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ABSTRACT 

 

1,2-Dichloroethane (1,2-DCA), a short chain chlorinated aliphatic compound, is one of the most 

hazardous toxic pollutant of soil and groundwater, with an annual production in excess of 5.44 × 10
9
 kg. 

The major concern over soil contamination with 1,2-DCA stems largely from health risks. Owing to their 

toxicity, persistence and potential for bioaccumulation, there is a growing interest in technologies for their 

removal. Many sites are, however, co-contaminated with a complex mixture of 1,2-DCA and heavy metal 

contaminants. Co-contaminated environments are considered difficult to remediate because of the mixed 

nature of the contaminants and the fact that the two components often must be treated differently. 

Therefore, the objective of this study was to evaluate the aerobic biodegradation of 1,2-DCA by 

autochthonous microorganisms in soil co-contaminated with 1,2-DCA and heavy metals, namely; arsenic 

(As
3+

), cadmium (Cd
2+

), mercury (Hg
2+

) and lead (Pb
2+

), via a direct and quantitative measurement of the 

inhibitory effects of heavy metals in a microcosm setting. Effects of various metal concentrations and 

their combinations were evaluated based on the following: (i) degradation rate constants; (ii) estimated 

minimal inhibitory concentrations (MICs) of metals; (iii) concentrations of heavy metals that caused 

biodegradation half-life doublings (HLDs); and (iv) heavy metal concentrations that caused a significant 

effect on biodegradation (> 10% increase in t½ of 1,2-DCA). The effects of biostimulation, 

bioaugmentation and the addition of treatment additives on the biodegradation process were evaluated. 

The presence of heavy metals was observed to have a negative impact on the biodegradation of 1,2-DCA 

in both clay and loam soil samples, with the toxic effect being more pronounced in loam soil for all heavy 

metal concentrations except for Hg
2+

, after 15 days. Heavy metal concentrations of 75 mg/kg As
3+

,       

840 mg/kg Hg
2+

, and 420 mg/kg Pb
2+

, resulted in 34.24%, 40.64%, and 45.94% increases in the t½ of   

1,2-DCA, respectively, in loam soil compared to clay soil. Moreover, the combination of four heavy 

metals in loam soil resulted in 6.26% less degradation of 1,2-DCA compared to clay soil, after 15 days. 

Generally, more than 127.5 mg/kg Cd
2+

, 840 mg/kg Hg
2+

 and 420 mg/kg of Pb
2+

 was able to cause a > 

10% increase in the t½ of 1,2-DCA in clay soil, while less than 75 mg/kg was required for As
3+

. An 

increased reduction in 1,2-DCA degradation was observed with increasing concentration of the heavy 

metals. In clay soil, a dose-dependant relationship between k1 and metal ion concentrations in which k1 

decreased with higher initial metal concentrations was observed for all the heavy metals tested except 

Hg
2+

. Ammonium nitrate-extractable fractions of bioavailable As
3+

 and Cd
2+

 concentrations varied 

greatly, with approximately < 2.73% and < 0.62% of the total metal added to the system being 

bioavailable, respectively. Although bioavailable heavy metal fractions were lower than the total metal 

concentration added to the system, indigenous microorganisms were sensitive to the heavy metals. 

Biostimulation, bioaugmentation and amendment with treatment additives were all effective in enhancing 
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the biodegradation of 1,2-DCA in the co-contaminated soil. In particular, biostimulation with fertilizer, 

dual-bioaugmentation and amendment with CaCO3 were most efficient in enhancing 1,2-DCA 

degradation resulting in 41.93%, 59.95% and 51.32% increases in the degradation rate constant of       

1,2-DCA in the As
3+

 co-contaminated soil, respectively, after 20 days. Among all the treatments, dual-

bioaugmentation produced the highest 1,2-DCA degrading population of up to 453.33 × 10
7
 cfu/ml in the 

Cd
2+

 co-contaminated soil. On comparison of the As
3+

 and Cd
2+ 

co-contaminated soil undergoing either 

biostimulation or dual-bioaugmentation, similarity in the denaturing gradient gel electrophoresis (DGGE) 

banding patterns was observed. However, the banding patterns for the different bioremediation options 

demonstrated a difference in bacterial diversity between the fertilized and dual-bioaugmented samples. 

DGGE profiles also indicate that while numerous bands were common in the fertilized co-contaminated 

soils, there were also changes in the presence and intensity of bands due to treatment and temporal 

effects. Dehydrogenase and urease activities provided a more accurate assessment of the negative impact 

of heavy metals on the indigenous soil microorganisms, resulting in up to 87.26% and 69.58% decreases 

in activities, respectively. In both the biostimulated and bioaugmented soil microcosms, dehydrogenase 

activity appeared biphasic with an initial decrease followed by an increase in the treated soils over time. 

Results from this study provide relevant information on some alterations that could be introduced to 

overcome a critical bottle-neck of the application of bioremediation technology. In conclusion, the 

bioremediation strategies adopted in this study may be used as a rational methodology for remediation of 

sites co-contaminated with 1,2-DCA and heavy metals, subject to a thorough understanding of the 

microbial ecology and physico-chemical parameters of the site. 
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ABSTRACT 

 

1,2-Dichloroethane (1,2-DCA), a short chain chlorinated aliphatic compound, is one of the most 

hazardous toxic pollutant of soil and groundwater, with an annual production in excess of 5.44 × 109 kg. 

The major concern over soil contamination with 1,2-DCA stems largely from health risks. Owing to their 

toxicity, persistence and potential for bioaccumulation, there is a growing interest in technologies for their 

removal. Many sites are, however, co-contaminated with a complex mixture of 1,2-DCA and heavy metal 

contaminants. Co-contaminated environments are considered difficult to remediate because of the mixed 

nature of the contaminants and the fact that the two components often must be treated differently. 

Therefore, the objective of this study was to evaluate the aerobic biodegradation of 1,2-DCA by 

autochthonous microorganisms in soil co-contaminated with 1,2-DCA and heavy metals, namely; arsenic 

(As3+), cadmium (Cd2+), mercury (Hg2+) and lead (Pb2+), via a direct and quantitative measurement of the 

inhibitory effects of heavy metals in a microcosm setting. Effects of various metal concentrations and 

their combinations were evaluated based on the following: (i) degradation rate constants; (ii) estimated 

minimal inhibitory concentrations (MICs) of metals; (iii) concentrations of heavy metals that caused 

biodegradation half-life doublings (HLDs); and (iv) heavy metal concentrations that caused a significant 

effect on biodegradation (> 10% increase in t½ of 1,2-DCA). The effects of biostimulation, 

bioaugmentation and the addition of treatment additives on the biodegradation process were evaluated. 

The presence of heavy metals was observed to have a negative impact on the biodegradation of 1,2-DCA 

in both clay and loam soil samples, with the toxic effect being more pronounced in loam soil for all heavy 

metal concentrations except for Hg2+, after 15 days. Heavy metal concentrations of 75 mg/kg As3+,       

840 mg/kg Hg2+, and 420 mg/kg Pb2+, resulted in 34.24%, 40.64%, and 45.94% increases in the t½ of   

1,2-DCA, respectively, in loam soil compared to clay soil. Moreover, the combination of four heavy 

metals in loam soil resulted in 6.26% less degradation of 1,2-DCA compared to clay soil, after 15 days. 

Generally, more than 127.5 mg/kg Cd2+, 840 mg/kg Hg2+ and 420 mg/kg of Pb2+ was able to cause a > 

10% increase in the t½ of 1,2-DCA in clay soil, while less than 75 mg/kg was required for As3+. An 

increased reduction in 1,2-DCA degradation was observed with increasing concentration of the heavy 

metals. In clay soil, a dose-dependant relationship between k1 and metal ion concentrations in which k1 

decreased with higher initial metal concentrations was observed for all the heavy metals tested except 

Hg2+. Ammonium nitrate-extractable fractions of bioavailable As3+ and Cd2+ concentrations varied 

greatly, with approximately < 2.73% and < 0.62% of the total metal added to the system being 

bioavailable, respectively. Although bioavailable heavy metal fractions were lower than the total metal 

concentration added to the system, indigenous microorganisms were sensitive to the heavy metals. 

Biostimulation, bioaugmentation and amendment with treatment additives were all effective in enhancing 
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the biodegradation of 1,2-DCA in the co-contaminated soil. In particular, biostimulation with fertilizer, 

dual-bioaugmentation and amendment with CaCO3 were most efficient in enhancing 1,2-DCA 

degradation resulting in 41.93%, 59.95% and 51.32% increases in the degradation rate constant of       

1,2-DCA in the As3+ co-contaminated soil, respectively, after 20 days. Among all the treatments, dual-

bioaugmentation produced the highest 1,2-DCA degrading population of up to 453.33 × 107 cfu/ml in the 

Cd2+ co-contaminated soil. On comparison of the As3+ and Cd2+ co-contaminated soil undergoing either 

biostimulation or dual-bioaugmentation, similarity in the denaturing gradient gel electrophoresis (DGGE) 

banding patterns was observed. However, the banding patterns for the different bioremediation options 

demonstrated a difference in bacterial diversity between the fertilized and dual-bioaugmented samples. 

DGGE profiles also indicate that while numerous bands were common in the fertilized co-contaminated 

soils, there were also changes in the presence and intensity of bands due to treatment and temporal 

effects. Dehydrogenase and urease activities provided a more accurate assessment of the negative impact 

of heavy metals on the indigenous soil microorganisms, resulting in up to 87.26% and 69.58% decreases 

in activities, respectively. In both the biostimulated and bioaugmented soil microcosms, dehydrogenase 

activity appeared biphasic with an initial decrease followed by an increase in the treated soils over time. 

Results from this study provide relevant information on some alterations that could be introduced to 

overcome a critical bottle-neck of the application of bioremediation technology. In conclusion, the 

bioremediation strategies adopted in this study may be used as a rational methodology for remediation of 

sites co-contaminated with 1,2-DCA and heavy metals, subject to a thorough understanding of the 

microbial ecology and physico-chemical parameters of the site. 
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1.1 Introduction 

In tandem with rapid industrial and economic advancement, human activities have lead to 

widespread pollution of the natural global environment (Ang et al., 2005). In recent years, concern about 

the presence, disposition, and persistence of chlorinated organic pollutants in the environment (air, soil, 

and water systems) has increased since most of the important classes of these chemicals have been shown 

to be carcinogenic in experimental animals thus posing a potential human health risk (Cerniglia, 1984; 

Cerniglia and Heitkamp, 1989). In addition, some have been shown to be toxic and carcinogenic to 

humans (van den Wijngaard et al., 1993). Chlorinated organic solvents are among the most widespread 

organic contaminants present in the groundwaters and subsurface soils of many contaminated sites. The 

physico-chemical properties of these compounds, particularly when they are classified as dense non-

aqueous phase liquids (DNAPLs), make them difficult to remove once they have entered the subsurface 

and they remain among the most complex contaminants to remediate in the environment (Yoshida et al., 

2005). 

Among the short chained chlorinated aliphatic compounds, 1,2-dichloroethane (1,2-DCA) 

represents one of the world‟s most important toxic chlorinated aquifer pollutant (Marzorati et al., 2007), 

and it is produced industrially in larger volumes than any other halogenated compound (Laturnus, 2003). 

The major use of 1,2-DCA (more than 90% of production) is as a chemical intermediate in the synthesis 

of a number of chlorinated hydrocarbons, in particular; vinyl chloride which is used in making a variety 

of plastic and vinyl products including polyvinyl chloride (PVC) pipes (De Wildeman and Verstrate, 

2003; IARC, 1999), trichloroethylene and tetrachloroethane (DEA, 2002; Hage and Hartmans, 1999). The 

widespread use of 1,2-DCA has resulted in serious environmental contamination (Hughes et al., 1994), 

and has resulted in its inclusion in the E. U. and U. S. priority lists of contaminants (Marzorati et al., 

2005; USEPA, 1982). In addition, 1,2-DCA has been found in at least 570 of the 1585 National Priorities 

List sites identified by the U. S. Environmental Protection Agency (USEPA). Depending on 

environmental conditions, the estimated half-life of 1,2-DCA can range from months to decades due to its 

relatively high water solubility, potential for migration in soil, and very long persistence in anoxic 

groundwater (Barbee, 1994; Vogel et al., 1987). There is therefore, a growing interest in technologies for 

its removal. Bioremediation is a possible option to destroy contaminants completely or render them 

innocuous by using natural biological activity (Singh et al., 2008; Vidali, 2001). Microbial degradation 

has been proposed as an efficient strategy for organic waste removal, with distinct advantages over 

physico-chemical remediation methods; it uses relatively low cost, low technology techniques, and may 

be carried out on site to achieve the complete degradation of organic pollutants without collateral 

destruction of the site material or its indigenous flora and fauna (Timmis and Pieper, 1999). Also, 

biological processes and biodegradation of organic contaminants to innocuous end products (CO2, cell 
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mass, water) minimizes the environmental impact and residual contamination (Kovalick Jr, 1992; NRC, 

1994). Microorganisms have evolved several pathways for the biodegradation and/or transformation of 

various toxic pollutants (Singh et al., 2008). However, the presence of heavy metals in the environment 

can negatively influence the effectiveness of bioremediation strategies (Baldrian et al., 2000). 

Forty percent of hazardous waste sites on the Environmental Protection Agency‟s (EPA‟s) 

National Priority List (NPL) are characterized by the concomitant presence of both organic contaminants 

and heavy metals, and bioremediation of these sites poses a complex problem because of the multiplicity 

of contaminants (Sandrin and Maier, 2003). Co-contamination often causes a synergistic cytotoxic effect 

on microorganisms, and the two components often must be treated differently (Hoffman et al., 2005; 

Sandrin et al., 2000; Sandrin and Maier, 2003). Such concerns have heightened the need for novel and 

advanced bioremediation techniques to effectively remove organic pollutants from a variety of co-

contaminated environmental media including water, sediments and soil (Ang et al., 2005; Duran and 

Esposito, 2000). Metals most frequently found at USEPA Superfund sites are divided into two categories: 

cationic metals (metallic elements in soil with positively charged cations) and anionic compounds 

(elements in soil which are combined with oxygen and are negatively charged). The most common 

problem-causing cationic metals are mercury, cadmium, lead, nickel, copper, zinc and chromium, 

whereas the most common anionic compound is arsenic (NRCS, 2000). Common organic pollutants at 

these sites include petroleum, polycyclic aromatic hydrocarbons (PAH), chlorinated solvents, herbicides 

and pesticides (Amor et al., 2001; Hoffman et al., 2005). Few reports have focused on the adverse effects 

of heavy metals on biodegradation in co-contaminated environments under both aerobic and anaerobic 

conditions. These effects include extended acclimation periods, reduced biodegradation rates and failure 

of the degradation of the target compound (Kuo and Genthner, 1996; Said and Lewis, 1991). 

Complications of the effects of metal toxicity on organic pollutant biodegradation in co-contaminated soil 

and water environments stem from the fact that heavy metals may be present in a variety of chemical and 

physical forms, namely, ionic solutes, soluble complexed species and soil adsorbed species (Sandrin and 

Maier, 2003). Further impediments arise due to the effect of environmental conditions on the physical and 

chemical state of the metals. These conditions include pH, redox potential of the water phase as well as 

soil properties (ion exchange capacity, clay type and organic matter content) (Sandrin and Maier, 2003).  

The clean-up of soil contaminated with both 1,2-DCA and heavy metals is a contemporary 

remediation issue as most of the current techniques are directed at the removal of individual contaminants 

(Gregor, 2001; Hirschorn et al., 2007; Janssen et al., 2005). Previous studies have focused extensively on 

the biodegradation of 1,2-DCA in several contaminated soil and water environments (van der Wijngaard 

et al., 1993), and toxic effects of heavy metals on soil microorganisms have also been studied 

(Rajapaksha et al., 2004). However, few reports exist on the biodegradation of 1,2-DCA in the presence 
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of heavy metals (Olaniran et al., 2009). Since heavy metals and 1,2-DCA are found together in most co-

contaminated sites, it is necessary to evaluate the biodegradation of 1,2-DCA in co-contaminated soil and 

ascertain the effects of heavy metals on 1,2-DCA degradation. Also, due to the widespread use and 

release of organic pollutants and heavy metals, determining the combined effect on microbial activity and 

community composition is essential. 
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1.2 Chlorinated hydrocarbons 

 

1.2.1 Classes 

Chlorinated hydrocarbons are an important class of chemicals containing one or more chlorines in 

their molecular structures (Ma and Wang, 2009). In particular, chlorinated aliphatic compounds are a 

diverse group of synthetic industrial chemicals which play a significant role as environmental pollutants 

in subsurface soils and groundwaters of many contaminated sites. These chlorinated hydrocarbons are 

subdivided into chloroalkanes, chloroalkenes and chloroalkynes. Among the chloroalkanes, chloroethanes 

are further divided into the lower and higher chlorinated ethanes based on the differences in 

biodegradability (Sutherson, 1997). Examples of lower chlorinated ethanes include 1,1-dichloroethane 

and 1,2-dichloroethane which may be utilized as primary growth substrates by aerobic microorganisms 

but only cometabolized by anaerobic microorganisms (Sutherson, 1997). Higher chlorinated ethanes 

include 1,1,2-trichloroethane and tetrachloromethane (Sutherson, 1997). Most prominent with regard to 

industrial use, environmental persistence, toxicity and potential carcinogenicity are the chlorinated one-

carbon, two-carbon and three-carbon compounds (Leisinger, 1996). 

 

1.2.2 Properties and uses 

Chlorinated hydrocarbons comprise the strong C-Cl bond, which confers high stability to these 

organic compounds. They have general physico-chemical characteristics: denser than and minimally 

soluble in water and volatile with variable vapor pressure (Sutherson, 1997). Most chlorinated compounds 

are classified as DNAPLs which tend to sink and accumulate on the non-permeable layer at the bottom of 

confined aquifers (Sutherson, 1997). This property in particular makes them complex to remove once they 

have entered the subsurface and they remain among the most difficult contaminants to remediate in the 

environment. When released to surface or subsurface systems, DNAPLs migrate through unsaturated 

zones until they reach groundwater tables. They then disperse throughout the saturated soils, sorbing 

strongly with soil organics and minerals and dissolving in groundwater (Ferguson and Pietari, 2000), 

creating long-term sources of contaminant plumes moving in the general direction of groundwater flow, 

thus potentially entering drinking-water supplies and threatening human health. Owing to their stability, 

several chlorinated hydrocarbons have been synthesized and used extensively for many years in 

industrial, commercial and agricultural applications (Fetzner, 1998). These compounds have widespread 

use in industry as solvents, degreasing agents, chemical feedstocks, and in some cases as pesticides.  
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1.2.3 Environmental and health effects 

Chlorinated hydrocarbons are of major environmental concern since these contaminants are often 

found in groundwater, soil and the atmosphere due to improper disposal of wastes, accidental spillage, or 

deliberate release. Many of the chlorinated compounds are of public health concern since they are 

considered as suspected carcinogens or mutagens and potentially toxic to humans and microorganisms 

(Bouwer and McCarty, 1983). This concern is further compounded by the ability of these organochlorines 

to accumulate in the tissues of living organisms, a phenomenon known as bioaccumulation (Philips, 

1993). Relatively small amounts of organochlorines present in water may be preferentially transferred and 

accumulated in the fats of aquatic plants and animals, with resulting concentrations being as much as 500 

000 times or more than the surrounding waters. Living organisms may also accumulate chlorinated 

hydrocarbons through the food chain via a process termed biomagnification. As a result, concentrations of 

organochlorines may increase with trophic levels, with the highest concentrations being observed in 

higher consumers including certain fish, marine mammals, birds, or humans (Phillips, 1993). 

 

1.3 1,2-Dichloroethane  

 

1.3.1 Properties 

1,2-Dichloroethane, commonly known as ethane dichloride, is a short chained chlorinated 

aliphatic compound which appears colourless and oily with a sweet taste and pleasant chloroform like 

odour (IPCS, 1995). The chemical formula for 1,2-DCA is C2H4Cl2 and it has a molecular weight of 98.96 

g/mol. It is a volatile liquid with a density of 1.2351 and vapour pressure of 8.5 kPa at 20 C, i.e., it 

evaporates quickly (ATSDR, 1993; IPCS, 1995). As a pure phase, 1,2-DCA is a DNAPL with moderate 

solubility in water (8,624 g/L at 20°C) and soluble in most organic solvents (HSDB, 2000; IARC, 1999; 

IPCS, 1998). 

 

1.3.2 Production and uses 

1,2-Dichloroethane is generally considered to be largely produced from anthropogenic sources, 

i.e., a synthetic manufactured chemical. However, 1,2-DCA can in low concentrations originate from 

natural sources (de Rooij et al., 1998). It was reported as the first chlorinated hydrocarbon to be 

synthesized (IARC, 1979), and is manufactured via the catalytic vapor-phase or liquid-phase chlorination 

of ethylene, or by oxychlorination of ethylene (Archer, 1979). In commercial ethylene oxychlorination 

reactors, gaseous ethylene, hydrogen chloride, and air react with catalysts at a temperature range of 473-

573K and a pressure of 0.4-0.6 MPa (Magistro and Cowfer, 1986; Mallikarjunan and Hussain, 1983; 

Naworski and Velez, 1983). Currently, more than 17.5 million tons are produced annually in the United 
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States, Western Europe and Japan (Field and Sierra-Alvarez, 2004), and with a global capacity for vinyl 

chloride monomer of 35 million metric tons in 2005, production continues. 

1,2-Dichloroethane is used almost exclusively as a feedstock for the manufacture of vinyl 

chloride (VC) monomers, primarily PVC (ATSDR, 2006; Bejankiwar et al., 2005; Davis et al., 2009). 

Polyvinyl chloride is one of the most mass produced thermoplastics in chemical industries of the world 

(Go et al., 2010), and hence the increased production of 1,2-DCA across the globe. Smaller amounts of 

1,2-DCA are used in the production of vinylidene chloride, 1,1,1-trichloroethane, trichloroethene, 

tetrachloroethene, ziridines, ethylene diamines and chlorinated solvents (ATSDR, 2001). In the past it has 

been widely used as an insect fumigant for stored grains and in mushroom houses, a soil fumigant in 

peach and apple orchards, metal degreasers, varnish removers and soaps (IARC, 1999). 1,2-

Dichloroethane has also been used as a lead scavenger in fuels to prevent engine lead fouling (Falta, 

2004).  

 

1.3.3 Release 

The widespread use of 1,2-DCA in a variety of products and in manufacturing processes has 

resulted in its frequent occurrence in sites contaminated with organic chemicals (DEA, 2002; Hage and 

Hartmans, 1999). The largest fraction of all releases of 1,2-DCA into the environment is the result of 

atmospheric emissions from industrial processes, manufacturing, handling, storage, and inappropriate 

disposal of the compound (IARC, 1999; van den Wijngaard et al., 1993). In addition, fugitive emissions 

contribute significantly. In the air, 1,2-DCA degradation proceeds mainly by reaction with hydroxyl 

radicals, or by reacting with other compounds formed by sunlight. However, it can stay in the air for more 

than 5 months (between 47-182 days) before being broken down. It may also be removed from air by rain 

or snow. Releases to soils and surface waters are frequently detected at several tens of micromolars 

(ATSDR, 1999; Gotz et al., 1998; IPCS, 1995; Yamamoto et al., 1997), which is above the natural 

background level of 5 μmol in non-industrialized areas (de Rooij et al., 1998). In these environmental 

settings, 1,2-DCA is expected to volatilize rapidly into the atmosphere, with subsequent photo-oxidation, 

typically within four months (WHO, 1996). The presence of methane can increase the rate of aerobic 

degradation of 1,2-DCA in soils, although, where volatilization is restricted, the lifetime in groundwater is 

expected to be in the order of years (ATSDR, 2001; IPCS, 1998). It has been estimated that 1,2-DCA has 

an environmental half-life of approximately 50 years (Vogel et al., 1987). 
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1.3.4 Human exposure  

Human exposure to 1,2-DCA has usually occurred when the chemical has been improperly 

disposed of, or spilled onto the ground. Humans are exposed to 1,2-DCA mainly by inhalation or by 

drinking water that contains 1,2-DCA. Numerous factors determine whether an individual will be harmed 

after contact with 1,2-DCA. These factors include the dose, duration, the way in which the contact 

occurred, as well as the presence of other chemicals (ATSDR, 2001). Humans can also be exposed to low 

levels of 1,2-DCA through the skin or air by contact with old products made with 1,2-DCA, such as 

pesticides, cleaning agents, and adhesives used to glue wallpaper and carpets. Besides these 

environmental exposures, occupational exposures may occur for workers involved in the manufacture or 

use of chemicals containing 1,2-DCA (NPI, 2005). 

 

1.3.5 Environmental and health effects  

1,2-Dichloroethane is one of the most prevalent xenobiotic compounds present in industrial 

wastewater discharges, groundwater and soil (Kocamemi and Çeçen, 2009). Because of the impact on the 

environment and human health, 1,2-DCA has been placed on the USEPA Priority List of Pollutants 

(USEPA, 1982) and on the United Kingdom „„Red list‟‟ of priority pollutants (Edwards, 1992). Industrial 

emissions of 1,2-DCA can produce elevated, but still low-level concentrations in the atmosphere around 

the source, however, it can travel for long distances. Spillages to the ground result in soil contamination 

and secondary contamination of groundwater via 1,2-DCA leaching. 1,2-Dichloroethane has slight acute 

(short-term) toxicity and slight chronic (long-term) toxicity to aquatic life. However, it is not expected to 

concentrate in fish. 1,2-Dichloroethane has also been found to cause injury to woody trees (ATSDR, 

1999). 

1,2-Dichloroethane is a toxic and potentially carcinogenic compound, and so its emissions have 

to be minimized by following strict environmental regulations (Baptista et al., 2006; IARC, 1999). The 

maximum contaminant level (MCL) for 1,2-DCA in drinking water is 5.0 μg/L (Henderson et al., 2008). 

Based on its physical properties and on case reports of deaths arising from oral or inhalation exposures, 

1,2-DCA is likely to be absorbed by humans through any form of exposure (ATSDR, 2001). The analysis 

of „several‟ tissues of oral poisoning victims indicated a wide distribution of 1,2-DCA throughout the 

body (IARC, 1999). 1,2-Dichloroethane also appeared in the placenta, and has been detected in human 

milk following occupational exposure (WHO, 2003). The lethal oral dose in humans is estimated to be in 

the range of 20-50 ml (about 300-750 mg/kg bw) (IPCS, 1998). According to the ATSDR, the “minimal 

risk level” (MRL) for oral exposure to 1,2-DCA for a year is 0.2 mg/kg bw per day. 

In acute toxicity, the ingestion of large single doses results in pulmonary edema, heart 

arrhythmias, bronchitis, depression, and changes in the brain tissue which eventually lead to death in most 
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cases (IPCS, 1995).  Acute inhalation exposure of humans to 1,2-DCA can induce neurotic, nephrotoxic, 

and hepatoxic effects, as well as respiratory distress (ATSDR, 1993). From case studies of poisoning 

incidents, the lethal dose of 1,2-DCA is estimated to be 40-80 ml (ATSDR 1992). Other toxic symptoms 

include central nervous system depression, vomiting, and diarrhoea, and the consequences associated with 

kidney and liver injury (ATSDR, 2001; IPCS, 1995; 1998). In animals, clouding of the cornea and eye 

irritation have also been observed and are thought to be the result of vapour contact with the eyes. Acute 

animal tests, such as the lethal concentration (LC50) and lethal dose (LD50) tests in rats, mice and rabbits, 

have demonstrated that 1,2-DCA has moderate acute toxicity from inhalation or dermal exposure and 

moderate to high acute toxicity from oral exposure (USDHHS, 1993). In rodents and rabbits, 1,2-DCA 

demonstrated a moderate acute oral toxicity with LD50 values in the range of 413-860 mg/kg bw (IPCS, 

1995).  

Female workers who were using 1,2-DCA as solvents in a rubber processing plant were reported 

to have an increase in spontaneous abortions, premature births and pre-eclamptic toxaemia (GDCh-BUA, 

1997). Also, increased rates of premature births were observed in female workers and in the wives of 

male workers in a synthetic fibre factory. In inhalation studies of rats, decreased fertility and increased 

embryo mortality have been observed (ATSDR, 1993). Human studies on 1,2-DCA as a cause of cancer 

have been considered inadequate. In 1999, an IARC Working Group assigned 1,2-DCA a Group 2B 

cancer classification (“possibly carcinogenic to humans”) (IARC, 1999). However, in men over 55 years 

of age exposed to 1,2-DCA in drinking water an increased incidence of colon and rectal cancer has been 

reported (ATSDR, 1993).  In animals, increases in the occurrence of stomach, mammary gland, liver, 

lung, and endometrium cancers have been seen following inhalation, oral, and dermal exposure (ATSDR, 

2001). Administration by stomach tube to groups of 50 male and 50 female rats and mice, 5 day/week for 

78 weeks produced multiple tumor (including alveolar/bronchiolar adenomas, endometrial stromal polyps 

and sarcomas, hepatocellular carcinomas, and mammary adenocarcinomas) types in both species 

(ATSDR, 1993; ATSDR, 2001).  

 

1.3.6 Biodegradation of 1,2-dichloroethane 

There is sufficient evidence that confirms that 1,2-DCA is susceptible to both abiotic (Gerritse, 

1999; Lee et al., 1999; Nobre and Nobre, 1998; 1999; Stucki and Thuer, 1995) and biological 

transformation (Barbash and Reinhard, 1989; Belay and Daniels, 1987; Egli et al., 1987; Holliger et al., 

1990a,b; Janssen et al., 1985; Jeffers et al., 1989; Stucki et al., 1987; 1983; Vandenbergh and Kunka, 

1988; van den Wijngaard et al., 1992). However, microbial enzyme systems capable of its degradation 

have not evolved sufficiently to make the compound widely biodegradable (van der Zaan et al., 2009). 
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1.3.6.1 Abiotic transformation of 1,2-dichloroethane 

Abiotic degradation has been well documented, however, under these conditions, dissolved 1,2-

DCA is transformed slowly and the resulting products may even be more toxic than 1,2-DCA itself 

(Gallegos et al., 2007). Under abiotic and alkaline hydrolysis, 1,2-DCA is transformed to vinyl chloride, 

whereas reactions at neutral pH favor a hydrolytic substitution reaction, yielding ethylene glycol as a 

product (Jeffers et al., 1989; Lehmicke and Mukherjee, 1999). The half-life for the reaction at pH 7 and 

25°C has been reported to be > 72 years (Jeffers et al., 1989). It has been documented, however, that 

abiotic reaction rates can be enhanced by the presence of certain anions frequently encountered in 

aqueous environments. For example, Barbash and Reinhard (1989) reported that the half-life of 1,2-DCA 

at 25ºC decreased to 37 years in the presence of 50 mM phosphate buffer, and to 6 years in reactions 

containing 50 mM phosphate buffer and 0.67 mM sodium sulfide.  

 

1.3.6.2 Aerobic biodegradation of 1,2-dichloroethane 

To date, most studies on aerobic biodegradation of 1,2-DCA have employed enriched or pure 

cultures (Hage and Hartmans, 1999; Hirschorn et al., 2007; Hunkeler and Aravena, 2000; Inguva and 

Shreve, 1999; Janssen et al.,1985; Klečka et al., 1998; Stucki et al.,1983), rather than soils from 

contaminated sites. The aerobic transformations are usually biotic and occur through oxidation. Several 

members of the genera Xanthobacter, Ancylobacter and Pseudomonas that are able to utilize 1,2-DCA 

have been isolated under laboratory conditions from polluted sites.  

The aerobic biodegradation of 1,2-DCA has been comprehensively studied with cultures of 

Xanthobacter autotrophicus GJ10, Ancylobacter aquaticus AD20, AD25, and AD27, Pseudomonas sp. 

strain DCA1. These microorganisms are capable of utilizing 1,2-DCA as a sole carbon and energy source 

resulting in complete mineralization of the compound, forming carbon dioxide, inorganic chloride and 

water (Janssen et al., 1985; Stucki et al., 1983; Vandenbergh and Kunka, 1988; van den Wijngaard et al., 

1992). The best-studied 1,2-DCA degrading organism is X. autotrophicus GJ10, was reported to degrade 

1,2-DCA via hydrolytic dehalogenation as illustrated in Figure 1.1 (Janssen et al., 1989). In this 

microorganism, 1,2-DCA is initially dehalogenated by the substitution of one of the two terminal chlorine 

atoms by a hydroxyl group to form 2-chloroethanol. This reaction is catalyzed by the constitutively 

produced haloalkane dehalogenase (DhlA) enzyme (Janssen et al., 1994; 1989; 1985). The intermediate 

2-chloroethanol is then oxidized via two sequential dehydrogenation steps to monochloroacetic acid, 

catalysed by two inducible dehydrogenases, the pyrrolo-quinoline quinone-containing alcohol 

dehydrogenase (Mox) and NAD-dependent aldehyde dehydrogenase (Ald) (Janssen et al., 1987; 1985). 

The rate at which X. autotrophicus can degrade 1,2-DCA is limited by the rate at which the                     

2-chloroacetaldehyde and monochloroacetic acid is metabolized as these intermediates are more toxic 



10 
 

than 1,2-DCA and are utilized poorly (Baptista et al., 2006; Tardiff et al., 1991; Van der Ploeg et al., 

1994; 1995). Although monochloroacetic acid may be potentially highly toxic to the bacterium, it is 

converted to glycolic acid by a second, constitutively produced hydrolytic dehalogenase, haloacetate 

dehalogenase (DhlB) (Van der Ploeg et al., 1991). Glycolic acid is taken up in the central metabolic route 

and used for the generation of energy and cell components. A similar catabolic pathway is present in the 

other 1,2-DCA degraders. Interestingly, the two enzymes, namely the alcohol dehydrogenase and the 

haloacetate dehalogenase, appear to be common in nature, and the haloalkane dehalogenase and aldehyde 

dehydrogenase appear to be specifically adapted for the degradation of xenobiotic substrates (Klečka et 

al., 1998). Based on several extensive biochemical as well as genetic analysis of the enzymes involved, 

the authors speculate that evolution of organisms with the ability to grow on 1,2-DCA requires a number 

of steps (Janssen et al., 1995). However, in some cases at concentrations above 5 mM 1,2-DCA, the 

bacteria produce extracellular polysaccharides as a protective barrier to reduce uptake (van den Wijngaard 

et al., 1993) thus limiting their use for in situ bioremediation. 

 
Figure 1.1: Proposed catabolic pathway of 1,2-DCA in X. autotrophicus GJ10. (A), 1,2-DCA; (B), 2-

Chloroethanol; (C), 2-Chloroacetaldehyde; (D), Monochloroacetic acid; (E), Glycolic acid (Song 
et al., 2004). 
 
1.3.6.3 Anaerobic biodegradation of 1,2-dichloroethane 

The biotransformation of 1,2-DCA has also been reported under anaerobic conditions. The 

anaerobic biotic processes are generally reductions that involve either hydrogenolysis reductive 

dechlorination, the substitution of a chlorine atom from the molecule by a hydrogen atom, or 

dihaloelimination, where two adjacent chlorine atoms are removed, leaving a double bond between the 

respective carbon atoms (Bosma et al., 1998; McCarty and Semprini, 1994). Belay and Daniels (1987) 

and Egli et al. (1987), have described the biotransformation of 1,2-DCA to ethene by pure cultures of 

sulfate reducing or methanogenic bacteria. In contrast, Holliger et al. (1990b) observed that cell 

suspensions of methanogenic bacteria reductively dechlorinated 1,2-DCA via two different reaction 

mechanisms: a dihaloelimination reaction yielding ethene as well as two consecutive hydrogenolysis 

reactions yielding chloroethane and ethane. 1,2-Dichloroethane may also be oxidized anaerobically under 
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nitrate reducing conditions, with nitrate as the electron acceptor (Gerritse et al., 1999). Abiotic 

transformation of 1,2-DCA under anaerobic conditions includes hydrolytic substitution yielding ethylene 

glycol (Lehmicke and Mukherjee, 1999). Furthermore, anaerobic bacteria can also reductively 

dechlorinate 1,2-DCA to chloroethane which can either be further dechlorinated to ethane or abiotically 

hydrolyzed to ethanol (Vogel et al., 1987). 

 

1.3.6.4 Halorespiration of 1,2-dichloroethane 

Halorespiration of 1,2-DCA was demonstrated using Dehalococcoides ethenogens strain 195 and 

Dehalococcides strain BAV1. The growth of these halorespiring bacteria occurred on 1,2-DCA, which 

served as a terminal electron acceptor and hydrogen as the electron donor (He et al., 2003; Maymo-Gatell 

et al., 1999). Additionally, the bacterium Desulfobacterium dichloroeliminans strain DCA1was isolated 

and reported to utilize 1,2-DCA as a terminal electron acceptor with formate or hydrogen as the electron 

donor (De Wildeman et al., 2003). In these transformation pathways ethane was the primary product of 

the conversion, and traces of vinyl chloride were also present (De Wildeman et al., 2003; Maymo-Gatell 

et al., 1999). 

 

1.4 Metal toxicity and microbial resistance mechanisms 

 

1.4.1 Toxic effects of heavy metals 

Metals play an essential role in the life processes of microorganisms. Some metals, such as 

calcium, chromium, cobalt, copper, iron, magnesium, manganese, nickel, potassium, sodium and zinc, 

serve as micronutrients and are used for redox-processes: to stabilize molecules through electrostatic 

interactions; as cofactors in various enzymes and electron transport chains; and for regulation of osmotic 

pressure (Bruins et al., 2000). Thus, metal ions may play important roles as “trace elements” in 

sophisticated biochemical reactions. Many other metals (e.g. silver, aluminium, arsenic, cadmium, gold, 

lead and mercury) have no biological role, are non-essential (Bruins et al., 2000), and are potentially toxic 

to microorganisms. At higher concentrations these heavy metal ions form unspecific complex compounds 

within the cell, which leads to toxic effects, making them too dangerous for any physiological function 

(Nies, 1999). Toxic levels of metals may result in the production of free radicals that disrupt nucleic 

acids, proteins, and phospholipids (Halliwell and Gutteridge, 1984; 1985). Metals may also displace metal 

enzyme cofactors, disrupting the structural integrity and function of enzymes (Stadtmann, 1993; Stohs 

and Bagchi, 1995). Toxicity of non-essential metals occurs through the displacement of essential metals 

from their native binding sites or through ligand interactions (Bruins et al., 2000; Nies, 1999). For 

example, Hg2+, Cd2+ and Ag2+ tend to bind to sulfhydryl (SH-) groups of enzymes essential for microbial 
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metabolism, and thus inhibit the activity of sensitive enzymes (Nies, 1999). To have a physiological or 

toxic effect, most metal ions have to enter the microbial cell. Many divalent heavy metal cations (e.g. 

Mn2+, Fe2+, Co2+, Ni2+, Cu2+ and Zn2+) are structurally very similar. Also, the structure of oxyanions such 

as chromate resembles that of sulfate, and the same is true for arsenate and phosphate (Nies, 1999). In 

such cases, these toxic metal cations may substitute for physiological essential cations within an enzyme 

rendering the enzyme non-functional. Thus, to be able to differentiate between structurally similar metal 

ions, the microbial uptake systems have to be tightly regulated.  

Most microorganisms have solved this problem by using two types of uptake mechanisms for 

heavy metal ions. One is quick, unspecific, constitutively expressed and driven by the chemiosmotic 

gradient across the cytoplasmic membrane of bacteria (Nies, 1999). The second is inducible, has high 

substrate specificity, is slower, often uses ATP hydrolysis as the energy source, and is only produced by 

the cell in times of need, starvation or a special metabolic situation (Nies and Silver, 1995). Even though 

the constitutively expressed unspecific system is more energy efficient, it results in an influx of a wider 

variety of heavy metals. When these metals are present in high concentrations, they are more likely to 

have toxic effects once inside the cell (Nies and Silver, 1995). High levels of both essential and non-

essential metals can damage cell membranes; alter enzyme specificity; disrupt cellular functions; and 

damage the structure of DNA (Bruins et al., 2000). In addition, concentrations of elevated levels of heavy 

metals impose oxidative stress on microorganisms (Kachur et al., 1998). 

 

1.4.2 Mechanisms of microbial resistance to metals 

To survive under metal-stressed conditions, some microorganisms have been forced to develop 

metal-ion homeostasis factors and metal-resistance determinants to tolerate the uptake of virtually all 

toxic metals via selective pressures from the metal containing environment (Hoostal et al., 2008; Bruins 

et al., 2000; Nies, 1999; Nies and Silver, 1995; Rouch et al., 1995). Bacteria have adapted to metals 

through a variety of chromosomal, transposon, and plasmid-mediated resistance systems which are 

capable of being spread throughout a bacterial community by lateral gene transfer through conjugation 

and transduction (Coombs and Barkay, 2004; Martínez et al., 2006). The primary difference between 

chromosomal and plasmid based metal resistance systems is that chromosome based systems are more 

complex and are usually required for essential metal resistance. On the other hand, plasmid-encoded 

systems are usually toxic ion efflux mechanisms (Bruins et al., 2000). This suggests that ion efflux 

mechanisms are more likely to be plasmid-borne because they can be quickly mobilized to other 

organisms, and they reduce the gene carrying load since they are only needed on certain occurrences 

(Silver and Walderhaug, 1992). The extent of resistance in a microorganism is determined by several 

factors: the role each metal plays in normal metabolism; the type and number of mechanisms for metal 
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uptake; and the presence of genes located on plasmids, chromosomes, or transposons that control metal 

resistance (Bruins et al., 2000). The main mechanism by which microorganisms affect changes in the 

speciation and mobility of metals is well described by van Hullebusch et al. (2005). 

Six possible metal resistance mechanisms exist: exclusion by permeability barrier; intra- and 

extra-cellular sequestration; active transport efflux pumps; enzymatic detoxification; and reduction in the 

sensitivity of cellular targets to metal ions (Bruins et al., 2000; Carine et al., 2009; Ji and Silver, 1995; 

Nies, 1999; Nies and Silver, 1995; Rensing et al., 1999). One or a combination of these resistance 

mechanisms allows microorganisms to function in metal co-contaminated environments. 

 

1.4.2.1 Arsenic 

Arsenic, which is a heavy metalloid with metallic and non-metallic properties, is toxic to bacteria, 

as well as other domains of life (Bruins et al., 2000; Nies, 1999). Arsenic commonly occurs as As(V) in 

AsO4
3-, arsenate, and as As(III) in AsO2

-, arsenite (Nies, 1999). Arsenate is an analogue of phosphate, 

thus, its main toxicity results from its interference with the metabolism of the major bio-element 

phosphorus via phosphate transporters (Nies, 1999; Nies and Silver, 1995). Arsenate usually enters the 

cell in periods of phosphate abundance through the Pit system, which is a constitutively expressed, 

nonspecific, nutrient transport system (Bruins et al., 2000). In times of phosphate depletion, a more 

specific Pst system is induced. This system is 100 times more specific for phosphate than arsenate. The 

microorganism has the capacity to increase As(V) tolerance by inactivating the Pit system in favor of Pst 

(Nies and Silver, 1995). Several mechanisms for resistance to arsenic have been identified. The best 

studied example is the plasmid mediated efflux mechanism of the arsenical resistance of E. coli (Chen et 

al., 1986). Expression of the As(V) efflux pump is coded for by a family of genes called the ars operon 

(Tsutomu and Kobayashi, 1998). The number of genes in this operon can vary from three to five (arsR, 

arsA, arsD, arsB, and arsC) (Rouch et al., 1995). Operons in Staphylococcus plasmids and the 

chromosome of E. coli do not contain the arsD and arsR genes. The gene products of arsR and arsD 

regulate the operon. Therefore, loss of arsD does not seem to affect resistance to arsenicals (Rouch et al., 

1995; Tsutomu and Kobayashi, 1998). The nucleotide sequence of a fragment of DNA containing the ars 

operon was studied (Chen et al., 1986), and three genes, arsA, arsB and arsC, were found to encode for 

the proteins ArsA, ArsB and ArsC, respectively. ArsA is a protein with ATPase activity and thus is 

involved in translocation of the metal ions across the cell membrane. ArsB interacts with ArsA to form an 

ArsA2B complex on the inner membrane of the cell, and the two proteins form the arsenite pump which is 

driven chemiosmotically and by ATP (Dey and Rosen, 1995). Since anion export from bacterial cells is 

always driven by the chemiosmotic gradient, simple arsenic efflux systems may be composed of just one 

efflux protein, the ArsB product (Wu et al., 1992). Typical examples are the plasmid-encoded system 
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from S. xylosus (Rosenstein et al., 1992) and the chromosomally encoded system in E. coli (Diorio et al., 

1995). Detoxification of arsenate is the initial step required to differentiate it between phosphates. This 

step involves the reduction of arsenate to arsenite (Ji et al., 1994; Ji and Silver, 1992). For the resistance 

determinant in E. coli, arsenate reduction by the ArsC protein is coupled to glutathione (Oden et al., 

1994) via glutaredoxin (Gladysheva et al., 1994; Liu and Rosen, 1997). For ArsC from S. aureus, the 

electron donor is thioredoxin and NADPH (Ji et al., 1994). Thus, ArsC is only required for tolerance to 

arsenate, and ArsA and ArsB are required for tolerance to both species of arsenic. 

 

1.4.2.2 Cadmium 

Cadmium is a non-essential heavy metal that is toxic at low concentration (Bruins et al., 2000). 

Numerous studies have demonstrated the toxicity of cadmium to microorganisms, however, specific 

mechanisms have yet to be defined (Dopson et al., 2003). The toxic effects of cadmium generally include 

thiol-binding and protein denaturation, interaction with calcium and zinc metabolism, loss of a protective 

function (Bruins et al., 2000; Nies, 1999) and single-strand breakage of DNA in E. coli (Trevors et al., 

1986). Sensitive bacteria have been reported to accumulate 3 to 15 times more Cd2+ than resistant bacteria 

(Laddaga et al., 1985; Trevors et al., 1986). Several bacteria such as Staphylococcus aureus, Bacillus 

subtillis, and Escherichia coli demonstrate resistance to Cd2+ (Cohen et al., 1991; Laddaga and Silver, 

1985; Smith and Novick, 1972). Cadmium resistance occurs through all of the biochemical resistance 

mechanisms with the exception of enzymatic detoxification (Bruins et al., 2000). Resistance to Cd2+ in 

bacteria is based mainly on cadmium efflux pumps (Nies, 1999), a system widely distributed in a number 

of microorganisms. For example, the Czc system is driven by a resistance, nodulation, cell division 

(RND-driven) system and a P-type ATPase pump (CadA) in Gram-negative and Gram-positive bacteria, 

respectively (Dopson et al., 2003; Nies, 1999). Bacteria that naturally form an extracellular 

polysaccharide coating also demonstrate the ability to bioabsorb metal ions and prevent them from 

interacting with fundamental cellular components (Scott and Palmer, 1990; Scott et al., 1988). A 

protective layer of exopolysaccharide improved the survival of K. aerogenes strains in Cd2+ solutions 

(Scott and Palmer, 1990). The extracellular capsule of K. aerogenes prevented the entry of up to 1 nM of 

Cd2+ when compared to non-encapsulated forms (Mergeay, 1991). P. putida can bind 100% of Cd2+ added 

to broth at a concentration of 2.5 mg/L (Scott et al., 1988). Strains of A. viscous can accumulate 30 mg/g 

of Cd2+ when added to broth at 100 mg/L (Scott and Palmer, 1988). In both cases, binding was pH 

dependent and the optimum was between pH 4 and 9 (Scott et al., 1988). This protective layer appears to 

prevent uptake, keeping metal ions away from sensitive cellular components. Metal resistance based on 

extracellular sequestration has been demonstrated in S. cerevisiae whereby cadmium is bound by 

glutathione, and the resulting cadmium-bisglutathionato complex is transported via an ABC transporter 
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into the vacuole (Li et al., 1997; 1996). Other organisms, such as yeast or Citrobacter sp., form insoluble 

complexes of cadmium phosphate to confer resistance (McEntee et al., 1986). A strain of K. aerogenes 

has been shown to exhibit the ability to remove Cd2+ ions from the surrounding environment by excreting 

sulfur to limit metal influx by external precipitation (Scott and Palmer, 1990). In some species of S. 

aureus, penicillinase plasmids can mediate resistance by changing cell membrane permeability to Cd2+ as 

well as to other metals (Bruins et al., 2000). This is usually low-level resistance in the range 0.01 to 0.1 

nM of Cd2+ (McEntee et al., 1986). Furthermore, cyanobacteria contain metallothioneins (Olafson et al., 

1979). The metal resistance system in Synechococcus sp. consists of two genes: smtA and smtB. 

Amplification of the smt metallothionein locus increases cadmium resistance (Gupta et al., 1992), and 

deletion of it decreases resistance (Gupta et al., 1993; Turner et al., 1993; 1995). The SmtB protein acts 

as a transacting transcriptional repressor turning off smtA expression and metallothionein production 

(Huckle et al., 1993; Morby et al., 1993; Turner et al., 1996). Since cyanobacteria contain a diversity of 

RNA- and P-type transport systems, transport may also be important for cadmium resistance in these 

bacteria (Nies, 1999). 

 

1.4.2.3 Mercury 

Mercury is considered the heavy metal with the strongest toxicity (Nies, 1999). Due to the strong 

affinity of Hg2+ to thiol groups, mercury is most commonly found in cinnabar (HgS). The solubility 

product of HgS is 6.38 × 10-53, indicating it is a highly insoluble compound (Dopson et al., 2003; Nies, 

1999). Resistance to mercury is based, however, on its unique peculiarities: metallic mercury has an 

extraordinarily low melting/boiling point for a metal (melting point -39°C, boiling point 357°C) and the 

electrochemical potential of Hg2+/Hg0 at pH 7 is +430 mV (Weast, 1984). Mercury resistance is based 

primarily on enzymatic detoxification of the metal to a less toxic form, and this system is regarded as a 

model example of resistance via detoxification in microorganisms (Bruins et al., 2000). Resistance to 

mercury has been demonstrated in both Gram-positive (S. aureus, Bacillus sp.) and Gram-negative 

bacteria (Escherichia coli, Pseudomonas aeruginosa, Serratia marcescens, and Acidithiobacillus 

ferrooxidans) (Misra, 1992). A mercury resistance system involves the reduction of Hg2+ via a Hg2+-

reducing flavoprotein producing Hg0 which volatilizes out of the cell by passive diffusion (Silver, 1996; 

Silver and Phung, 1996). Some bacteria contain a set of five to six genes that form an Hg2+ (mer) 

resistance operon, which has been studied extensively in the plasmids of several microorganisms (Misra, 

1992). This operon not only detoxifies Hg2+ but also transports and self-regulates resistance (Ji and Silver, 

1995; Misra, 1992; O'Halloran, 1993). The mer transport genes consist of merC, merT and merP; which 

code for proteins that manage Hg2+ transport within the bacteria. MerP is a periplasmic protein whereas 

MerT and MerC gene products are cytoplasmic membrane proteins. It has been demonstrated that both 
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merT and merP are required for full Hg2+ resistance (Hamlett et al., 1992). In Gram-negative bacteria, the 

first step in detoxification is the binding of Hg2+ to the MerP (Qian et al., 1998). Thereafter, MerP 

possibly delivers the toxic cation to the mercury transporter MerT for transport into the cytoplasm 

(Hobman and Brown 1996). Once inside the cell, Hg2+ is reduced with NADPH to Hg0 by the MerA 

protein (Schiering et al., 1991). In addition to MerTP, another uptake route which involves the MerC 

protein exists (Hamlett et al., 1992; Sahlman et al., 1997). Although it has been linked to transport of 

Hg2+, the function of MerC remains unclear (Hamlett et al., 1992). Furthermore, mercury-resistant 

organisms can be divided into two categories: narrow spectrum and broad spectrum. Narrow spectrum 

organisms lack the gene which encodes for MerB organomercurial lyase and, therefore, are not resistant 

to most organomercurials. Broad-spectrum organisms have both enzymes and are resistant to most 

mercury-containing compounds (Bruins et al., 2000). However, it has been postulated that the high 

toxicity of organomercurials and other methylated and alkylated heavy metal compounds makes it very 

unlikely that these kinds of chemical modification of heavy metals are metal-resistance mechanisms 

(Nies, 1999). 

 

1.4.2.4 Lead 

In the natural world, lead is a ubiquitous but biologically non-essential element (Ewers and 

Schlipköter, 1991). Contamination of the environment with lead has increased as it has become an 

essential material for many industries. Due to its low solubility (especially in the form of lead phosphate), 

its biologically available concentration is low (Nies, 1999). Furthermore, Heinrichs and Mayer (1980) 

considered lead as one of the least soluble metals with a very long retention time. The toxicity of lead is a 

consequence of the ability of Pb2+ to interfere with several enzymes (Ewers and Schlipköter, 1991). 

Isolation of lead-tolerant bacteria has been reported (Trajanovska et al., 1997), and precipitation of lead 

bound phosphate within bacterial cells has also been observed (Levinson and Mahler 1998; Levinson et 

al., 1996). Resistance to lead has also been postulated to be based predominantly on metal efflux (Nies, 

1999), since in Ralstonia sp. CH34 it has been shown that resistance to lead is mediated by a P-type 

ATPase (Borremans and van der Lelie, unpublished observation). In addition, the CadA P-type ATPase is 

also able to transport Pb2+ (Rensing et al., 1998). 

 

1.5 Metal speciation and bioavailability  

Heavy metals may inhibit organic pollutant biodegradation through the interaction with enzymes 

involved in general metabolism or those directly involved in biodegradation (Sandrin and Maier, 2003). 

The ionic form of the metal mediates inhibition of enzymes involved in pollutant degradation in heavy 

metal contaminated environments (Angle and Chanley, 1989), indicating that metal toxicity is related to 
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the concentration of bioavailable metal rather than the total or even total soluble metal concentration. 

Metals have been reported to inhibit organic pollutant biodegradation and affect degradation rates; 

however, widely varying degrees and patterns of inhibition have been reported, due to the lack of 

consistent methods to characterize metal toxicity (Hoffman et al., 2005). Most commonly, reports on 

metal inhibition of biodegradation have been related to the total concentration of a metal in the test 

system. However, this may not be the most appropriate measure as it has been well established that some 

metal species are more bioavailable than others (Hughes and Poole, 1991; Knotek-Smith et al., 2003; 

Roane et al., 2001; Traina and Laperche, 1999). 

Speciation can broadly be defined as the identification and quantification of the different, defined 

species, forms or phases in which an element occurs (Tack and Verloo, 1995), while bioavailability is the 

fraction of the total amount of a metal in a specific environmental compartment that, within a given time 

span, is either available or can be made available for uptake by microorganisms from the direct 

surrounding of the organism. Metal speciation and the resulting bioavailability rather than total metal 

concentration determine the overall physiological and toxic effects of a metal on biological systems 

(Hughes and Poole, 1991; Morrison et al., 1989; Traina and Laperche, 1999). Unfortunately, few studies 

investigating the impact of metals on biodegradation have provided metal speciation and bioavailability 

data (Sandrin and Maier, 2003). Traditionally, the environmental risk caused by heavy metal pollution is 

determined by quantification of total metal concentration using conventional analytical methods 

(Rodriguez-Mozaz et al., 2004). However, conventional analytical procedures are not able to distinguish 

between available (potentially hazardous) and non-available (potentially non-hazardous) fractions of 

metals to biological systems (Rasmussen et al., 2000). This is of particular interest with respect to solid 

environments, e.g. soils, because of the great adsorption capability of heavy metals to solid phase 

(Vanhala and Ahtiainen, 1994). In the water phase, the chemical form of a metal determines the 

biological availability and chemical reactivity (sorption/desorption, precipitation/dissolution) to other 

components of a system. Often overlooked in metal toxicity studies is the importance of the pH of buffer 

used in microbiological media and the time at which a metal is added to a given medium (Lage et al., 

1996; Vasconcelos et al., 1998). Also, the level of inhibition depends on the concentration and 

availability of the heavy metals which in turn are dependent on complex processes controlled by multiple 

factors including the nature of the metals and microbial species (Amor et al., 2001; Goblenz et al., 1994; 

Hashemi et al., 1994; Olasupo et al., 1993; Tomioka et al., 1994). Some of the factors affecting metal 

speciation and bioavailability will be discussed below. 
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1.5.1 Binding components and physico-chemical characteristics in medium and soil  

Many pH buffers are often present at higher concentrations than other medium components used 

in test systems (Hughes and Poole, 1991; Teresa et al., 2000; Vasconcelos and Leal, 2002), and are able 

to complex and precipitate metals, thus affecting metal speciation and bioavailability. For example, 

phosphate, probably the most common buffer used in the majority of studies (Amor et al., 2001; Benka-

Coker and Ekundayo, 1998; Birch and Brandl, 1996; Nakamura and Sawada, 2000), is well known for its 

ability to precipitate many metals and reduce their bioavailability (Hughes and Poole, 1991). Phosphate 

readily sequesters metals and reduces their bioavailability via the formation of insoluble metal phosphate 

species, even at neutral to mildly acidic pH values (Sandrin and Hoffman, 2007). In a predictive model of 

the concentrations of free ionic metals as a function of phosphate concentration in the Bushnell Haas 

medium (Difco™, Sparks, MD), commonly used in biodegradation studies, 44% less free ionic cadmium 

existed in the medium containing a relatively low phosphate concentration of 2.27 mM compared to the 

same medium not containing phosphate. Some metals are more sensitive to phosphate precipitation than 

others. Cobalt bioavailability was predicted to remain high (95%) in the free, ionic form as the phosphate 

concentration was raised to 15 mM; while free, ionic nickel was predicted to fall to 21% of its 

concentration in the medium free of phosphate (Sandrin and Hoffman, 2007). 

The metal-complexing capabilities of some zwitterionic buffers incorporated into microbiological 

media [e.g., HEPES (4-2-hydroxyethyl-1-piperazine-ethanesulfonic acid), MES (2-4-morpholino-

ethanesulfonic acid), MOPS (3-N-morpholino-propansulfonic acid), PIPES (1,4-piperazine-bis-

ethanesulfonic acid)] have been reported (Hoffman et al., 2005). However, metals tend to remain more 

bioavailable in the presence of zwitterionic buffers than in the presence of phosphate buffers, due to the 

fact that former buffers do not interact with metals as strongly as phosphate buffers. Mash et al. (2003) 

indicated that MES and MOPS (50 mM) did not complex copper, while HEPES (35 mM) strongly 

complexed copper at pH 7.2. PIPES buffer has been reported to complex lead but not cadmium or copper 

(Soares and Conde, 2000; Vasconcelos et al., 1998).  

Although available data suggests that Tris-base (2-amino-2-hydroxymethyl-1,3-propanediol) 

complexes many metals, limited quantitative complexation data has been gathered (Twiss et al., 2001). 

Hoffman et al. (2005) reported that the degrees of inhibition of cadmium on naphthalene (NAPH) 

biodegradation by Comamonas testosteroni were different in each of three chemically-defined minimal 

salts medium (MSM) tested. Biodegradation was completely inhibited by 100 M total cadmium in 

PIPES-buffered MSM and by 500 M total cadmium in Tris- and PIPES-buffered MSM. However, 

neither of the cadmium concentrations completely inhibited biodegradation in Bushnell-Haas medium.  

The physico-chemical properties of soil can widely influence metal speciation and consequently, 

its mobility, bioavailability and toxicity (Irha et al., 2003; McLean and Bledsoe, 1992). Metals may be 
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distributed among many components of soil solids and may be associated with them in different ways 

(ion exchange, adsorption, precipitation, complexation or present in the structure of minerals). Irha et al. 

(2003) modified the dehydrogenase enzyme activity (DHA) assay using resazurin (oxidoreduction dye) 

for toxicity analysis of combined mixture of heavy metals and polycyclic aromatic hydrocarbons in soil. 

The method was modified to take into account possible interaction of resazurin with complex soil matrix 

(adsorption on the soil components, influence of inorganic substances and humic acids). Results showed 

that the sensitivity of soils to contamination correlated reasonably well with organic matter, calcium and 

amorphous phase content. These tallied with the investigations of other researchers (Alexander and 

Alexander, 2000; Bååth, 1989; Eriksson, 1988; Sauve et al., 2000). In soil with relatively low organic 

matter content and significant quantity of amorphous phase, high sensitivity to contamination by heavy 

metals and persistence of organic pollutants were observed. Organic matter content has a strong influence 

on cation exchange capacity, buffer capacity as well as on the retention of heavy metals. Thus, metals 

present in organic soils contaminated with a combination of heavy metals are less mobile and less 

bioavailable than metals present in mineral soils (Balasoiu et al., 2001). Time and moisture effects are 

also important factors that need to be considered when interpreting short-term toxicity studies and when 

making predictions concerning possible long-term effects of heavy metals in the soil environment, as the 

retention of copper in dry soil has been observed to be much less pronounced in soils with higher 

moisture content (Tom-Petersen et al., 2004). 

 

1.5.2 pH and redox potential  

At high pH, metals tend to form insoluble metal mineral phosphates and carbonates, whereas at 

low pH they tend to be found as free ionic species or as soluble organo-metals and are more readily 

bioavailable (Naidu et al., 1997; Rensing and Maier, 2003; Sandrin and Hoffman, 2007; Twiss et al., 

2001). At acidic pH, more protons (H+) are available to saturate metal-binding sites; therefore metals are 

less likely to form insoluble precipitates with phosphates when the pH of the system is lowered because 

much of the phosphate has been protonated (Hughes and Poole, 1991). Under basic conditions, metal ions 

can replace protons to form other species such as hydroxo-metal complexes (Babich and Stotzky, 1985; 

Collins and Stotzky, 1992; Ivanov et al., 1997). In some cases the hydroxo-metal complexes, such as 

those formed with cadmium, nickel, and zinc, are soluble; while those formed with chromium and iron 

are insoluble. A small change in pH can decrease metal solubility and bioavailability by several orders of 

magnitude, e.g., the solubility of cadmium was reduced 8.8-fold by an increase in pH from 6 to 7 in 1.3 

mM phosphate (Rensing and Maier, 2003). The dependence of metal bioavailability on pH varies between 

different metals. For example, a rapid decline in the  concentrations of the free, ionic species of copper 
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and zinc in minimal media was observed at pH values higher than 5, while the free, ionic form of cobalt 

remained prevalent until the pH value was higher than 8 (Sandrin and Hoffman, 2007).  

Many studies have shown that pH mediates metal toxicity (Babich et al., 1985; Franklin et al., 

2000; Korkeala and Pekkanen, 1978). Babich and Stotzky (1982; 1983) found that increasing pH reduces 

the toxicity of nickel to a variety of different organisms, including bacteria (Serratia marcescens), 

filamentous fungi (Arthrobotrys conoides, Penicillium vermiculatum, Rhizopus stolonifer), and yeast 

(Cryptococcus terreus). Under mildly basic conditions (pH 8.5), much of the nickel may not be 

bioavailable because it forms complexes with various ligands. More commonly, increasing pH has been 

shown to increase the toxicity of zinc, copper, and uranium to certain algal species (Franklin et al., 2000; 

Hargreaves and Whitton, 1976) and of cadmium to various bacteria (Bacillus subtilis, Escherichia coli, 

Micrococcus luteus, Streptococcus bovis), actinomycetes (Micromonospora chalcea, Nocardia corallina, 

Streptomyces flavovirens), and fungi (Saccharomyces cerevisiae, Schizosaccharomyces octosporus) 

(Korkeala and Pekkanen, 1978). This may be due to cells being able to take up or adsorb more of the 

metal ions under high pH conditions (Rudd et al., 1983; Sandrin and Maier, 2002). Also, various 

functional groups associated with the membrane of microorganisms would be protonated under acidic 

conditions, reducing the electrostatic attraction between the metal cations and the membrane. A third 

possibility is that metals are removed from the cell more efficiently under acidic conditions by efflux 

pumps that are driven by the proton motive force (Sandrin and Maier, 2002). Studies examining the effect 

of metal toxicity on biodegradation usually use a buffer that has a neutral to mildly acidic pH range 

(Amor et al., 2001; Sandrin and Maier, 2003; Said and Lewis, 1991). The operational pH range is 

determined by the pKa of the buffer, which is the pH at which half of the weak acid used for buffering is 

protonated. When the pH is beyond the operational range of a buffer, even small additions of acid, such as 

the excretion of acidic metabolic end products by microbes, may drastically change the pH and can result 

in unanticipated metal speciation events (Hughes and Poole, 1991; Twiss et al., 2001). 

The redox potential (Eh) of an environment also influences metal speciation. Redox potential is 

established by oxidation-reduction reactions that tend to be relatively slow, particularly in soil 

environments (Rensing and Maier, 2003). However, microbial activity can dramatically influence the rate 

and establishment of redox potential in soil. Reducing conditions (negative Eh) found in anaerobic media 

can result in metal precipitation with media components. Kong (1998) reported that the soluble metal 

concentration in sediment slurries initially amended with 20 mg/L cadmium, copper, or chromium were 

below detection limits of 0.03-0.04 mg/L. Furthermore, at 100 mg/L added metal, only 1 mg/L cadmium 

and < 0.12 mg/L copper and chromium were found in the aqueous phase. Under positive Eh (oxidizing) 

conditions, metals are more likely to exist in their free ionic form and exhibit increased water solubility. 
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Moreover, pH may decrease slightly or even dramatically under oxidizing conditions (Rensing and Maier, 

2003). 

 

1.6 Measurement of bioavailable metal 

Measurement of bioavailable metal concentrations is a vital step towards determining the effects 

of metals on organic pollutant biodegradation, since the environmental risk caused by heavy metal 

pollution is traditionally determined by quantification of total metals (Liao et al., 2006; Sandrin and 

Hoffman, 2007). The development of sensitive, effective, and inexpensive methods that can efficiently 

monitor and determine the presence and amount of hazardous heavy metals is still in its infancy. Common 

analytical techniques used are ion chromatography, ion-selective electrodes and polarography (Durrieu 

and Tran-Minh, 2002). However, these methods are not able to distinguish between available and non-

available fractions of metals to biological systems (Rasmussen et al., 2000). According to the standards, 

measurements and testing programme of the European Commission, the most suitable approach for 

certification of a soil sample to characterize the bioavailable fraction of metals was a single step 

procedure using EDTA and acetic acid. Conventionally, single step extraction procedures are mainly 

applied to soil samples to identify the bioavailable fraction, using a number of different reagents able to 

extract all or part of the metals from soil (Žemberyová et al., 2007). Conventional methods are reaching 

the highest accuracy with low detection limits (Rodriguez-Mozaz et al., 2004), but are expensive, time 

consuming, and require highly trained personnel. However, the main drawback of chemical methods is 

the question of the transfer of the results obtained on non-biological systems to biological ones (Liao et 

al., 2006). The current tendency to carry out field monitoring has driven the development of bioassays, 

biomarkers, and biosensors as new analytical tools able to provide fast, reliable, and sensitive 

measurements with lower cost, many of them aimed at on-site analysis. These tools have also gained 

much attention since they integrate all aspects of bioavailability, including exposure, accumulation, and 

toxic effects at the receptor level (Peijnenburg and Jager, 2003). Risk assessments of metal contaminated 

soils obviously require a comprehensible protocol for testing metal bioavailability and mobility. Such a 

test should ideally be applicable with minimum perturbation of the soil, without disrupting the 

equilibrium between solid and solution phases and that is sensitive to prevailing conditions (Editorial, 

2003). 
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1.6.1 Bacterial biosensors 

Recombinant bacterial sensors have been constructed and used for the determination of the 

bioavailability of specific metals. Ivask et al. (2002) used recombinant luminescent bacterial sensors for 

the determination of the bioavailable fraction of cadmium, zinc, mercury, and chromium in soil. In their 

study, two bacterial recombinant heavy metal sensors were constructed based on two different receptor-

reporter systems: one was inducible by Zn2+, Cd2+, and Hg2+, and the other by Cr6+ and Cr3+. The bacterial 

sensors used were not perfectly specific to one heavy metal, but responded to some “non-target” metals as 

well (Ivask et al., 2002). In another example, the mer-lux gene fusion in E. coli was used to estimate 

bioavailable mercury in soil. The mer-promoter was activated when Hg2+, present in the cytoplasm of the 

biosensor bacterium, binds to MerR, resulting in transcription of the lux genes and subsequent light 

emission (Rasmussen et al., 2000). The luminescence-based bacterial sensor strains, Pseudomonas 

fluorescens OS8 (pTPT11) and Pseudomonas fluorescens OS8 have also been used for mercury and 

arsenite detection, respectively, in soil extracts (Petanen and Romantschuk, 2002). Other biosensors have 

been designed, based on bioengineered proteins. In these cases, the biosensor monitors conformational 

changes caused by the binding of the metal ion to the engineered protein (Ziegler and Göpel, 1998).  

Bontidean et al. (2003) used mercuric ion-binding regulatory proteins as the biological component of the 

biosensor, MerR. The conformational change resulting from the binding of the metal ion to the protein 

caused a change in the capacitance, which was proportional to the concentration of the metal ions 

determined. 

 

1.6.2 Immunoassays and bioreporters 

Numerous promising tools are being developed that use biological systems to quantify solution 

phase and bioavailable metal concentrations. One of the most attractive features of these tools is that they 

can be used in complex systems such as microbiological media and soil. Immunoassays, which can detect 

solution phase metal concentrations in the low µg/L range, have been developed for cadmium, lead, 

cobalt, nickel, and zinc. An immunoassay for mercury is commercially available (Blake et al., 1998; 

Khosraviani et al., 1998). Bioavailable metal fractions have also been measured using whole cell 

bioreporters that produce a protein with measurable activity (e.g., LacZ) or light in response to 

bioavailable metal. Bioreporters for detection of mercury have been produced using both the lacZ system 

(Rouch et al., 1995) and the luminescent lux system (Corbisier et al., 1999; Selifonova et al., 1993). 

However, it should be emphasized that measurement of bioavailable metal can vary, as it is dependant on 

the metal resistance mechanisms of the bioreporter system used. A review of applications, advantages and 

limitations of immunoassays and bioreporters for metal detection is available (Neilson and Maier, 2001). 
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1.6.3 Geochemical modeling software 

In addition to biological-based approaches, geochemical modeling software, such as MINEQL+ 

(Environmental Research Software, Hallowell, ME) or MINTEQA2, has been employed to predict metal 

speciation patterns as a function of ionic strength and pH (Pardue et al., 1996). These programs take into 

account equilibrium constants for each ion in solution and accurately calculate the concentration of any 

metal species under specified conditions. The accuracy of programs such as MINEQL+ has been verified 

experimentally. For example, Sandrin and Maier (2002) used a cadmium ion-selective electrode to 

determine the concentration of divalent cadmium ion in a minimal salts medium over the pH range from 4 

to 7. The experimental concentrations were comparable to those predicted by the modeling software. 

These programs do not take into account all organic ligands present in complex media, so they are more 

comparable to experimental situations in minimal media (Sandrin and Maier, 2002). In complex media, it 

is difficult to calculate the concentrations of all components because the composition of complex 

ingredients (e.g., yeast extract, beef extract) differs slightly in every batch (Sandrin and Maier, 2002). At 

least three computational models have been developed to predict the impact of metals on organic 

biodegradation (Amor et al., 2001; Jin and Bhattacharya, 1996; Nakamura and Sawada, 2000). None of 

these models incorporates metal speciation and bioavailability. Thus, data generated by these models may 

only be meaningful for the medium or soil that was used to develop the model (Sandrin and Hoffman, 

2007). 

 

1.6.4 Diffusive gradients in thin-films 

Recently, a diffusion-based in situ technique known as diffusive gradients in thin-films (DGT) 

has been proposed for the measurement of labile metal species in soils (Hooda et al., 1999). DGT has 

been developed on the premise that metal speciation in conventional methods of testing soil solutions may 

change during sampling and extraction. The potential of DGT use in assessing metal bioavailability was 

further demonstrated when Cu uptake by plants grown on a large number of soils was linearly correlated 

to DGT measurements, while soil solution concentrations predicted a non-linear relationship (Zhang et 

al., 2001).  

 

1.7 Influence of heavy metals on microbiological processes involved in the biodegradation of 

chlorinated organic compounds 

The influence of heavy metals on microbial processes, of individual strains and communities, 

such as respiration (Codina et al., 2000; Fliessbach et al., 1994; Hattori, 1992; Insam et al., 1996; Khan 

and Scullion, 1999; Witter et al., 2000), luminescence (Campbell et al., 2000; Chaudri et al., 2000; 

Lappalainen et al., 2000; Paton et al., 1995; Sousa et al., 1998; Villaescusa et al., 2000), and N2 
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transformations (Heckman et al., 1986; Ibekwe et al., 1995; McGrath et al., 1988; Obbard and Jones, 

1993) has been extensively reviewed. The impact of heavy metals on microorganisms has also been 

reviewed (Bååth, 1989; Giller et al., 1998; Tyler, 1981; Weiner et al., 1999; Wright and Mason, 2000). 

However, there is a marked dearth of information on the impacts of heavy metals on the biodegradation of 

chlorinated organic pollutants. Thus, additional studies that incorporate a variety of benchmark 

chlorinated organic chemicals and various manipulations of environmental factors that affect metal 

speciation and bioavailability are necessary. 

A few research efforts that aimed at addressing the issue of co-contamination under aerobic 

conditions are listed in Table 1.1. below. Van Zwieten et al. (2003) reported that the natural breakdown of 

1,1,1-trichloro-2,2-bis (4-chlorophenyl) ethane (DDT), a persistent organochlorine pesticide, was 

inhibited in an arsenic co-contaminated soil resulting in an increased persistence of DDT in the soil 

environment studied. The intrinsic breakdown of DDT to 1,1-dichloro-2,2-bis (4-chlorophenyl) ethane 

(DDD) in the presence of 2000 mg/kg arsenic resulted in a 50% reduction in the concentration of DDD 

compared to background arsenic of 5 mg/kg. Thus, it was demonstrated that arsenic co-contamination has 

an inhibitory effect on the breakdown of DDT via DDD, and that, as arsenic concentrations increased, the 

DDT:DDD and DDT:1,1-dichloro-2,2-bis (4-chlorophenyl) ethylene (DDE) ratios also increased (Van 

Zwieten et al., 2003). The biodegradation of 2,4-dichloro-phenoxyacetic acid methyl ester (2,4-DME) in 

two microbial samples, namely, sediment and aufwuchs (floating mats of filamentous algae), from 

lakewater was inhibited in the presence of Cu, Hg, Zn, Cd and Cr (Said and Lewis, 1991). Minimal 

inhibitory concentrations (MIC) varied according to the metals and the type of microbial sample tested 

and did not necessarily follow the toxicity patterns observed for the metal concentrations required for 

significant effects on maximum degradation rates (Vmax) and half-lives (t½). Zinc was the most toxic in 

sediment samples with an MIC of 0.006 mg total zinc/L, whereas mercury was most toxic in Aufwuch 

samples with an MIC of 0.002 mg total mercury/L. Metal inhibition has also been observed during the 

biodegradation of 2,4-dichlorophenoxyacetic acid (2,4-D) in cadmium contaminated systems (Roane et 

al., 2001).  Degradation by Ralstonia eutropha JMP134, a cadmium-sensitive 2,4-degrader, occurred in 

the presence of up to 24 mg/L cadmium in mineral salts medium containing cadmium-resistant isolate and 

0.060 mg/g cadmium in amended soil microcosms and field-scale soil bioreactors (Roane et al., 2001). 

Experiments also indicated that 104 colony forming units of Ralstonia eutropha JMP134/ml alone in the 

presence of > 3 mg/L cadmium in mineral salts medium did not degrade 2,4-D due to cadmium toxicity 

(Roane et al., 2001). 

Reported metal concentrations that cause inhibition of anaerobic biodegradation of halogenated 

organic contaminants are listed in Table 1.2. below. Kuo and Genther (1996) demonstrated three effects 

of Cd2+, Cu 2+, Cr6+ and Hg2+ ions on dechlorination and biodegradation of 2-chlorophenol (2-CP) and 3-
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chlorobenzoate (3-CB), including extended acclimation periods, reduced dechlorination or biodegradation 

rates, and failure to dechlorinate or biodegrade the target compound. It was suggested that the 

concentration at which these effects were observed was characteristic of the metal ion added, the target 

compound studied and the consortium being used. The biodegradation of 3-CB was shown to be most 

sensitive to Cd2+ and Cr6+ whereas 2-CP consortium was considered most sensitive to added Cd2+ and 

Cu2+. Since 2-CP and 3-CB were dechlorinated by distinct bacterial species, differences in metal 

sensitivity may have been specific to the dechlorinating species or the dechlorinating enzymes 

themselves. Interestingly, with Hg2+ at 1.0 to 2.0 ppm, 2-CP and 3-CP were biodegraded 133 to 154% 

faster than controls after an extended acclimation period, suggesting adaptation to Hg2+, perhaps via 

removal or transformation of mercury by mercury-resistant bacterial species (Kuo and Genther, 1996).  
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Table 1.1: Reported metal concentrations that cause inhibition of biodegradation of chlorinated organic 
contaminants under aerobic conditions (Sandrin and Maier, 2003). 

 

Metal Organic 

Lowest metal 
concentration 

reported to 
reduce 

biodegradation 

Microbe(s) 
studied Environment pH Reference 

As3+ DDT 5 mg/kga Indigenous 
community 

Former co-
contaminated soil NR Van Zwieten 

et al. (2003) 

Cu2+ 2,4-DME 0.027 mg/La Indigenous 
community 

Aufwuchs 
(microcosm) 5.0 Said and 

Lewis (1991) 

Cu2+ 2,4-DME 0.076 mg/La Indigenous 
community 

Sediment 
(microcosm) 6.1 Said and 

Lewis (1991) 

Cu2+ 
4-CP, 
3-CB, 
2,4-D 

< 14.3-71.6 
mg/La, b 

Alcaligenes sp., 
Pseudomonas 

spp., Moraxella 
sp. 

 

Tris-buffered 
minimal medium 

plates 
7.0 Springael 

et al. (1993) 

Cd2+ 2,4-D 0.060 mg/ga Ralstonia 
eutropha JMP134 Soil microcosms 8.2 Roane et al. 

(2001) 

Cd2+ 2,4-D 0.060 mg/ga Ralstonia 
eutropha JMP134 

Field-scale 
bioreactors 8.2 Roane et al. 

(2001) 

Cd2+ 2,4-DME 0.100 mg/La Indigenous 
community 

Sediment 
(microcosm) 6.5 Said and 

Lewis (1991) 

Cd2+ 2,4-DME 0.629 mg/La Indigenous 
community 

Aufwuchs 
(microcosm) 5.6 Said and 

Lewis (1991) 

Cd2+ 2,4-D > 3 mg/La Ralstonia 
eutropha JMP134 

Mineral salts 
medium 6.0 Roane et al. 

(2001) 

Cd2+ 2,4-D 24 mg/La Ralstonia 
eutropha JMP134 

Mineral salts 
medium containing 
cadmium-resistant 

isolate 

6.0 Roane et al. 
(2001) 

Cd2+ 
4-CP, 
3-CB, 
2,4-D 

< 25.3-50.6 
mg/La, b 

Alcaligenes spp., 
Pseudomonas 

spp., Moraxella 
sp. 

 

Tris-buffered 
minimal medium 

plates 
7.0 Springael et 

al. (1993) 

Co2+ 
4-CP, 
3-CB, 
2,4-D 

< 13.3-1.330 
mg/La, b 

Alcaligenes spp., 
Pseudomonas 

spp., Moraxella 
sp. 

 

Tris-buffered 
minimal medium 

plates 
7.0 Springael 

et al. (1993) 

Cr3+ 2,4-DME 0.177 mg/La Indigenous 
community 

Aufwuchs 
(microcosm) 6.1 

Said and 
Lewis (1991) 

 

Cr6+ 
4-CP, 
3-CB, 
2,4-D 

< 131 mg/La, b 

Alcaligenes spp., 
Pseudomonas 

spp., Moraxella 
sp. 

 

Tris-buffered 
minimal medium 

plates 
7.0 

Springael 
et al. (1993) 
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Hg2+ 2,4-DME 0.002 mg/La Indigenous 
community 

Aufwuchs 
(microcosm) 6.8 Said and 

Lewis (1991) 

Hg2+ 
4-CP, 
3-CB, 
2,4-D 

< 45.2-226 
mg/La, b 

Alcaligenes sp., 
Pseudomonas 

spp., Moraxella 
sp. 

 

Tris-buffered 
minimal medium 

plates 
7.0 Springael 

et al. (1993) 

Ni2+ 
4-CP, 
3-CB, 
2,4-D 

5.18-10.3 
mg/La, b 

Alcaligenes sp., 
Pseudomonas 

spp., Moraxella 
sp. 

 

Tris-buffered 
minimal medium 

plates 
7.0 Springael 

et al. (1993) 

Zn2+ 2,4-DME 0.006 mg/La Indigenous 
community 

Sediment 
(microcosm) 6.4 Said and 

Lewis (1991) 

Zn2+ 2,4-DME 
 0.041 mg/La Indigenous 

community 
Aufwuchs 

(microcosm) 5.6 Said and 
Lewis (1991) 

Zn2+ 
4-CP, 
3-CB, 
2,4-D 

< 29.5-736 
mg/La, b 

Alcaligenes sp., 
Pseudomonas 

spp., Moraxella 
sp. 

 

Tris-buffered 
minimal medium 

plates 
7.0 Springael 

et al. (1993) 

Abbreviations: 3-CB, 3-chlorobenzoate; 4-CP, 4-chlorophenol; 2,4-D, 2,4-dichlorophenoxyacetic acid; DDT, 1,1,1-trichloro-2,2-
bis (4-chlorophenyl) ethane; 2,4-DME, 2,4-dichloro-phenoxyacetic acid methyl ester; MTC, maximum total concentration; NR, not 
reported. 
aValue represents total metal added to system. bValue represents MIC calculated by multiplying MTC by a factor of 2.25 (Sandrin 
and Maier, 2003). 
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Table 1.2: Reported metal concentrations that cause inhibition of biodegradation of chlorinated organic 
contaminants under anaerobic conditions (Sandrin and Maier, 2003). 

 

Metal Organic 

Lowest metal 
concentration 

reported to 
reduce 

biodegradation 

 
Microbe(s) 

studied 
Environment pH Reference 

Cd2+ TCA 0.01 mg/La Indigenous 
community 

Laboratory soil 
microcosms containing 

rice paddy and 
bottomland hardwood 

soils 

6.9-
7.4 

Pardue et al. 
(1996) 

Cd2+ TCA 0.2 mg/La Indigenous 
community 

Laboratory soil 
microcosms containing 
organic matter- rich soil 

6.8 Pardue et al. 
(1996) 

Cd2+ 2-CP, 
3-CB 0.5-1.0 mg/Lb Indigenous 

community 

Aqueous sediment 
enriched in anaerobic 

growth medium 
7.0 Kuo and 

Genther (1996) 

Cd2+ 2-CP, 
3-CP 20 mg/Lb Indigenous 

community Sediment slurry 7.0 Kong (1998) 

Cr 6+ 2-CP, 
3-CB 0.01-0.5 mg/Lb Indigenous 

community 

Aqueous sediment 
enriched in anaerobic 

growth medium 
7.0 Kuo and 

Genther (1996) 

Cu2+ 2-CP, 
3-CB 0.1-1.0 mg/Lb Indigenous 

community 

Aqueous sediment 
enriched in anaerobic 

growth medium 
7.0 Kuo and 

Genther (1996) 

Cu2+ 2-CP, 
3-CP 20 mg/Lb Indigenous 

community Sediment slurry 7.0 Kong (1998) 

Cr 6+ 2-CP, 
3-CP 20 mg/Lb Indigenous 

community Sediment slurry 7.0 Kong (1998) 

Pb2+ HCB 0.001 mg/gb Indigenous 
community 

Microcosms containing 
contaminated sediment NR Jackson and 

Pardue (1998) 

Hg2+ 2-CP, 
3-CB 0.1-1.0 mg/Lb Indigenous 

community 

Aqueous sediment 
enriched in anaerobic 

growth medium 
7.0 Kuo and 

Genther (1996) 

Zn2+ PCP 2 mg/Lb Indigenous 
community 

Anaerobic digester 
sludge in a liquid 

medium containing 0.6 
mM phosphate 

NR 
Jin and 

Bhattacharya 
(1996) 

Zn2+ PCP 8.6 mg/Lb Indigenous 
community 

Anaerobic enrichment 
cultures in serum bottles NR Majumdar 

et al. (1999) 
Abbreviations: 3-CB, 3-chlorobenzoate; 2-CP, 2-chlorophenol; 3-CP, 3-chlorophenol; HCB, Hexachlorobenzene; PCP, 
Pentachlorophenol; NR, not reported; TCA, Trichloroaniline.  
aValue represents solution-phase concentration of metal present in system. bValue represents total metal added to system (Sandrin 
and Maier, 2003).  
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1.8 Relationships between metal concentration and inhibition of biodegradation 

The total metal concentration in a system has been the most commonly employed indicator of 

metal inhibition of biodegradation. Clearly, other factors are also involved, considering the large 

disparities between minimum inhibitory concentrations among studies (Sandrin and Hoffman, 2007). The 

most common trend observed in most of the data presented indicates that inhibition increases 

progressively as the concentration of bioavailable metal in co-contaminated system increases. Numerous 

research efforts have indicated that this is not always the case, and literature contains reports that metals 

do not inhibit some biodegradative processes (Baldrian et al., 2000; Delaune et al., 1998; Riis et al., 

2002). When metals inhibit biodegradation, their effects are not always dose-dependent and there is 

evidence for two semi-dose dependent patterns of metal effects on organic biodegradation. 

 

1.8.1 Semi-Dose Dependent Pattern 1: low metal concentrations stimulate 

biodegradation; high metal concentrations inhibit biodegradation 

Several studies suggest that metals stimulate activity until a maximum level of stimulation is 

reached and, thereafter, metal toxicity increases with increasing metal concentration (Sandrin and Maier, 

2003). It is important to note that all of these studies used consortia, not single isolates. Thus, it is likely 

that this pattern results from differential toxicity effects, where one population that is sensitive to metal 

stress competes in some way with a second metal-tolerant population expressing the activity of interest 

(e.g., biodegradation). Inhibition of the more sensitive population reduces competition for resources 

needed by the metal tolerant population expressing the activity of interest. Capone et al. (1983) provided 

evidence supporting this explanation, and reported that copper and cadmium (both at 0.01 mg total 

metal/L) increased 2-chlorophenol biodegradation rate by 168%, while mercury (1-2 mg total mercury/L) 

increased the biodegradation rates of 2-CP and 3-CP by 133-154%. Hughes and Poole (1989) and Sterritt 

and Lester (1980) reported similar results with various consortia, and suggested that the stimulatory effect 

may be due to reduced competition for reducing equivalents or nutrients between metal-resistant 

degraders and metal-sensitive non-degraders. Capone et al. (1983), Kuo and Genthner (1996) and Roberts 

et al. (1998) also reported that the impact of metals on microbially mediated processes may be due mainly 

to effects of metals on a population other than the one carrying out the process of interest. 
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1.8.2 Semi-Dose Dependent Pattern 2: low metal concentrations inhibit  

biodegradation; high metal concentrations inhibit less 

Some studies have shown a second semi-dose dependent pattern, in which low concentrations of 

metals increasingly inhibit activity until a maximum level of inhibition is reached and, thereafter, metal 

toxicity decreases with increasing metal concentration. The data published by Said and Lewis (1991) 

generally showed that 2,4-DME biodegradation decreased in a dose-dependent trend. A closer 

examination of the data revealed that the maximal degradation rate (Vmax) of 2,4-DME was less in the 

presence of 10 μM cadmium (0.61 ± 0.03 Mg 2,4-DME/L/min) than in the presence of 100 μM cadmium 

(0.74 ± 0.00 Mg 2,4-DME/L/min). In a later study, Roane and Pepper (1997) identified a similar pattern 

of inhibition as populations of 2,4-D degraders in a cadmium contaminated soil were more resistant to 

cadmium toxicity at a higher concentration of cadmium (40 mg total cadmium/L) than at a lower 

concentration of cadmium (20 mg total cadmium/L). The pattern 2 responses to metals might be 

explained by microbial community dynamics. High metal concentrations may create selective pressure for 

metal-resistant, organic-degrading microorganisms that reduced competition from metal-sensitive non-

degrading microorganisms, thus increasing biodegradation at higher metal concentrations. It has been 

suggested that at the level of single cells, it is possible that high metal concentrations may more rapidly 

induce a metal resistance mechanism important in cadmium detoxification (e.g., an efflux pump) than low 

metal concentrations (Sandrin and Hoffman, 2007). 

In summary, the existence of semi-dose dependent patterns of metal effects on biodegradation 

complicates understanding and predicting metal toxicity in the environment. As demonstrated by the 

patterns described above, metals may impact both the physiology and ecology of pollutant degrading 

microorganisms. For this reason, models designed to predict the impact of metals on biodegradation may 

fail to do so accurately unless they include both physiological and ecological effects of metals on organic-

degrading microorganisms (Sandrin and Hoffman, 2007). 

 

1.9 Bioremediation 

By definition, bioremediation is the employment of biological activities to degrade and/or 

detoxify contaminants for alleviation (and wherever possible complete elimination) of the noxious effects, 

both to human health and the environment, caused by organic and inorganic pollutants in contaminated 

sites (Iwamoto and Nasu, 2001). It is a managed treatment process whereby organic wastes are 

biologically degraded under controlled conditions to an innocuous state, or to levels below concentration 

limits established by regulatory authorities (Smets and Prichard, 2003). de Lorenzo (2008) noted that 

bioremediation is an intervention aimed at mitigating pollution, and therefore stated that the field belongs 

to the sphere of biotechnology. Depending on the extent of such intervention, bioremediation is 
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commonly considered to include natural attenuation (little or no human action on the contaminated site), 

biostimulation (addition of nutrients, and electron donors/acceptors to promote the growth or metabolism 

of particular microorganisms), or bioaugmentation (the deliberate addition of natural or engineered 

microorganisms with the desired catalytic capabilities) (El Fantroussi and Agathos, 2005; Van Dillewijn 

et al., 2007). Bioremediation is gradually making inroads for applications in environmental clean-up of 

co-contaminated environments because it has been established as a versatile, efficient, economical, easy 

to apply, simple to maintain, environmentally sound treatment and leads to complete destruction of a wide 

variety of contaminants with little secondary pollution compared to other techniques (Lee et al., 2008; 

Norris, 1994; Park et al., 2008).  

 

1.9.1 Natural attenuation 

Natural attenuation, as a management approach for contaminated environments, hinges on the 

notion that there exist in situ transformation processes (involving dispersion, sorption, biotic and abiotic 

degradation of target compounds) that are possibly, self-sustaining, appropriate with regard to type and 

sufficient in magnitude to control the risk associated with the resident pollutants (Davis et al., 2003; 

Smets and Pritchard, 2003). In virtually all situations, microbial reactions are the dominant processes 

driving the natural attenuation of both organic and inorganic contaminants (Smets and Pritchard, 2003). 

Numerous case studies have reported natural attenuation of soil (Chaineau et al., 2003; Kastanek et al., 

1999; Margesin and Schinner, 2001). For example, Chaineau et al. (2003) noted a 56% removal of the 

hydrocarbons via natural attenuation in a 480-day field experiment contaminated with 18,000 mg 

hydrocarbon/kg soil, compared to 70% to 81% with fertilization. Natural attenuation is advantageous as it 

avoids damaging ecologically sensitive microbial habitats (Dowty et al., 2001). Intrinsic bioremediation, 

however, is often a long term process because of low population sizes of the indigenous degrading 

microorganisms (Forsyth et al., 1995; Yu et al., 2005). 

 

1.9.2 Biostimulation 

Biostimulation is considered the most extensively used bioremediation procedure. This practice is 

employed for the proliferation of indigenous microorganisms by addition of nutrients and/or a terminal 

electron acceptor as well as making appropriate pH adjustments (Margesin and Schinner, 2001; Salanitro 

et al., 1997). However, prior to initiating biostimulation protocols, it is important to establish the potential 

of indigenous microorganisms and to assess the limiting factors to be controlled during treatment 

(Menendez-Vega et al., 2007). It has been established that the nutrient requirements for microbes are 

approximately the same as the composition of their cells (Sutherson, 1997), with carbon being an 

exception as it is required at larger quantities and can be supplied by the contaminant for heterotrophic 
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microorganisms (Liebeg and Cutright, 1999). Nutrient requirements of microorganisms are divided into 

three categories (macro, micro, and trace nutrients) which are based largely on the essential need and 

quantity required by the microorganism. For example, the macronutrients carbon, nitrogen, and 

phosphorus comprise approximately 50, 14, and 3% dry weight of a typical microbial cell, respectively 

(Liebeg and Cutright, 1999). Based on this criterion, the optimal C:N:P mole-ratio recommended for 

bioremediation applications is 100:10:1 (Cookson Jr, 1995; Norris et al., 1994). Contaminated sites 

consisting of large quantities of organic pollutants tend to depletion of the available pools of major 

macronutrients, N and P. It is not surprising; therefore, that numerous studies of the effects of 

biostimulation with N-P-K fertilizers have reported positive effects (Margesin and Schinner, 2001). 

Moreover, redox potential is another important aspect which must be considered prior to supplementation 

with nutrients. It defines electron availability and affects the oxidation states of hydrogen, carbon, 

nitrogen, oxygen, sulfur, manganese, iron, etc. (Liebeg and Cutright, 1999). Therefore, careful 

consideration must be taken in determining the quantity and type of nutrients to add so that the optimal 

redox potential is maintained. For an optimal aerobic environment, the redox potential must be greater 

than 50 millivolts (Norris et al., 1994). Currently, there are no precise protocols for determining the exact 

nutrient sources to employ at a contaminated site. The specific ratio depends, inter alia, on the rate and 

extent of degradation of the chemicals present, the bioavailability of soil nutrients, the soil types, and the 

presence of oxygen or other electron acceptors (Liebeg and Cutright, 1999). The nutrients inherent to the 

particular environment, as well as those supplemented, can interact with the contaminant, bacteria, soil, 

and terminal electron acceptor. These interactive effects will significantly impact the successful 

implementation of biostimulation. However, understanding the effects of various nutrients and quantity 

may enable comparisons to be drawn across different sites, hence accelerating the bioremediation process 

(Liebeg and Cutright, 1999). 

 

1.9.3 Bioaugmentation 

Bioaugmentation entails the addition of indigenous and/or non-indigenous laboratory grown 

microorganisms capable of biodegrading the target contaminant (Vogel, 1996; Widada et al., 2002) or 

serving as donors of catabolic genes (Top et al., 2002). In cases where indigenous communities of 

bacteria are unable to carry out the desired reactions, degrading the contaminant at rates that are too low, 

inhibited by the presence of multiple contaminants or killed as a result of drastic (abiotic) remediation 

techniques, bioaugmentation can be introduced to hasten the degradation process (Widada et al., 2002). 

An extensive review by Gentry et al. (2004) details several new approaches that may increase the 

persistence and activity of exogenous microorganisms and/or genes following introduction into the 

environment. The major advantage of bioaugmentation over other techniques is that when a specific 
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microbial population is injected the degradation process can start immediately, whereas during 

biostimulation, for example, a delay after injection of nutrients occurs as the microbial population 

propagates and also nutrients are not specific, so that all microbes will potentially propagate, diluting the 

effect of the nutrients (Weston and Balba, 2003). The success/failure of most bioaugmentation 

experiments depends highly on the survival of the inoculated cells under stress conditions inherent in the 

soil environment, including competition from indigenous microorganisms. Bento et al. (2003) concluded 

that the best approach for bioremediation was the bioaugmentation performed by inoculating indigenous 

microorganisms pre-selected from their own environment, as these microbes are more likely to survive 

and propagate when reintroduced into the site. Inoculating the contaminated site with microorganisms 

carrying self-transmissible plasmids containing genes involved in resistance and/or degradation is an 

alternative approach to bioaugmentation (Newby et al., 2000a). These plasmids may be transferred to 

indigenous microorganisms that possess the characteristics necessary for growth and survival in the soil 

environment and, thus, establish a stable array of hosts for the plasmids (Daane et al., 1996; Newby et al., 

2000b; Top et al., 1998). This bioremediation approach may be of particular interest for sites that contain 

both organic and metal contaminants, as the presence of metals has been shown to significantly reduce, if 

not inhibit, organic degradation (Said and Lewis, 1991; Olaniran et al., 2009) 

 

1.10 Bioremediation strategies for increasing biodegradation in co-contaminated  

environments 

Several approaches aimed at reducing the extent to which metals inhibit chlorinated organic 

biodegradation have focused specifically on lowering bioavailable metal concentrations and/or increasing 

metal resistance. Approaches include inoculation with metal-resistant microorganisms and the addition of 

treatment amendments that can reduce metal bioavailability. Phytoremediation has also shown promise as 

an emerging alternative clean-up technology for co-contaminated environments, and is currently under 

investigation. The various approaches are discussed below. 

 

1.10.1 Metal-resistant bacteria 

In the case of co-contamination, the double stress imposed on the soil bacterial communities 

means that for effective in situ bioremediation of the organic contaminant, there must be metal-resistant 

microbes with appropriate degradative genes, or consortia of metal-resistant microbes with suitable 

catabolic capabilities (Pepper et al., 2002). Previously, bioaugmentation studies focused on the 

introduction of a microorganism that was both metal-resistant and capable of organic degradation. 

However, under environmental conditions such an approach is often unsuccessful, probably due to the 

high energy requirements needed to maintain concurrent metal resistance and organic degradation (Roane 
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et al., 2001). Recent approaches have demonstrated the use of a dual-bioaugmentation strategy and the 

role of cell bioaugmentation in the remediation of co-contaminated systems (Pepper et al., 2002; Roane et 

al., 2001).  

Unlike organics, metals cannot be degraded, and thus most biological heavy metal remediation 

approaches rely on the detoxification and immobilization of the metal both to reduce the biological 

toxicity and to retard metal transport (Roane et al., 2001). Many factors influence the survival of 

organisms exposed to toxic levels of heavy metals, including lateral gene transfer (LGT) for the 

dissemination of resistance phenotypes throughout microbial communities (Coombs and Barkay, 2004; 

2005; Osborn et al., 1997) and changes in active-site residues that influence substrate specificity of metal 

homeostasis proteins (Tong et al., 2002). Although metals are thought to inhibit the ability of 

microorganisms to degrade chlorinated organic pollutants, several microbial systems of resistance to 

metals are known to exist (Nies, 1992; 1999; Rosen, 1996; Saier Jr et al., 1994; Silver, 1996; Silver and 

Phung, 1996). However, there are only three possible mechanisms by which these systems operate. 

Firstly, the accumulation of the particular ion can be diminished by efflux, an active extrusion of the 

heavy metal from the cell (Nies and Silver, 1995), which include: members of the resistance-nodulation-

cell division (RND) protein family-export superfluous cations; cation diffusion facilitators (CDF family) 

which serve as secondary cation filters in bacteria; P-type ATPases-basic defence against heavy metal 

cations; and CHR protein family, NreB, CnrT. Secondly, cations, especially the “sulfur lovers”, can be 

separated into complex compounds by thiol-containing molecules; and thirdly, some metal ions may be 

reduced to a less toxic oxidation state. A detailed review is available that describes modes of efflux-

mediated heavy metal resistance in prokaryotes (Nies, 2003). 

Most aerobic cells have a physiological redox range (-421 mV to + 808 mV); therefore, to be 

detoxified by reduction the redox potential of a given heavy metal should be between this range. Thus, 

heavy metals such as Hg2+ (+430 mV), arsenate (+139 mV), and Cu2+ (-268 mV) may be reduced by the 

cell, but Zn2+ (-1.18 V), Cd2+ (-824 mV), and Ni 2+ (-678 mV) may not (Nies, 1999). In the case of many 

metals, resistance and homeostasis involve a combination of two or three of the basic mechanisms 

mentioned. Roane et al. (2001) investigated dual-bioaugmentation involving inoculation with both metal-

detoxifying and organic-degrading bacteria to facilitate organic degradation within a co-contaminated 

system.  Soil microcosms were constructed using uncontaminated sandy loam soil amended with 500 g 

of 2,4-D/ml, and co-contaminated with 60 g of cadmium to a final concentration of 60 g/ml. This was 

followed by inoculation with Ralstonia eutropha JMP134, a 2,4-D degrader and Pseudomonas H1, a 

cadmium-resistant strain. Based on the results obtained, it was concluded that dual-bioaugmentation with 

metal-detoxifying and organic-degrading microbial populations is effective for remediation of co-

contaminated soil; however, reducing bioavailable metal concentrations via sequestration prior to 
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inoculation with the organic-degrading population will promote increased degradation. In another study, 

Pepper et al. (2002) investigated the role of cell bioaugmentation and gene bioaugmentation in the 

remediation of co-contaminated soil. Escherichia coli D11, which contains plasmid pJP4, but does not 

have the chromosomal genes necessary for the transformation of 2-chloromaleylacetate to succinic acid, 

was used for gene bioaugmentation. The observation from this study suggests that the indigenous 

transconjugant population generated from E. coli D11 inoculation was better suited for subsequent 2,4-D 

degradation than the R. eutropha JMP134-inoculated soil, in which the presence of the 2,4-D degrading 

inoculant repressed transconjugant growth. However, the ultimate choice of cell or gene bioaugmentation 

will depend on the relative health potential of the recipient population, the degree of contamination and 

the time frame available for remediation.  

 

1.10.2 Treatment amendments 

Many studies have been carried out to evaluate the ability of different chemical amendments to 

immobilize heavy metals in polluted environments. These additives include organic materials, phosphate 

rocks, iron and manganese oxides and oxy-hydroxides, and waste by-products rich in these oxides as well 

as alkaline agents such as lime and zeolite (Basta et al., 2001; Boisson et al., 1998; Chen et al., 2000; 

Edwards et al., 1999; García-Sánchez et al., 1999; Gworek, 1992; Hodson et al., 2000; Lehoczky et al., 

2000; Li et al., 2000; Mench et al., 2000; Shuman et al., 2002). In general, these treatments prove to have 

an ameliorative effect on reducing the metal mobility or bioavailability. Panuccio et al. (2009) evaluated 

cadmium sorption in three different minerals (vermiculite, zeolite and pumice). Results indicated that 

zeolite and vermiculite reduced soluble cadmium concentrations by 90% and that the metal sorbed on 

zeolite was mainly present in the non-exchangeable form (70%) at the lowest cadmium concentration (30-

120 μM). Furthermore, it was reported that the percentage of cadmium sorption in zeolite and vermiculite 

was independent of the initial cadmium concentration, and the mineral sorption capacity was closely 

dependent upon pH. In particular, cadmium adsorption on pumice was raised from 20% to 90% with an 

increase of pH from 4 to 7.5. Phosphate amendments, in particular, have been given much attention for 

the treatment of Pb-contaminated environments (Brown et al., 2005; Chen et al., 2000; 2003; Li et al., 

2000; Shuman et al., 2002). Despite the well-documented ability of treatment amendments to reduce 

metal mobility and bioavailability, not much attention has been directed towards determining microbial 

endpoints after the treatment of contaminated environments. Brown et al. (2005) examined the effect of 

lime, phosphorus, red mud, cyclonic ashes, biosolids and water treatment residuals on the toxicity of 

cadmium, lead and zinc in an international inter-laboratory study. Each participating laboratory selected a 

common soil material from mine wastes and common treatments. Nitrogen (N) transformation and a 

measure of the total soil microbial biomass were chosen as microbial endpoints. The N transformation test 
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was designed to measure nitrate formation in soils after the addition of an organic substrate. The 

formation of nitrate is an indicator of microorganisms degrading the C-N bonds in the organic substrate 

and recycling nutrients within the soil. Of the amendments tested by the participating laboratories, P 

added as either triple sugar phosphate or H3PO4 appeared to be the most effective. Phosphorus addition to 

the soil resulted in reduced soil solution and extractable metals, reduced bioavailability of soil Pb, and 

increased microbial activity based on the two measures. These promising results suggest that the use of 

treatment amendments may be an effective means to increase chlorinated organic pollutant 

biodegradation in the presence of toxic levels of heavy metals. 

 

1.10.3 Clay minerals 

The use of clay minerals to reduce metal bioavailability and resulting toxicity in groundwater and 

sub-soils has been successful for the remediation of heavy metal polluted environments (Boenigk et al., 

2005; Sandrin and Maier, 2003). Clays differ in chemical and physical properties and have a 

comparatively high ion exchange capacity of 5 to > 50 meq/100 g clay (montmorillonite > illite > 

kaolinite). Charged substances attach easily to clay particles. Sorption of heavy metals on clays has been 

studied for montmorillonite (Barbier et al., 2000), illite (Echeverria et al., 2002), kaolinite (Coles and 

Yong, 2002; Sarkar et al., 2002), and bentonite and vermiculite (Kamel, 1986; Panuccio et al., 2009). 

These clays are chosen to avoid pollutant release into the environment owing to their high specific surface 

areas, low cost and ubiquitous presence in most soils (Bailey et al., 1999). In particular, the evaluation of 

the total capacity of Na-montmorillonite shows that this clay is a good sorbent towards a variety of metals 

(Abollino et al., 2003), and generally has a higher sorption of heavy metals than kaolinite (Barbier et al., 

2000). This clay mineral adsorbs heavy metals via two different mechanisms: (1) cation exchange in the 

inter layers resulting from the interactions between ions and negative permanent charge; and (2) 

formation of inner-sphere complexes through Si-O- and Al-O- groups at the clay particle edges (Kraepiel 

et al., 1999; Mercier and Detellier, 1995; Schindler et al., 1976). Abollino et al. (2003) reported that the 

adsorption of metal ions on Na-montmorillonite decreases with decreasing pH and is also influenced by 

the presence of ligands. At low pH values (2.5-3.5), the hydrogen ion competes with the heavy metals 

towards the superficial sites and, moreover, the Si-O- and Al-O- groups are less deprotonated and they 

form complexes with bivalent and trivalent ions in solution with greater difficulty (Abollino et al., 2003). 

This effect was particularly evident for Cu2+ (as aqua ion [Cu (H2O) 6]2+) which has a distorted geometry, 

and for Pb2+ and Cd2+ that have a lower electrostatic attraction versus the clay because of their lower 

charge density (Abollino et al., 2003). For these reasons, the adsorption of these ions is unsupported by 

cation exchange mechanism and, hence, they are influenced more by pH variations. Therefore, the pH 

effect on each metal tested was different and, at pH ≤ 3.5, the studied metals were adsorbed in increasing 
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entity in the following order: Cu2+ < Pb2+ < Cd2+ < Zn2+ ≤ Mn2+ ≈ Cr3+ ≈ Ni2+ (Abollino et al., 2003). This 

result was a function of the ligand and metal considered but the formation of metal-ligand complexes in 

solution altogether hinders the adsorption of the metal ions on the clay. In this case, the metal adsorption 

increased in the following order: Cr3+ < Cu2+ < Ni2+ < Zn2+ ≤ Cd2+ ≤ Pb2+ ≤ Mn2+ (Abollino et al., 2003). 

The result indicated that the sorption capability of Na-montmorillonite towards each metal ion examined 

was different under various conditions, and was a function of both pH and of the ligand present in 

solution. It is therefore necessary to consider both these factors in studying a real soil/solution system and 

effectively predicting the fate of heavy metals in the environment. From the results it was evident that the 

total capacity of Na-montmorillonite towards the investigated metals increases in the order: Pb2+ = Cd2+ < 

Cu2+ < Zn2+ < Mn2+ < Ni2+ < Cr3+ (Abollino et al., 2003). In a similar study, Boenigk et al. (2005) reported 

that LC50 of Spumella sp in solution systems contaminated with Cd 2+ decreased by 71% and 64% in the 

presence of clay and silicate beads, respectively. 

 

1.10.4 Chelating agents 

Chelating agents increase metals diffusion in the soil solution and keep them in plant available 

forms by forming large, less reactive ions, by increasing the concentration of these larger chelated ions in 

solution, and by decreasing the ability of the free ions to react with the soil (Žemberyová et al., 2007). 

Chelating agents offer great promise for assessing readily available micronutrient cations in soils 

(Žemberyová et al., 2007). These agents adhere with free metal ions in solution forming soluble 

complexes and thereby reduce the activities of the free metal ions in solution. In response, metal ions 

desorb from soil particles or dissolve from labile solid phases to replenish the free metal ions in solution. 

Chelating agents, such as ethylenediamine-tetraacetic acid (EDTA), have been employed to reduce metal 

toxicity to organic-degrading microorganisms. EDTA was shown to reduce the toxicity of cadmium to 

Chlorella sp. (Upitis et al., 1973), of nickel to algae (Spencer and Nichols, 1983), and of copper to 

bacteria and algae (Sunda and Guillard, 1976). However, the toxicity of EDTA to many microorganisms 

and its limited biodegradability reduce its suitability for application to the bioremediation of co-

contaminated environments (Borgmann and Norwood 1995; Braide, 1984; Ogundele, 1999). For this 

reason, the development of several surfactant-modified clay complexes to reduce metal toxicity has 

sparked greater interest. 

Malakul et al. (1998) have demonstrated the potential application of surfactant-modified clay 

adsorbents in mixed-waste biotreatment, in which toxic organics and heavy metals co-exist. In this study, 

the toxicity of cadmium to Pseudomonas putida was greatly reduced by the addition of a surfactant 

modified-clay complex and a commercially available chelating resin (Chelex 100; Biorad, Hercules, CA) 

during the biodegradation of naphthalene. Surfactant modified-clay complexes are prepared through a 
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simple surface modification method of grafting metal-chelating ligands in order to impart a higher metal 

capturing capacity and selectivity to the base clays. 

 

1.10.5 Biosurfactants 

Biosurfactants are amphiphilic compounds which can reduce surface and interfacial tensions by 

accumulating at the interface of immiscible fluids and increase the solubility, mobility, bioavailability and 

subsequent biodegradation of hydrophobic or less soluble organic compounds (Makker and Rochne, 

2003), such as polychlorinated biphenyls (Van Hamme et al., 2006). Biosurfactants are produced 

extracellularly or as part of the cell membrane by bacteria, yeasts and fungi, from various substrates 

including sugars, alkanes, oils and waste (Mulligan, 2005). Many studies of biosurfactant-enhanced 

bioremediation have employed small, well-characterized biosurfactants such as Pseudomonas aeruginosa 

rhamnolipids (Maier and Soberon-Chavez, 2000; Mulligan, 2005), Candida apicola sophorose lipids 

(Hommel et al., 1994), Rhodococcus erythropolis trehalose dimycolipids (Kanga et al., 1997), Bacillus 

sp. lichenysins (Jenny et al., 1991), and Bacillus subtilis surfactin (Awashti et al., 1999; Makker and 

Cameotra, 1997; Mulligan et al., 2001a). 

Important here is the advantage of such compounds at co-contaminated sites, since 

microorganisms have long been shown to produce potent surface-active compounds that enhance the rate 

of degradation by emulsification or solubilization of the hydrophobic hydrocarbon (Noriyuki et al., 2002). 

Exploiting this property, Berg et al. (1990) described the potential use of a P. aeruginosa UG2-produced 

biosurfactant to significantly increase the solubility and dissolution of hexachlorobiphenyl into the 

aqueous phase. In tests with the emulsifying agent in soil slurries, 31% of the added hexachlorobiphenyl 

was recovered in the aqueous phase. In a similar study, Van Dyke et al. (1993) surveyed a variety of 

biosurfactants for removal of hexachlorobiphenyl from soil. Out of 13 biosurfactants tested, seven 

removed hexachlorobiphenyl more efficiently compared to controls. Two strains of P. aeruginosa and 

one strain of A. calcoaceticus RAG-1 produced the most efficient biosurfactant. 

Furthermore, biosurfactants may also enhance the desorption of heavy metals from soils via 2 

approaches: firstly, complexation of the free form of the metal residing in solution which decreases the 

solution phase activity of the metal and, therefore, promotes desorption according to Le Chatelier‟s 

principle; secondly, direct contact of biosurfactant to sorbed metal at solid solution interface under 

conditions of reduced interfacial tension, which allows biosurfactants to accumulate at solid solution 

interface (Miller, 1995). Considerable work has been done on rhamnolipid biosurfactant produced by 

various P. aeruginosa strains capable of selectively complexing cationic metal species such as Cd2+, Pb2+, 

and Zn2+ (Herman et al., 1995; Tan et al., 1994; Torrens et al., 1998), thus increasing the bioavailability 

of substrates with limited aqueous solubilities (Herman et al., 1997; Zhang et al., 1997; Zhang and Miller, 
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1995), and also increasing cell surface hydrophobicity (Al-Tahhan et al., 2000; Zhang and Miller, 1994). 

Research has shown that rhamnolipids complexes more  preferentially with toxic metals such as Cd and 

Pb than with normal soil metal cations such as Ca and Mg, for which it has a much lower affinity (Said 

and Lewis, 1991). Also, metals such as lead and cadmium have stronger affinities for rhamnolipids than 

for many of the soil components to which they are bound in contaminated soils (Sandrin et al., 2000). 

Due to the foaming property of the biosurfactant, metal-biosurfactant complexes can be removed 

by addition of air to cause foaming and then the biosurfactant can be recycled through precipitation by 

reducing the pH to 2 (Wang and Mulligan, 2004). Anionic biosurfactants were found to be more effective 

where metals are the agents to be sequestered. Surfactin, rhamnolipid, and sophorolipids, all anionic 

biosurfactants, were able to remove copper and zinc from a hydrocarbon-contaminated soil (Mulligan et 

al., 1999). One advantage in case of co-contaminated soil is that biosurfactants can potentially be 

produced in situ using the organic contaminants as substrates for their production, which subsequently 

would lead to both the remediation of the contaminants and a great reduction in remediation costs 

(Abraham et al., 2002). The efficiency of biosurfactants for stimulating biodegradation of contaminants is 

uncertain given the specificity observed between biosurfactant and organism. Addition of biosurfactant 

can stimulate some organisms but also can inhibit some microorganisms; a strategy suitable for effective 

remediation would therefore be to stimulate biosurfactants produced by indigenous population, or to use 

commercial biosurfactants produced by organisms found to be already present at the contaminated site 

(Abraham et al., 2002). Furthermore, delivery of a biosurfactant into co-contaminated sites for in situ 

treatment may be more environmentally compatible and more economical than using modified clay 

complexes or metal chelators such as EDTA (Gray and Wilkinson, 1965; Kamel, 1986; Sandrin et al., 

2000). 

 

1.10.6 Phytoremediation 

In situ bioremediation is gaining momentum as a low-cost and effective method for restoration 

and remediation of many contaminated sites. In particular, the use of plants for rehabilitation of heavy 

metal contaminated environments is an emerging area of interest because it is ecologically sound and safe  

(Lin et al., 2008; Wu et al., 2006). Although phytoremediation is a slow process, improvement of 

efficiency and thus increased stabilization or removal of heavy metals from soils is an important goal 

(Göhre and Paszkowski, 2006), especially in the case of co-contamination. Plants use the following 

mechanisms to facilitate remediation, these include: phytostabilization, phytoextraction, 

phytovolatilization, phytopumping, phytotransformation/degradation, and rhizodegradation (Singh and 

Jain, 2003; Susarla et al., 2002). The biomass production of a few hyperaccumulator plants has been 

judged sufficient for phytoremediation; for example, the brake fern Pteris vittata accumulated up to 7500 
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μg/g As on a contaminated site without showing toxicity symptoms (Ma et al., 2001). Numerous research 

efforts have focused on the use of these techniques as viable alternatives to mechanical and chemical 

approaches in remediation of metal contaminated soils or as a final, consummating step in high-level 

organic contamination (Jones, 1991; Leigh et al., 2002; Singh et al., 2004; Zhu et al., 2001). However, an 

alternative approach, which focussed on the dissipation mechanisms by Lolium perenne L (ryegrass) and 

Raphanus sativus (radish) for pentaphlorophenol (PCP) in copper co-contaminated soil, indicated that 

with an initial PCP concentration of 50 mg/kg, plants grew better with the increment of soil Cu level (0, 

150, 300 mg/kg). This inferred that combinations of inorganic and organic pollutants sometimes exerted 

antagonistic effects on plant cytotoxicity (Lin et al., 2006). In copper co-contaminated soil with an initial 

PCP concentration of 100 mg/kg, however, both plant growth and microbial activity were inhibited with 

the increment of soil Cu level, implying that the soil phytotoxicity was increased in the presence of Cu 

(Lin et al., 2006). The reduced mass flow and lowered degrading activity of microorganisms were 

probably responsible for the significantly lower levels of PCP dissipation in the soil co-contaminated with 

copper. As mentioned previously, heavy metals are bound to soil components in varying degrees, 

depending on soil conditions such as pH, clay content, organic matter, redox potential (Sandrin and 

Hoffman, 2007; Sandrin and Maier, 2003). Natural chelating agents, such as citric and acetic acid, 

released by plant roots make the ions of both nutrients and contaminants more mobile in the soil. Plants 

can usually break the chelation bond, take up the metal, and release the chelant back into the soil solution.  

Since most organic-degrading microorganisms are sensitive to the toxic effects of heavy metals, a 

successful strategy to address this mixed-waste situation requires the use of microorganisms that will 

survive and thrive in soil polluted with heavy metals. An attractive feature of using rhizoremediation in 

such a situation is the flexibility of utilizing different engineered rhizobacteria to remediate mixed-waste 

co-contaminated soil (Khan, 2005). To provide a modified rhizoremediation system, the rhizosphere 

bacterial community can be specifically engineered to target various pollutants at co-contaminated sites 

(Wu et al., 2006). Furthermore, specific plant species and biodegradation genes can be selected in 

accordance with the contaminants present and plant growth conditions at the toxic sites (Wu et al., 2006). 
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1.11 Assessment of microbial diversity in contaminated soil environments  

Traditionally, characterization of microbial ecosystems in contaminated soils focused mainly on 

analyzing numbers of culturable bacteria, measuring biomass and processes such as respiration (Bloem et 

al., 1995; De Leij et al., 1993; Evdokimova, 2001). Unfortunately, these methods only provide data about 

processes or bacterial numbers and are not suitable for the analysis of microbial community composition 

or diversity. Culturing colony forming units on different media was the most popular method for 

investigating microbial diversity. However, most bacteria targeted for isolation from environmental 

samples are difficult to culture due to constraints imposed by the selectivity of artificial media and 

conditions at which they are to be grown (Kirk et al., 2004). It has been estimated that the microbial 

community in one gram of soil may contain over one thousand different bacterial species (Rossello-Mora 

and Amann, 2001), but less than 1% of these have been reported to grow on artificial media (Kirk et al., 

2004; McCaig et al., 1999; Sekiguchi et al., 2002; Stephen et al., 1999; Von Wintzingerode et al., 2002; 

Wayne et al., 1987). 

Modern molecular techniques offer an exciting opportunity to overcome the requirement for 

culturing microorganisms and have therefore greatly increased our understanding of microbial diversity 

and activity in the environment (Malik et al., 2008). These methods rely on the characterization of 

cellular constituents such as nucleic acids, fatty acids, proteins, and other taxonomic specific compounds 

(Borneman et al., 1996; Nakatsu et al., 2000; Rossello-Mora and Amann, 2001). The first culture-

independent estimate of prokaryotic organisms in soil indicated the presence of 4600 distinct genomes in 

one gram of soil (Kent and Triplett, 2002). Extracted DNA or RNA can, via molecular genetic techniques, 

facilitate coupling of microbial community analysis with phylogeny (Blackwood et al., 2003). The 

uncultured diversity reflects species closely related to known cultured organisms and also species from 

virtually uncultured lineages (Blackwood et al., 2003). Molecular methods usually involve the separation 

of polymerase chain reaction (PCR) amplicons on the bases of DNA nucleotide sequence differences, 

most often the 16S rRNA gene. The 16S rDNA regions are useful for such studies since these genes are 

present in all bacteria and comparison of sequences of 16S rDNA fragments has been well established as 

a standard method for the identification of species of bacteria (Gürtler and Stanisich, 1996). The success 

of this method does not depend on the physiological state of the cells from which the DNA is extracted. 

The only requisites are that cells are lyzed by the extraction buffer and that all the 16S rRNA genes are 

equally accessible for amplification (Li et al., 2006). Culture-independent approaches include denaturing 

gradient gel electrophoresis (DGGE), temperature gradient gel electrophoresis (TGGE), single strand 

conformation polymorphism (SSCP), restriction fragment length polymorphism (RFLP)/amplified 

ribosomal DNA restriction analysis (ARDRA), terminal restriction fragment length polymorphism (T-
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RFLP), and ribosomal intergenic spacer analysis (RISA)/automated ribosomal intergenic spacer analysis 

(ARISA). 

The application of molecular fingerprinting techniques holds great promise in assessing microbial 

diversity in co-contaminated environments. The presence of multiple contaminants presents extreme 

challenges to the maintenance of a phylogenetically and functionally diverse microbial community (Shi et 

al., 2002), therefore, only microbes that tolerate both heavy metals and toxic levels of hydrocarbons may 

survive. However, the combined effect of metals and organic carbon pollutants on microbial diversity and 

activity are unclear since few studies have addressed this issue (Nakatsu et al., 2005). 

 

1.12 Denaturing gradient gel electrophoresis  

Denaturing gradient gel electrophoresis (DGGE) is a highly sensitive technique which provides 

information on the diversity and composition of mixed microbial communities (Banks and Allemen, 

2002; Hayes et al., 1999; Koizumi et al., 2002). This molecular technique allows a high number of 

samples to be screened simultaneously, thus facilitating much broad-spectrum analysis of microbiological 

diversity (Muyzer, 1999). The technique is based upon differential melting of double-stranded DNA 

molecules in a polyacrylamide gel with an increasing gradient concentration of denaturant (urea and 

formamide) (Hayes et al., 1999). DNA is extracted from the environmental samples and amplified using 

PCR with universal primers targeting part of the 16S or 18S rRNA sequences. The 16S rRNA genes are 

most commonly used to give an overall indication of the bacterial species composition of the sample 

(Muyzer, 1999). The PCR-amplified DNA fragments are generally limited in size to 500 bp and are 

separated on the basis of sequence differences, not variation in length (Malik et al., 2008). To prevent 

complete strand dissociation and to facilitate the detection of mutations in the higher melting domains, the 

5 -́end of the forward primer contains a GC-clamp of 35-40 base pairs. The GC-clamp theoretically 

increases the percentage of single base changes detectable by DGGE to 100% (Abrams et al., 1990; 

Sheffield et al., 1989). DGGE separates DNA fragments according to their melting behaviour; therefore 

the absence of a GC-clamp would result in the DNA denaturing into single strands. On denaturation, 

DNA melts in domains which are sequence specific, and will migrate differentially through the 

polyacrylamide gel (Muyzer, 1999). Theoretically, double stranded DNA molecules differing by only a 

single base substitution in their lowest melting domain show different melting behaviour patterns (Miller 

et al., 1999). As a consequence, melting at different positions along a denaturing gradient gel generates a 

genetic fingerprint of the entire community being examined (Gillan, 2004). Resulting gel images can be 

digitally captured and used for species identification when samples are run against known standards 

(Temmerman et al., 2003). Analysis of DGGE profiles often involves the use of principal component 

analysis (Ogino et al., 2001; Widmer et al., 2001) or hierarchical cluster analysis to demonstrate 
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similarities in the data, and the results are invariably presented in the form of dendrograms (Boon et al., 

2000; 2002; Eichner et al., 1999; Van Der Gucht et al., 2001).  

DGGE has been widely used for the assessment of microbial community structure in 

contaminated soil, and is primarily aimed at studying the evolution of microbial communities (Avrahami 

and Conrad, 2003; Morris et al., 2002; Nicol et al., 2003). Kourtev et al. (2006) reported on the selection 

of microorganisms in a soil microcosm setting. Glucose and protein amendments were selected for 

different bacterial communities, and this selection was modified by the addition of Cr(VI), since some 

DGGE bands were intensified and new bands appeared in Cr(VI)-amended microcosms. DGGE allows 

for determining total community as well as specific community or gene diversity without further analysis 

and without elucidating particular individuals. It has been used in the identification of sequence variations 

in multiple genes among several organisms simultaneously (Muyzer et al., 1993). Moreover, functional 

genes, having more sequence variation, can be used to discriminate between closely related but 

ecologically different communities. For example, catabolic genes, such as methane manooxygenase has 

been targeted for DGGE analysis (Fjeilbirkeland et al., 2001; Knief et al., 2003). This provided 

information on the diversity of specific groups of microorganisms competent in a defined function such as 

pollutant degradation. For environmental or contaminated source samples where microbial diversity is 

largely unknown (Amann et al., 1995), DGGE provides the opportunity for the identification of the 

microbial population through the excision and sequencing of bands (Forney et al., 2004). 

 

1.12.1 Advantages  

 The main advantage of DGGE is that it enables the monitoring of the spatial/temporal changes in 

microbial community diversity and provides a simple view of the dominant microbial species 

within a sample (Malik et al., 2008). 

 It is relatively easy to use and amenable to the rapid comparison of multiple samples (Neufeld 

and Mohn, 2005) i.e. large number of samples can be analyzed simultaneously. 

 It is a rapid technique and relatively inexpensive (Neufeld and Mohn, 2005). 

 

1.12.2 Disadvantages 

 Sequence information derived from microbial populations is limited to 500 bp fragments of 16S 

rRNA sequences, which may lack the specificity required for phylogenetic inferences as well as 

for probe design (Gilbride et al., 2006). 

 Due to the existence of multiple copies of rRNA in an organism, multiple bands for a single 

species may occur (Nubel et al., 1997). 
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 Band intensity may not truly reflect the abundance of microbial population (strong band may just 

mean more copies) and perceived community diversity may be underestimated (Malik et al., 

2008). 

 Co-migration of DNA fragments can be a problem for retrieving clean sequences from individual 

bands (Muyzer and Smalla, 1998). 

 There is a lack of consensus regarding standards for normalization as gradients formed in 

different gels are somewhat variable making gel-to-gel comparisons difficult (Ferrari and 

Hollibaugh, 1999; Moeseneder et al., 1999). 

 

1.13 Scope of the present study 

1,2-Dichloroethane incessantly enters the soil environment mainly due to atmospheric emissions 

from industrial processes and inappropriate disposal of the compound. The major concern over soil 

contamination with 1,2-DCA stems primarily from health risks, both of direct contact and from secondary 

contamination of water supplies. Furthermore, heavy metals are routinely introduced into the environment 

through the discharge of toxic metal wastes from defence-related activities, municipal waste disposal in 

landfill sites or by accidental release. These practices have inspired a growing interest in bioremediation 

strategies for their removal. However, co-contamination poses serious challenges worldwide, as it is 

considered complicated to remediate because of the mixed nature of the contaminants and the fact that the 

two components often must be treated differently. 

Previous research efforts have focused extensively on the biodegradation of 1,2-DCA in several 

contaminated soil and water environments and several microorganisms have been characterized for their 

ability to metabolize 1,2-DCA under various conditions. Furthermore, the toxic effects of heavy metals on 

soil microorganisms have also been studied. Although research based on single-pollutant exposures 

provides fundamental knowledge about individual pollutants under carefully controlled conditions, they 

do not mimic real world exposures. Moreover, approximately 40% of the hazardous waste sites currently 

on the National Priorities List of the USEPA are co-contaminated with organic and metal pollutants. Few 

studies have addressed the issue of co-contamination, and the impact of heavy metals on organic pollutant 

biodegradation. Accordingly, this study was undertaken to assess the impact of heavy metals on the 

aerobic biodegradation of 1,2-DCA by autochthonous microorganisms in soil co-contaminated with 1,2-

DCA and heavy metals, via a direct and quantitative measure of the inhibitory effects of heavy metals in a 

microcosm setting. Denaturing gradient gel electrophoresis, dehydrogenase activity and urease activity 

were used to assess the impact of heavy metals on the microbial population, biodiversity and activity 

during 1,2-DCA degradation in the co-contaminated soil. The potential of biostimulation, 

bioaugumentation and treatment additives to enhance the degradation process was also investigated. 
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1.13.1 Hypotheses tested 

It was hypothesized that the presence of heavy metals will have a negative impact on 1,2-DCA 

degradation in co-contaminated soil. It was further hypothesized that the addition of nutrients, treatment 

additives and heavy metal-resistant and 1,2-DCA-degrading microorganisms may accelerate the 

degradation of 1,2-DCA in such co-contaminated soils. 

 

 1.13.2 Objectives 

The following objectives were established to test the above hypothesis: 

a) To evaluate the biodegradation of 1,2-DCA in soil co-contaminated with 1,2-DCA and heavy 

metals and ascertain the effects of heavy metals on 1,2-DCA degradation. 

b) To investigate the effects of biostimulation, bioaugmentation and treatment additives on the 

biodegradation of 1,2-DCA in the co-contaminated soil samples. 

c) To profile 1,2-DCA degrading microbial populations, monitor microbial activity and diversity in 

the co-contaminated soil microcosms during 1,2-DCA degradation in the co-contaminated soil. 

 

 1.13.3 Experimental design 

In order to achieve the stated objectives, this research was divided into the relevant chapters 

described below. 

 

 Chapter Two 

This chapter focuses on the quantitative assessment of the toxic effects of various metal 

concentrations (singly and in combination) on the biodegradation of 1,2-DCA. Toxic effects were 

evaluated based on the following: (i) degradation rate constants; (ii) estimated MICs; (iii) concentrations 

that caused biodegradation half-life doublings (HLDs); and (iv) heavy metal concentrations that caused a 

significant effect on biodegradation (> 10% increase in t½ of 1,2-DCA). 

 

 Chapter Three 

This chapter investigated the effects of biostimulation and bioaugmentation on the aerobic 

biodegradation of 1,2-DCA in soil co-contaminated with As3+ and Cd2+. Both traditional methods of soil 

dehydrogenase and urease enzyme assays and advanced molecular PCR-DGGE techniques were used to 

evaluate soil microbiological activity and diversity in the co-contaminated soils. 
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 Chapter Four 

This chapter specifically addresses the efficiency of different inorganic treatment additives, to reduce 

the bioavailability of heavy metals and to assess its impact on 1,2-DCA degradation in soil co-

contaminated with arsenic and cadmium. Moreover, the effects of such treatment additives on soil urease 

and dehydrogenase activities were also investigated. 

 

 Chapter Five 

This chapter places the entire research in perspective, thereby providing an overview of the 

significant findings reported in each of the various chapters of this dissertation. It also identifies the 

possible limitations or shortcomings of the study and provides a scope for future directions of the study. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

CHAPTER TWO 
QUANTITATIVE ASSESSMENT OF THE TOXIC 

EFFECTS OF HEAVY METALS ON THE AEROBIC 

BIODEGRADATION OF 1,2-DICHLOROETHANE IN 

CO-CONTAMINATED SOIL 
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2.1 Introduction 

The increase in agricultural, industrial and urban activities, many of which inevitably involve the 

use of chemicals has given rise to a number of environmental problems due to the release of large 

quantities of toxic organic pollutants (Bhattacharya et al., 2002; Collins and Stotzky, 1992; Laturnus, 

2003; Mulligan et al., 2001b; Weissenhorn et al., 1995). In particular, chlorinated organic pollutants are 

introduced into the environment by effluent from pulp and paper industries, bleaching plants and 

chlorination procedures used in the treatment of water (Yu and Welander, 1995). Among the short-

chained chlorinated aliphatic compounds, 1,2-dichloroethane (1,2-DCA) is one of the world’s most 

hazardous toxic chlorinated aquifer pollutant (Marzorati et al., 2007). Its annual production is in excess of 

5.443 × 109 kg, a quantity larger than that of any other industrial halogenated chemical (Janssen et al., 

1989; Laturnus, 2003). As was noted in Chapter one, the widespread use of 1,2-DCA in a variety of 

products and manufacturing processes has resulted in its ubiquitous presence in most sites contaminated 

with organic pollutants (DEA, 2002; Hage and Hartmans, 1999) and it has been found in at least 570 of 

the 1585 National Priorities List (NPL) sites identified by the U. S. Environmental Protection Agency 

(USEPA). Soil contaminated with 1,2-DCA poses serious health risks, and its toxicity, persistence and 

potential for bioaccumulation (Squillace et al., 1999) has inspired a growing interest in technologies for 

their removal (Baptista et al., 2006). Remediation of hydrocarbon contaminated soils is usually difficult, 

due to a number of limiting factors such as inappropriate pH and moisture content, nutrient and oxygen 

content and availability, and, importantly, bioavailability and bioaccessibility of the chemicals (Ehlers 

and Luthy, 2003; Semple et al., 2004; 2003). 

Metals are also routinely introduced into the environment through the discharge of toxic metal 

wastes from defence-related activities, industry, and municipal waste disposal in landfill sites or by 

accidental release (Stephen et al., 1998). These practices have resulted in surface contamination 

problems, transport to groundwater, and/or bioaccumulation of radionuclides and toxic metals in soils 

(Stephen et al., 1998). Heavy metals (HMs) include a range of metals and metalloids which are 

commonly associated with pollution and toxicity, but also include elements (e.g., Zn, Cu and Ni) which 

are essential for the metabolism of living organisms, albeit at low concentrations (Wong et al., 2005). All 

heavy metals are known to be potentially toxic to soil microorganisms at high concentrations and can 

hinder the biodegradation of organic contaminants (Amor et al., 2001; Bååth, 1989; Benka-Coker and 

Ekundayo, 1998; Riis et al., 2002, Roane et al., 2001; Sokhn et al., 2001; White and Knowles, 2000; 

2003). Thus, co-contaminated matrices represent a further problem in bioremediation processes (Said and 

Lewis, 1991). Heavy metals appear to affect organic pollutant biodegradation through interference with 

both the physiology and ecology of organic degrading microorganisms, thus imposing a double stress on 

the microbial populations (Roane et al., 2001). Therefore, the presence of multiple contaminants may 
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present extreme challenges to the maintenance of a phylogenetically and functionally diverse microbial 

community required for the degradation process. 

Sites co-contaminated with organic and metal pollutants raise far more serious concerns as the 

two components often causes a synergistic effect on cytotoxicity to microorganisms (Lin et al., 2006). 

Previous studies assessing toxicity of heavy metals have typically relied on physiologically restrictive 

processes such as, sulfate reduction, methanogenesis, [14C] glucose uptake, and [3H]thymidine 

incorporation, all of which may not relate to organic chemical biodegradation rates (Said and Lewis, 

1991). Therefore, the effects of metal toxicity on organic pollutant biodegradation in co-contaminated soil 

environments have not been adequately defined quantitatively or qualitatively (Sandrin and Maier, 2003). 

This is partly due to the fact that metals can exist in a range of different physical and chemical forms such 

as colloidal solutions, soluble complexed species or organic solutes. Moreover, complications arise 

because the physical and chemical state of metals is affected by environmental conditions such as pH and 

ionic strength of the water phase, as well as soil properties including clay type and content, ion exchange 

capacity, and organic matter content (Sandrin and Maier, 2003). Metal toxicity is most commonly 

attributed to the tight binding of metal ions to sulfhydryl (-SH) groups of enzymes essential for microbial 

metabolism (Sandrin and Maier, 2003). Pollutant biodegradation may be inhibited through interaction 

with enzymes directly involved in biodegradation or those involved in general metabolism, thus rendering 

the enzyme non-functional (Angel and Chaney, 1989). 

The effects of metals on biodegradation processes have not been well-characterized, although 

broad ranges of heavy metal concentrations have been reported to inhibit biodegradation. In addition, 

different patterns of inhibition have also been reported (Kuo and Genthner, 1996; Roane and Pepper, 

1997; Sandrin et al., 2000). Delaune et al. (1998) reported that chromium (0-5000 μg/g) and lead (0-2500 

μg/g) had no effect on the biodegradation of petroleum hydrocarbons from clay sediments. Other studies 

indicated that metals inhibited biodegradation specifically in a dose dependant manner; higher metal 

concentrations inhibited biodegradation more than lower concentrations. For example, the rate of toluene 

biodegradation by a Bacillus sp. was reduced by 55%, 61%, and 100% by 0.4, 0.8, and 1 mM nickel, 

respectively (Amor et al., 2001). Furthermore, non-dose-dependent inhibitions in which higher metal 

concentrations are less inhibitory than lower metal concentrations have also been reported (Chang et al., 

2004; Gonzalez-Gil et al., 1999, Kuo and Genthner, 1996; Said and Lewis, 1991). For example, Chang et 

al. (2004) reported that the lag phase of Desulfovibrio vulgaris during sulfate respiration was 20 h shorter 

when exposed to 1 mM copper than when exposed to 0.1 mM. The existence of different degrees and 

patterns of inhibition may be due to lack of standardized protocols to characterize metal toxicity to the 

microorganisms (Hoffman et al., 2005). 
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Approximately 40% of the hazardous waste sites currently on the NPL of the USEPA are co-

contaminated with organic and metal pollutants (Cheng, 2003; Fierens et al., 2003; Norena-Barroso et al., 

2004; Sandrin et al., 2000; Sandrin and Maier, 2003). Co-contaminated environments are considered 

difficult to remediate because of the mixed nature of the contaminants and the fact that the two 

components often must be treated differently (Roane et al., 2001). Therefore, the issue of co-

contamination is regarded as a serious one. Previous research efforts have focused extensively on the 

biodegradation of 1,2-DCA in several contaminated soil and water environments (van den Wijngaard et 

al., 1993), and several microorganisms have been characterized for their ability to metabolize 1,2-DCA 

under various conditions (De Wildeman et al., 2003; He et al., 2003; Janssen et al., 1985; Maymo-Gatell 

et al., 1999; Stucki and Leisinger, 1983). Furthermore, the toxic effects of heavy metals on soil 

microorganisms have also been studied separately (Rajapaksha et al., 2004). Also, most of the knowledge 

about the ecological effects of heavy metals on soil microorganisms is based on data collected for a few 

metals such as Cu and Zn or on data collected from sewage sludge that contains a broad mixture of heavy 

metals at relatively low concentrations for a relatively short period of time. Most studies incorporated 

axenic cultures isolated from environmental samples and determined the effects of heavy metal toxicities 

on these organisms in defined media (Said and Lewis, 1991). Such methods are limited in their 

application to field situations, because very rarely, if ever, are conditions in the environment such that 

only one microbial species is active nor are conditions in nature comparable with the conditions on 

defined laboratory media. Since heavy metals and 1,2-DCA are found together in most co-contaminated 

sites there is a need to evaluate the biodegradation profiles of 1,2-DCA in co-contaminated soil to 

ascertain the effects of heavy metals on 1,2-DCA degradation. The objective of this study, therefore, was 

to evaluate the aerobic biodegradation of 1,2-DCA by autochthonous microorganisms, in soil co-

contaminated with 1,2-DCA and heavy metals, via a direct and quantitative measure of the inhibitory 

effects of the heavy metals in a microcosm setting. Four of the eight heavy metals of concern in the 

USEPA's priority list of pollutants (Sandrin and Maier, 2003); arsenic, cadmium, mercury and lead were 

used in this study. Effects of various metal concentrations and their combinations were evaluated based 

on the following: (i) degradation rate constants; (ii) estimated minimal inhibitory concentrations (MICs); 

(iii) concentrations that caused biodegradation half-life doublings (HLDs); and (iv) heavy metal 

concentrations that caused a significant effect on biodegradation (> 10% increase in t½ of 1,2-DCA). 
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2.2 Materials and methods 

 

2.2.1 Sample collection and handling 

Clay and loam soils were collected from specific sites in the Westville area in Durban, KwaZulu-

Natal, to obtain a representative sample of the autochthonous microbial community living attached to the 

sand grains. The soil samples were collected from the surface to a depth of about 0.4 m in an 

approximately 2 m2 plot. These soils had no known history of chlorinated hydrocarbon contamination. 

Thereafter, the soils were sieved using a 1.7 mm lab test sieve to obtain a homogeneous texture, and 

stored at 4°C prior to use in the microcosm set-up (Olaniran et al., 2006). 

 

2.2.2 Experimental design and microcosms set-up 

Microcosms were set-up by artificially co-contaminating the soil sample with 1,2-DCA and 

heavy metals to study the effects of four heavy metals, individually and in combination, on the 

biodegradation of 1,2-DCA. Sixteen treatments were used in total, comprising positive and negative 

controls, three concentrations of metals and eleven different combinations, with each treatment conducted 

in triplicate. For the experiments, soil microcosms were constructed in a laminar flow cabinet using sterile 

screw-capped 250 ml serum bottles (Wheaton). The synthetic groundwater was prepared as described by 

Klier et al. (1999), and contained 1.5 mM MgCl2, 0.12 mM KCl, 0.03 mM NH4NO3, 1.0 mM CaCl2, 1.5 

mM Ca(OH)2, and 8.5 mM NaHCO3, in de-ionized water at pH 7.8. The reaction mixtures were prepared 

in the sterile bottles by combining 100 g of soil and 75 ml of synthetic groundwater. The heavy metals 

were added as salts, i.e., As2O3 (> 99.0%, Fluka), CdCl2 (98%, Sigma), HgCl2 (99.6%, Sigma) and 

Pb(NO3)2 (98%, Merck). Heavy metal concentrations used were based on the regulatory limit (RM) 

stipulated by the Natural Resources Conservation Services (NRCS), United States Department of 

Agriculture, Soil Quality-Urban Technical Note No. 3 (NRCS, 2000). Three levels of heavy metal 

contamination were incorporated; RM was referred to as low concentration, 1.5 × RM the moderate 

concentration and 2 × RM the high concentration. The eleven combinations were prepared using the 

moderate concentration of heavy metals. The soils were mixed manually using a sterile glass rod to 

distribute the heavy metals as homogeneously as possible. The headspace in each bottle was made up of 

approximately 75 ml of air. An aerobic condition was maintained by purging the reaction mixture with 

pure oxygen gas during the preparation, using a 0.2 µm filter. The microcosms were quickly sealed with 

sterile Teflon-lined butyl-rubber stoppers immediately after spiking with 20 µl of 1,2-DCA [% purity 

(GC) ≥ 99.5%, Merck]. In order to determine the initial concentration of 1,2-DCA, the bottles were 

shaken for 2 h on a rotary shaker at 150 rpm at 25°C to allow for the equilibration of 1,2-DCA between 

the gas and aqueous phases. Thereafter, the bottles were incubated at 25°C with no shaking for the course 

of the experiment. Biological inhibited controls were prepared using soil samples which were autoclaved 
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four times prior to microcosms set-up at 121ºC and 120 kPa for 20 min, to measure abiotic losses of 1,2-

DCA. The microcosms were sampled every 5 days to measure 1,2-DCA degradation, as described below. 

 

2.2.3 Analytical procedures 

1,2-Dichloroethane is a volatile organic compound and equilibrium between its gas and liquid 

concentrations is maintained through rapid mass transfer between the gas and aqueous phases. Changes in 

liquid-phase concentration due to biological reactions are slow when compared to the mass transfer rate 

between the gas and liquid phase (Lin et al., 2007). Therefore, gas-phase measurements closely reflect 

liquid substrate concentrations for biodegradation experiments (Coleman et al., 2002). As such, 500 µl 

headspace samples were periodically collected from each microcosm using a gas tight syringe (Hamilton) 

and injected into a gas chromatograph (GC) (Varian model 3700) equipped with a flame ionization 

detector. The samples were analyzed with the injector and flame ionization detector at 200 C and a 

packed capillary column at 100 C. Ultra high purity nitrogen was used as the carrier gas at a flow rate of 

10 ml/min. The 1,2-DCA concentrations were quantified by comparison with standard curves derived 

from known quantities of the compounds in serum bottles with the same gas and liquid volumes as the 

experimental bottles. The GC peak areas were substituted into the linear regression equation to obtain the 

concentration of 1,2-DCA at the different sampling times.  

 

2.2.4 Quantitative analysis 

Pseudo-first-order transformation rate coefficients, k1, were calculated from plots of the natural 

logarithm of substrate concentration versus time according to the integrated first-order rate equation: 

ln (Ct/C0) = -k1 . t 

where C0 and Ct are the concentrations at time 0 and t, respectively (Said and Lewis, 1991). Percentage 

reductions in microbial degradation rate coefficients were calculated on the basis of comparisons with 

control clay and loam samples (unamended with the metal salts) as follows. 

% Reduction in k1 = [(control k1 - treatment k1)/control kl] × 100 (Said and Lewis, 1991). 

Half-lives were calculated as 0.693/k1. The metal concentrations at which a doubling in 1,2-DCA 

degradation half-lives (t½) occurred were calculated from linear regressions of the percentages of 

reductions in k1 versus logarithms of metal salt concentrations, i.e., a 50% reduction in k1 equaled one 

doubling of t½. These values were referred to as half-life doubling concentrations (HLDs). Minimal 

inhibitory concentrations (MICs) were determined from abscissa intercepts of plots of percent reduction 

in pseudo-first-order rate coefficients versus logarithmic concentrations (mg/kg) of metals (Said and 

Lewis, 1991). 
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2.2.5 Soil analysis 

 

2.2.5.1 Moisture content 

The moisture content was determined by drying a known quantity of the soil samples at 70ºC for 

72 h, until a constant weight was obtained. The difference between the initial and final dry weight of the 

soil gave the moisture content of the soil (Olaniran et al., 2009). 

 

2.2.5.2 pH 

Ten grams of soil sample were added to 25 ml of distilled water in one beaker, while another 10 g 

of soil sample was added to 25 ml of 0.01 M calcium chloride in a separate beaker. Both were stirred for 

one minute and left to stand for one hour (Black et al., 1965). The pH of the soil samples was determined 

using a Beckman 50 pH meter. 

 

2.2.5.3 Nutrients 

Soil samples were analyzed for calcium, magnesium, sodium, potassium, iron, nitrate, sulphate, 

soluble organic carbon, phosphate and total Kjeldhal nitrogen at Umgeni Water Laboratory Services using 

standard methods. 

 

2.3 Results 

 

2.3.1 Soil characterization 

The physico-chemical properties of both clay and loam soil samples used for the microcosm 

experiments are shown in Table 2.1. The pH of the two soil samples was slightly acidic and ranged from 

6.10 to 6.59, while the moisture content of the clay soil was found to be about 20% higher than that of the 

loam soil. Soluble nitrate was estimated to be approximately < 0.5 μg/g in both clay and loam soil 

samples. Calcium concentration was found to be about 22.41%, soluble organic carbon about 34.23%, 

iron about seven-hundred and ninety-eight-fold, phosphate about two-fold and sulphate about fifteen-fold 

higher in loam soil than in clay soil. However, magnesium concentration was found to be about 78.35%, 

sodium about 40%, potassium about two-fold and Total Kjeldahl nitrogen concentration about nineteen-

fold higher in clay soil than in loam soil. 
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Table 2.1: Physico-chemical properties of the soil samples. 
 

Determinant Clay soil Loam soil 

Calcium (μg/g) 

Magnesium (μg/g) 

Sodium (μg/g) 

Potassium (μg/g) 

Iron (μg/g) 

Nitrate (soluble) (μg/g) 

Phosphate (mg/g) 

Sulphate (soluble) (μg/g) 

Soluble organic carbon (μg/g) 

Total Kjeldahl nitrogen (μg/g) 

pH 

Moisture content (%) 

6047 

2035 

273 

1510 

< 3.88 

< 0.5 

647.2 

83.9 

1110 

115 

6.10 

17.05 

7402 

1141 

< 195 

662 

3097 

< 0.5 

1400 

1225 

1490 

2125 

6.59 

14.20 

 

 

2.3.2 Impact of different concentrations of heavy metals on 1,2-DCA biodegradation in 

soil 

The biodegradation profiles of 1,2-DCA in both contaminated soil types, in the presence and 

absence of heavy metals, are illustrated in Figure 2.1. 1,2-Dichloroethane was observed to be readily 

degraded in both contaminated soil samples with up to 66.05% degradation (above that of the autoclaved 

soil) observed in loam soil after 20 days in the absence of heavy metals (Figure 2.1b), which is, about 

17.60% more than the degradation observed in clay soil (Figure 2.1a), at the same period. The 

degradation rate constants of 1,2-DCA, as indicated in Table 2.2, ranged between 0.049 – 0.078 day-1 in 

clay soil and between 0.074 – 0.114 day-1 in loam soil. In all cases, except for soil co-contaminated with 

1,2-DCA and 420 mg/kg Pb2+, higher degradation rate constants were observed in loam soil compared to 

the clay soil. Furthermore, a decline in 1,2-DCA degradation rate constant was observed from the lower 

to the higher concentration of each of the heavy metals in clay soil. However, this trend was observed 

only in the presence Hg2+ in loam soil. The presence of heavy metals was observed to have a negative 

impact on the biodegradation of 1,2-DCA, with the toxic effect being more pronounced in loam soil for 

all heavy metal concentrations except for mercury, after 15 days. An increased reduction in 1,2-DCA 

degradation was observed with increasing concentration of the heavy metals. In clay soil, 11.88%, 5.50%, 

6.62% and 5.46% decrease in 1,2-DCA degradation occurred in the presence of 150 mg/kg As3+, 170 

mg/kg Cd2+, 1680 mg/kg Hg2+ and 840 mg/kg Pb2+, respectively, compared to the lower concentration of 
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75 mg/kg As3+, 85 mg/kg Cd2+, 840 mg/kg Hg2+ and 420 mg/kg Pb2+. Similarly, in loam soil the same 

trend was observed. For example, a 24.38% reduction in 1,2-DCA degradation was observed in the 

presence of 150 mg/kg As3+ after 15 days, while a 23.28% reduction occurred at 75 mg/kg As3+ 

concentration. Thus, inhibitory effects increased with increasingly higher concentrations of the metal 

salts. 
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Figure 2.1: Biodegradation profiles of 1,2-DCA in (a) clay soil and (b) loam soil co-contaminated with 
various concentrations of heavy metals. A = autoclaved soil control + 1,2-DCA; B = unautoclaved 
soil control + 1,2-DCA; C = soil + 1,2-DCA + 75 mg/kg As3+; D = soil + 1,2-DCA + 150 mg/kg 
As3+; E = soil + 1,2-DCA + 85 mg/kg Cd2+; F = soil + 1,2-DCA + 170 mg/kg Cd2+; G = soil + 1,2-
DCA + 840 mg/kg Hg2+; H = soil + 1,2-DCA + 1680 mg/kg Hg2+; I = soil + 1,2-DCA + 420 
mg/kg Pb2+; J = soil + 1,2-DCA + 840 mg/kg Pb2+. Bars indicate the average of triplicate samples 
while the error bars show the standard deviation. 
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Table 2.2: Biodegradation rate constants (day-1) of 1,2-DCA in soil microcosms co-contaminated with 
different concentrations of heavy metals. 

 

Treatment Clay soil Loam soil 

Autoclaved soil control 

Unautoclaved soil control 

As3+ (75 mg/kg) 

As3+ (112.5 mg/kg) 

As3+ (150 mg/kg) 

Cd2+ (85 mg/kg) 

Cd2+ (127.5 mg/kg) 

Cd2+ (170 mg/kg) 

Hg2+ (840 mg/kg) 

Hg2+ (1260 mg/kg) 

Hg2+ (1680 mg/kg) 

Pb2+ (420 mg/kg) 

Pb2+ (630 mg/kg) 

Pb2+ (840 mg/kg) 

0.015 ± 0.004 

0.076 ± 0.000 

0.066 ± 0.009 

0.065 ± 0.018 

0.053 ± 0.015 

0.070 ± 0.011 

0.071 ± 0.013 

0.056 ± 0.009 

0.069 ± 0.006 

0.056 ± 0.007 

0.049 ± 0.011 

0.078 ± 0.010 

0.072 ± 0.020 

0.069 ± 0.006 

0.014 ± 0.003 

0.114 ± 0.013 

0.075 ± 0.003 

0.081 ± 0.009 

0.076 ± 0.002 

0.075 ± 0.005 

0.082 ± 0.007 

0.075 ± 0.001 

0.075 ± 0.007 

0.074 ± 0.007 

0.074 ± 0.005 

0.077 ± 0.006 

0.100 ± 0.027 

0.086 ± 0.005 
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2.3.3 Kinetics of 1,2-DCA degradation in the presence of heavy metals 

The effects of the different concentrations of the heavy metals on the half-lives (t½) of 1,2-DCA 

are represented in Table 2.3. The relative t½ in clay soil ranged from 0.99 – 1.63 days, whereas in loam 

soil it ranged from 1.17 – 1.53 days in the presence of the different concentrations of the heavy metals. 

Generally, more than 127.5 mg/kg Cd2+, 840 mg/kg Hg2+ and 420 mg/kg of Pb2+ was able to cause > 10% 

increase in the t½ of 1,2-DCA in clay soil, while less than 75 mg/kg was required for As3+. In clay soil, 

Cd2+ at 127.5 mg/kg resulted in an 8.66% increase in the t½ of 1,2-DCA, whereas the t½ was increased by 

38.50% in loam soil, at the same concentration, indicating a much more pronounced effect of Cd2+ in 

loam soil compared to clay soil. Similarly, the presence of 75 mg/kg As3+, 840 mg/kg Hg2+ and 420 

mg/kg Pb2+ resulted in 34.24%, 40.64% and 45.94% increase in the t½ of 1,2-DCA, respectively, in loam 

soil compared to clay soil. Therefore, t½ determinations indicated that various metals caused different 

levels of inhibitory effects on biodegradation rates depending on the metal and soil type. By using these 

criteria as a measure of significant effects, indigenous microorganisms in loam soil were more sensitive to 

heavy metals than in clay soil samples. Since a non-linear response for higher metal concentrations was 

observed in loam soil, percentage decreases in k1 values plotted as a function of the logarithms of metal 

concentrations could not be subjected to linear regression analysis to estimate the MICs and HLDs. 

However, in clay soil, a dose-dependant relationship between k1 and metal ion concentrations in which k1 

decreased with higher initial metal concentrations was observed for all the heavy metals tested except 

Hg2+ (Figure 2.2). When percentage decreases in k1 were plotted as a function of the logarithms of metal 

concentrations, a linear relationship was obtained for a range of the metal concentrations tested in clay 

soil. Because HLDs were not within the linear range of observed inhibition levels, non-linear regression 

analysis of the data was carried out in this study. Percentage decreases in k1 values plotted as a function of 

the logarithms of metal concentrations were subjected to linear regression analysis to estimate HLDs and 

MICs and to compare correlation (r) and regression coefficients (slopes) and the data summarized in 

Table 2.4. The MIC was lowest for As3+ (62.78 mg/kg) and highest for Hg2+ (665.73 mg/kg). In clay soil, 

MICs were below the stipulated regulatory limit for all of the heavy metals except for Pb2+. The MICs 

varied according to the metals tested, and did not necessarily follow the toxicity patterns observed for the 

metal concentrations required for significant effects on t½. Moreover, biodegradation rates were very 

sensitive to increases in the concentration of some heavy metals. 
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Table 2.3: Effects of heavy metals on the half-lives of 1,2-DCA in the soil samples. 
 

Metal iona, soil type, 
and metal concn. 

(mg/kg) 

t½ (days) (Average ± SD) 
Relative t½

b 
Untreated soil Treated soil 

Clay 9.12   
    As3+      
      75  10.58 ± 1.42 1.16 
      112.5  11.18 ± 2.77 1.23 
      150  13.61 ± 3.38 1.49 
    Cd2+      
      85c  10.01 ± 1.58 1.10 
      127.5c  9.91 ± 1.61 1.09 
      170  12.52 ± 2.07 1.37 
    Hg2+     
      840  10.04 ± 0.83 1.10 
      1260  12.45 ± 1.74 1.37 
      1680  14.84 ± 3.88 1.63 
    Pb2+      
      420c  9.04 ± 1.29 0.99 
      630  10.21 ± 2.92 1.12 
      840  10.04 ± 0.83 1.10 
Loam 6.13 ± 0.67   
    As3+    
      75  9.21 ± 0.38 1.50 
      112.5  8.62 ± 0.88 1.41 
      150  9.16 ± 0.19 1.49 
    Cd2+    
      85  9.27 ± 0.63 1.51 
      127.5  8.49 ± 0.76 1.38 
      170  9.24 ± 0.12 1.51 
    Hg2+    
      840  9.24 ± 0.80 1.51 
      1260  9.39 ± 0.98 1.53 
      1680  9.35 ± 0.56 1.53 
    Pb2+    
      420  9.00 ± 0.78 1.47 
      630  7.20 ± 1.66 1.17 
      840  8.11 ± 0.47 1.32 

a As3+ added as an oxide salt; Pb2+ added as nitrate salt; Cd2+ and Hg2+ added as the chloride salts. 
b Value for metal-treated soil divided by value for untreated soil. c Did not cause >10% increase in t½. 
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Figure 2.2: Inhibitory effects of (a) As3+, (b) Cd2+, (c) Hg2+ and (d) Pb2+ on pseudo-first-order 1,2-DCA 

biodegradation rates in clay soil. The slopes of regression lines of the natural logarithms of 1,2-
DCA concentration versus time equal the rate coefficients, k1. Treatments shown are: (  ) 
Unautoclaved soil control, (    ) Low concentration of HM, (   ) Moderate concentration of HM and 
( X ) High concentration of HM. 
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Table 2.4: Concentrations of heavy metals inhibiting 1,2-DCA biodegradation in clay soil.  
 

Metal iona 
Correlation 
coefficient 

(r) 
Slope MICb (mg/kg) 

Average ± SD 
HLDc (mg/kg) 
Average ± SD 

 
As3+ 

 
0.91 

 
72.81 

 
62.78 ± 10.91 

 
305.14 ± 2.48 

     
Cd2+ 0.98 60.28 65.54 ± 39.86 442.59 ± 35.83 
     
Hg2+ 0.10 90.78 665.73 ± 132.39 2,366.46 ± 618.19 
     
Pb2+ 0.98 36.97 469.79 ± 167.33 10,575.48 ± 521.81 

     
a As3+ added as an oxide salt; Pb2+ added as nitrate salt; Cd2+ and Hg2+ added as the chloride salts. 
b MICs caused no reduction in k1 values. Numerically, these are abscissa intercepts. 
c HLD, concentration that caused half-life doubling. 
 

2.3.4 Impact of different combinations of heavy metals on 1,2-DCA biodegradation in soil 

The patterns of biodegradation of 1,2-DCA in both soil types, co-contaminated with different 

combinations of heavy metals, are illustrated in Figures 2.3 and 2.4. The degradation rate constants of     

1,2-DCA, as indicated in Table 2.5, ranged between 0.045 – 0.115 day-1 in clay soil and between 0.050 – 

0.078 day-1 in loam soil, in the presence of the different combinations of heavy metals. In clay soil, 

combinations of As3+ + Hg2+ and As3+ + Cd2+ were observed to be the most toxic, resulting in 32.46% and 

21.14% decrease in 1,2-DCA degradation after 15 days, respectively (Figure 2.3a). However, in loam soil 

the combinations of As3+ + Pb2+  and As3+ + Hg2+ resulted in the greatest reduction in 1,2-DCA 

degradation with 21.90% and 15.50% decrease, respectively, observed over the same time period (Figure 

2.3b). Furthermore, an increase of 21.08% and 14.50% in 1,2-DCA degradation was observed for As3+ + 

Cd2+ + Hg2+ and As3+ + Hg2++Pb2+, respectively, compared to As3+ + Hg2+, in clay soil. A similar trend 

occurred in loam soil with the combination of As3+ + Pb2+, where a corresponding increase of 11.45% and 

13.74% was observed for As3+ + Cd2+ + Pb2+ and As3+ + Hg2+ + Pb2+. In addition, the effect of the 

combination of four heavy metals in both clay and loam soils were less pronounced than the combinations 

of two heavy metals which resulted in the most significant decreases in 1,2-DCA degradation. In clay 

soil, the combination of four heavy metals resulted in a 28.66% increase in 1,2-DCA degradation 

compared to the combination of  As3+ + Hg2+. The same trend was observed in loam soil whereby an 

11.84% increase in 1,2-DCA degradation was observed in the presence of four heavy metals compared to 

the combination of As3+ + Pb2+. Moreover, the combination of four heavy metals in loam soil resulted in 

6.26% less degradation of 1,2-DCA compared to clay soil, after 15 days. 
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Figure 2.3: Biodegradation profiles of 1,2-DCA in (a) clay and (b) loam soil co-contaminated with binary 

combinations of heavy metals (As3+ = 112.5 mg/kg, Cd2+ = 127.5 mg/kg, Hg2+ = 1260 mg/kg, and 
Pb2+ = 630 mg/kg). A = autoclaved soil control + 1,2-DCA; B = unautoclaved soil control + 1,2-
DCA; C = soil + 1,2-DCA + As3+ + Cd2+; D = soil + 1,2-DCA + As3+ + Hg2+; E = soil + 1,2-DCA 
+ As3+ + Pb2+; F = soil + 1,2-DCA + Cd2+ + Hg2+; G = soil + 1,2-DCA + Cd2+ + Pb2+; H = soil + 
1,2-DCA + Hg2+ + Pb2+. Bars indicate the average of triplicate samples while the error bars show 
the standard deviation. 
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Figure 2.4: Biodegradation profiles of 1,2-DCA in (a) clay and (b) loam soil co-contaminated with 

combinations of three and four heavy metals (As3+ = 112.5 mg/kg, Cd2+ = 127.5 mg/kg, Hg2+ = 
1260 mg/kg, and Pb2+ = 630 mg/kg). A = autoclaved soil control + 1,2-DCA; B = unautoclaved 
soil control +1,2-DCA; C = soil + 1,2-DCA + As3+ + Cd2+ + Hg2+; D = soil + 1,2-DCA + As3+ + 
Cd2+ + Pb2+; E = soil + 1,2-DCA + As3+ + Hg2+ + Pb2+; F = soil + 1,2-DCA + Cd2+ + Hg2+ + Pb2+; 
G = soil + 1,2-DCA + As3+ + Cd2+ + Hg2+ + Pb2+. Bars indicate the average of triplicate samples 
while the error bars show the standard deviation. 
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Table 2.5: Biodegradation rate constants (day-1) of 1,2-DCA in soil microcosms co-contaminated with 
different combinations of heavy metals. 

 

Treatment Clay soil Loam soil 
Autoclaved soil 

Unautoclaved soil 

As3+ + Cd2+ 

As3+ + Hg2+ 

As3+ + Pb2+ 

Cd2+ + Hg2+ 

Cd2+ + Pb2+ 

Hg2+ + Pb2+ 

As3+ + Cd2+ + Hg2+ 

As3+ + Cd2+ + Pb2+ 

As3+ + Hg2+ + Pb2+ 

Cd2+ + Hg2+ + Pb2+ 

As3+ + Cd2+ + Hg2+ + Pb2+ 

0.015 ± 0.004 

0.076 ± 0.000 

0.057 ± 0.010 

0.045 ± 0.005 

0.059 ± 0.018 

0.070 ± 0.013 

0.080 ± 0.012 

0.072 ± 0.006 

0.069 ± 0.013 

0.069 ± 0.006 

0.062 ± 0.005 

0.088 ± 0.036 

0.115 ± 0.046 

0.014 ± 0.003 

0.114 ± 0.013 

0.073 ± 0.005 

0.059 ± 0.016 

0.050 ± 0.002 

0.071 ± 0.003 

0.077 ± 0.002 

0.075 ± 0.005 

0.066 ± 0.025 

0.057 ± 0.006 

0.074 ± 0.005 

0.078 ± 0.012 

0.069 ± 0.003 

As3+ = 112.5 mg/kg; Cd2+ = 127.5 mg/kg, Hg2+ = 1260 mg/kg, and Pb2+ = 630 mg/kg. 
 

2.4 Discussion 

Microcosms were constructed to gain a better understanding of the effects of heavy metals on the 

aerobic biodegradation of 1,2-DCA by indigenous microorganisms in clay and loam soil samples. The 

results obtained indicate that 1,2-DCA was readily degraded by indigenous microbial populations in both 

soil types without heavy metal contamination, with loam soil exhibiting greater degradation than clay 

soil. The presence of As3+, Cd2+, Hg2+ and Pb2+ was observed to have adverse effects on the 

biodegradation of 1,2-DCA in both soil samples. Metals exert their toxic effects on microorganisms via 

different mechanisms, including substitution of toxic metal ions for physiologically essential ions within 

an enzyme, thus rendering the enzyme non-functional (Nies, 1999); and imposition of oxidative stress on 

microorganisms (Kachur et al., 1998). Furthermore, heavy metal ions are able to form unspecific complex 

compounds in microbial cells, resulting in inhibitory toxic effects on microbial activities (Roane et al., 

2001). Thus, co-contamination with metal ions may inhibit microorganisms involved in the degradation 

of organic compounds and consequently affect biodegradation rates (Amor et al., 2001; Hattori, 1992). 

The level of inhibition, by heavy metals, depends on the concentration and availability of the heavy metal 

and the action of complex processes controlled by several factors, including the nature of metals, and 

indigenous microbial species (Chen and Lin, 2001). When considering inhibition data, it is also important 

to take into account the possible effects of various environmental factors such as nutrient availability, 
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oxygen, pH, temperature, water retention, quantity and bioavailability of contaminants, salinity, and soil 

properties (Margesin et al., 2000; Olaniran et al., 2006; Said and Lewis, 1991). Since such confounding 

factors often manifested in contaminated sites, it is essential to understand the influence they have on 

contaminant removal and partitioning with respect to assessing bioremediation potential (Hickman et al., 

2008). Interestingly, it was observed that the degradation rates were higher in loam soil, compared to clay 

soil, in the absence of heavy metals. This could be attributed to the higher concentrations of inorganic 

trace elements (e.g., nitrogen, iron and calcium) in loam soil, as increased levels of trace elements have 

been demonstrated to enhance biodegradation rates in both marine and terrestrial ecosystems considerably 

(Atlas and Bartha, 1992). Clay has been shown to decrease metal bioavailability and toxicity to bacteria 

(Boenigk et al., 2005), due to the high cation exchange capacity and adsorption of the metals to the clay 

particles causing uneven distribution of the heavy metals within the soil matrix. It is therefore not 

surprising that the presence of the heavy metals in clay soil has a lesser impact on the biodegradation of 

1,2-DCA. 

In this study, all the heavy metals tested had an inhibitory effect on 1,2-DCA degradation in both 

soil types, with mercury found to have the highest inhibitory effect in clay soil, and arsenic in loam soil. 

Mercury is well known to have no beneficial function in biological processes and it is the heavy metal 

with the strongest toxicity due to the strong affinity of Hg2+ to thiol groups (Nies, 1999). Hong et al. 

(2007) reported that the growth of Sphingomonas wittichi RW1 and the degradation of dibenzofuran were 

strongly inhibited by 1 mg/L of mercury. The biodegradation of 2,4-dichloro-phenoxyacetic acid methyl 

ester in two microbial samples, namely, sediment and aufwuchs, from lakewater was inhibited in the 

presence of Hg and Cd (Said and Lewis, 1991). Mercury in the ionic form (Hg2+) was most toxic in 

aufwuch samples, with a MIC of 0.002 mg total mercury/L. Van Zwieten et al. (2003) reported that the 

natural breakdown of 1,1,1-trichloro-2,2-bis (4-chlorophenyl) ethane (DDT) was inhibited in arsenic co-

contaminated soil resulting in an increased persistence of DDT in the soil environment studied. The 

intrinsic breakdown of DDT to 1,1-dichloro-2,2-bis (4-chlorophenyl) ethane (DDD) in the presence of 

2000 mg/kg arsenic resulted in a 50% reduction in the concentration of DDD compared to background 

arsenic of 5 mg/kg. Thus, it was demonstrated that arsenic co-contamination has an inhibitory effect on 

the breakdown of DDT via DDD, and that, as arsenic concentrations increases, the DDT:DDD and 

DDT:1,1-dichloro-2,2-bis (4-chlorophenyl) ethylene (DDE) ratios also increased. Furthermore, Roane et 

al. (2001), reported that degradation by Ralstonia eutropha JMP134, a cadmium-sensitive 2,4-

dichlorophenoxyacetic acid (2,4-D)-degrader, occurred in the presence of up to 24 mg/L cadmium in 

mineral salts medium containing cadmium-resistant isolate and 60 mg/kg cadmium in amended soil 

microcosms. Experiments also indicated that 104 colony forming units of Ralstonia eutropha JMP134/ml 

alone in the presence of > 3 mg/L cadmium in mineral salts medium did not degrade 2,4-D due to 

cadmium toxicity. 
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A non-linear response for higher metal concentrations was observed for mercury and lead in clay 

and loam soil, respectively, after 20 days. This could be due to the non-availability of these metals in the 

soil matrix at high concentrations as they can either exist in precipitates, bound to the soil matrix (by 

adsorption or cation exchange) (Riis et al., 2002), or are masked by organic or inorganic materials in the 

soil sample (Konopka et al., 1999). This corroborates the findings of Baldrian et al. (2000), who found no 

inhibitory effect on polycyclic aromatic hydrocarbon degradation in soil containing 10-100 mg/kg Cd or 

Hg. Furthermore, some studies have shown that low concentrations of metals increasingly inhibit activity 

until a maximum level of inhibition is reached, and thereafter, metal toxicity decreases with increasing 

metal concentration (Said and Lewis, 1991). Roane and Pepper (1997) reported that populations of 2,4-D 

degraders in cadmium-contaminated soil were more resistant to cadmium toxicity at a higher 

concentration (40 mg total cadmium/L) than at a lower concentration (20 mg total cadmium/L). These 

responses to heavy metals may be explained by microbial community dynamics wherein high metal 

concentrations create selective pressure for metal-resistant, organic-degrading microorganisms. This 

selective pressure might have reduced competition from metal-sensitive, non-degrading microorganisms, 

thus increasing biodegradation at higher metal concentrations (Sandrin and Maier, 2003). The 

combinations of metals also resulted in non-linear responses, whereby combinations of two heavy metals 

resulted in a greater negative impact on 1,2-DCA degradation compared to the combinations of three or 

four heavy metals. A similar trend was observed by Benka-Coker and Ekundayo (1998) who reported that 

the toxicity of 0.5 mg total zinc/L on crude oil biodegradation was reduced by addition of 0.5 mg total 

copper, lead, and manganese/L. 

In both clay and loam soil, lead (840 mg/kg) had the least inhibitory effect on 1,2-DCA 

degradation, thus confirming that Pb2+ has a less adverse effect on biodegradation processes. Lead is also 

a heavy metal toxic to a range of microorganisms, and is one of the most ubiquitous pollutants; released 

from chemical industry and various other inventories (Nies, 1999). However, owing to its low solubility, 

(especially as lead phosphate) its biologically available concentration is low (Hughes and Poole, 1991). 

This could be a possible reason for lower toxicity of Pb2+ to indigenous bacteria, since both soils 

contained high concentrations of phosphate. This is in agreement with other recent studies which showed 

that dibenzofuran degradation by S. wittichii RW1 remained unaffected even at a relatively high 

concentration of lead in the phosphate buffered condition (Hong et al., 2007). Moreover, Shi et al. (2002) 

reported that much larger inputs of Pb were required to inhibit microbial activity in soil than that found 

when microbes were removed from soil particles. Approximately 10,000 mg of Pb per kg of soil was 

required to reduce 14CO2 production by a factor of 2 in soil, whereas only about 400 mg of Pb per kg of 

soil could reduce microbial activity by 50% in a suspension of bacteria. This tallies with the results 

obtained in this study as the concentration of Pb2+, approximately 10,575.48 mg/kg, caused a HLD of 1,2-

DCA degradation in clay soil. 
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In summary, it can be inferred that the rate of 1,2-DCA biodegradation in co-contaminated soils was 

retarded by the presence of As3+, Cd2+, Hg2+, and Pb2+, and that the level of inhibition is dependent on soil 

types and their nutritional composition. Based on the MICs, As3+ and Cd2+ were the most toxic to 

indigenous soil microorganisms. Therefore, these two heavy metals were used to establish effective 

strategies in abating the toxic effects of heavy metals on 1,2-DCA degradation in such co-contaminated 

soils and results are presented in Chapter Three. However, reporting bioavailable metal concentrations to 

characterize metal inhibition represents a key step in standardizing methods to quantify metal impacts on 

biodegradation. Thus, relating inhibition results to dissociated metal concentrations may be needed for 

enhanced correlations of metal concentrations with toxicity effects. 
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3.1 Introduction 

Advances in science and technology have resulted in the exploitation of natural resources by 

humans to a great extent, generating unprecedented disturbances in the natural global environment (Lin et 

al., 2006). In many countries, attempts are underway to control the release of contaminants (Schnoor et 

al., 1995) and to accelerate the removal or breakdown of existing contaminants by appropriate 

remediation techniques, since accumulation of pollutants is of concern for both human and ecosystem 

exposures. In particular, the clean-up of soil co-contaminated with both chlorinated aliphatic 

hydrocarbons and heavy metals (HMs) is a contemporary subject of remediation efforts considering the 

fact that most of the current techniques are directed towards the removal of a specific group of 

contaminants (Ehsan et al., 2007). Bioremediation, the use of biological activity for remediation, is one 

such highly appealing technology (Farhadian et al., 2008; Volpe et al., 2009; Widada et al., 2002), and 

some promising results suggest that these techniques might become feasible alternatives to mechanical 

and chemical approaches in remediating soils co-contaminated with chlorinated organics and heavy 

metals (Mulligan et al., 2001b; Romantschuk et al., 2000; Singh et al., 2008; Watanabe, 2001). 

 Indigenous microorganisms with natural degradation potentials are widely distributed in soil 

media; therefore the activation of the degradation potentials of these organisms is currently the challenge 

facing the implementation of bioremediation strategies, in addition to the fact that these microbes are 

usually present in very small numbers (Alexander, 1999). Moreover, autochthonous microorganisms 

capable of degrading specific organic contaminants often needs to be induced and the presence of heavy 

metals often inhibits the biodegradation processes in co-contaminated matrices (Alisi et al., 2009). 

Biostimulation and/or bioaugmentation are such technologies which offer possible ways to overcome 

these limitations. Biostimulation involves the alteration of physico-chemical parameters to stimulate the 

growth of indigenous degraders by the addition of nutrients or other growth-limiting co-substrates. In 

particular, the presence of dissolved oxygen and nutrients, such as nitrate and phosphate, is essential (Li 

et al., 2007). Previous studies have demonstrated that nitrogen concentrations ranging from 2.0 to 10.0 

mg/L are sufficient for near-maximum growth of hydrocarbon-degrading microorganisms (Boufadel et 

al., 1999; Wrenn et al., 2006). On the other hand, bioaugmentation offers to provide specific microbes, a 

known degrader and/or heavy metal-resistant bacteria, in sufficient numbers to supplement the existing 

indigenous microbial population. A review by Gentry et al. (2004) provides an extensive survey of new 

bioaugmentation strategies. However, due to the site-specific characteristics of remediation technologies, 

numerous research efforts have come to heterogeneous results regarding the most feasible approach in 

enhancing the degradation of chlorinated organic pollutants in co-contaminated environments. More 

recently, bioaugmentation of contaminated sites using microorganisms pre-selected from their own 

environment showed great promise, as these microbes are more likely to survive and propagate when re-

introduced into the site (Alisi et al., 2009; Bento et al., 2003).  
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Soil enzymatic activities have been recognized as sensitive indicators of any natural and 

anthropogenic disturbance (Hinojosa et al., 2004). Moreover, soil enzyme assays have been considered as 

one of the easiest and cheapest techniques used to integrate information concerning microbiological 

community status in contaminated environments (Baum et al., 2003; Shen et al., 2005). In particular, the 

dehydrogenase and urease enzyme assays have been established and recognized as a reliable indicator of 

the overall measure of the intensity of microbial metabolism, in soils contaminated with both organic and 

inorganic contaminants (Mathew and Obbard 2001; Rossel et al., 1997; Shen et al., 2005; von Mersi and 

Schinner 1991). Dehydrogenases are intracellular enzymes of the parent microbial cell, and could provide 

an indication of the oxidative potential of a soil which in turn provides a good overall indication of 

microbial activity (Gianfreda et al., 2005; Obbard, 2001; Trasar-Cepeda et al., 2000). Although the origin 

of ureases is also microbial, its activity is extracellular (Bremner and Mulvaney, 1978). Soil microbial 

activity and its products, such as intra and/or extracellular enzymes, have shown considerable differences 

associated with their sensitivity to heavy metal toxicity (Giller et al., 1998). Nannipieri et al. (1990) 

suggested that the simultaneous assessment of various enzymes in soil may be more valid than that of a 

single enzyme to evaluate overall microbial activity and its response to environmental stress. However, a 

few studies have focused on the combined effects of organic and inorganic pollutants on soil enzymes 

(Irha et al., 2003; Maliszewska-Kordybach and Smreczak, 2003). In addition, investigating the link 

between soil enzymatic activities and microbial community structure changes using advanced molecular 

biological techniques is necessary in order to provide a proper understanding of microbial dynamics in the 

co-contaminated soil environment (Trasar-Cepeda et al., 2000). Polymerase chain reaction-denaturing 

gradient gel electrophoresis (PCR-DGGE) has recently received much attention in assessing changes in 

soil microbial community structure (Demanou et al., 2006; He et al., 2005; Li et al., 2006; Ros et al., 

2008; Shi et al., 2005). This technique is based on the decreased electrophoretic mobility of a partially 

melted double stranded DNA molecule in polyacrylamide gels containing a linear gradient of DNA 

denaturants (a mixture of urea and formamide) (Muyzer and Smalla, 1998). DGGE of PCR amplified 16S 

rDNA fragments are used to profile microbial community complexity and changes in response to 

environmental stresses (Li et al., 2006; Mette and Neils, 2002).  

Accordingly, the present study investigated the effects of biostimulation and bioaugmentation on 

the aerobic biodegradation of 1,2-DCA in soil co-contaminated with As3+ and Cd2+ in a soil microcosm 

setting. Furthermore, the structural diversity of bacterial communities in such treated soils was assessed 

by analyzing the 16S rDNA fingerprints, resolved by DGGE. In addition, the functional status of the 

microbial community was investigated by measuring the soil microbial urease and dehydrogenase 

activities. 
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3.2 Materials and methods 

 

3.2.1 Enrichment cultures and isolation of heavy metal-resistant bacteria 

One gram of co-contaminated loam soil sample was added to a 1000 ml flask containing 200 ml 

of a culture medium, comprising; 2.5 g of D-glucose (Merck, Saarchem), 2.5 g of yeast extract (Merck, 

Biolab) and 5 g tryptone (Difco), per litre of double-distilled water (Pepi et al., 2007). Stock solutions of 

arsenic oxide (As3+) (> 99.0%, Fluka) and cadmium chloride (Cd2+) (98%, Sigma) were added separately 

to each flask to obtain a final concentration of 300 mg/kg and 340 mg/kg, respectively. Control flasks 

containing the heavy metals with no inoculum were also included. Flasks were mixed and incubated at 

30°C, without shaking, in the dark. After two weeks of incubation, cultures showing turbidity were 

subcultured by streaking onto agar plates containing the same enrichment culture medium but solidified 

with 1.6% of agar (Bacto-Agar, Difco), and amended with increasing concentrations of As3+ and Cd2+ 

(ranging from 75 mg/kg up to 340 mg/kg) to determine the minimal inhibitory concentration (MIC) of the 

heavy metal-resistant microorganisms. The inoculated culture media plates were incubated at 30°C for   

72 h. MIC was defined as the lowest concentration of the heavy metals that causes the total growth 

inhibition of the organisms. In order to discriminate among resistant and sensitive strains, a reference 

heavy metal sensitive Escherichia coli strain was used. Colonies different in colour, shape, and margins 

appearing on inoculated plates were 4-way streak purified on the same culture medium, in the presence of 

the same concentrations of heavy metals, and used for dual-bioaugmentation studies. 

 

3.2.2 Bacterial cultures  

Bioaugmentation was performed using Xanthobacter autotrophicus GJ10, a well-known           

1,2-DCA degrader, and a native heavy metal-resistant strain (selected as described above). The bacterial 

strain, Xanthobacter autotrophicus GJ10, was obtained from the culture collection of the Department of 

Microbiology, University of KwaZulu-Natal (Westville), and thereafter preserved on nutrient agar 

(Merck, Biolab) plates at 4 C as a working stock culture.  

 

3.2.3 Standardization of the bacterial cultures 

Pure cultures of the above-mentioned microorganisms were inoculated into 40 ml sterile nutrient 

broth and incubated for 72 h at 30 C on a rotary shaker at 150 rpm. Thereafter, the cultures were 

centrifuged (Beckman, USA, Model J2-21) at 4000 rpm for 15 min, followed by washing twice in 20 ml 

phosphate buffered saline (pH 7.4) containing 8 g NaCl, 0.2 g KCl, 3.58 g Na2HPO4.12H20 and 0.24 g 

KH2PO4 per litre of double-distilled water and re-suspended in the same solution. The cultures were then 

standardized to an optical density value of 1.0 at an absorbance of 600 nm (Sarret et al., 2005), using the 

biochrom, Libra S12 UV-Visible Spectrophotometer. 
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3.2.4 Experimental design and microcosm set-up 

Soil samples were collected and used in setting up the microcosms as described in Chapter Two 

with the following amendments. Microcosm experiments were designed using artificially co-

contaminated loam soil to study the effects of arsenic and cadmium on the biodegradation of 1,2-DCA 

over a 20 day period. Arsenic and cadmium stock solutions were incorporated into the groundwater, prior 

to the microcosm set-up, to obtain final concentrations of 150 mg/kg and 170 mg/kg, respectively. For the 

biostimulation experiments one and a half grams of D-glucose (Merck, Saarchem), fructose (Merck, 

Saarchem) and KOMPEL fertilizer (Chemicult products, Pty Ltd.), an agricultural fertilizer with N:P:K 

ratio of 3:1:6 were added separately to the microcosms. Bioaugmentation was carried out by inoculating 1 

ml of standardized X. autotrophicus GJ10, and dual-bioaugmentation by adding 1 ml of a mixed culture 

inoculum prepared from the standardized pure cultures of both X. autotrophicus GJ10 and the isolated 

native heavy metal-resistant strain to the respective bottles. In addition to autoclaving, the biological 

inhibited controls prepared for each series of reaction mixtures were amended with HgCl2 to achieve a 

final concentration of 500 mg/kg. The degradation profile of 1,2-DCA under the different conditions was 

determined using gas chromatographic analysis of the headspace as described in Chapter Two. 

 

3.2.5 Enumeration of total 1,2-DCA degrading populations 

Total 1,2-DCA degrading bacterial populations was determined at different sampling times using 

a standard spread plate technique (Gerhardt et al., 1991). The co-contaminated soil was homogenized 

manually using a sterile glass rod prior to pipetting 1 ml of the slurry for the initial 10-fold dilution. 

Appropriate culture dilutions were carried out using normal physiological saline solution (0.85% NaCl), 

thereafter 100 μl of the culture dilutions were plated on a minimal salts medium containing 1.36 g 

KH2PO4, 5.37 g Na2HPO4.12H2O, 0.5 g (NH4)2SO4, 0.2 g MgSO4.7H20 and 12 g Bacteriological agar 

(Bacto-Agar, Difco) per litre of double-distilled water (Janssen et al., 1984) spiked with 5 μl 1,2-DCA as 

the carbon source. The plates were incubated at 30°C for 48 h prior to estimating the bacterial population.  

 

3.2.6 Soil analysis 

The physico-chemical properties of the loam soil sample were determined as described in   

Chapter Two. 
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3.2.7 Soil enzyme assays 

 

3.2.7.1 Dehydrogenase activity 

Soil dehydrogenase activity was determined using 1 g of homogenized co-contaminated soil 

slurry and 5 ml of sterile distilled water. The samples for metabolic measurements were vortexed and 

incubated at room temperature for 30 min (Mosher et al., 2003). Thereafter, 5 ml of 1.08 mM 2-(p-

iodophenyl)-3(p-nitrophenyl)-5-phenyl tetrazolium chloride (INT) solution was added and vortexed; these 

were incubated at room temperature for 60 min. All activity measurements were performed under dark 

room conditions, as the INT is light sensitive. Metabolic activity was stopped by adding 30 ml of 

acetonitrile (Merck, Germany) and INT formazan (INTF) was extracted at room temperature for 10 min. 

The samples were filtered through a 0.45 μm filter and the sediment washed with 10 ml of acetonitrile. 

The absorbance of the combined filtrate was determined with a biochrom, Libra S12 UV-Visible 

Spectrophotometer at 490 nm. Control samples were killed with 30 ml acetonitrile before the addition of 

INT to prevent reduction. Then, 5 ml of 1.08 mM INT was added and allowed to extract for 10 min prior 

to filtering. INTF (red-colored formazan) concentrations were determined from the linear least squares 

best-fit line from a standard curve of INTF solutions in acetonitrile. Dehydrogenase activity was 

expressed as μg INTF/g dwt soil/h (von Mersi and Schinner, 1991). 

 

3.2.7.2 Urease activity 

Soil urease activity was determined by the buffered method of Kandeler and Gerber (1988). In 

this procedure, 2.5 ml of 0.48% urea solution and 20 ml of borate buffer (pH 10) were added to 5 g of soil 

in 100 ml hermetically sealed Erhlenmeyer flasks in triplicate, and incubated for 2 h at 37°C. This was 

followed by a shaking incubation at 150 rpm for 30 min subsequent to the addition of 30 ml 1 M KCl 

solution. The ammonium content of the filtered (0.45 μm) extracts was determined using a colorimetric 

method. Briefly, 5 ml freshly prepared Na-salicylate/NaOH, 2 ml of 0.1% Na-dichloroisocyanide and 9 

ml of sterile distilled water was added to 1 ml of clear filtrate and allowed to stand at room temperature 

for 30 min prior to measuring the optical density at 690 nm. The Na-salicylate solution was prepared by 

dissolving 17 g Na-salicylate and 0.12 g sodium nitroprusside in distilled water and brought up to 100 ml 

with distilled water. Na-salicylate/NaOH solution was prepared by mixing equal volumes of NaOH, Na-

salicylate solutions, and distilled water. Blank controls were prepared with 2.5 ml sterile distilled water to 

determine the ammonium produced in the absence of added urea. The calibration curve was constructed 

using appropriate dilutions of a stock solution of ammonium chloride (100 μg NH4-N/ml) using 1 M KCl 

and sterile distilled water to obtain final concentrations between 0.1-5 μg NH4-N/ml. Urease activity was 

expressed as μg NH4-N/g dwt soil/2h (Kandeler and Gerber, 1988). 
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3.2.8 DNA extraction and PCR 

 

3.2.8.1 DNA extraction and PCR amplification of 16S rDNA region 

Total DNA from the co-contaminated loam soil was isolated at different sampling times using an 

UltraCleanTM Soil DNA Isolation Kit (MOBIO, USA), following the manufacturer’s protocol for 

maximum yields, but slightly modified, due to high humic acid content in the soil samples. The DNA was 

washed times with an ethanol based solution to remove residues of salts and humic acids, prior to eluting 

the DNA. DNA concentration was quantified using the NanoDrop 1000 Spectrophotometer (Thermo 

Scientific) and appropriate dilutions thereafter were carried out to standardize the DNA prior to PCR. 

This was subsequently used as template for the amplification of the 16S rDNA region using the 63F (5’-

CAGGCCTAACACATGCAAGTC-3’) and 1387R (5’- GGCGGWGTGTACAAGGC-3’) universal 

bacterial primer sets (Marchesi et al., 1998). Each amplification reaction mixture (25 µl) contained 2.5 µl 

of 10 × PCR buffer, 1 µl of 25 mM MgCl2, 1 µl each of the forward and reverse primers (10 µM), 1 µl of 

1 mM deoxynucleoside triphosphate (dNTPs), 0.5 U of SuperTherm Taq DNA polymerase (Southern 

Cross Biotech), 1 µl of template DNA (0.2-3.8 ng/μl) and 17 µl of sterile double-distilled water. PCR was 

performed using the PE Applied Biosystems GeneAmp PCR System 9700 (Perkin-Elmer) and was 

programmed to implement an initial denaturation at 95°C for 5 min followed by 30 cycles of annealing 

and extension at 95°C for 1 min, 55°C for 1 min, 72°C for 1.5 min and a final extension at 72°C for 5 

min. The amplicons were analyzed by electrophoresis on 1% (w/v) agarose (SeaKem) gels in 1 × TAE 

running buffer with an applied voltage of 90 V for 90 min. After electrophoresis, the gel was stained in 

0.5 μg/ml ethidium bromide (Sigma) for 20 min and visualized by UV transillumination (Chemi-Genius2 

BioImaging System, Syngene). 

 

3.2.8.2 PCR amplification of V3 to V5 region 

PCR for bacterial 16S rDNA region was performed using the universal DGGE primer set F341-

357-GC (CCTACGGGAGGCAGCAG) with a 5′ GC-clamp: CGCCCGCCGCGCCCCGCGCCC 

GTCCCGCCGCCCCCGCCCG and R907-926 (CCGTCAATTCMTTTGAGTTT) (Casamayor et al., 

2000). A GC-clamp was attached to the forward primer to prevent complete separation of the strands 

during DGGE (Muyzer et al., 1993). For PCR, 2 μl DNA extract (between 0.2-3.8 ng/μl) was added to the 

PCR amplification reaction mixture (50 µl) containing 5 μl 10 × PCR-buffer, 2 μl of 25 mM MgCl2, 2.5 

μl each of F341-GC and 907R (10 μM), 5 μl of 2 mM dNTPs, 30.5 μl sterile double-distilled water and 

0.5 U of SuperTherm Taq DNA polymerase (Southern Cross Biotech). PCR was performed using the 

GeneAmp PCR System (Version 2.25, Perkin Elmer). A modified form (Muyzer et al., 1993) of the 

touchdown thermal profile technique (Watanabe et al., 1998) was used: an initial denaturation (94°C, 5 

min), followed by annealing via 10 cycles of 94°C, 1 min; 65°C, 1 min with a decrease in temperature of 
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1°C per cycle; and 72°C, 3 min. This was followed by 20 cycles of 94°C, 1 min; 55°C, 1 min; 72°C, 3 

min and a final 5 min extension step at 72°C. The amplification of the correct product size of 585 bp was 

confirmed by electrophoresis in a 2% (w/v) agarose gel in a 1 × TAE running buffer with an applied 

voltage of 90 V for 120 min. After electrophoresis, the gel was stained in 0.5 μg/ml ethidium bromide and 

visualized by UV transillumination (Chemi-Genius2 BioImaging System, Syngene).  

 

3.2.9 Denaturing Gradient Gel Electrophoresis (DGGE) 

 PCR amplicons were separated by DGGE using the D-Code Universal Mutation Detection 

System (BioRad) (Muyzer et al., 1997). Firstly, 0% and 100% denaturing solutions were prepared, 

filtered through 0.45 µm pore size GN-6 Metricel membrane filters (Pall, 47 mm) and stored in brown 

bottles at 4°C. The DGGE gel was cast by preparing 20 ml each of low (40%) and high (70%) density 

solutions containing 20 µl TEMED and 200 µl of 10% ammonium persulphate, for gradient formation. 

The density solutions were applied to the gradient delivery system to cast the perpendicular 6% 

acrylamide DGGE gels (dimensions: 200 mm by 200 mm by 1 mm). Prior to sample loading, a pre-run 

was performed at a constant voltage of 150 V at 60°C for 30 min to facilitate sample migration out of the 

wells during the electrophoretic run. Following the pre-run, samples were loaded into the gel (5 µl gel 

loading buffer : 20 µl PCR amplicons) and DGGE was conducted at a constant voltage of 60 V in 1 × 

TAE buffer at 60°C for 16 hrs. After electrophoresis, the gel was stained in 0.5 μg/ml ethidium bromide 

(BioRad) for 20 min, destained in the same volume of 1 × TAE buffer for a further 20 min and thereafter 

visualized by UV transilluminator (Chemi-Genius2 BioImaging System, Syngene). 

 

3.2.10 Statistical analysis 

Analysis of the biodegradation results was carried out using student’s (paired) t-test, 2 tails 

distribution with significance level of p < 0.05.  

 

3.3 Results 

 

3.3.1 Effect of biostimulation and bioaugmentation on the biodegradation of  

1,2-DCA in co-contaminated soil 

Microcosm studies using co-contaminated loam soil moistened with synthetic groundwater were 

performed to evaluate the biodegradation profiles of 1,2-DCA upon the addition of supplemental 

substrates/nutrients or inoculation with bioaugmentation cultures. The biodegradation profile of 1,2-DCA 

in co-contaminated soil microcosms undergoing biostimulation and bioaugmentation, in the presence of 

As3+ and Cd2+ are illustrated in Figures 3.1 (a) and (b), respectively. In the autoclaved soil control 

amended with HgCl2, abiotic loss of 1,2-DCA was observed, but to a lesser extent. In the unautoclaved 
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positive control not contaminated with heavy metals, the initial 1,2-DCA concentration of 15.79 μl/100 g 

soil was reduced to 1.64 μl/100 g soil, corresponding to 89.78% elimination of 1,2-DCA, a value which is 

significantly (p < 0.05) higher than that of the sterile control, correlating with up to 60% above that of the 

sterile control, after 20 days. The presence of heavy metals was observed to have a negative impact on the 

biodegradation of 1,2-DCA resulting in a significant (p < 0.05) decrease of  9.30% and 5.86% in 

degradation, in soil co-contaminated with As3+ and Cd2+, respectively, indicating the more pronounced 

toxic effect of As3+ compared to Cd2+, after 20 days. The degradation rate constants of 1,2-DCA, ranged 

between 0.081 – 0.204 day-1 and between 0.091 – 0.216 day-1 in As3+ and Cd2+ co-contaminated soils, 

respectively (Table 3.1). The degradation rate constants of 1,2-DCA in the biostimulated and 

bioaugmented co-contaminated microcosms were higher than in the unautoclaved soil control containing 

no heavy metals. In all cases, except for biostimulation with fructose, higher degradation rate constants 

were observed in soil co-contaminated with Cd2+ compared to As3+. In addition, the degradation rate 

constants of 1,2-DCA in bioaugmented soil samples were higher than the biostimulated microcosms in 

both As3+ and Cd2+ co-contaminated soil samples. Bioaugmentation with X. autotrophicus GJ10 resulted 

in a 2.5-fold and 2.3-fold increase in the rate of 1,2-DCA degradation in As3+ and Cd2+ co-contaminated 

soil, respectively compared to the untreated co-contaminated soil. All supplemented substrates which 

included; glucose, fructose and fertilizer, enhanced the biodegradation of 1,2-DCA in soil co-

contaminated with both heavy metals. After 15 days, biostimulation with fertilizer resulted in the greatest 

increase in 1,2-DCA degradation with 4.94% and 6.85% achievd in both the As3+ and Cd2+ co-

contaminated soil, respectively. In the Cd2+ co-contaminated soil a significant (p < 0.05) increase  of 

12.02%, 10.37% and 12.37%  in 1,2-DCA degradation occurred in the presence of glucose, fructose and 

fertilizer, respectively after 20 days. Compared to the Cd2+ co-contaminated soil, an additional 3.01%, 

4.50% and 2.55% increase in degradation was observed in the As3+ co-contaminated soil in the presence 

of glucose, fructose and fertilizer, respectively over the same period. 1,2-Dichloroethane degradation was 

significantly (p < 0.05) lower in unfertilized than in fertilized soil resulting in up to 14.92% increase in 

degradation in As3+ co-contaminated soil after 20 days. Both amendments and time had a significant 

influence on soil decontamination. After 5 days, 10.40% and 5.03% more degradation occurred in the 

dual-bioaugmented soil compared to that bioaugmented with only X. autotrophicus GJ10, in the As3+ and 

Cd2+ co-contaminated soil, respectively. Thereafter, a similar profile was observed in both the As3+ and 

Cd2+ co-contaminated soil up until day 15. 
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Figure 3.1: Effects of biostimulation and bioaugmentation on the biodegradation of 1,2-DCA in soil co-

contaminated with (a) 150 mg/kg As3+ and (b) 170 mg/kg Cd2+. A = autoclaved soil control + 1,2-
DCA; B = unautoclaved soil control + 1,2-DCA; C = unautoclaved soil control + 1,2-DCA + HM; 
D = soil + 1,2-DCA + HM + glucose; E = soil + 1,2-DCA + HM + fructose; F = soil + 1,2-DCA + 
HM + fertilizer; G = soil + 1,2-DCA + HM + X. autotrophicus GJ10; H = soil + 1,2-DCA + HM + 
dual-bioaugmentation. Bars indicate the average of triplicate samples while the error bars show the 
standard deviation. 
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Table 3.1: Biodegradation rate constants (day-1) of 1,2-DCA in soil co-contaminated with arsenic (150 
mg/kg) and cadmium (170 mg/kg), undergoing biostimulation and bioaugmentation. 

 

Treatment Arsenic Cadmium 

Controls                     

Autoclaved soil  

Unautoclaved soil  

Unautoclaved soil + HM 

Biostimulation 

Glucose 

Fructose 

Fertilizer 

Bioaugmentation 

X. autotrophicus GJ10 

Dual-bioaugmentation  

 

0.016 ± 0.001 

0.111 ± 0.003 

0.081 ± 0.003 

 

0.139 ± 0.008 

0.138 ± 0.003 

0.140 ± 0.010 

 

0.204 ± 0.012 

0.203 ± 0.007 

 

0.016 ± 0.001 

0.111 ± 0.003 

0.091 ± 0.003 

 

0.142 ± 0.004 

0.127 ± 0.006 

0.154 ± 0.003 

 

0.216 ± 0.007 

0.213 ± 0.003 

 

 

3.3.2 Total 1,2-DCA degrading bacterial population dynamics in the co-contaminated soil 

The total 1,2-DCA degrading bacterial population dynamics in the As3+ and Cd2+ co-

contaminated loam soil undergoing biostimulation and bioaugmentation is shown in Tables 3.2 and 3.3, 

respectively. An alteration in the population of the autochthonous 1,2-DCA degrading microbial 

community was observed subsequent to the addition of As3+ and Cd2+, resulting in an approximate 

seventeen-fold and thirteen-fold decrease in population after 10 days, respectively. In the As3+ co-

contaminated soil biostimulated with glucose and fertilizer an ten-fold and three-fold increase in the total 

1,2-DCA degrading bacterial population was observed after 10 days, correspondingly. In the dual-

bioaugmented treatments, the total number of culturable 1,2-DCA degraders detected increased from the 

initial inoculum level of 6.47 × 106 to 111.67 and 403.33 × 106 in the As3+ and Cd2+ co-contaminated soil, 

respectively after 10 days. In the biostimulation experiment, the highest 1,2-DCA degrading population of 

36.33 × 107 cfu/ml (in the fertilizer-amended microcosm) was obtained and 34.86 × 107 cfu/ml (in the 

glucose-amended microcosm) for the soil co-contaminated with As3+ and Cd2+, respectively after 20 days. 

In both cases, dual-bioaugmentation produced the highest 1,2-DCA degrading population. 
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Table 3.2: Total 1,2-DCA degrading bacterial population in arsenic (As3+) co-contaminated soil undergoing 
biostimulation and bioaugmentation. 

 

Treatment 
1,2-DCA degrading bacterial population  

Day 10 (cfu/ml × 106) Day 20 (cfu/ml × 107) 

Controls                     

Autoclaved soil  

Unautoclaved soil  

Unautoclaved soil + As3+ 

Biostimulation 

Glucose 

Fructose 

Fertilizer 

Bioaugmentation 

X. autotrophicus GJ10 

Dual-bioaugmentation  

 

0 

48.33 ± 7.77 

2.90 ± 0.34 

 

28.98 ± 13.55 

2.87 ± 0.52 

7.37 ± 1.11 

 

31.03 ± 4.98 

111.67 ± 3.51 

 

0 

2.91 ± 0.10 

0.26 ± 0.06 

 

33.90 ± 3.77 

2.83 ± 0.06 

36.33 ± 5.51 

 

291.50 ± 23.34 

430.00 ± 91.65 

Values are averages of triplicate data ± standard deviation. 
The initial 1,2-DCA degrading bacterial population was 6.47 × 106 cfu/ml. 
 

 
Table 3.3: Total 1,2-DCA degrading bacterial population in cadmium (Cd2+) co-contaminated soil 

undergoing biostimulation and bioaugmentation. 
 

Treatment 
1,2-DCA degrading bacterial population  

Day 10 (cfu/ml × 106) Day 20 (cfu/ml × 107) 

Controls                     

Autoclaved soil  

Unautoclaved soil  

Unautoclaved soil + Cd2+ 

Biostimulation 

Glucose 

Fructose 

Fertilizer 

Bioaugmentation 

X. autotrophicus GJ10 

Dual-bioaugmentation  

 

0 

48.33 ± 7.77 

3.75 ± 0.83 

 

3.33 ± 0.69 

1.91 ± 0.20 

4.20 ± 0.36 

 

82.00 ± 10.15 

403.33 ± 80.21 

 

0 

2.91 ± 0.10 

0.29 ± 0.02 

 

34.86 ± 10.62 

2.74 ± 0.11 

32.90 ± 5.93 

 

410.00 ± 56.57 

453.33 ± 105.04 

Values are averages of triplicate data ± standard deviation. 
The initial 1,2-DCA degrading bacterial population was 6.47 × 106 cfu/ml. 
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3.3.3 PCR-DGGE analysis of bacterial community diversity 

In addition to the culture-dependent approach in assessing total 1,2-DCA degrading bacterial 

population dynamics, DGGE analysis of PCR-amplified 16S rDNA fragments was used to investigate the 

effect of biostimulation and bioaugmentation on the co-contaminated loam soil microbial communities. 

Fertilizer treatments which appeared to cause significant increases in 1,2-DCA degradation, as reflected 

in 1,2-DCA biodegradation profile, were selected for DGGE analysis. Distinct DGGE profiles were 

observed for both the fertilized and dual-bioaugmentated samples as shown in Figures 3.2 and 3.3, 

respectively. The bands denoted by the arrow (except band A3) were all shown to be present throughout 

the degradation period. On comparison of the As3+ and Cd2+ co-contaminated soil undergoing either 

biostimulation or dual-bioaugmentation, the banding patterns observed seemingly exhibited a great 

similarity. However, the banding patterns for the different bioremediation options, demonstrated much 

difference in bacterial diversity between the fertilized and dual-bioaugmented samples. DGGE profiles 

indicate that while numerous bands were common in the fertilized co-contaminated soils, there were also 

changes in band presence and relative intensity due to treatment and temporal effects. In both the As3+ and 

Cd2+ co-contaminated soil biostimulated with fertilizer, bands A5 and A6 representing dominant 

degrading populations became brighter by day 20, indicating that these organisms where involved in the 

degradation of 1,2-DCA in such co-contaminated environments. These bands were present on day 0, 

albeit at very low concentrations, thus appearing faintly. On the other hand, band A3 was absent on day 0 

and was observed on day 5 in both the As3+ and Cd2+ co-contaminated soils, whereas bands A1, A2 and 

A4 were present throughout the degradation period, however the band intensity remained unchanged. All 

the bands mentioned above maintained its dominance (as indicated by the brightness of the band) until 

day 20 of the degradation process. Meanwhile, in the dual-bioaugmented microcosms, the native heavy 

metal-resistant strain band intensity increased on day 15 in the As3+ co-contaminated soil, however, in the 

Cd2+ co-contaminated soil, band intensity remained relatively unchanged up until day 15. In both the As3+ 

and Cd2+ co-contaminated soil, X. autotrophicus GJ10 (B3) band brightness increased slightly over time. 
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           a1       a2       a3       a4       a5       a6       a7       a8       a9       a10       

Figure 3.2: DGGE profiles of 16S rRNA gene fragments from co-contaminated loam soil samples 
biostimulated with fertilizer. Lanes: a1, a2, a3, a4 and a5 represent days 0, 5, 10, 15 and 20 of the 
As3+ co-contaminated soil and a6, a7, a8, a9 and a10 represent days 0, 5, 10, 15 and 20 of the Cd2+ 
co-contaminated soil. 

 

 

         b1     b2     b3     b4      b5     b6    b7     b8     b9     b10    b11   b12 

Figure 3.3: DGGE profiles of 16S rRNA gene fragments from co-contaminated loam soil samples undergoing 
dual-bioaugmentation. Lanes: b1 represents X. autotrophicus GJ10, b2 represents native HM 
resistant strain, b3, b4, b5, b6 and b7 represent days 0, 5, 10, 15 and 20 of the As3+ co-
contaminated soil and b8, b9, b10, b11 and b12 represent days 0, 5, 10, 15 and 20 of the Cd2+ co-
contaminated soil. 

 

 

 

A1 

A2 
A3 
A4 
A5 
A6 

B1 

B2 

B3 



80 
 

3.3.4 The combined effect of 1,2-DCA and heavy metals on soil microbial activities 

 The combined effect of 1,2-DCA and heavy metals on soil microbial enzyme activities varied 

depending on the heavy metal tested. The changes in dehydrogenase activity in all treatments are shown 

in Figures 3.4 and 3.5. In both the As3+ and Cd2+ co-contaminated soil there was a significant decrease of 

87.26% (Figure 3.4a) and 86.33% (Figure 3.4b) in the dehydrogenase activity after 20 days, respectively. 

In both the biostimulated and bioaugmented soil microcosms, dehydrogenase activity appeared biphasic 

with an initial decrease followed by a progressive increase in the treated soils over time. Due to the 

different supplemental substrates, dehydrogenase activity differed in the three biostimulated microcosms. 

In all cases, except for the Cd2+ co-contaminated soil amended with fructose, higher dehydrogenase 

activity was observed in the biostimulated soil compared to the untreated co-contaminated soil. The 

greatest increase in dehydrogenase activity, in both the As3+ and Cd2+ co-contaminated soil was observed 

in the glucose amended soil, resulting in 86.52% and 84.18% increase, respectively after 20 days, 

compared to the untreated co-contaminated soil (Figure 3.4). Moreover, the supplemental substrates 

appeared to follow a similar pattern in both As3+ and Cd2+co-contaminated soil; the trend, in ascending 

order of increased dehydrogenase activity was fructose, fertilizer and glucose. In addition, 2.41% and 

6.42% increase in dehydrogenase activity was observed in the As3+ co-contaminated soil amended with 

glucose and fructose, respectively after 20 days, compared to Cd2+. Bioaugmentation with only X. 

autotrophicus GJ10 resulted in a greater increase in dehydrogenase activity compared to dual-

bioaugmentation, with an increase of 85.18% (Figure 3.5a) and 80.95% (Figure 3.5b) observed in the 

As3+ and Cd2+ co-contaminated soil, respectively after 20 days. However, these values are 1.34% and 

3.23% less than the dehydrogenase activity observed in the soil microcosms biostimulated with glucose in 

the As3+ and Cd2+ co-contaminated soil, respectively. Soil urease activity was inhibited in the presence of 

heavy metals, resulting in a 7.66% (Figure 3.6a) and 20.17% (Figure 3.6b) decrease in the presence of 

As3+ and Cd2+, respectively after 20 days. In the case of supplemental substrates/nutrients, a decline in 

urease activity was observed in the glucose and fructose amended soil microcosms in both heavy metal 

co-contaminated soils. On the other hand, fertilizer was observed to significantly (p < 0.05) increase 

urease activity resulting in approximately 79% increase in both heavy metal co-contaminated soils after 

20 days compared to the untreated soil. Both bioaugmentation and dual-bioaugmentation was observed to 

result in higher urease activity within the first 10 days in As3+, followed by a decrease. Bioaugmentation 

with X. autotrophicus GJ10 was also noted to decrease urease activity in both As3+ and Cd2+ co-

contaminated soil resulting in 25.35% (Figure 3.7a) and 35.95% (Figure 3.7b) decrease, respectively after 

20 days. These values correspond to a 2.57% and 10.95% less pronounced effect on urease activity in 

dual-bioaugmented soil. 
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Figure 3.4: Effects of 1,2-DCA and (a) As3+; (b) Cd2+ on soil microbial dehydrogenase activity in microcosms 

undergoing biostimulation. A = unautoclaved soil control + 1,2-DCA; B = unautoclaved soil 
control + 1,2-DCA + HM; C = soil + 1,2-DCA + HM + glucose; D = soil + 1,2-DCA + HM + 
fructose; E = soil + 1,2-DCA + HM + fertilizer. The results indicate the average of triplicate 
samples while the error bars show the standard deviation. 
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Figure 3.5: Effects of 1,2-DCA and (a) As3+; (b) Cd2+ on soil microbial dehydrogenase activity in microcosms 

undergoing bioaugmentation. A = unautoclaved soil control + 1,2-DCA; B = unautoclaved soil 
control + 1,2-DCA + HM; C = soil + 1,2-DCA + HM + X. autotrophicus GJ10; D = soil + 1,2-
DCA + HM + dual-bioaugmentation. The results indicate the average of triplicate samples while 
the error bars show the standard deviation. 
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Figure 3.6: Effects of 1,2-DCA and (a) As3+; (b) Cd2+ on soil microbial urease activity in microcosms 

undergoing biostimulation. A = unautoclaved soil control + 1,2-DCA; B = unautoclaved soil 
control + 1,2-DCA + HM; C = soil + 1,2-DCA + HM + glucose; D = soil + 1,2-DCA + HM + 
fructose; E = soil + 1,2-DCA + HM + fertilizer. The results indicate the average of triplicate 
samples while the error bars show the standard deviation. 
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Figure 3.7: Effects of 1,2-DCA and (a) As3+; (b) Cd2+ on soil microbial urease activity in microcosms 

undergoing bioaugmentation. A = unautoclaved soil control + 1,2-DCA; B = unautoclaved soil 
control + 1,2-DCA + HM; C = soil + 1,2-DCA + HM + X. autotrophicus GJ10; D = soil + 1,2-
DCA + HM + dual-bioaugmentation. The results indicate the average of triplicate samples while 
the error bars show the standard deviation. 
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3.4 Discussion 

Results from this study revealed the capability of the indigenous soil microbial populations to 

remove 1,2-DCA from co-contaminated soil, with both bioaugmentation and biostimulation approaches 

playing a fundamental role in enhancing 1,2-DCA degradation, and dual-bioaugmentation having the 

greatest effect in both As3+ and Cd2+ contaminated soils. However, the observed degradation profiles 

obtained varied depending on the heavy metal co-contaminant present in the soil. 

The physico-chemical parameters of soil samples have been shown to have a major influence on 

aeration, water retention, nutrient availability, and consequently on microbial activity and community 

dynamics (Olaniran et al., 2006). In general, a ratio of carbon to nitrogen to phosphorus of 100:10:1 

(Norris et al., 1994) has been extensively used in the biodegradation processes (Button et al., 1992). In 

addition, bioremediation studies have demonstrated that nitrogen concentrations ranging from 2.0 to 10.0 

mg/L are sufficient for near-maximum growth of hydrocarbon-degrading microorganisms (Boufadel et 

al., 1999; Wrenn et al., 2006). In this study, the loam soil used in the construction of the microcosms 

contained relatively low concentrations of soluble organic carbon with fairly high concentrations of 

nitrogen and phosphorus (mainly in the form of phosphate). Phosphate has a high affinity for most soils 

which lessens its transport, thus causing it to be unavailable for biological activity (Liebeg and Cutright, 

1999).The carbon to nitrogen ratio was considerably low (0.7:1) in the loam soil compared to that 

recommended for soil hydrocarbon bioremediation which varies greatly and ranges from 100:1 to 10:1 

(Atlas and Bartha, 1992; Song and Bartha, 1990). However, it should be noted that these average values 

depend on the type of microorganisms present in the soil. Thus, in this study, the addition of supplemental 

substrates such as glucose, fructose and nitrogen fertilizers were shown to enhance 1,2-DCA degradation 

in the heavy metal co-contaminated soil samples to varying degrees. 

In both the As3+ and Cd2+ co-contaminated soil, biostimulation with fertilizer resulted in the 

greatest increase in 1,2-DCA degradation after 15 days. It has been demonstrated that biodegradation of 

large quantities of organic carbon sources by indigenous microorganisms tends to result in a depletion of 

inorganic nutrients such as nitrogen and phosphorus (Margesin et al., 2000), thus limiting the rate of 

biodegradation. This study demonstrated that under favourable conditions, via the addition of inorganic 

amendments, biostimulation can enhance the degradation of 1,2-DCA in polluted soils even in the 

presence of co-contaminants. These findings correlate well with several other research reports on the 

positive effects of biostimulation with mainly N:P:K fertilizers (Atlas and Bartha, 1992; Margesin et al., 

2000; Margesin and Schinner, 2001; Olaniran et al., 2006; 2009). Siddiqui and Adams (2001) also 

observed that the best response obtained for diesel oil degradation was also in soil amended with N and P. 

Biostimulation with glucose also resulted in high 1,2-DCA degradation rates in the presence of As3+ and 

Cd2+, thereby also providing very promising results for effective bioremediation of such co-contaminated 

soils. Gao and Skeen (1998) reported that glucose, being a simple sugar, is highly soluble in water and 
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therefore easily metabolized by microorganisms. Similarly, enhanced biodegradation of 1,2-DCA 

following the addition of glucose to co-contaminated soil has been recently reported (Olaniran et al., 

2009). 

Bioaugmentation, in particular dual-bioaugmentation, was observed to significantly increase the 

rate of 1,2-DCA biodegradation. Previous studies have demonstrated that, under certain conditions, 

addition of known degrading organism accelerates the rate and the degree of organic biodegradation 

(Bento et al., 2003; Mueller et al., 1992). In particular, the finding in this study correlates well with that 

of Roane et al. (2001) who reported that dual-bioaugmentation, involving inoculation with both metal-

detoxifying (Ralstonia eutropha JMP134) and organic-degrading (Pseudomonas H1) bacteria, facilitates 

the degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) in the presence of cadmium co-contamination. 

Based on the results obtained, it was concluded that dual-bioaugmentation with metal-detoxifying and 

organic-degrading microbial populations is effective for remediation of co-contaminated soil. 

Implementation of dual-bioaugmentation strategies rely primarily on metal detoxification so that organic-

degrading microbial populations are prevented from metal stress and inhibition. This strategy was also 

found successful at pilot scale with a soil bioreactor, resulting in significant reductions in 2,4-D levels 

within six weeks. On the other hand, Doelman et al. (1994) hypothesized that in soils contaminated with 

heavy metals, indigenous microorganisms with resistance to these inorganic contaminants may reduce the 

bacterial bioremediation capability towards chlorinated hydrocarbons. This is in contrast to the results 

obtained in this study. Inoculation of soil with native microorganisms, provided in a sufficient number to 

enhance the biodegradation process, has been proposed as a generic bioremediation approach to 

ameliorate the clean-up of polluted areas (Alisi et al., 2009). The bioaugmentation approach assumed in 

this study was based on strengthening a portion of the native microbial community with an indigenous 

microorganism resistant to the heavy metals tested. This strain was incorporated in order to indirectly 

increase 1,2-DCA degradation, by protecting X. autotrophicus GJ10 or the other indigenous metal 

sensitive organic-degrading strains from metal toxicity. In principle, the native strains of co-contaminated 

matrices, already shaped by selective pressure for heavy metal resistance, are expected to take advantage 

with respect to sensitive strains in enhancing biodegradation. In this way, they help to overcome an 

important limitation in bioremediation applications, namely the co-occurrence of toxic heavy metals, 

which inhibit microbial processes in general (Alisi et al., 2009). 

 Numerous limitations, such as difficulty in delivery of the inoculant to the desired location 

(Streger et al., 2002), rapid decline in introduced microbial numbers and death of the exogenous 

microorganisms (Goldstein et al., 1985), have been reported with the use of bioaugmentation as a 

bioremediation strategy. However, in this study, the effect of bioaugmentation was more pronounced 

resulting in a marked increase in 1,2-DCA degradation in both the As3+ and Cd2+ co-contaminated soils, 

compared to biostimulation. In addition, a significant increase in the total number of 1,2-DCA degrading 
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bacterial populations was observed in the bioaugmentated microcosms compared to those biostimulated. 

These increases in total 1,2-DCA degrading populations correspond to a boost in 1,2-DCA degradation in 

the bioaugmentated soil samples. This correlates with the reports of Lendvay et al. (2003) who conducted 

a side-by-side comparison of bioaugmentation and biostimulation; with Dehalococcoides and lactate, 

respectively, in a chloroethene contaminated aquifer. The authors reported that bioaugmentation resulted 

in a near-stoichiometric dechlorination of both sorbed and dissolved chloroethenes. In addition, the 

Dehalococcoides populations increased by three-to-four orders of magnitude. However, biostimulation 

with continuous lactate and nutrient injection did result in dechlorination, but only after a prolonged lag 

period. 

The microbial dehydrogenase and urease activity increased in the presence of 1,2-DCA, a readily 

available carbon source. Dehydrogenase activity plays a central role in the soil environment, primarily in 

the oxidation of organic matters (Dick et al., 1996), therefore it has been considered as an attractive 

indicator for monitoring various impacts on soil organisms (Maila and Cloete, 2005). In this study, 

dehydrogenase activity was significantly (p < 0.05) inhibited by heavy metals confirming the results from 

previous studies (Chander and Brookes, 1991; García-Gil et al., 2000). The rapid and continuous 

inhibition in dehydrogenase activity in both the As3+ and Cd2+ co-contaminated soils throughout the 

degradation period could be due to the indirect effect of heavy metals, whereby heavy metals alter the 

microbial community which synthesizes the enzymes (Kandeler et al., 2000; Nannipieri, 1994). The 

decrease in dehydrogenase activity observed in this study may be attributed to the toxic effects of heavy 

metals on the microorganisms, as evidenced by the decrease in total 1,2-DCA degrading bacterial 

populations in both heavy metal polluted soils. In addition, it is well documented that the heavy metals 

react with sulfhydryl groups of enzymes and inhibit and/or inactivate the enzymatic activities. The 

toxicity of As3+ on soil dehydrogenase activity was higher than that of Cd2+, with a corresponding greater 

inhibitory effect on 1,2-DCA degradation as well as a significant decrease in total 1,2-DCA degrading 

population. Neither amendment with carbon, nitrogen or phosphorus was able to increase microbial 

activity to levels obtained prior to co-contamination of the soil. These results suggest that the high soil 

microbial activity was mainly associated with the presence of the chlorinated hydrocarbon. Shi et al. 

(2005) also stated that the presence of heavy metals may retard enzyme activity in co-contaminated 

environments, without necessarily preventing aromatic catabolism in soils. Interestingly, the addition of 

glucose and fructose resulted in a decrease in urease activity below that observed in the untreated co-

contaminated soil, whereas the addition of fertilizer resulted in significantly higher increases in urease 

activity. Urease is a key extracellular enzyme in soil responsible for nitrogen transformation (Xuexia et 

al., 2006). Basically, the enzyme catalyses the hydrolysis of urea to CO2 and NH4
+, a significant by-

product of the reaction, which can reflect nitrogen availability in soil (Sun et al., 2003). Therefore, it is 

not surprising that addition of fertilizer, which provides a rich source of nitrogen, resulted in a marked 
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increase in urease activity in both co-contaminated soils. Li et al. (2009) recently observed that 

application of chemical N:P:K fertilizers to As contaminated soil can lead to the release of arsenic from 

inactive fractions which are bound to mineral matrices to relatively available fractions which may be 

water soluble or bound to carbonates, iron and manganese oxides. This may explain why rich sources of 

carbon, nitrogen and phosphorus have a stimulatory effect on microbial activities, leading to the 

redistribution of arsenic among the fractions (Brouwere et al., 2004; Signes-Pastor et al., 2007). Harvey et 

al. (2002), Jackson et al. (2006) and Rowland et al. (2006) also reported that arsenic solubility was 

positively correlated with organic carbon in soils and sediments, while the leaching of arsenic to soil 

solution was enhanced by the added carbon sources (Turpeinen et al., 1999). 

Denaturing gradient gel electrophoresis has proven invaluable for comparative community 

profiling (Fromin et al., 2002; Muyzer et al., 1993). Although a number of methodological limitations 

have been identified, PCR-DGGE is generally accepted to provide a fingerprint of the dominant 

phylotypes in natural habitats (Jensen et al., 1998; Murray et al., 1996; Teske et al., 1996; Vallaeys et al., 

1997) and it has been successfully applied to monitor spatial and temporal differences in bacterial 

communities (Casamayor et al., 2002; Giovannoni et al., 1990; Muyzer and Smalla, 1998). DGGE 

produces a unique DNA community fingerprint, where the number, position, and intensity of the bands 

reflect the number and relative abundance of a particular species in the population, thereby facilitating a 

comparison of different microbial communities (Casamayor et al., 2002; Muyzer and Smalla, 1998). It 

has been suggested that DGGE in most cases does not reveal diversity unless the community is very 

simple. Therefore, it should be kept in mind that DGGE profiles only represent the most numerically 

dominant genospecies, whereas less abundant species are often not represented (Muyzer and deWaal, 

1994). The presence of multiple contaminants, including chlorinated organic pollutants and heavy metals, 

presents extreme challenges to the maintenance of a phylogenetically and functionally diverse microbial 

community (Shi et al., 2002), since only microbes that tolerate both heavy metals and toxic levels of 

hydrocarbons may survive. Therefore, the application of this technique holds great promise in assessing 

microbial diversity in co-contaminated environments. The relative change in the banding patterns 

between the As3+ and Cd2+ treated co-contaminated soil, revealed few differences in the bacterial 

communities, suggesting the same organisms were able to withstand the toxic effects of these metals as 

well as utilize 1,2-DCA. Similarly, the changes in DGGE patterns observed in soil contaminated with cis- 

and trans-dichloroethene also indicated a significant effect of these compounds on indigenous microbial 

communities and, subsequently, leading to the selection of several microbial populations well-adapted to 

the contaminants (Olaniran et al., 2007). In general, the community structure produced altered PCR-

DGGE profiles during the time-course of the degradation process, in which the number of bands was 

reduced, the intensity of certain bands increased, and new bands appeared. This is indicative of the 
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selection of microorganisms capable of tolerating the toxic effects of As3+ and Cd2+ as well as utilizing 

and/or surviving the toxicity of 1,2-DCA.  

These results indicate that the use of dual-bioaugmentation and fertilizer may efficiently speed-up 

the bioremediation of soil matrices co-contaminated with 1,2-DCA and heavy metals. However, the 

properties of the contaminated soil should be taken into consideration, as the success of any 

bioremediation approach is site-specific. The results of this study are encouraging and allow for the 

identification of some adjustments that could be introduced prior to implementation of such remediation 

strategies in enhancing the degradation of 1,2-DCA in co-contaminated soils. In particular, the dual-

bioaugmentation strategy using strains pre-selected from the co-contaminated soil environment may be 

used to overcome a critical bottle-neck of the bioremediation technology. 
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4.1 Introduction 

The growing awareness and concern regarding the adverse effects induced by elevated levels of 

arsenic (As) and cadmium (Cd) on soil microorganisms have prompted recent research efforts in 

evaluating  the speciation, mobility and stability of these heavy metals (HM) in soil (Bhattacharyya et al., 

2008; Kavamura and Esposito, 2010; Száková et al., 2009). The total contaminant levels are not 

necessarily indicative of essentially occurring adverse effects, as the toxic effects are determined not only 

by their intrinsic toxicity and concentration but also by their physico-chemical forms (Guéguen et al., 

2004; Sandrin and Maier, 2003). Arsenic and cadmium are potentially hazardous pollutants in the 

environment and are highly toxic to plants, microorganisms, animals and human beings even at a very 

low concentration (Flick et al., 1971; Vaughan, 2006). Although inorganic arsenic and cadmium in soils 

are in themselves harmful, immobile heavy metals can be easily transformed into mobile phases as a 

result of changes in environmental conditions, thereby posing an additional potential environmental 

hazard (Lee et al., 2010; Vig et al., 2003). Thus, the toxicity of these heavy metals is related to its 

oxidation state in the soil environment (Jain and Ali, 2000; Slotnick et al., 2006; Vig et al., 2003; Zhao 

and Masaihiko, 2007). 

Generally, most analytical measurements deal with the total content of heavy metals or metalloids 

in an analyzed sample to assess its impact on the environment (Lin et al., 2002; Topcuoğlu et al., 2002). 

When considering microorganisms, the chemical form or the oxidation state in which that element is 

introduced into the environment is crucial. Metals are essentially bioavailable in free ionic and labile 

forms for microorganisms, whereas particle-bound or ligand-complexed metals are not considered as 

being directly available for uptake by microorganisms (Campbell, 1995). It has been well documented 

that the toxicity of these heavy metals are dependent on countless abiotic and biotic factors such as soil 

pH value, organic matter content, clay minerals and redox conditions (Kavamura and Esposito, 2010; 

Naidu et al., 1997; Vig et al., 2003). These complex processes affect heavy metal speciation and 

distribution, including adsorption onto and desorption from mineral surfaces, incorporation into 

precipitates, release through the dissolution of minerals, and interactions with microorganisms (Brown Jr 

et al., 1999). 

Bioavailability is not deemed a universal attribute; it can be organism and, in some cases, species-

specific (Giller et al., 1998). Heavy metals that are considered to be bioavailable have the potential to 

interact with biological vectors. In soil, these vectors may include microorganisms (Langdon et al., 2003); 

thus evaluating uptake of a metal/metalloid (Wolt, 1994), or the impact on growth or activity of the target 

organism can be used as a sensitive indicator of the effect of pollutants (Giller et al., 1998). Microbial 

parameters appear to be very useful in monitoring soil pollution caused by both chlorinated organic and 

heavy metal pollutants, since they are more dynamic and often more sensitive than the physical or 

chemical soil properties (Brookes, 1995). According to Tyler (1974) and Kızılkaya et al. (2004), soil 
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enzymatic activities diminish with increasing concentrations of available heavy metals. Microbial 

activities (urease and dehydrogenase) and active population densities in such co-contaminated 

environments appear to provide more sensitive indications of soil pollution by heavy metals than either 

activity or population measurements alone (Nannipieri et al., 1990). It is difficult, however, to select the 

most sensitive enzymatic response to heavy metals, because the enzyme activity is dependent on the 

surrounding edaphic microenvironment (Schloter et al., 2003). 

Due to the complexity of soil-metal interactions and transformations, predicting soil metal 

bioavailability, mobility and retention is often difficult. To date, there is no generally accepted method of 

estimating the bioavailability of heavy metals in soil. A single extraction procedure using 1M NH4NO3 

has been suggested as a simple, cheap and environmentally friendly technique (Meers et al., 2007).  

Moreover, the extracting solution matches the soil solution with respect to pH, concentration and 

composition. In comparison with divalent exchangeable bases such as Ca, the monovalent cation NH4 is 

less competitive for desorption of heavy metals from the soil matrix (Gommy et al., 1998). Also, the use 

of nitrate as a counter ion does not cause additional complexation and mobilization of heavy metals, as is 

the case for chloride-based extractants (Meers et al., 2007). Heavy metal concentrations in soils 

determined by this extraction procedure give a better indication of bioavailability than total soil contents. 

Typical remediation strategies for heavy metal polluted soils have focused on extraction and 

immobilization of the heavy metals (Montinaro et al., 2008). However, given the high risk and cost 

involved in excavation techniques, the latter process by the action of precipitation, complexation and 

adsorption are generally preferred as cost a effective technique for treating heavy metal contaminated 

soils (Lee et al., 2004; Montinaro et al., 2008). Immobilization procedures are aimed at preventing the 

migration of heavy metals in the soil environment, either by improving soil physical characteristics, or by 

limiting the solubility or toxicity of the bioavailable heavy metal (Chen et al., 2007; Lombi et al., 2004; 

McGowen et al., 2001). The process of immobilizing heavy metals involves mixing contaminated soils 

with suitable treatment additives which are able to decrease their bioavailability by inducing various 

sorption processes: formation of stable complexes, promoting ion exchange, adsorption and/or 

precipitation of the heavy metals (Kumpiene et al., 2008). A variety of treatment additives has been 

investigated to immobilize heavy metals in soils; in particular, application of lime materials, clays, 

carbonates and phosphates have shown promising results in remediating arsenic and/or cadmium 

contaminated soils (Brown et al., 2005; García-Sanchez et al., 2002; Thakur et al., 2006; Zhao and 

Masaihiko, 2007). The most widely used remediation treatment for heavy metal contaminated soils is the 

application of lime materials. Liming significantly increases the soil pH due to the release of hydroxyl 

ions by the hydrolysis reaction of calcium carbonate. Consequently, liming can lead to the precipitation of 

heavy metals as metal-carbonate, resulting in significant decrease in the bioavailable fraction of metals in 

the contaminated soil (Knox et al., 2001). 
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In view of the above, the aim of this study was therefore to assess the effect of different inorganic 

treatment additives (calcium carbonate, gypsum and disodium phosphate) on the bioavailability of arsenic 

and cadmium in soil and the consequent impact on 1,2-DCA degradation in a co-contaminated soil 

microcosm setting. Moreover, the effects of such treatment additives on selected soil microbial 

parameters were also investigated.  

 

4.2 Materials and methods 

 

4.2.1 Sample collection and handling 

Soil samples were collected and handled as described in Chapter Two; however, only loam soil 

was used in this section of the study, since the inhibition of 1,2-DCA degradation by the heavy metals 

was much more pronounced in this soil type. 

 

4.2.2 Experimental design and microcosm set-up 

The methodology for experimental design and microcosm set-up is the same as that described in 

Chapter Two with the following amendments. Microcosms were set-up by artificially co-contaminating 

loam soil sample with 1,2-DCA and heavy metals. To study the effects of different treatment additives on 

the bioavailability of arsenic and cadmium, nine treatments were used in total, comprising positive and 

negative controls, two heavy metals and three treatment additives, with each test conducted in triplicate. 

Arsenic oxide (As3+) and cadmium chloride (Cd2+) stock solutions were incorporated into the 

groundwater, prior to the microcosm set-up, to obtain final concentrations of 150 mg/kg and 170 mg/kg, 

respectively. Each microcosm was amended with either 5 g calcium carbonate (CaCO3) (Ruby et al., 

1994), 2 g gypsum (CaSO4.2H2O) (Lombi et al., 2004) or a combination of 1.12 g disodium phosphate 

(Na2HPO4) and 0.046g sodium chloride (NaCl) (Ruby et al., 1994). Thereafter, the reaction mixtures were 

manually mixed with a glass rod to allow for even distribution of the treatment additives within the soil.  

In addition to autoclaving, the biological inhibited controls prepared for each series of reaction mixtures 

were amended with HgCl2 to achieve a final concentration of 500 mg/kg. 

 

4.2.3 Analytical procedures 

The analytical procedures involved in assessing the degradation of 1,2-DCA using gas 

chromatographic analysis of headspace samples are as described in Chapter Two. 

 

4.2.4 Enumeration of total 1,2-DCA degrading populations 

Total 1,2-DCA degrading bacterial populations was determined at different sampling times using 

a standard spread plate technique (Gerhardt et al., 1991), as described in Chapter Three. 
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4.2.5 Soil analysis 

The methodologies used in assessing the physico-chemical properties of the soil sample are 

described in Chapter Two. 

 

4.2.6 Dehydrogenase and urease activity 

The assay procedures used for assessing the microbial dehydrogenase and urease activities in the 

co-contaminated soil containing the different treatment additives are as described in Chapter Three. 

 

4.2.7 Bioavailability of heavy metals  

The bioavailable fraction of heavy metals in the soil microcosms was estimated by extracting 8 g 

of co-contaminated soil with 1 M NH4NO3 (1:2.5 w/v) (Wang et al., 2007). The soil suspensions were 

centrifuged at 4000 rpm for 10 min and filtered through 0.45 μm membrane filters (Whatman). Contents 

of As and Cd in each filtrate were measured using an inductively coupled plasma-optical emission 

spectrometer (ICP-OES) 5300 DV and 2100 DV (Perkin-Elmer). Fifteen millilitres of the filtrate were 

transferred to centrifuge tubes and concentrations of bioavailable heavy metals were estimated by 

extrapolating from known concentrations of heavy metals. All the extractions were carried out in 

triplicate, including the analytical blanks which were processed simultaneously with the samples. The 

specifications of the ICP-OES used for generating calibration curves are indicated in Table 4.1. 

 

Table 4.1: ICP-OES instrument specifications required for generating calibration curves. 
 

 

4.2.8 Statistical analysis 

Analysis of the biodegradation results was carried out using student’s (paired) t-test, 2 tails 

distribution with significance level of p < 0.05.  

 

 

 

 

 

 

Element  Wavelength 
(nm) 

BEC  
(mg/l) 

Detection 
limit 

 (mg/L) 

Signal/Noise 
(S & T) 

Intensity 
(W) 

Arsenic 197.197 2.56 0.0760 - 5.8 

Cadmium 226.502 0.11 0.0034 293.1 1000 



94 
 

4.3 Results 

 

4.3.1 Effect of treatment additives on 1,2-DCA biodegradation in co-contaminated soil 

The degradation profiles of 1,2-DCA, both in the presence and absence of treatment additives in 

loam soil co-contaminated with As3+ and Cd2+, are illustrated in Figures 4.1a and 4.1b, respectively. 1,2-

Dichloroethane was observed to be degraded significantly (p < 0.05) by indigenous soil microorganisms 

with up to 89.78% elimination of 1,2-DCA being achieved in the absence of heavy metals after 20 days. 

The presence of As3+ and Cd2+ resulted in a significant (p < 0.05) decrease of 9.30% and 5.86% in 1,2-

DCA degradation after 20 days, respectively. Addition of treatment additives effectively resulted in an 

increase in 1,2-DCA degradation with up to 15.84% (p < 0.05) and 9.14% in the As3+ and Cd2+ co-

contaminated soil, respectively, within the first 5 days of the incubation period. After 15 days, CaCO3 

proved to be the most efficient in the As3+ co-contaminated soil, resulting in a significant (p < 0.05) 

increase of 13.52% in 1,2-DCA degradation, compared to Na2HPO4 + NaCl and CaSO4.2H2O which 

resulted in a 7.29% and 8.83% increase in 1,2-DCA degradation, respectively (Figure 4.1a). However, in 

Cd2+ co-contaminated soil, similar increases in 1,2-DCA degradation were observed for all treatment 

additives throughout the degradation period. Calcium carbonate was observed to be more effective in 

enhancing 1,2-DCA in the As3+ co-contaminated soil compared to the Cd2+ co-contaminated microcosms, 

as indicated by an increase of 5.24%  in 1,2-DCA degradation after 20 days. The degradation rate 

constants of 1,2-DCA, as indicated in Table 4.2, ranged variously between 0.081 – 0.167 day-1 and 0.091 

– 0.152 day-1, in the As3+ and Cd2+ co-contaminated soil, respectively. The presence of As3+ and Cd2+ 

resulted in a decrease of 26.76% and 18.02% in 1,2-DCA degradation rate constant, indicating that the 

presence of As3+ has a greater inhibitory effect on 1,2-DCA degradation. In all microcosms amended with 

treatment additives, higher degradation rate constants were observed compared to the untreated positive 

controls (Table 4.2). Moreover, the addition of CaCO3 resulted in an approximately two-fold increase in 

1,2-DCA degradation rate constant in both the As3+ and Cd2+ co-contaminated soil. The effect of all 

treatment additives were more pronounced in the As3+ co-contaminated soil resulting in a 11.19%, 9.25% 

and 5.63% increase in 1,2-DCA degradation rate constant in the presence of CaCO3, Na2HPO4 + NaCl 

and CaSO4.2H2O, respectively, compared to the Cd2+ co-contaminated soil. 
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Figure 4.1: Degradation profiles of 1,2-DCA in soil co-contaminated with (a) 150 mg/kg As3+ and (b) 170 

mg/kg Cd2+ in the presence of treatment additives. A = autoclaved soil control + 1,2-DCA; B = 
unautoclaved soil control + 1,2-DCA; C = unautoclaved soil control + 1,2-DCA + HM; D = soil + 
1,2-DCA + HM + CaCO3; E = soil + 1,2-DCA + HM + Na2HPO4 + NaCl; F = soil + 1,2-DCA + 
HM + CaSO4.2H2O. Bars indicate the average of triplicate samples while the error bars show the 
standard deviation. 
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Table 4.2: Biodegradation rate constants (day-1) of 1,2-DCA in soil co-contaminated with arsenic (150 
mg/kg) and cadmium (170 mg/kg) in the presence of treatment additives. 

 

Treatment Arsenic Cadmium 
Controls                     

Autoclaved soil  

Unautoclaved soil  

Unautoclaved soil + HM 

Treatment additives 

CaCO3 

Na2HPO4 + NaCl 

CaSO4.2H2O 

 

0.016 ± 0.001 

0.111 ± 0.003 

0.081 ± 0.003 

 

0.167 ± 0.007 

0.141 ± 0.009 

0.138 ± 0.013 

 

0.016 ± 0.001 

0.111 ± 0.003 

0.091 ± 0.003 

 

0.152 ± 0.004 

0.136 ± 0.006 

0.141 ± 0.014 

 

 

4.3.2 Total 1,2-DCA bacterial population dynamics in the co-contaminated soil  

The total 1,2-DCA degrading bacterial population density in the different microcosm set-ups 

containing treatment additives is shown in Table 4.3. An alteration in the population of the indigenous 

microbial community, capable of 1,2-DCA degradation, was observed subsequent to the addition of As3+ 

and Cd2+, resulting in an approximately seventeen-fold and thirteen-fold decrease in the 1,2-DCA 

bacterial population, respectively after 10 days. The population densities of the total 1,2-DCA degrading 

bacteria did not seem to follow any regular pattern, although the growth appeared biphasic with an initial 

decrease in bacterial density in the presence of heavy metals, followed by an increase in treated soils over 

time, except for the As3+ co-contaminated soil amended with Na2HPO4 + NaCl. The bacterial cell density 

ranged from 3.19 to 34.47 (× 106 cfu/ml) and 2.48 to 11.63 (× 106 cfu/ml) in the treated As3+ and Cd2+ co-

contaminated soil, respectively, after 10 days. The highest 1,2-DCA degrading bacterial cell densities 

were observed in both Cd and As co-contaminated soil treated with Na2HPO4 + NaCl after 10 days. 

However, a shift in population densities was observed after 20 days with the peak population observed in 

the co-contaminated soil treated with CaCO3. 
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Table 4.3: Total 1,2-DCA degrading bacterial population in heavy metal co-contaminated soil in the presence 
of different treatment additives. 

 

Treatment 
1,2-DCA degrading bacterial population (cfu/ml × 106) 

Day 10 Day 20 
Controls   
Autoclaved soil 0 0 
Unautoclaved soil 48.33 ± 7.77 29.07 ± 1.00 

Arsenic (As3+)   
Unautoclaved soil + As3+ 2.90 ± 0.34 2.54 ± 0.65 
CaCO3 3.19 ± 0.27 275.67 ± 10.69 
Na2HPO4 + NaCl 34.47 ± 6.92 33.00 ± 5.66 
CaSO4.2H2O 9.30 ± 1.11 31.23 ± 2.62 

Cadmium (Cd2+)   
Unautoclaved soil + Cd2+ 3.75 ± 0.83 2.85 ± 0.21 
CaCO3 4.43 ± 0.61 46.00 ± 4.58 
Na2HPO4 + NaCl 11.63 ± 0.80 29.00 ± 1.41 
CaSO4.2H2O 2.48 ± 0.58 5.37 ± 1.36 

Values are averages of triplicate data ± standard deviation.  
The initial 1,2-DCA degrading bacterial population was 6.47 × 106 cfu/ml.  
 
 

4.3.3 Concentrations of soil bioavailable heavy metals 

The bioavailable concentrations of As3+ and Cd2+ in the soil solutions over time are indicated in 

Tables 4.4 and 4.5, respectively. The concentrations of bioavailable heavy metals varied greatly, with 

approximately < 2.72% and < 0.62% of the total arsenic and cadmium added to the system being 

available in NH4NO3-extractable fractions. After 5 days, bioavailable Cd2+ concentrations were further 

reduced to undetectable levels in both the CaCO3 and Na2HPO4 + NaCl treated soil. In the As3+ co-

contaminated soil treated with CaCO3 and CaSO4.2H2O, a 23.91% and 51.028% reduction in the 

bioavailable fraction was observed after 15 days, respectively. However, treatment with Na2HPO4 + NaCl 

resulted in higher bioavailable fractions compared to the As3+ positive control. 
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Table 4.4: Concentration of NH4NO3-extractable arsenic concentrations (mg/kg) in co-contaminated loam 
soil amended with treatment additives.  

 
 Day 0 Day 5 Day 10 Day 15 Day 20 

Positive 
control 4.09 ± 0.38 1.71 ± 0.05 1.34 ± 0.05 0.78 ± 0.02 0.77 ± 0.06 

CaCO3 4.09 ± 0.38 1.47 ± 0.33 1.23 ± 0.07 0.59 ± 0.04 0.81 ± 0.08 

Na2HPO4 + 
NaCl 

4.09 ± 0.38 3.36 ± 0.08 2.77 ± 0.23 2.69 ± 0.07 2.14 ± 0.01 

 
CaSO4.2H2O 
 

4.09 ± 0.38 1.25 ± 0.03 0.97 ± 0.09 0.38 ± 0.02 
 

0.29 ± 0.03 
 

Values are averages of triplicate data ± standard deviation. 
 
Table 4.5: Concentration of NH4NO3-extractable cadmium concentrations (mg/kg) in co-contaminated loam 

soil amended with treatment additives. 
 

 Day 0 Day 5 Day 10 Day 15 Day 20 
 
Positive 
control 1.05 ± 0.28 0.25 ± 0.18 0.09 ± 0.05 ND ND 

CaCO3 1.05 ± 0.28 ND ND ND ND 

Na2HPO4 + 
NaCl 

1.05 ± 0.28 ND ND 0.02 ± 0.01 ND 

CaSO4.2H2O 1.05 ± 0.28 0.62 ± 0.22 0.01 ± 0.02 ND ND 

Values are averages of triplicate data ± standard deviation; ND-Not detectable. 
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4.3.4 Combined effects of 1,2-DCA and heavy metals on soil microbial enzyme activities 

The activity of soil enzymes was used to estimate the adverse effects of various pollutants on soil 

quality. Significant variations in urease and dehydrogenase enzyme activities in the co-contaminated soil 

were observed in this study (Figures 4.2 and 4.3). Dehydrogenase activity was lower in all heavy metal 

amended samples than those in the control (Figure 4.2). After 20 days, soil dehydrogenase activity was 

significantly inhibited by 87.26% and 86.33% in the As3+ and Cd2+ co-contaminated soil, respectively. 

The combined effect of 1,2-DCA and heavy metals on dehydrogenase activity at the different incubation 

times was significantly lower than the control sample containing no heavy metals. Overall soil 

dehydrogenase activities were lower in the heavy metal co-contaminated sample compared to the treated 

soil, with the exception at day 5, in the Cd2+ co-contaminated soil. Moreover, in the As3+ co-contaminated 

soil, an increase in dehydrogenase activity of 67.56%, 76.48% and 45.93% was observed in the presence 

of CaCO3, Na2HPO4 + NaCl and CaSO4.2H2O after 20 days, respectively, compared to the untreated co-

contaminated soil. The alleviation of the inhibitory effect was more pronounced in As3+ co-contaminated 

soil for both CaCO3 and Na2HPO4 + NaCl with up to 7.92% increase in dehydrogenase activity compared 

to soil co-contaminated with Cd2+. However, the positive effect of CaSO4.2H2O in the Cd2+ co-

contaminated soil resulted in a 6.23% increase in dehydrogenase activity compared to the As3+ co-

contaminated soil. Soil urease activity was significantly inhibited in the presence of heavy metals, 

resulting in a 31.37% (Figure 4.3a) and 69.58% (Figure 4.3b) decrease in the presence of As3+ and Cd2+, 

respectively. In the case of treatment additives, a 74.15%, 69.50% and 70.07% increase in urease activity 

occurred in the Cd2+ co-contaminated soil in the presence of CaCO3, Na2HPO4 + NaCl and CaSO4.2H2O 

after 15 days, respectively. These values correspond to an increased urease activity of 25.38%, 11.31% 

and 29.22% compared to As3+ co-contaminated soil, over the same period. In addition, a slight decrease in 

urease activity was observed at day 15 in all additives-treated co-contaminated soil samples.  
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Figure 4.2: Effects of 1,2-DCA and (a) As3+; (b) Cd2+ on soil microbial dehydrogenase activity in microcosms 

containing treatment additives. A = unautoclaved soil control + 1,2-DCA; B = unautoclaved soil 
control + 1,2-DCA + HM; C = soil + 1,2-DCA + HM + CaCO3; D = soil + 1,2-DCA + HM + 
Na2HPO4 + NaCl; E = soil + 1,2-DCA + HM + CaSO4.2H2O. The results are average of triplicate 
samples while the error bars show the standard deviation. 
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Figure 4.3: Effects of 1,2-DCA and (a) As3+; (b) Cd2+ on soil microbial urease activity in microcosms 

containing treatment additives. A = unautoclaved soil control + 1,2-DCA; B = unautoclaved soil 
control + 1,2-DCA + HM; C = soil + 1,2-DCA + HM + CaCO3; D = soil + 1,2-DCA + HM + 
Na2HPO4 + NaCl; E = soil + 1,2-DCA + HM + CaSO4.2H2O. The results are average of triplicate 
samples while the error bars show the standard deviation. 
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4.4 Discussion 

In the present study, the measured bioavailable concentrations of As3+ and Cd2+ were significantly 

lower than the total concentration of the heavy metals added to the system. Metal complexation may be 

attributed to several physical and chemical properties which affect the sorption of these heavy metals in 

soil, as they are generally not mobile and strongly adsorbed in soil. This correlates with similar reports, 

for example, total concentrations of As in the water-extractable fractions of two soil types have been 

reported to be < 1.2% and < 0.3% of the initial concentration added to the soil (Kavenagh et al., 1997). A 

similar conclusion was drawn by Tye et al. (2002) who reported that labile As was between 1.4% and 

19% of the total As in soil.  

The loam soil used in the construction of the microcosms contained relatively high concentrations 

of calcium, iron, phosphate, sulphate and soluble organic carbon with a moderate pH value of 6.59. The 

presence of iron, phosphate, and soluble organic carbon have all been attributed to immobilize free As3+ 

and Cd2+ fractions in soils (Hartley et al., 2009; Kumpiene et al., 2008; Thakur et al., 2006; Zhao and 

Masaihiko 2007). Moreover, the accumulation of both Cd2+ and As3+ in soils may be distributed among 

the different soil components, as soil characteristics (pH, adsorption capacity and moisture) affect the 

mobility, bioavailability and subsequently its toxicity in the complicated soil matrix (deLemos et al., 

2006; Islam et al., 2004; Jiang et al., 2005; Song et al., 2006; Tang et al., 2006). Soil pH generally has the 

greatest impact on the bioavailability or retention of metals in soil, with a greater retention and lower 

solubility of metal ions occurring at high soil pH (Marin et al., 1993; Martínez and Motto, 2000; Mitchell 

and Barr, 1995). In general, it has been observed that the adsorption of Cd2+ decreases with decreasing pH 

(Bolan et al., 1999; Naidu et al., 1994). However, in the case of As3+, the opposite has been observed due 

to the adsorption effect on iron oxide surfaces (Madejón and Lepp, 2007). A possible reason for arsenic 

toxicity on indigenous microorganisms is the slightly acidic soil pH, as values in the range of 6.5-7.6 can 

enhance the risk of As3+ mobility (Hartley et al., 2009). As shown in this study, the toxic effects of both 

As3+ and Cd2+ on indigenous microorganisms involved in the degradation of 1,2-DCA and soil microbial 

activities were still apparent, albeit at low concentrations.  

The application of CaCO3 and CaSO4.2H2O to the co-contaminated soil proved to be effective in 

reducing the bioavailable fractions of As3+, resulting in an increase in 1,2-DCA degradation relative to the 

untreated control. This result correlates with the findings of several researches suggesting that As 

immobilization is mainly controlled by the formation of Ca-As precipitates (Dutré and Vandercasteele, 

1995; 1998; Dutré et al., 1999; Mahuli et al., 1997; Vandercasteele et al., 2002). These studies have 

shown that the precipitation of calcium arsenate (Ca3(AsO4)2) and calcium hydrogen arsenate (CaHAsO3) 

controls the immobilization of As in contaminated soils which have been treated with lime among other 

raw materials. Complexes such as these are precipitated in the presence of Ca under highly oxidizing and 

moderate pH conditions (Porter et al., 2004; Wenzel et al., 2001). Hartley et al. (2004) observed that lime 
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reduces As leaching in soil by 8%, and suggested that this phenomenon may be due to the same 

mechanism of As binding with Ca2+ forming As-Ca complexes, thus reducing the mobility and resulting 

bioavailable fraction.  

Treatment with Na2HPO4 + NaCl proved to be the most effective in increasing the degradation of 

1,2-DCA in the presence of Cd2+, as observed after 5 days. The decrease in the bioavailable concentration 

of Cd2+ in the water soluble fraction (Table 4.4) with a corresponding increase in 1,2-DCA degradation 

provided indirect evidence for the formation of Cd compounds with low solubility. The possibility of 

forming Cd3(PO4)2 upon the addition of phosphate based compounds to Cd contaminated soils has been 

proposed (Cotter-Howells and Caporn, 1996; Ma et al., 1993). The phosphate-induced decrease of Cd2+ in 

the water soluble fraction infers that the addition of phosphate to the soil resulted in a decrease in the 

bioavailability of Cd, which in turn progressively intensified the Cd immobilization capacity of the soil 

(Olaniran et al., 2009). Furthermore, it has been observed by Bolan et al. (1999) that Cl- forms a complex 

with Cd as CdCl+ which reduces the adsorption of Cd by solid phase. Since it is a well-accepted premise 

that microorganisms derive most of their nutrients from the water soluble fraction, a decrease in 

bioavailable Cd2+ in the water soluble fraction will thus lead to decreased uptake by microorganisms. 

However, an increase in the bioavailable fraction of Cd2+ was observed in soil treated with Na2HPO4 + 

NaCl after 15 days, followed by a decrease by day 20. Investigations have also shown that calcium 

carbonate and exchangeable Ca2+ are important phosphate sorbents in soils (Kuo and Lotse, 1972; 

Tekchand and Tomar, 1994). These suggest that Cd and phosphate may influence the absorption of each 

other, either by competing for the Ca2+ sorption sites or by influencing the surface charge potential. The 

high Ca2+ ion concentration in the soil may have contributed to the phenomenon of increased bioavailable 

Cd2+ observed in this study. Thakur et al. (2006) demonstrated an increase in bioavailable Cd2+ with a 

decreasing Ca:P ratio, indicating that affinity of CaCO3 for surface to Cd2+ decreased due to 

phosphatization. Moreover, phosphate induces variation in soil pH thereby influencing the solubility of 

Cd2+ in soils (Levi-Minzi and Petruzzelli, 1984). However, the effect of phosphate addition on soil pH 

depends on the buffering capacity of the soil, the extent of phosphate adsorption and the nature of 

phosphate compounds (Havlin et al., 1999). 

Lime treatment, which increases soil pH, resulted in a decrease in the bioavailable fraction of 

Cd2+ to undetectable limits after 5 days. Thakur et al. (2006) demonstrated that Cd2+ is sorbed on CaCO3 

by more than one mechanism of action, depending on the concentration of Cd and the presence of 

phosphate. The high affinity of calcite surface for Cd has been attributed to similarity between the ionic 

radii of Cd2+ and Ca2+ (McBride, 1980; Pickering, 1983). At low initial Cd levels, the dominant reaction 

mechanism is the replacement of Ca2+ with Cd2+ from accessible surface sites. When all CaCO3 surface 

sites are covered by chemi-sorbed Cd, nucleation–precipitation of CdCO3 as a surface coating on CaCO3 
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becomes the dominant mechanism (Thakur et al., 2006). Zhao and Masaihiko (2007) reported that the 

addition of 2% CaCO3 increased Cd bound to carbonate by 56% as compared to those of the control. 

An increase in bioavailable As3+ concentrations was observed after treatment with Na2HPO4 + 

NaCl. However, this did not result in decreased degradation of 1,2-DCA. The aerobic conditions 

maintained in this study may have resulted in the oxidation of As3+ to As5+ which in turn may have 

enhanced the sorption and immobilization of As, since the oxidized form As5+ adsorbs more strongly to 

solid phases than As3+ (Wang and Mulligan, 2006). Phosphate and arsenate are chemical analogues that 

demonstrate similar chemical behaviour, competing directly for binding sites within the soil (Davenport 

and Peryea, 1991; Zhang and Selim, 2008). It has also been demonstrated that phosphate can suppress the 

adsorption of As3+, while As5+ is more strongly affected than As3+ (Jain and Loeppert, 2000). In the 

present study, addition of phosphate as Na2HPO4 resulted in a two-fold increase in bioavailable As 

compared to untreated soil following extraction using NH4NO3. It has been reported that As may be 

mobilized in soils after amendment with phosphorus based chemicals, mainly due to competitive anion 

exchange (Peryea, 1998; Qafoku et al., 1999). Cao and Ma (2004) reported that addition of phosphate to 

soils increased soil water-soluble arsenic via replacement of arsenate by phosphate in soil. In some cases, 

sulphate may also compete with As3+ adsorption when the pH is below 7 (Jain and Loeppert, 2000; Meng 

et al., 2000; Wilkie and Hering, 1996). In addition, 1,2-DCA degrading bacterial populations decreased 

by 7.80% in As3+ co-contaminated soil treated with Na2HPO4 + NaCl from day 10 to day 20. A possible 

explanation is that these oxyanions may have competed with microbial uptake systems (Nies, 1999), in 

which case the up-take of arsenate may have out-competed that of phosphate. 

The untreated co-contaminated soils, with higher bioavailable metal fractions, showed 

significantly lower enzyme activities and microbial growth, which indicated the inhibitory effect of 

metals on total 1,2-DCA degrading population and on the microbial urease and dehydrogenase enzymes 

activities. Upon the addition of treatment amendments, increases in total 1,2-DCA degrading populations 

were observed on day 10 for all treatments, except for the Cd2+ co-contaminated soil treated with 

CaSO4.2H2O. Gypsum is known to create air and moisture slots that loosen and break-up the soil 

structure, thereby creating a greater surface area to which these microorganisms may adhere (Viator et al., 

2002). Treatment amended soils resulted in an increase in dehydrogenase enzyme activities. However, 

urease activity was higher compared to the control containing no treatment amendments within the first 

10 days followed by a decrease in activity. An explanation for this trend is that, as the microorganisms 

degrade organic carbon sources, depletion of inorganic nutrients such as nitrogen may occur (Margesin et 

al., 2000). Bioavailable heavy metal fractions are generally more toxic than the other forms because they 

can be easily released into water as ions (Ghosh et al., 2004; Roy et al., 2004). Metal ions react with 

sulfhydryl (-SH) groups of enzymes, a reaction analogous to the formation of metallic sulfide. This 

reaction inactivates enzymes since -SH groups serve as integral parts of the catalytically active sites or as 
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groups involved in maintaining the correct structural relationship of the enzyme protein (Juma and 

Tabatabai, 1977). Heavy metals can also reduce enzyme activity by interacting with the enzyme-substrate 

complex, denaturing the enzyme protein, interacting with its active sites (Dick, 1997; Nannipieri, 1994) or 

by affecting the synthesis of the enzymes within the microbial cells (Vig et al., 2003). Moreno et al. 

(2001) reported that the toxicity of Cd on urease and dehydrogenase activities decreased in soil with low 

pH and high soluble organic carbon, which is apparent in the soil used in this study. The degree of 

inhibition of urease enzymatic activity with As3+ and Cd2+ was higher after 5 days than after 20 days of 

incubation. This indicates a recovery of the extracellular enzyme activities despite heavy metal 

contamination. The reverse trend was observed with the intracellular dehydrogenase enzymatic activities.  

In addition, besides being an enzyme inhibitor, heavy metals can have deleterious effects on membrane 

structure and function by binding to the ligands such as phosphate and the cysteinyl and histidyl groups of 

proteins (Collins and Stotzky, 1989). The addition of treatment amendments which ultimately lowered the 

bioavailable fraction of heavy metals increased the activity of soil microorganisms. 

In general, amendment of soil with treatment additives increases the residual fraction of heavy 

metals due probably both to the formation of strong bonds between the metals and the adsorbing surface 

or metal precipitation in the limed soil (Lombi et al., 2002). Among the three amendments, CaCO3 was 

the most efficient at increasing the degradation of 1,2-DCA in co-contaminated soil. It seems clear that 

the increased degradation of 1,2-DCA by the indigenous microorganism in the treated soils was related to 

the decrease of the bioavailable fraction of metals. As shown in this study, bioavailable As3+ and Cd2+ can 

reduce the degradation rate of 1,2-DCA, the model organic compound in soil under investigation. 

Application of treatment additives can be used as a means of reducing bioavailable fractions of these 

heavy metals, thereby limiting microbial toxicity and ultimately leading to increased degradation of 1,2-

DCA in such co-contaminated soil environments. This is important for many industrialized countries as a 

large proportion of agricultural land is contaminated with both heavy metal and organic compounds 

(Suhadolc et al., 2004). As a consequence, any kind of additive which may lead to increased 

bioavailability of heavy metals should be avoided, as heavy metals such as As3+ and Cd2+ interfere with 

microbial activities. Results from this study suggest that efficacy of treatment additives addition to co-

contaminated soil environments for improved organic compound degradation can vary depending on the 

particular combination of elements present in the soil as well as the range of biological endpoints of 

concern. In addition, the retention of heavy metals in soils within a given time can be achieved by the 

addition of sorbing phases and complexing agents. However, the sustainability of maintaining reduced 

solubility conditions is the key to the long-term success of the treatment (Wang and Mulligan, 2006) in 

co-contaminated soil.  
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5.1 The research in perspective 

 Numerous advanced technologies have emerged in the field of environmental biotechnology to 

tackle the challenges of cleaning up contaminated sites. Bioremediation is one such emerging technology 

which takes advantage of the astounding catabolic versatility of microorganisms to degrade and/or 

detoxify contaminants for alleviation of the noxious effects. In situ bioremediation in particular, has 

shown enormous potential for remediating highly contaminated environments. However, varying degrees 

of inconsistencies in their application on the field have been reported, raising fundamental questions, viz., 

(i) how to clarify the biological involvement in the effectiveness of bioremediation and (ii) how to 

evaluate the environmental impact of bioremediation. In order to address these questions, it is essential to 

carry out laboratory feasibility tests to determine the effectiveness of bioremediation at a small scale, 

prior to implementation on a full-scale field application.  

Approximately 40% of the hazardous waste sites currently on the National Priorities List sites 

identified by the U. S. Environmental Protection Agency are co-contaminated with organic and heavy 

metal pollutants (Cheng, 2003; Fierens et al., 2003; Norena-Barroso et al., 2004; Sandrin et al., 2000; 

Sandrin and Maier, 2003). Co-contaminated environments are considered difficult to remediate because 

of the mixed nature of the contaminants and the fact that the two components often must be treated 

differently (Roane et al., 2001). Moreover, all heavy metals are known to be potentially toxic to soil 

microorganisms at high concentrations and can hinder the biodegradation of organic contaminants (Amor 

et al., 2001; Bååth, 1989; Benka-Coker and Ekundayo, 1998; Riis et al., 2002, Roane et al., 2001; Sokhn 

et al., 2001; White and Knowles, 2000; 2003). Heavy metals appear to affect organic pollutant 

biodegradation through interference with the ecophysiology of organic degrading microorganisms, thus 

imposing a double stress on the microbial populations (Roane et al., 2001). Pollutant biodegradation may 

be inhibited through interaction with enzymes directly involved in biodegradation or those involved in 

general metabolism, thus rendering the enzyme non-functional (Angel and Chaney, 1989; Sandrin and 

Maier, 2003). Although broad ranges of heavy metal concentrations have been reported to inhibit 

biodegradation, the effects of metals on biodegradation processes have not been well-characterized, and 

different patterns of inhibition have also been reported (Kuo and Genthner, 1996; Roane and Pepper, 

1997; Sandrin et al., 2000). Also, the effects of metal toxicity on organic pollutant biodegradation in co-

contaminated soil environments have not been adequately defined, quantitatively or qualitatively (Sandrin 

and Maier, 2003). In addition, the presence of multiple contaminants may present extreme challenges to 

the maintenance of a phylogenetically and functionally diverse microbial community required for the 

degradation process. The objective of this study, therefore, was to assess the impact of heavy metals on 

the aerobic biodegradation of 1,2-dichloroethane (1,2-DCA) in soil, on a small scale laboratory test 

system. 
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This study incorporated the use of soil microcosms as practical testing systems, to obtain 

important preliminary information on the biodegradation of 1,2-DCA in heavy metal co-contaminated soil 

as well as determined the effects of biostimulation, bioaugmentation and treatment additives on the 

biodegradation process prior to a full-scale field application. Microcosms have previously been used to 

mimic real world exposures, revealing promising results. Such methods, however, are limited in their 

direct application to field situations. By using microcosms, soils could be homogenized to evenly 

distribute both the microbial populations and toxicants, and thereby reduce spatial variability. Prior to 

implementing in situ bioremediation protocols, it is also important to establish the indigenous microbial 

potential and to assess the limiting factors to be controlled during treatment. This information is crucial, 

especially in the case of implementing bioremediating strategies such as biostimulation and 

bioaugmentation. In addition, feasibility tests should reveal that removal of the target compound is due to 

the effect of biodegradation and that the rate at which this occurs is greater than the natural rate of 

decontamination (Bento, 2005). In order to establish this, it is important to incorporate and differentiate 

between non-biological dissipation mechanisms and biodegradation. This involves comparing loss of the 

compound in sterile treatments with non-sterile treatments. In this study, autoclaved soil amended with 

mercuric chloride was used to measure abiotic losses of 1,2-DCA. Autoclaving soil samples for sterile 

controls have been widely used in bioremediation feasibility studies (Carter et al., 2007); however, it has 

been reported to induce changes on the physico-chemical properties of soils. These changes include 

aggregation of clay particles which leads to a decrease in soil surface area and significant changes in 

adsorption of organic compounds (Lotrario et al., 1995). These factors could account for alterations in 

solvent extractability or abiotic transformation of 1,2-DCA in the autoclaved soil control. 

 In this study, 1,2-DCA was readily degraded by indigenous microorganisms in the soil samples 

tested. It was observed that more degradation occurred in loam soil compared to clay soil over the same 

period of the degradation process. Thus, it is evident that the soils harboured different microorganisms 

capable of biodegrading 1,2-DCA at various rates. Moreover, the different physico-chemical properties of 

the soils such as pH, moisture content and nutrient bioavailability are known to affect the rate of organic 

biodegradation (Olaniran et al., 2009; 2006). In this case, the higher degradation rate of 1,2-DCA in loam 

soil compared to clay soil could be attributed to the increased levels of inorganic trace elements (e.g., 

nitrogen, iron and calcium) in loam soil, as increased levels of trace elements have been demonstrated to 

enhance biodegradation rates in both marine and terrestrial ecosystems considerably (Atlas and Bartha, 

1992). The presence of As3+, Cd2+, Hg2+ and Pb2+ was observed to negatively impact the degradation of 

1,2-DCA, with Hg2+ having the highest inhibition effect in clay soil and As3+ in loam soil. An increase in 

the half-lives (t½) of 1,2-DCA was also observed, thus confirming the toxic effects of the heavy metals on 

indigenous microorganisms involved in 1,2-DCA degradation. Moreover, in clay soil, a dose-dependent 
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relationship between pseudo-first-order transformation rate coefficient (k1) and metal ion concentrations 

in which k1 decreased with higher initial metal concentrations was observed for all the heavy metals tested 

except for Hg2+. Of interest were that combinations of metals resulted in non-linear responses, whereby 

combinations of two heavy metals resulted in a greater negative impact on 1,2-DCA degradation 

compared to the combinations of three or four heavy metals. 

Most reports on the effects of metal toxicity on organic pollutant biodegradation in soil 

environments have not focused on quantitatively assessing the impact of heavy metals. This is mainly due 

to related complications which stem from the fact that the physical and chemical state of the metals is 

affected by environmental conditions (Said and Lewis, 1991). Moreover, the total contaminant levels are 

not indicative of essentially occurring adverse effects, as the toxic effects are determined not only by their 

intrinsic toxicity and concentration but also by their physico-chemical forms (Guéguen et al., 2004; 

Sandrin and Maier, 2003). Therefore, when considering inhibition data, it is important to take into 

account the possible effects of various environmental factors, such as nutrient availability, quality and 

bioavailability of contaminants, and soil properties. Bioavailable fractions of heavy metals in free ionic 

and labile forms have the potential to interact with biological vectors such as microorganisms. When 

measuring bioavailable concentrations of heavy metals, it was noted that this fraction was significantly 

lower than the total metal concentration of heavy metals added to the system. Several physical and 

chemical properties affect the adsorption, complexation and distribution of heavy metals among the 

different soil components. Soil characteristics such as pH, adsorption capacity, moisture content and the 

presence of certain anions contribute significantly to the mobility, bioavailability and subsequently their 

toxicity in the complicated soil matrix (deLemos et al., 2006; Islam et al., 2004; Jiang et al., 2005; Song 

et al., 2006; Tang et al., 2006). In particular, the presence of iron, phosphate and soluble organic carbon 

has been attributed to immobilizing free fractions of heavy metals in soils. Generally, soil pH has the 

greatest impact on the bioavailability or retention of metals in soil, with greater retention and lower 

solubility of metal ions occurring at high soil pH (Martínez and Motto, 2000; Mitchell and Barr, 1995). 

Metals exert their toxic effects on microorganisms by substituting the toxic metal ions for 

physiologically essential ions within an enzyme, thus rendering the enzyme non-functional (Nies, 1999), 

and imposition of oxidative stress on microorganisms (Kachur et al., 1998). In this regard, the impact of 

heavy metals on growth or activity of the target organisms can be used as a sensitive indicator of the 

effects of pollutants (Giller et al., 1998). Nannipieri et al. (1990) stated that measuring a combination of 

microbial activities and active population densities provides a more sensitive indication of the effects of 

heavy metals. However, measuring enzyme activities in soil has a disadvantage as it can be associated 

with active cells, entirely dead cells, and cell debris which may be complexed with clay minerals and 

humic colloids (Taylor et al., 2002). Activity of many extracellular hydrolases such as urease is probably 
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a result of enzymes associated with some or all of these components. Ureases are involved in the 

biogeochemical transformation of nitrogen and are likely to be an essential component of substrate 

mineralization (Taylor et al., 2002). On the other hand, dehydrogenase is present in all microorganisms 

and provides a more accurate measure of intracellular catalysis. It is considered as an accurate measure of 

the microbial oxidative activity of the soil and has a direct relationship to total viable microorganisms 

(Dick, 1997). Measuring both enzyme activities in the co-contaminated soil samples provided a more 

accurate assessment of the impact of heavy metals on the indigenous soil microorganisms. Interestingly, 

dehydrogenase enzyme activities were negatively correlated with the presence of heavy metals, 

confirming the toxicity of heavy metals on indigenous soil microorganisms. Moreover, an accurate and 

direct correlation between dehydrogenase and total 1,2-DCA degrading populations was observed in the 

unautoclaved soil control. Since the method for assessing enzyme activity is critical, the buffered method 

of Kandeler and Gerber (1988) was used in this study. This method measures enzyme activity at the 

natural pH of the soil, which provides a more realistic indication of the activities likely to occur in situ. In 

the first 5 days of incubation, heavy metals reduced urease activity and thereafter an increase in urease 

activity was observed. This trend has been attributed to the increased abundance of tolerant 

microorganisms in co-contaminated environments, due to genetic changes and physiological adaptations 

involving no alterations in the genotype (Bruins et al., 2000; Shen et al., 2006). Another interesting 

observation was the relatively low urease activity in the presence of glucose and fructose, which can be 

attributed to the depletion/decrease in nitrogen sources. It has been reported that addition of large 

quantities of organic carbon sources may deplete macronutrients such as nitrogen (Margesin et al., 2000). 

Overall, soil urease activity has been shown to be more sensitive to pollution than that of other soil 

enzymes (Shen et al. 2006). In this study, urease and dehydrogenase activity proved to be sensitive 

indicators of soil pollution in the co-contaminated environment, with concomitant lower net degradation 

rates, in the microcosms. 

The bioaugmentation strategy employed in this study was effective in enhancing the 

biodegradation of 1,2-DCA in the co-contaminated soil. In order to overcome some of the problems or 

limitations which relate to the survival of selected strains, an alternative generic bioremediation approach 

was adopted, namely dual-bioaugmentation. This technique was based on strengthening a portion of the 

native microbial community, which in turn inferred multiple resistance to heavy metals, thereby indirectly 

protecting metal sensitive 1,2-DCA degrading strains from metal toxicity. This is supported by increased 

proliferation of total 1,2-DCA degrading populations in the dual-bioaugmented microcosms. In particular, 

the finding in this study correlates well with that of Roane et al. (2001) who reported that dual-

bioaugmentation, involving inoculation with both metal-detoxifying (Ralstonia eutropha JMP134) and 

organic-degrading (Pseudomonas H1) bacteria, facilitates the degradation of 2,4-dichlorophenoxyacetic 
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acid in the presence of cadmium co-contamination. Alisi et al. (2009) reported that bioaugmentation with 

a microbial formula tailored with selected native strains, in the presence of heavy metals, resulted in an 

overall reduction of about 75% of the total diesel hydrocarbons in co-contaminated soil. However, 

monitoring the survival of the heavy metal-resistant strain in the co-contaminated soil will provide a more 

promising indication of the effectiveness of such an approach.  

When considering biostimulation as an option to ameliorate contaminated environments, it is 

necessary to first determine the physico-chemical parameters of the target compound. In the As3+ and 

Cd2+ co-contaminated soil, biostimulation with fertilizer proved most effective in enhancing the 

degradation of 1,2-DCA. Contradictory opinions about the effect of nutrients on biodegradation of 

chlorinated organic pollutants have been documented, in particular, conflicting results regarding the 

impact of nitrogen application. Results showed that nitrogen addition either enhanced microbial activity 

thus accelerating degradation, or altered enzymatic systems responsible for the degradation (Demoling et 

al., 2007; Ruppel et al., 2007). However, in co-contaminated soils, addition of nutrients which are aimed 

at accelerating the breakdown of the target compound may have a stimulatory effect on microbial 

activities, leading to redistribution and in most cases leaching of the heavy metal to the soil solution 

(Browere et al., 2004; Signes-Pastor et al., 2007). Alternatively, phosphates which are used mainly as a 

treatment additive may have a two-fold effect by reducing bioavailable concentrations, as well as 

providing a low source of phosphorus (Liebeg and Cutright, 1999). Moreover, in co-contaminated soil, 

the presence and fate of nutrients is the key factor determining the overall success of the biostimulation 

regime. In this regard, amendment with slow-release fertilizers, such as Inipol EAP-22 (Lessard et al., 

1995) and inorganic fertilizers may be a suitable alternative. Slow-release inorganic fertilizers provide a 

sustained release of nutrients while being slowly dissolved or degraded by continual or intermittent 

contact with water (Xu et al., 2005). 

In general, amendment of soil with treatment additives increased the residual fraction of heavy 

metals, due probably both to the formation of strong bonds between the metals and the adsorbing surface 

or metal precipitation in the limed soil (Lombi et al., 2002). Among the three amendments, CaCO3 was 

the most efficient at increasing the degradation of 1,2-DCA in co-contaminated soil. It seems clear that 

the increased degradation of 1,2-DCA by the indigenous microorganism in the treated soils was related to 

the decrease in the bioavailable fraction of metals. It was also observed that some treatment additives 

resulted in increased levels of bioavailable fractions of heavy metals. However, this did not result in an 

increase in 1,2-DCA degradation. Due to the dynamic nature of metals to interact with various soil 

components and macronutrients, it is important to consider these factors prior to implementing such 

strategies to bioremediate co-contaminated soils. 
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DGGE profiles of PCR-amplified 16S rDNA region revealed close similarities in the banding 

patterns between the As3+ and Cd2+ treated co-contaminated soil, suggesting that the same organisms were 

able to withstand the toxic effects of these metals as well as utilize 1,2-DCA. In the co-contaminated 

microcosms amended with fertilizer, numerous lighter bands were observed on the gel profile. It could 

therefore be suggested that the addition of fertilizer led to the enrichment of a small number of 

genospecies. These observations corroborate with previous studies on community structures in fertile 

soils which harbour an equitable distribution of a large number of phylotypes which produces a DGGE 

profile with diffuse staining and few distinct bands (Nakatsu et al., 2000). 

In co-contaminated soil environments, microbial communities are undoubtedly the key driving 

force behind the biological treatment of pollutants. As indicated in this study, heavy metals reduced the 

activity of indigenous microorganisms, thus decreasing the degradation rate of 1,2-DCA. The study 

emphasizes the toxic effects of heavy metals by quantitatively assessing the possible interference of the 

metallic species on 1,2-DCA degradation. Application of dual-bioaugmentation strategy and 

biostimulation with fertilizer was most efficient at enhancing the degradation of 1,2-DCA. Treatment 

additives, in particular CaCO3 were also effective, and can be used as a means of reducing bioavailable 

fractions of heavy metals, thereby limiting microbial toxicity and ultimately leading to increased 

degradation of 1,2-DCA in soil co-contaminated with heavy metals. However, a more thorough 

understanding of the extent and mechanisms by which metals inhibit 1,2-DCA degradation is needed. 

These results are encouraging and allow for the identification of some alterations that could be introduced 

to overcome a critical bottle neck of the bioremediation technology. In this regard, the bioremediation 

strategies adopted in this study may be used as a rational methodology for remediation of sites co-

contaminated with 1,2-DCA and heavy metals, subject to a thorough understanding of the site’s ecology 

and of the local physico-chemical constraints. This is important for many industrialized nations, as a large 

proportion of agricultural land is co-contaminated with heavy metals and organic pollutants. 

 

5.2 Potential for future development of the study 

Firstly, the difficulties inherent in studying the effect of heavy metals on chlorinated organic 

pollutants may be associated with the methodological choices for devising protocols and the methods 

used for data treatment (Ren et al., 2004). Since application of bioremediation strategies is time 

consuming, it is essential to design experiments which can cut experimental time and improve the 

efficiency of experiments. In this respect, experimental uniform design can provide an important 

contribution to research development in this area (Shen et al., 2006). Basically, this design is aimed at 

distributing the experimental points evenly in the factor space so as to have fewer trials and with each 

point having full representation. This design has been applied successfully in many other facets of 



112 
 

research (Cheng et al., 2002; Liang et al., 2001), and has brought about results closer to the facts of 

combined pollution of organic and heavy metals in real-world exposures (Shen et al., 2006). Case studies 

using the approach employed in this study may be used to large scale treatment of 1,2-DCA co-

contaminated soil. Also, it is imperative that feasibility studies incorporate various environmental samples 

prior to implementing bioremediation strategies in situ. Since this study focused primarily on co-

contaminated soil microcosms, more research incorporating water microcosm set-up should be conducted. 

In addition, the effects of co-contaminated soil conditions, such as moisture content and pH, should be 

investigated as these properties play significant roles on metal bioavailability.  

In addition to DGGE, various other culture-independent techniques such as single strand 

conformation polymorphism (SSCP) and terminal restriction fragment length polymorphism (T-RFLP), 

along with numerous other techniques, have provided a wealth of information regarding the dominant 

microbial species as well as detection of specific microorganisms involved in the biodegradation of 

organic pollutants. Some of these molecular fingerprinting methods were observed to be too sensitive, 

giving high resolution to provide reliable and robust genotypic characterization at the community level 

(Torsvik et al., 1998) in single pollutant contaminated sites. Therefore, approaches such as these hold 

great promise for assessing microbial diversity in co-contaminated environments. Combination of 

different methods that complement each other is a useful strategy for monitoring changes in microbial 

communities and ecosystems, and should definitely be considered when assessing microbial diversity in 

co-contaminated environments, such as in the present study. In addition, catabolic gene-specific primers 

may be used to confirm the direct roles of organisms in 1,2-DCA degradation, thus providing a possible 

link between phylogeny and function. High-throughput approaches are also making in-roads for 

characterization of microbial communities in co-contaminated sites. Metagenomics is one such 

technology which has the potential to provide direct access to the entire pool of environmental genomes, 

leading to the construction of metagenomic libraries. Such techniques are expected to boost the discovery 

of new catabolic activities, and provide valuable information for the management and sustainable clean-

up of co-contaminated sites.  
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Table 1:  Composition of synthetic groundwater per litre of deionized water (pH 7.8). 
 

 

 

 

 

Adjust the pH to 7.8 using NaOH or HCl 

 

Table 2:  Composition of minimal salts medium (MMZ) per litre of deionized water (pH 7). 

 
 

 

 

 

  

Table 3:  Composition of trace element solution per litre of deionized water. 

 

 

 

 

 

 

Filter sterilized solution using 0.2 μm filter 
 
 
 
 
 
 
 
 
 

Reagent Quantity (mg) 
MgCl2. 6H2O 304.95 
KCl 8.95 
NH4NO3 2.40 
CaCl2 110.99 
Ca(OH)2 111.15 
NaHCO3 714.09 

Reagent Quantity  
KH2PO4 1.36 g 
Na2HPO4.12H2O 5.37 g 
(NH4)2SO4 0.50 g 
MgSO4.7H2O 0.20 g 
Trace element solution 5.00 ml 
Bacteriological agar  12.00 g 

Reagent Quantity (mg) 
CaCl2 530 
FeSO4.7H2O 200 
ZnSO4.7H2O 10 
H3BO3 10 
CoCl2.6H2O 10 
MnSO4.5H2O 4 
Na2MoO4.2H2O 3 
NiCl2.6H2O 2 
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Table 4:  Chemical composition of fertilizer (Chemicult). 

 
 

 

 

 

 

 

 

 

Table 5:  Preparation of heavy metal stock solutions per litre of deionized water. 

 
 

 

 
 

Table 6:  Percentage moisture in clay and loam soil samples. 

 

  

 

 

 

 

 

 

 

 
 

Element Quantity 
N 146 g/kg 
P 43 g/kg 
K 274 g/kg 
Mg 29 g/kg 
B 240 g/kg 
Fe 1800 mg/kg 
Cu 20 mg/kg 
Zn 50 mg/kg 
Mo 10 mg/kg 
Mu 240 mg/kg 

Heavy metal salt Quantity (mg) 
Arsenic oxide (As2O3) – 150 mg/kg 198.05 
Cadmium chloride (CdCl2) – 170 mg/kg 277.20 
Mercuric chloride (HgCl2) – 500 mg/kg 676.80 

 Clay Loam 
Weight prior to drying (g) 150 150 
 120.86 134.86 
Weight after drying (g) 134.27 124.87 
 118.17 126.35 

Average 124.43 128.70 
Moisture content (%) 17.05 14.20 
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 Urea solution (0.48%) (prepare fresh) 
Urea (Saarchem)       2.4 g 
Distilled water (bring up)      500 ml 
 

 Potassium chloride solution 
Potassium chloride (KCl) (Saarchem)     74.6 g 
1 M Hydrochloric acid (32% HCl = 10 M) (Merck)   10 ml 
Distilled water (bring up)      1000 ml 
 

 Sodium hydroxide solution (0.3 M) 
Sodium hydroxide (NaOH) (Saarchem)     12 g 
Distilled water (bring up)      1000 ml 
 

 Sodium salicylate solution 
Sodium salicylate (Na-salicylate) (Fluka)     17 g 
Sodium nitroprusside (Merck)      0.12 g 
Distilled water (bring up)      100 ml 
 

 Sodium salicylate/Sodium hydroxide solution (prepare fresh) 
Sodium hydroxide stock solution     100 ml 
Sodium salicylate stock solution 100 ml 
Distilled water        100 ml 
 

 Sodium dichloroisocyanide solution (0.1%) (prepare fresh) 
Sodium dichloroisocyanide (Merck)     0.1 g 
Distilled water        100 ml 
 

 Borate buffer (pH 10) 
Disodium tetraborate       56.85 g 
Distilled water (warm)       1500 ml 
pH adjustment - after cooling (20% sodium hydroxide)   pH 10 
Distilled water (bring up)      2000 ml 
 

 Ammonium standard solution 
 
Solution I (1000 μg NH4-N/ml) 
Ammonium chloride (NH4Cl) (Saarchem)    3.82 g 
Distilled water (bring up)      1000 ml 
 
Solution II 
Solution I stock solution (varying concentrations)   0.01 - 0.5 ml 
Potassium chloride solution (bring up)     100 ml 
 

 2-(p-iodophenyl)-3(p-nitrophenyl)-5-phenyl tetrazolium chloride (INT) 
INT (Sigma)        0.03 g 
N,N-dimethylformamide (N,N-DMF) (Merck, Germany)    100 μl 
Distilled water (bring up)      50 ml 
Sonicate with gentle heating      
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 0.5 M Disodium ethylenediaminetetraacetate (EDTA) 
EDTA (Saarchem)       186.12 g 
Double distilled water (bring up)      1000  ml 
pH adjustment (sodium hydroxide pellets ~20 g)    pH 8 
 

 50 × Tris-acetate EDTA buffer (TAE)   
Tris base         242  g 
Glacial acetic acid (Merck)      57.1  ml 
0.5 M EDTA (pH 8)       100  ml 
Double distilled water (bring up)     1000  ml 
pH adjustment (sodium hydroxide pellets/glacial acetic acid)  pH 8 
 

  Phosphate buffered saline (PBS) 
Sodium chloride (KCl) (Saarchem)     8  g 
Potassium chloride (KCl) (Saarchem)     0.20  g 
Disodium hydrogen phosphate (Na2HPO4.12H2O) (Saarchem)  3.58  g 
Potassium dihydrogen phosphate (KH2PO4) (Saarchem)   0.24 g   
Double distilled water (bring up)     1000  ml 
pH adjustment (hydrochloric acid)     pH 7.4 
 

 Sodium chloride solution (0.85%) 
Sodium chloride (NaCl) (Saarchem)     8.5 g 
Distilled water (bring up)      1000 ml  

     
 Ethidium bromide stain (EtBr)     

Ethidium bromide (Sigma)      50 µl 
Double distilled water        500  ml 
 

 Primer stocks (16S rDNA region) (Inqaba Biotec) 
Double distilled water added to 63F primer    408.73 µl 
Double distilled water added to 1387R primer     250.81 µl 
Final concentration        100 µM  
   

 Primer stocks (V3 – V5 region) (Inqaba Biotec) 
Double distilled water added to 341F-GC primer    280.36 µl 
Double distilled water added to 907R primer     343.99  µl 
Final concentration        100  µM 
 

 Denaturing solution (0%) 
40% Acrylamide/bisacrylamide (BioRad)    15  ml   
50 × TAE buffer (pH 8) (BioRad)     2  ml 
Double distilled water       83  ml   
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 Denaturing solution (100%) 
40% Acrylamide/bisacrylamide      15 ml   
50 × TAE buffer (pH 8)       2  ml 
40% (v/v) Deionized formamide (BioRad)    40  ml 
7 M Urea (BioRad)       42  g       
Double distilled water (bring up)     100  ml 
 

 Ammonium persulphate (APS) 
APS (10%) (Promega)       0.05 g  
Double distilled water       500  µl 
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STANDARD CURVES AND NUMERICAL DATA 
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Table 1: Gas chromatographic peak area values used for construction of 1,2-DCA standard curve in clay 
soil.  

 

1,2-DCA (μl)  Sample 1 Sample 2 Sample 3 Average Standard 
deviation 

5 5 188 8 257 9 096 7 514 2 057 
10 17 149 18 711 18 522 18 127 853 
15 25 917 16 037 24 774 22 243 5 405 
20 31 887 28 945 32 833 31 222 2 028 
25 29 043 37 525 35 397 33 988 4 413 

 

 
Figure 1: Standard curve for determination of 1,2-DCA concentration in clay soil. 
 
Table 2: Gas chromatographic peak area values used for construction of 1,2-DCA standard curve in loam 

soil.  
 

1,2-DCA (μl)  Sample 1 Sample 2 Sample 3 Average Standard 
deviation 

5 4 072 3 910 3 907 3 963 94 
10 7 072 8 408 7 534 7 671 679 
15 10 097 11 192 10 361 10 550 571 
20 14 242 14 202 14 222 14 222 20 
25 16 657 17 965 17 474 17 365 661 
 

 

 
Figure 2: Standard curve for determination of 1,2-DCA concentration in loam soil. 
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Table 3: Gas chromatographic peak area values used for construction of 1,2-DCA standard curve in loam 
soil undergoing bioremediation treatments. 

 

1,2-DCA (μl)  Sample 1 Sample 2 Sample 3 Average Standard 
deviation 

5 4270 4092 3963 4108 154 
10 8487 8907 9700 9031 616 
15 14041 13273 12637 13317 703 
20 16959 18476 19442 18292 1252 
25 22993 22730 20910 22211 1134 

 

 
Figure 3: Standard curve for determination of 1,2-DCA concentration in loam soil undergoing 

bioremediation treatments. 
 
Table 4:  Optical density values used for dehydrogenase activity standard curve. 
 

INTF  
(μg per test) Sample 1 Sample 2 Sample 3 Average Standard 

deviation 
10 0.043 0.032 0.036 0.037 0.006 
20 0.076 0.084 0.092 0.084 0.008 
50 0.199 0.196 0.208 0.201 0.006 
70 0.266 0.272 0.296 0.278 0.016 
100 0.303 0.387 0.394 0.361 0.051 
150 0.563 0.539 0.541 0.548 0.013 
200 0.756 0.726 0.722 0.735 0.019 
250 0.927 0.898 0.905 0.910 0.015 
300 1.067 1.058 1.051 1.059 0.008 

 

 
Figure 4: Standard curve for determining INTF concentration in the dehydrogenase activity test.  
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Table 5:  Optical density values used for urease activity standard curve. 
 

NH4  
(μg NH4-N/ml) Sample 1 Sample 2 Sample 3 Average Standard 

deviation 
0.1 0.069 0.071 0.079 0.073 0.005 
0.2 0.121 0.153 0.114 0.129 0.021 
0.3 0.178 0.183 0.196 0.186 0.009 
0.4 0.220 0.246 0.262 0.243 0.021 
0.5 0.285 0.294 0.286 0.288 0.005 
1.0 0.564 0.576 0.593 0.578 0.015 
1.5 0.876 0.886 0.907 0.890 0.016 
2.5 1.334 1.458 1.401 1.398 0.062 
3.5 1.978 1.986 1.972 1.979 0.007 
4.5 2.532 2.549 2.539 2.540 0.009 
5 2.772 2.848 2.845 2.822 0.043 

 

 
Figure 5: Standard curve for determining ammonium concentration in the urease activity test. 
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Table 6:  Gas chromatographic peak area values used for clay soil samples co-contaminated with different concentrations of heavy metals. 
 

Microcosm Day 0 Day 5 Day 10 Day 15 Day 20 Day 25 Day 30 

Autoclaved soil control 
19 103 16 278 15 704 14 906 14 106 13 583 13 411 
21 244 19 859 17 553 15 856 14 956 14 617 13770 

- - - - - - - 

Unautoclaved soil 
control 

19 307 12 230 9 780 6 061 5 475 4 388 3 938 
22 339 15 046 11 803 6 999 6 496 5 054 4 233 

- - - - - - - 

[A
s3+

] m
g/

kg
 

75 18 283 12 847 11 571 6 813 6 525 4 651 3 770 
 21 305 14 918 12 192 5 017 7 292 6 032 4 642 
 21 771 15 557 12 635 8 599 8 409 6 576 5 403 

112.5 20 475 14 867 12 873 8 979 8 738 7 027 5 686 
 22 805 16 161 13 576 8 869 9 228 7 299 5 379 
 22 122 13 185 9 374 6 909 5 763 4 221 2 385 

150 17 531 14 411 12 265 8 612 8 377 6 883 5 714 
 21  129 16 602 14 448 10 857 10 454 8 866 7 120 
 20 682 13 823 10 878 6 676 6 613 4 929 4 485 

[C
d2+

] m
g/

kg
 

85 18 849 13 820 11 787 8 149 7 794 5 997 4 858 
 19 648 12 216 9 716 6 035 5 802 4 399 3 649 
 18 314 12 812 11 236 6 450 6 628 5 051 3 897 

127.5 21 111 13 112 11 705 7 749 6 808 5 526 4 662 
 21 115 12 653 10 922 8 872 7 084 5 559 4 676 
 18 266 10 886 9 656 6 242 5 396 4 148 3 227 

170 20 049 12 538 10 869 8 642 8 406 6 767 6 012 
 19 937 11 927 9 476 6 731 6 386 5 080 4 429 
 17 494 14 289 11 657 8 159 7 320 5 963 4 980 

[H
g2+

] m
g/

kg
 

840 20 795 15 314 13 940 11 087 10 850 7 502 6 390 
 18 905 15 265 13 144 11 269 10 587 7 983 6 277 
 18 073 14 324 12 243 8 356 10 015 6 148 4 905 

1260 19 987 12 514 10 638 7 098 8 781 5 465 4 445 
 17 999 15 335 14 315 10 680 9 137 6 097 4 846 
 18 415 12 432 12 317 8 149 9 897 6 374 5 480 

1680 18 313 15 842 13 499 12 041 11 176 8 524 7 538 
 18 331 17 265 15 591 12 254 10 647 6 476 5 069 
 19 139 15 226 11 212 8 521 7 983 6 539 5 734 

[P
b2+

] m
g/

kg
 

420 19 074 10 671 9 528 7 146 6 730 4 016 3 426 
 18 496 11 497 9 021 5 521 6 079 3 897 3 266 
 19 749 11 663 10 870 6 986 6 472 5 044 4 411 

630 19 044 10 317 10 411 7 214 7 069 6 036 5 048 
 19 938 13 496 10 678 7 944 7 234 4 955 4 131 
 19 299 11 281 8 937 5 193 4 733 3 971 3 134 

840 19 887 12 392 10 077 6 097 7 209 4 717 3 910 
 18 533 12 039 9 811 7 943 6 908 4 682 3 836 
 18 807 12 736 11 115 8 204 7 583 5 393 4 462 
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Figure 6: Graphical representation of the degradation rate constants of 1,2-DCA in clay soil co-contaminated with different concentrations of heavy 
metals. 
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Figure 7: Regression lines representing the effects of the As3+, Cd2+, Hg2+, and Pb2+ concentrations in clay soil 
on 1,2-DCA biodegradation rate coefficients (k1) relative to k1 for samples unamended with heavy 
metals. 
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Table 7: Gas chromatographic peak area values used for loam soil samples co-contaminated with different concentrations of heavy metals. 
 

Microcosm Day 0 Day 5 Day 10 Day 15 Day 20 Day 25 Day 30 

Autoclaved soil control 
14 683 13 895 12 894 12 213 11 932 10 977 10 519 
12 675 12 111 11 195 10 256 9 782 9 422 8 560 
13 518 13 033 11 709 10 403 9 607 8 878 8 603 

Unautoclaved soil control 
17 819 9 970 5 943 2 294 1 914 1 694 1 038 
17 195 8 100 5 422 2 773 2 418 1 806 1 242 
16 860 8 404 5 623 2 690 2 375 1 844 1 370 

[A
s3+

] m
g/

kg
 

75 14 854 12 187 7 548 5 782 3 368 2 809 2 325 
 15 727 9 906 7 758 5 911 3 577 3 069 2 490 
 14 105 10 558 6 719 5 173 3 168 2 678 2 236 

112.5 17 092 11 590 7 788 5 974 3 903 2 962 2 534 
 15 523 9 374 5 702 4 606 2 629 2 092 1 707 
 13 564 8 562 6 312 4 933 3 112 2 470 2 000 

150 12 014 9 374 6 347 5 024 2 954 2 488 2 004 
 14 282 9 669 7 123 5 313 3 225 2 736 2 060 
 13 628 8 616 6 739 5 243 3 270 2 500 2 144 

[C
d2+

] m
g/

kg
 

85 16 049 8 862 7 495 4 785 3 618 2 946 2 447 
 15 989 9 391 6 404 5 025 3 166 2 428 2 079 
 14 117 8 793 6 154 5 206 3 260 2 758 2 146 

127.5 15 467 8 220 5 634 4 417 2 813 2 237 1 693 
 14 399 8 428 6 118 4 939 3 208 2 518 2 184 
 13 603 7 154 4 853 4 119 2 426 1 924 1 715 

170 15 595 9 243 6 271 4 855 3 315 2 708 2 179 
 14 668 9 048 6 177 4 886 3 418 2 728 2 164 
 13 385 8 304 5 712 4 740 3 196 2 511 1 977 

[H
g2+

] m
g/

kg
 

840 14 836 8 987 6 504 5 083 3 498 2 743 2 126 
 14 092 8 861 6 268 5 192 3 315 3 048 2 257 
 15 239 7 604 5 041 4 223 2 762 2 519 1 702 

1260 14 485 8 128 5 734 4 696 3 094 2 392 1 846 
 15 752 9 761 6 886 5 924 4 101 3 103 2 712 
 15 526 8 907 5 785 5 124 3 358 2 439 2 124 

1680 14 455 7 852 3 382 4 297 3 065 2 140 1 756 
 14 961 8 901 6 496 5 620 3 959 2 502 2 505 
 14 844 8 966 6 081 5 196 3 438 2 611 2 194 

[P
b2+

] m
g/

kg
 

420 14082 7412 5731 4057 2567 2429 1703 
 15 825 9 109 5 284 5 358 3 720 2 880 2 347 
 15 865 8 367 6 043 4 726 3 138 2 389 1 986 

630 15 139 7 838 5 568 4 552 2 889 2 195 1 678 
 14 864 7 847 5 513 4 498 2 840 2 308 1 705 
 14 609 7 470 5 113 3 999 2 657 1 984 858 

840 14 881 8 058 5 744 4 723 2 758 2 243 1 757 
 14 058 7 649 5 380 4 459 2 848 2 257 1 779 
 14 653 7 024 4 858 3 923 2 794 1 755 1 543 
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Figure 8: Graphical representation of the degradation rate constants of 1,2-DCA in loam soil co-contaminated with different concentrations of heavy 
metals. 
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Table 8: Gas chromatographic peak area values used for clay soil samples co-contaminated with different combinations of heavy metals. 
 

Microcosm Day 0 Day 5 Day 10 Day 15 Day 20 Day 25 Day 30 

Autoclaved soil control 
19 103 16 278 15 704 14 906 14 106 13 583 13 411 
21 244 19 859 17 553 15 856 14 956 14 617 13770 

- - - - - - - 

Unautoclaved soil control 
19 307 12 230 9 780 6 061 5 475 4 388 3 938 
22 339 15 046 11 803 6 999 6 496 5 054 4 233 

- - - - - - - 

As3++Cd2+ 
22 905 20 248 12 240 12 415 8 614 8 225 6 143 
22 100 16 634 9 439 9 402 6 799 6 284 4 380 
20 503 18 342 11 487 10 899 8 879 7 816 6 139 

As3++Hg2+ 
22 582 18 832 12 227 12 471 9 273 8 854 6 754 
15 761 13 368 12 957 11 170 8 597 7 679 6 293 
18 982 16 368 10 756 10 670 8 031 7 432 5 949 

As3++Pb2+ 
18 362 9 881 8 350 10 486 7 886 7 123 5 770 
21 196 15 213 6 807 8 204 6 341 5 565 4 147 
20 144 14 482 10 684 8 836 6 339 5 292 4 197 

Cd2++Hg2+ 
21 029 16 081 9 291 8 374 6 323 5 696 4 342 
22 400 15 866 10 380 8 221 5 872 5 153 3 744 
17 001 14 272 9 303 9 758 7 069 6 041 4 668 

Cd2++Pb2+ 
20 768 15 899 9 699 9 042 6 798 5 838 4 409 
20 707 14 116 8 584 7 388 5 595 4 466 3 352 
20 051 13 427 8 373 6 930 5 186 4 307 3 426 

Hg2++Pb2+ 
21 727 17 754 11 751 9 450 6 848 6 616 4907 
20 503 13 065 9 702 7 638 5 518 5 086 3 817 
22 148 16 229 10 749 8 915 5 837 5 488 4 198 

As3++Cd2++Hg2+ 
21 145 16 683 11 975 9 940 7 994 7 263 5 558 
22 037 16 838 11 972 8 787 7 002 5 700 4 090 
24 911 17 689 11 881 8 946 6 569 5 627 4 270 

As3++Cd2++Pb2+ 
24 478 16 890 11 983 9 437 7 209 6 311 4 621 
22 130 17 238 12 431 9 982 7 548 6 660 5 035 
22 473 16 601 11 206 9 270 6 554 5 609 4 307 

As3++Hg2++Pb2+ 
20 799 16 611 12 429 10 002 7 570 6 838 5 389 
21 140 17 207 15 249 9 893 7 873 7 134 5 355 
19 479 15 635 16 549 9 275 6 446 5 935 4 820 

Cd2++Hg2++Pb2+ 
21 578 13 859 10 621 5 553 4 582 3 650 2 478 
21 345 17 810 14 515 10 015 7 552 6 943 5 371 
21 772 14 279 10 379 7 823 5 746 5 222 4 097 

As3++Cd2++Hg2++Pb2+ 
19 030 14 777 11 474 8 372 5 963 4 758 3 402 
17 582 13 542 9 069 6 183 4 881 3 989 3 088 
17 620 9 452 8 780 5 041 3 449 3 073 2 233 

As3+ = 112.5 mg/kg; Cd2+ = 127.5 mg/kg, Hg2+ = 1260 mg/kg, and Pb2+ = 630 mg/kg. 
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Figure 9: Graphical representation of the degradation rate constants of 1,2-DCA in clay soil co-contaminated with different combinations of heavy 
metals 
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Table 9: Gas chromatographic peak area values used for loam soil samples co-contaminated with different combinations of heavy metals. 
 

Microcosm Day 0 Day 5 Day 10 Day 15 Day 20 Day 25 Day 30 

Autoclaved soil control 
14 683 13 895 12 894 12 213 11 932 10 977 10 519 
12 675 12 111 11 195 10 256 9 782 9 422 8 560 
13 518 13 033 11 709 10 403 9 607 8 878 8 603 

Unautoclaved soil control 
17 819 9 970 5 943 2 294 1 914 1 694 1 038 
17 195 8 100 5 422 2 773 2 418 1 806 1 242 
16 860 8 404 5 623 2 690 2 375 1 844 1 370 

As3++Cd2+ 
17 434 11 517 6 894 3 755 3 480 2 864 2 369 
17 384 12 457 8 024 4 545 4 378 3 387 3 099 
17 453 11 600 7 238 4 058 3 669 3 108 2 719 

As3++Hg2+ 
17 282 10 142 6 225 3 503 3 231 2 576 2 372 
18 816 15 607 10 689 6 734 6 945 5 540 4 932 
19 295 11 217 10 299 6 348 6 040 5 014 4 646 

As3++Pb2+ 
16 395 14 407 10 214 6 225 6 563 5 379 4 695 
17 640 14 301 10 557 6 381 5 980 5 311 4 660 
17 418 13 622 9 183 5 885 5 780 4 918 4 410 

Cd2++Hg2+ 
17 417 10 534 6 383 3 982 3 630 3 054 2 569 
16 168 11 021 7 251 4 443 4 363 3 215 2 748 
17 403 10 232 6 534 3 877 3 580 2 994 2 517 

Cd2++Pb2+ 
16 075 10 038 5 950 3 760 3 412 2 633 2 352 
16 812 9 458 5 918 3 708 3 120 2 545 2 189 
15 398 9 693 5 782 3 667 3 615 2 490 2 239 

Hg2++Pb2+ 
16 760 9 357 5 192 3 232 3 271 2 208 2 208 
17 916 10 576 6 147 3 738 3 361 2 709 2 645 
17 693 10 577 6 560 4 049 3 666 2 938 2 941 

As3++Cd2++Hg2+ 
15 968 11 975 8 172 4 345 5 155 4 684 4 488 
17 940 8 095 4 564 2 567 2 014 1 787 1 815 
16 590 11 342 7 764 5 169 4 038 4 174 4 043 

As3++Cd2++Pb2+ 
16 848 12 457 8 522 5 485 4 199 4 572 4 264 
16 879 12 676 8 378 2 587 3 680 4 814 4 489 
17 802 11 543 5 176 4 839 3 290 3 494 3 342 

As3++Hg2++Pb2+ 
17 662 10 003 6 255 4 144 3 296 3 171 2 647 
16 502 9 806 5 963 3 836 3 299 2 910 2 550 
15 546 9 202 5 130 3 447 2 878 2 382 2 023 

Cd2++Hg2++Pb2+ 
18 013 10 357 6 220 3 323 2 884 2 295 2 056 
17 329 9 135 5 398 4 101 3 862 3 234 2 859 
15 054 7 930 4 474 2 956 2 607 2 040 1 883 

As3++Cd2++Hg2++Pb2+ 
16 275 9 486 6 141 4 083 3 857 3 098 2 704 
15 995 8 905 5 347 3 825 3 437 2 742 2 520 
14 810 9 108 5 903 3 834 3 491 2 718 2 386 

As3+ = 112.5 mg/kg; Cd2+ = 127.5 mg/kg, Hg2+ = 1260 mg/kg, and Pb2+ = 630 mg/kg. 
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Figure 10: Graphical representation of the degradation rate constants of 1,2-DCA in loam soil co-contaminated with different combinations of heavy 
metals. 
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Table 10: Gas chromatographic peak area values used for arsenic co-contaminated loam soil samples undergoing various bioremediation strategies. 
 

Microcosm Day 0 Day 5 Day 10 Day 15 Day 20 

Autoclaved soil control 
11 603 10 814 9 686 9 526 8 234 
14 495 12 729 11 534 11 255 10 009 
11 743 11 042 10 147 9 295 8 186 

Unautoclaved soil control 
15 499 14 685 5 633 5 792 1 352 
15 060 13 231 6 336 3 785 1 373 
15 521 11 499 5 442 4 021 1 193 

Unautoclaved soil control+As3+ 
12 835 11 973 5 365 4 977 2 291 
14 635 13 833 6 710 6 326 2 344 
11 765 10 490 5 118 4 155 2 267 

Biostimulation  

Glucose 
13 581 12 142 5 839 5 374 340 
13 965 13 293 6 804 6 739 455 
13 691 10 099 5 684 4 710 221 

Fructose 
15 257 13 650 6 432 5 599 406 
15 205 13 647 7 080 6 795 426 
14 997 11 872 5 890 5 171 447 

Fertilizer 
14 674 12 892 5 734 5 117 343 
14 921 13 659 6 718 6 079 583 
15 938 11 282 5 336 4 337 328 

Bioaugmentation  

X. autotrophicus GJ10 
13 512 9 307 1 057 451 0 
14 646 9 392 599 215 0 
12 864 8 522 473 868 0 

Dual-bioaugmentation 
12 380 4 933 366 182 0 
11 091 7 517 849 201 0 
13 213 7 856 434 155 0 

Treatment additives  

CaCO3 
17 194 13 532 5 615 4 255 178 
18 795 15 284 7 131 5 843 240 
17 886 12 306 5 399 3 826 117 

Na2HPO4 + NaCl 
16 184 12 980 5 944 4 824 368 
16 181 13 788 6 558 5 981 658 
15 873 11 414 5 563 4 614 362 

CaSO4.2H2O 
15 369 12 268 5 480 4 399 500 
14 900 12 741 6 450 5 684 707 
16 826 11 562 5 147 4 089 368 
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Figure 11: Graphical representation of the degradation rate constants of 1,2-DCA in arsenic co-contaminated loam soil samples undergoing various 

bioremediation strategies. (   ) = sample 1; (    ) = sample 2; (   ) = sample 3. 
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Table 11: Gas chromatographic peak area values used for cadmium co-contaminated loam soil samples undergoing various bioremediation strategies. 
 

Microcosm Day 0 Day 5 Day 10 Day 15 Day 20 

Autoclaved soil control 
11 603 10 814 9 686 9 526 8 234 
14 495 12 729 11 534 11 255 10 009 
11 743 11 042 10 147 9 295 8 186 

Unautoclaved soil control 
15 499 14 685 5 633 5 792 1 352 
15 060 13 231 6 336 3 785 1 373 
15 521 11 499 5 442 4 021 1 193 

Unautoclaved soil control+Cd2+ 
15 124 13 898 5 644 4 967 2 176 
13 853 13 233 6 463 5 986 1 766 
14 923 11 327 5 114 4 073 2 395 

Biostimulation  

Glucose 
14 691 11 065 5 326 4 841 275 
13 544 11 094 5 759 5 977 294 
14 219 9 621 4 986 4 262 309 

Fructose 
11 419 10 569 5 944 5 692 429 
14 398 11 000 5 983 5 839 414 
11 023 9 998 5 869 5 132 405 

Fertilizer 
13 623 11 645 5 174 3 331 219 
14 393 13 371 6 594 5 200 248 
13 451 10 491 4 861 2 897 225 

Bioaugmentation  

X. autotrophicus GJ10 
14 358 8 220 264 0 0 
11 468 6 295 339 0 0 
14 659 7 558 319 168 0 

Dual-bioaugmentation 
12 643 6 951 296 0 0 
12 087 5 429 258 0 0 
12 964 6 244 341 0 0 

Treatment additives  

CaCO3 
10 771 9 861 5 265 4 660 357 
17 747 14 616 6 798 2 399 0 
11 942 9 243 5 043 4 204 396 

Na2HPO4 + NaCl 
16 137 12 506 5 729 4 801 509 
14 818 12 216 5 929 5 480 586 
15 647 11 810 5 399 4 397 485 

CaSO4.2H2O 
14 742 12 113 5 569 4 598 321 
15 903 12 823 6 415 5 583 756 
15 011 11 380 5 243 4 233 264 
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Figure 12: Graphical representation of the degradation rate constants of 1,2-DCA in cadmium co-contaminated loam soil samples undergoing various 

bioremediation strategies. (   ) = sample 1; (    ) = sample 2; (   ) = sample 3. 
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Table 12: Optical density values used for dehydrogenase activity in arsenic co-contaminated loam soil undergoing various bioremediation strategies.  
 

Microcosm Day 0 Day 5 Day 10 Day 15 Day 20 

Autoclaved soil control 
0.023 0.028 0.025 0.031 0.023 
0.018 0.024 0.021 0.038 0.031 
0.029 0.019 0.027 0.026 0.033 

Unautoclaved soil control 
0.361 0.496 0.571 0.506 0.531 
0.426 0.583 0.628 0.616 0.575 
0.415 0.546 0.659 0.624 0.598 

Unautoclaved soil control + As3+ 
0.361 0.124 0.096 0.082 0.049 
0.426 0.163 0.129 0.069 0.089 
0.415 0.247 0.161 0.123 0.155 

Biostimulation  

Glucose 
0.361 0.309 0.567 0.506 0.568 
0.426 0.225 0.519 0.564 0.571 
0.415 0.321 0.386 0.447 0.476 

Fructose 
0.361 0.186 0.209 0.271 0.389 
0.426 0.306 0.189 0.213 0.354 
0.415 0.223 0.204 0.447 0.439 

Fertilizer 
0.361 0.198 0.249 0.368 0.425 
0.426 0.284 0.197 0.395 0.362 
0.415 0.237 0.368 0.406 0.445 

Bioaugmentation  

X. autotrophicus GJ10 
0.361 0.376 0.393 0.469 0.525 
0.426 0.434 0.365 0.463 0.489 
0.415 0.426 0.439 0.391 0.463 

Dual-bioaugmentation 
0.361 0.401 0.396 0.423 0.431 
0.426 0.433 0.31 0.384 0.446 
0.415 0.421 0.343 0.392 0.381 

Treatment additives  

CaCO3 
0.361 0.252 0.21 0.221 0.273 
0.426 0.245 0.224 0.197 0.236 
0.415 0.223 0.208 0.187 0.213 

Na2HPO4 + NaCl 
0.361 0.243 0.221 0.289 0.268 
0.426 0.292 0.268 0.32 0.349 
0.415 0.238 0.207 0.262 0.346 

CaSO4.2H2O 
0.361 0.183 0.142 0.133 0.164 
0.426 0.186 0.153 0.121 0.149 
0.415 0.194 0.163 0.146 0.155 
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Table 13: Optical density values used for dehydrogenase activity in cadmium co-contaminated loam soil undergoing various bioremediation strategies.  
 

Microcosm Day 0 Day 5 Day 10 Day 15 Day 20 

Autoclaved soil control 
0.023 0.028 0.025 0.031 0.023 
0.018 0.024 0.021 0.038 0.031 
0.029 0.019 0.027 0.026 0.033 

Unautoclaved soil control 
0.361 0.496 0.571 0.506 0.531 
0.426 0.583 0.628 0.616 0.575 
0.415 0.546 0.659 0.624 0.598 

Unautoclaved soil control+Cd2+ 
0.361 0.201 0.221 0.198 0.047 
0.426 0.191 0.083 0.079 0.138 
0.415 0.341 0.208 0.194 0.123 

Biostimulation  

Glucose 
0.361 0.346 0.298 0.482 0.467 
0.426 0.414 0.446 0.483 0.552 
0.415 0.309 0.404 0.497 0.465 

Fructose 
0.361 0.179 0.138 0.268 0.352 
0.426 0.143 0.091 0.167 0.306 
0.415 0.287 0.162 0.191 0.305 

Fertilizer 
0.361 0.229 0.315 0.363 0.411 
0.426 0.321 0.363 0.351 0.392 
0.415 0.364 0.393 0.422 0.463 

Bioaugmentation  

X. autotrophicus GJ10 
0.361 0.392 0.398 0.404 0.398 
0.426 0.469 0.389 0.433 0.44 
0.415 0.376 0.384 0.423 0.409 

Dual-bioaugmentation 
0.361 0.382 0.324 0.345 0.352 
0.426 0.397 0.331 0.354 0.396 
0.415 0.432 0.369 0.392 0.426 

Treatment additives  

CaCO3 
0.361 0.197 0.161 0.191 0.215 
0.426 0.232 0.205 0.179 0.213 
0.415 0.223 0.289 0.316 0.325 

Na2HPO4 + NaCl 
0.361 0.242 0.223 0.252 0.264 
0.426 0.309 0.258 0.221 0.287 
0.415 0.176 0.227 0.207 0.239 

CaSO4.2H2O 
0.361 0.103 0.184 0.171 0.154 
0.426 0.324 0.209 0.191 0.212 
0.415 0.169 0.121 0.171 0.183 
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Table 14: Optical density values used for urease activity in arsenic co-contaminated loam soil undergoing various bioremediation strategies. 
 

Microcosm Day 0 Day 5 Day 10 Day 15 Day 20 

Autoclaved soil control 
0.125 0.053 0.072 0.134 0.131 
0.105 0.048 0.07 0.147 0.135 
0.116 0.052 0.07 0.128 0.123 

Unautoclaved soil control 
0.304 0.188 0.289 0.431 0.448 
0.208 0.194 0.299 0.38 0.435 
0.284 0.195 0.287 0.41 0.433 

Unautoclaved soil control+As3+ 
0.304 0.146 0.25 0.323 0.445 
0.208 0.15 0.191 0.31 0.423 
0.284 0.148 0.175 0.298 0.377 

Biostimulation  

Glucose 
0.304 0.147 0.155 0.24 0.404 
0.208 0.186 0.161 0.259 0.333 
0.284 0.191 0.18 0.259 0.313 

Fructose 
0.304 0.064 0.117 0.27 0.242 
0.208 0.052 0.153 0.23 0.231 
0.284 0.054 0.139 0.203 0.236 

Fertilizer 
0.304 1.116 1.498 1.201 1.513 
0.208 1.078 1.216 1.169 1.63 
0.284 1.112 1.284 1.326 1.409 

Bioaugmentation  

X. autotrophicus GJ10 
0.304 0.231 0.256 0.374 0.359 
0.208 0.242 0.259 0.312 0.283 
0.284 0.209 0.265 0.361 0.386 

Dual-bioaugmentation 
0.304 0.186 0.228 0.193 0.341 
0.208 0.177 0.206 0.248 0.336 
0.284 0.176 0.238 0.301 0.373 

Treatment additives  

CaCO3 
0.304 0.246 0.288 0.238 0.294 
0.208 0.234 0.287 0.266 0.317 
0.284 0.241 0.284 0.29 0.292 

Na2HPO4 + NaCl 
0.304 0.277 0.286 0.246 0.237 
0.208 0.286 0.261 0.234 0.259 
0.284 0.286 0.261 0.278 0.387 

CaSO4.2H2O 
0.304 0.215 0.27 0.228 0.394 
0.208 0.209 0.295 0.211 0.317 
0.284 0.221 0.307 0.242 0.346 
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Table 15: Optical density values used for urease activity in cadmium co-contaminated loam soil undergoing various bioremediation strategies. 
 

Microcosm Day 0 Day 5 Day 10 Day 15 Day 20 

Autoclaved soil control 
0.125 0.053 0.072 0.134 0.131 
0.105 0.048 0.070 0.147 0.135 
0.116 0.052 0.070 0.128 0.123 

Unautoclaved soil control 
0.304 0.188 0.289 0.431 0.448 
0.208 0.194 0.299 0.380 0.435 
0.284 0.195 0.287 0.410 0.433 

Unautoclaved soil control + Cd2+ 
0.304 0.082 0.168 0.301 0.382 
0.208 0.098 0.286 0.303 0.410 
0.284 0.102 0.224 0.291 0.337 

Biostimulation  

Glucose 
0.304 0.125 0.166 0.247 0.226 
0.208 0.089 0.104 0.219 0.289 
0.284 0.076 0.113 0.222 0.227 

Fructose 
0.304 0.061 0.108 0.170 0.308 
0.208 0.06 0.112 0.171 0.265 
0.284 0.085 0.096 0.183 0.307 

Fertilizer 
0.304 1.367 1.603 1.377 1.306 
0.208 1.359 1.348 1.388 1.478 
0.284 1.354 1.643 1.271 1.218 

Bioaugmentation  

X. autotrophicus GJ10 
0.304 0.237 0.259 0.223 0.276 
0.208 0.223 0.298 0.227 0.278 
0.284 0.228 0.242 0.224 0.309 

Dual-bioaugmentation 
0.304 0.105 0.162 0.225 0.275 
0.208 0.096 0.233 0.203 0.336 
0.284 0.104 0.154 0.194 0.333 

Treatment additives  

CaCO3 
0.304 0.228 0.273 0.258 0.243 
0.208 0.227 0.294 0.268 0.363 
0.284 0.197 0.287 0.228 0.326 

Na2HPO4 + NaCl 
0.304 0.179 0.236 0.270 0.244 
0.208 0.201 0.210 0.294 0.205 
0.284 0.196 0.299 0.293 0.292 

CaSO4.2H2O 
0.304 0.193 0.231 0.276 0.339 
0.208 0.189 0.230 0.231 0.330 
0.284 0.202 0.288 0.231 0.370 
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Table 16: ICP-OES values used for determining the bioavailable concentrations of arsenic in co-contaminated loam soil. 
 

Microcosm Day 0 Day 5 Day 10 Day 15 Day 20 

Unautoclaved soil + As3+ 
3.788 1.756 1.283 0.788 0.729 
3.958 1.706 1.348 0.788 0.833 
4.513 1.654 1.375 0.757 0.743 

Average 4.09 1.71 1.34 0.78 0.77 
Standard deviation 0.38 0.05 0.05 0.02 0.06 

CaCO3 
3.788 1.832 1.306 0.642 0.716 
3.958 1.369 1.236 0.574 0.83 
4.513 1.199 1.161 0.559 0.88 

Average 4.09 1.47 1.23 0.59 0.81 
Standard deviation 0.38 0.33 0.07 0.04 0.08 

Na2HPO4 + NaCl 
3.788 3.295 2.53 2.764 2.131 
3.958 3.341 2.987 2.665 2.137 
4.513 3.447 2.799 2.63 2.14 

Average 4.09 3.36 2.77 2.69 2.14 
Standard deviation 0.38 0.08 0.23 0.07 0.01 

CaSO4.2H2O 
3.788 1.245 1.048 0.377 0.295 
3.958 1.225 0.99 0.359 0.306 
4.513 1.276 0.879 0.407 0.258 

Average 4.09 1.25 0.97 0.38 0.29 
Standard deviation 0.38 0.03 0.09 0.02 0.03 
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Table 17: ICP-OES values used for determining the bioavailable concentrations of cadmium in co-contaminated loam soil. 
  

Microcosm Day 0 Day 5 Day 10 Day 15 Day 20 

Unautoclaved soil + Cd2+ 
0.745 0.183 0.039 -0.052 -0.069 
1.302 0.122 0.138 -0.066 -0.058 
1.112 0.456 0.102 -0.067 -0.057 

Average 1.05 0.25 0.09 -0.06 -0.06 
Standard deviation 0.28 0.18 0.05 0.01 0.01 

CaCO3 
0.745 -0.061 -0.068 -0.078 -0.081 
1.302 -0.07 -0.07 -0.079 -0.081 
1.112 -0.071 -0.071 -0.079 -0.081 

Average 1.05 -0.07 -0.07 -0.08 -0.08 
Standard deviation 0.28 0.01 0.00 0.00 0.00 

Na2HPO4 + NaCl 
0.745 -0.042 -0.047 0.013 -0.012 
1.302 -0.039 -0.044 0.019 -0.012 
1.112 -0.047 -0.04 0.027 -0.014 

Average 1.05 -0.04 -0.04 0.02 -0.01 
Standard deviation 0.28 0.00 0.00 0.01 0.00 

CaSO4.2H2O 
0.745 0.372 0.009 -0.079 -0.081 
1.302 0.722 -0.012 -0.079 -0.08 
1.112 0.767 0.03 -0.078 -0.081 

Average 1.05 0.62 0.01 -0.08 -0.08 
Standard deviation 0.28 0.22 0.02 0.00 0.00 
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Table 18: Enumeration of the total 1,2-DCA degrading bacterial population in loam soil co-contaminated with arsenic. 
 

Total 1,2-DCA degrading population (cfu/ml × 106) 
Day 0 

 Autoclaved soil control Unautoclaved soil control   
 0 7.60   
 0 6.20   
 0 5.60   

Average 0 6.47   
SD 0 1.03   

     
Day 10 

 Autoclaved soil control Unautoclaved soil control Unautoclaved soil + As3+ Glucose + As3+ 
 0 42.00 2.67 21.80 
 0 46.00 2.79 20.90 
 0 57.00 2.75 18.20 
   3.40 51.00 
    33.00 

Average 0 48.33 2.90 28.98 
SD 0 7.77 0.34 13.55 

     
 Fructose + As3+ Fertilizer + As3+ X. autotrophicus GJ10 + As3+ Dual bioaugmentation + As3+ 
 2.42 8.40 26.70 115.00 
 2.63 7.50 28.40 112.00 
 2.81 6.20 31.00 108.00 
 3.60  38.00  

Average 2.87 7.37 31.03 111.67 
SD 0.52 1.11 4.98 3.51 

     
 CaCO3 + As3+ Na2HPO4 + NaCl + As3+ CaSO4.2H2O + As3+  
 2.98 28.40 10.50  
 3.50 42.00 8.30  
 3.10 33.00 9.10  

Average 3.19 34.47 9.30  
SD 0.27 6.92 1.11  

      SD – standard deviation; cfu/ml – colony forming units per milliliter 
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Table 19: Enumeration of the total 1,2-DCA degrading bacterial population in loam soil co-contaminated with cadmium. 
 

Total 1,2-DCA degrading population (cfu/ml × 106) 
Day 0 

 Autoclaved soil control Unautoclaved soil control   
 0 7.60   
 0 6.20   
 0 5.60   

Average 0 6.47   
SD 0 1.03   

     
Day 10 

 Autoclaved soil control Unautoclaved soil control Unautoclaved soil + Cd2+ Glucose + Cd2+ 
 0 42.00 2.94 3.81 
 0 46.00 4.60 3.58 
 0 57.00 3.70 3.63 
    2.30 

Average 0 48.33 3.75 3.33 
SD 0 7.77 0.83 0.69 

     
 Fructose + Cd2+ Fertilizer + Cd2+ X. autotrophicus GJ10 + Cd2+ Dual-bioaugmentation + Cd2+ 
 2.08 4.60 84 480 
 1.69 3.90 91 410 
 1.97 4.10 71 320 

Average 1.91 4.20 82.00 403.33 
SD 0.20 0.36 10.15 80.21 

     
 CaCO3 + Cd2+ Na2HPO4 + NaCl + Cd2+ CaSO4.2H2O + Cd2+  
 5.10 12.40 1.98  
 4.30 10.80 2.46  
 3.90 11.70 2.18  
   3.30  

Average 4.43 11.63 2.48  
SD 0.61 0.80 0.58  

      SD – standard deviation; cfu/ml – colony forming units per milliliter
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Table 20: Enumeration of the total 1,2-DCA degrading bacterial population in loam soil treatments co-contaminated with arsenic after 20 days. 
 

Total 1,2-DCA degrading population (cfu/ml × 107) 
 Autoclaved soil control Unautoclaved soil control Unautoclaved soil  + As3+ Glucose + As3+ 
 0 3.01 0.23 29.7 
 0 2.81 0.21 35.00 
 0 2.90 0.23 37.00 
   0.35  

Average 0 2.91 0.26 33.90 
SD 0 0.10 0.06 3.77 

     
 Fructose + As3+ Fertilizer + As3+ X. autotrophicus GJ10 + As3+ Dual bioaugmentation + As3+ 
 2.85 40.00 275 330.00 
 2.82 39.00 308 450.00 
 2.76 30.00  510.00 
 2.90    

Average 2.83 36.33 291.50 430.00 
SD 0.06 5.51 23.34 91.65 

     
 Total 1,2-DCA degrading population (cfu/ml × 106) 
 CaCO3 + As3+ Na2HPO4 + NaCl + As3+ CaSO4.2H2O + As3+  
 285.00 37 29.50  
 264.00 29 29.40  
 278.00  31.00  
   35.00  

Average 275.67 33.00 31.23  
SD 10.69 5.66 2.62  

      SD – standard deviation; cfu/ml – colony forming units per milliliter
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Table 21: Enumeration of the total 1,2-DCA degrading bacterial population in loam soil treatments co-contaminated with cadmium after 20 days. 
 

Total 1,2-DCA degrading population (cfu/ml × 107) 
 Autoclaved soil control Unautoclaved soil control Unautoclaved soil  + Cd2+ Glucose + Cd2+ 
 0 3.01 0.27 29.10 
 0 2.81 0.30 23.20 
 0 2.90  31.00 
    41.00 
    50.00 

Average 0 2.91 0.29 34.86 
SD 0 0.10 0.02 10.62 

     
 Fructose + Cd2+ Fertilizer + Cd2+ X. autotrophicus GJ10 + Cd2+ Dual bioaugmentation + Cd2+ 
 2.63 26.40 370 560 
 2.84 28.10 450 350 
 2.76 41.00  450 
  36.00   
  33.00   

Average 2.74 32.90 410 453.33 
SD 0.11 5.93 56.57 105.04 

     
 Total 1,2-DCA degrading population (cfu/ml × 106) 
 CaCO3 + Cd2+ Na2HPO4 + NaCl + Cd2+ CaSO4.2H2O + Cd2+  
 45.00 30.00 6.80  
 42.00 28.00 4.10  
 51.00  5.20  

Average 46.00 29.00 5.37  
SD 4.58 1.41 1.36  

      SD – standard deviation; cfu/ml – colony forming units per milliliter 
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