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ABSTRACT 

Fischer-Tropsch Reaction Water (FTRW) is a high organic strength wastewater produced as a by-product in 

Sasol’s Fischer-Tropsch Reactors. Typically it has an organic load of 18000 mgCOD/L and is highly acidic 

with a pH of approximately 3.8.  It is deficient in nutrients (N and P and other micronutrients).  

This dissertation deals with the biological and physico-chemical model development of a dynamic anaerobic 

digestion model, and explores two different approaches to representing the physico-chemical processes that 

complement and interact with the bioprocesses. The performances of the resultant two dynamic models (AD-

FTRW1 & AD-FTRW2) were compared in order to assess to what extent the more detailed and rigorous 

ionic speciation modeling in AD-FTRW2 addressed the shortcomings attributed to the simplified physico-

chemical modeling in AD-FTRW1.  

The ionic speciation model used in AD-FTRW2 uses a classic equilibrium formulation along the same lines 

as in the UCTADM2 model for anaerobic digestion of municipal wastewater sludges (Brouckaert et al., 

2010), while AD-FTRW1 uses a simplification of the approach developed by Musvoto et al. (2000) in order 

to represent short chain fatty acid (SCFA) dissociation and the weak acid base chemistry of the inorganic 

carbon system.  

A 44 day extract from a 700 day laboratory-scale dataset (Van Zyl et al. 2008) was used as the basis for 

comparing the models. During this period the membrane bio-reactor was subjected to varying flow and load 

conditions. To validate the models, the experimentally measured and model predicted process variables of 

reactor alkalinity, reactor pH, biogas production and effluent SCFA concentration were compared. 

It was found that AD-FTRW2 provided superior agreement with pH data, but predictions of alkalinity, gas 

production rate and effluent short-chain fatty acids were not significantly improved in AD-FTRW2 relative 

to AD-FTRW1. This outcome was hypothesized since pH is strongly dependent on physico-chemical 

processes such as ionic interactions in solution and gas exchange which were the components to the models 

(AD-FTRW1 versus AD-FTRW2) which differed most significantly. Alkalinity, which is also highly 

influenced by physico-chemical model representations showed substantial improvement however statistical 

analysis could not show this improvement to be significant. The other two variables that were compared, 

biogas production and effluent SCFA concentration, displayed very similar agreement with experimental 

data. These variables depend more on mass balance effects and biological kinetics and were therefore not 

significantly altered by the more rigorous handling of aqueous chemistry in AD-FTRW2. It was concluded 

that AD-FTRW2 constitutes an improvement in model predictive power over AD-FTRW1 at a small cost in 

computing time. 
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1 INTRODUCTION 

1.1 Purpose of the study 

This study adopts a modelling approach and aims to develop a dynamic anaerobic digestion reactor model suited 

to the anaerobic treatment of Sasol’s Fischer-Tropsch Reaction Water. 

The interaction between the biological processes and the physico-chemical processes in anaerobic digestion has 

been shown to be very significant. In order to model anaerobic digestion adequately, this interaction needs to be 

sufficiently represented through accurate ionic speciation modelling and biological reaction kinetic inhibitions. 

A comprehensive biological model for the anaerobic digestion of Fischer-Tropsch reaction water (AD-FTRW1) 

has been developed but a shortcoming has been identified in the integrated physico-chemical model. The model 

was developed under the assumption that the pH in an Anaerobic Digestion of Fischer-Tropsch Reaction Water 

(ADFTRW) reactor will remain in the range of 6.5 – 7.5. This is the major limitation of AD-FTRW1.  

In response to this shortcoming, this work aims to improve the previously developed dynamic model (AD-

FTRW1) by integrating a more comprehensive ionic speciation sub-model. The ionic speciation sub-model 

considers all the relevant acid/base subsystems, and extends the pH range (3.5 to 9) for which the model can 

produce meaningful results.  

The resultant model, referred to henceforth as AD-FTRW2, (given a fully characterized feed, dosage and 

wastage schedule) should be able to accurately predict significant process variables and effluent characteristics 

such as pH, alkalinity, biogas production, biogas composition and effluent COD. In application, the purpose of 

the model will be to assist in experimental design, process design and advanced model-based process control.    

Specific to this study, the research question raised is; 

Can the pH prediction in AD-FTRW1 be improved through the incorporation of a more comprehensive 

ionic speciation model? 

The corresponding hypothesis is; 

The pH prediction in AD-FTRW1 will be improved through the incorporation of a more comprehensive 

ionic speciation model.   

To answer the research question and test the abovementioned hypothesis, a 44 day extract from a 700 day 

laboratory-scale dataset (Van Zyl et al. 2008) was simulated with both AD-FTRW1 and AD-FTRW2. During 

this period the membrane bio-reactor was subjected to varying flow and load conditions. The relative agreement 

of the simulated outputs as compared to the experimental outputs was then assessed statistically to determine 

whether the revised model (AD-FTRW2) gave significantly better predictions than its predecessor (AD-

FTRW1).   
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1.2 Context of the study 

This research is of particular interest to Sasol Ltd, a South African company involved in the petro-chemical 

industry whose operations produce large volumes of Fischer-Tropsch Reaction Water.  

Sasol is responsible for supplying a large percentage of South Africa’s fuel demand. Their Synthetic Fuels 

plants based in Secunda and Sasolburg produce large volumes of industrial wastewater on a daily basis; 128 

Ml/day at Secunda (Phillips and du Toit 2002). Secunda’s wastewater is heavily contaminated with a chemical 

oxygen demand of approximately 677 ton/day. This corresponds to approximately a 7 million person equivalent 

organic load and it necessitates treatment of the wastewater prior to it being recycled into the process as process 

cooling water (Phillips and du Toit 2002). Sasol’s aim of zero liquid effluent discharge connects waste water 

treatment efficiency to production rate via process cooling efficiency as this is directly impacted by the purity of 

the process cooling water which is sourced partially from Sasol’s treated waste water stream. This places Sasol’s 

wastewater treatment facilities in a demanding position where not only are their works driven by legislation in 

the form of effluent discharge limits but they are also motivated to run efficiently by their strong interaction 

with production and therefore profits.  

Two major processes which contribute to Sasol’s wastewater load are the Fischer-Tropsch reactors (where water 

is chemically produced as a byproduct) and SYNGAS Clean-up (where water is used as a stripping/quenching 

medium to cool the SYNGAS and cleanse it of unwanted volatile hydrocarbons and other impurities). These 

large waste water streams are referred to as Fischer-Tropsch Reaction Water (FTRW) and Stripped Gas Liquor 

(SGL) respectively.   

Currently Sasol’s industrial waste water (at their Secunda site) is treated aerobically in an activated sludge plant 

which is the 2nd largest in the world. The option of Mesophilic Anaerobic digestion of a portion of the waste 

water stream is being investigated due to some significant operational and cost benefits and due to the 

amenability of Fischer Tropsch Reaction Water to this process.  

The major potential advantages of Anaerobic Digestion of Fischer-Tropsch Reaction Water (ADFTRW) include 

reduced energy input (due to zero requirement for aeration), energy recovery through biogas production, 

reduced sludge production and a smaller land requirement. This all translates into a reduced environmental 

footprint.  

The major operational drawback to anaerobic digestion is control. Anaerobic systems do not respond well to 

process fluctuations and are only effective within small margins of operating conditions such as pH, temperature 

and dissolved hydrogen concentration. If not properly managed, anaerobic digesters are prone to failure 

resulting in difficult effluent management scenarios. 

With this in mind, this study aims to develop and integrate two existing Anaerobic Digestion (Sasol 

Technology’s Biological model) and Ionic Speciation models (UKZN’s Ionic speciation model) to assist in the 
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development and design of ADFTRW facilities and to enhance disturbance rejection1 through state of the art 

process control. The model will be validated against existing lab-scale data supplied by Sasol.  

The research forms part of work undertaken by the Pollution Research Group and Sasol Ltd, as part of Sasol’s 

University Collaborative Programme.  

1.3 Research Outcomes 

An integrated Ionic Speciation and Biological Dynamic Model of Mesophilic Anaerobic Digestion of 

Fischer-Tropsch Reaction Water. The model shall be referred to henceforth as AD-FTRW2. 

 The model must display a reasonable degree of accuracy in its predictive capacity as proven 

through a model validation procedure. 

 The model should be able to predict significant process variables and effluent characteristics 

such as pH, alkalinity, biogas production, biogas composition and effluent COD. 

 

1.4 Significance of the study 

The benefits of generating this process model (AD-FTRW2) will be the 

 Reduction of experimental effort through combined experimentation and simulation in the context of 

optimal experimental design. 

 Ability to model Sasol effluent treatment processes for existing installations and proposed new 

installations for improved design, control, operation and troubleshooting.  

 Optimisation of Sasol’s water treatment network through the concept of ADFTRW 

 Alignment of ADFTRW with new technology sales requirements which require a process model with 

the sale of a process design. 

The specific outcome of integrating a more comprehensive ionic speciation model into an anaerobic digestion 

model, hopes to overcome (to an extent) a short-coming in preceding AD models which did not exhibit 

sufficient accuracy in their physico-chemical models and in turn represented the interaction between the 

physico-chemical and biological processes poorly. The study will adopt the UCT strategy of waste water stream 

representation by virtue of the fact that it is a development of AD-FTRW1 which adopted this approach and it 

therefore offers further testing of this method of waste water stream representation.   

                                                           
1 Disturbance Rejection: The ability of a process to maintain a prescribed level of operation (e.g effluent COD concentration) when 
subjected to large fluctuations in input characteristics and variables.  
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1.5 Limitations of the study 

The scope of the modelling is specific to high temperature Fischer-Tropsch reaction water. High temperature 

Fischer-Tropsch reaction water is produced when the Fischer-Tropsch (FT) reaction takes place at high 

temperature over an iron catalyst, and is higher in Short Chain Fatty Acids (SCFA’s) than alcohols, while low 

temperature Fischer-Tropsch reaction water, which is characteristic of more recent installations where the FT 

reaction takes place over a cobalt catalyst at a lower temperature, has a higher alcohol content relative to short 

chain fatty acids. The reason for this specific focus is that the initial commercialization of anaerobic digestion of 

FTRW is intended for the Secunda plant and therefore needs to be compatible with its existing infrastructure. At 

the Secunda plant high temperature Fischer-Tropsch reactors are employed in the polymerization of SYNGAS. 

With this being said, it is hoped that the model can be easily modified to represent the digestion of low 

temperature Fischer-Tropsch reaction water. The model is further restricted to mesophilic anaerobic digestion. 
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2 LITERATURE REVIEW 

2.1 Introduction 

The literature review has been constructed to cover four major topics that form the basis to this study.  

The review begins by taking a broad look at the typical functioning of a Wastewater Treatment Works via a 

plant-wide modelling framework known as Benchmark Simulation Model 2. The various unit operations 

involved in the process are explored briefly to establish their individual functions and to discover which models 

are used conventionally for their representation. This section lends context to anaerobic digestion as a treatment 

process and helps to establish the shift toward a more plant-wide modelling approach.  

Thereafter, the company Sasol will be reviewed with a focus on their synfuels process and the applicability of 

this research to their industrial waste water streams. Out of this section, the significance of the study is 

elucidated in terms of the optimization of Sasol’s water treatment network through the concept of ADFTRW. 

This will be followed by a process overview of anaerobic digestion (AD). The overview will include the 

mechanisms involved in the anaerobic biological reactions, together with an explanation of significant process 

variables and inhibitory factors.  

Lastly, the literature review will look closely at the current trends in anaerobic digestion modelling and the 

previous modelling work upon which this research is based. A detailed look at anaerobic digestion reaction 

stoichiometry and kinetics will be carried out via a comprehensive analysis of AD-FTRW1. Out of this section, 

our research question is distilled and this relates to the possibility for improvement within existing AD models 

in the area of ionic speciation.  

2.2 Wastewater Treatment Works 

2.2.1 Plant-wide Modelling 

A model can be defined as anything which is capable of generating behaviour resembling the behaviour of a 

system within its experimental frame (Kops et al., 1999). The fundamental importance of modelling of chemical 

processes is that it enables increased understanding of the underlying mechanisms involved in the process and it 

enhances process design, control and optimization through its predictive capabilities.  

Modelling, control and optimization of wastewater treatment unit operations has historically been undertaken in 

an isolated/independent manner, where the influence of various control strategies on the efficacy of downstream 

processes has been neglected in determining which control route to take on a local (single unit operation) level. 

This approach often leads to sub-optimization and consequently reduced effluent quality or increased operating 

costs (Rosen et al., 2005). In recent times a drive towards a plant-wide modelling approach has been recognised 
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by researchers as a more beneficial outlook in optimizing the performance of a wastewater treatment facility. 

This more holistic approach consists of local models for each unit operation, which are then overseen by 

supervisory control systems which take into account the interactions between all of the sub-processes.   

Initiated by Working Groups of COST Action 682 and 624 and then continued by the International Water 

Association’s (IWA) Task Group on Benchmarking of Control Strategies for wastewater treatment plants 

(WWTP’s), plant-wide simulation benchmarks began with the development of Benchmark Simulation Model 1 

(BSM1). This benchmark focused on evaluating control strategies for activated sludge. The plant layout in 

BSM1 consists of a five-compartment activated sludge reactor consisting of two anoxic tanks followed by three 

aerobic tanks. The activated sludge unit is then followed by a secondary clarifier. In this way the model 

simulates nitrification and denitrification in a configuration commonly encountered in WWTPs. 

It was apparent that, while BSM1 was a step in the right direction in terms of plant-wide modelling, it still did 

not represent a true plant-wide benchmark model. Subsequently Benchmark Simulation Model 2 (BSM2) was 

developed. As with BSM1, it includes a model, control system, a benchmarking procedure and evaluation 

criteria. The model’s plant layout is far more comprehensive and describes a wastewater treatment plant 

consisting of a primary clarifier, a five-tank activated sludge system with a non-reactive secondary clarifier (as 

in BSM1), a sludge thickener, an anaerobic digester and a dewatering unit (Jeppsson et al., 2007). The slow 

dynamics of anaerobic digestion (which is represented in the sludge train) made it necessary to increase the 

length of the evaluation period in BSM2. This necessitated the incorporation of seasonal effects on the WWTP 

with respect to temperature variations and changing influent flow-rate patterns (Jeppsson et al., 2007). Plant unit 

operations and the type of model descriptions thereof are presented in the table below along with a brief outline 

of the function of each unit.  
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Table 1: BSM2 Unit Operations and Description 

No: Unit Operation Model Representation Function 
1 Primary Clarifier Otterpohl and Freund (1992) solid-liquid separation 

   
50% solids removal 

   
no biological activity 

2 5-Reactor Activated Sludge System ASM1  COD Removal 

   
Biological Nitrogen Removal 

   
Nitrification  

   
Denitrification 

3 Secondary Clarifier Takacs (1991) solid-liquid separation 

   
no biological activity 

4 Gravity Thickening Ideal, Continuous Model solid-liquid separation 

   
98% solids removal efficiency 

   
no biological activity 

5 Anaerobic Digestion ADM1 Sludge Stabilization 

   
COD Removal 

   
Hydrolysis 

   
Acidogenesis 

   
Acetogenesis 

   
Methanogenesis 

6 Dewatering Ideal, Continuous Model solid-liquid separation 

   
98% solids removal efficiency 

(Jeppsson et al., 2007) 
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Figure 1: BSM2 Plant Layout 
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2.3 Sasol 

2.3.1 Core Business 

In 1955 Sasol, the “Suid Afrikaanse Steenkool en Olie Maatskapy,” produced its first automotive fuel from 

Sasol 1; the company’s first CTL plant based in Sasolburg (Hall-Green 2000). The company’s proprietary 

technology is involved in the upgrading of raw coal (mined in the surrounding areas) and natural gas into liquid 

petroleum products. This is achieved in 4 major process steps: 

1) Coal gasification / Auto-thermal reforming 

2) Fischer-Tropsch Reaction 

3) Product Separation  

4) Product Upgrading 

In an ongoing drive towards process optimization and by-product utilization, Sasol has become involved in 

various other chemical industries such as polymers (e.g. ethylene, waxes), fertilizers and explosives. But the 

major portion of their business remains in the Synfuels industry. 

At the heart of the Synfuels and Polymer’s processes are Sasol’s Fischer-Tropsch Reactors. The reactors are 

fundamentally based on the work of two chemists, Franz Fischer and Hans Tropsch, who discovered a chemical 

reaction to convert coal and gas into liquid fuels during the 1920’s (Gross 2006). The Fischer-Tropsch reaction 

produces hydrocarbons and water from a carbon monoxide and hydrogen feed gas as is depicted below: 

         
        
→                  

Equation 1: Fischer-Tropsch Reaction 

The hydrocarbons (including methane) are separated and upgraded through processes such as alkylation, 

polymerization and reforming to value added marketable products.  

The chemically produced water is called Fischer-Tropsch Reaction Water and forms a major contributor to 

Sasol’s wastewater treatment load as it is contaminated with soluble organic reaction products; mostly 

oxygenated organics such as alcohols and short chain fatty acids.  

Another significant contributor to the wastewater treatment load is stripped gas liquor (SGL). SGL comes from 

SYNGAS cleanup/cooling, where steam is used as a stripping/quenching medium to strip the SYNGAS of 

unwanted impurities and cool it down before the SYNGAS is routed to the waste heat boilers and then the 

Fischer-Tropsch Reactors. 
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2.3.2 Wastewater Treatment System Configuration at Secunda 

At Sasol’s Secunda site, the three major wastewater streams (Oily sewer water, SGL and FTRW) were designed 

to be combined and treated in a fully aerobic, activated sludge plant. This configuration has significant 

operational and cost disadvantages such as: 

- High oxygen requirements for aeration and electricity generation 

- High energy requirements for aeration 

- Large production of biomass and sludge with poor settling qualities 

- High solid/liquid separation cost 

- Poor effluent quality. 

As part of a notion to optimize the wastewater treatment process, it has been recognized that FTRW (which 

constitutes 77% of the organic load but 23% of the volumetric load) is amenable to anaerobic digestion. If 

FTRW could be successfully treated anaerobically, this would lead to major operational cost reduction from 

decreased energy requirements for aeration and decreased sludge production. 

Table 2: Sasol’s Waste Water Streams at Secunda 

Wastewater Stream Volumetric Load Organic Load (COD) 
Ml/d % tonO2/d % 

FTRW 29 23 522 77 
SGL 62 48 99.2 15 
API/Oily Sewer Water 37 29 55.5 8 
Total 128 100 676.7 100 
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Figure 2: Organic Loading and Energy Requirement for Sasol's Secunda WWTP. 

(van Zyl 2008) 

2.3.3 Fischer-Tropsch Reaction Water 

FTRW is a chemically produced by-product of the Fischer-Tropsch reaction (Equation 1). It consists of water 

contaminated predominantly with oxygenated organics such as short chain fatty acids (SCFA’s) and alcohols. 

Due to its chemically produced origin, it is also very low in dissolved salts and particulates. Research has shown 

that FTRW is amenable to Anaerobic Digestion due to its high content of readily biodegradable SCFA’s (van 

Zyl 2008) so long as it is complemented with sufficient nitrogen, alkalinity and nutrient dosing.  

Two types of FTRW exist with reference to Sasol’s plants, high temperature Fischer-Tropsch reaction water and 

low temperature Fischer-Tropsch reaction water which emanate from processes of the same name respectively.  

High temperature Fischer-Tropsch reaction water is higher in SCFA’s than alcohols, while low temperature 

Fischer-Tropsch reaction water which is characteristic of more recent installations has a higher alcohol content 

relative to SCFA’s. This study is specific to high temperature Fischer-Tropsch reaction water sourced from the 
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Secunda synfuels plants (Sasol 2 and Sasol 3). Below is a table of the significant properties of high temperature 

Fischer-Tropsch reaction water. 

Table 3: Properties of High Temperature Fischer Tropsch Reaction Water. 

Property High Temperature FTRW 

Constituent Components Water, C2-C6 Organic Acids, C1-C2 Alcohols 

Chemical Oxygen Demand (mg/l) 18000 

Total Dissolved Solids (mg/l) 35 

pH 3.77 

 

(van Zyl 2008) 

2.3.4 Stripped Gas Liquor 

SGL comes from SYNGAS cleanup/cooling, where steam is used as a stripping/quenching medium to strip the 

SYNGAS of unwanted impurities and cool it down before the gas is fed to waste heat boilers and then the 

Fischer-Tropsch Reactors. During gasification a significant quantity of ammonia is produced and, due to its high 

aqueous solubility, practically all of the ammonia can be found dissolved in the SGL. Other constituents of SGL 

include hydrocyanic acid, tar, oils, phenols and other refractory components. 

2.4 Anaerobic Digestion 

This section on anaerobic digestion starts with a process overview and is then followed by a process description 

from a mechanistic perspective.  

2.4.1 Overview 

The main goals of wastewater treatment operations are to: 

1) Achieve an average reduction in nutrient levels (COD, macro and micronutrients) and 

2) Achieve adequate disturbance rejection (i.e. achieve good effluent qualities in spite of many 

disturbances).  

Anaerobic digestion is the most common method of sludge stabilization in municipal waste water treatment and 

is also effective in reducing sludge volumes with the production of energy-rich biogas (Sotemann et al., 2006).  

The major advantages of AD over other biological unit operations according to Batstone et al. (2002) include: 

1) High organic loading rates 
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2) Low sludge production 

3) Net positive energy production from biogas 

4) Greenhouse gas reduction through the replacement of fossil fuels by biogas. 

2.4.2 Process Description 

In the absence of terminal electron acceptors such as O2, NO3
2- or SO4

2-, anaerobic conditions prevail. Under 

these conditions, micro-organisms use biodegradable organics as electron donors (a carbon source) and, as a 

result of the process, CO2 and methane are produced along with energy used for biomass growth. Methane 

contains a significant portion of the energy and electrons made available by the original organics, while the 

micro-organisms receive very little of the available energy. This translates into slow growth rates for the 

biomass, greatly reducing sludge disposal costs as compared to aerobic treatment. Another advantage of the 

process is its yield of methane which can be used as a renewable energy source. Figure 3 below describes the 

process of anaerobic digestion in more detail and explores the micro-organisms involved at each trophic level. 

1
st

 Trophic Group

1) Hydrolysis: Complex organics are hydrolysed into their monomers (monosaccharides, long chain fatty 

acids, amino acids) by extra-cellular enzymes that are secreted by the acidogenic bacteria.

2) Acidogenesis: The monomers undergo acidogenesis (an intra-cellular process) to yield acetic acid (under 

conditions of low dissolved hydrogen concentration) or propionic acid (under conditions of high dissolved 

hydrogen concentration). Acidogens also yield carbon dioxide and trace amounts of hydrogen

2
nd

 Trophic Group

3) Acetogenesis: Acetogenic bacteria convert the propionc acid into acetic acid, carbon dioxide and hydrogen. 

Acetogens can only operate under conditions of low dissolved hydrogen concentration.

3
rd

 Trophic Group

4) Acetoclastic Methanogenesis: These micro-organisms degrade acetic acid into carbon dioxide and 

methane.

4tn Trophic Group

5) Hydrogenotrophic Methanogenesis: Hydrogen produced as an intermediary by the higher trophic groups 

is utilized together with carbon dioxide to produce more methane.

Complex Organics

CO2Trace H2

CO2H2

CO2

CH4

CH4, CO2

 

Figure 3: Anaerobic Digestion Process Overview 
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2.5 Anaerobic Digestion Modelling 

This section reviews the theory relevant to the modelling of anaerobic digestion. Following an overview on the 

importance of modelling anaerobic digestion, it continues with a literature review on two established AD 

models; ADM1 and UCTADM1. Specific focus is then ascribed to the mathematical modelling techniques used 

to describe reaction stoichiometry, biological uptake and inhibition kinetics before the previous work on which 

this work is based is reviewed in detail (AD-FTRW1 and UKZN’s ionic speciation model). 

2.5.1 Overview 

Anaerobic digestion is a widespread wastewater treatment application. But despite this fact, the design, 

operation and control of anaerobic digesters is still based predominantly on empirical guidelines and experience. 

Mathematical models form the basis of advanced control. Accurate predictive mathematical modelling and 

simulation of anaerobic digestion is an invaluable tool in process evaluation and in process operation in order to 

achieve an appropriate level of disturbance rejection (which historically has been anaerobic digestion’s major 

shortcoming) (Sotemann et al., 2006). The modelling of wastewater treatment systems includes many chemical 

and physical processes, and anaerobic digestion modelling is no exception. Hydraulics (characterized in mixed 

systems by Hydraulic Retention Times or HRT’s), hydrodynamics, nutrient reactions coupled with biomass 

growth, mass transfer and ionic speciation are all processes whose inclusion in a dynamic model is dependent on 

the specific system being modelled, the model complexity required and the predictive horizon specified (Olsson 

and Newell 1999). In terms of anaerobic digestion modelling, all of the above-mentioned processes are included 

except for the hydrodynamics of the system. The motivation for this simplification is that most anaerobic 

digesters are mechanically mixed and due to their large hydraulic retention times, they can be reasonably 

approximated by a perfectly mixed tank. 

The IWA Anaerobic Digestion Modelling Task Group was formed in 1977 at the 8th World Congress on 

anaerobic digestion with the primary objective of formulating a generalized anaerobic digestion model. As a 

product of this initiative the IWA “Anaerobic Digestion Model No. 1” (ADM1) was presented in 2002 by 

Batstone et al. and was widely regarded as a breakthrough in the field of anaerobic digestion modelling (Rosen 

et al., 2005). 

a. Summary of ADM1 

ADM1 has largely catalysed the progression of the AD modelling field. The general structure of the biological 

model is outlined in Figure 4 below.  
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Figure 4: Biological model structure of ADM1  

(Batstone et al., 2002) 

With reference to Figure 4, the biological model structure of ADM1 is discussed below: 

Complex particulate waste and inactive biomass is first characterized according to its biodegradability into inert 

solubles (indigestible), inert particulates (indigestible), and then into its biodegradable fraction. The 

biodegradable fraction is further characterized into its protein, carbohydrate and lipid content.  

1) Characterization is understood to occur during an array of processes collectively referred to as 

disintegration. Disintegration could include processes such as lysis, non-enzymatic decay, phase 

separation and physical breakdown such as shearing (Batstone et al., 2002). 

2) Following disintegration, proteins, carbohydrates and lipids are further broken down into their soluble 

monomers (amino acids, monosaccharide’s and long-chain fatty acids respectively) via hydrolysis. 

Note: Step 1) and 2) are extracellular steps and are only partly biologically mediated. Hydrolysis is biologically 

mediated by enzymatic secretions from the micro-organisms, while the remaining processes which make up 

disintegration are not biologically co-ordinated. 
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3) The acidogenesis of monosaccharides into mixed organic acids, hydrogen and carbon dioxide is an 

intracellular process carried out by a specific acidogenic trophic group of micro-organisms according to 

the model representation. 

4) The process of acidogenesis of amino acids is similar to process 3 above but is carried out by a separate 

acidogenic trophic group according to the model description. 

5) Process 5 represents acetogenesis from long-chain fatty acids. 

6) Process 6 represents acetogenesis from propionate. 

7) Process 7 represents acetogenesis from short chain fatty acids 

8) Process 8 represents acetoclastic methanogenesis 

9) Process 9 represents hydrogenotrophic methanogenesis 

Note: Steps 3) to 9) are intracellular steps which lead to biomass growth. Each trophic group is also subject to 

biomass decay. Inactive biomass is recycled to the first stage of the model (characterization), where it becomes 

digestible substrate. 

Also included in the model are significant physico-chemical reactions which interact with the biological 

processes as they contribute to the environment within which the microorganisms exist. The physico-chemical 

steps which are included are ion association/dissociation and gas-liquid mass transfer. ADM1 does not however 

account for non-idealities in the liquid phase and the lack of ion activity correction (at low conductivity), ion 

pairing (at high conductivity), precipitation and phosphorous modelling are identified as significant limitations 

of the model (Batstone et al., 2012). These limitations have significant impact on the applicability of the pH 

prediction method in ADM1which only validates it for dilute systems and precludes it from modelling digester 

failure. It has been identified by Batstone et al. (2012) that for anaerobic digester liquors it is necessary to 

employ full iterative ion activity correction in order to achieve a pH prediction error of less than 5%. Since 

ADM1 does not include ion activity correction, this implies that the current accuracy of the pH prediction 

system in ADM1 is greater than 5% error. 

The ADM1 model does not, however, include liquid-solid (precipitation) reactions. The reason for the exclusion 

of precipitation reactions from this model was due to their complexity and the fact that existing models in that 

area were relatively recent and untested at the time of the model development. It must be noted, however, that 

liquid-solid reactions become significant in systems with high levels of cations and especially so with those that 

readily form carbonate precipitates  such as Mg2+ and Ca2+ (Batstone et al., 2002). 

Biological inhibitions represented in the model include pH inhibition which affects all trophic groups, hydrogen 

inhibition which affects the acetogenic trophic groups and free ammonia inhibition which affects the 

acetoclastic methanogenic trophic group. 

The major challenge posed by ADM1, however, lay in its method of sludge characterization as it made the 

model difficult to apply in industrial applications. Sludge was characterized by determining and defining its 

carbohydrate, lipid and protein content; all of which are measurements that are not routinely available on 

sewage sludges (Sotemann et al., 2006). In response to this, the Water Research Group of the University of 
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Cape Town proposed a different model for anaerobic digestion, UCTADM1, which characterized sludge in 

terms of its COD and its C, H, O and N composition. 

b. Summary of UCTADM1 

 The model describes the influent sludge in terms of a sludge specific generic formula proposed by McCarty 

(1972) of the form CXHYOZNAPB. The model then describes the digestion of the sludge by first hydrolysis to 

glucose and secondly acidogenesis to short chain fatty acids. While the model makes a significant simplification 

with use of the so-called “glucose pipeline”, little loss of accuracy is incurred since the products of hydrolysis 

followed by acidogenesis remain the same as for lipids, proteins and carbohydrates as short chain fatty acids 

(Sotemann et al., 2006). Further to this fact that the stoichiometric representation of the final products should be 

correct, so long as the rate limiting step is modelled with a reasonable kinetic representation the kinetics of the 

other sub-processes become of less importance making the “glucose pipeline” assumption less influential on the 

overall performance of the model.   

c.  Importance of physico-chemical processes and their implementation 

During the early stages of anaerobic digestion modelling, focus was confined to the biological processes that 

carried out the digestion process. The interaction of the biological processes with the physico-chemical states of 

the digestion system was identified at an early stage as a very important consideration due to the significant and 

inhibitory effects of pH on biological processes. 

The major importance of modelling the physico-chemical system according to Batstone et al. (2002) is that it 

permits the; 

- Expression of biological inhibition factors such as pH, free acids and bases, and dissolved gas 

concentrations. 

- Prediction of major performance variables such as gas flow and carbon alkalinity. 

- Calculation of the control set point for pH which has major implications on operating costs as dosage 

for pH control is the major operating cost in an AD system. 

 Musvoto et al. (1997) developed a kinetic based model for mixed acid/base systems which has found extensive 

application in anaerobic digestion models. 

2.5.2 Mathematical Techniques 

a. Stoichiometry 

Micro-organism metabolism is made up of catabolic and anabolic reactions. Catabolism refers to the process 

whereby complex molecules are broken down into simpler ones with the release of energy, while anabolism 

refers to the process whereby complex molecules are synthesized from simpler ones with the storage of energy 

(Henze 2008). The mathematical link between the catabolic and anabolic reactions is the fraction of 
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biodegradable COD that is converted to biomass and is denoted by the parameter “Y” known as the true 

organism yield. 

b. Process Kinetics 

i. Substrate Uptake 

Kinetics of biological reactions in waste water treatment processes are regularly described using Monod kinetics 

(Sotemann et al., 2006). Otherwise referred to as Michaelis-Menten kinetics, Monod kinetics describe the 

uptake of soluble substrate by the micro-organisms. 

          
        

        
    

Equation 2: Monod Kinetics 

Once the substrate uptake rate is adequately modelled, the biomass growth rate can be easily related via the 

biomass yield parameter (Y). This is often referred to as Monod Yield Kinetics. The generalized form of this 

kinetic expression is displayed below: 

             
        

        
       

Equation 3: Monod Yield Kinetics 

Another form of substrate uptake kinetics is the Haldane kinetic expression. Haldane kinetics are suitable where 

high soluble substrate concentrations impose an inhibitory affect on the reaction of which they form a reactant. 

          
  

        
  

 

  
 
     

Equation 4: Haldane Kinetics 

ii. Inhibition 

The general method for applying inhibitory effects to kinetics is by attaching inhibition functions as a product to 

the growth/uptake kinetics. This can be shown via the generalised Monod kinetics proposed during the 

development of ADM1 (Batstone et al., 2002). 

                   
        

        
             

Equation 5: Generalized Monod Kinetics 

Where    represents some inhibition function. 
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Various inhibitory effects come into play in waste water treatment processes, which further complicate the 

modelling of an already highly interdependent system. The most commonly modelled inhibitions are: 

1) Competitive uptake inhibition 

   
 

  
  

  

 

Equation 6: Competitive Uptake Inhibition 

Competitive uptake inhibition is prevalent in cases where a population of micro-organisms can metabolize a 

number of different substrates. In essence the substrates can be seen as competing for the attention of the micro-

organisms. As the concentration of the competing inhibitory substrate (  ) tends to zero, the inhibition function 

tends to unity (i.e. no inhibition). Whereas when the concentration of the competing substrate becomes large 

relative to the target substrate (  ), the inhibition function tends to zero (i.e. complete inhibition).  

2) Non-competitive inhibition 

   
 

  
  

  

 

Equation 7: Non-competitive Inhibition 

This is where the existence of a different substrate in solution (which is metabolized by a different functional 

organism group altogether) inhibits the uptake of the target substrate.  

3) pH inhibition  

     
 

                       

                               
 

Equation 8: pH Inhibition 

Where 

IpHZj = pH inhibition function of functional organism group j 

pHULZj = Upper pH level of 50% inhibition 

pHLLZj = Lower pH level of 50% inhibition 

pHr = Reactor pH 

 pHj = pH inhibition constant  
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The abovementioned pH inhibition function is described as a two-sided empirical formulation. In AD-FTRW1, 

pH inhibition is applied in this form to all trophic groups. The inhibition function is a “bell-shaped” curve 

distributed about a specified average (the arithmetic mean of the upper and lower pH limits) that ranges from 

zero (complete inhibition) to 1 (no inhibition) (van Zyl 2008).  

4) Temperature inhibition 

Temperature is highly influential on functional organism group activity. For mesophilic anaerobic digestion 

(which operates around 37°C), a deviation of 5°C in either direction can lead to catastrophic failure of the 

digester. The temperature inhibition function applied to all Functional Organism Groups2 (FOG’s) in AD-

FTRW1 is displayed below: 

   
                

                       
 

Equation 9: Temperature Inhibition 

Where: 

IT = Temperature inhibition function 

Tr = Reactor temperature (Kelvin) 

Tj = Temperature inhibition constant 

TUL = Upper temperature at which 50% inhibition is experienced (Kelvin) 

TLL = Upper temperature at which 50% inhibition is experienced (Kelvin) 

 
5) Dissolved hydrogen inhibition 

Dissolved hydrogen gas is the most inhibitory metabolic intermediate in anaerobic digestion. Even at very low 

concentrations, dissolved hydrogen gas inhibits the activity of the hydrogen producing micro-organisms; 

specifically acidogens and acetogens. Propionate reducing acetogens are especially sensitive to dissolved 

hydrogen gas concentration. One such inhibition function for acidogenesis is as follows: 

      
    

        

        
         

 

Equation 10: Dissolved hydrogen inhibition 

Where: 

[H2(aq)] = the dissolved hydrogen concentration (mg/l) 

        
 = hydrogen inhibition constant (mg/l) 

(Sotemann et al., 2006) 
                                                           
2 A Functional Organism Group is defined as a population of micro-organisms within a culture that are responsible for degrading a specific 
substrate within a specific process in anaerobic degradation e.g hexanoic acid acetogenesis. 
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Other dissolved hydrogen inhibition functions have been proposed to represent inhibition of acetogens and can 

be found in the literature of Batstone et al. (2002).  

6) SCFA inhibition 

Finally, the total SCFA concentration in the reactor can reach inhibitory levels; especially for acetoclastic 

methanogens and the propionate reducing acetogens. An appropriate inhibitory function for the modelling of 

this phenomenon is: 

      
 

[   
       

    
]
 

Equation 11: SCFA inhibition 

Where: 

         = Total SCFA concentration in the reactor (mg/l) 

      = Inhibition constant (mg/l) 

c. Physico-chemical process implementation 

Ultimately, an AD model consists of biological reactions which are slow (time constants of the order of days 

and hours) and physico-chemical reactions which are comparatively rapid (time constants of the order of 

seconds and milliseconds). This results in a system of differential equations described as stiff (due to the large 

range of time constants) and introduces complications in the solution of the system of equations. The problem is 

that most numerical integrators for systems of differential equations determine the maximum step size with 

respect to time that will maintain a specified degree of accuracy in the solution. This determination is usually 

based on relative derivative magnitudes for the variables involved in the system of equations. The size of an 

integration time step in a stiff system is thereby limited by the time constants of the rapid reactions which result 

in large time derivatives for their associated variables. In waste water treatment where hydraulic retention times 

(based on biological reaction rate constants) are typically in the order of days resulting in simulations of similar 

magnitudes, these large time derivatives cause integrators to increment in the order of seconds and milliseconds 

resulting in computationally long and intensive simulations that are impractical.  

In order to bypass this problem, the approach is to treat the rapid physico-chemical reactions as equilibrium 

reactions such that they can be described as algebraic equations. This greatly simplifies the solution of the 

system of equations. The motivation for this approach is that, from the slower reaction’s perspective, the faster 

reactions can be considered instantaneous and be assumed to always reach equilibrium before the slower 

reactions terminate for each time step (Rosen et al., 2005). One is then left with a system of differential and 

algebraic equations (DAE) which can be solved more easily than the stiff set of differential equations (Batstone 

et al., 2002). 
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2.5.3 AD-FTRW1 

AD-FTRW1 was developed in 2008 by Dr Pierrie Van Zyl as part of his PhD thesis under the supervision of 

Professor George Ekama and Professor Mark Wentzel. The research was carried out at the University of Cape 

Town’s Water Research Group and the thesis (entitled Anaerobic Digestion of Fischer-Tropsch Reaction Water) 

focussed on the design, construction, performance evaluation and modelling of a lab-scale submerged 

membrane anaerobic bioreactor.   

The model that was developed, referred to as AD-FTRW1, combines COD balances, mass balances, proton 

balances (for pH prediction) and component balances through stoichiometric relations and organism growth and 

death functions in order to describe the complex process of anaerobic digestion of Fischer-Tropsch reaction 

water under dynamic and steady-state conditions (van Zyl 2008).  

The approach was to define various Functional Organism Groups (FOG) responsible for acidogenesis, 

acetogenesis of each SCFA or alcohol that is available in significant proportions in Fischer-Tropsch reaction 

water and Functional Organism Groups responsible for the methanogenic processes. The significant short chain 

fatty acids and other components include acetic acid, propanoic acid, butanoic acid, valeric acid, hexanoic acid, 

ethanol and methanol.  

The biological part of the model describes acidogenesis, acetogenesis and methanogenesis. Significantly the 

only necessary hydrolysis steps are the hydrolysis of urea (which is dosed to provide the N requirements of the 

biomass) and the hydrolysis of inactive endogenous mass. Other than this, there is no other hydrolysis taking 

place as the influent stream only consists of SCFAs and alcohols which are already in a soluble form and 

amenable to either acetogenesis or methanogenesis (van Zyl 2008).  

AD-FTRW1 also represents inter-phase mass transfer in terms of carbon dioxide expulsion/dissolution and the 

weak acid-base system of inorganic carbon, albeit in a simplified manner. 

Biological kinetics include inhibitory effects of temperature, pH, dissolved hydrogen concentration and SCFA 

concentration.  Specific growth rate is described via Monod kinetics. 

Figure 5 presents a schematic outlining the dynamic model metabolic pathways and functional organism groups. 

Sections 2.5.3 (a-c) describe Bioprocesses, Aqueous Chemical Processes and Physical Processes used in AD-

FTRW1 in more detail. 

a. Bioprocesses 

i. Conceptual Model 

As with several bioprocess models, the biomass was classified (according to the transformations that it 

mediates) into the four traditional trophic groups in anaerobic digestion namely acetogens (Zac), acetoclastic 

methanogens (Zam), hydrogenotrophic methanogens (Zhm) and acidogens (Zad) (Figure 5). However, to 

compensate for the range of SCFAs and alcohols in the feed, a specific FOG was assigned to each substrate (van 
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Zyl 2008). Similar to Sotemann et al. (2005) an endogenous death process was included in the model for each 

FOG. Along with unique growth and death rates and substrate utilization capabilities, the FOGs are allowed to 

respond differently to substrate concentrations and environmental conditions. 
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Figure 5: Schematic of Conceptual Model 

Figure 5 depicts the influent characterization, metabolic pathways and Functional Organism Groups of the 

dynamic model (van Zyl 2008).  

The development of the conceptual model was further based on the following assumptions (van Zyl 2008): 

1) All the biomass had an elemental composition of C5H7O2N (McCarty 1975).      

2) All CO2 produced metabolically would be in soluble form (H2CO3) thus: 

      2 Pr 2 2 3oducedCO H O H CO                                                                                            

3) The contribution of CO3
2- to the total carbonate was regarded as negligible in the anaerobic digestion 

pH range of 6.5 – 7.5. 
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4) Only the protonated (non-ionic) form of any SCFA can be metabolized, thus un-protonated (ionic) 

SCFAs need to pick up a proton from a weak acid/base system before metabolism. The fraction of the 

SCFA in the un-protonated form was assumed to be governed by the influent pH. 

 

1 2 2 3 2 3x y x yC H O H CO C H O HCO 

                                                               

5) Urea was the sole nitrogen source for AD-FTRW and was dosed into the reactor feedstock. In the 

operational pH range (6.5-7.5) >99% of the ammonia will be in protonated (NH4
+) form. Thus upon 

entering the reactor urea decomposes rapidly to form protonated ammonia in urea hydrolysis.  

6) Similarly, it was assumed that the NaOH dosed for pH control is converted to carbonate alkalinity upon 

entering the system. Under normal operating conditions, the carbonate system (HCO3
-/H2CO3) 

concentration is significantly (10 times) larger than any other weak acid/base concentration; it was 

assumed that this system would serve as the primary proton source/sink.        

Both assumptions 5 and 6 were confirmed experimentally (van Zyl 2008). The assumptions made above were 

applied in conjunction with the metabolic pathways to derive the dynamic AD-FTRW1 model stoichiometry. 

ii. Stoichiometry 

This section focuses on the reaction stoichiometry of AD-FTRW1. Reactions include hydrolysis and 

acidogenesis of dead endogenous mass, acetogenesis of SCFAs, methanol methanogenesis, acetoclastic 

methanogenesis, hydrogenotrophic methanogenesis, urea hydrolysis, CO2 expulsion/dissolution and conversion 

of hydroxide to carbonate.  

For each biologically mediated reaction, a functional organism group is represented and the growth and death of 

these groups is incorporated. For the sake of brevity, only the overall metabolic reactions of the biological 

reactions and stoichiometry thereof will be reviewed here. 

This section deals with the conversion of the different substrates by each of the FOGs to metabolic end products 

resulting in biomass growth. Associated with each of the 9 growth processes is a corresponding death process.  

The derivation of the bioprocess stoichiometry of AD-FTRW1 followed the basic approach of Sötemann et al. 

(2005). The catabolic pathways of the individual SCFAs, MeOH, EtOH and the slowly biodegradable organics 

(Sbp) produced by anaerobic biomass death and hydrolysis were obtained from literature (Kalyuznhyi, 1997b; 

McCarty, 1975; Batstone et al., 2002; Sötemann et al., 2005). Some of the weak acid-base chemistry (WABC) 

relationships for the system were incorporated into the stoichiometry of each organism group, to reduce the 

stiffness of the system of differential equations and thus computation time. The derivation was extended through 

the integration of ionic speciation (of the carbonate and acid systems) into the bioprocess stoichiometry. This 

process was guided by model assumptions 2, 3, 4 and 6 above (van Zyl 2008). 

The death processes follow the theory laid out by Dold et al. (1980) on endogenous respiration. This theory 

states that organism growth and death happen concurrently at a continuous rate. The ‘dead biomass’ is then 



- 40 - 

classified into two fractions; its unbiodegradable fraction (f) and its biodegradable fraction (1-f). The 

unbiodegradable fraction is known as endogenous residue (Ze) while the other fraction is referred to as 

biodegradable particulate (Sbp) and is hydrolyzed to form substrate for acidogenesis. Traditionally hydrolysis 

and acidogenesis are modeled as two separate processes in anaerobic digestion (Batstone et al., 2002 & 

Sötemann et al., 2005). However in AD-FTRW1, the only biodegradable particulates (Sbp) that enter the system 

are those produced from dead organism mass (van Zyl 2008). It is therefore assumed that Sbp has the same 

composition as that of active biomass i.e. C5H7O2N. The contribution of this organism group is so small that it 

was decided to model both hydrolysis and acidification in a single step (Process 1 in Figure 16).  

The stoichiometry of each of the bioprocesses represented in AD-FTRW1 is reviewed in detail in the sub-

sections that follow. 

2.5.3.a.ii.1 Acetogenesis of Short Chain Fatty Acids and Ethanol 
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]            (van Zyl 2008) 

Equation 12: AD-FTRW1’s Acetogenesis of Short Chain Fatty Acids and Ethanol 

Where: 

F is the fraction of organic acid in dissociated form 

Ds is the electron donating capacity of the substrate  

E is the fraction of biodegradable COD that is converted to biomass 

And 

If      
 
                            

If                            

Note that the above generic equation includes the incorporation of weak acid base chemistry relationships of 

SCFA dissociation, inorganic carbon speciation and dissolved ammonia speciation as they are represented in the 

model. 



- 41 - 

2.5.3.a.ii.2 Acetoclastic Methanogenesis 
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             (van Zyl 2008) 

Equation 13: AD-FTRW1’s Acetoclastic Methanogenesis 

Where Yam is the true organism yield. 

Acetoclastic methanogens, together with acetogens, are the most prominent organisms in the anaerobic digestion 

of FTRW. 

2.5.3.a.ii.3 Hydrogenotrophic methanogenesis 
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(van Zyl 2008) 

Equation 14: AD-FTRW1’s Hydrogenotrophic Methanogenesis 

Where Zhm refers to one mole of biomass, and is also represented by the stoichiometric formula of C5H7O2N.  

2.5.3.a.ii.4 Methanogenesis of methanol 
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 (van Zyl 2008) 

Equation 15: AD-FTRW1’s Methanogenesis of Methanol 

2.5.3.a.ii.5 Hydrolysis and Acidogenesis  
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(van Zyl 2008) 

Equation 16: AD-FTRW1’s Hydrolysis and Acidogenesis 

Acidogenic bacteria are present in significantly reduced concentrations in the anaerobic digestion of FTRW. 

This is due to the fact that the influent organics are already predominantly in a soluble form and therefore the 

role of the acidogens in this context is only to hydrolyze dead biomass. 
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2.5.3.a.ii.6 Organism death 

The death process for each FOG is described by the following stoichiometry: 

    
  
→                 

Equation 17: AD-FTRW1’s Organism Death 

Where the “xx” subscript is adopted to denote the biomass of each FOG separately and so can take on the 

following labels explained in the LIST OF ACRONYMS/A: ad, acHx, acVa, acBu, acPr, acEt, mm, am and hm.  

iii. Process Kinetics (Uptake, Death and Inhibition) 

2.5.3.a.iii.1 Uptake Kinetics 

AD-FTRW1 adopts Monod kinetics to describe substrate uptake. 

2.5.3.a.iii.2  Inhibition Kinetics 

During the development of AD-FTRW1 the most significant inhibitory effects were deemed to be caused by 

temperature fluctuations, pH deviations, as well as by abnormal dissolved hydrogen and SCFA concentrations. 

Below is a summary of the inhibition functions included in the bioprocess kinetics of AD-FTRW1. 

   
        

        
             

      

Equation 18: Typical abbreviated rate expression in AD-FTRW1 

A full representation of the uptake kinetics for AD-FTRW1 with all inhibitory functions included reads as 

follows: 
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Equation 19: Typical comprehensive rate expression in AD-FTRW1 

In AD-FTRW1 it was decided not to include all forms (Temperature, pH, [H2] and [SCFA]) of inhibition for all 
FOGs since certain inhibitions are only applicable to certain FOGS. The kinetics, as applied in AD-FTRW1, can 
be seen in Table 4 on the following page. The functions and their corresponding inhibition parameters were 
obtained from the literature and are presented in Table 5.  
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Table 4: Bioprocess inhibitions 

No: 
Process 

Code 
Process Description 

Active Inhibitions 

          
       

1 ad Hydrolysis and Acidogenesis of Sbp        

       

3 acHx Hexanoic Acid Acetogenesis        

       

5 acVa Valeric Acid Acetogenesis        

       

7 acBu Butyric Acid Acetogenesis        

       

9 acPr Propionic Acid Acetogenesis         

       

11 acEt Ethanol Acetogenesis        

       

13 mm Methanol Methanogenesis       

       

15 am Acetoclastic Methanogenesis       

       

17 hm Hydrogenotrophic Methanogenesis        

Some reasoning for the varying application of inhibitions in the biological processes is supplied in section 

2.5.2b.ii. Importantly pH and temperature inhibition is applicable to all FOGs. 

Table 5: Inhibition Function Constants 

Dissolved Hydrogen Concentration 

        (mol/l) 6.25E-04 

        (mol/l) 1.00E-05 

          (mol/l) 3.50E-06 

Total SCFA Concentration 

          (mol/l) 0.018 

        (mol/l) 0.1 

Temperature Lower Limit (LL) Upper Limit (UL) 

T (K) 305 315 

pH Lower Limit (LL) Upper Limit (UL) 

         4 8 

         6.5 8 

      6.5 8 

 

Van Zyl (2008) 
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2.5.3.a.iii.3 Death Kinetics 

In AD-FTRW1, death kinetics followed the theory of Dold et al. (1980). The reaction rate was simply described 

in terms of first order kinetics as follows. 

         

Equation 20: AD-FTRW1’s death kinetics 

b. Aqueous Chemical Processes  

AD-FTRW1 uses a simplification of the approach developed by Musvoto et al. (2000) in order to represent ionic 

speciation. An approximate representation of the dominant weak acid-base systems (the carbonate, ammonia 

and organic acid systems), was derived for a limited pH range (6.5 – 7.5) and embedded into the stoichiometry 

of the biological reactions. The assumption that the pH will remain in this range is the major limitation of 

AD-FTRW1. 

2.5.3.b.i.1 WABC/Ionic speciation 

SCFA speciation/dissociation was assumed to be governed by the pH of the feed stream and is implemented in 

the model via the F parameter which is the fraction of a specific SCFA in dissociated form. Each of the SCFA’s 

has an individual pKa value and the associated F value is calculated as follows: 
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Equation 21: Fraction of SCFA in dissociated form 

where 

 x = 1 to 6   

Kax = 10-pKax of the SCFA with carbon chain length x  

[H+]feed= Feed proton activity = 10-pHfeed  

For the inorganic carbon weak acid-base system, the contribution of CO3
2- was regarded as negligible in the 

anaerobic digestion pH range (pH 6.5 - 7.5) as outlined in assumption 3 in section 2.5.3a.i above. Instead     
  

was used in the stoichiometry as the dominant inorganic carbon species. 

Both SCFA speciation/dissociation and the inorganic carbon WABC are embedded into the bioprocess 

stoichiometry via the F parameter and     
  respectively.  



- 45 - 

The only weak acid/base chemistry relationships not embedded in the metabolic processes are the conversion of 

hydroxide (OH-) to bicarbonate (HCO3
-) and the expulsion/dissolution of carbon dioxide (also classified as a 

physical process below). 

The conversion of hydroxide to bicarbonate is associated with NaOH dosage in the actual reactor system. It is 

necessary to convert hydroxide alkalinity into carbonate alkalinity such that the model can interpret the dosage.  

            →              
  

Equation 22: Conversion of Hydroxide to Bicarbonate 

The micro-organisms which mediate anaerobic digestion are highly pH sensitive. FTRW needs to be dosed with 

an alkaline cocktail in order to control the pH level in the digester and enhance micro-organism activity. 

The final process in AD-FTRW1 describes the hydrolysis of urea to saline ammonia.  

                    →          
       

  

Equation 23: Urea hydrolysis 

Both of these process rates (hydroxide to bicarbonate and urea hydrolysis) were implemented with first order 

kinetics dependent on the significant reactant in each; hydroxide and urea respectively. The first order kinetics 

are depicted below for clarity; 

          

Equation 24: First order kinetics 

Where the “x” represents either hydroxide or urea (depending on which reaction is being referred to) and Kx 

represents the appropriate rate constant. 

2.5.3.b.i.2 pH calculation 

pH (in AD-FTRW1) is calculated according to the following formula: 
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where; 

   is Henry’s law constant 

    is the partial pressure of carbon dioxide 
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   is the total concentration of inorganic carbon 

    is the first dissociation constant of carbonic acid 

and     is the second dissociation constant of carbonic acid 

The pH calculation scheme is based on an inorganic carbon balance, coupled with equilibrium relationships for 

1st and 2nd dissociation and carbon dioxide expulsion. The calculation uses the bicarbonate concentration as an 

approximation for the total inorganic carbon concentration. While this approximation is effective in the pH 

range of 6.5 – 7.5 where bicarbonate is the dominant inorganic carbon species, the approximation is invalid 

outside of this range.   

c. Physical Processes 

2.5.3.c.i.1 Gas Exchange 

The process of carbon dioxide expulsion/dissolution is represented in AD-FTRW1. Various authors (including 

Rosen et al., 2005) suggested that the forward and reverse reaction can be described by a single equilibrium 

reaction. The formulation, as it is applied in the model, is presented below: 

2*
2 3 2( ) 2

eqCOr
gH CO CO H O                            

Equation 25: Carbon dioxide expulsion/dissolution 

Where 

reqCO2 = rfCO2 -  rrCO2 = KfCO2[H2CO3
*] –KrCO2[CO2(g)]                        

or 

  2 2 2 3 2 2( )eqCO fCO eqCO gr K H CO K CO                                

Where 

       
     

     
 

    

  
 = CO2 Equilibrium Constant  [dimensionless] 

Kh = Henry’s Law Constant     [L.atm.mol-1] 

R   = Ideal Gas Law Constant     [L.atm.(mol.K)-1] 

Tk = Temperature       [Kelvin] 

KfCO2 = CO2 kinetic constant     [1/d] 
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2.5.4 UKZN’s Ionic Speciation model  

Speciation refers to the detailed distribution of total chemical species concentrations between the ionic species 

that exist in their associated weak acid/base systems. The Pollution Research Group at the University of Kwa-

Zulu Natal (through collaboration with UCT’s Water Research Group) has developed an external equilibrium 

speciation model that handles aqueous phase ionic equilibria (weak acid-base chemistry) and ionic pairing that 

is compatible with UCT wastewater treatment models (Brouckaert et al., 2010). The ionic speciation model is 

based on acid-base chemistry and dissolved inorganic carbon chemistry as laid out by Stumm and Morgan 

(1995). As Sasol Technology’s Biological model of Anaerobic Digestion (AD-FTRW1) has adopted the UCT 

approach to waste water treatment modelling, there is significant scope for the integration of this Ionic 

Speciation model with AD-FTRW1. 

The ionic speciation model can be described as an aqueous phase, weak acid/base, solution chemistry model 

dealing with the inorganic carbon, ammonia, acetate and phosphate systems. It has formed an integral part in the 

extension of UCTADM1 to a 3-phase UCTAD model which incorporates a phenomenon that was previously 

unrepresented; mineral precipitation. However precipitation reactions are probably not significant in the 

Anaerobic Digestion of FTRW. 

The interfacing of the ionic speciation model with the biological model is achieved via total component 

concentrations. The reason for this is that total component concentrations are conserved quantities in material 

balance calculations. The ionic components represented in UCT’s 3 phase AD biological model are H+, Na+, K+, 

Ca++, Mg++, NH4
+, Cl-, Ac-, Pr-, SO4

=, CO3
= and PO4

- = and represent the total concentrations of the weak 

acid/base systems concerned. These total concentrations are then speciated into 42 corresponding ionic species 

via the ionic speciation model from which significant process variables such as free and saline ammonia 

(NH3+NH4
+: FSA) released, bicarbonate alkalinity and digester pH can be calculated. 

Studies have shown that ionic speciation reactions in the aqueous phase, as compared to biological and inter-

phase reactions are orders of magnitude faster. For this reason, they can be considered to be at equilibrium at all 

times and they are implemented as such. This divides an AD model (consisting of relevant biological and 

physico-chemical processes) into differential mass balances, which determine the compositions in terms of total 

concentrations, followed by an algebraic equilibrium speciation calculation, which determines the detailed ionic 

composition at each time step. On the following page is an example of equilibrium and mass balance equations 

for ionic speciation. 
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Table 6: Example of Equilibrium and Mass Balance Equations for Ionic Speciation. 

Weak Acid Sub-system 
Aqueous phase equilibrium 

equations 
Mass Balance Equations 

Ammonia 
       

    
     

  

    
 

       
    

    
       

  

       

 

       
         

         
    

(Loewenthal et al., 1989) 

As can be seen in the above table, the total concentration (Nt) of an aqueous ionic system is the sum of the sub-

species making up that system. These total concentrations (Nt) can be calculated through the differential mass 

balance relationships in the biological model. Equilibrium relationships as depicted in column 2 above can then 

be used in order to determine in what proportions the total ionic system concentration speciates into its 

constituents sub-species. Reliable values for equilibrium partition co-efficients Ki are presented in the literature 

for practically all weak acid/base sub-systems of interest in anaerobic digestion modelling. 

The speciation of the total components into their constituent sub-species is achieved via an iterative, numerical 

procedure that accounts for non-idealities in solution via activities. The activity of a dissolved species is a 

measure of its effective concentration in solution and is calculated as a product of its concentration and a species 

specific activity co-efficient as is depicted below for    
 . 

    
       

     
    

Equation 26: Activity calculation 

where; 

    
   :  activity of NH 

  

    
  : activity coefficient of NH 

  

    
   : concentration of  NH 

  

The activity co-efficient is largely a function of temperature and the ionic strength of solution. Debye and 

Huckel developed a theory with which single ion activity coefficients could be calculated on the basis of 

electrostatic interactions between ions and their thermal motion in solution. It must be noted that single ion 

activity coefficients are a calculational construct as an anion can never exist independently in solution but rather 

is always accompanied by its associated cation. For this reason activity coefficients of single ions cannot be 

measured and therefore the Debye-Huckel theory calculates mean activity coefficients for a cation/anion pair 

and therewith allocates single ion activity coefficients on the basis of ionic charge. The use of single-ion activity 

coefficients greatly simplifies calculations (Stumm and Morgan 1995). 
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Equation 27: Extended Debye-Huckel Equation 

Where: 

              
  
   

          
  
    

And  

                                                                             

                                       

                                   

An important parameter to take note of in Equation 27 above is the ionic strength of solution denoted  . 

According to Stumm and Morgan (1995), “Ionic strength is a measure of the interionic effect resulting primarily 

from electrical attractions and repulsions between the various ions in solution.” It is defined by the following 

equation that sums the product of charge and concentration over all anions and cations in solution. 

  
 

 
∑     

   

Equation 28: Ionic strength of solution  

UKZN’s ionic speciation routine does not however make use of the extended Debye-Huckel equation to 

calculate activity co-efficients due its limited applicability (          ). Instead the routine makes use of the 

Davies equation which is more accurate at higher concentrations (       ). The Davies equation is an 

empirical extension of the Debye-Huckel theory and is depicted below. 

          
 (

 
 
 

   
 
 

     )   

Equation 29: Davies Equation 
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The speciation routine also takes into account the temperature dependency of equilibrium constants with use of 

the Van’t Hoff equation depicted below. 

    

  
  

   

   
 

Equation 30: Van’t Hoff Equation 

Reference equilibrium constants (    ) and standard enthalpies of reaction (     used in the Brouckaert et al. 

(2010) subroutine were sourced from the MinteqA2 database. 

2.5.5 WEST 

Modelling was performed using the WEST software version 3.7.6. WEST is an open source waste water 

treatment modelling software with built in differential and algebraic equation solvers. The software consists of 

three platforms; the model editor, the configuration builder and the experimental environment (Vanhooren et al., 

2003).  

Reactor models are conveniently programmed via the model editor interface presented as a Gujer Matrix. This 

makes modelling much faster as the programme is designed to generate the necessary model code (msl files) 

from what is specified in the Gujer matrix. The Gujer matrix is a structured representation of reactions 

(presented in each row), components (presented in each column) and reaction rates (presented in the final 

column) that are involved in a reactor model (Vanhooren et al., 2003). 

The configuration builder, allows the modeller to set up various process configurations that call on different 

models for each unit operation in the process. The software generates unique code for each configuration built in 

this platform and these process models are then executed in the experimentation environment. The dedicated 

code generators help enhance computational speed in the experimentation environment. 

The experimentation environment allows for high-end analysis such as process simulation, parameter estimation 

and sensitivity analysis (Vanhooren et al., 2003). Systems of differential and algebraic equations are solved 

using a selection of numerical integrators. 

2.6 Model Evaluation 

Statistical model evaluation forms an important part of model validation. The performance of models is 

generally evaluated subjectively by human perceptions of how closely the model fits experimental data in the 

context of graphical representations (Schunn et al., 2005). The wastewater treatment modelling field is no 

exception where literature reveals that evaluation of model quality is often based on qualitative comparisons 

between modelled and observed outputs (Hauduc et al., 2011). These subjective evaluations can be unreliable or 

misleading and it is advisable to adopt an objective statistical approach to model evaluation. A quantitative 

approach is not only preferable since it eliminates the existence of human bias in model evaluation but also 
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because it enables the development of automatic calibration and evaluation procedures (Hauduc et al., 2011).  

The approach should consider the trade-off between model complexity and model accuracy with the golden aim 

of achieving the least complex, most accurate model possible (Dochain and Vanrolleghem 2001). The purpose 

of this section is to review different methods of model evaluation with a view to selecting a model evaluation 

approach that is applicable to AD-FTRW2. 

In evaluating candidate models one can adopt two approaches to assess their effectiveness in representing data; 

goodness-of-fit tests or structure characterization methods. 

2.6.1 Structure Characterization 

Dochain and Vanrolleghem (2001) describe structure characterization as the process of selecting the best model 

structure among different model structure candidates on the basis of experimental data. Every process model 

contains two types of error; bias error which is the error introduced by the departure of the candidate model 

from the true underlying model, and variance error, which is caused by the candidate model’s description of 

noise in the limited dataset used for system identification.  In model building the aim is to minimize model 

error; the sum of bias error and variance error. Bias error tends to decrease with increasing model parameters ( ) 

while variance error tends to increase with increasing   and decrease with increasing data points ( ). In this 

way model’s are simultaneously penalized for increased complexity and rewarded for increased accuracy and 

the structure characterization process guides the modeller toward the least complex, most accurate model that 

was alluded to earlier as the golden aim. It must be noted that the number of parameters in a model (   gives a 

direct measure of model complexity. 

Structure characterization methods can be divided into two categories; “a posteriori” structure characterization 

methods and “a priori” structure characterization methods (Dochain and Vanrolleghem 2001). “A posteriori” 

structure characterization methods assess the quality of different model structures once each model has been 

fitted to the data while “a priori” structure characterization methods are capable of differentiating between 

candidate model structures before parameter estimation has taken place. Generally applicable “a priori” 

structure characterization methods include utilizing the pattern recognition capabilities of neural networks and 

Numerical Algorithms for Subspace State Space System Identification (N4SID) (Dochain and Vanrolleghem 

2001). This research aims to develop on an existing Anaerobic Digestion of Fischer-Tropsch Reaction Water 

Model (AD-FTRW1) and, for this reason and due to its complexity it appears that “a priori” structure 

characterization methods will not be applicable. For this reason, “a posteriori” structure characterization 

methods will be reviewed in more detail.  

Various “a posteriori” structure characterization methods consist of criteria that include accuracy and 

complexity terms (such as the Final Prediction Error, Akaike’s Information Criterion and the Bayesion 

Information Criterion), criteria that assess undermodelling (such as the General Information Criterion), 

statistical hypothesis tests (such as the F-test) and Diagnostic Checking (also known as analysis of residuals) 

(Dochain and Vanrolleghem 2001).  
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The criteria based methods allow for model selection via the philosophy that the model with the smallest 

criterion value should be selected. Expressions for the calculation of the Final Prediction Error and Akaike’s 

Information Criterion are depicted below. 
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Equation 31: Final Prediction Error Criterion 
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Equation 32: Akaike’s Information Criterion 

Where: 
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It is clear in the mathematical definition of the final prediction error that the index value increases with 

increasing   and decreases with increasing   and in so doing penalizes model complexity and rewards extensive 

model validation. 

The F-test is one of the most frequently used statistical hypothesis tests to distinguish between various model 

structures. 

                   

           
 

Equation 33: F-test  

The abovementioned test statistic (Equation 33) is compared with the F-distribution of characteristics  

              in order to decide whether the more complex model   provides a significantly (with a 

confidence level of  ) better fit to an experimental data set than model   (Dochain and Vanrolleghem 2001). 

Literature suggests that in order to affect a meaningful comparison the ratio of data-points to parameters (   ) 

should be at least of the order of 5:1 (Schunn et al., 2005). 
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Finally, diagnostic checking can be used as an “a posteriori” structure characterization method. This method, 

which is also referred to as the analysis of residuals, is based on the properties of the noise in the data. In most 

instances the noise (reflected by the prediction errors or residuals) is assumed to be an independent random 

variable. By using the auto-correlation or the run test, diagnostic checking can be used to evaluate the 

independence of the residuals. An outcome of dependence among the residuals translates into a conclusion that 

there are some un-modelled dynamics at play.  

2.6.2 Goodness-of-fit tests 

John von Neumann, one of the foremost mathematicians of the 20th century said, “With four parameters I can fit 

an elephant, and with five I can make him wiggle his trunk”(Dyson 2004). This quote helps to sum up the main 

problem with goodness-of-fit measures for model evaluation. The problem is that goodness-of-fit measures 

usually do not take into account model complexity via the number of free parameters (Schunn et al., 2005). It is 

therefore recommended that in conjunction with goodness of fit measures, researchers always divulge the 

number of free parameters in the underlying model together with the definition used to define a free parameter. 

Numerical goodness-of-fit measures can be divided into two types; measures of deviation from exact data 

location (also referred to as absolute error) and measures of trend relative magnitudes (also referred to as 

correlation) (Schunn et al., 2005). The most frequently used measures of deviation from exact data location and 

trend relative magnitudes are root mean squared deviation (RMSD) and the coefficient of determination (r2) 

respectively (Schunn et al., 2005). Legates and McCabe (1999) suggest that correlation measures should not 

solely be used to assess goodness-of-fit but that they should be coupled with summary statistics and absolute 

error measures (Legates and McCabe 1999). The calculational methods follow and variables, where not 

specified, take on the same meaning as was mentioned above in structure characterization. 

     √
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  Equation 34: Root mean squared deviation 

As can be seen in the formulation of the root mean squared deviation (Schunn et al., 2005), the index gives a 

measure of the mean variance of model predictions about expected data. Via the squaring operation, the index 

penalizes poorly fitted data points more severely than closely fitted data points and also ensures that there is no 

error compensation caused by the summing of positive (over-prediction) and negative (under-prediction) errors. 

The coefficient of determination (r2) is more commonly applied to linear models. Evidence of its application to 

nonlinear models exists but for such cases the use of a pseudo-r2 coefficient is recommended (Schunn et al., 

2005). A general definition of the coefficient of determination is that it is the proportion of variability in the 

dataset that is accounted for by the model. Mathematically this translates into the definition which follows. 
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Equation 35: Coefficient of determination 

 Where: 
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                              (as was previously defined) 

AD models are highly non-linear which presents complications in applying the co-efficient of determination to 

evaluate model/data correlation. 

Hauduc et al. (2011) suggests two other ways of classifying goodness-of-fit criteria. The first classification 

scheme characterizes the criteria according to their underlying mathematical structures into six classes; single 

event statistics, absolute criteria from residuals, residuals relative to observed values, total residuals relative to 

total observed values, agreement between distributional statistics of observed and modelled data, and 

comparison of residuals with reference values and with other models. The second classification scheme is based 

on the characteristic of the model that the criterion exposes namely mean error, bias, large errors, small errors, 

peak magnitude and chronology of events.  

The abovementioned RMSD is an example of an absolute criterion from residuals. Absolute criteria give a 

measure of the deviation in the model outputs as compared to the observed data in the units of the 

observed/modelled data. Relative error criteria on the other hand give a dimensionless measure of errors in the 

model outputs with reference to the observed data. Relative criteria are often preferred since they can be 

compared across various target constituents being modelled in the dataset (Hauduc et al., 2011). 

Selection of relevant goodness-of-fit criteria should take into account the modelling objectives. This research 

deals with the development of an exploratory model (AD-FTRW2) with the primary objective of improving pH 

prediction as compared to its predecessor (AD-FTRW1). This improvement on prediction accuracy of one 

process variable should not come at the expense of the prediction accuracy of the other measured process 

variables. Due to the general and comparative nature of this performance evaluation (AD-FTRW1 vs AD-

FTRW2), a handful of goodness-of-fit criteria are selected out of Hauduc et al.’s (2011) classification schemes 

based on giving a good indication of overall and comparative model performance and are reviewed here. The 

selected criteria encompass measures of mean error, bias error and measures for comparsion of residuals with 

other models. 
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Two possible criteria for characterizing mean error are the Root Mean Square Error/Deviation (RMSE / RMSD) 

or the Mean Square Relative Error (MSRE). These criteria are very similar in that they both eliminate error 

compensation via their squaring operations but a difference lies in the fact that RMSE is an absolute criterion 

(refer to Equation 34 above) while MSRE is a relative criterion. A further difference is that MSRE emphasizes 

larger relative errors. 
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 Equation 36: Mean Square Relative Error 

Where: 

                          

                                          

                                           

Two possible criteria for quantifying bias error include Mean Error (ME) and Percent Bias (PBIAS). In both of 

these measures error compensation can occur and thus they do not give a good indication of the magnitude of 

the errors. They do however give a fair indication of systematic bias in a model whereby a model systematically 

over- or under-predicts. The calculation of these two criteria is outlined below (Hauduc et al., 2011). It can be 

seen that Mean Error is an absolute criterion and Percent Bias is a relative criterion.  
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Equation 37: Mean Error 
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Equation 38: Percent Bias 

A generalized form of a criterion for comparison of residuals with other models is suggested by Hauduc et al. 

(2011) as: 
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Equation 39: Coefficient of Efficiency 

Where: 
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                                          and 

  ̃                                                                 

An example of one of these criterion is the Nash-Sutcliffe Coefficient of Efficiency where    ,     and the 

reference model is defined by the mean of the observed values ( ̃   ̅) and is referred to as the “no knowledge” 

model. These criteria define the improvement of using a certain model when compared to a simpler one. The 

measures range from    to 1 with negative outcomes indicating that the new model leads to worse predictions 

than the reference model, zero indicating no improvement in predictions from the reference model to the new 

model and 1 indicating that the new model describes the observed variable perfectly. A downfall of such criteria 

is that they do not give an indication of the difference in model complexity when comparing the two models. 

2.7 Conclusion of Literature Review  

The literature reveals the following scientific hypothesis: 

The pH prediction in Sasol Technology’s existing AD model will be improved through the incorporation 

of a more comprehensive ionic speciation model. 

Attached to this scientific objective, the engineering objectives of this project will be the development of a 

detailed model describing Anaerobic Digestion of FTRW dubbed AD-FTRW2. This model will have design and 

control implications for these biological processes.   

 

  



- 57 - 

3 RESEARCH METHODOLOGY AND DESIGN 

3.1 The Research Instrument 

As the purpose of the research was to investigate whether the incorporation of a more comprehensive ionic 

speciation model would lead to better pH prediction than in AD-FTRW1, the research naturally adopted a 

mathematical modelling approach. The resultant model (AD-FTRW2) can be classified as a research model, 

with the significance of its development being to explore the effects of the incorporation of new physico-

chemical modelling techniques into the field of AD modelling in an attempt to adequately describe anaerobic 

digestion dynamics. The philosophy that the modelling approach adopted was to produce the simplest (least 

complex) parsimonious (fewest parameters) model that would provide the best fit to experimental data (Olsson 

and Newell 1999). As the model was being developed out of an existing model (AD-FTRW1), the philosophy 

was adapted such that the fewest number of parameters should be added.  

AD-FTRW2 is further based on a mechanistic and deterministic formulation where the actual/believed physics, 

chemistry and microbiology that govern the process together with the fundamental mass conservation laws form 

the theory on which the mathematical descriptions are based. The model is therefore made up of a system of 

differential and algebraic equations. Nutrient uptake reactions are represented differentially as dynamic mass 

balances while the majority of the inorganic chemistry and speciation is represented algebraically according to 

the assumption that these reactions reach equilibrium (Section 2.5.4). AD-FTRW2 follows the structure of its 

predecessors (AD-FTRW1 and UKZN’s ionic speciation model), with the biological model being represented in 

the form of a Gujer matrix in the WEST simulation package and the ionic speciation model implemented as a 

C++ subroutine, and called by the WEST package at each integration step of the biological model. An example 

of the form of the Gujer matrix can be viewed in Figure 10.  

In the development of AD-FTRW2, a similar approach to that described by Siegrist et al. (2002) was followed, 

i.e. the model was (i) developed based on the metabolic pathways of anaerobic digestion; (ii) checked for 

material balance consistency with respect to COD, C, O, H, N and charge; (iii) calibrated and finally (iv) 

validated on actual dynamic flow and load experimental data. This follows the classical model development 

approach as depicted in Figure 6. At this point, for the purposes of clarity, it is necessary to define the use of the 

various terms related to model development. 

1) Model Verification refers to the process of checking the fundamental structure of a model. It is mainly 

concerned with verifying material balance and unit consistency. 

2) Parameter Estimation refers to the initial assignment of values to the model parameters. 

3) Model Calibration refers to the process of adjusting the model parameters to fit an experimental 

dataset. 

4) Model Validation refers to the process of checking the performance of the model on an independent 

dataset (ie a dataset that was not used for calibration). 

5) Model Evauation refers to a statistical analysis of the performance of the model relative to some 

experimental dataset. 
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In the subsequent sections of Research Methodology and Design, tasks related to the development, verification, 

calibration and validation of AD-FTRW2 are outlined in greater detail. 
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Figure 6: AD-FTRW2 model development process 

Adapted from (Olsson and Newell 1999) 
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3.2 Hypothesis Testing 

Hypothesis 

The pH prediction in AD-FTRW1 will be improved through the incorporation of a more comprehensive ionic 

speciation model.  

The testing of the abovementioned hypothesis was done via a simple comparison. On the basis of a chosen set of 

lab-scale data, the model predictions of AD-FTRW1 were compared with the model predictions of the modified 

model, dubbed AD-FTRW2, which includes the comprehensive ionic speciation. The comparative accuracies of 

each model were then evaluated via an F-test in order to prove or disprove the proposed hypothesis. The F-test 

was performed on the basis of the sum of squared residuals developed from the difference between measured 

and predicted variables in the data set. Below is outlined the null and alternate hypotheses from a practical and 

statistical perspective. (The practical perspective is an interpretation of the statistical perspective). 

Null hypothesis (  )  

Statistical perspective: The sum of squared residuals of AD-FTRW1 with respect to pH on the dataset is not 

significantly greater than the sum of squared residuals of AD-FTRW2.  

Practical perspective: AD-FTRW2 does not provide a significantly better fit than AD-FTRW1 with respect to 

pH prediction. 

Alternate hypothesis (  ) 

Statistical perspective: The sum of squared residuals of AD-FTRW1 with respect to pH on the dataset is 

significantly greater than the sum of squared residuals of AD-FTRW2.  

Practical perspective: AD-FTRW2 does provide a significantly better fit than AD-FTRW1 with respect to pH 

prediction. 

3.3 Problem Specification 

The problem specification process is intended to set requirements which guide the model development process. 

The criteria outlined in the following sections define a benchmark for model evaluation while specifications in 

accuracy define a stopping point with regards to model complexity (Olsson and Newell 1999). The work 

involved the further development of AD-FTRW1 to form AD-FTRW2. In essence the problem was to model the 

anaerobic digestion of Fischer-Tropsch Reaction Water.  The specifications for the model (AD-FTRW2) are 

outlined in the following sections. 
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3.3.1 Problem  

Develop and improve Sasol Technology’s existing anaerobic digestion model (AD-FTRW1) through enhanced 

physico-chemical modelling and with special focus on the accuracy of its pH predictions.  

3.3.2 Research Outcome 

AD-FTRW2 - A revised dynamic model of anaerobic digestion of Fischer-Tropsch reaction water that 

incorporates comprehensive ionic speciation modelling and that is able to accurately predict significant process 

variables and effluent characteristics such as reactor pH, reactor alkalinity, biogas production and effluent COD. 

Because (at this stage) this is a research model, no quantitative targets were imposed on the accuracy of the 

model. 

At this stage the purpose of the model is research based, exploring the enhancement of anaerobic digestion 

models through the incorporation of more comprehensive physico-chemical sub-routines and through more 

appropriate waste stream representation. It is foreseen, however, that the work will find use for design, control 

and diagnosis purposes further down the line.  

3.4 Model Development 

Bearing the abovementioned problem specifications in mind, the following objectives for model development 

were identified to address the research problem: 

The primary objective in the model development of AD-FTRW2 was to: 

1) Improve the physicochemical modelling in AD-FTRW1  

This would be achieved by adapting and integrating the existing biological and physico-chemical models: AD-

FTRW1 and UKZN’s ionic speciation model. The combining of the two models required reconciling the 

inorganic components represented in the biological model of AD-FTRW1 with the inorganic components 

represented in the speciation model. It would also be necessary to add some organic acids to the speciation 

model. The following developmental tasks were identified to meet the primary objective: 

i) Adapt the structure of the biological model to allow it to interface with the ionic speciation model 

ii) Tailor the ionic speciation model to suit FTRW (to enhance computational speed) and to allow it to 

interface with the biological model 

iii) Enhance CO2 expulsion/dissolution kinetics  
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The secondary objective in the model development of AD-FTRW2 is to: 

2) Extend the biological modelling in AD-FTRW1 

In developing the biological model two specific areas for development were identified. First of all phosphorous 

uptake was not previously represented in the biological processes. It was undertaken to include it in the 

bioprocess stioichiometry so that nutrient dosage and detailed ionic speciation of the phosphorous weak 

acid/base systems could be modelled. This would require the re-derivation of all bioprocesses in AD-FTRW1 so 

that the biomass representation (CkHlOmNnPp) included phosphorous and such that this was coupled with the 

uptake of some sort of phosphate ion in the biological reactions. Bearing this process in mind, it was undertaken 

to code in a parameterized biomass formula to make the model more versatile. Further to this, a model reaction 

for formate digestion needed to be proposed and coded into the biological model due to the fact that it had been 

recognised as a significant component in FTRW. In short, the following developmental tasks were identified: 

i) Included phosphorous uptake in the biological process stoichiometry via a parameterized biomass 

formula 

ii) Model biological formate digestion 

The specific tasks relating to model development that have been identified above are discussed in detail in the 

sections that follow. First of all an investigation into the simplifications imposed on the model via the modelling 

assumptions is undertaken. It was then deemed to be necessary to closely interrogate the structure of AD-

FTRW1 under the philosophy that one needed to fully understand the previous work prior to attempting to 

improve on it. In light of this, a section is dedicated to the make-up of AD-FTRW1. Lastly, the model 

development section looks specifically at the biological model development and the physico-chemical model 

development relevant to AD-FTRW2. 

3.4.1 Modelling Assumptions   

In terms of the model development, it was important that all the model assumptions were clearly outlined as this 

gives an indication of where the model is or is not applicable. The following important assumptions were made 

and their justification follows in italics: 

1)  Hydrodynamics of Anaerobic Digestion is assumed to be “perfectly mixed”.   

Due to relatively large Hydraulic Retention Time’s and the well-mixed mixing characteristics of the lab-scale 

Anaerobic Membrane Bioreactor from which experimental data was sourced for this study, it was deemed a 

reasonable approximation to model the Anaerobic Digester as a perfectly mixed system. This has major 

implications in terms of model simplification because it means that the bioreactor can be represented as a 

lumped parameter system without the associated complications of concentration, temperature and biomass 

distribution gradients 

. 
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2) Energy Balances are not considered in the model.  

Due to the sensitivity of micro-organisms to temperature fluctuations, the lab-scale Anaerobic Membrane 

Bioreactor from which data was sourced for this study was maintained at relatively constant temperatures and 

temperature was a closely monitored process variable. For Mesophilic Anaerobic Digestion this corresponds to 

37°C. For this reason, there was no need to include an energy balance in the model as temperature change was 

negligible and this is the parameter which connects the mass and energy balances through the temperature 

dependence of reaction rates. Since it was so closely monitored there is not necessarily a need to model 

temperature as it can be measured and used as an input to the model. Temperature dependence of biological 

reaction rates are then taken into account by a temperature inhibition factor. 

3) Liquid phase ionic speciation reactions are assumed to be at equilibrium at all integration steps. 

Ultimately, an AD model consists of biological reactions which are slow (time constants of the order of days 

and hours) and physico-chemical reactions which are comparatively rapid (time constants of the order of 

minutes, seconds and milliseconds (Stumm and Morgan 1995)). This results in a system of differential equations 

described as stiff (due to the large range of time constants) which introduces complications in the solution of the 

system of equations as the size of an integration time step is limited by the time constants of the rapid reactions. 

In order to bypass this problem, the generally accepted approach, is to treat the physico-chemical reactions as 

equilibrium reactions such that they can be described as algebraic equations which greatly simplifies the 

solution of the system of equations. The motivation for this approach is that, from the slower reactions 

perspective, the faster reactions can be considered instantaneous and be assumed to always reach equilibrium 

before the slower reactions terminate for each time step (Rosen et al., 2005). One is then left with a system of 

differential and algebraic equations (DAE) which can be solved more easily than the stiff set of differential 

equations (Batstone et al., 2002). 

3.4.2 AD-FTRW1 

To fulfil objectives, all 21 bioprocesses represented in AD-FTRW1 had to be rederived for inclusion in AD-

FTRW2. The procedure for all processes was similar; the derivation for a representative process, acetoclastic 

methanogenesis is presented in detail here. 

The result of adapting the generalized anaerobic digestion bioprocess formulation (Ekama 2009) to acetoclastic 

methanogenesis was treated as the starting point. 
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Equation 40: Acetoclastic Methanogenesis 

According to model assumption 2 (from section 2.5.3a.i), all CO2 produced was re-expressed in its soluble form 

(H2CO3) by combining it with some of the H2O produced. The speciation of the influent SCFAs was accounted 
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for by incorporating a parameter (F) into the bioprocess stoichiometry that described the degree of dissociation 

of each SCFA. In terms of F, Acetic acid speciates according to the following relationship: 

      →                    
             

Equation 41: Acetic acid dissociation 

By representing CO2 in its soluble form and substituting Equation 41 into Equation 40 with     
  treated as the 

proton sink, some simple algebraic manipulations yielded the final model equation for acetoclastic 

methanogenesis in AD-FTRW1. 
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Equation 42: AD-FTRW1’s Acetoclastic Methanogenesis 

A full representation of AD-FTRW1 in its Gujer matrix form is presented in the appendix. 

It is interesting to note how the interaction of the organic processes with the inorganic chemistry was previously 

implemented in AD-FTRW1. The defining assumptions relating to the previous modelling approach are 

summarized below:  

 All CO2 produced biologically is represented in its soluble form (H2CO3).  

 The carbonate system acts as the proton source/sink for all weak acid base chemistry reactions. 

 The contribution of CO3
2- is regarded as negligible in the anaerobic digestion pH range. 

 Only the protonated (non-ionic) form of any SCFA can be metabolized. 

 An un-protonated (ionic) SCFA must first pick up a proton from the carbonate system prior to its 

metabolism:  

 The degree to which influent SCFA’s dissociate is determined by the influent pH. 

 Biomass is represented in the bioprocess stoichiometry as         

In summary, AD-FTRW1 uses a simplification of the approach developed by Musvoto et al. (2000) in order to 

represent ionic speciation. An approximate representation of the dominant weak acid-base systems (the 

carbonate, ammonia and organic acid systems), was derived for a limited pH range (6.5 – 7.5) and embedded 

into the stoichiometry of the biological reactions. The assumption that the pH will remain in this range is the 

major limitation of AD-FTRW1.  

3.4.3 AD-FTRW2 

In the revised model (AD-FTRW2), all assumptions with regards to the inorganic carbon weak acid base system 

were dropped and all SCFA speciation that was previously integrated into the stoichiometry was removed. This 
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meant that the organic process stoichiometry which would be implemented in the newly coded Gujer matrix 

would be similar to Equation 40; a direct result of the derivation techniques outlined byEkama (2009). 

The new approach is to make no assumptions as to the speciation of any relevant species, but rather to actually 

calculate the ionic speciation via a “C  ” script that is coded with the relevant equilibrium chemistry and that 

communicates with the WEST solver at each integration step in order to improve the accuracy of the organic – 

inorganic interactions represented in the model.  

In short, to extend the pH range that can be modeled, AD-FTRW2 uses an ionic speciation sub-model which 

considers all the relevant acid/base subsystems, and is capable of predicting pH over the range 3.5 to 9 

(assuming that the relevant chemical analyses are available and accurate). 

In the sections that follow, the model development tasks associated with the construction of AD-FTRW2 are 

described in detail. The description is divided into those tasks related to biological model development and then 

those tasks related to physico-chemical model development although oftentimes this distinction was not so clear 

when performing work necessary to interface the biological model with the ionic speciation sub-routine.   

a. Biological model development 

i. Total Components 

A set of total components was selected and implemented on the biological side of the model in order to make 

the WEST model compatible with the ionic speciation sub-routine. A single component that was representative 

of each significant ionic system had to be selected and included as a WEST model component. This component 

would represent the total concentration of all of the sub-species relevant to that ionic system. This task is 

theoretically related to the physico-chemical model development but since it involved significant changes to the 

biological model structure, it has been included as part of the work done in Biological model development. The 

set of components selected for use in programming the Gujer Matrix in WEST are depicted in the table on the 

following page. 
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Table 7: Biological Model Components 

No: Component Formula   No: Component Formula 
1 Water          Particulates   

  Solubles     18 Sbp            

2 Hydrogen       19 Zad           

3 Proton       20 ZacHx           

4 Carbonate    
      21 ZacVa           

5 Ammonium    
     22 ZacBu           

6 Phosphate    
      23 ZacPr           

7 Hexanoate        
     24 ZacEt           

8 Valerate       
     25 Zam           

9 Butyrate       
     26 Zmm           

10 Propionate       
     27 Zhm           

11 Acetate       
     28 Zfd           

12 Formate     
     29 Ze           

13 Sodium ion          Gases   

14 Chloride        30 Carbon Dioxide      
15 Ethanol          31 Methane      
16 Methanol               

17 Urea                   

 

It is important to note that components have been included to allow for the representation of phosphorous uptake 

by the biomass; phosphate and CHlOmNnPp. For values of     in the parameterized biomass formula, the 

biomass model component depicts the uptake of phosphorous during the bioprocesses in which it is involved. 

This was not possible in AD-FTRW1 where phosphorous uptake was ignored. The inclusion of the 

parameterized biomass formula also helps to make the model more versatile in that, should the biomass of 

different systems exhibit a significantly different make-up in terms of its C, H, O, N and P constitution, the 

model can be easily adapted via these parameters. This means that the stoichiometry of the bioprocesses is also 

linked to these parameters.  

ii. Selection of basis for stoichiometry formulation: substrate 

consumption vs. biomass production 

During the development of the model, another complication was erroneously encountered in the development of 

the bioprocess stoichiometry. It is discussed here to highlight the effect of such an error and to highlight the fact 

that care must be taken in biological systems to avoid such mistakes. In the first iteration of biological process 

stoichiometry derivation the basis for the derivation was inconsistently defined. In all the processes the 

stoichiometry was derived in terms of 1 mole of substrate being consumed instead of in terms of 1 mole of 

biomass being produced (which was the convention used in AD-FTRW1). While this does not have any bearing 
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on the ratios in which reactants and products are consumed and produced in a reaction, this does have 

implications on the rates at which various components are assimilated and the comparative speeds of the various 

processes. The convention to use depends on the formulation of the rate expressions and since the rate 

expressions were sourced from AD-FTRW1 the same fundamental convention had to be adopted. To re-express 

all bioprocesses in AD-FTRW2 in terms of 1 mole of biomass being produced was identified to be a time-

consuming process. Instead the rate expressions in AD-FTRW2 were scaled by the reciprocal of the 

stoichiometric co-efficient for the FOG in each bioprocess (refer to Table 8 in Bioprocess Kinetics). This meant 

that although the stoichiometry still appears in the Gujer Matrix in terms of 1 mole of substrate being utilized, 

the rate expressions were scaled such that the net effect on the differential equations was equivalent to AD-

FTRW1. This is because the rate of consumption or generation of a component in a process is given by the 

product of that component’s stoichiometric co-efficient and the rate expression. It is important to use a 

consistent approach across bioprocesses and models such that rate parameters are comparable intra-model and 

inter-model. The representation of bioprocess stoichiometry on the basis of 1 mole of biomass being produced is 

recognized as a significant part of the model development process.     

iii. Bioprocesses Stoichiometry 

Sotemann et al. (2006) presented a generalised formulation for the stoichiometry of anaerobic processes. This 

formulation was adopted to derive all of the bioprocess stoichiometry in AD-FTRW2. As before, the procedure 

will be illustrated using acetoclastic methanogenesis as an example.   

As with all the biologically mediated transformations, acetoclastic methanogenesis consists of an anabolic part, 

which describes the growth of biomass on a substrate, and a catabolic part, which provides the energy for the 

process. Adapted to the components used in this model, the generalized expression for the anabolic reaction 

becomes: 
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Equation 43: Generalized biological anabolic reaction 

where 4 2 3 5S x y z a b       and 4 2 3 5B k l m n p       are the redox electrons per mole for the 

two organic components and are usually referred to as the electron donating capacity of the substrate and the 

electron accepting capacity of the biomass respectively. 

For acetoclastic methanogenesis, the substrate C H O N Px y z a b  is acetic acid, so x=2, y=4, z=2 and a=b=0. Also 

acetic acid is represented in the model component scheme as H+ + Ac-. The product C H O N Pk l m n p  is biomass. 
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The accompanying catabolic reaction is 3 2 4CH COOH CO  + CH  which, in terms of the model components 

becomes:  

+ - =
2 3 4H + Ac H O 2H + CO  + CH   

Equation 44: Acetoclastic methanogenesis catabolic reaction 

Finally, the reactions are linked in the combination  anabolic 1 catabolicAM AMY Y    , where YAM is the 

yield coefficient for acetoclastic methanogens.  Collecting the terms for each component provides the resultant 

bioprocess stoichiometry and the coefficient expressions to be entered into the Gujer matrix of the model 

(Equation 46). The same general procedure was applied to all the biological reactions. 

In order to make the process of coding in WEST faster and less prone to human error, generalized expressions 

for the relevant bioprocesses (acetogenesis and methanogenesis) were derived and coded into Matlab in order to 

exploit the software’s “symbolic maths” capabilities. This meant that the code could be run by simply entering 

in substrate and biomass parameters and it would automatically generate the correct stoichiometric coefficients 

for the components relevant to that bioprocess. For the purposes of maintaining a parameterized biomass 

formula for increased model versatility, only the substrate parameters (CxHyOzNaPb) were specified in the 

execution of the code. Since there was only one process relevant to hydrolysis and acidogenesis it was not 

necessary to formulate a generalized equation for this bioprocess. The derivation for these generalized 

expressions can be found in the appendix along with the associated Matlab codes. (Refer to sections 7.2, 7.3 and 

7.4 in appendix). 

Using the aforementioned generalized expressions for the relevant bioprocesses in the context of the matlab 

bioprocess stoichiometry generators, the biological side of the model was coded in WEST via the Gujer Matrix 

platform in the Model Editor. 

The stoichiometry generators were designed using components that were compatible with the ionic speciation 

sub-routine that was to be integrated with the biological model as was discussed in section 3.4.3a.i above. The 

stoichiometry for every bioprocess that was represented in AD-FTRW1 was regenerated and recoded for AD-

FTRW2. Below is a comparison of the structure of the bioprocesses in AD-FTRW1&2. Equation 45 and 

Equation 46 give the representations of the acetoclastic methanogenesis process in the two models and help to 

highlight the structural changes that were necessary in order to integrate the biological model in AD-FTRW2 

with the ionic speciation sub-routine. 
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Equation 45: Acetoclastic Methanogenesis AD-FTRW1 
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Equation 46: Acetoclastic Methanogenesis AD-FTRW2 

1) In Equation 45, the chemical entities NH4
+, HCO3

- and H2CO3, represent free ionic species.  

2) In Equation 46, all chemical entities representing dissolved species (C2H3O2
-, NH4

+, CO3
=, PO4

-3, H+) 

no longer represent the ionic species, but rather total dissolved concentrations (i.e. total acetate, total 

ammonia, total carbonate, total phosphate etc.). These total dissolved concentrations are inputs to the 

speciation sub-model, which calculates the free species concentrations in the underlying sub-systems. 

A full representation of the biological model of AD-FTRW2 is depicted in the Gujer matrix presented in the 

results section. Below is a list of all remaining bioprocess stoichiometric equations in AD-FTRW2. In terms of 

the reaction stoichiometry, all components are expressed on the right hand side of the reaction equation. This 

means that all reactants have negative co-efficients and all products have positive co-efficients. Furthermore the 

bioprocess stoichiometry was developed on the basis of 1 mole of substrate being utilized in each reaction so as 

to standardize the approach and make reaction kinetic constants more comparable. Superscripts to the biomass 

components in the equations below of the form     show the abbreviated symbols used for those biomass 

FOGs. In Equation 47 for instance     is the symbol for the biomass responsible for acidogenesis. 

Abbreviations such as ad, achx etc are explained in the List of Acronyms/Abbreviations at the beginning of this 

thesis but assume logical abbreviations of the biological process in which they are involved.  
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Equation 47: Acidogenesis 
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Equation 48: Hexanoic Acid Acetogenesis 
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Equation 49: Valeric Acid Acetogenesis 

 → (
       

  
)         

                
  (          )      

 

 (            (
          

  
   )   )   

 (            (
          

  
  )   )    (      (

  

  
  ))   

  

  (
         

  
)   

  (
         

  
)   

   (          )   

Equation 50: Butyric Acid Acetogenesis 

 

 → (
       

  
)         

                
                 

 

 (            (
          

  
  )   )   

 (             (
          

  
  )   )  

  (       (
  

  
  )       )   

    (
         

  
)   

  (
         

  
)   

  

 (          )   

Equation 51: Propionic Acid Acetogenesis 
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Equation 52: Ethanol Acetogenesis 
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Equation 53: Methanol Methanogenesis 
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Equation 54: Acetoclastic Methanogenesis 
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Equation 55: Hydrogenotrophic Methanogenesis 
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Equation 56: Urea Hydrolysis 
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Equation 57: Formate Digestion 
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Equation 58: Biomass Death 

Where the “xx” subscript is adopted to denote the biomass of each FOG separately and so can take on the 

following labels explained in the List of Acronyms/Abbreviations: ad, acHx, acVa, acBu, acPr, acEt, mm, am 

and hm. 

iv. Bioprocess Kinetics 

The rate expressions for the various bioprocesses in AD-FTRW2 were sourced from AD-FTRW1. A difference 

exists in the fact that the rate expressions have been scaled by the reciprocal of the stoichiometric co-efficient to 

the FOG for that process. This difference is explained later on in the discussion (section 0). The kinetics as they 

were applied are depicted in Table 8. All parameters take on the same values that were presented in the literature 

review of AD-FTRW1. It must also be noted that only growth kinetics are depicted in the table. All death 

kinetics are first order with respect to that FOG and due to their simplicity they are not depicted below. 

Table 8: AD-FTRW2 Bioprocess Kinetics 
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v. Final differential equations 

AD-FTRW2 was developed on the WEST modelling software. In this modelling software system reactions are 

conveniently programmed in the Gujer matrix interface of the model editor environment.  As was mentioned in 

the literature review, the Gujer matrix is a structured representation of reactions (presented in each row), 

components (presented in each column) and reaction rates (presented in the final column) that are involved in a 

reactor model (Vanhooren et al., 2003). The body of the Gujer matrix contains the stoichiometric coefficents of 

the components in the various reactions and the rates of each reaction in the final column.  WEST then has an 

automated code generator which uses this structured representation (Gujer matrix) to generate the set of 

differential equations governing the system. Since all differential equations have a similar form it is considered 

repetitive and unnecessary to present the entire set of differential equations. Instead a generalized structure of 

the differential equations is presented here. 
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Equation 59: Generalized structure of differential equations in AD-FTRW2 

Where: 

   is the mass of component   in the reactor 

   is the mass flow of component   into or out of the reactor  

         is the volume of the reactor 

  
  is the stoichiometric coefficient of component   in reaction   

And    is the specific reaction rate of reaction   on the basis of reactor volume and in terms of mass 

b. Physico-chemical model development 

i. Ionic Speciation 

In order to reduce computational time whilst maintaining a good level of accuracy in the model, it was decided 

to come up with a criterion for the inclusion of ionic species, based on a Fischer-Tropsch Reaction Water 

Analysis. The information on which the results are based is the Synthetic Fischer-Tropsch Reaction Water 

recipe (van Zyl 2008) which can be found in the appendix (refer to section Error! Reference source not 

ound.). 

An inorganic component analysis was inputted into MinteqA2 in order to retrieve the equilibrated mass 

distribution of the inorganic species in the wastewater. Following the MinteqA2 analysis, conclusions could be 

made as to which inorganic systems and sub-species to include in the ionic speciation model tailored for 

Fischer-Tropsch Reaction Water. The importance of being selective in this regard is in order to reduce the set of 
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included ionic species so as to minimize computational time. The rationale behind their exclusion is that due to 

their insignificantly low concentrations they have no effect on the system. It must also be noted that the criteria 

presented below are a starting point and that it is likely that it will be necessary to refine these further (especially 

considering that inhibitory effects can be significant at parts per billion concentrations).  

Criteria for Inclusion of Ionic Species: 

1) Only components with a total concentration of greater than 1 mg/l will be included in the sub-
routine.  

2) Subspecies within a certain system will only be included if they constitute greater than 1% of the 
total component concentration. 

The ionic speciation model is based on acid-base chemistry and dissolved carbon dioxide chemistry as laid out 

by Stumm and Morgan (1995).  The interfacing of the ionic speciation model with the biological model is 

achieved via total component concentrations, which are the appropriate quantities to use in material balance 

calculations. The ionic components represented in the AD-FTRW2 biological model are H+, CO3
=, NH4

+, PO4
- =, 

Hx-, Va-, Bu-, Pr-, Ac-, Fm-, Na+, Cl- and represent the total concentrations of the ions concerned. These total 

concentrations are speciated into 28 corresponding ionic species concentrations, from which significant process 

variables such as alkalinity and pH can be calculated. 

Figure 7 on the following page shows the new component setup in AD-FTRW2 and how these components 

interface with the new ionic speciation routine. 
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Figure 7: Overview of AD-FTRW2 Model Structure 

 

 



- 76 - 

ii. Carbon Dioxide Expulsion/Dissolution 

The process of carbon dioxide expulsion/dissolution is represented in both AD-FTRW1 and AD-FTRW2 by 

Henry’s Law pseudo-equilibrium kinetics. This is an adaptation from the previous implementation in AD-

FTRW1 which on close interrogation was deemed to be unrealistic. With reference to section 2.5.3.c.i.1 in the 

literature review on Gas Exchange, it can be seen that previously, the driving force for the process was defined 

as a difference between two concentrations (        and      ) calculated on the basis of reactor volume as 

opposed to the difference between the liquid phase concentration of       and its equilibrium concentration for 

a defined partial pressure of     in the gas phase; as is the classical Henry’s Law approach. The kinetics for 

Carbon dioxide expulsion/dissolution were thus reformulated as: 

        (          

     

           
) 

Equation 60: AD-FTRW2’s carbon dioxide expulsion/dissolution kinetics 

Where: 

   is the Henry’s Law constant 

     

           
 gives a measure of the partial pressure of     in the vapour space on the basis that the only gases 

produced in significant quantities during anaerobic digestion of FTRW are     and    . 

And       is the kinetic constant for this pseudo-equilibrium formulation and describes how quickly the 

reaction proceeds towards equilibrium. 

The Henry’s law constant was sourced from the MinteqA2 database but since it did not have it in the form in 

which it was applied in AD-FTRW1&2, the constant was calculated from constituent reactions and then 

adjusted according to the Van’t Hoff equation for temperature correction. This was necessary as the constants 

from the database were for 25°C and the mesophilic anaerobic digester was operated at 37°C. 

It was then realised that     and     were not the only gases present in the vapour space of the digester. At 

37°C, a significant partial pressure of water vapour would exist. This is given by the vapour pressure of water at 

37°C and 1 atm and was calculated from the Antoine equation. 

This meant that the partial pressure of     (expressed in the kinetics) had to be adjusted to account for the 

existence of water vapour in the head-space. The adaptation of the kinetics to account for this phenomenon is 

shown from the original starting point of pseudo-equilibrium, Henry’s Law kinetics: 

1)         (              
) 

2)         (          
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3)         (           (             ) 
     

           
) 



- 77 - 

 Where      represents       which is the total pressure of the system and therefore (             ) 

represents the partial pressure that can be attributed to     and    . 

Instead of introducing more parameters into the model to account for the partial pressure of water vapour, it was 

decided to lump these effects into the Henry’s law constant: 

4)   

      
     (      

       ) 

This yielded the finalized kinetics of: 

5)         (          
           

           
) 

For a full description of the calculations involved in the development of the carbon dioxide 

expulsion/dissolution kinetics refer to section 7.7 in the appendix. 

3.4.4 Model Configuration: Anaerobic Membrane Bioreactor 

Reactor

Clarifier

Splitter

NaOH Dosage

FTRW Feed

Sludge Recycle

Sludge Waste

Effluent

Make-up / Equilibration Tank

CO2 

Feed Preparation West Configuration

 

Figure 8: ADFTRW1&2 Model Configuration of lab-scale AnMBR 

The above-shown model configuration was applied in AD-FTRW2 to represent the Anaerobic Membrane 

Bioreactor. The configuration was based on the experimental setup from which the lab-scale data was sourced to 

validate the model (Figure 9). Notably the configuration is divided into two parts; Feed Preparation and WEST 

Configuration. 

The feed files were prepared based on the experimental data supplied by Van Zyl (2008). In the generation of 

the experimental data synthetic Fischer-Tropsch reaction water was prepared. It was then dosed with alkalinity 

to raise the pH to that of actual FTRW (3.77) and conditioned with nutrients to render it amenable to anaerobic 

digestion. The feed rate, NaOH dosage rates (for pH control) and sludge wastage rates were all recorded and 

available in the experimental dataset and formed inputs to the models. To prepare the feed files it was 
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endeavoured to understand the experimental procedures to determine if there were any modelling implications 

caused by them.  

Feed preparation 

It was recognized that an equilibration step was required prior to reaction due to the practical consideration that, 

in the experimental make-up of the synthetic FTRW, alkalinity dosage resulted in a significant liberation of CO2 

prior to the feedstock being fed to the reactor. This meant that the model feed file could not simply be compiled 

by accounting for all constituents in the synthetic FTRW recipe but also had to account for the loss of CO2 

encountered in its make-up. The equilibration of the feed file was performed externally to the model by 

calculating the equilibrated mass distribution of the synthetic FTRW with use of the MinteqA2 software. 

 

WEST Configuration 

- Experimentally NaOH was dosed as required in order to control reactor pH. This was modelled as a 

separate input node.  

- Experimentally sludge was wasted as required in order to maintain the correct MLSS concentration for 

optimal membrane performance. Due to the fact that the reactor system is mixed, the sludge waste was 

modeled as a direct split from the reactor effluent. 

- Since the emphasis of this modelling work was placed on the biological and physico-chemical 

description of the system, it was decided to model the membranes as an ideal splitter. The 

configuration thus assumes that the membrane system (Figure 9) results in 100% solids retention and 

was therefore modelled as a clarifier with 100% solids retention and then recycle.  

3.5 Model Verification 

Model verification was performed by bioprocess atomic balancing and a reaction rate unit consistency check. 

The process revealed a number of errors or bugs in the programming of the model which were corrected at this 

point. 

Atomic balancing was performed for each bioprocess in the model. Because the process stoichiometry is 

parameterized by the variable biomass formula and the yield coefficient for the process, atomic balancing was 

achieved on the basis of a specified biomass formula and yield coefficient. These were specified according to 

the parameters used to validate the model; a biomass formula of          and the yield coefficient identified 

for the process during the literature review. C, H, O, N and P balances were then derived and checked according 

to the conservation of matter. 

A reaction rate unit consistency check was then undertaken for each bioprocess. It was checked that all reaction 

rates were in the units of   

   
.  
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3.6 Experimental Design 
In terms of AD-FTRW2, experimental data required for model validation was sourced from previous lab-scale 

work done during the development of AD-FTRW1. There was therefore no requirement for experimental design 

during the course of this study. 

3.7 Parameter Estimation and Model Calibration 
In reality an Anaerobic Digester being modelled will be subject to a variation in its model parameters due to 

micro-organism acclimatization, population growth, and feed variations. For a model to be useable, it must be 

possible to easily update the model parameters. Further to this, a complex design model (such as an AD model) 

has to be reduced to a point where its parameters can be identified, given available plant data (Olsson and 

Newell 1999). In this study, parameter estimation was achieved via a comprehensive literature survey and 

rigorous model calibration techniques were not undertaken. The stoichiometry of each FOG in the dynamic AD-

FTRW2 model is dependent on two constants, namely the yield (Yj) and the unbiodegradable fraction of 

endogenous biomass (f). Since the dynamic model is time dependent, a second set of kinetic constants is 

required namely; the maximum specific growth rate (umaxj), the half saturation constant (Ksj) and the endogenous 

decay rate (b). The latter three parameters are required to characterize the process rate equations. In parameter 

estimation, the values for the stoichiometric and kinetic parameters were identified via a literature survey of the 

work on which this thesis is a development and are depicted in Table 9 below.                  

Table 9: Dynamic AD-FTRW2 model constants 

FUNCTIONAL ORGANISM GROUP 

STOICHIOMETRIC KINETIC 

BIOMASS 

YIELD (Y) 

ENDOGENOUS 

RESPIRATION 

RATE (B) 

MAXIMUM 

SPECIFIC 

GROWTH 

RATE (µMAX) 

HALF 

SATURATION 

CONSTANTS 

(KS) 

[molbiomass/m

olsubstrate] 
[1/d] [1/d] [mol/L] 

Acidogenesis Zad 0.1074 0.041 0.8 0.00666 

Acetogenesis (Hx) ZacHx 0.0474 0.015 1.18 0.0066 

Acetogenesis (Va) ZacVa 0.0496 0.015 1.53 0.00186 

Acetogenesis (Bu) ZacBu 0.0558 0.015 2.268 0.003125 

Acetogenesis (Pr) ZacPr 0.0376 0.015 1.1 0.01023 

Acetogenesis (EtOH) ZacEt 0.0832 0.015 1.15 0.000128 

Acetoclastic Methanogenesis Zam 0.0157 0.037 1.15 0.0145 

Methanol Methanogenesis Zmm 0.0127 0.037 1.15 0.0145 

Hydrogenotrophic 

Methanogenesis 
Zhm 0.004 0.01 1.2 0.0006 

Van Zyl (2008) 
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3.8 Model Validation 

To validate AD-FTRW1, a 44 day extract from a 700 day experimental dataset was used. The system was 

subjected to dynamic flow and load conditions, and no nutrient deficiencies or membrane fouling occurred in 

this period. The model was then evaluated in terms of  the correlation of model predictions versus experimental 

data with respect to i) alkalinity ii) pH iii) biogas production and iv) effluent SCFA concentration. 

3.8.1 Data Source 

Data needed for the validation of AD-FTRW2 was sourced from the previous study on the development of AD-

FTRW1 by Van Zyl (2008). Sampling methods were therefore governed by the previous study’s operating 

procedures and were investigated in order to determine what effects their sampling methods had on the study. 

The Dynamic models (AD-FTRW1 and AD-FTRW2) were validated on a dataset generated on an experimental 

setup designed, built and operated at the UCT water research facilities. The experimental setup consisted of a 23 

litre lab-scale Submerged Anaerobic Membrane Bioreactor (AnMBR) treating synthetic Fischer-Tropsch 

Reaction Water. Experimental data on the various process variables was collected once daily. 

A further complication in the experimental dataset was the lack of experimental data between day 25 and day 36 

for reactor alkalinity and effluent SCFA concentration. The reason for the missing data was not clear but since 

this was the only available dataset with which to validate the models, this problem had to be worked around. It 

must be stated that there were no missing data points for the other measured process variables of pH, biogas 

production and mixed liquor suspended solids. 

a. Reactor specifications 

The Submerged AnMBR had a liquid hold up of ~23 L. It included three 200x300 mm (A4-size) submerged 

Kubota® flat panel ultrafiltration membranes (0.45µm) to achieve effectively 100% solids-liquid-separation. 

Biogas from the headspace was circulated via a coarse bubble diffuser at a rate of 750 l/m2/h to sparge the 

membranes and so reduce fouling. Excess biogas was vented via a water trap release valve and through a 

cumulative gas meter to monitor biogas production. A critical flux of 4.3 l/m2/h, which could be maintained 

without specific membrane cleaning procedures, was identified for the system. 

The reactor design is illustrated in Figure 9. The reactor shell had three sections; (i) the biogas headspace which 

has a NaOH dosage point for pH control, (ii) the middle section with effluent collection manifold and FTRW 

feed point (the membranes were connected via silicon tubing to the effluent manifold), (iii) the bottom section 

with the membrane housing and a waste line for withdrawing sludge in order to control sludge age. 

 

 



- 81 - 

Biogas Counter

Biogas Recycle

Head Space

Compressor

Liquid Volume

Effluent Line

Membrane

Course Bubble 

Diffuser

Sludge Waste 

Line 

Feed Line

NaOH Dosage 

Point

 

Figure 9: Reactor Setup 

b. Operating Conditions  

Table 1 shows typical operating conditions that were used. 

Table 10: AnMBR Operating Conditions 

 OPERATING VARIABLE UNIT TYPICAL RANGE 

1 Feed Flow-rate l/d 12-35 

2 Organic Loading Rate kgCOD/m3
Vr/d 2-25 

3 Sludge Age d 60-500 

4 pH Dimensionless 6.5 – 7.5 

5 Temperature (mesophilic) °C 36-38 

6 Pressure (gauge) mmH2O 20-150 

 

c. Feedstock 

The AnMBR was fed a synthetic FTRW consisting of C2 to C6 SCFA’s, ethanol and methanol and was 

conditioned with nutrients and some alkalinity (~800 mgCaCO3/L) to render it amenable to anaerobic digestion 

and to raise the pH to that of actual FTRW (3.77). A study was undertaken to determine the nutrient 

requirements, and it was shown that N, P, S and Fe were of primary importance in the AD-FTRW system, and 

were dosed as macro nutrients (~ 50, 10, 4, 1 mg/lfeed respectively). Necessary micronutrients included Cu, Zn, 

Mn, Co, B and Mo (µg/l levels). The only other input was a NaOH solution (100gNaOH/l) which was dosed 
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directly into the reactor to control pH. The feedstock was prepared in bulk in a make-up tank and then fed to the 

system as required. 

3.8.2 Selection of initial conditions 

An equivalent set of initial conditions was established for AD-FTRW1 and AD-FTRW2 by using a built-in 

function in WEST. The modelling software has the functionality to set end values to initial conditions. This 

effectively copies the state variables at the end of a simulation to the initial conditions for the next simulation. 

With a random starting set of initial conditions that resulted in a stable simulation (no errors), AD-FTRW2 was 

run for a long period on a constant feed file. The constant feed file was constructed as the arithmetic mean of the 

44 day experimental data set for all inputs. In doing so the model had time to respond to the inputs and traverse 

towards a more realistic steady-state. The justification for this approach was that the reactor had a predefined 

range of operating conditions and should the model be run on a typical feed regime for an extended period of 

time, this should result in reactor state variables that are more representative of the system. Since a full 

analytical characterization of the reactor contents was not possible this was the best alternative method to 

establish initial conditions for the integrator. This was successfully achieved for AD-FTRW2 and the initial 

conditions were then transformed with respect to the different component setup in AD-FTRW1 such that an 

equivalent set of initial conditions was applied in this model.  

3.8.3 Model Evaluation Approach 

In hypothesis testing, it was decided that structure characterization methods should be used as opposed to 

goodness-of-fit tests. The justification behind this approach was that these methods provided a means of 

evaluating model performance based on both model complexity and model accuracy whereas the goodness-of-fit 

tests reviewed distinguished between the models based solely on model accuracy. It was decided that out of the 

structure characterization methods, statistical hypothesis testing would be carried out using the F-test modified 

for model comparison. It was concluded that this test was the only reviewed approach that could determine 

whether improvement in model performance was a result of a significantly better underlying model or whether 

the improvement could be attributed to a random occurrence where the dataset was coincidently closer to the 

predictions of the developed model. 

The reviewed F-test for model comparision could not be directly applied to this situation due to the fact that the 

number of fitted parameters in each model was the same; this leads to zero in the denominator (     ) of the 

reviewed F-statistic for model comparison (Equation 33). Instead a variation of the classical F-test to compare 

distribution variances as laid out by (Davies 1947) was employed. Under the assumption that the model errors 

(        ) are normally distributed, an estimate of the variance in each model’s prediction errors could be 

quantified as the sum of squared residuals divided by the model’s degrees of freedom. The degrees of freedom 

are defined as the number of data points less the number of free parameters (   ).  
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Equation 61: A measure of variance for model errors 

Here some careful definition of “free parameters” is required. Anaerobic Digestion models are highly complex 

with large numbers of stoichiometric and kinetic parameters. One approach to defining “free parameters” is to 

regard any constant term in a model as a free parameter. In Anaerobic Digestion models this approach is often 

not feasible as it places unrealistic demands on the amount of experimental data required to affect a meaningful 

statistical comparison. With this approach the number of free parameters in AD-FTRW1 and AD-FTRW2 

would be in the region of 70. Literature suggests that in order to affect a meaningful comparison the ratio of 

data-points to parameters (   ) should be at least of the order of 5:1 (Schunn et al., 2005). This means that one 

would require in excess of 350 days of data (on the basis of one data-point per day) to effect a meaningful 

comparison. For a system that is prone to periodic upsets and system failure, Anaerobic Digestion modelling 

does not lend itself to the use of such an ambitious definition of a free parameter. Further to this, it is argued that 

many of the constants in an Anaerobic Digestion model are theoretical constants that are not altered as part of 

the model calibration procedure. This is especially true for the integrated ionic speciation modelling which 

depends on theoretical equilibrium constants. For the abovementioned reasons, a “free parameter” in this 

research is defined as any parameter that was changed in the calibration of the models. Using this definition, it 

was necessary to identify which model parameters were adjusted to calibrate the models. For a list of model 

constants refer to section 7.5 in the appendix.  

In this research, parameter estimation was performed via a literature review with special focus on the previous 

work of van Zyl (2008). As part of this work, the models (AD-FTRW1 and AD-FTRW2) did not undergo a 

model calibration procedure but instead were validated using the parameters sourced directly from the literature 

(van Zyl, 2008). The purpose of this study is to discover whether more detailed ionic speciation modelling leads 

to better pH prediction and for this reason all other elements of the models (AD-FTRW1 and AD-FTRW2) 

including the model parameters had to be the same. So, in order to discover which parameters were adjusted to 

calibrate the models, it was necessary to review what was done during the calibration of AD-FTRW1 in the 

study by van Zyl (2008).  

The previous work had applied maximum specific growth rates (    ) and endogenous decay rates (  ) for the 

various FOG’s directly from literature. These parameters did not form part of the calibration procedure. This 

was justified by the fact that variation on these parameters in an anaerobic system is minimal (van Zyl 2008).  

     and    for each bioprocess are therefore not regarded as free parameters in this study. With use of WEST’s 

auto-calibration capabilities, a steady-state calibration was performed on the yield coefficients (  ) for each 

FOG. Following this process batch test experimental data was collected to allow for calibration of the half-

saturation constants for each FOG (   ). These calibration steps revealed that only the yield co-efficients and 

half-saturation constants were adjusted as part of the calibration procedure and, for this reason, they will be 

regarded as the only free parameters in each model. For 9 biological growth processes in the model, this gave a 

resultant 18 free parameters in each model on which to base the statistical comparison. 
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The F-test is then dependant on two quantities; the critical F-value (     ) which defines the acceptance and 

rejection regions with respect to the null hypothesis and the F statistic (     ) which is compared to the critical 

F-value to draw a conclusion for the hypothesis test. The F-statistic is defined as the ratio of variances between 

two normal distributions where the larger variance always appears in the numerator (Davies 1947).  The F-

statistic for this specific case is detailed below. 

       
  

 

  
   

    

    

    

    

 

Equation 62: F-statistic 

The critical F-value, against which the F-statistic is compared to draw a conclusion on the hypothesis test, is a 

tabulated quantity that depends on the significance level of the test ( ), the degrees of freedom in the numerator 

(    ) of the F-statistic and the degrees of freedom in the denominator (    ) of the F-statisitic. These 

values can easily be sourced from excel with the following calling function: 

              

Equation 63: Excel calling function for critical F-values   

Where: 

                         

                                        

                                          

The hypothesis test can then result in two conclusions: 

1. If            then the variances are deemed to not be significantly 
different. 

2. If            then the variances are deemed to be significantly different. 

Model evaluation did not end at the conclusion of hypothesis testing. Other goodness of fit measures were also 

selected and calculated in order to quantify the overall performance of each model with respect to the specific 

dataset used for model validation. While hypothesis testing could evaluate whether these differences were more 

generally significant, the goodness of fit measures could still quantify these differences with respect to the 

dataset used for validation and expose underlying characteristics of the models. The goodness of fit measures 

were selected to evaluate mean error, bias error and to compare model residuals for the specific dataset. For 

each of these model characteristics (mean error and bias error) both an absolute and a relative criterion were 

selected to give an indication of error in terms of the measured variables and to enable comparison of errors 

across target constituents. To evaluate mean error in the models Root Mean Square Error (Equation 34) and 

Mean Square Relative Error (Equation 36) were selected. The criteria selected to measure bias error were the 
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absolute measure of Mean Error (Equation 37) and the relative measure of Percentage Bias (Equation 38). 

Finally the criterion used to compare the residual errors between the models was the Co-efficient of Efficiency 

(Equation 39) with    ,    ,             and the reference model  ̃          .      
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4 RESULTS 

The results section encompasses the outcomes of model development, comparative model performance and statistical model 

evaluation. 

4.1 Results of Model Development 

The results of model development are divided into biological model development and physico-chemical model development. 

This section then concludes with a summary of the results pertinent to model development. 

4.1.1 Biological Model Development 

The Gujer Matrix representation of AD-FTRW1 (Figure 16 in section 7.6 in the appendix) consists of 27 components and 21 

processes. In AD-FTRW2, the Gujer Matrix representation, consists of 31 components and 22 processes. The sources of the 

increased number of components are phosphate representation, Na+ and Cl- () and formate representation (with its associated 

FOG). OH- (in AD-FTRW1) is replaced by H_t (in AD-FTRW2) and CO3_t replaces H2CO3 and HCO3
- in the new Gujer 

Matrix formulation. You will notice that in AD-FTRW2’s Gujer matrix formulation (Figure 10 on the following page) both 

Na+ and Cl- while represented as part of the component list do not take part in any of the processes represented in the Gujer 

Matrix. It is, however, necessary to include them in the Gujer matrix as it serves as a way of declaring them as variables in 

WEST since they are used as calculational mechanisms in the ionic speciation routine to fix ionic strength. In terms of the 

change in number of processes, two extra processes (a growth and a death process) are associated with the newly incorporated 

formate digestion while process 20 in Figure 16 (hydroxide to bicarbonate) is removed due to the fact that it will be dealt with 

in the ionic speciation routine in AD-FTRW2. A full representation of the Gujer matrix for AD-FTRW2 is presented on the 

following A3 page.  
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Figure 10: Gujer matrix representation of AD-FTRW2 
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4.1.2 Physico-chemical model development 

The most significant part to the physico-chemical model development included the development of the 

equilibrium based ionic speciation subroutine that enabled detailed modelling of SCFA dissociation, the 

carbonate system, the phosphorous system and the ammonia system. Development was then focused on 

the accurate representation of carbon dioxide expulsion/dissolution kinetics. Refer to section 7.9 in the 

appendix for the detailed code of the ionic speciation sub-routine.  

 

4.1.3 Summary of Results for Model Development 

The table below shows a comparison of the model features in AD-FTRW1 and AD-FTRW2. The 

differences reflect the results of the model development performed during the course of this study. 

Table 11: Comparison of features in the AD-FTRW1 and AD-FTRW2 models 

 AREA OF DIFFERENCE AD-FTRW1 AD-FTRW2 

1 Implementation of Ionic Speciation 

Chemistry 

Integrated into bioprocess 

stoichiometry 

Speciation sub-routine 

  Equilibrium based Equilibrium Based 

2 Acid/base chemistry SCFA dissociation SCFA dissociation 

  Carbonate system Carbonate system 

  Ammonia system Ammonia system 

   Phosphorous system 

3 pH range of applicability 6.5 – 7.5 3.5 – 9.0 

4 Biomass Formula Fixed Variable (parameterized) 

                     

5 Phosphorous uptake Not considered Represented 

6 Formate Digestion Not considered Represented  
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4.2 Comparative Model Performance 

In addressing the research hypothesis, this part of the results section explores the efficacy of the two 

different approaches adopted in AD-FTRW1&2 to integrating the physico-chemical speciation processes 

with the biological model. Through a comparative model performance exercise an assessment is made as 

to whether the revised approach to physico-chemical integration (in AD-FTRW2) has resolved the 

shortcomings experienced in the preliminary approach (in AD-FTRW1).  

The comparison of AD-FTRW1 vs AD-FTRW2 was performed with the rationale that all elements of 

AD-FTRW1 should be left unchanged besides the handling of physico-chemical modelling. For this 

reason, all of the abovementioned features (in Table 11) besides those directly related to physico-

chemical modelling were “switched off/equated” to effect a just comparison. In other words the biomass 

formula was set to C5H7O2N in both models (automatically removing phosphorous uptake in AD-

FTRW2) and formate digestion was excluded from the bioprocesses. 

To compare AD-FTRW1 and AD-FTRW2, a 44 day extract from a 700 day experimental dataset was 

used. The system was subjected to dynamic flow and load conditions, and no nutrient deficiencies or 

membrane fouling occurred in this period. The models have been evaluated in terms of  the correlation of 

model predictions versus experimental data with respect to i) alkalinity ii) pH iii) biogas production iv) 

effluent SCFA concentration and v) mixed liquor suspended solids. It must be noted that, due to the fact 

that the experimental data was sourced from a different study, confidence intervals could not be 

determined for the experimental data. It was assumed that the experimental data was accurate.  

In terms of computational time AD-FTRW1 was significantly faster than AD-FTRW2 in its simulations. 

Speeds were dependent on the type of integrator used and results for two integrator types are presented in 

the table below for the 44 day simulation. 

Table 12: Comparative Model Computational Speeds 

MODEL 
INTEGRATOR 

CVODE RK4ASC 
STIFF NON-STIFF  

AD-FTRW1 28.9 s 9 min 08 s 1 min 23 s 
AD-FTRW2 2 min 7 min 32 s 2 min 40 s 

 

It must be noted that the models were initialized with equivalent conditions, as far as possible given the 

different model components. The biomass and substrate components are substantially the same, however 

the ionic compositions could not be made identical due to the different component frameworks. In 

relation to this it was decided to present all simulated results from day 2 onwards, as the initial 

assumptions were too influential on the initial parts of the simulations.  
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The results of the comparisons are detailed below. 

4.2.1 pH: AD-FTRW1 vs AD-FTRW2 

 

Figure 11: pH 

AD-FTRW1 presents a root mean squared error (RMSE) on pH of 0.27 as opposed to 0.16 in AD-

FTRW2. From a quantitative perspective this translates into a 40% improvement in pH prediction. A 

percentage bias (PBIAS) of -3.27% in AD-FTRW1 and 1.5% in AD-FTRW2 is indicative of systematic 

over-prediction and under-prediction respectively. The small values of percentage bias indicate that bias 

error should not be a problem in pH prediction for either of the models. Hypothesis testing carried out on 

pH revealed that AD-FTRW2 produced a significantly better fit to the data at a 95% confidence level.  
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4.2.2 Alkalinity: AD-FTRW1 vs AD-FTRW2 

 

Figure 12: Alkalinity 

The models both describe experimental reactor alkalinity closely. AD-FTRW2 performs better in this 

area with a root mean squared error (RMSE) of 611.54 vs that of 690.20 mgCaCO3/l in AD-FTRW1. The 

reason for the lack of experimental data between day 25 and day 36 is that alkalinity was not measured 

over that period. The same is true for effluent SCFA concentration over the same period below. As was 

the case with pH prediction, percentage bias (PBIAS) reveals that AD-FTRW1 systematically over-

predicts by approximately 10% in the area of reactor alkalinity while AD-FTRW2 systematically under-

predicts by a similar amount for the same variable. Hypothesis testing revealed that although AD-

FTRW2 performs better in predicting alkalinity on this data set, the difference is not statistically 

significant. 
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4.2.3 Effluent SCFA Concentration: AD-FTRW1 vs AD-FTRW2 

 

Figure 13: Effluent SCFA Concentration 

Both models predict the effluent SCFA concentrations very similarly. The root mean squared error 

(RMSE) of AD-FTRW1&2 on effluent SCFA concentration are 237.97 and 243.49 mgHAc/l 

respectively. This is in line with the visually apparent closeness of the models to one another. AD-

FTRW1 predicts this variable marginally better than AD-FTRW2. Both models systematically under-

predict this process variable with a percentage bias (PBIAS) of approximately 48% for AD-FTRW1 and 

44% for AD-FTRW2. 

The apparent difference in smoothness of the two curves is simply a function of the plot precision used in 

the recording of this data. It is not dependent on any differences in model formulation or integrator 

settings and does not influence the calculation of any of the statistical properties since these are based on 

the point value of the model at the same time as each experimental point. 
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4.2.4 Biogas Production: AD-FTRW1 vs AD-FTRW2 

 

Figure 14: Biogas Production 

Modelled biogas production correlates well with the experimentally measured data. AD-FTRW2 

performs best in predicting this process variable with a root mean squared error (RMSE) of 41.35 l/d. 

AD-FTRW1 shows a root mean squared deviation of 54.6 l/d. This is indicative of a 25% improvement 

on biogas prediction. Although a marked improvement in the predictive capacity of the model with 

respect to this variable, statistical hypothesis testing indicates that the improvement is not significant at a 

95% confidence level. It is visually apparent that both AD-FTRW1 and AD-FTRW2 systematically 

under-predict biogas prediction with percentage bias values of 21% and 16% respectively. Another 

interesting observation is that the profiles generated by both models are very similar however AD-

FTRW2 tends to lead AD-FTRW1 in responding to changes in the data. The reason for this is not clear 

but it may be related to the kinetic approach to some speciation processes in AD-FTRW1 as opposed to 

the equilibrium approach applied comprehensively to AD-FTRW2.  
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4.2.5 Mixed Liquor Suspended Solids: AD-FTRW1 vs AD-FTRW2 

 

Figure 15: Mixed Liquor Suspended Solids  

As with effluent SCFA concentration, both AD-FTRW1 and AD-FTRW2 show very similar 

correspondences with the experimental mixed liquor suspended solids data. The root mean squared errors 

on this variable were 2.16 g/l for AD-FTRW1 and 1.98 g/l for AD-FTRW2. Percentage bias values in the 

region of -2% for AD-FTRW1 and -1% for AD-FTRW2, indicate that both models display very little bias 

error on this variable in the dataset. The marginal improvement in AD-FTRW2’s performance on this 

variable as compared to AD-FTRW1 is not significant at a 95% confidence level.  
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4.3 Model Evaluation 

In distinguishing between the performance of AD-FTRW1 and AD-FTRW2, conclusions as to the 

significance of their differences were drawn from the F-test method of hypothesis testing. Various other 

goodness-of-fit measures were also used to analyze the performance of AD-FTRW1 and AD-FTRW2 on 

this specific dataset. The results from these analyses are represented in the tables below. 

Table 13: Model Evaluation Goodness-of-fit Measures 

    Goodness-of-fit Absolute Criteria 

Model Characteristic Mean Error Bias Error   

Statisitcal Index RMSE ME   

Output Unit AD-FTRW1 AD-FTRW2 AD-FTRW1 AD-FTRW2   

pH - 0.27 0.16 -0.24 0.11   

Alkalinity [mgCaCO3/L] 690.20 611.54 -484.95 375.46   

Biogas Flow Rate [L/d] 54.60 41.35 47.24 35.76   

VFAe (mgHAc/l) 237.97 243.49 130.99 119.25   

MLSS g/l 2.16 1.98 -0.57 -0.25   

       
    Goodness-of-fit Relative Criteria 

Model Characteristic Mean Error Bias Error Model Comparison 

Statisitcal Index MSRE PBIAS CE1,2 

Output Unit AD-FTRW1 AD-FTRW2 AD-FTRW1 AD-FTRW2 AD-FTRW1vs2 

pH - 0.0014 0.0005 -3.27 1.50 0.65 

Alkalinity - 0.03 0.02 -11.78 9.12 0.21 

Biogas Flow Rate - 0.06 0.03 20.95 15.86 0.43 

VFAe - 0.26 0.29 48.61 44.26 -0.05 

MLSS - 0.0054 0.0045 -1.84 -0.81 0.16 
 

For each model characteristic (Mean Error and Bias Error), an absolute and a relative criterion were 

selected to quantify these characteristics. This allows one to understand the characteristics in terms of the 

units of the measured variable via the absolute criteria and then allows comparison of these 

characteristics across variables via the relative criteria. 

 

As can be seen in the above table, according to the root mean squared error index (RMSE), the revised 

model (AD-FTRW2) performs more accurately in predicting all of the model outputs investigated except 

for the effluent Short Chain Fatty Acid concentration (VFAe). Notably (on the basis of RMSE) there is 

approximately a 40% improvement in pH prediction accuracy and a 25% improvement in biogas 

production prediction. Mean Square Relative Error (MSRE), also a measure of mean error but in relative 

terms, shows that both models are most accurate in predicting pH and least accurate in predicting VFAe. 

The hierarchy in accuracy for both models according to MSRE from most accurately modelled to least 

accurately modelled is pH > MLSS > Alkalinity > Biogas Flow Rate > VFAe. 
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Bias error in each of the models for the given dataset was quantified with the Mean Error (ME) and 

Percentage Bias (PBIAS) criteria. On the basis that measures of error in these criteria are defined as 

observed variable less predicted variable, a negative outcome reflects a systematic over-prediction and a 

positive outcome reflects a systematic under-prediction. AD-FTRW2 under-predicts all of the measured 

variables except Mixed Liquor Suspended Solids (MLSS) which is marginally over-predicted. Due to the 

very low percentage bias outcomes for both pH and MLSS in AD-FTRW2, it can be said that the model 

displays negligible bias error for these variables. Bias error can be said to be significant in AD-FTRW2 

for the variables Alkalinity, Biogas Flow Rate and VFAe. Notably bias error for pH and Alkalinity shifts 

from systematic over-prediction in AD-FTRW1 to systematic under-prediction in AD-FTRW2. This 

indicates a marked change in the underlying models governing these variables. These variables would be 

most significantly influenced by the ionic speciation modelling in AD-FTRW1 and AD-FTRW2 which is 

the area that this study has changed most markedly. 

 

Finally the co-efficient of efficiency (CE1,2) gives a means of directly comparing the performance of each 

of the models on the given dataset with a value of 1 indicating perfect performance (with respect to AD-

FTRW2), zero indicating no improvement in performance from the reference model and negative values 

indicating negative improvement with respect to the reference model. The reference model in this 

instance was taken as AD-FTRW1. The co-efficient of efficiency highlights that AD-FTRW2 presented 

an improved performance on all of the measured variables except VFAe with the greatest area of 

improvement being in the area of pH prediction.   

Table 14: Hypothesis Test Parameters 

    Hypothesis Testing 

Statisitcal Index Degrees of Freedom Sum of Squared Residuals Measure of Variance 

Output Unit AD-FTRW1&2 AD-FTRW1 AD-FTRW2 AD-FTRW1 AD-FTRW2 

pH - 26 3.25 1.15 0.13 0.04 

Alkalinity - 14 15244100.60 11967520.50 1088864.33 854822.89 

Biogas Flow Rate - 26 131161.07 75241.52 5044.66 2893.90 

VFAe - 14 1812185.57 1897193.05 129441.83 135513.79 

MLSS - 26 205.19 172.21 7.89 6.62 
 

With reference to the methodology outlined in Section 3.8.2, a hypothesis test was carried out by means 

of an F-test to establish whether the improvements seen in the predictive capacity of AD-FTRW2 were 

significant as compared to the predictions of AD-FTRW1. The test hinges on a ratio of two variances 

which were calculated as the quotient of the sum of squared residuals over degrees of freedom. All of 

these measures are depicted in Table 14 above. Two important notes are the differing degrees of freedom 

between the modelled variables and the fact that the sum of squared residuals is reduced from AD-

FTRW1 to AD-FTRW2 for all variables except VFAe. The implication of the latter was that the F-test 

was not performed on VFAe due to the fact that there was clearly no improvement on the predictability of 

this variable. The degrees of freedom are calculated as the difference between the number of data points 
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and the number of free parameters in each model (   ). The reason for the fact that this quantity 

alternates between 26 and 14 for the different variables is that the dataset used for model validation had 

12 days of data missing for alkalinity and effluent volatile fatty acid concentration. 

Table 15: Hypothesis Test Conclusions 

    Hypothesis Testing 

Statisitcal Index F-test statistic Critical F Value F-test conclusion 

Output Unit AD-FTRW1 vs 2 AD-FTRW1 vs 2 AD-FTRW1 vs 2 

pH - 2.83 1.93 significantly_different 

Alkalinity - 1.27 2.48 not_significantly_different 

Biogas Flow Rate - 1.74 1.93 not_significantly_different 

VFAe - 
   

MLSS - 1.19 1.93 not_significantly_different 
 

Table 15 above depicts the results of the hypothesis test on each target constituent. It was carried out at a 

significance level of       . The F-test, which takes into account model complexity together with 

model accuracy, reveals that AD-FTRW2 is only significantly better in predicting pH. Under the 

assumptions highlighted in the section on Model Evaluation Approach, the statistical analysis supports 

the research hypothesis that “The pH prediction in Sasol Technology’s existing AD model (AD-

FTRW1) will be improved through the incorporation of a more comprehensive ionic speciation 

model (AD-FTRW2).” 
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5 DISCUSSION  

Anaerobic digestion, as a treatment option, has significant operational and cost benefits when compared 

to an activated sludge unit treating a similar effluent. These include reduced energy input, energy 

recovery from biogas and low sludge production.  

 

Reduced energy input (as compared to activated sludge systems) is as a consequence of the fact that 

anaerobic digestors do not require aeration. Aeration is coupled with a significant energy cost due to the 

fact that it requires blowers to force air into the system. In the Sasol wastewater treatment processes it is 

also speculated that aeration results in volatilization of many of the organics in the wastewater. This is an 

environmental concern as it implies a displacement of the contaminants in the wastewater whereby water 

pollution becomes air pollution with no intermediate treatment.  

 

Lower sludge production is a consequence of the fact that biomass yield co-efficients are lower in 

anaerobic systems. Further to this, anaerobic membrane bioreactors (the reactor technology for which 

AD-FTRW1 and AD-FTRW2 were specifically developed), have an increased advantage in that they 

have a significantly reduced land footprint. This stems from the fact that the membrane systems enable 

increased sludge retention times resulting in better acclimated biomass that is more efficient in digesting 

the organics typically present in that system’s feedstock. This increase in digestion efficiency leads to a 

reduction in the required hydraulic retention times and therefore smaller reactors. As was mentioned 

previously the drawbacks to anaerobic digestors are that they are difficult to control, prone to system 

failure and they lack disturbance rejection ability. The solution to these drawbacks is seen to lie in 

accurate mathematical modelling of these systems that will lead to advanced model-based process 

control. It is in light of this philosophy that this research was undertaken and the implications of the steps 

taken in this research are discussed in greater detail in this section.  

 

The enhanced modelling depicted by the comparative results of AD-FTRW1 versus AD-FTRW2 has 

industrial implications in the realms of research and development, process design, operation and control. 

- Coupled modeling and experimentation in the context of optimal experimental design has the 

potential to speed the technological development process in this field. 

- The enhanced process model (AD-FTRW2) could assist in the design of new anaerobic digestion of 

Fischer-Tropsch reaction water facilities.  

- From an operation and control perspective, AD-FTRW2 could assist in advanced model-based 

control to improve process disturbance rejection. Further to this, the model could be used to 

optimize alkalinity and nutrient dosage, which has proven to be the major operating cost in 

anaerobic digestion of Fischer-Tropsch reaction water.   

 

The significance of this work from a research perspective in the anaerobic digestion modelling field is 

that the developed model (AD-FTRW2) addresses limitations identified in preceding AD models and 
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specifically in ADM1. The enhanced physico-chemical modelling achieved by integrating a 

comprehensive ionic speciation subroutine introduces the modelling of non-ideality through ion activity 

corrections and ion pairing; both model features that were lacking in ADM1 (Batstone et al., 2012). The 

validation of AD-FTRW2 on experimental data sourced from a lab-scale digester treating industrial 

effluent of a pH of approximately 3.77 shows that the method of physico-chemical modelling applied in 

this research gives indications of representing low pH systems well. This should improve the capability 

of the model for simulating digester failure; a limitation identified in ADM1 whose pH system is only 

valid for dilute systems (Batstone et al., 2012). While the better modelling of digester failure is 

indicated, this needs to be validated with appropriate reactor failure experimental data that was not 

available in this research. AD-FTRW2 is also significant in that it shows a strong interaction between 

gas transfer (carbon dioxide expulsion and dissolution), ionic speciation and consequently pH in its 

modelling results. The interaction of these systems is known to be significant (Batstone et al. 2012) but 

is not always modelled as such. Finally, AD-FTRW2 handles the modelling of the phosphorous weak 

acid-base system; another limitation identified in ADM1. 

5.1  Accounting for higher organic acids in the speciation sub-routine 

In comparing the modelling approaches of AD-FTRW1 versus AD-FTRW2, it is seen that AD-FTRW1 

built kinetic considerations and speciation chemistry into the biological process stoichiometry. In 

contrast, AD-FTRW2 adopts the philosophy of keeping speciation chemistry and bioprocess 

stoichiometry separate but interactive through its ionic speciation sub-routine. Apart from the apparent 

performance advantages depicted in the results section, another advantage of this approach is that in the 

event of a modelling errors/inaccuracies the root of the error will be easier to find as the model structure 

is not as convoluted. 

In developing the ionic speciation sub-routine, a problem was encountered in the sourcing of information 

on the ionic interactions across weak acid/base subsystems for the longer chain SCFA’s (valerate and 

hexanoate). The trend in the equilibrium constants from acetate to hexanoate was investigated in order to 

draw some conclusions as to how the longer chain SCFA’s speciation behaviour would possibly compare 

to the shorter chain SCFA’s (acetate, propionate and butyrate) for which comprehensive speciation data 

was available. It was noticed that the equilibrium constants for the various acids in the homologous series 

tended to level out after propionate (refer to Figure 17 in the appendix). On the basis of this investigation 

it was assumed that the longer chain fatty acids (valerate and hexanoate) would behave similarly to 

butyrate (the longest SCFA for which comprehensive speciation data was available) from an ionic 

speciation perspective. For the purposes of the ionic speciation sub-routine these acids were lumped 

together and treated as if they were all butyrate. It must be noted that even though these components were 

lumped together in the ionic speciation sub-routine, for the purposes of the integration of the bioloigical 

processes they remained independent. 
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5.2 Factors influencing validity of the comparison between the two models 

Once AD-FTRW2 was built, a number of modelling considerations had to be accounted for before a fair 

comparison could be effected between AD-FTRW1 and AD-FTRW2. The feed files for the models had 

to be prepared and a set of equivalent initial conditions had to be determined such that the integration 

could proceed and such that both models began at a similar state.  

5.2.1 Equilibration of feedstock  

The models (AD-FTRW1 and AD-FTRW2) were run with both the equilibrated feed files and the non-

equilibrated feed files to investigate the effect of this consideration on the models performance. The 

results of both models on the basis of the non-equilibrated feed files reflected elevated biogas production 

rates (caused by the increased liberation of carbon dioxide within the system) and lower pH predictions. 

Fundamentally, the correct modelling approach was to run the models on the equilibrated feed files as 

was discussed in Section 3.4.4 and these are the only results that are presented in the thesis. Both models’ 

performances were generally improved by the equilibration of the feed files. This was especially true for 

pH prediction. This process highlighted the importance of investigating sampling methods and 

quantifying their effect on experimental data. 

5.2.2 Missing experimental data 

In model evaluation on alkalinity and effluent SCFA concentration, the missing data was handled by 

basing the statistical criteria on the periods for which there was experimental data; days 1 to 24 and then 

days 37 and 44. This meant that the evaluation on these variables simply omitted the model performance 

between days 25 and 36 since there was no experimental data with which to compare. Consequently, the 

reduced number of days on which to validate the models, resulted in a higher critical F value in the F-test 

method of hypothesis testing and lead to a conclusion that the difference in alkalinity prediction between 

the models was not significant at a 95% confidence level. This was disappointing in that AD-FTRW2 

presented a marked improvement (~12%) on alkalinity prediction.    

5.2.3 Influence of carbon dioxide expulsion/dissolution kinetics 

In looking at the results of the comparative model performance, it was noted that pH and alkalinity 

predictions were strongly affected by the kinetics of carbon dioxide expulsion/dissolution. Following an 

investigation on the effect of adapting the carbon dioxide expulsion/dissolution kinetics on pH, it was 

clear that AD-FTRW2 was far more sensitive to adjustments in the CO2 expulsion/dissolution kinetics. 

This was regarded as a good sign for the revised model (AD-FTRW2) since there is a strong interaction 

between this process and reactor pH considering that the carbonate system is the dominant weak acid 

base system in FTRW. 
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In comparing the performance of AD-FTRW1 versus AD-FTRW2 on reactor pH, it can be seen that both 

models exhibit similar profiles except AD-FTRW1 is vertically shifted by approximately 0.3 pH units. 

The physico-chemical model for AD-FTRW1 was developed to be valid for a pH range of 6.5 to 7.5 

while the physico-chemical model for AD-FTRW2 was developed to be valid for a pH range of 3.5 to 9. 

Since the data set was within the validity ranges of both models underlying physico-chemical 

formulations (the operational pH range for this dataset was between 7 and 7.5), the similar profiles could 

be expected. It is noted that it would be interesting to simulate an experimental dataset where reactor pH 

falls outside of the range of 6.5 to 7.5 and then compare the performances of AD-FTRW1 and AD-

FTRW2. In line with this the modelling of reactor failure should also be investigated.  

5.2.4 Influence of increasing organic load on model predictions 

Another observation on the performance of each model for pH prediction, is that AD-FTRW2 performed 

best from day 1 to 28 and thereafter AD-FTRW1 performed better. The latter period corresponds to the 

time when the organic loading rate to the reactor begins to increase sharply.  If however one looks at the 

derivatives of pH with respect to time for both models at day 44, it can be seen that AD-FTRW2 

interestingly exhibits signs of recovering towards the experimental data. It is speculated that perhaps 

there is an imbalance on the biological side of both models whereby processes that are responsible for 

liquor souring (acetogenic processes) are responding faster to the increase in organic loading rate than 

those processes responsible for liquor sweetening (methanogenic processes). This should be investigated 

further. 

5.3 Kinetic vs. ionic differences between models 

When one looks at the comparative modelling results for AD-FTRW1 and AD-FTRW2, it is interesting 

to note that that not much improvement was achieved on biologically dependant variables as compared to 

the physico-chemically dependent variables. Effluent SCFA concentration (a surrogate for effluent COD) 

and mixed liquor suspended solids are identified as process variables that are solely dependent on the 

biological side of the models while reactor pH, alkalinity and biogas production are influenced to a large 

extent by the physico-chemical side of the models (although the biological interaction with these process 

variables cannot be discounted). For pH and alkalinity this distinction is quite clear but for biogas its 

classification as a physico-chemically dependent variable needs some explanation. Biogas is most 

significantly made up of carbon dioxide and methane. Both of these components are derived from the 

bioprocesses however carbon dioxide, according to the model formulation, is synthesized in the form of 

carbonic acid. This then enters the ionic speciation sub-routine and according to that redistribution is 

evolved via the carbon dioxide expulsion/dissolution process. It is therefore clear that biogas production 

whilst also dependent on the biological side of the model, is significantly influenced by the physico-

chemical modelling. The fact that the results show significant improvement (AD-FTRW1 vs AD-

FTRW2) on the physico-chemically dependent process variables and then similar profiles for the 

biologically dependent process variables gives testament to the model development philosophy that only 
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the physico-chemical modelling in AD-FTRW1 was adapted in AD-FTRW2 and that all biological 

modelling was left unchanged. 

Another concern raised by the model evaluation results is that both AD-FTRW2 and AD-FTRW1 

systematically under-predict all the process variables relevant to the mass balance of the system; these 

variables include biogas production, effluent SCFA concentration and mixed liquor suspended solids. 

This points to either a fundamental problem in mass conservation laws applied during model 

development or towards inaccurate experimental data. Mass conservation within the model was verified 

during a comprehensive atomic balancing procedure and it is therefore suspected that there are some 

errors on the side of the experimental data. According to Van Zyl (2005), the biogas experimental data set 

was thought to be the least reliable due to instrumentation challenges that the experimental work faced. 

This together with the fact that the model validation procedure only had access to this limited data set 

implies that AD-FTRW2 needs to undergo further validation on newly generated experimental data. This 

is noted as a recommendation for future research.     
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6 CONCLUSION 

This research undertook to develop and improve Sasol Technology’s existing anaerobic digestion model 

(AD-FTRW1) through enhanced physico-chemical modelling and with special focus on the accuracy of 

its pH predictions. This was identified as an important engineering development to assist in advanced 

process control of anaerobic digestors treating such effluents. Physico-chemical modelling was to be 

enhanced through the incorporation of a dedicated ionic speciation sub-routine and through the 

refinement of carbon dioxide expulsion/dissolution kinetics. The hypothesis of the study was that: 

The pH prediction in AD-FTRW1 will be improved through the incorporation of a more 

comprehensive ionic speciation model.  

 The results of this dissertation support the research hypothesis.  

In addition, the following significant outcomes and conclusions were reached: 

1) AD-FTRW2 has been successfully developed to include a comprehensive ionic speciation sub-

routine and enhanced gas exchange modelling. 

2) AD-FTRW2 also includes developments in the form of phosphorous uptake representation and a 

parameterized biomass formula. 

3) A process and preliminary criteria were developed for ionic species inclusion in a system 

tailored ionic speciation sub-routine. 

4) Comparative model performance revealed that AD-FTRW2 performed better than AD-FTRW1 

in simulating the given data set for all variables except effluent SCFA concentration. 

5) Statistical analysis revealed that the only variable that was predicted significantly better in AD-

FTRW2 was pH. 

6) It is concluded that further model validation is required to determine whether AD-FTRW2 

predicts significantly more accurately than AD-FTRW1 on all the process variables. For this 

further dynamic experimental data is required. 

7) The inclusion of the ionic speciation sub-routine has resulted in a reduced simulation speed in 

AD-FTRW2. 
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7 RECOMMENDATIONS 

This study has completely achieved its original objectives; however the following general 

recommendations are presented for future research on this topic. 

1. The feed equilibration calculation should be integrated into the WEST configuration for further 

research using the data or experimental procedure adopted in this study and in Van Zyl (2008). 

2. At this point it should be stated that the modelling of process inhibitions in the AD-FTRW 

environment merits an extensive experimental study. 

3. It is noted that it would be interesting to simulate an experimental dataset where reactor pH falls 

outside of the range of 6.5 to 7.5 and then compare the performances of AD-FTRW1 and AD-

FTRW2 since the ionic speciation approach of AD-FTRW2 is theoretically capable of predicting 

pH from aqueous phase equilibria in a much wider range then the integrated approach of AD-

FTRW1. 

4. AD-FTRW2 needs to undergo further validation on newly generated experimental data in order 

to test its more general applicability and also to determine whether the improved predictive 

capacity displayed in the variables (biogas production, alkalinity) other than pH are also 

significant. 
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APPENDIX 

7.1 Derivation and Reconciliation of AD-FTRW1’s Acetoclastic 

Methanogenesis Stochiometry 

Required to Prove: 

A case study on Acetoclastic Methanogenesis was undertaken in order to fully understand what 

speciation chemistry had been integrated into ADFTrev24’s model stoichiometry and how the final 

stoichiometric equations were arrived at. The importance of this exercise is to understand the mechanics 

of the previous model, so as to be able to highlight the differences between it and the new modelling 

approach.  

1) Acetoclastic Methanogenesis Stoichiometry according to ADFTrev2  and P. Van Zyl’s Thesis along with 
relevant model assumptions. 

According to some case-limiting assumptions, Acetoclastic Methanogenesis is implemented in the format laid out 

below in ADFTrev24. 
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   ..............................................Eq(A)  

The stoichiometry of Acetoclastic Methanogenesis as it appears in the body of P. Van Zyl’s thesis (page 155). 
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   .........................Eq(B)  

Important model assumptions: 

1. All CO2 produced will be in the soluble form of H2CO3:         →       
2. The carbonate system acts as the proton source/sink for all weak acid base chemistry reactions. 
3. The contribution of CO3

2- is regarded as negligible in the anaerobic digestion pH range. 
4. Only the protonated (non-ionic) form of any SCFA can be metabolized. 
5. An un-protonated (ionic) SCFA must 1st pick up a proton from the carbonate system prior to its 

metabolism:         
         →             

  
6. The degree to which influent SCFA’s dissociate is determined by the influent pH and is implemented via 

the F value:      
        

 

                 
  

 

(  
[  ]    

   
)

 

7. Saline ammonia (NH4
+) needs to be deprotonated before it can be used by the FOGs:    

      
 

→           

Proof: 

The proof involves a 1st principles approach to the derivation based on the AD stoichiometric theory 

presented in (Ekama 2009) in an attempt to arrive at the final expressions implemented in ADFTrev24.  

1)  Generalized Catabolic Equation for Anaerobic Digestion (Ekama 2009) 
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→                      

         
           

  

     
        

Where                    and is referred to as the Electron-Donating capacity of the substrate.  

2) For Acetic Acid with a molecular formula of:           ⇒                                  

                

Direct substitution of the above constants into the generalized AD catabolic expression yields the following equation 

for the catabolism of Acetic Acid: 

             
                         
→                                

   ........................................................................................Eq(C) 

With     . 

3) Generalized Anabolic Equation for Anaerobic Digestion (Ekama 2009) 

                
         

            
             →                    

        

Where                   and is referred to as the electron-accepting capacity of the biomass. 

4) In P. Van Zyl’s study, the biomass is represented as:         ⇒                      
              

Direct substitution of the above constants into the generalized AD anabolic expression yields the following equation 

for the anabolism of biomass: 

        
      

            →              

........................................................................................Eq(D) 

With       

5) In AD, carbon dioxide acts as the terminal electron acceptor; reducing to methane according to the 
following chemical equation. 

              →      

     ............................................................................................................................. ....Eq(E)  

6) Equation C-E can then be combined in the following ratios in order to yield the overall metabolic reaction 
for Acetoclastic Methanogenesis. 

          

  

  
              

  

 
         

This yields:         
    

 
   

  
    

 
    

  → 
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)     

    

 
           

       .........Eq(F) 
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The above equation for the Anaerobic Metabolism of Acetoclastic Methanogenesis follows directly the methodology 

outlined in the paper by (Ekama 2009). In order to reconcile this (Eqn(F)) stoichiometry with Eqn(A) and Eqn(B), 

the relevant model assumptions and speciation chemistry needs to be integrated into the stoichiometry together with 

some fundamental algebraic manipulations. 

7) Reconciliation of Eqn(F) with Eqn(A) and Eqn(B) 

1st multiply Eqn(F) by  

    
 which gives: 

 

    
          

      
  →       (

      

    
)             

(
      

    
)   .................................................Eq(F1) 

According to assumption 1 on the previous page, re-express all CO2 produced in its soluble form, by combining it 

with some of the H2O produced to form carbonic acid. This action yields; 

 

    
          

      
  → (

       

    
)    (

      

    
)               

(
      

    
)   ..............................Eq(F2) 

What has not yet been incorporated into the stoichiometry is the speciation of the influent SCFA’s. As has been 

mentioned previously, the degree to which the SCFA’s dissociate is pH dependent and incorporated as a parameter in 

the stoichiometry via an SCFA specific F value; the calculation for which is depicted above. In terms of F, Acetic 

acid speciates according to the following equation: 

      →                    
  

   ...............................................................................................................Eq(F3)  

Multiplying Eq(F3) by  

    
 yields: 

 

    
      →

    

    
       

  

    
      

  

  

    
  ...................................................................................................Eq(F4)   

Eq(F4) is then substituted directly into Eq(F2) with     
  treated as the proton sink and this (after some simple algebraic 

manipulations) yields the final model equation for Acetoclastic Methanogenesis. 
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............................Eq(G) 

Discussion 

Acetoclastic Methanogenesis Stoichiometry as it appears in ADFTrev24 
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   ..............................................Eq(A)  

Acetoclastic Methanogenesis Stoichiometry as it appears in the body of P. Van Zyl’s thesis 
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   .........................Eq(B)  

Acetoclastic Methanogenesis Stoichiometry according to C.Lees derivation 
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............................Eq(G) 

*Expressions which differ from equation to equation are in red. Otherwise the stoichiometry corresponds exactly. 

7.2 Generalized Biological Process Stoichiometry Derivation 

7.2.1 Acidogenesis 

NA 

7.2.2 Acetogenesis 

Source is P. Van Zyl and Brouckaert  

In deriving the stoichiometry for acetogenesis, the method outlined by Van Zyl was followed; this is an 

adaptation of the method outlined by Ekama. 

1) Catabolism 
a. Generalized Catabolic Equation for Short Chain Fatty Acids of general formula 

        where x > 3 

             →                                    

If we adapt this equation for the full dissociation of SCFA’s (a modelling necessity) the above equation 

yields. 

         
       →       
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b. Catabolic Equation for the Acetogenesis of Propanoic Acid 

           →                

               
       

If we adapt this equation for the full dissociation of SCFA’s (a modelling necessity) and apply the 

abovementioned identity the above equation yields. 

      
      →       

     
           

c. Catabolic Equation for the Acetogenesis of Ethanol 

         →            

If we adapt this equation for the full dissociation of SCFA’s (a modelling necessity) the above equation 

yields. 

         →       
         

2) Generalized Anabolic Equation used for Acetogenic processes 

          →
  

  

           (                 
  

  

)  

 (                 
  

  

)    (  
  

  

 )    
   (  

  

  

 )    
 

 (  
  

  

 )    
   

3) Generalized Overall Metabolic Equation for Acetogenesis 

This is created by combining the anabolic and catabolic reactions in the following ratio related to the 

biomass yield per substrate: 

                                      

Due to the variability of the acetogenic catabolic processes, an overall generalized metabolic equation for 

acetogenesis of any substrate into any organism is not represented here. It would be complex and 

unnecessary.  

7.2.3 Methanogenesis  

Source is Ekama 

In deriving the stoichiometry for methanogenesis, the method outlined by Ekama was followed. 
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8) Generalized Catabolic Equation for Anaerobic Digestion (Ekama 2009) 

Relevant to Methanogenesis only 

                           
        
→                      

         
  

         
       

        

Where                    and is referred to as the Electron-Donating capacity of the 

substrate.  

9) Generalized Anabolic Equation for Anaerobic Digestion (Ekama 2009) 

Relevant to Methanogenesis only 

                
         

            
             →                  

          

Where                   and is referred to as the electron-accepting capacity of the 

biomass. 

10) In AD, carbon dioxide acts as the terminal electron acceptor; reducing to methane according to 
the following chemical equation. 

              →      

    ......................................................................................................................Eq(E)  

11) Equation A – C can then be combined in the following ratios in order to yield the overall 
metabolic reaction for Acetoclastic Methanogenesis. 

          

  

  

              
  

 
         

12) Generalized Overall Metabolic Equation for Anaerobic Digestion.  

Relevant to Methanogenesis only. Or overall AD process from feed subtrates to end of line products. 

            (           
  

  
            

   

 
     )   → (      

 
  

  
        

       

 
)     (

  

 
     )     ( 

  

  
)            (    

  

  
)   

  

(    
  

  
)     

   (     
  

  
     )    

   

Some reaction components are transformed into speciates of the form in which they are applied/fed in/to 

the speciation model. The transformations are achieved via the following identities: 
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Direct substitution of the above identities yields the following overall equation for methanogenesis in 

terms of the speciation model read components: 

            (         
  

  

          
   

 
     )   

→ (   
  

  

    
       

 
)    

  

 (         
  

  

          
   

 
     )   (

  

 
     )   

 ( 
  

  

)            (    
  

  

)   
  (    

  

  

)   
   

 

7.3 Matlab Bioprocess Stoichiometry Generators 

7.3.1 Acidogenesis 

% Hydrolysis and Acidogenesis 

% EBIOMASS is endogenous biomass 

%Initialize symbols 

syms x y z a b Y Gs Gb k l m n p  

syms SUBSTRATE EBIOMASS BIOMASS H H2O CO3 NH4 NH3 PO4 Eqn1 Eqn2 

syms  parameters_l parameters_m parameters_n parameters_p parameters_Y 

syms  parameters_Gb CH4 Ac 

 

%Set up stoichiometry of reaction components 

%Substrate CxHyOzNaPb 

%Specify x,y,z,a,b 

x = 2; 

y = 4; 

z = 2; 

a = 0 ;          
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b = 0 ;        

Gs = 4*x+y-2*z-3*a+5*b 

SUBSTRATE = Ac + H 

%Biomass C(k)H(l)O(m)N(n)P(p) 

k = 1 ; 

l = parameters_l ; 

m = parameters_m ; 

n = parameters_n ; 

p = parameters_p ; 

% Gb = 4*k+l-2*m-3*n+5*p 

% Commented out because it is neater to have Gb as a parameter in WEST 
to  

% facilitate a variable biomass formula for increased model 
versatility. 

Gb = parameters_Gb ; 

Eqn1  = + SUBSTRATE ... 

               - (Gs/Gb)*EBIOMASS ... 

               - (3*b+2*x-a+(n-3*p-2*k)*Gs/Gb)*H ... 

               - (z-3*x-4*b+(3*k-m+4*p)*Gs/Gb)*H2O ... 

               - (x-Gs/Gb*k)*CO3 ... 

               - (a-Gs/Gb*n)* NH4 ... 

               - (b-Gs/Gb*p)* PO4  

            

Eqn2 = -EBIOMASS + BIOMASS 

 

Final = parameters_Y*Eqn2 + (1-parameters_Y)*(Gb/Gs)*Eqn1  

 

ProductCoeff = collect(Final,[BIOMASS EBIOMASS Ac H2O H CO3 NH4 PO4]) 

7.3.2 Acetogenesis 

%Script to generate stoichiometric coefficients for Acetogenesis of 
... 

%Hexanoic Acid, Valeric Acid, Butyric Acid, Propionic Acid + Ethanol 
ONLY. 
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%---------------------------------------------------------------------
- 

clear all 

%Initialize variables 

s = 0 

d = 0 

r = 0 

%Initialize symbols 

syms x y z a b Y Gs Gb k l m n p  

syms SUBSTRATE BIOMASS REM H H2O CO3 NH4 NH3 PO4 anabolic catabolic 

syms Hex Val But Prop Ac Eth H2 

syms  parameters_l parameters_m parameters_n parameters_p parameters_Y 

syms  parameters_Gb CH4 Ac 

 

%Set up stoichiometry of reaction components 

%Substrate CxHyOzNaPb 

%It is only necessary to specify the x parameter as either 6,5,4,3 or 
2 

x = 4            %specify x as 6,5,4,3,2 ----only necessary 
specification 

a = 0 ;          %Catabolic general equation does not accomodate N and 
P 

b = 0 ;          %Catabolic general equation does not accomodate N and 
P 

 

%Biomass C(k)H(l)O(m)N(n)P(p) 

k = 1 ; 

l = parameters_l ; 

m = parameters_m ; 

n = parameters_n ; 

p = parameters_p ; 

% Gb = 4*k+l-2*m-3*n+5*p 

% Commented out because it is neater to have Gb as a parameter in WEST 
to  

% facilitate a variable biomass formula for increased model 
versatility. 
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Gb = parameters_Gb ; 

if x == 6 

    SUBSTRATE = Hex + H  

    REM = But + H ; 

    y = 12 ; 

    z = 2 ; 

    d = 1 ; 

    r = 2 ; 

    s = 2 ; 

elseif x == 5 

    SUBSTRATE = Val + H  

    REM = Prop + H ; 

    y = 10 ; 

    z = 2 ; 

    d = 1 ; 

    r = 2 ;  

    s = 2 ; 

elseif x == 4 

    SUBSTRATE = But + H 

    REM = Ac + H ; 

    y = 8 ; 

    z = 2 ; 

    d = 1 ; 

    r = 2 ; 

    s = 2 ; 

elseif x == 3 

    SUBSTRATE = Prop + H 

    REM = CO3 + 2*H - H2O ; 

    y = 6 ; 

    z = 2 ; 

    d = 1 ; 

    r = 3 ; 
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    s = 2 ; 

elseif x == 2 

    SUBSTRATE = Eth 

    REM = 0 ; 

    y = 6 ; 

    z = 1 ; 

    d = 0 ; 

    r = 2 ; 

    s = 1 ; 

else disp('x parameter is outside the scope of this script') 

end 

Gs = 4*x+y-2*z -3*a+5*b  

% if statement to run the equation generator or not 

if x == 6 || 5 || 4 || 3 || 2 

     

    anabolic = - SUBSTRATE ... 

               + (Gs/Gb)*BIOMASS ... 

               + (3*b+2*x-a+(n-3*p-2*k)*Gs/Gb)*H ... 

               + (z-3*x-4*b+(3*k-m+4*p)*Gs/Gb)*H2O ... 

               + (x-Gs/Gb*k)*CO3 ... 

               + (a-Gs/Gb*n)* NH4 ... 

               + (b-Gs/Gb*p)* PO4  

            

    catabolic = - SUBSTRATE ... 

                - s*H2O ... 

                + Ac + H ... 

                + d*REM ... 

                + r*H2  

    final = parameters_Y*anabolic + (1-parameters_Y)*catabolic  

    % collect stoichiometric coefficients for Petersen matrix 

    ProductCoeff = collect(final,[BIOMASS Hex Val But Prop Eth Ac H2O 
H CO3 NH4 PO4]) 
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else break 

end  

7.3.3 Methanogenesis 

clear all 

%_____________________________________ 

% This file is useful for methanogenic processes only ie acetoclastic, 
hydrogenotrophic  

% and methanol methanogenesis. 

% The file is easily manipulated to suit the various substrates 
through modification  

% of the substrates chemical formula via the x,y,z,a,b parameters. 

% WEST paprameters: 
 parameters_Y,parameters_Gb,parameters_l,parameters_m,parameteres
_n 

%    parameters_p  

% declare symbolic variables 

syms x y z a b Gs Gb k l m n p HAc CO2 HCO3  

syms REAGENT BIOMASS H H2O CO3 NH4 NH3 PO4 anabolic catabolic 

syms parameters_l parameters_m parameters_n parameters_p parameters_Y 

syms parameters_Gb CH4 H2 Meth HAc Y SUBSTRATE  

%_____________________________________ 

% set up stoichiometry of reaction components 

% stoichiometric numbers:  

% x,k for C; y,l for H; z,m for O; a,b for N; b,p for P; Gs,Gb for 
redox electrons  

%_____________________________________ 

% REAGENT : (CxHyOzNaPb) ---> Manipulate x,y,z,a,b to suit 

% the substrate 

% H2 ---> x = 0; y = 2; z = 0; a = 0; b = 0 

% Meth -> x = 1; y = 4; z = 1; a = 0; b = 0 

% H+Ac ---> x = 2; y = 4; z = 2; a = 0; b = 0 

x = 2 ; y = 4 ; z = 2 ; a=0 ; b=0 ; Gs=4*x+y-2*z-3*a+5*b ; 
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if x == 0 

    SUBSTRATE = H2 

else if x == 1 

        SUBSTRATE = Meth 

    else SUBSTRATE = HAc 

    end 

end 

% BIOMASS = C(k)H(l)O(m)N(n)P(p) (biomass) 

k = 5 ; l = 7 ; m = 2 ; n=1 ; p=0 ; 

% the underscores in the parameters above are changed to dots when 
cutting 

% and pasting the results to WEST. 

Gb=4*k+l-2*m-3*n+5*p ;  

% commented out because it is more versatile to have Gb as a 
calculated parameter in WEST 

% Gb = parameters_Gb ; 

%_____________________________________ 

% reaction stoichiometry in the form (products - reactants) 

final = - SUBSTRATE ... 

 -(2*x-z+a+3*b-Y*(Gs/Gb)*(2*k-m+n+3*p)-2*(Gs/8)*(1-Y))*H2O ... 

 +(Y*(Gs/Gb))*BIOMASS ... 

 +((Gs/8)*(1-Y))*CH4 ... 

 +(x-a+b-Y*Gs/Gb*(k-n+p)-(1-Y)*Gs/8)*CO2... 

 +(a-b-Y*Gs/Gb*(n-p))*HCO3... 

 +(a-n*Y*(Gs/Gb))*NH4 ...  

 +(b-p*Y*(Gs/Gb))*PO4 

 

%collect stoichiometric co-efficients for Petersen Matrix 

ProductCoeff = collect(final,[BIOMASS H2 Meth HAc H2O CO2 HCO3 NH4 PO4 
CH4]) 

%end 
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7.4 Code generated bioprocess stoichiometry 

Please note: Each process has its own specific yield coefficients and functional organism groups. It is 

important to differentiate between the different process parameters with use of subscripts containing 

process initials. 

7.4.1 Acidogenesis Growth  

ProductCoeff = 
 
BIOMASS(Zad) + (-1/parameters_Y)*EBIOMASS(Sbp)  
+ (-(parameters_Gb*(parameters_Y - 1))/(8*parameters_Y))*Ac  
+ ((parameters_Gb*((32*parameters_p - 8*parameters_m + 
24)/parameters_Gb - 4)*(parameters_Y - 1))/(8*parameters_Y))*H2O  
+ (-(parameters_Gb*((24*parameters_p - 8*parameters_n + 
16)/parameters_Gb - 3)*(parameters_Y - 1))/(8*parameters_Y))*H  
+ (-(parameters_Gb*(8/parameters_Gb - 2)*(parameters_Y - 
1))/(8*parameters_Y))*CO3  
+ (-(parameters_n*(parameters_Y - 1))/parameters_Y)*NH4  
+ (-(parameters_p*(parameters_Y - 1))/parameters_Y)*PO4 

7.4.2 Hexanoic Acid Acetogenesis Growth 

ProductCoeff = 
  
((32*parameters_Y)/parameters_Gb)*BIOMASS - Hex  
+ (1 - parameters_Y)*But + (1 - parameters_Y)*Ac  
+ (2*parameters_Y + parameters_Y*((128*parameters_p - 32*parameters_m + 
96)/parameters_Gb - 16) - 2)*H2O  
+ (- parameters_Y - parameters_Y*((96*parameters_p - 32*parameters_n + 
64)/parameters_Gb - 11) + 1)*H  
+ (-parameters_Y*(32/parameters_Gb - 6))*CO3  
+ (-(32*parameters_Y*parameters_n)/parameters_Gb)*NH4  
+ (-(32*parameters_Y*parameters_p)/parameters_Gb)*PO4  
- 2*H2*(parameters_Y - 1) 

7.4.3 Valeric Acid Acetogenesis Growth 

ProductCoeff = 
  
((26*parameters_Y)/parameters_Gb)*BIOMASS - Val  
+ (1 - parameters_Y)*Prop + (1 - parameters_Y)*Ac  
+ (2*parameters_Y + parameters_Y*((104*parameters_p - 26*parameters_m + 
78)/parameters_Gb - 13) - 2)*H2O  
+ (- parameters_Y - parameters_Y*((78*parameters_p - 26*parameters_n + 
52)/parameters_Gb - 9) + 1)*H  
+ (-parameters_Y*(26/parameters_Gb - 5))*CO3  
+ (-(26*parameters_Y*parameters_n)/parameters_Gb)*NH4  
+ (-(26*parameters_Y*parameters_p)/parameters_Gb)*PO4  
- 2*H2*(parameters_Y - 1) 
 

 

7.4.4 Butyric Acid Acetogenesis Growth 

ProductCoeff = 
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((20*parameters_Y)/parameters_Gb)*BIOMASS - But  
+ (2 - 2*parameters_Y)*Ac  
+ (2*parameters_Y + parameters_Y*((80*parameters_p - 20*parameters_m + 
60)/parameters_Gb - 10) - 2)*H2O  
+ (- parameters_Y - parameters_Y*((60*parameters_p - 20*parameters_n + 
40)/parameters_Gb - 7) + 1)*H  
+ (-parameters_Y*(20/parameters_Gb - 4))*CO3  
+ (-(20*parameters_Y*parameters_n)/parameters_Gb)*NH4  
+ (-(20*parameters_Y*parameters_p)/parameters_Gb)*PO4  
- 2*H2*(parameters_Y - 1) 

7.4.5 Propionic Acid Acetogenesis Growth 

ProductCoeff = 
  
((14*parameters_Y)/parameters_Gb)*BIOMASS - Prop  
+ (1 - parameters_Y)*Ac  
+ (3*parameters_Y + parameters_Y*((56*parameters_p - 14*parameters_m + 
42)/parameters_Gb - 7) - 3)*H2O  
+ (- 2*parameters_Y - parameters_Y*((42*parameters_p - 14*parameters_n 
+ 28)/parameters_Gb - 5) + 2)*H  
+ (1 - parameters_Y*(14/parameters_Gb - 3) - parameters_Y)*CO3  
+ (-(14*parameters_Y*parameters_n)/parameters_Gb)*NH4  
+ (-(14*parameters_Y*parameters_p)/parameters_Gb)*PO4  
- 3*H2*(parameters_Y - 1) 

7.4.6 Ethanol Acetogenesis Growth 

ProductCoeff = 
  
((12*parameters_Y)/parameters_Gb)*BIOMASS - Eth  
+ (1 - parameters_Y)*Ac  
+ (parameters_Y + parameters_Y*((48*parameters_p - 12*parameters_m + 
36)/parameters_Gb - 5) - 1)*H2O  
+ (- parameters_Y - parameters_Y*((36*parameters_p - 12*parameters_n + 
24)/parameters_Gb - 4) + 1)*H  
+ (-parameters_Y*(12/parameters_Gb - 2))*CO3  
+ (-(12*parameters_Y*parameters_n)/parameters_Gb)*NH4  
+ (-(12*parameters_Y*parameters_p)/parameters_Gb)*PO4  
- 2*H2*(parameters_Y - 1) 

7.4.7 Methanol Methanogenesis Growth 

ProductCoeff = 
 
(6*parameters_Ymm)/parameters_Gb*Zmm – MeOH 
+ (parameters_Ymm*((24*parameters_p - 6*parameters_m + 
18)/parameters_Gb - 2) - parameters_Ymm/4 + 1/4)*H2O 
+ (1/2 - parameters_Ymm*((18*parameters_p - 6*parameters_n + 
12)/parameters_Gb - 2) - parameters_Ymm/2)*H  
+ (1/4 - parameters_Ymm*(6/parameters_Gb - 1) - parameters_Ymm/4)*CO3 
-((6*parameters_n*parameters_Ymm)/parameters_Gb)*NH4 
-((6*parameters_p*parameters_Ymm)/parameters_Gb)*PO4 
+ (3/4 - (3*parameters_Ymm)/4)*CH4 

 

7.4.8 Acetoclastic Methanogenesis Growth 

 

ProductCoeff = 
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((8*parameters_Y)/parameters_Gb)*BIOMASS - Ac  
+ (- 3*parameters_Y + (8*parameters_Y*(4*parameters_p - parameters_m + 
3))/parameters_Gb - 1)*H2O  
+ (2*parameters_Y - (8*parameters_Y*(3*parameters_p - parameters_n + 
2))/parameters_Gb + 1)*H  
+ (parameters_Y - (8*parameters_Y)/parameters_Gb + 1)*CO3  
+ (-(8*parameters_Y*parameters_n)/parameters_Gb)*NH4  
+ (-(8*parameters_Y*parameters_p)/parameters_Gb)*PO4  
+ (1 - parameters_Y)*CH4 

7.4.9 Hydrogenotrophic Methanogenesis Growth 

ProductCoeff = 
 
+ ((2*parameters_Yhm)/parameters_Gb)*Zhm - H2 
+ ((parameters_Yhm*(8*parameters_p - 2*parameters_m + 6))/parameters_Gb 
- (3*parameters_Yhm)/4 + 0.75)*H2O  
+ (parameters_Yhm/2 - (parameters_Yhm*(6*parameters_p - 2*parameters_n 
+ 4))/parameters_Gb – 0.5)*H 
+ (parameters_Yhm/4 - (2*parameters_Yhm)/parameters_Gb – 0.25)*CO3  
-((2*parameters_n*parameters_Yhm)/parameters_Gb)*NH4 
-((2*parameters_p*parameters_Yhm)/parameters_Gb)*PO4 
+ (0.25 - parameters_Yhm/4)*CH4 

7.4.10 Urea Hydrolysis  

NB: not code generated, as per AD-FTRW1, with necessary component transformations 

ProductCoeff =  

-Urea – 2*H2O + CO3 +2*NH4 

7.4.11 Formate Digestion Growth 

ProductCoeff = 
 
((2*parameters_Y)/parameters_Gb)*BIOMASS - Fmt  
+ (parameters_Y + parameters_Y*((8*parameters_p - 2*parameters_m + 
6)/parameters_Gb - 1) - 1)*H2O 
+ (- parameters_Y - parameters_Y*((6*parameters_p - 2*parameters_n + 
4)/parameters_Gb - 1) + 1)*H 

+ (1 - parameters_Y*(2/parameters_Gb - 1) - parameters_Y)*CO3  

+ (-(2*parameters_Y*parameters_n)/parameters_Gb)*NH4  

+ (-(2*parameters_Y*parameters_p)/parameters_Gb)*PO4  

+ (1 - parameters_Y)*H2 

 



- 125 - 

7.5 Model Constants 

7.5.1 AD-FTRW1 

AD-FTRW1 

Name Value Description 

bacBu 0.015 ZacBu Endogenous Respiration Rate [1/d] 

bacEt 0.015 ZacEt Endogenous Respiration Rate [1/d] 

bacHx 0.015 ZacHx Endogenous Respiration Rate [1/d] 

bacPr 0.015 ZacPr Endogenous Respiration Rate [1/d] 

bacVa 0.015 ZacVa Endogenous Respiration Rate [1/d] 

bad 0.041 Zad Endogenous Respiration Rate [1/d] 

bam 0.037 Zam Endogenous Respiration Rate [1/d] 

bhm 0.01 Zhm Endogenous Respiration Rate [1/d] 

bmm 0.37 Zmm Endogenous Respiration Rate [1/d] 

f 0.008 Unbiodegradable Fration of Biomass 

FacBu 0.081831824755152 Dissociated Fraction of But In Influent 

FacHx 0.0767893196971003 Dissociated Fraction of Hxt In Influent 

FacPr 0.0735875561175735 Dissociated Fraction of Prt In Influent 

FacVa 0.0853592420994873 Dissociated Fraction of Vat In Influent 

Fam 0.0473936979865981 Apparent Total Dissociated Fraction of Act 

FamIn 0.0947873959731961 Dissociated Fraction of Act In Influent 

KAc 1.77827941003892E-5 HAc/Ac Weak Acid Dissociation Constant 

KBu 1.51356124843621E-5 HBu/Bu Weak Acid Dissociation Constant 

Kc1 4.96426538013667E-7 H2CO3/HCO3 Weak Acid Dissociation Constant 

Kc2 
5.75016967547348E-

11 HCO3/CO3 Weak Acid Dissociation Constant 

Kco2 0.02373 CO2 Equilibruim Constant 

Kfco2 500 CO2 Expulsion/Dissolusion Rate [1/d] 

Kh 0.024673218570212 Henry's Law Constant 

KHx 1.41253754462276E-5 HHx/Hx Weak Acid Dissociation Constant  (-log) 

KHydrox 1000 OH to HCO3 Conversion Rate 

kIAtZacPr 0.018 At Inhibition Constant for ZacPr 

kIAtZam 0.1 At Inhibtion Constant for Zam 

kIH2Zac 1E-5 Disolved H2(gas) Inhibition constant for all Zac except ZacPr 

kIH2ZacPr 3.5E-6 Disolved H2(gas) Inhibition constant for ZacPr 

kIH2Zad 0.000625 Disolved H2(gas) Inhibition constant for Zad 

KPr 1.34896288259165E-5 HPr/Pr Weak Acid Dissociation Constant 

KsacBu 0.003125 Half Saturation Constant ZacBu [mol/L] 

KsacEt 0.000128 Half Saturation Constant ZacEt [mol/L] 

KsacHx 0.0066 Half Saturation Constant ZacHx [mol/L] 

KsacPr 0.01023 Half Saturation Constant ZacPr [mol/L] 

KsacVa 0.00186 Half Saturation Constant ZacVa [mol/L] 

Ksad 0.00666 Half Saturation Constant Zad [mol/L] 

Ksam 0.0145 Half Saturation Constant Zam [mol/L] 

Kshm 0.0006 Half Saturation Constant Zad [mol/L] 

Ksmm 0.0145 Half Saturation Constant Z [mol/L] 

KUrea 4.5 Urea to NH4 Conversion Rate 

KVa 1.58489319246111E-5 HVa/Va Weak Acid Dissociation Constant 

pHfeed 3.77 Influent pH 

pHLLZadZac 4 Lower pH of 50% Inhibition for Zad & Zac 

pHLLZamZmm 6.5 Lower pH of 50% Inhibition for Zam & Zmm 

pHLLZhm 6.5 Lower pH of 50% Inhibition for Zhm 

pHULZadZac 8 Upper pH of 50% Inhibition for Zad & Zac 

pHULZamZmm 8 Upper pH of 50% Inhibition for Zam & Zmm 

pHULZhm 8 Upper pH of 50% Inhibition for Zhm 

Tk 310 Reactor Temperature [Kelvin] 
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TLL 305 Lower Temperature of 50% Inhibition 

TUL 315 Upper Temperature of 50% Inhibition 

UmaxacBu 2.268 Maximum Specific Growth Rate ZacBu [1/d] 

UmaxacEt 1.15 Maximum Specific Growth Rate ZacEt [1/d] 

UmaxacHx 1.18 Maximum Specific Growth Rate ZacHx [1/d] 

UmaxacPr 1.1 Maximum Specific Growth Rate ZacPr [1/d] 

UmaxacVa 1.53 Maximum Specific Growth Rate ZacVa [1/d] 

Umaxad 0.8 Maximum Specific Growth Rate Zad [1/d] 

Umaxam 1.15 Maximum Specific Growth Rate Zam [1/d] 

Umaxhm 1.2 Maximum Specific Growth Rate Zhm [1/d] 

Umaxmm 1.15 Maximum Specific Growth Rate Zmm [1/d] 

YacBu 0.0558 ZacBu Stoichiometric Biomass Yield [mol_biomass/mol_Bu] 

YacEt 0.0832 ZacEt Stoichiometric Biomass Yield [mol_biomass/mol_EtOH] 

YacHx 0.0474 ZacHx Stoichiometric Biomass Yield [mol_biomass/mol_Hx] 

YacPr 0.0376 ZacPr Stoichiometric Biomass Yield [mol_biomass/mol_Pr] 

YacVa 0.0496 ZacVa Stoichiometric Biomass Yield [mol_biomass/mol_Va] 

Yad 0.1074 Zad Stoichiometric Biomass Yield [mol_biomass/mol_Sbp] 

Yam 0.0157 Zam Stoichiometric Biomass Yield [mol_biomass/mol_Ac] 

Yhm 0.004 Zhm Stoichiometric Biomass Yield [mol_biomass/mol_H2] 

Ymm 0.0127 Zmm Stoichiometric Biomass Yield [mol_biomass/mol_MeOH] 

Number of 
Parameters 70 

 

7.5.2 AD-FTRW2 

AD-FTRW2 

Name Value Description 

bacBu 0.015 ZacBu Endogenous Respiration Rate [1/d] 

bacEt 0.015 ZacEt Endogenous Respiration Rate [1/d] 

bacHx 0.015 ZacHx Endogenous Respiration Rate [1/d] 

bacPr 0.015 ZacPr Endogenous Respiration Rate [1/d] 

bacVa 0.015 ZacVa Endogenous Respiration Rate [1/d] 

bad 0.041 Zad Endogenous Respiration Rate [1/d] 

bam 0.037 Zam Endogenous Respiration Rate [1/d] 

bfd 0.01 Zfd Endogenous Respiration Rate [1/d] 

bhm 0.01 Zhm Endogenous Respiration Rate [1/d] 

bmm 0.37 Zmm Endogenous Respiration Rate [1/d] 

CO2exponent 1 Exponent for CO2 expulsion 

conc_mol_conversion(Ac_) 0.0169364932313305 Conversion factor kg/m3 --->mol/l 

conc_mol_conversion(Bu_) 0.011481412167771 Conversion factor kg/m3 --->mol/l 

conc_mol_conversion(Cl_) 0.0282063577130285 Conversion factor kg/m3 --->mol/l 

conc_mol_conversion(CO3_
) 0.0166641670416104 Conversion factor kg/m3 --->mol/l 

conc_mol_conversion(Fo_) 0.0222135836063753 Conversion factor kg/m3 --->mol/l 

conc_mol_conversion(Hx_) 
0.0086842870851624

6 Conversion factor kg/m3 --->mol/l 

conc_mol_conversion(H_) 0.992161920825479 Conversion factor kg/m3 --->mol/l 

conc_mol_conversion(Na_) 0.0434971726837756 Conversion factor kg/m3 --->mol/l 

conc_mol_conversion(NH4_
) 0.0554375966693092 Conversion factor kg/m3 --->mol/l 

conc_mol_conversion(PO4_
) 0.0105294857188585 Conversion factor kg/m3 --->mol/l 

conc_mol_conversion(Pr_) 0.0136853759441199 Conversion factor kg/m3 --->mol/l 

conc_mol_conversion(Va_) 
0.0098888591124353

4 Conversion factor kg/m3 --->mol/l 

f 0.008 Unbiodegradable fraction of biomass 

Gb 4 Biomass electron-accepting capacity 

Kco2 0.02373 CO2 Equilibruim Constant 

Kfco2 500 CO2 Expulsion/Dissolusion Rate [1/d] 
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Kh 11.6846436239017 Henry's Law Constant 

kIAtZacPr 0.018 At Inhibition Constant for ZacPr 

kIAtZam 0.1 At Inhibtion Constant for Zam 

kIH2Zac 1E-5 
Dissolved H2(gas) Inhibition constant for all Zac except 
ZacPr 

kIH2ZacPr 3.5E-6 Disolved H2(gas) Inhibition constant for ZacPr 

kIH2Zad 0.000625 Dissolved H2(gas) Inhibition constant for Zad 

KsacBu 0.003125 Half Saturation Constant ZacBu [mol/L] 

KsacEt 0.000128 Half Saturation Constant ZacEt [mol/L] 

KsacHx 0.0066 Half Saturation Constant ZacHx [mol/L] 

KsacPr 0.01023 Half Saturation Constant ZacPr [mol/L] 

KsacVa 0.00186 Half Saturation Constant ZacVa [mol/L] 

Ksad 0.00666 Half Saturation Constant Zad [mol/L] 

Ksam 0.0145 Half Saturation Constant Zam [mol/L] 

Ksfd 0.05 Half Saturation Constant Zfd [mol/L] 

Kshm 0.0006 Half Saturation Constant Zad [mol/L] 

Ksmm 0.0145 Half Saturation Constant Zmm [mol/L] 

KUrea 4.5 Urea to NH4 Conversion Rate 

l 1.4 Biomass Formula C(1)H(l)O(m)N(n)P(p) 

m 0.4 Biomass Formula C(1)H(l)O(m)N(n)P(p) 

n 0.2 Biomass Formula C(1)H(l)O(m)N(n)P(p) 

p 0 Biomass Formula C(1)H(l)O(m)N(n)P(p) 

pHLLZadZac 4 Lower pH of 50% Inhibition for Zad & Zac 

pHLLZamZmmZhm 6.5 Lower pH of 50% Inhibition for Zam & Zmm 

pHULZadZac 8 Upper pH of 50% Inhibition for Zad & Zac 

pHULZamZmmZhm 8 Upper pH of 50% Inhibition for Zam & Zmm 

Tk 310 Reactor Temperature [Kelvin] 

TLL 305 Lower Temperature of 50% Inhibition 

TUL 315 Upper Temperature of 50% Inhibition 

UmaxacBu 2.268 Maximum Specific Growth Rate ZacBu [1/d] 

UmaxacEt 1.15 Maximum Specific Growth Rate ZacEt [1/d] 

UmaxacPr 1.1 Maximum Specific Growth Rate ZacPr [1/d] 

UmaxacVa 1.53 Maximum Specific Growth Rate ZacVa [1/d] 

Umaxad 0.8 Maximum Specific Growth Rate Zad [1/d] 

Umaxam 1.15 Maximum Specific Growth Rate Zam [1/d] 

Umaxfd 1.1 Maximum Specific Growth Rate Zfd [1/d] 

Umaxhm 1.2 Maximum Specific Growth Rate Zhm [1/d] 

Umaxmm 1.15 Maximum Specific Growth Rate Zmm [1/d] 

Yacbu 0.0558 ZacBu Stoichiometric Biomass Yield [mol biomass/mol Bu] 

Yacet 0.0832 ZacEt Stoichiometric Biomass Yield [mol biomass/mol Et] 

Yachx 0.0474 ZacHx Stoichiometric Biomass Yield [mol biomass/mol Hx] 

Yacpr 0.0376 ZacPr Stoichiometric Biomass Yield [mol biomass/mol Pr] 

Yacva 0.0496 ZacVa Stoichiometric Biomass Yield [mol biomass/mol Va] 

Yad 0.1074 Zad Stoichiometric Biomass Yield [mol biomass/mol Sbp] 

Yam 0.0157 Zam Stoichiometric Biomass Yield [mol biomass/mol Ac] 

Yfd 0.015 Zfd Stoichiometric Biomass Yield [mol biomass/mol H2] 

Yhm 0.004 Zhm Stoichiometric Biomass Yield [mol biomass/mol H2] 

Ymm 0.0127 
Zmm Stoichiometric Biomass Yield [mol biomass/mol 
MeOH] 

Number of Parameters 74 
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7.6 Gujer Matrix of AD-FTRW1 

A Gujer Matrix representing the dynamic AD-FTRW1 model stoichiometry is presented in Figure 16 

below. The model components are displayed in the columns across the top from H2O to Zxx while the 21 

model processes can be seen in the rows. The growth processes are shown in the uneven rows numbered 

1 to 17, with the death processes presented by the even numbered processes 2 to 18.  

In order to fit the Gujer Matrix onto a single A4 page for ease of reference, certain unorthodox formatting 

techniques were employed in the table. Firstly, all even numbered processes (which are representative of 

death processes) have been greyed out/omitted due to the fact that their stoichiometry is the same for each 

FOG. It was therefore considered repetitive and unnecessary to depict each death process in the matrix 

below. Secondly, a composite component (Zxx) is used to condense the table further; the meaning of 

which is explained in the subsequent paragraphs.  

Where the “xx” subscript is adopted to denote the biomass of each FOG separately and so can take on the 

following labels explained in the LIST OF ACRONYMS/A: ad, acHx, acVa, acBu, acPr, acEt, mm, am 

and hm. This is in-line with the use of Zxx (a composite component) in Figure 16 below where this single 

column represents multiple model components (components 18 to 26) in order to condense the matrix 

even further. Ze (endogenous residue), the 27th model component in the actual Gujer Matrix for AD-

FTRW1, is not shown in the matrix below. This is due to the fact that it is involved only in the death 

processes which, as was previously mentioned, have been excluded from this Gujer Matrix 

representation. 
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Figure 16: Gujer matrix representation of AD-FTRW1 
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7.7 Henry’s Law Constant Calculation 

It was decided to apply, pseudo-equilibrium Henry’s Law kinetics to describe Carbon dioxide 

Expulsion/Dissolution. The stoichiometry for this process is given by: 

Process Reaction 

         →          

The model kinetics are described as: 

        (          

     

           
) 

The Henry’s law constant was sourced from the minteqA2 database but since it did not have it in the 

form in which it was applied in AD-FTRW1&2, the constant required some manipulation from 

constituent reactions. The calculation of the constant used is outlined below. 

 Constituent Reaction 1 

   
             

             

               

Constituent Reaction 2 

                  
   

              

             

Since the Process reaction is the sum of the reverse constituent reactions, 

                                                                 

the process reaction constants were determined as follows; 

                          @25°C 
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 Equilibrium constants are largely temperature dependent and since the Mesophilic Anaerobic Digestion 

System operates at 37°C, it was necessary to determine the equilibrium constant for that temperature.  

The temperature dependence of reaction constants is generally described via the Van’t Hoff Equation 

which states that; 

  (
  

  

)  
    

 
(
 

  

 
 

  

)  

Where: 

        J/mol/K 

Taking                                this yields a Henry’s Law constant of 39.62 (atm.l/mol) 

or 0.02524 (mol/l/atm) 

             
   

     
   

It was then realised that     and     were not the only gases present in the vapour space of the digester. 

At 37°C , a significant partial pressure of water vapour would exist. This is given by the vapour pressure 

of water at 37°C and 1 atm and can be determined from the Antoine equation which reads as follows: 

       
 

   
   

Where for water                                    

And the constants are relevant to temperature in °C and pressure in mmHg. The application of this 

equation at 37°C yields a vapour pressure of           0.07 atm. 

This meant that the partial pressure of     had to be adjusted to account for the existence of water 

vapour in the head-space. The adaptation of the kinetics to account for this phenomenon is shown from 

the original starting point 

6)         (              
) 

7)         (          
     

           
) 

8)         (           (          ) 
     

           
) 

 Where   represents       which is the total pressure of the system and therefore (          ) 

represents the partial pressure that can be attributed to     and    . 

Instead of introducing more parameters into the model to account for the partial pressure of water vapour, 

it was decided to lump these effects into the Henry’s law constant: 

9)   

      
     (   

       )                            
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This yielded the finalized kinetics of: 

10)         (          
           

           
) 

7.8  pKa vs Carbon Number for SCFA’s 

 

Figure 17: pKa vs Carbon Number for SCFA’s 

7.9 Ionic Speciation Subroutine Code 

// #define DLL_EXPORT 

#include  <math.h> 

#include  <stdlib.h> 

#include  <malloc.h> 

#include  <float.h> 

 

extern "C" 

{ 

   double conduct(int Species_Count, double c[], double charge[], double* Tk, double* I, double 

Lo[])  

{ 

 double vis ; 

    // Limiting ion molar conductivities at 25 deg C 

 // Calculated from diffusivities Dw in PHREEQC database 

 // Estimated values for ion pairs without data. 
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  // Combined limiting conductivity 

 double L = 0.0 ;  // cations 

 double La = 0.0 ;  // anions 

 double ct = 0.0 ;  // total concentration 

    for ( int ii=0 ; ii < Species_Count ; ii++) 

 { 

  if (charge[ii] > 0.1)  {L = L + Lo[ii]*c[ii] ; } 

  if (charge[ii] < -0.1) {La = La + Lo[ii]*c[ii] ; } 

  ct = ct + c[ii] ; 

 } 

 L = 4.0*L*La/(L+La) ; 

  // Ionic strength correction 

 L = L - 27.606*pow(*I,1.28) - 1.135*pow(ct,2.3333); 

  // Viscosity of water 

 vis = (*Tk)-293.15; 

 if ((*Tk) < 293.15) 

 { 

    vis = 1301.0/(998.333+8.1855*vis+0.00585*vis*vis)-1.30233 ; 

    vis = pow(10,vis) ; 

 } 

 else 

 { 

  vis = (-1.3272*vis-0.001053*vis*vis)/((*Tk)-168.15) ; 

  vis = 1.002*pow(10,vis) ; 

 } 

  // Viscosity correction 

 L = L*pow((0.890469539/vis),0.896) ; 

 return L ; 

} 

 

// __________________________________________________________________ 

 

 

 void kthermo(double* Tk, int Species_Count,  

        double logK[], double deltaH[], double kt[],  

        double* Adh) 

{ 

       

/* 

 *   compute temperature dependence of A and b for debye-huckel (copied from PHREEQC: model.c) 
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 */ 

  double s1 = 647.26 - (*Tk) ; 

  double s2 = pow (s1, 1.0 / 3.0); 

  double s3 = 1.0 + 0.1342489 * s2 - 3.946263e-03 * s1; 

  s3 = 

    s3 / (3.1975 - 0.3151548 * s2 - 1.203374e-03 * s1 + 

   7.48908e-13 * (s1 * s1 * s1 * s1)); 

  s3 = sqrt (s3); 

  if ((*Tk) >= 373.15) 

  { 

    *Adh = 

      5321.0 / (*Tk) + 233.76 - (*Tk) * ((*Tk) * (8.292e-07 * (*Tk) - 1.417e-03) + 

           0.9297); 

  } 

  else 

  { 

    *Adh = 

      2727.586 + 0.6224107 * (*Tk) - 466.9151 * log ((*Tk)) - 52000.87 / (*Tk); 

  } 

  s1 = sqrt (*Adh * (*Tk)); 

 

  *Adh = 1824827.7 * s3 / (s1 * s1 * s1); 

//  b = 50.2905 * s3 / c1; 

 

// calculate thermodynamic (infinite dilution) equilibrium constants 

  // LogK = logK(25C) - DeltaH * Tcorrection ; DeltaH in joules/mol 

 double Tcorrection = (1/(*Tk) - 1/298.15)/(2.303*8.314) ; 

 for (int i=0 ; i<Species_Count ; i++) 

 { 

  kt[i]=pow(10.0,(logK[i]-deltaH[i]*Tcorrection)) ; 

 } 

} 

 

// __________________________________________________________________ 

 

 

// Routine to calculated ionic strength 

  double IonicStrength(int Species_Count, double c[], int charge[]) 

{ 

 double result = c[0] ;   



- 135 - 

    for (int is=1 ; is < Species_Count ; is++) 

        result = result + c[is]*charge[is]*charge[is] ; 

    return 0.5*result ; 

} 

// __________________________________________________________________ 

 

 

// Routine to calculated activity coefficients from ionic strength 

// Also returns activity od water 

    void ActivityCoefficients(int Species_Count,  

         double c[], int charge[], 

double gamma[], 

         double I, double* Adh,  

double* actwater ) 

{ 

 int is ; 

 double gam[4] ; 

 // Ionic strength calculation  

               

   double sqI = sqrt(I) ; 

   gam[0] = 0.1*(I) ; 

   gam[1] = -(*Adh) *(sqI/(1+sqI)-0.3*I) ; 

   gam[2]=4.0*gam[1] ; 

   gam[3]=9.0*gam[1] ; 

   for (is=0 ; is < 4 ; is++) { gam[is]=pow(10,gam[is]); }  

 

   // Activity coefficients of all species plusd activity of water 

    *actwater = 2.0*((*Adh) * (1.0 + sqI - 2.0*log(1.0+sqI) - 1.0/ (1.0+sqI))) - 0.079*I*I; 

 *actwater = (*actwater) * 2.302585093 ; 

 

 for ( is = 0 ; is < Species_Count ; is++) 

     { 

         gamma[is] = gam[abs(charge[is])] ; 

   *actwater = (*actwater) - c[is]; 

     } 

    *actwater = exp((*actwater)/55.509914) ; 

  

    return ; 

} 

//_________________________________________________________________ 
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// routine to calculate linear compbinations of concentrations 

    double Composite(double conc[], int Stoi[]) 

   { 

    double result = 0.0 ; 

    for (int i=0 ; i<Stoi[0]; i++) 

     result = result+conc[Stoi[i*2+1]]*Stoi[i*2+2] ; 

       return result ; 

   } 

 

//_________________________________________________________________ 

 

// routine to calculate the error in the component mass balances 

// for a trial set of master species concentrations  

// (which are H to HPO4) 

 double TrySpeciation(double logValue, double* Adh, 

         int Component_Count, double tot[],  

   int balance[], int BalanceCoef[], int BalanceMap[], int NonMaster[], 

   int Species_Count, double c[], int charge[], double k[], double gamma[],  

   int SpeciesID[], int Stoichiometry[], int SpeciesMap[], 

         double* I,  double* actwater, double* residerr) 

{ 

 double divisor[25], factor, newc[25] ; 

 int ii, ic, is, kk, bstart, bnext, sstart, snext, js, im ; 

 

    double remem=c[0] ; 

 c[0] = pow(10,logValue) ;  // Trial concentration of H+ 

 // Component balances 

 for ( ic=1 ; ic < Component_Count ; ic++ )  // Balance the other components apart from H+ 

     { 

  bstart = BalanceMap[ic] ; bnext = BalanceMap[ic+1] ;  

  im = balance[bstart] ;  // master species for component ic 

  divisor[ic]=0 ; 

        for ( ii=bstart+1 ; ii < bnext ; ii++) 

  { 

   is = balance[ii];                // index of species in balance 

   factor = k[is]*BalanceCoef[ii] ;  // balance coefficient of species 

   sstart = SpeciesMap[is] ; snext = SpeciesMap[is+1] ; 

   for (kk=sstart ; kk < snext ; kk++) 

   { 
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    js = SpeciesID[kk] ;       // index of master species in formation of 

species[is] 

    if (js != im)                    // skip if master species 

    { 

     factor = factor * pow((c[js]*gamma[js]),Stoichiometry[kk]) 

; 

    } 

   } 

      divisor[ic] = divisor[ic]+factor/gamma[is] ; 

  } 

        divisor[ic]=divisor[ic]*gamma[im]+BalanceCoef[bstart] ; // add master species contibution ; 

  } 

    //Recalculate concentrations of master species 

     newc[0] = pow(10.0,logValue) ;  

  for ( ic=1 ; ic < Component_Count ; ic++) 

     { 

   newc[ic] = tot[ic]/divisor[ic] ; 

  } 

 

  // Update concentrations of master species and 

  // calculate error between new results and last iteration results 

  

 *residerr = 0 ; 

 double Error ; 

 for ( ic=1 ; ic < Component_Count ; ic++) 

 { 

  im = balance[BalanceMap[ic]] ;  // master species for component ic 

  if (fabs(newc[ic]) < 1.0e-9)  

   {Error = 0.0 ;} 

     else 

   {Error = 1.0 - c[im]/(newc[ic]) ;}   

    

  *residerr = *residerr+fabs(Error) ; 

   c[im] = newc[ic] ; 

  } 

 

 // Fill in remaining species concentrations 

    for ( kk=0 ; kk < Species_Count-Component_Count ; kk++) 

 { 

  is = NonMaster[kk] ; 
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  factor = k[is]/gamma[is] ; 

  sstart = SpeciesMap[is] ; snext = SpeciesMap[is+1] ; 

  for (ii=sstart ; ii < snext ; ii++) 

  { 

   js = SpeciesID[ii] ;      // index of master species in formation of species[is] 

   factor = factor * pow((c[js]*gamma[js]),Stoichiometry[ii]) ; 

  } 

  c[is] = factor ; 

 } 

 

 // Now H balance 

 // H+ must be first component 

 bstart = BalanceMap[0] ; bnext = BalanceMap[1] ; 

 factor = 0.0 ; 

    for (ii=bstart ; ii<bnext ; ii++) 

 { 

  is = balance[ii] ; 

    factor = factor + c[is]*BalanceCoef[ii] ;  // balance coefficient of species 

    } 

  

 Error= factor - tot[0] ; 

  

 

 

return Error  ; 

 

} 

 

// __________________________________________________________________ 

 

// Speciate a set of total concentrations to give species concentrations 

// H+ must be first component (tot[0]) and first species (c[0]) 

 double speciate(double tot[], double c[], double gamma[], double k[], 

                          double* Tk, double* lastTk, double* Adh, 

        double* I, double* pHeq, double* actwater,  

        double* test1, double* test2)   

{ 

  // The following arrays define the speciation model stoichiometry and thermodynamics 

  // for components: H, Fo, Ac, Pr, HOrg, NH4, PO4, NO3, CO3, Na, Cl 

  // and species: H,Fo,Ac,Pr,HOrg,NH4,HPO4,NO3,HCO3,Na,Cl,OH,CO3,H2CO3,NaCO3,NaHCO3, 
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  // H2PO4,NaHPO4,HFo,HAc,NaAc,HPr,HHOrg,NH3. 

  

//___________________________________________________________________________________

___ 

   static int Component_Count = 12 ; static int Species_Count = 28 ; 

//____________________________________________ 

static int 

balance[45]={0,8,9,12,14,16,17,18,19,20,22,23,24,25,26,9,13,14,15,16,7,26,8,17,18,27,6,25,5,24,4,23,3,

22,2,20,21,1,19,10,15,16,18,21,11} ; 

static int BalanceCoef[45]={1,1,1,-1,2,1,2,1,1,1,1,1,1,1,-

1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1} ; 

static int BalanceMap[13]={0,15,20,22,26,28,30,32,34,37,39,44,45} ; 

static int NonMaster[16]={12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27} ; 

static int charge[28]={1,-1,-1,-1,-1,-1,-1,1,-2,-1,1,-1,-1,-2,0,-1,0,-1,-1,0,0,0,0,0,0,0,0,-3} ; 

static double logK[28]={0,0,0,0,0,0,0,0,0,0,0,0,-13.997,-10.329,6.352,-9.059,-

0.25,7.198,1.07,3.745,4.757,-0.18,4.784,4.819,4.843,4.85,-9.244,-12.375} ; 

static double deltaH[28]={0,0,0,0,0,0,0,0,0,0,0,0,55810,14600,-9160,-5750,-13730.1,-

3000,15000,167.4,410,12000,660,2800,2887,2950,-52000,15000} ; 

static int 

SpeciesID[44]={0,1,2,3,4,5,6,7,8,9,10,11,0,0,9,0,9,0,10,9,10,9,0,8,10,8,0,1,0,2,2,10,0,3,0,4,0,5,0,6,0,7,0,

8} ; 

static int Stoichiometry[44]={1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,1,1,1,-

1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1,1,-1,1} ; 

static int 

SpeciesMap[29]={0,1,2,3,4,5,6,7,8,9,10,11,12,13,15,17,20,22,24,26,28,30,32,34,36,38,40,42,44} ; 

//___________________________________________________________________________________

___ 

   static double tolerance = 5.0E-6 ; 

   static int ii ; 

   static bool FirstTime = false ; 

   static double  newV, totH, error0, error, residual, logV0, logV1 ; 

    

   *test1 = *I  ;  

   *test2 = 0.0 ; 

 // Test that not all total concentrations are zero 

   for ( ii=0 ; ii < Component_Count ; ii++ ) 

   { 

       *test2 = *test2+fabs(tot[ii]) ; 

   } 

   if (*test2 <= 0.0)  
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   {  

       *I = -1.0 ; 

    *pHeq = -1.1 ; 

       return *test2 ; 

   } 

 

// Ionic strength is set to < 0.0 by the calling routine  

//  as a signal that there are no previous estimates available 

//  for the species concentrations  

   

   if (*I <= 0.0)  

   {  

     FirstTime = true ; 

    *I = 0.02; 

    *actwater = 0.998 ; 

  int ic ; 

  for ( ii=0 ; ii < Species_Count ; ii++) 

  { 

   c[ii] = 1.0e-8 ; 

   gamma[ii] = 0.82 ;  

  } 

     for ( ii=0 ; ii < Component_Count ; ii++) 

     { 

         ic = balance[BalanceMap[ii]] ; 

   c[ic] = tot[ii]*0.85 ; 

     } 

   } 

   else FirstTime = false ; 

   totH = *test2*1.0E-08 ; 

   if (fabs(tot[0]) > totH) totH = tot[0] ; 

 

   // Initialise solver loop 

   if ( *Tk != *lastTk)   // if temperature has changed 

   { *lastTk = *Tk ; 

  // calculate thermodynamic (infinite dilution) equilibrium constants 

    kthermo(Tk,Species_Count,logK,deltaH,k,Adh) ; 

   } 

   // Evaluate equation error at initial point  

   if (FirstTime) logV0 =-(*pHeq) ; else  logV0 = log10(c[0]) ;  

   if (_isnan(logV0)||logV0 > -3.0||logV0 < -9.0) logV0 = -7.0 ;  



- 141 - 

   error0 = TrySpeciation(logV0, Adh,  

      Component_Count, tot,  

      balance, BalanceCoef, BalanceMap, NonMaster, 

                  Species_Count, c, charge, k, gamma,  

      SpeciesID, Stoichiometry, SpeciesMap, 

      I, actwater, &residual); 

 // Update Ionic strength and activity coefficients 

    *I = IonicStrength(Species_Count,c,charge) ; 

 ActivityCoefficients(Species_Count, c, charge, gamma, *I, Adh, actwater) ;   

  

  if (( fabs(error0/totH) < tolerance) && (residual < tolerance))  // if the result is good enough already 

   { 

    *pHeq = -log10(c[0]*(gamma[0])) ; 

       *test1 = 0.0 ; *test2 = error0 ; 

       return residual ; 

   } 

  if (FirstTime) 

  { 

 if (error0 > 0) 

  logV1 = logV0 - 0.001 ; 

 else 

  logV1 = logV0 + 0.001 ; 

  } 

  else 

  { 

 logV1 = log10(tot[0]*c[0]/(error0+tot[0])) ; 

  } 

 error = TrySpeciation(logV1, Adh,  

      Component_Count, tot,  

      balance, BalanceCoef, BalanceMap, NonMaster, 

                  Species_Count, c, charge, k, gamma,  

      SpeciesID, Stoichiometry, SpeciesMap, 

      I, actwater, &residual); 

  // Update Ionic strength and activity coefficients 

    *I = IonicStrength(Species_Count,c,charge) ; 

 ActivityCoefficients(Species_Count, c, charge, gamma, *I, Adh, actwater) ;   

  

  // Solver loop (secant search) 

 

   int count= 0 ; int rowbase = 0 ; 
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   while ((( fabs(error/totH) > tolerance) || (residual > tolerance) || (count < 1)) && count < 40 ) 

       { 

     if (FirstTime) 

     { 

    if (error0 == error)   

     { newV = 0.5*(logV0 +logV1); }  

    else 

     {newV = (logV1*error0 - logV0*error)/(error0-error) ;}   

    if ((newV-logV1) > 0.8) newV = logV1 + 0.8 ; 

    if ((logV1-newV) > 0.8) newV = logV1 - 0.8 ; 

    logV0 = logV1 ;  

    if (fabs(newV-logV1) > 0.5) logV1 = newV*0.8+logV0*0.2 ; 

    else logV1=newV ; 

   } 

   else 

   { 

    logV0 = logV1 ; 

    logV1 = log10(tot[0]*c[0]/(error+tot[0])) ; 

   } 

   error0 = error ;    

   error = TrySpeciation(logV1, Adh,  

      Component_Count, tot,  

      balance, BalanceCoef, BalanceMap, NonMaster, 

                  Species_Count, c, charge, k, gamma,  

      SpeciesID, Stoichiometry, SpeciesMap, 

      I, actwater, &residual); 

   // Update Ionic strength and activity coefficients 

      *I = IonicStrength(Species_Count,c,charge) ; 

   ActivityCoefficients(Species_Count, c, charge, gamma, *I, Adh, actwater) ;   

   count = count+1 ;  

  } 

  

       *pHeq = -log10(c[0]*gamma[0]) ; 

    // Alkalinity calculation 

       *test1 = double(count) ; *test2 = error ; // diagnostic values 

       return residual ; 

   } 

 

// __________________________________________________________________________________ 
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// Speciate a set of total concentrations with pH, Alkalinity and ionic strength as input 

// H+ must be first component (tot[0]) and first species (c[0]) 

// AlkOption :  0 - total alkalinity, no ionic strength adjustment 

//              1 - carbonate alkalinity, "       "       " 

//              2 - as 0, but with ionic strength adjustment 

//              3 - as 1,  "     "        "       "       " 

 double pHAlkalinity(int AlkOption, double tot[], double newtot[], double c[], double gamma[],double 

k[], 

                          double* Tk, double* lastTk, double* Adh, 

        double* I, double* pHeq, double* actwater,  

                 double* Alkalinity,  

        double* residual, double* test1, double* test2)   

{ 

  // The following arrays define the speciation model stoichiometry and thermodynamics 

  // for components: H, Fo, Ac, Pr, HOrg, NH4, PO4, NO3, CO3, Na, Cl 

  // and species: H,Fo,Ac,Pr,HOrg,NH4,HPO4,NO3,HCO3,Na,Cl,OH,CO3,H2CO3,NaCO3,NaHCO3, 

  // H2PO4,NaHPO4,HFo,HAc,NaAc,HPr,HHOrg,NH3. 

  

//___________________________________________________________________________________

___ 

   static int Component_Count = 12 ; static int Species_Count = 28 ; 

   static int ComponentCharge[12] = {1,-2,1,-3,-1,-1,-1,-1,-1,-1,1,-1} ; 

   static int CarbAlkStoi[9] = {4,9,1,13,2,15,2,16,1} ; 

   static int AlkStoi[19]= {9,1,2,3,2,0,-1,4,1,5,1,6,1,7,1,8,1,9,1} ; 

   static int AdjustedComp[3] = {1,10,11} ; 

//____________________________________________ 

   static int 

balance[45]={0,8,9,12,14,16,17,18,19,20,22,23,24,25,26,9,13,14,15,16,7,26,8,17,18,27,6,25,5,24,4,23,3,

22,2,20,21,1,19,10,15,16,18,21,11} ; 

static int BalanceCoef[45]={1,1,1,-1,2,1,2,1,1,1,1,1,1,1,-

1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1} ; 

static int BalanceMap[13]={0,15,20,22,26,28,30,32,34,37,39,44,45} ; 

static int NonMaster[16]={12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27} ; 

static int charge[28]={1,-1,-1,-1,-1,-1,-1,1,-2,-1,1,-1,-1,-2,0,-1,0,-1,-1,0,0,0,0,0,0,0,0,-3} ; 

static double logK[28]={0,0,0,0,0,0,0,0,0,0,0,0,-13.997,-10.329,6.352,-9.059,-

0.25,7.198,1.07,3.745,4.757,-0.18,4.784,4.819,4.843,4.85,-9.244,-12.375} ; 

static double deltaH[28]={0,0,0,0,0,0,0,0,0,0,0,0,55810,14600,-9160,-5750,-13730.1,-

3000,15000,167.4,410,12000,660,2800,2887,2950,-52000,15000} ; 
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static int 

SpeciesID[44]={0,1,2,3,4,5,6,7,8,9,10,11,0,0,9,0,9,0,10,9,10,9,0,8,10,8,0,1,0,2,2,10,0,3,0,4,0,5,0,6,0,7,0,

8} ; 

static int Stoichiometry[44]={1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,1,1,1,-

1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1,1,-1,1} ; 

static int 

SpeciesMap[29]={0,1,2,3,4,5,6,7,8,9,10,11,12,13,15,17,20,22,24,26,28,30,32,34,36,38,40,42,44} ; 

   static double tolerance = 1.0E-5 ; 

//___________________________________________________________________________________

___ 

 

   static double  newV, totH, logH, error0, error ; 

   static double  CO3tot0, CO3tot1,adjust,adjust1,adjust2,Herr,Ifixed, Alkfixed, pHfixed ; 

   static int ii ; 

   // Remember input values to be matches 

   Ifixed = *I ;  Alkfixed = *Alkalinity ; pHfixed = *pHeq ; 

   *test1 = *I  ;  

   *test2=0 ; 

   newtot[0] = tot[0] ; 

   

 // Test that not all total concentrations are zero 

   for ( ii=1 ; ii < Component_Count ; ii++ ) 

   { 

       *test2 = *test2+fabs(tot[ii]) ; 

       newtot[ii]=tot[ii] ; 

   } 

   if (*test2 <= 0.0)  

   {  

       *I = -1.0 ; 

    *pHeq = -1.0 ; 

    *Alkalinity = -1.0 ; 

       return 0.0 ; 

   } 

   totH = *test2*1.0E-08 ; 

   if (fabs(*Alkalinity) > totH) totH = (*Alkalinity) ; 

 

//  actwater must be set to < -4 by the calling routine  

//  as a signal that there are no previous estimates available 

//  for the species concentrations  
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   if (*actwater < 0.0)   // Signal that there are no initial estimates of concentration  

   {  

  for (ii=0 ; ii<Species_Count ; ii++) 

  c[ii] = 1.0E-9 ; 

     tot[0] = 0.005 ; 

  for ( ii=1 ; ii < Component_Count ; ii++) 

  c[balance[BalanceMap[ii]]] = tot[ii]*0.85 ; // initial guess of master species concs  

   } 

 

   // Correct any ion imbalance in the initial composition 

 error = 0.0 ; 

 for (ii=0 ; ii<Component_Count ; ii++)  

   error = error+tot[ii]*ComponentCharge[ii] ; 

  tot[AdjustedComp[1]] = tot[AdjustedComp[1]]-

0.5*error/ComponentCharge[AdjustedComp[1]] ; 

  tot[AdjustedComp[2]] = tot[AdjustedComp[2]]-

0.5*error/ComponentCharge[AdjustedComp[2]] ; 

 

   // Initialise solver loop 

   if ( *Tk != *lastTk)   // if temperature has changed 

   { *lastTk = *Tk ; 

  // calculate thermodynamic (infinite dilution) equilibrium constants 

    kthermo(Tk,Species_Count,logK,deltaH,k,Adh) ; 

   } 

   ActivityCoefficients(Species_Count,c,charge,gamma,Ifixed,Adh,actwater) ; 

   logH = -pHfixed-log10(gamma[0]) ; 

  

   // Evaluate equation error at initial point  

   CO3tot0 = tot[AdjustedComp[0]] ;  // Primary search variable  

   Herr = TrySpeciation(logH, Adh, Component_Count, tot,  

     balance, BalanceCoef, BalanceMap, NonMaster, 

                 Species_Count, c, charge, k, gamma,  

     SpeciesID, Stoichiometry, SpeciesMap, 

     I, actwater, residual); 

   tot[0] = tot[0]+Herr;   // adjust H+ total concentration 

   if (AlkOption==0||AlkOption==2) 

    error0 = 0.5*(Composite(tot,AlkStoi)-Alkfixed) ;  

   else 

    error0 = 0.5*(Composite(c,CarbAlkStoi)-Alkfixed) ; 
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  *I = IonicStrength(Species_Count,c,charge) ; 

 

  if (( fabs(error0/Alkfixed) < tolerance) && (*residual < tolerance) && ((AlkOption < 2) || (fabs(1.0-

(*I)/Ifixed)<0.01)))  // if the result is good enough already 

 

   { 

       *test1 = 0.0 ; *test2 = error0 ; 

       return 1.0e-10 ; 

   } 

 

 // Solver loop (secant search) 

 

   int count= 0 ; int rowbase = 0 ; 

// 

   while ((( fabs(error/totH) > tolerance) || (*residual > tolerance) || (count < 1)) ||  

       ((AlkOption > 1) && (fabs(1.0-(*I)/Ifixed) > 0.01)) && (count < 40)) 

       { 

     if (count==0) 

     { 

    if (error0 > tot[AdjustedComp[0]])  

     error0 = 0.99*tot[AdjustedComp[0]] ; 

    CO3tot1 = tot[AdjustedComp[0]] - error0 ;  // Adjust CO3= total 

concentration 

     } 

     else 

     { 

    if (error0 == error)   

     { newV = 0.5*(CO3tot0+CO3tot1); }  

    else 

     {newV = (CO3tot1*error0 - CO3tot0*error)/(error0-error) ;}   

    if (newV > 3.0*CO3tot1)  

     newV = CO3tot1*3.0 ; 

    if (newV < CO3tot1/3.0)  

     newV = CO3tot1/3.0 ; 

          

    CO3tot0 = CO3tot1 ;  

    if (newV > 2.0*CO3tot1 || newV < CO3tot1/2.0)  

     CO3tot1 = newV*0.9+CO3tot0*0.1 ; 

    else CO3tot1=newV ; 

     } 
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   adjust = 2*(CO3tot1-tot[AdjustedComp[0]]) - Herr ; // Adjustment to restore 

charge balance 

   tot[AdjustedComp[0]] = CO3tot1 ; 

   error0 = error ;  

   tot[AdjustedComp[1]] = 

tot[AdjustedComp[1]]+adjust*0.5/ComponentCharge[AdjustedComp[1]] ; 

   tot[AdjustedComp[2]] = 

tot[AdjustedComp[2]]+adjust*0.5/ComponentCharge[AdjustedComp[2]] ; 

 

   if (tot[AdjustedComp[1]]<0.0)  // if would make first ion conc -ve 

   { 

    // transfer some adjustment to opposite charged ion  

    tot[AdjustedComp[2]] = tot[AdjustedComp[2]] 

    

 +tot[AdjustedComp[1]]*ComponentCharge[AdjustedComp[1]]/ComponentCharge[AdjustedCo

mp[2]] ; 

    tot[AdjustedComp[1]] = 0.0 ; 

   } 

   if (tot[AdjustedComp[2]]<0.0) // if would make second ion conc -ve 

   { 

    // transfer some adjustment to opposite charged ion  

    tot[AdjustedComp[1]] = tot[AdjustedComp[1]] 

    

 +tot[AdjustedComp[2]]*ComponentCharge[AdjustedComp[2]]/ComponentCharge[AdjustedCo

mp[1]] ; 

    tot[AdjustedComp[2]] = 0.0 ; 

   } 

 

   Herr = TrySpeciation(logH, Adh, Component_Count, tot,  

     balance, BalanceCoef, BalanceMap, NonMaster, 

                 Species_Count, c, charge, k, gamma,  

     SpeciesID, Stoichiometry, SpeciesMap, 

     I, actwater, residual); 

 

   tot[0] = tot[0]+Herr ; 

   if (AlkOption==0||AlkOption==2) 

    error = 0.5*(Composite(tot,AlkStoi)-Alkfixed) ;  

   else 

    error = 0.5*(Composite(c,CarbAlkStoi)-Alkfixed) ;  
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   *I = IonicStrength(Species_Count,c,charge) ; 

 

   if (AlkOption > 1)  // adjusting ionic strength 

   { 

    adjust1 = 2.0*(Ifixed-(*I)) 

     /((ComponentCharge[AdjustedComp[1]]-

ComponentCharge[AdjustedComp[2]])*ComponentCharge[AdjustedComp[1]]) ; 

    adjust2 = 2.0*(Ifixed-(*I)) 

     /((ComponentCharge[AdjustedComp[2]]-

ComponentCharge[AdjustedComp[1]])*ComponentCharge[AdjustedComp[2]]) ; 

    if (adjust1 < -tot[AdjustedComp[1]]) 

    { 

     adjust1 = -tot[AdjustedComp[1]] ; 

     adjust2 = -

adjust1*ComponentCharge[AdjustedComp[1]]/ComponentCharge[AdjustedComp[2]] ; 

    } 

    if (adjust2 < -tot[AdjustedComp[2]]) 

    { 

     adjust2 = -tot[AdjustedComp[2]] ; 

     adjust1 = -

adjust2*ComponentCharge[AdjustedComp[2]]/ComponentCharge[AdjustedComp[1]] ; 

    } 

    tot[AdjustedComp[1]] = tot[AdjustedComp[1]]+adjust1 ; 

    tot[AdjustedComp[2]] = tot[AdjustedComp[2]]+adjust2 ;  

   } 

   count = count+1 ;  

  } 

/*  // Final check on ion balance  

  error = 0.0 ; 

  for (ii=0 ; ii<Component_Count ; ii++)  

  { 

                    error = error+tot[ii]*ComponentCharge[ii] ; 

                    newtot[ii]=tot[ii] ; 

                } 

  tot[AdjustedComp[1]] = tot[AdjustedComp[1]]-

0.5*error/ComponentCharge[AdjustedComp[1]] ; 

  tot[AdjustedComp[2]] = tot[AdjustedComp[2]]-

0.5*error/ComponentCharge[AdjustedComp[2]] ; 

*/   

       *pHeq = -log10(c[0]*gamma[0]) ; 
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    // Alkalinity calculation 

    if ((AlkOption==0)||(AlkOption==2)) 

     *Alkalinity = Composite(tot,AlkStoi) ; 

    else 

     *Alkalinity = Composite(c,CarbAlkStoi) ; 

       *test1 = double(count) ; *test2 = error ; // diagnostic values 

       return 1.0 ; 

   } 

} 

7.10 Initial Conditions for AD-FTRW2 

Name Value Initial value Unit 
Category : DERIVED STATE       

M(Zmm) 0 0.01 g 

M(Zhm) 0 500 g 

M(Zfd) 0 0.01 g 

M(Ze) 0 2900 g 

M(Zam) 0 3100 g 

M(Zad) 0 600 g 

M(ZacVa) 0 2800 g 

M(ZacPr) 0 5500 g 

M(ZacHx) 0 300 g 

M(ZacEt) 0 100 g 

M(ZacBu) 0 1100 g 

M(Va_t) 0 20.42636 g 

M(Urea) 0 60 g 

M(Sbp) 0 100 g 

M(Pr_t) 0 59.26 g 

M(PO4_t) 0 47.49 g 

M(NH4_t) 0 108.23 g 

M(Na_t) 0 11495 g 

M(MeOH) 0 1.923 g 

M(H_t) 0 6.23 g 

M(Hx_t) 0 4.65 g 

M(H2_t) 0 0 g 

M(H2O) 1000000000 1000000 g 

M(Fo_t) 0 0 g 

M(EtOH) 0 1.84 g 

M(CO3_t) 0 300 g 

M(CO2) 0 0 g 

M(Cl_t) 0 17148.62 g 

M(CH4) 0 0 g 

M(Bu_t) 0 44.05 g 

M(Ac_t) 0 49.84 g 
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