatisfiability). This
behaviour is not desired.

The methods for computing fine-grained justifications [Kalyanpur et al., 2006a] get around
this problem by rewriting each complex axiom in the ontology into multiple simpler axioms
which together capture the meaning of the original complex axiom. In Example 3.4, the
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axiom re-writing method would result in the ontology O = {B v D, A v ¬D, A v B,
A v ∃R.C}. It is clear that using any of the axiom pinpointing algorithms introduced
in Section 3.3 to Section 3.5 on the new ontology will again yield the same justification
{B v D, A v ¬D, A v B} for the A-unsatisfiability of O. This kind of justification is
called a fine-grained or precise justification for the unsatisfiability because it does not
contain any superfluous information which is irrelevant to the entailment.

There are various motivations for the investigation into fine-grained justifications but the
foremost reason is for repair purposes. A goal of ontology repair is to modify the ontology
as little as possible while eliminating the undesired entailment. It is clear that using
fine-grained justifications for repair would potentially yield smaller modifications to the
ontology to resolve the error.

There are various other approaches to determine fine-grained justifications for entailments
in an ontology [Horridge et al., 2008; Lam et al., 2008; Schlobach and Cornet, 2003]. In
particular the work by Horridge et al. [2008] on laconic and precise justifications was
the first to give a formal definition for what they mean by parts of axioms. They also
present an algorithm with performance results for computing these kinds of justifications.
There are also approaches for computing minimal fine-grained repairs of axioms in other
(non-DL) formalisms [Varzinczak, 2008]. There is also some related work on lemmatising
justifications [Horridge et al., 2009b], which augments justifications with information that
makes them easier to understand by users. The interested reader is pointed to the references
provided for more details.

The general classes of methods for computing justifications have been discussed in Sec-
tions 3.3 to 3.5. In the explanation phase of ontology repair the explanations can also be
augmented with various types of information to make them more understandable to the
ontology engineer. In existing approaches, the explanation phase forms the core of the
ontology debugging and repair process. However, while explanations (and hence justifica-
tions) help with understanding why the erroneous consequences hold in the ontology, one
still has to develop a strategy to correct the errors using this information. The next section
presents some commonly accepted strategies for resolving errors using the information
provided by explanations.

3.7 Error Resolution

This section examines the existing approaches to correcting ontology errors using their
justifications. First, the simple case of a single error in the ontology is considered. The
established notion of a repair [Kalyanpur, 2006] for a single ontology error is defined and
the different methods for computing such repairs is then discussed. Following this, we
discuss an existing method for computing more appropriate repairs for an entailment,
taking into account the effect that each repair has on the ontology. Finally, the issue of
resolving multiple errors in an ontology, is introduced. The main approaches for optimally
resolving such a problem are presented.
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3.7.1 Resolving a Single Error

The most common approach to resolving an ontology error is to use the information
presented in its justifications to identify the repairs. The notion of repair as applied to a
single entailment is defined as follows:

Definition 3.3 (Repair)
Let O be an ontology and α an axiom such that O |= α. A set of axioms O′ ⊆ O is a
repair for α with respect to O if and only if O\O′ 6|= α and there exists no O′′ ⊂ O′ such
that O\O′′ 6|= α.

It is clear from Definition 3.3 that a repair for an error in an ontology O is a minimal
subset of O such that when it is removed from O, causes the error to be eliminated. This
means that the resulting ontology after the repair is applied, say Os, is a maximal subset of
the original ontology in which the error does not hold. This ontology is called an ontology
solution. We give a definition for this principle here:

Definition 3.4 (Ontology solution)
Let O be an ontology and α an axiom such that O |= α. If O′ is a repair for O |= α then
Os = O\O′ is an ontology solution for O |= α.

An important note with regards to Definition 3.3 of a repair is that it is on the “whole
axiom” level. This means that an applied repair translates to the removal of entire axioms
from the ontology. It does not include axiom modification/rewrites. However, this notion of
repair is fully compatible with the explanation methods which perform these modifications
and axiom rewrites (discussed in Section 3.6). This is because, in general, the approach used
by most of these methods is to rewrite each complex axiom in the ontology into multiple
simpler axioms which capture the same meaning as the complex axiom. Justifications are
then computed using standard methods with respect to the simpler axioms in the ontology
and as a result they may be larger (contain more axioms) but still resemble “regular”
justifications.

Another important aspect of repairs is the desired property of minimality. This means that
if we are given an erroneous entailment O |= α, we would like to ensure that the chosen
repair for O |= α has a minimal impact on the other consequences of the ontology. We
elaborate on this later in this section.

Identifying a Single Repair

The most basic way to eliminate an unwanted entailment in the ontology is to choose
one axiom from each of its justifications and remove these from the ontology. This is the
case because we recall that each justification for an entailment is a (minimal) sufficient
condition for the entailment to hold. Therefore, if we remove an axiom in each justification
from the ontology, we are effectively nullifying each sufficient condition for the entailment
to hold. Thus the entailment is eliminated.

In the approach described above (which we call the näıve approach to repair), the axioms
are selected in a non-deterministic way from each justification and the final axiom set, say
O′, is removed from the ontology to eliminate the unwanted entailment. An important
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characteristic of this approach is that it does not guarantee that O′ is a repair for the
entailment according to Definition 3.3. We illustrate this in the following example.

Example 3.5 Suppose that we have an ontology O which is C-unsatisfiable. Let us
assume that the justifications for the C-unsatisfiability of O are depicted in the collection:
{{1, 2, 5}, {3, 7}, {1, 6, 7}}. If we use the näıve approach for repair, we may choose Axiom
1 from the first justification, Axiom 3 from the second and Axiom 6 from the last. Observe
that Axiom 1 appears in the first and last justifications so by removing Axiom 1 from the
ontology we effectively “nullify” the first and last justifications so there is no need to select
the Axiom 6 from the last justification as well. Therefore our so-called “repair” for C ({1,
3, 6}) is not actually a repair because we know that {1, 3} will also eliminate the unwanted
entailment and it is a subset of {1, 3, 6}. In our example, {1, 3} and {5, 7} are two valid
repairs for the unsatisfiability of C. 2

The above scenario illustrates the main drawback of the näıve approach which is that a
repair according to Definition 3.3 is not guaranteed to be computed. However, even if by
chance, a valid repair is chosen, there are other drawbacks to the näıve approach such as
the fact that it only computes one repair for the unwanted entailment (while there may be
more than one). The importance of knowing all the repairs for some unwanted entailment
is illustrated with another example.

Example 3.6 Suppose we are given an ontology O and two axioms α and β which follow
from O. Let us assume that it is decided by the ontology engineer that α is an undesired
consequence and β is an important desired consequence of O. To remove α, we compute
its justifications and thereafter using a näıve approach we happen to compute a single
valid repair for α, say O′. However, if we apply O′ to the ontology we may find that β is
removed along with α! Therefore, using this näıve approach, the ontology engineer would
be oblivious to the fact that there may be a more appropriate repair O′′ for α which does
not remove β as well. 2

Therefore, each repair for some unwanted entailment may have a unique effect on the other
entailments in the ontology and one has to take this into account when computing and
selecting repairs to apply to the ontology.

In general, in the current tools for ontology development, the focus remains on presenting
the explanations and not the repairs for errors to the ontology engineer. Therefore it
is left up to the ontology engineer to figure out different repair strategies based on this
information. The result is that the näıve approach to repair is often used as a “quick fix”
to get rid of the unwanted entailment without regarding the consequences that this has on
the ontology. It is clear then that methods are needed to present all the alternative repairs
for the entailment to the ontology engineer so that he/she can make an informed decision
on which repair to use. A few of these procedures are now discussed.

Identifying All Repairs

Once all justifications for an entailment are known, there are two suggested ways to identify
all the repairs for the unwanted entailment. The first way assumes that the variant of
the hitting set algorithm (also discussed in Section 3.3.2) was used to compute all the
justifications. If this is the case, then the repairs are automatically identified during the
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construction of the justification tree in the variant algorithm. This is a very useful property
indeed.

We illustrate this property by noting that Reiter’s original hitting set algorithm (discussed
in Section 3.3.2) identifies all minimal hitting sets for the conflict sets in a collection. In the
variant algorithm, the conflict sets correspond to justifications (sets of axioms) and we focus
on identifying these justifications. However, because the justification tree is constructed in
an analogous way to Reiter’s HS-tree, the result is that all the minimal hitting sets for the
justifications in the justification tree are also computed [Kalyanpur, 2006]. We also know
that the set of all justifications in the justification tree corresponds to all justifications for
the entailment under consideration.

The fact that all minimal hitting sets for the justifications in the justification tree correspond
to all repairs for the entailment under consideration, follows from Definition 3.3 and the
following properties [Kalyanpur, 2006, Theorem 3]:

- Given an ontology O, an axiom α such that O |= α and a set H ⊂ O , then O\H 6|= α
if and only if H is a hitting set for all justifications for O |= α.

- H is a minimal hitting set for all justifications for O |= α if and only if there is no
H′ ⊂ H such that O\H′ 6|= α.

Figures 3.3 and 3.4 illustrate the above-mentioned property of the justification tree.

The second way for identifying all repairs considers the scenario where, the type of algorithm
used to compute all the justifications, is not similar to the hitting set variant algorithm.
Reiter’s original hitting set algorithm may be used in this case to compute all repairs for
the entailment. The original algorithm can be used because we now have all conflict sets
(justifications) and hence the procedure for constructing the HS-tree is exactly the same.
We give an example illustrating this.

Returning to Example 3.5, where the justifications for the unsatisfiability of the concept C
are collected in J = {{1, 2, 5}, {3, 7}, {1, 6, 7}}. Reiter’s algorithm can be used to
compute all minimal (with respect to set inclusion) sets r such that r intersects each
justification in the list. These minimal hitting sets as they are known in Reiter’s algorithm
correspond to the repairs for the unsatisfiable concept C in this context. The HS-tree for
the collection J is given in Figure 3.4.

1 2 5

3 7 1 6 7 3 7

1 2 5

3 7 1 6 7 3 7

3 7 3 7 1 6 7

� � 3 7 3 7 � 1 6 7 �

� � � � � � �

Figure 3.4: Justification Tree for unsatisfiability of C in Example 3.5
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The repairs, R = {{1, 3}, {1, 7}, {2, 3, 6}, {2, 7}, {5, 3, 6}, {5, 7}}, for the unsatisfiable
concept C correspond to the minimal hitting sets contained in the justification tree.

Axiom Ranking Approach:

The penultimate step to repairing an error in the ontology is to select an appropriate
repair to apply from the computed alternatives. In general, this step is left to the ontology
engineer and domain expert who may decide on criteria to identify which repairs are more
appropriate for the ontology. However, Kalyanpur et al. [2006b] devised an approach which,
prior to computing the repairs for the unsatisfiable concept, ranks the axioms appearing in
its justifications according to their importance in the ontology. The lower ranked axioms
are those that can be removed if needed for repair while the higher ranked axioms are more
critical and are thus not modified or removed for repair purposes.

Kalyanpur then presents a method (based on a modified version of Reiter’s hitting set
algorithm) for generating a list of repairs for the unsatisfiable concept which takes into
account the computed axiom rankings. The result is that this method generates repairs
based on the effects that each repair has on the ontology and therefore aids the ontology
engineer in identifying more intelligent solutions to eliminating the unsatisfiable concept.

The heuristics for determining the rankings for the axioms as described above, are frequency,
semantic relevance, syntactic relevance and test cases. These heuristics are described as
follows:

If ontology O has a set of unsatisfiable concepts C and the set J contains all justifications
for each concept in C then the frequency heuristic for an axiom α determines the number
of elements in J in which α appears. The higher the frequency, the lower the ranking
for α. A higher frequency means that α appears in more justifications for the unsatisfiable
concepts. This means that if α appears in n justifications in J then removing α could
potentially repair n unsatisfiable concepts from C.

The semantic relevance criterion determines what impact the removal of axiom α has on
the entailments in the ontology. If removing α causes many entailments to be eliminated
from (or added to) the ontology then the semantic relevance of α is high and therefore
its ranking is higher. Syntactic relevance determines how frequently the terms in Sig(α)
appear in the ontology. The more pervasive the usage of these terms in the ontology, the
higher the ranking of α.

The test cases criterion is a user-centered heuristic in which the ontology engineer provides
a set of desired axioms which he/she deems important in the ontology. The axioms which
form part of a repair are then ranked according to the number of desired axioms which
are eliminated by removing the repair axioms. The higher the number of desired axioms
removed, the higher the ranking of the repair axiom. Optionally the ontology engineer is
also able to specify axioms which he/she would not like to see follow from the ontology. The
repair axioms which retain the undesired axioms in the ontology when they are removed,
would then be given a higher ranking.
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3.7.2 Resolving a List of Errors

This section presents the most prominent existing method for repairing multiple unsatisfiable
concepts in an ontology. If the ontology engineer has a number of unsatisfiable concepts in
the ontology, a näıve approach to eliminating all the unsatisfiable concepts would be to
repair each one individually. However, it is frequently the case that the unsatisfiability of a
concept C may cause the unsatisfiability of another concept D.

Example 3.7 Consider the following ontology:

O =


1. A v ¬D,
2. B v D,
3. A v B u ∃R.E,
4. C ≡ A,
5. F v A t C


Ontology O is A-unsatisfiable, C-unsatisfiable and F -unsatisfiable. It is straightfoward to
see that the unsatisfiability of C is caused by the unsatisfiability of A and the unsatisfiability
of F is caused by the unsatisfiability of both A and C. 2

In these cases it would be useful to detect these dependencies [Kalyanpur et al., 2005b].
That is, it would be useful to determine which unsatisfiable concepts cause others to be
unsatisfiable. By repairing these concepts first, the other concepts which are unsatisfiable
because of these may also be automatically repaired.

Root and Derived Unsatisfiable Concepts

Kalyanpur [2006] provides methods to detect dependencies between unsatisfiable concepts
that indicate which concept’s unsatisfiability causes other concepts to be unsatisfiable in
the ontology. These can be identified in two ways: by comparing the justifications for
the unsatisfiability of the concepts or (more optimally), by examining the structure of
the axioms in the ontology using a structural tracing technique and generating an error
dependency graph. This procedure categorizes unsatisfiable concepts into Root and Derived
unsatisfiable concepts and indicates the dependencies that these concepts have with respect
to one another.

Essentially, the unsatisfiability of a root unsatisfiable concept is not caused by the unsatis-
fiability of another concept in the ontology and a derived unsatisfiable concept is caused
by the unsatisfiability of at least one other concept in the ontology. The formal definition
for these terms follows:

Definition 3.5 (Root and Derived unsatisfiable concepts)
Let {C1, . . ., Cn} be a set of unsatisfiable concepts. Let Ji be the set of all justifications
for the unsatisfiability of the concept Ci. Ci is a derived unsatisfiable concept (with respect
to Cj) if and only if there is a justification J ∈ Ji such that J ⊇ J ′, where J ′ ∈ Jj and
(j 6= i). If an unsatisfiable concept is not a derived unsatisfiable concept then it is a root
unsatisfiable concept.
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The principle of root and derived unsatisfiable concepts is illustrated in the following
example.

Example 3.8 Recall the ontology O from Example 3.7. The reasons (justifications) for
the unsatisfiabilities of concepts A, C and F are indicated in Table 3.1 below. Each
unsatisfiability has only one justification with respect to the ontology.

JUST(A ≡ ⊥) JUST(C ≡ ⊥) JUST(F ≡ ⊥)
B v D B v D B v D
A v ¬D A v ¬D A v ¬D
A v B u ∃R.E A v B u ∃R.E A v B u ∃R.E

C ≡ A C ≡ A
F v A t C

Table 3.1: Justifications for unsatisfiable concepts in Example 3.7.

The function JUST(α) for some axiom α used in Table 3.1 returns (represents) the set of all
justifications for O |= α. We observe that each unsatisfiable concept in Table 3.1 has only
one justification and we also observe that JUST(F ≡ ⊥) ⊇ JUST(C ≡ ⊥) ⊇ JUST(A ≡ ⊥).
Therefore, by Definition 3.5, we make the following observations:

(i) C is a derived unsatisfiable concept with respect to A.

(ii) F is a derived unsatisfiable concept with respect to A and C.

(iii) A is a root unsatisfiable concept with respect to C and F . 2

These kinds of observations illustrated in (i) to (iii) above, are usually derived from a
generated error-dependency graph (EDG) [Kalyanpur et al., 2005b]. An EDG is a set
of labelled nodes v ∈ V and unlabelled edges e ∈ E with v.label denoting the label of a
node v. Each node is labelled with an unsatisfiable concept name from the ontology. If
some justification for the concept name in v.label is a superset of some justification for a
concept name in label v′.label then a directed edge e is drawn from v to v′. e represents
a dependency between the concepts in these nodes. In the resulting EDG, the root
unsatisfiable concepts are represented by those nodes which do not have an outgoing edge.
A derived unsatisfiable concept is represented by a node which has at least one outgoing
edge. An EDG for the unsatisfiable concepts in Example 3.7 is given in Figure 3.5 below.

A

C F

Figure 3.5: Error-dependency graph illustrating the dependencies between unsatisfiable concepts
from the ontology in Example 3.7.

Repairing a root unsatisfiable concept may result in all derived unsatisfiable concepts (with
respect to the root) being repaired as well such as in the case of Example 3.7. The repairs
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for A ≡ ⊥ generated from JUST(A ≡ ⊥) are {B v D}, {A v ¬D} and {A v B u ∃R.E}.
It is clear that if any of these three repairs are applied, A, C and F all turn satisfiable. A
helpful consequence of the EDG graph is that it indicates this information visually. That
is, if one repairs a concept with label C in the EDG graph then all other concepts which
“point” to C in the graph are candidates to be automatically repaired as well.

Therefore the identification of root and derived unsatisfiable concepts in a list of unsatisfiable
concepts is very useful for repair purposes. In conclusion, computing root and derived
unsatisfiable concepts is an improved solution to resolving multiple unsatisfiable concepts
in the ontology. Given an ontology O and a set of unsatisfiable concepts C in O, the
sequence/procedure for resolving a list of unsatisfiable concepts in an ontology, using the
method discussed, is depicted in Figure 3.6.

|C| ≥ 1?

Compute root
and derived
unsatisfiable
concepts and
dependencies

Select one root
unsatisfiable

concept

Resolve
selected root
unsatisfiable

concept

Stop

C

Yes

No

Figure 3.6: Flow diagram showing the sequence of actions for eliminating a list of unsatisfiable
concepts C from some ontology, using the root and derived unsatisfiable approach.

3.8 Open Issues and Limitations

This section discusses a few open areas and drawbacks of the existing approaches to
ontology debugging and repair presented in this chapter.

Debugging of general entailments

The focus in current ontology debugging approaches is mainly on removing unsatisfiable
concepts from ontologies and repairing ontologies which are inconsistent. However there are
other types of semantic defects such as unintended inferences (also called unwanted axioms)
which also require repair. The following ontology O = {EmperorPenguin v Penguin, Pen-
guin v Bird, Bird v FlyingAnimal} illustrates the principle of unwanted axioms. It is fairly
straightfoward to see that O |= Penguin v FlyingAnimal and O |= EmperorPenguin v Fly-
ingAnimal. While it is clear that these consequences logically follow from the ontology,
they do not accurately reflect information about the chosen domain of the ontology. In
the context of a biological domain, it is known that penguins cannot fly and hence these
axioms are unwanted.
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While the reasoner is able to detect these inferences, it is obviously not able to determine if
they are intended or not. Therefore it is the responsibility of the ontology engineer together
with the domain expert to study the inferences of their ontology and decide which of the
inferences are desired or not desired. While the current work is in agreement with how to
identify the unwanted axioms and the foundation is there for extending repair to these
entailments, there is no comprehensive repair method specifically dealing with them.

Computing Ontology Solutions

Identifying justifications for errors in ontologies has been dealt with to a large extent in the
literature. Identifying repairs for these errors has also been dealt with to a lesser extent.
However there is no significant work on using these principles to identify ontology solutions
(Definition 3.4) directly.

Historically, the need for explanation services in ontology development tools which help the
ontology engineer understand why certain consequences occur in the ontology, encouraged
the focus on justifications rather than on ontology solutions. However, the computing of
ontology solutions is simply the dual of computing a justification. That is, a justification
is a minimal subset of the ontology from which a consequence α follows. Whereas, an
ontology solution is a maximal subset of the ontology from which the consequence does not
follow.

Since the notion of a justification and ontology solution are closely linked, it is relatively
straightfoward to modify most algorithms for computing justifications to compute ontology
solutions.

Repairing multiple errors

Identifying root and derived unsatisfiable concepts is helpful for efficiently resolving multiple
unsatisfiable concepts in an ontology. If root unsatisfiable concepts are repaired first, all
unsatisfiable concepts which are derived from this root may be automatically repaired.
However, a drawback to this method is that one has to continually recompute (update)
the dependencies between the remaining unsatisfiable concepts after repairing each root.
For example, consider the left-hand side EDG in Figure 3.7.

A

D B

C A

D

Figure 3.7: EDGs indicating the updating of dependencies after repairing unsatisfiable concept
name C.

We observe that A and C are the root unsatisfiable concepts with B and D being derived
unsatisfiable. If we repair C first, then B is automatically repaired because it has no other
dependencies other than on C and the revised EDG is shown on the right-hand side in
the figure.

This chapter has given an introduction to the prominent strategies for ontology debugging
and repair. Firstly, the focus in existing approaches is primarily on explanation and to a
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lesser extent on repair for the errors in the ontology. Secondly, the type of errors which are
mainly concentrated on are unsatisfiable concepts and ontology inconsistency. In the next
chapter we contribute an alternative approach to debugging and repair in which we consider
the problem of a set of unwanted axioms in the ontology. We generalize the different types
of semantic defects in DL ontologies to the notion of an unwanted axiom. We then provide
a method for repairing (eliminating) these unwanted axioms in the ontology. The specific
approach we follow is based on some of the principles used in repairing multiple unsatisfiable
classes in the ontology using the root and derived unsatisfiable concepts approach.



Chapter 4

Ontology Repair Using Root
Justifications

This chapter presents the main contribution of the dissertation which is an alternative
approach to ontology debugging and repair in which we generalize the different semantic
defects in DL ontologies into a common form as unwanted axioms. Hence, the ontology
repair problem that we focus on in this chapter is eliminating a set of unwanted axioms
from the ontology. In order to do this we introduce a special kind of justification, which we
term a root justification. These justifications are useful because they help us to determine
repairs for all the unwanted axioms in a list and not just for a single one.

In Chapter 3, the standard approaches to resolving ontology errors were discussed. These
approaches focus on detecting and repairing the most common semantic defects (unsatisfi-
able concepts and inconsistent ontologies). In this chapter we also consider another type of
semantic defect known as an unintended inference or unintended consequence. We show
that this semantic defect can also be represented as an unwanted axiom.

The outline of the chapter is as follows. We first discuss how the different semantic defects
in DL ontologies can be represented in a common form as unwanted axioms. We then
briefly introduce the problem of a set of such unwanted axioms in the ontology. The
principle of a root justification is then defined and discussed followed by an algorithm
for computing these justifications. We then show how root justifications are helpful for
generating repairs for a set of unwanted axioms in the ontology. Thereafter we show how
these repairs can be identified from the root justifications. It is illustrated that one only
needs to consider the root justifications in order to identify all the repairs for eliminating
the entire set of unwanted axioms from the ontology. Finally, a conclusion is given to
summarize the ontology repair solution that is discussed in this chapter.

4.1 Generalization of Errors

In this section we show that common semantic defects like unsatisfiable concepts and
inconsistent ontologies are special cases of a more general error which we call an unwanted
axiom. We also show that another semantic defect known as an unintended inference is
equivalent to an unwanted axiom. We define an unwanted axiom as any logical consequence

50
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or implicit axiom which follows from the ontology, that is not desired by the ontology
engineer and domain expert.

4.1.1 Unsatisfiable Concepts

In Section 3.2 the axiom-driven view of ontologies was mentioned. An alternative to this is
the concept-driven view of an ontology. In this view the ontology is seen as a set of concepts.
Each of these concepts has a concept definition. The concept definition for some concept
name C depicts the relationships that C has with other concepts in the ontology. These
relationships can be specified through expressing complex concepts such as the concept
∃R.C, or through subsumption-based relationships such as “D is a superconcept of C”,
“C is equivalent to D” and “C and D are disjoint”.

Therefore in a concept-driven view of the ontology, it makes sense to talk about unsatisfiable
concepts rather than unwanted axioms. However, there is definitely a correlation between
the two types of error. This is because all the information in the concept-driven view can
be expressed in an axiom-driven view as well. For example the axiom C v D captures
the same meaning as the concept-driven definition “D is a superconcept of C”. Similarly
C ≡ D has the same meaning as “C is equivalent to D” and C uD ≡ ⊥ the same as “C
and D are disjoint”. Therefore it should be noted that the unsatisfiability of a concept can
also be represented in an axiom. This is illustrated in Chapter 2. For example, if concept
C is unsatisfiable with respect to an ontology O, then it follows that O |= C ≡ ⊥.

4.1.2 Unintended Inferences

Another important error in ontologies is that of the unintended inference. While the
reasoner is able to make inferences from the ontology, it is not able to distinguish which
are intended and which are not, for all types of such inferences.

Example 4.1 Consider the following ontology:

O =


1. EmperorPenguin v Penguin,
2. Penguin v Bird,
3. Bird v FlyingAnimal


There are two unwanted consequences of O. These are Penguin v FlyingAnimal and hence
EmperorPenguin v FlyingAnimal. It is obvious that both these axioms logically follow
from the ontology, however, they do not accurately reflect information about the chosen
biological domain. In such a domain it is accepted that penguins cannot fly. These axioms
are therefore termed unintended inferences. 2

Unintended inferences are identified by the ontology engineer together with an expert in
the domain. They ultimately study the inferences of the ontology which are provided by
the reasoner and decide which of these are actually unintended and thus become unwanted
axioms (selected/flagged for repair).
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4.1.3 Inconsistent Ontologies

An inconsistent ontology O has no models. Therefore every axiom follows from the ontology
as explained in Chapter 3. A very useful property of ontology repair is that any repair will
result in a consistent ontology, since there is at least one axiom which does not follow from
the resulting ontology after the repair is applied.

The inconsistency of an ontology O is indicated (on the axiom level) by O |= > v ⊥.
The axiom in this entailment can therefore be used to represent the inconsistency of the
ontology, in a set of unwanted axioms from the ontology.

4.1.4 Unwanted Axioms

Unwanted axioms are the most general type of ontology error because all the other
types of errors discussed thus far can be represented as one or more unwanted axioms.
Therefore, all the “heterogeneous” semantic defects in some ontology can be given a
common representation and be collated in a “homogeneous” unwanted axiom list. An
example follows.

Example 4.2 Consider the following ontology representing a domain of biological organ-
isms:

O =



1. Mammal u NonMammal ≡ ⊥,
2. Penguin v Bird,
3. Platypus v Mammal,
4. ∃.laysEggs v NonMammal,
5. Platypus v AquaticAnimal u ∃.laysEggs,
6. Bird v FlyingAnimal u ∃.laysEggs


The concept referred to by Platypus is unsatisfiable in O because of Axioms 1, 3, 4 and
5. Furthermore, if we add the axiom Platypus(pete) to O, then O becomes inconsistent.
Another consequence of O is Penguin v FlyingAnimal which follows from Axioms 2 and 6.
This last error is an unintended inference as mentioned in Example 4.1 (if we consider O
to represent the same domain as in Example 4.1). 2

All the errors in ontology O and O ∪ {Platypus(pete)} from Example 4.2, are currently
treated as different problems and hence some existing approaches use different methods
to identify, explain and repair each type. However, these errors can be given a common
representation in the ontology and thus be handled by the same ontology repair method.
The following list contains the ontology errors from Example 4.1 represented as unwanted
axioms.

1. > v ⊥ (Inconsistency of O)
2. Platypus v ⊥ (Unsatisfiability of Platypus)
3. Penguin v FlyingAnimal (Unintended inference)

As we can see, this common representation of the errors in the ontology translates the
problem of ontology repair for different types of semantic defects into the more uniform
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problem of eliminating unwanted axioms from the ontology. The added advantage of this
representation is that one need not devise entirely different ad hoc approaches to eliminate
each type of error in the ontology. We extend the definition of repair (Definition 3.3) to a
set of unwanted axioms as follows:

Definition 4.1 (Repair for list of unwanted axioms)
Let O be an ontology and U a set of unwanted axioms in O. A set of axioms O′ ⊆ O is a
repair for U with respect to O if and only if O\O′ 6|= α for each α ∈ U and there exists
no O′′ ⊂ O′ such that O\O′′ 6|= α for each α ∈ U .

Therefore a repair for a set of unwanted axioms with respect to some ontology is a minimal
subset of the ontology which can be removed to eliminate each unwanted axiom in the list.
In the next section we introduce a type of justification which helps us to identify these
kinds of repairs.

4.2 Root Justifications

In this section we define a special kind of justification for a set of unwanted axioms.
This kind of justification is characterized from the work by Kalyanpur et al. [2005b] on
root and derived unsatisfiable concepts. In the root/derived approach, the focus is on
determining which unsatisfiable concepts in a list are root unsatisfiable and which are
derived unsatisfiable with respect to each other.

From Definition 3.5 it is observed that if one has a list of concepts C which are unsatisfiable
with respect to some ontology, then A ∈ C is a derived unsatisfiable concept if and only if
it has at least one justification, say J , which is a strict superset of another justification J ′

for some other concept in C (Recall from Definition 2.7 that two justifications for the same
entailment cannot be subsets or supersets of each other).

We call the justification J a derived justification (with respect to C) because it is a strict
superset of another justification for some other concept in C. Conversely a root justification
is a justification which is not a derived justification. Intuitively this means that a root
justification (with respect to a list of unsatisfiable concepts C) does not have any strict
subset which is also a justification for some other concept in C.

In this work we do not deal with a list of unsatisfiable concepts but rather a set of
unwanted axioms. However, the intuitive definitions for root and derived justifications
apply in the same general way to this problem because justifications are applicable to any
general entailment and not only the specific entailment of an unsatisfiable concept (see
Definition 2.7).
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We now give a formal definition for root and derived justifications for a set of unwanted
axioms:

Definition 4.2 (Root justification)
Given an ontology O, a set of unwanted axioms U = {α1, . . ., αn} in O and a collection

J = {J1, . . .,Jn}, where Ji is the set of all justifications for O |= αi. A set J ∈
n⋃
i=1
Ji is

a root justification for U with respect to O if and only if there is no J ′ ∈
n⋃
i=1
Ji such that

J ′ ⊂ J . If J is not a root justification then it is a derived justification.

In the root/derived unsatisfiable concepts approach, the set inclusion relationships between
the justifications of unsatisfiable concepts in a list are used to identify dependencies
between the concepts. This is done so that ultimately one can detect the root and derived
unsatisfiable concepts from the list/set (order is not important). However, in our approach
the focus is not on identifying root and derived unsatisfiable concepts but rather on
generating all the root justifications for a set of unwanted axioms with respect to some
ontology. This latter approach, as we will demonstrate, allows one to look at repair for an
entire set of unwanted axioms which the former approach does not allow for. For brevity,
in the remainder of this chapter, we drop the suffix “with respect to some ontology” when
referring to root justifications in certain contexts. Wherever this suffix is absent, we assume
that it is implied.

4.2.1 Computing Root Justifications

In this section we present algorithms for computing root justifications for a set of unwanted
axioms. We start by giving a simple unoptimized algorithm for computing a single root
justification.

Computing a Single Root Justification

Here we present an algorithm for computing a single root justification for an unwanted
axiom set. The algorithm is based on the näıve pruning algorithm described in Section 3.3.1.
We give this unoptimized version first to highlight the important aspects of the algorithm
without distracting the reader with optimizations.

Algorithm 4: (Single root justification)
Input: Ontology O, unwanted axiom set U (|U | ≥ 1)
Output: Root justification J for U
Uses: entailedAxioms(O, U), which returns {α ∈ U | O |= α}
J := O;1

foreach α ∈ J do2

if |entailedAxioms(J\{α}, U )| ≥ 1 then3

J := J\{α};4

end5

end6

return J ;7
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The key difference between Algorithm 4 and the näıve pruning algorithm is that we are now
considering the entailment of all unwanted axioms in a set (in procedure entailedAxioms),
rather than just a single axiom.

It is clear that Algorithm 4 terminates for all finite inputs of O and U . This follows from
Line 2 of the algorithm which shows that the loop only considers the axioms in the finite set
J . We now give an example to demonstrate how Algorithm 4 computes a root justification
for a set of unwanted axioms.

Example 4.3 Consider an ontology O with ten axioms, i.e., O = {1, . . ., 10}.

Let O have three unwanted consequences (unwanted axioms). We call these axioms γ1,
γ2 and γ3. Let us assume that the justifications for these unwanted axioms are as follows.
The justifications for γ1 are {1, 2 ,3} and {4, 5}, γ2 has one justification which is {1, 3}
and the justifications for γ3 are {4, 5, 7} and {6, 7, 8}.

Applying Definition 4.2 we know that justifications {4, 5} for γ1, {1, 3} for γ2 and {6,
7, 8} for γ3 are root justifications for {γ1, γ2, γ3}. We now demonstrate the functioning
of Algorithm 4.2 by applying it to the example above to compute one of these root
justifications.

We begin with the input O with ten axioms {1, . . ., 10} and the unwanted axiom set
U = {γ1, γ2, γ3} such that O |= α for each α ∈ U . The algorithm starts by assigning the
set of axioms in O to the initial set J which will constitute the root justification when the
algorithm terminates. At this point in our example, J = {1, . . ., 10}. In Lines 3 and 4, the
algorithm loops through each axiom α in J , removing α from J if and only if J\{α} entails
at least one axiom from U . When Axioms 1, 2 and 3 are removed it is still the case that
J |= {γ1, γ3}. This is because the justification {4, 5} still holds for γ1 and the justifications
{4, 5, 7} and {6, 7, 8} still hold for γ3. Through similar reasoning, after removing Axioms
4 and 5 we find that J |= {γ3}. At last, when we remove Axiom 6 from J we find that J
does not entail any of the unwanted axioms in U . Therefore, Axiom 6 remains in J . The
same holds for Axioms 7 and 8. Finally, after removing Axioms 9 and 10, it is the case
that J |= {γ3} and the result is that J constitutes a root justification for U . 2

The correctness of Algorithm 4 is proved by the following theorem.

Theorem 4.1 Let O be an ontology, U a set of unwanted axioms, and J the output of
Algorithm 4 with inputs O and U . Then J is a root justification for U with respect to O.

Proof:
Let us assume that the output set J as computed by Algorithm 4 is not a root justification
for U . If this is the case, then there is a justification J ′ ⊂ J such that J ′ is a justification
for some unwanted axiom(s) in U . But if this is the case then Lines 3 and 4 of Algorithm 4
ensure that the axioms in J ∩ J ′ are removed from the ontology and therefore the resulting
J would be such that J ⊆ J ′. This is a contradiction with J ′ ⊂ J and therefore, the
assumption that the set J returned by Algorithm 4 is not a root justification for U is false.
Therefore J is indeed a root justification for U . 2

Before the algorithm begins we know that the ontology O entails all axioms in U . Therefore,
from the definition of a justification (see Definition 2.7), we know that there is at least one
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justification in O for each axiom in U . The algorithm considers each axiom and removes
them one by one from the ontology while it is the case that the resulting ontology entails
at least one axiom. This ensures that the output set J entails at least one axiom from U
as well. Therefore J is a justification (and also a root justification) if and only if there is
no proper subset of J which is also a justification for some entailment in U .

Of course, Algorithm 4 is computationally intensive because we only consider a single axiom
at a time in the ontology and for each consideration we require between 1 and |U | entailment
tests. Therefore we give a more optimized version of this procedure in Algorithm 5 based
on the sliding window technique [Kalyanpur, 2006] discussed in Chapter 3, for computing
“regular” justifications. The correctness of this algorithm follows from the correctness of the
sliding window algorithm for computing a single “regular” justification and Algorithm 4.

Algorithm 5: (Single root justification - Optimized)
Input: Ontology O, unwanted axiom set U (|U | ≥ 1) and window size k ≥ 1
Output: Root justification J for U
Uses: entailedAxioms(O, U), which returns {α ∈ U | O |= α}
J := O;1

W := ∅;2

while k ≥ 1 do3

W := getNextWindow(J, k);4

while |W| 6= 0 do5

if |entailedAxioms(J\W, U )| ≥ 1 then6

J := J\W;7

end8

W := getNextWindow(J, k);9

end10

k := bk/2c;11

end12

return J ;13

We have presented an algorithm for computing a single root justification for an unwanted
axiom set. We now describe an approach to identify all root justifications for the unwanted
axiom set, provided that we have a method for computing a single root justification.

Computing all Root Justifications

In order to ensure that we are able to generate complete repairs for an unwanted axiom set
in an ontology, it is necessary to know all the root justifications for the unwanted axiom set.
In Chapter 3, we have given the description for a variant of Reiter’s Hitting Set Algorithm
which computes all the “regular” justifications for a single entailment [Kalyanpur, 2006]. In
this section we show how this variant algorithm can be used (with some slight modifications)
to compute all root justifications for a set of unwanted axioms.

Recall that the variant algorithm constructs a justification tree which is analogous to an
HS-tree in Reiter’s original algorithm. Each node v in the justification tree represents a
justification for the unwanted entailment with respect to ontology O\P (v) where O is the
original ontology and the function P (v) returns the set of axioms on the path from the
root node to node v in the tree.
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We are able to construct a similar tree to the one described above which we call a root
justification tree for an unwanted axiom set U , with respect to some ontology O. A root
justification tree is analogous to a justification tree and can be defined in the following
way. A root justification tree, TR, is a set of nodes VR and edges ER. Each node j ∈ VR
has a label j.label which is a root justification for the unwanted axiom set U with respect
to the ontology O. Each edge e ∈ ER has label e.label ∈

⋃
j.label∈TR j.label i.e., e.label is

an axiom of some root justification. P (j), the path function, returns the set of edge labels
(axioms) on the path from the root node to node j.

We construct a root justification tree TR, in a breadth-first fashion using the following
rules:

(i) Recall that the first step in the construction of the justification tree using the
variant algorithm was to generate a root node, labelled with a justification for a
single entailment. The corresponding first step in the the construction of the root
justification tree is to generate a root node jroot for TR which is labelled with a root
justification for U with respect to O. We can use Algorithm 4 or 5 to generate such
a justification.

(ii) If a node j in the root justification tree is labelled with a root justification J , then
for each axiom α ∈ J , a successor node jα is attached to j via an edge eα which is
labelled with α.

(iii) Each successor node jα in the justification tree is labelled with a root justification J ′

for U . J ′ is generated using the same method as in rule (i). However the difference
now is that J ′ is computed with respect to the ontology O\P (jα) and not O. If it
turns out that O\P (jα) does not entail any axiom in U , then of course there is no
justification for any axiom in U and hence no root justification for U with respect to
O\P (jα). In this case we label jα with ‘�’ indicating a terminating/leaf node with
no successors.

When the algorithm (construction of the root justification tree) terminates, each unique
node label represents a root justification for the entailment. Furthermore the set of all node
labels in the tree represent all root justifications for the entailment in question [Kalyanpur,
2006, Theorem 4].

We now give an example of a root justification tree and thereafter analyze its properties.
Figure 4.1 depicts an example of an unwanted axiom set and the justifications for each
unwanted axiom in this set (reused from the demonstration of Algorithm 4). An example
root justification tree constructed for this unwanted axiom set is depicted in Figure 4.2.

Unwanted Axiom List

{γ1, γ2, γ3}

1 2 3 4 5 1 3 4 5 7 6 7 8

Figure 4.1: All justifications for the set of unwanted axioms γ1, γ2 and γ3

From Figure 4.1 and Definition 4.2 for root justification, it is clear that the root justifications
for the unwanted axiom set are {4, 5}, {1, 3} and {6, 7, 8}. It is also clear that each
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distinct node label in the root justification tree, in Figure 4.2, corresponds to these root
justifications.

6 7 8

4 5 4 5 4 5

6 7 8

4 5 4 5 4 5

1 3 1 3 1 3 1 3 1 3 1 3

1 3 1 3 1 3 1 3 1 3 1 3

� � � � � � � �� � � �

Figure 4.2: Root Justification Tree for the set of unwanted axioms {γ1, γ2, γ3}

In the next section we show how repairs for the unwanted axiom set can be identified from
the root justifications for the unwanted axiom set.

4.2.2 Repairs From Root Justifications

Once we have computed all root justifications for an unwanted axiom set, there are two
suggested methods to identify the repairs (according to Definition 4.1) for the unwanted
axiom set. The choice of method depends on the algorithm which was used to compute all
the root justifications. The first method is as follows.

If the root justifications were identified by constructing the root justification tree as
described in Section 4.2.1 then the repairs can be identified directly from the tree itself
(similar to the first approach for identifying all repairs from “regular” justifications described
in Section 3.7). Specifically, all repairs for the unwanted axiom set correspond to all minimal
hitting sets of the root justifications in the root justification tree. That is, all the repairs
for the unwanted axiom set correspond to the sets P (v) in the root justification tree such
that v is a terminating node and there is no terminating node v′ such that P (v′) ⊂ P (v).
This result is formalized in the following theorem.

Theorem 4.2 Let JR be the set of all root justifications for an unwanted axiom set U
with respect to some ontology O. Then the minimal hitting sets of JR correspond to all
repairs for U with respect to O.

Proof:
Let U be a set of unwanted axioms and JU be the set containing all justifications for each
axiom in U .

(i) We know from Section 3.7.1 that all repairs (Definition 3.3) for a single unwanted
axiom correspond to the minimal hitting sets for its set of justifications [Kalyanpur, 2006,
Theorem 3].
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(ii) We know from Definition 4.2 that each justification in JU is either a root justification
or a derived justification for U .

We prove theorem 4.2 by contradiction: Assume that we have the set of all root justifications
JR for U with respect to O and the minimal hitting sets for JR such that these minimal
hitting sets do not correspond to all repairs for U with respect to O.

(iii) From (i), it follows that the set of all repairs for each axiom in U correspond to the
minimal hitting sets for all justifications in JU .

(iv) From our assumption that the minimal hitting sets for JR do not correspond to all
repairs for U it follows that there is at least one repair for U which is not a minimal
hitting set for JR.

(v) Therefore, from (iii) and (iv), it follows that there is a J where JR ⊂ J ⊆ JU such
that the minimal hitting sets of J correspond to all repairs for U . But we know from (ii)
that J \JR contains only derived justifications for U and each derived justification Jd ∈ J
is such that Jd ⊃ Jr for some Jr ∈ JR. Therefore, the minimal hitting sets for J are also
the minimal hitting sets for JR (minimal hitting sets for conflict sets are the same as for
the minimal conflict sets [Reiter, 1987, p.68]).

A contradiction arises because we have stated that the minimal hitting sets for J correspond
to all the repairs for U (see (v)) but those for JR do not (see (iv)). Therefore the supposition
that Theorem 4.2 is false is incorrect and therefore Theorem 4.2 holds. 2

The result of Theorem 4.2 is significant because it means that we only need to consider the
root justifications for repairing (eliminating all the unwanted axioms from) the ontology.

The second method for identifying the repairs may be chosen if an alternative method
(entirely different from the root justification tree approach) is used to compute all root
justifications. In this case one trivially applies Reiter’s original hitting set algorithm to
find all minimal hitting sets of all the root justifications computed (similar to the second
approach for identifying all repairs from “regular” justifications described in Section 3.7).
These minimal hitting sets then correspond to the complete list of repairs for the unwanted
axiom set.

4.3 Comments

In this chapter, we have presented an alternative approach to ontology debugging and repair
in which we generalize all the different semantic defects in DL ontologies to a common
defect which we call an unwanted axiom. The specific ontology debugging and repair
problem which was characterized is eliminating a set of unwanted axioms from the ontology.

We presented an approach to resolving the above mentioned problem by introduced a
special kind of justification called a root justification. This justification was illustrated
to be useful for resolving the entire set of unwanted axioms in the ontology. We then
presented algorithms for identifying the root justifications for the set of unwanted axioms
and finally demonstrated how all the repairs for the unwanted axiom set can be identified
from its root justifications.
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In the next chapter, we discuss the implementation of a Protégé plugin which we have
developed to compute root justifications and repairs for a set of unwanted axioms in some
ontology, which is specified by the ontology engineer.



Chapter 5

Implementation and Evaluation

This chapter discusses the implementation and evaluation of a software plugin called
OntoRepair for the ontology editor Protégé [Knublauch et al., 2004]. The plugin considers
a user-specified list of unwanted axioms in the ontology and uses the approach discussed in
Chapter 4 to provide a two-fold service: (i) Computation of the root justifications for a
specified list of unwanted axioms in the ontology and (ii) Identification of all the repairs
for this list, i.e., all minimal sets of axioms such that if they are removed from the ontology
will cause all unwanted axioms in the list to be eliminated from the ontology.

In the first part of this chapter, we introduce the Protégé ontology editor and the
Java�-based OWL API1 for developing OWL ontologies which is used for manipulat-
ing and reasoning with ontologies in OntoRepair. We then give a brief overview of the
different kinds of Protégé plugins and what they look like.

In the second part of the chapter we give a concise description of OntoRepair with
illustrations of its functioning. We then analyze the results of applying OntoRepair to
eliminate a list of unwanted axioms in a number of ontologies with varying properties.
Finally, we compare the results of using OntoRepair to the results of using a näıve approach
which eliminates each unwanted axiom in the list individually.

5.1 Protégé

Protégé is a free and open source ontology editor and knowledge base framework, originally
developed by the Stanford Center for Biomedical Informatics Research at the Stanford
University School of Medicine (other ontology editors include SWOOP2 [Kalyanpur et al.,
2005a], Apollo3 and KAON4). There are two major versions, Protégé 3.x and Protégé 4.x.
The former provides support for working with older frame-based ontologies along with
ontologies expressed using the now dated OWL 1.0 languages. Protégé 4 was developed
as part of the CO-ODE project5 by the University of Manchester in collaboration with
Stanford Medical Informatics. The Protégé 4.x versions do not allow frame-based ontology

1http://owlapi.sourceforge.net
2http://www.mindswap.org/2004/SWOOP
3http://apollo.open.ac.uk
4http://kaon.semanticweb.org
5http://www.co-ode.org
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editing and are tailored for the latest OWL 2 standard of ontology languages. Protégé
4.x requires an ontology API for loading and manipulating ontologies. We introduce our
choice of API later on in this section.

5.1.1 Protégé User Interface

Protégé makes use of a “tabbed” graphical user interface (see Figure 5.1). Each tab displays
a different “ontology view”. The most frequently used tabs are the following:

� Classes

� Object Properties

� Individuals

� Entities

Figure 5.1: Protégé 4 ontology editor.

The Classes tab offers a class-driven (concept-driven) view of the ontology. The focus in
this tab is therefore on the “asserted” class hierarchy and the definitions for the classes
(concept names) in the hierarchy. The asserted class hierarchy displays the taxonomy of
the concept names in the ontology as specified by the ontology engineer as opposed to the
“inferred” class hierarchy which is the (possibly) revised hierarchy after the inferences made
by the reasoner are incorporated into the asserted hierarchy. Concept names in Protégé
are indicated by a preceding tan-coloured circular icon in the interface.

The Object Properties tab displays the object properties (role names) in the ontology and
the relevant information pertaining to them. Object properties are differentiated from other
entities in the ontology by a preceding blue-coloured rectangular icon. The Individuals tab
displays the ABox focused information about the instances/individuals in the ontology.
Individuals are indicated by a preceding purple-coloured, diamond-shaped icon.
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It should be noted that information in the tabs described are likely to overlap because of
the “connected” nature of the entities in the ontology. However, an important thing to
notice is that each tab views the ontology from a different perspective, i.e., from a class,
object property or individuals perspective. The other commonly used tab, from an ontology
editing point of view, combines the previously discussed tabs so that all the perspectives
can be viewed and browsed simultaneously. This is called the Entities tab.

Protégé also has support for a variety of ontology reasoners which can be installed as
plugins in the Protégé system and be accessed via the “Reasoner” menu in the main
toolbar. Protégé makes effective use of color in the interface to indicate the inferences made
by the reasoner after important tasks such as classification. For example, after ontology
classification, inferred information is displayed in the ontology editing tabs against a pale
yellow background. Also, concept names which are found to be unsatisfiable in the ontology
are displayed using red text.

5.1.2 The OWL API

The OWL API [Horridge and Bechhofer, 2010] is a Java�-based API developed for creating,
editing and managing OWL ontologies. The latest version (version 3 as of writing) follows,
very closely, the OWL 2 structural specification [Motik et al., 2009] recommended by the
W3C. This is the main reason for choosing OWL API for the development of OntoRepair,
as opposed to other java-based ontology APIs such as Jena6 or Sofa7. The reader is
reminded that there is a correlation between several constructs in OWL languages and
DLs. Figure 5.1 illustrates a few of these correlations.

OWL Syntax DL Syntax

owl:subClassOf v
owl:complementOf ¬C
owl:intersectionOf u
owl:unionOf t
owl:someValuesFrom ∃R.C
owl:allValuesFrom ∀R.C

Table 5.1: Correlation between OWL and DL syntax.

In the OWL API, ontologies are viewed as a set of axioms and annotations (meta-information
about entities in the ontology). The API serves as a set of interfaces for manipulating and
reasoning with OWL ontologies. The OWLOntologyManager interface in particular, provide
the means for loading, creating, and editing the ontologies. The OWLOntologyManager
also provides access to the OWLReasoner interface, which in turn, provides access to the
inference services of the selected ontology reasoner. Figure 5.2 below, shows the main
aspects of the OWL API which are used in the development of OntoRepair.

The OWLOntology interface provides access to all the axioms in an ontology. It also allows
for selective access to axioms by various criteria such as axiom type (equivalence axioms,
subclass axioms, disjointness axioms etcetera) or axiom signature. The loading/saving,
creation and manipulation of ontologies is handled by the OWLOntologyManager. The

6http://jena.sourceforge.net
7http://sofa.projects.semwebcentral.org

http://jena.sourceforge.net
http://sofa.projects.semwebcentral.org
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OWLOntologyChange

OWLOntologyManager OWLOntology
OWLAxiom

OWLClassExpression

OWLReasoner

creates, loads

loads, checksConsistency checksSatisfiability

applies

creates

contains

modifies

Figure 5.2: Functioning of the main aspects of OWL API which are used in OntoRepair.

manipulation (removal or addition of axioms), in particular, is also done by the OWLOntol-
ogyManager through the OWLOntologyChange objects RemoveAxiom and AddAxiom.

On the reasoning side, OWLReasoner provides support for the standard reasoning procedures
offered by many of the DL reasoners currently available, for example, ontology classification,
consistency checking and checking class satisfiability. There are also various convenience
methods to perform other reasoning tasks such as finding the “ancestors” or “descendents”
of a particular class.

5.1.3 Protégé Plugins

Protégé plugins are categorized by their topic and type. The topic of the plugin explains
the specific service which the plugin provides. For example, the topics of Protégé can range
from simple user interface tweaks to more involved ontology browsing/maintenance tools
such as Ontology Visualization tools, Ontology Debugging and Repair tools, Ontology
Querying tools etc.

Workspace tab plugins, as the name suggests, adds their functionality to new tabs in
the Protégé interface. This is the case for plugins such as the DL Query Tab8 and our
OntoRepair plugin. A view component plugin allows one to use or extend the default
ontology views, provided by Protégé, in the plugin implementation. For example, one
can write a view component plugin to display the classes in the ontology in a “tabbed”
arrangement9 (i.e., the classes of the ontology represented in a list with the subclasses
indented with respect to their superclasses).

5.2 Implementation of OntoRepair Plugin

In this section, we discuss issues related to the implementation and evaluation of our
OntoRepair Protégé plugin.

8http://protegewiki.stanford.edu/wiki/DLQueryTab
9http://www.co-ode.org/downloads/protege-x/plugin-code-example.php

http://protegewiki.stanford.edu/wiki/DLQueryTab
http://www.co-ode.org/downloads/protege-x/plugin-code-example.php
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5.2.1 Problem/Purpose

The focus in many current ontology debugging tools and systems, is placed on helping the
user understand the reasons or causes for the erroneous consequences which occur in the
ontology. The way these tools achieve this is by offering explanation services which are
based on computing justifications (as discussed in Chapter 3) for the errors in the ontology.
Furthermore, the main errors which current tools focus on, are unsatisfiable concepts and
inconsistent ontologies.

We have identified a more general scenario during ontology development. At a particular
stage of ontology construction, the ontology engineer may pause to consider the consequences
which follow from that particular version of the ontology (identified by the chosen ontology
reasoner). The engineer then notices that there are a number of heterogeneous consequences
(ranging from an inconsistent ontology to unsatisfiable concept names to unintended
inferences) following from the ontology which are not desired. The engineer wishes to
eliminate all these unwanted consequences in the ontology but finds that different strategies
are required to fix the different kinds of consequences which are not desired.

It is clear from this scenario that a holistic approach for ontology repair is required to treat
all unwanted consequences in the ontology equally and to remove all such consequences
from the ontology. The OntoRepair plugin implements such an approach. It gathers the
set of unwanted consequences (of various types) in the ontology which are specified by the
ontology engineer, and generates a list of repairs such that each of these repairs (when
applied to the ontology) eliminates the entire list of unwanted consequences from the
ontology. Figure 5.3 illustrates the sequence of events followed by using OntoRepair to
eliminate the unwanted consequences.

|U | ≥ 1?

Compute
all root

justifications

Identify
all repairs

Select and
apply a repair

Stop

U

Yes

No

Figure 5.3: Flow diagram showing the sequence of actions for eliminating a list of unwanted
axioms U in some ontology, using OntoRepair.

5.2.2 Interface

OntoRepair has an easy to use interface. The important parts of the interface are listed as
follows:
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1. Repair Toolbar

2. Unwanted axiom list

3. Results list

Figure 5.4: OntoRepair interface.

The repair toolbar is the control panel of the OntoRepair tool. It allows the user to add
axioms to the unwanted axiom list, to query for both the regular and root justifications
and identify the repairs for eliminating the entire list of unwanted axioms. The results
list displays the results of a query. For example, all the root justifications are displayed
in this list when the “Root justifications” command from the repair toolbar, is invoked.
Figure 5.5 gives a sample output for this action. Similarly the repairs for the unwanted
axiom list can be identified by invoking the “Repairs” in the repair toolbar. Sample output
is given for this action in Figure 5.6.
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Figure 5.5: OntoRepair interface, computing root justifications.

Figure 5.6: OntoRepair interface, identifying repairs.
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5.3 Evaluation of OntoRepair Plugin

In this section we evaluate the performance of the OntoRepair plugin. We start by describing
the test cases and data sets which we use to perform the evaluation. The OntoRepair
plugin and all the test ontologies used in the evaluation are available for download. Please
see Appendix A for details.

5.3.1 Test cases

In our experiments we use three sample ontologies of varying size, structure, and application.
We have three test cases, one for each ontology and in each case we select four different
unwanted axiom lists from the ontology. Therefore each test case has four experiments
(one for each unwanted axiom list). In each experiment, we perform a control computation.
This control computation uses a näıve approach to identify all regular justifications for
each axiom in the unwanted axiom list. We record the timing for this as well as the total
number of regular justifications computed. Thereafter we compute all root justifications
for the unwanted axiom list and record the same data of timing and total number of root
justifications computed. The results of the latter approach are then compared to the results
of the control computation.

Note: Evaluation is not done for identifying the repairs since repairs are generated during
the process of computing the justifications (see Sections 3.7 and 4.2.2).

Test Case 1:

In the first test case, a version of the Pizza ontology [Rector et al., 2004] is used. This
ontology has roughly seven hundred axioms. Four different unwanted axiom lists of between
three and five axioms each are arbitrarily selected from the ontology for the experiments.

Test Case 2:

For the second test case we use the Travel10 ontology which has roughly one hundred
axioms. Four different unwanted axiom lists of between three and five axioms each are
arbitrarily selected from the ontology for the experiments.

Test Case 3:

For the last test case, we use the Tambis [Baker et al., 1999] ontology which has roughly
six hundred axioms. Four different unwanted axiom lists of between three and five axioms
each, are arbitrarily selected from the ontology for the experiments (as in the previous two
test cases).

5.3.2 Results

The following tables display the results of each of the test cases discussed in the previous
section. The left axis of the “Performance” graphs indicate the time taken for computation
(in milliseconds).

10http://protege.cim3.net/file/pub/ontologies/travel/travel.owl

http://protege.cim3.net/file/pub/ontologies/travel/travel.owl


§5.3 Evaluation of OntoRepair Plugin 69

Test Case 1

Table 5.2: Results for Test Case 1.

Test Case 2

Table 5.3: Results for Test Case 2.

Test Case 3

Table 5.4: Results for Test Case 3.

5.3.3 Analysis and Conclusion

It is apparent from the results depicted in the above figures that OntoRepair generally
performs much better than the näıve approach in the cases where the total number of
root justifications for the unwanted axiom list is less than the total number of regular
justifications for all the axioms in the list. The only notable exception is axiom list 1 in
test case 2. In the cases where the total number of root justifications is the same as the
total number of regular justifications the OntoRepair approach performs worse than the
näıve approach (axiom lists 2 and 4 in test case 1 and axiom list 3 in test case 3).

The overall best performance by the OntoRepair approach is observed in test case 2.
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This is also the only test case in which the number of root justifications is less than the
number of regular justifications in all the experiments. The overall worst performance, was
observed in test case 3 where there are two out of four instances in which the number of
root justifications and regular justifications are equal. Possibly the main reason for the
performance being worse in this case is that we have to keep track of the entailment of each
of the axioms in the list when computing a single root justification, whereas we only have
to keep track of the entailment of one axiom when computing a single regular justification.
We call this overhead inherent in computing root justifications the root-of-list overhead.
Recall also that an entailment check is very computationally expensive and many such
checks (depending on the size of the ontology) are needed to compute a (regular or root)
justification.

The worst performance in a single experiment is for axiom list 4 in test case 1. The reason
for this is likely a combination of three things: (a) root-of-list overhead (the number of
root justifications are equal to the number of regular justifications), (b) the justifications
for the axioms in axiom list 4 are similar, meaning that they share a significant amount of
axioms, and (c) the number of axioms in some justifications is large. In particular, one
axiom in axiom list 4 in this test case, has four justifications, each of which has at least
eleven axioms. Factors (b) and (c) can cause a considerable performance hit because if
two justifications share a significant amount of axioms (or if they have a large amount
of axioms) then more entailments will be required because computing both justifications
requires a more fine-grained look at which axioms are unique to each justification and also
the more axioms in the final justification the more entailment checks will be required.

The best performance in a single experiment is for axiom list 3 in test case 2. The most
likely reasons for this are that (a) the number of root justifications are far less than the
number of regular justifications, and (b) the justifications for the axioms in axiom list 3
are not similar (do not share many axioms).

In conclusion, the performance of OntoRepair depends on the kinds of axioms contained
in the unwanted axiom list. This is because the specific axioms in the list influence the
justifications which are computed and thus also the number of root justifications for the
list versus the number of regular justifications for the axioms in the list. Nine out of twelve
of our experiments show instances where the number of root justifications is less than
the number of regular justifications. This frequency justifies the use of OntoRepair which
provides improved overall performance (over the näıve approach) in all these instances.
However, there is scope for optimizing the computation of root justifications in OntoRepair
to be comparable to the performance of the näıve approach, for those cases in which the
number of root and regular justifications are equal. Finally, it is important to mention
that since the empirical analysis was conducted on the basis of just three examples, the
results are unlikely to be statistically significant and conclusive.



Chapter 6

Conclusion

This chapter is divided into two parts. The first part gives a broad summary of the work
we have covered throughout this dissertation and the second part concludes the chapter
with a discussion about some open issues regarding the ontology repair solution introduced
in Chapter 4 and the implementation thereof discussed in Chapter 5.

6.1 Summary of Contribution

In Chapters 2 and 3 we have given the state-of-the-art for the area of debugging and
repairing description logic ontologies. We have observed that the predominant trend in
this field is on presenting explanations – through the use of justifications – for the semantic
defects in the ontology. The semantic defects which are concentrated on are mainly, the
unsatisfiable concepts in the ontology and the inconsistency of the ontology. Therefore,
the two key areas which we have identified for improvement, is to (a) extend the principles
of DL ontology debugging and repair to deal with other kinds of semantic defects as well
(such as unintended inferences), and (b) to provide strategies for eliminating these semantic
defects from the ontology (that is, not just focusing on explaining why they follow from
the ontology).

In Chapter 4, we presented an alternative approach to debug and repair DL ontologies,
which incorporates the above-mentioned improvements. We extended the list of semantic
defects that we deal with to include unintended inferences. We then generalized the different
kinds of semantic defects (unsatisfiable concepts, inconsistent ontologies and unintended
inferences) to a uniform defect which we call an unwanted axiom. We show that all the
different semantic defects can be represented as an unwanted axiom and we delineate a
general problem which we focus on resolving, in our ontology repair solution. The general
problem is that of eliminating a list of unwanted axioms from the ontology.

We introduced a special type of justification called a root justification which was illustrated
to be useful for identifying strategies to eliminate all the unwanted axioms in the list,
from the ontology. We gave algorithms for computing the root justifications for a list of
unwanted axioms and finally, we showed how to identify a set of alternative repair solutions
from the root justifications, for eliminating the entire list of unwanted axioms from the
ontology.
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6.2 Open Issues and Future Work

We now discuss some open issues regarding the ontology debugging and repair approach
discussed in Chapters 4 and 5.

In Chapter 5, it was shown that the computation of root justifications for a list of unwanted
axioms is faster than computing all the regular justifications for each axiom in the list, in
the case where there are fewer root justifications than regular justifications. However in the
(worst) case where the number of root and regular justifications are equal, the performance
of the method we use for computing these root justifications is far lower than the naive
approach of computing all the regular justifications. The main reasons for this are the
lack of optimizations in the algorithms for computing the root justifications. We propose
two optimizations here to be implemented in future versions of OntoRepair. The first
optimization is for the algorithm for computing a single root justification. This algorithm
monitors the entailment of all the axioms in the unwanted axiom list as axioms are removed
from the ontology. Instead of checking the entailment of each axiom in the list at every
pass, a caching system can be implemented to keep track of which axioms follow from which
subsets of the ontology and reusing this information in subsequent passes of the algorithm.
This system will save many entailment checks which are computationally intensive as
mentioned in Chapter 3. The second optimization is for computing all root justifications
using Reiter’s algorithm (Section 4.2.1). The optimization is reused from Reiter’s original
hitting set algorithm. It is called node re-labeling. It applies to the construction of the
root justification tree in the following way. If a node v, labelled with a root justification J
has been generated previously in the root justification tree, then a node v′ which is about
to be generated in the tree can be labelled with J as well (without resorting to compute
a new root justification label) if and only if the path P (v′) ∩ J = ∅. This optimization
significantly reduces the instances of recomputing the same root justification in the tree
and thus potentially saves a lot of time in computing all the root justifications. We believe
that these optimizations have the potential to make the computation of root justifications
in the worst case (number of root justifications equal to number of regular justifications)
comparable to the naive approach which computes all the regular justifications. Future
versions of OntoRepair will include these optimizations.

The circumstances, under which the root justification approach to ontology repair consti-
tutes an advantage over naive methods, are not conclusive from our empirical analysis. We
intend to investigate this in a more thorough manner by conducting further experiments.

Precise justifications do not include superfluous parts of axioms in the justifications for
an entailment. That is, the axioms in a precise justification for some entailment only
contains parts which are relevant to the entailment. The general approach by methods for
computing precise justifications is to re-write (split) the complex axioms in the ontology
into simpler axioms. After this, any standard method for computing justifications can be
used to find the precise justifications for the entailment with respect to the new ontology.
In future versions of OntoRepair, the capability of computing precise justifications will
be introduced, making root justifications more precise and, in turn, making repairs more
concise as well.

Another planned service which is not currently offered by OntoRepair is to aid the user in
selecting from the repairs generated by the plugin. Similar heuristics to the axiom ranking
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strategy Kalyanpur et al. [2006b] are planned, to determine which repairs may be more
appropriate than others.

Finally, we plan to organize OntoRepair into a more complete repair solution by providing
the user with more advanced meta information during explanation and repair. Effective use
of colour and visual cues are proposed to indicate advanced information about explanations
and repairs which are generated. This information should help users better understand why
the unwanted axioms in the list follow from the ontology and also what effect each repair
has on the ontology when it is applied. Lastly, the facility of directly applying repairs to
the ontology (through axiom deletions) will be included in future versions of OntoRepair.
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Appendix

A.1 Mini Tutorial: OntoRepair

In this section we give a step-by-step tutorial on how to set up and run Protégé 4 with
the OntoRepair plugin. We divide the tutorial into three subsections: First we give a
step-by-step guide on how to download and install Protégé 4 and thereafter we show how
to download, install OntoRepair for Protégé. Finally, we show how to get started using
OntoRepair in Protégé with an example.

A.1.1 Installing Protégé 4

The version of Protégé that we use in this tutorial is Protégé 4.0.2. While the latest version
is Protégé 4.1, this version has some issues with importing certain of the test ontologies
that we use. There are a number of different installation options for Protégé. We give the
the easiest and safest method by using the platform-independent installer program:

Step 1: Download Protégé 4.0.2 Installer

The first step is to download the platform independent installer program for Protégé.
For Protégé 4.0.2 this can be found at the following url: http://protege.stanford.
edu/download/protege/4.0/installanywhere. The specific installer package suitable
for your platform is automatically detected on the download page.

Important: Protégé requires the Java Virtual Machine (JVM) version 1.5 or later to run.
If you do not have an appropriate version installed, select an installer which is bundled
with the JVM. A screenshot of the download page is given in Figure A.1.

Step 2: Install Protégé 4.0.2

The next step is to run the installer program and to follow the prompts to install Protégé
4.0.2 in the directory of your choice. The commands for running the installer are given
for each platform on the download page1. the most important part of the installation is
choosing the JVM which is going to be used by Protégé (see Figure A.2).

Here you can choose from one of the existing JVMs installed on your system or if you have
downloaded an installer which includes a JVM, then there will be an option to use this

1http://protege.stanford.edu/download/protege/4.0/installanywhere
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Figure A.1: Step 1: Download Protégé 4.0.2

Figure A.2: Step 2: Install Protégé 4.0.2

pre-packaged JVM. Again it is important to make sure that if your choose to use your own
existing JVM, then it is version 1.5 or later.

A.1.2 Installing OntoRepair

Protégé 4.0.2 should now be installed on your system. The next step is to install the
OntoRepair plugin and some files required to demonstrate the functionality of the plugin.

Step 3: Download Required Files for OntoRepair

Download OntoRepair, Pellet and the sample ontologies located under the “links” section
at the following url: http://krr.meraka.org.za/people/kmoodley (see Figure A.3).

Important: As mentioned in Chapter 5, Protégé allows one to install DL reasoners as

http://krr.meraka.org.za/people/kmoodley
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Figure A.3: Step 3: Download OntoRepair

plugins in the system to reason with loaded ontologies. Protégé 4.0.2 comes pre-bundled
with the FaCT++ DL reasoner. However, OntoRepair is not compatible with this reasoner
plugin due to an issue with its Java wrapper class for Protégé. OntoRepair is still compatible
with other reasoners which do not have this issue such as Pellet and Hermit. For this
reason, we download Pellet in this step.

Step 4: Install Plugins

Now we have to install the downloaded plugins from step 3 and place the sample ontologies
in an appropriate location. The sample ontologies should be extracted to any convenient
location in your system. Most importantly, the OntoRepair (org.meraka.ontorepair.jar) and
Pellet (com.clarkparsia.protege.plugin.pellet.jar) plugins should be placed inside the plugins
folder of your Protégé 4.0.2 installation directory (“/Protege 4.0.2/plugins/” is the default
directory).

A.1.3 Getting Started with OntoRepair

Protégé 4.0.2, Pellet and OntoRepair should now be fully installed. We now illustrate how
to use OntoRepair with an example.

Step 5: Fire up Protégé

Start up Protégé with the relevant executable or shell script (depending on your platform)
found in the installation directory of Protégé 4.0.2. The Protégé welcome screen should be
displayed as in Figure A.4.

Now select the second option on this screen “Open OWL ontology”. In the file dialog,
browse to the directory in which you saved the sample ontologies. Select the ontology file
“Tambis-patched.owl” and click on “Ok”. Note that you can also load the Pizza (“Pizza.owl”)
and Travel (“travel.owl”) sample ontologies in the same fashion. Protégé will start up
and it will load the Tambis ontology. You can now familiarize yourself with the Protégé
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Figure A.4: Step 5: Start up Protégé

interface. The “Active Ontology” tab which is the default view, displays some ontology
metrics (meta information about the ontology).

Step 6: Using OntoRepair

You should now be somewhat familiar with the Protégé interface and we can now start and
use OntoRepair. Click on the “Tabs” menu in the main toolbar of Protégé (see Figure A.5)
and select “OntoRepair”.

Figure A.5: Step 6: Tabs Menu

The interface for the OntoRepair tab is shown in Figure A.6.

After selecting the OntoRepair tab, pick a reasoner from the “Reasoner” menu in the main
toolbar.
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Figure A.6: Step 6: OntoRepair Interface

Important: You should have two reasoners installed namely FaCT++ and Pellet. Recall
that FaCT++ is not compatible with OntoRepair and therefore you should only select
Pellet.

After selecting a reasoner, Tambis will be classified (see Section 2.3.3 in Chapter 2). This
might take a few seconds depending on your system. Once the ontology is classified, you
can add the following axioms to the “Unwanted axioms” list in OntoRepair:

- metal SubClassOf Nothing

- nonmetal SubClassOf Nothing

- nickel SubClassOf Nothing

Make sure to type in these axioms verbatim because OntoRepair is strict on syntax. Note
that the Protégé syntax corresponds closely with the OWL syntax and in turn some
applicable OWL constructs correspond with DL constructs (see Table 5.1). Therefore the
above “Protégé-OWL” axioms correspond to the following DL axioms:

- Metal v ⊥

- Nonmetal v ⊥

- Nickel v ⊥

After adding these three axioms to the “Unwanted axioms” list (and making sure that we
have selected Pellet in the Reasoner menu), we can compute the: regular justifications for
each of these axioms, the root justifications for the entire list and the repairs for the entire
list by clicking on the appropriate button in OntoRepair. First try computing the “Regular
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justifications”. The results that are displayed in the results pane should correspond to
Figure A.7.

Figure A.7: Step 6: Computed regular justifications

From the results in Figure A.7 we can see that each of the unwanted axioms in the list
has three justifications. This brings the total number of regular justifications computed to
nine. Now try computing the “Root justifications”. The results should reflect those shown
in Figure A.8.

Figure A.8: Step 6: Computed root justifications
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From Figure A.8 we observe that the total number of root justifications for the list is only
three. Finally, to get the repairs for the list of unwanted axioms we select the “Repairs”
button. These repairs are depicted in Figure A.9.

Figure A.9: Step 6: Computed repairs

Each of the seven repairs computed for this unwanted axiom list is such that if the axioms
in this repair are removed from Tambis, then all the unwanted axioms in the list will be
eliminated from Tambis.

To remove an axiom we have to first locate the axiom in either the entities/classes tab
in Protégé. For example, to remove the axiom “metalloid disjointWith metal”, we have to
go to the concept description for either “metal” or “metalloid” and remove “metal” or
“metalloid” from the Disjoint Classes section (see Figure A.10). In OntoRepair, to go to the
concept description of a specific concept name, one can click on the concept name in the
axiom in the results pane.
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Figure A.10: Step 6: Apply Repair

Thus we have presented a mini-tutorial for getting up and running with Protégé and OntoRe-
pair. For a more comprehensive guide on modelling OWL ontologies in Protégé (and getting
more familiar with the Protégé interface) see the tutorial by Matthew Horridge, which can
be found at the following url: http://owl.cs.manchester.ac.uk/tutorials/protegeowltutorial.

http://owl.cs.manchester.ac.uk/tutorials/protegeowltutorial
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