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Abstract  

Nanocomposites for dye-sensitised solar cells (DSSCs) were synthesised from ultrasonic 

acid-treated multiwalled carbon nanotubes (MWCNTs) and titania precursors by means of 

sol-gel and chemical vapour deposition (CVD) processes.  The wt.% of MWCNTs in 

nanocomposites were varied from 2 to 98.  Physicochemical properties investigation forms 

the core of the study.  Hence, nanocomposites were thoroughly characterised by means of 

thermogravimetric analysis (TGA), scanning electron microscopy (SEM), transmission 

electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), 

electron dispersive X-ray spectroscopy (EDX), Raman spectroscopy, Fourier transformation 

infra-red spectroscopy (FTIR), textural characteristics, inductively coupled plasma optical 

emission spectroscopy (ICP-OES), photoluminescence (PL) and powder X-ray diffraction 

(XRD) techniques.  Nanocomposites were used as photoanode in assembled DSSCs.  The gel 

electrolyte was polyvinyl acetate (PVAc) doped with LiI.  Aluminium was the photocathode.  

The DSSCs were tested for their performance by illuminating them in a solar simulator 

device. 

Characteristic hollow MWCNTs morphology with titania particulates was obtained.  Both 

synthetic methods coated small diameter MWCNTs well.  EDX spectra showed titania and 

carbon peaks.  The ICP-OES data correlated with TGA in that residual wt.% values were 

within the expected ranges.  Defects from acid treatment lowered thermal stability of 

pristine MWCNTs from 640 C to 625 C.  Ti-O-C bond (ca. 1110 cm-1) and anatase form of 

titania (ca. 669, 577 and 411 cm-1) were observed.  Raman spectroscopy showed Eg, A1g + 

B1g(2) and B1g(2) modes of anatase titania at ca. 630, 514 and 396 cm-1 respectively.  ID/IG 

trends indicate that titania reduced defects in MWCNTs.  MWCNTs in nanocomposites from 

the CVD method had fewer defects, highly thermally stable and more uniformly coated, 

more crystalline, more porous and had smaller surface areas than sol-gel prepared 

nanocomposites.   

Nanocomposites had lower e-/h+ recombination and band gap energy than titania.  The 

optimum MWCNTs wt.% in DSSCs was 15% and CVD nanocomposites were 900% more 

efficient.  From this work, ideal nanocomposites physicochemical properties for DSSCs 
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application include uniform morphology, a defect-free nature, crystallinity, large pore size 

and volume, and existence of chemical bonds between components.  Other factors rather 

than band gap engineering such as absorption properties of DSSC components also affect 

DSSC capabilities.  Also, the high e- conductivity nature of MWCNTs interferes with e- 

transport from the nanocomposites to the counter electrode at high MWCNTs wt.%. 
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Chapter One 
 

Introduction 
This chapter presents background information on energy, the problem statement, 

motivation and the research hypothesis, aim and objectives, questions, approach and scope, 

and an overview of the thesis. 

 

1.1  Background 

Energy is an essential requirement of a society which keeps life going and easy.  It can be 

seen that energy demands are growing in every community and current energy sources are 

failing to cope.  The global village is compelled to seek ways to solve this problem.  

Unfortunately, not all ways devised by mankind to date are feasible and environmentally 

friendly.  This work presents the synthesis and characterisation of nanocomposites as a 

potential way of scaling up the current low electricity energy generation from sunlight. 

 

1.2  Problem statement 

Mankind’s dependency on energy has not only reached alarming levels but also high 

consumption levels which are not being matched by current energy generation technologies 

(discussed in Chapter Two).  Fossil fuels are currently the biggest source of energy globally.1  

Burning of some of these fuels produce CO, CO2 and SOx among other gases which have 

negative consequences.  For example, SO2 may be converted to H2SO4 and eventually to acid 

rain in a series of steps.  Acid rain is harmful to the environment in so many ways such as 

soil leaching, acidification of aquatic systems, corrosion of buildings, deforestation and 

eutrophication.  Mining of coal and crude oil is resulting in various negative effects such as 

loss of usable land, formation of sink holes, reduction of biodiversity and reduction in air 

quality.  Also global climate change is increasing at an alarming rate due to greenhouse gas 

emissions such as CO2.1   Developing countries especially in Africa are disadvantaged by the 

high cost of fuel on the market and this retards development in these nations.  
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Furthermore, geo-political factors in certain parts of the world control oil pricing and 

availability of oil on the market.2,3  In light of this it is imperative that alternative sources of 

energy are sought, not only to compete with, but also, to mitigate the negative impacts of 

mining and use of fossil fuels. The concern has been to develop greener energy resources 

such as light-harvesting devices. 

 

1.3  Motivation 

The world will be in a deep energy shortfall unless new efficient technologies and materials 

are developed for energy conversions into usable forms accessible to mankind.  Sunlight 

seems to be a reliable alternative candidate over other sources of energy for a number of 

reasons.  For example, solar energy is renewable, has no gas emissions or health-related 

hazards associated with its harvesting and use.  It is reliable because sunlight shines all year 

round in most parts of Africa and promotes independence of nations.  Although more 

research is required to reduce the high initial installation costs associated with device 

production, solar energy technologies provide tangible social and green economic benefits 

for communities, nations and the global village.  Solar energy is currently being harvested by 

use of various solar panels such as cadmium telluride (CdTe), copper-indium-gallium 

selenide (CIGS), amorphous silicon on steel, silicon wafers, dye-sensitised solar cells (DSSCs) 

and organic solar cells.  The solar panels that currently dominate the market are silicon-

based and this contributes to high initial costs since silicon is an expensive element partly 

due to its high demand in the field of electronics.  Silicon wafers require high quality 

materials, sophisticated technology and longer time to fabricate.4  Silicon-wafer based solar 

panels need very competitive alternatives.  One of the promising candidates as an 

alternative to silicon-based solar cells are DSSCs which can function at low light intensities, 

are simple to fabricate, are environmentally friendly and can function at any angle of 

orientation.5  A DSSC is made up of a photoanode material stained with a dye which absorbs 

light from the sun, a photocathode material and a redox couple which acts as an electrolyte 

in the regeneration of the ground state dye (see Chapter Two).  DSSCs require efficient 

working photoanode materials.  Nanomaterial optical properties can be tailored to enhance 

their light-harvesting capability.6  Titania as a photoanode nanomaterial in DSSCs containing 
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ruthenium based dyes is well reported in literature.7-9  In recent years interest has shifted 

towards metal-free dyes from the well documented ruthenium-based DSSCs.  Furthermore, 

some natural dyes have been intensively investigated for their potential and application as 

sensitizers.5,10  The other concern has been the high band gap energy of anatase titania11 

which has a potential to absorb at most 5% of incident solar radiation.12,13  This shows a gap 

for further studies in understanding and engineering ways of improving efficiency by using 

readily available materials and band gap reduction can be achieved by doping.14 

Carbon nanotubes (CNTs) can play a role in altering the band gap and improving the 

efficiency of titania in DSSCs.  Multiwalled carbon nanotubes (MWCNTs) were the particular 

choice in this research because unlike single-walled carbon nanotubes (SWCNTs) and 

double-walled carbon nanotubes (DWCNTs), they are conducting materials which are cheap, 

easy to synthesise and easy to scale-up in production.  Although some authors argue that 

MWCNTs will compete for light absorption with titania,15 their work has been mostly on low 

wt.% ratios of MWCNTs.  A literature survey conducted on titania-MWCNT nanocomposites 

indicates that these nanocomposites have excellent photo-capability.  Most applications 

that utilize these nanocomposites have been reported on photo-catalytic reactions for 

water purification.13,16,17  A limited number are on DSSCs.  The seemingly few reports on 

DSSCs acknowledges various advantages of such nanocomposites, for example, Li et al.18 

reported that an increase in the MWCNT content leads to an increase in conductivity of 

titania.16 

Solar conversion efficiency may be enhanced by synthesising nanocomposites and tailoring 

the physical dimensions, composition and morphology of MWCNT-TiO2.  An investigation on 

the behaviour of such nanocomposites at higher wt.% loading, optimisation of the MWCNT 

wt.% in such nanocomposites and comparing nanocomposites obtained by different 

synthetic methods are potential and promising frontiers in solar energy harnessing 

techniques.  The drive is to develop an architecture which allows a simultaneous efficient 

excitonic dissociation and electron transport.  
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1.4  Research questions  

 Which is a better method for synthesising MWCNT-titania nanocomposites, CVD or 

sol-gel technique? 

 Does the synthesis method and wt.% ratios in the MWCNT-titania nanocomposites 

influence the physicochemical properties and light-harvesting capabilities? 

 What physicochemical properties are ideal for light harnessing? 

 What is the optimum wt.% ratio of MWCNTs for light harnessing? 

 

1.5  Research aim and objectives  

The aim was to synthesise efficient solar-harvesting materials of MWCNTs and TiO2. 

The objectives of the project were to: 

 Synthesise MWCNT-titania nanocomposites using chemical vapour deposition (CVD) 

and sol-gel methods. 

 Synthesise anatase titania as the only phase in nanocomposites. 

 Investigate the physical and chemical properties of the synthesised MWCNT-titania 

nanocomposites. 

 Design an efficient photovoltaic solar cell containing the MWCNT-titania 

nanocomposites as an anode material.  

 Synthesising an efficient redox electrolyte system for DSSCs designed. 

 Investigate the photovoltaic (PV) efficiency at different wt.% ratios of MWCNTs in 

the MWCNT-titania nanocomposites constituents. 

 Compare efficiency of CVD and sol-gel synthesized nanocomposites in solar cells. 

 

1.6  Research hypotheses 

 Since anatase titania absorbs in the UV region of the electromagnetic spectrum due 

to its large band gap then reducing band gap by engineering a mismatch of the dye 

conduction band (CB) and that of titania by the use of a dye that absorbs in the 

visible region is expected to extend light absorption into the visible region and 

thereby increase light-harvesting. 
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 If the work function of MWCNTs is more negative than that of anatase titania then 

MWCNTs will readily conducts the electron received by the titania CB from the 

excited dye and thereby reduce the electron-hole (e-/h+) recombination in titania. 

 If the morphology of the nanocomposite plays a role in device performance then the 

MWCNT:titania ratio and the method of synthesis of the nanocomposites should 

influence the results obtained in light-harvesting. 

 

1.7  Research approach 

Commercial MWCNTs were acid-treated in an ultrasonic water bath in a mixture of acids to 

remove the residual iron catalyst and to add oxygen-containing functional groups onto the 

tubes.  These were combined with titania to form the nanocomposites by means of two 

methods, namely, sol-gel and chemical vapour deposition (CVD) methods.  

Titania exist in three phases, i.e. rutile, brookite and anatase.  Of three phases, the anatase 

form of titania has been reported to perform better in light-harvesting applications.19  The 

rutile phase of titania is more thermodynamically stable than anatase.  In this work the 

target titania phase was anatase.  Therefore, the heating programme in the CVD method 

was chosen to be below 500 C to avoid the anatase phase of titania transforming to rutile.  

A further consideration taken into account was that thermal decomposition of the MWCNTs 

occurs above 400 C.  Therefore, calcining of nanocomposites to decompose organic 

components from the titania precursor was carried out at temperatures below 400 C.  A 

number of nanocomposites were prepared with different loadings of titania onto MWCNTs 

(0-50 wt.%) and MWCNTs onto titania (0-50 wt.%).  All the characterisation techniques were 

thoroughly performed on each nanocomposite.   

After synthesising the nanocomposites, scanning electron microscopy (SEM) analysis was 

performed to check the characteristic morphology of the titania and MWCNTs in the 

nanocomposites.  After confirming the morphology, energy dispersive X-ray (EDX) analysis 

was used as a qualitative technique to confirm the components of the nanocomposites as Ti 

and C.  Transmission electron microscopy (TEM) was used to determine the dimensions of 

the MWCNTs in the MWCNT-titania nanocomposites, topography and morphology of the 

MWCNT-titania nanocomposites.  A closer view of the morphology was carried out by using 
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high resolution transmission electron microscopy (HRTEM) and also to determine the lattice 

fringes.  After confirming the presence of titania on the MWCNT walls, an investigation of 

whether the type of link between the former and the latter was chemical (covalent bonding) 

or physical (no chemical bond) was important.  This was done by means of FTIR 

spectroscopy.  A chemical link implies stronger intimacy between the MWCNTs and titania, 

which is favourable in electron transport.  At this stage it was necessary to determine 

whether the weight percentage was within the expected ranges.  Inductively coupled 

plasma-optical emission spectroscopy (ICP-OES) was used to determine the concentration of 

titanium in an accurately weighed sample of nanocomposites subsequently digested with a 

mixture of nitric acid and sulfuric acid.  Thermogravimetric analysis was used to further 

determine the composition and thermal stability of the MWCNTs in the MWCNT-titania 

nanocomposites.  The crystal line quality of the MWCNTs in the MWCNT-titania 

nanocomposites was investigated at different weight percentage loadings by means of the 

Raman spectroscopy.  This technique was also used to check if the target titania phase, 

anatase, was the only phase synthesised from both methods.  The crystalline quality for the 

nanocomposites was also determined by Powder X-ray Diffraction (XRD).  XRD was also used 

to identify the lattice types and to confirm the observations from Raman spectroscopy in 

terms of the phase of titania in the MWCNT-titania nanocomposites.  More crystalline 

nanocomposites would imply a reduced number of boundaries and hence a reduction in the 

possible number of recombination centres.  Textural characteristics such as surface area and 

pore volume are vital aspects of our light-harvesting goals.  They influence the dye 

adsorption capabilities of a MWCNT-titania nanocomposite.  The isotherms were fitted into 

the Brunauer-Emmett-Teller (BET) equation.21  

Furthermore, an investigation of the electron-hole (e-/h+) recombination dynamics of the 

titania-MWCNT nanocomposites with composition were done by means of 

photoluminescence (PL).  Electron-hole recombination dynamics were matched with 

different band gap energies arising from the different MWCNTs loadings.  Diffuse 

reflectance spectroscopy was employed to estimate the band gap energies.   

The next step was fabrication of solar devices and application of MWCNT-titania 

nanocomposites as photo-anode nanomaterials in DSSCs.  The iodine concentration was 
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optimised in terms of conductivity prior to synthesis of a gel-state electrolyte.20  However, 

an electrolyte was not all that was required to make a working device at this stage.  A dye 

was required to capture the solar irradiance but not all dyes are suitable.  Consequently, 

ultraviolet-visible (UV-Vis) spectroscopy was used to check if eosin B dye chosen in this work 

absorbs light in the visible region of the spectrum.  Thereafter, the MWCNT-titania 

nanocomposites were dispersed in ethanol in an ultrasonic water bath prior to fabrication of 

a photoanode.  The doctor blade method was used to deposit the nanocomposite material 

onto indium tin oxide (ITO) coated glass.12  Sintering and dye staining followed.  A solar 

device was subsequently constructed in a sandwich fashion by using aluminium-coated glass 

as a counter electrode (photocathode).  A gel-state electrolyte was inserted between the 

photo-electrodes.  A four quadrant Keithley source measure unit equipped with a solar 

simulator was used for photo-electrochemical measurements. 

 

1.8  Research scope 

This section describes the limitations and delimitations involved in this work. 

 

1.8.1  Limitations 

 The two synthetic methods of nanocomposite preparation used different precursors 

of titania.  This was necessary because the CVD method, which involved a solid, was 

done under vacuum conditions and hence may not have been suitable with a liquid 

precursor.  If the nature of the precursors affects the morphology and other 

physicochemical properties, then this is a variable. 

 The light-harvesting experiments were done in an uncontrolled environment since a 

glove box was not available.  However, the MWCNT-titania nanocomposites were 

compared with laboratory synthesised titania under the same conditions and at the 

same time.  The main objectives were to investigate the effects of method of 

synthesis and loadings relative to titania.  Furthermore, the environmental factors 

not monitored in this work actually reduce performance and that means the devices 

have potential to perform better in a controlled environment. 
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 The e-/h+ recombination dynamics at the interfaces of the solar cell devices were not 

measured by the conventional impedance spectroscopy due to unavailability of the 

instrument. 

 

1.8.2  Delimitations  

 A surfactant was not used to disperse the components of the nanocomposites prior 

to synthesis.  Acid-treating MWCNTs reduces agglomeration by introducing 

hydrophilic groups on the MWCNTs.  Also proper dispersion of MWCNTs and 

introduction of the titanium precursor with the MWCNTs/ethanol mixture in an 

ultrasonic water bath produces comparable titania coatings. 

 Anatase was the target titania phase because it is reported to have the best electron 

conductivity capabilities compared with rutile and brookite. 

 The synthesis temperature in the CVD method and the sol-gel method calcining 

temperature was 400 C at most to avoid the formation of the rutile isomorph and 

the loss of MWCNTs via thermal decomposition. 

 A binder was not used in depositing the nanocomposites onto ITO coated glass in 

order to eliminate any possible effects of the binder in electron transport. 

 Light-harvesting experiments for nanocomposites with MWCNTs wt.% ratios above 

50 were not presented because the devices did not work. 

 

1.9  Structure of thesis  

Chapter One  

In this chapter the motivation of the study, and methodology, and the aim and objectives of 

the research are given.  The problem statement, research scope and the thesis structure are 

also stated in this chapter. 

Chapter Two 

A background to MWCNTs, titania and composites of MWCNT-titania is given.  A brief 

review of parameters involved in DSSCs is also presented.  Some findings from similar work 

carried out elsewhere are also presented. 
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Chapter Three 

This chapter focuses on the synthesis MWCNT-titania nanocomposites and provides details 

on the reagents, instrumentation and experimental procedures.   

Chapter Four 

The characterisation of the nanocomposites and a discussion of the results obtained is 

presented in this chapter.  This constitutes the core of the study.  The physicochemical 

properties of the nanocomposites are thoroughly discussed. 

Chapter Five 

This chapter presents the application of the multiwalled carbon nanotube-titania 

nanocomposites in DSSCs, and links the properties investigated in Chapter Three with the 

performance in DSSCs. 

Chapter Six 

Finally, a summary of the findings and overall conclusion of the research are given as well as 

suggestions for future endeavours. 
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Chapter Two 

Literature Review 
This chapter reviews energy, nanotechnology, carbon nanotubes and titania as 

nanomaterials for light-harvesting.  All the listed aspects are reviewed in the context of high 

efficiency electrical energy generation which will in turn reduce infrastructure investments, 

eliminate high energy bills, and improve health and consumer welfare.1 

  

2.1  Introduction 

Life on planet earth is dependent on energy.  Plants require energy for photosynthesis.  

Humankind uses energy captured by chlorophyll indirectly when they consume food.  

However, part of the worries of humankind has always included energy to use on other 

things other than the human body.  Modern life, as we know it, requires energy for several 

reasons such as cooking, entertainment, transport, lighting, industries and communication.  

Energy security at affordable prices is a core aspect.1  Historic evidence found in Kenya (at 

Koobi Fora), suggest that the importance of energy was realized at an early stage with the 

discovery of fire by Homo erectus around 400 000 years ago.2  Today the world faces a 

potential energy crisis, so there is need for developing ways to enhance energy 

transformations to usable forms.   

 

2.2  Society and modern energy resources 

Relevant environmental factors for a sustainable community are food, water, energy and 

natural resources.  Energy is the most important factor.3  The discovery of fire by primitive 

humankind impacted modern developments such as dietary variety and hygienic cooking 

practices.2  Supply of reliable, clean and sustainable energy is the most important global 

scientific and technical challenge of the 21st century.4  In an attempt to achieve health and 

poverty related Millennium Developmental Goals (MDGs) it is difficult to avoid the subject 

of energy in a society.  This section discusses some extreme examples of the needs of 
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various developing countries within Africa, as well as a way of grasping a representative 

view of some African communities with regard to modern energy resources.   

 

2.2.1  Energy policies 

Developing countries consume 40-50% of the total amount of commercial energy as 

industrial energy.  According to the East Africa Community energy policy, more than 81% of 

the East African population, as for 2009, were living with no access to modern energy 

services.  In the two extreme developed scenarios of Africa, biomass provides 90% of the 

total energy consumption of the 18.3 million Mozambique population whereas in South 

Africa 34% use paraffin and wood.2  Traditional biomass burnt in open three-legged stoves is 

insufficient and associated with indoor smoke related hazards.  Less than 30% of the East 

African population uses liquefied petroleum gas (LPG).  This is an indication that an alarming 

proportion of the African population may not be participating economically and socially in 

improving their living standards.  Although the basis of this information is on a part of Africa 

or the world, this is a signal that providing affordable, clean and reliable modern energy is 

still a necessity particularly in the region discussed.  Table 2.1 gives the numbers of disease 

case related to indoor smoke in 2002 and it was reported that in the East African region 

more than 75000 deaths from diseases like pneumonia and chronic obstructive pulmonary 

disease due to indoor smoke inhalation occurred.8 

 

Table 2.1:  The 2002 WHO statistics for the indoor smoke related disease cases in East 

African region8 

Country 
Percentage of cases 

reported/% 

Burundi 5.2 

Rwanda 2.9 

Kenya 5.8 

Tanzania 4.4 

Uganda 4.9 
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Abraham Pineo Gesner discovered the process of refining coal to kerosene.2  This marked 

the world transformation from biomass fuel use to more efficient fossil fuels as the main 

sources of energy.  Burning of coal generates more than 90% of South Africa’s electricity.  

Eskom is the major producer and its capacity is 40.7 GW.9  However, the forecasted peak 

demand is 36 GW even though independent producers and imports produce about 3.8 GW 

more.  Electricity prices have increased from R0.33/kW h to R0.66/kW h from 2009 to 2013.9  

This is leading to alarming consequences such as environmental and health hazards with 

coal burning, increases in costs to business and industry, strain to ordinary citizens and 

negatively affects socio-economic development.  A slow industrial growth rate implies that 

services will be unaffordable and loss of jobs will be the ultimate consequence.10   

Bellaby, from the UK energy policy document, regarded the energy crisis as a present event 

and exacerbated by global imbalances.11  Part of these policy goals were maintaining 

reliable energy supplies, promoting competitive markets in the UK and beyond, and 

ensuring that all UK homes are heated affordably and adequately.11  The policy identifies the 

energy crisis as a global problem, which must be driven by co-operation from stakeholders, 

citizens, government and states.  However, individual citizens and societies have different 

lifestyles and interests culminating in problems in the implementation of certain 

developmental laws in providing reliable modern energy resources. 

Energy demand has increased exponentially in the twentieth century.3  Currently, the 

demand for energy is increasing each year as the world advances technologically and 

economically.  Postulation of energy demand is 1.7% increase per year.  The estimated 

energy demand by 2030 is 31657 TW h.12   

Energy efficiency can be defined in general as energy services per unit of energy input.13  

Energy conservation reduces total amount of energy consumption.  Energy consumption 

may decrease without increase in efficiency and vice-versa.3   

There is need to effectively utilise and efficiently manage available energy resources and 

create a supply reliability,14 if the world is to avoid a potential fuel crisis.  On the other hand, 

present methods for energy generation especially in the rural areas of developing countries, 

where primarily wood is the source of fuel, have negative effects to the environment like 
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deforestation.14  Biomass in developing countries, often used in traditional technologies for 

heating purposes, typically involves less efficient technologies.  Common forms of biomass 

are wood, charcoal and animal waste.8  Despite problems associated with biomass use, 

temperature change, wind and hydrological cycles affect its sustainability.  Brail success 

story on the production and use of bioethanol as a transport fuel reduces CO2 emissions but  

has ethical and economic problems associated such as potential competition for limited 

resources with food crops.15  Even alternative biomass sources such as biodiesel and ethanol 

gel have some positive attributes which include low amounts of smoke and no odour, but 

ethanol may be socially unacceptable to some sectors of the society because it contains 

alcohol.2 

Chemical energy is energy stored in chemicals, released or absorbed during chemical 

reactions.  Sources include compounds from the alkane homologous series, fossil fuels and 

batteries.16  Relying on chemical energy is causing problems associated with greenhouse gas 

emissions.  Fossil fuels are the most used form of chemical energy.  Fossil fuels are 

derivatives of buried plants and animals formed over millions of years.  In general, the three 

main classes of fossil fuels are natural gas, oil and coal.17  These three account for 80% of 

the energy used worldwide.3  Despite the depletion of fossils fuel such as coal and oil, 

dependence on fossil fuel keeps rising.  For example, in the USA between 2005 and 2020 the 

estimated projection is a 30% increase in energy demand.  Adverse effects of fossil fuels to 

the environment include landscape destruction, greenhouse gas emissions, health threats 

from air pollution from the release of NOX, CO and SO2, and water pollution such as crude oil 

leakage, which compromises aquatic life leading to death of organisms.  Use of coal and 

natural gas is contributing to the decline of air quality and acid rain formation from large 

emissions of gases such as CO2 into the atmosphere.  The ultimate negative impact is global 

warming, water pollution and soil pollution.   

The earth’s energy resources of fossil fuels are approaching depletion.  Based on 1998 

consumption rates, proven conventional and unconventional global oil reserves will only last 

for 40 to 80 years but if the estimated resource base is included then they will be available 

for 50 to 150 years.  Gas resources, with the exclusion of methane clathrates in continental 

shelves, are estimated to be available for 60 to 160 years whereas for coal, shales and tar 
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sands it is 1000 to 2000 years.4  The faster limited reserves are exhausted the more 

expensive they are to exploit.10  Fossil fuel reserves are estimated to be depleted by the 

year 2044 whereas coal and gas are expected to be depleted in 2116 and 2046 

respectively.15  This compels the world to look for alternatives that are compatible 

ecologically and are available in large quantities.  In addition, oil pricing keeps rising.15  

Developing other highly efficient techniques, will reduce global problems associated with 

the fossil fuel supply.1 

 

2.2.2  Renewable energy resources in the modern world 

The drive towards renewable energy sources has led to the investigation of new sources 

energy. Hazardous effects associated with use of fossil fuels have led to a shift towards 

other greener sources of energy such as biomass, wind, geothermal, hydroelectric, wave, 

nuclear technologies and solar.  Wind energy involves the use of turbines to convert kinetic 

energy to electricity.  Typically a gearbox, which may be absent in the latest technologies, 

turns a slow turning turbine rotor into faster rotating gears which convert mechanical 

energy to electrical energy.5  In geothermal energy technology, energy is extracted from hot 

water and steam below the earth’s surface for various uses such as industrial processes, 

heating up buildings and electricity generation.5  Hydroelectric energy involves the 

generation of electricity when water fall gravitationally driving turbines and generators.5  

Power devices are used in wave technologies to convert ocean surface wave energy to 

electricity.5  In nuclear technologies, heavy elements such as Uranium (235U) are split to 

produce smaller elements such as krypton (92Kr) and gamma rays.  The splitting products 

collide with water in a reactor releasing energy that heats up water to produce steam which 

is used to drive turbines.5  Coal-carbon capture and storage involves harvesting CO2 from 

point of release and transporting it to underground reserves such as depleted oil and coal 

reserves.5,6  Some types of this technology eventually cause acidification of oceans.  Hybrid 

photovoltaic power generation plants reduce renewable energy consumption by combining 

a photovoltaic source with other forms of energy such as conventional generators powered 

by diesel.7  Examples of such technologies include hybrid photovoltaic-fuel cell generation, 
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wind turbines and solar photovoltaic arrays and metal hydride tanks-proton exchange 

membrane fuel cells.7 

Renewable energy currently provides approximately 11% of the total energy needed 

worldwide.3  Depending on slight variations in each country due to political priorities, 

geographical location and designs of energy systems, the growth, development and 

potential to reduce environmental hazards and energy security drive implementation of 

renewable energy technology.  For example, the European Union (EU) roadmap was to 

reduce emissions of CO2 and SOX by 80% by 2050, while the United Kingdom (UK) Energy 

policy aims to reduce CO2 emissions by 60% by the same year.11,16  The South African 

renewable energy policy shares the same sentiments.  The aim for South Africa is to 

increase electricity generation from renewable resources such as solar energy by at least 

27% and to reduce greenhouse gases.9  Renewable energy is readily available and from a 

practical point of view infinite, and hence this implies security of supply.  Possible renewable 

energy sources are water, wind, geothermal and sunlight.  In the current state of renewable 

energy, biomass is dominating followed by hydropower then wind.  Hydropower currently 

dominates renewable electricity generation (see Table 2.2).  Some nations have failed to 

meet their energy demand from using hydropower alone due to various reasons such as 

inadequate water resources and land-locked geographical locations.  Furthermore, the 

electricity infrastructure is expensive and therefore unaffordable to some nations such as 

Zimbabwe.2 

Table 2.2:  Global and EU renewable electricity energy generation statistics16 

Renewable energy 
source 

Global 
production/TW h EU production/TW h 

Hydropower 3471 366 

Biomass 331 142 

Wind 342 149 

Geothermal 68 6 

Solar 34 23 

Other 1 1 
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Large scale energy generation such as nuclear power plants in developed countries are 

causing adverse effects to the environment and aquatic life.18  Geothermal energy is 

associated with emission of CO2, NO, SO2 and H2S into the atmosphere.5  Nuclear energy 

produces hazardous radioactive isotope waste that can cause soil and water contamination, 

especially when the correct and costly disposal methods are not adhered to.  To date, there 

have been some devastating nuclear accidents such as Chernobyl and Fukushima.  Nuclear 

energy as a source of energy is associated with high capital, operational, maintenance and 

disposal costs.  High costs make it a challenge for developing countries to generate 

electricity from this source.  

The amount of electrical energy generated from wind is directly proportional to the cube of 

the turbine velocity, v3.  Therefore, a double decrease in wind velocity gives an eight times 

decrease in output power.  This is a significant point of concern when relying on wind as a 

source of energy because minor fluctuations imply large differences in available energy.  

From this perspective, wind energy is not very dependable.  The challenge of predicting 

wind velocity is the major setback on wind as a source of energy although research is 

currently being done in this area.16  Furthermore, wind power generation efficiency 

decreases with wind turbine height.5   

Solar energy has been identified to be a key player, in terms of renewable energy 

technologies, but solar is still more costly in large-scale production than biomass, 

hydropower and wind.19  However, sunlight which is readily and abundantly available 

especially in Africa and other tropical countries, is seen as the most promising alternative 

source of energy.7,19 

 

2.2.3  Solar energy 

Solar energy is one of the most underutilised energy resources which require little 

maintenance.7  The sun radiates more energy than humans can use,4 yet solar energy is still 

one of the most challenging but promising renewable energy sources.  Solar energy has 

been used as a power source in various applications such as home systems (solar cookers, 

water heaters and cell phone chargers), remote buildings, reverse osmosis plants, 
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communication and space vehicles.7  This compels the world to do more research on solar 

energy in order to counteract the high initial costs currently associated with solar energy.4  

One of the factors leading to high initial costs of solar energy is because concentrated solar 

power (CSPs) manufacturing technology is expensive and silicon, which is scarce and 

expensive, is currently dominating the markets.  Silicon-based solar cell production 

technologies are energy-consuming.7  Photovoltaics (PVs) are simpler and more widespread 

than CSPs.6  The first solar cell was based on crystalline silicon.15  Crystalline silicon solar 

cells are more efficient and uses less material than amorphous silicon.7  Other types were 

developed such as amorphous silicon, micro crystalline silicon, thin films and luminescent 

solar concentrators.15  Amorphous silicon based solar cells are photodegradable and 

therefore performance declines on exposure to light.  However, thermal annealing reverses 

this effect.7,15  Micro crystalline silicon solar cells combine crystalline- and amorphous- 

silicon attributes.  Micro crystalline silicon solar cells are used in large areas and are cheaper 

than crystalline silicon solar cells.15  Thin film silicon solar cells use less material and are 

made up of several thin layers of doped semiconducting material combined as charge 

separation junctions.15  This technology is less expensive than silicon wafers because it uses 

less material.7  Materials mostly used include TiO2, gallium arsenide and copper telluride 

indium diselenide.  In CSPs, mirrors or reflective lenses focus sunlight in order to raise the 

temperature of a fluid in a collector.  The heated fluid flow heats an engine resulting in 

conversion of part of the heat to electricity.  CSPs can provide energy at night but more 

collectors are required to provide energy for storage.5  Other types of solar cells include 

hybrid inorganic/organic nanostructures, organic and hybrid PVs and multilayer junctions of 

semiconducting quantum dots (QDs).4,7  Organic and polymer solar cells require a good 

choice of an active material and have a number of cell configurations such as bulk hetero-

junction, two layered, spin coated thin films and double cable polymers.7  Solar energy has a 

number of social and economic benefits.  Social costs such as corporate taxes will go down if 

energy is cheaply available and industrial production is vibrant.10  Solar energy production 

will also introduce new jobs1 thereby reducing social costs on unemployment which 

ultimately mobilises industrial development.  An increase in available domestic energy 

resources increases energy security and reduces international dependence.  Developing 

countries will be free from large national debts from energy imports.  Solar panel 
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installation on buildings means land recovery against the traditional land-consuming energy 

generation technologies.  Furthermore, the life span of current solar panels on the market is 

about 30 years and they are capable of producing energy consumed in their production in 

two years.10  Exploration of nanomaterials such as nanocomposites for their intrinsic 

properties, such as electronic, mechanical, adsorption and thermal properties and other co-

operative properties,20 as additional alternative materials for energy generation may 

contribute positively to cheap solar energy generation.  Nanoscience and nanotechnology 

are promising in this regard.  The background of nanoscience and nanotechnology is 

covered in the next section. 

 

2.3  Nanoscience and nanotechnology 

Nano-sized structural particles have unusual physicochemical properties.22,23  Nanoscience 

comprises of distinct inter-disciplinary classes of science at the nano scale where basic 

science laws tend to fail whilst nanotechnology is an “aiding kit” of technologies that spread 

through multipurpose sectors of industry.24,25  The basis of nanoscience is the effects of 

physical dimensions on material properties.26  Historically, the original sense of 

nanotechnology was the ability to construct products by using the bottom-up approach via 

application of techniques and tools developed to make high performance products.  Richard 

Feyman also known as the “father of nanotechnology” presented the theoretical capabilities 

of nanotechnology in 1959 and the concept was popularised by Eric Dexler in the 1980s.25  

The term nanotechnology originated from a Greek word that means dwarf.27  

Nanotechnology can be defined simply as engineering at a very small scale27 whereas a 

more technical definition would be the engineering of functional systems at the molecular 

scale.28  The US National Nanotechnology Initiative refers to particles with dimensions less 

than 100 nm as nanoparticles.25  The definition with a size limit between 1 nm and 100 nm, 

where size-dependent quantum effects comes into play, excludes a large number of devices 

and materials.29  Nanotechnology is a general-purpose technology classified by the size of 

materials developed for use.  This is because it offers long lasting cleaner, safer and smarter 

products.  This technology operates at atomic and molecular scale.24,28  In this regard, 

properties change due to modifications of electronic structure between quantum and 

continuum domains.26  As the dimensions of a material are reduced towards the nano-scale 
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the density of states (or band structure) changes from continuous to discrete energy levels.  

Currently, nanotechnology is paving the way to achieve smarter electronics, improved 

health systems and treatments, advances in agriculture and clean energy devices.24  The 

drive of material science has been towards nano-sized materials.  Nanotechnology has 

applications in a wide range of materials such as tennis balls,30 drug delivery,31 integrated 

circuits32 and catalyst supports.33  The attributes of small components include enhanced 

charge carrier capabilities and functionalities due to enhanced speeds from the inertia of 

mass law, consumption of less power and minimum problems in thermal distortion and 

vibration.21    

Small changes in orbital structure/macroscopic structural forms of carbon leads to vast and 

interesting properties such as improved electron mobility.36  The carbon nanotubes (CNTs)37 

have high potential industrial applications in the electronic, medical, chemical and 

composite fields.35,36  CNTs are possible materials for the synthesis of composites for use in 

efficient PVs.  The drive is to explore nanotechnology and come up with various applications 

into energy generation.  CNTs play a key role in nanotechnology.40  A discussion of CNTs is 

given in the sections 2.4 and 2.6, respectively. 

 

2.4.  Carbon  

Carbon was confused with charcoal in ancient times and the name is derived from a Latin 

word for burnt wood “carbo.”  Antoine Lavoisier showed that diamond was a form of carbon 

in 1772.  In the modern world carbon is the first element in the group fourteen elements 

with four valence electrons.  The narrow energy gap between the 2s and 2p orbitals allows 

electron promotion.  Energy gained from covalent bonding with adjacent atoms 

compensates for the electronic configuration of higher energy states.  Hybridisation has 

accounted for the diversity of carbon based structures found in nature and artificially 

synthesised.41  Sp3 hybrids of C are more thermodynamically stable than sp2 hybrids.41  

Carbon, by the virtue of its unique hybridisation properties and sensitivity to perturbations 

in synthesis conditions, can be easily manipulated.  The forms of carbon known today are 

listed in Table 2.3. 
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Table 2.3:  Properties of some carbon allotropes42 

Type Hybridisation Crystal 
structure 

Band gap/ 

eV 
Conduction type 

graphite sp2 hexagonal 0.00 conductor 

graphene sp2 - 0.03 semi-conductor 

MWCNTs sp2 cylindrical 0.30-2.00 metallic 

diamond sp3 cubic 5.50 insulator 

Bucky-balls sp2 truncated 
icosahedron 0.5 insulator 

 

Diamond is a three dimensional four-fold coordinated sp3 rigid structure while graphite is a 

sp2 three-fold coordinated planar structure.  Fullerenes have found the most PV energy 

harvesting applications since they are thermally stable, non-toxic, bio-compatible, 

hydrophilic functionalised and have a high surface area.43  Unfortunately, until 1779 

graphite was confused to be a form of lead.  Graphite has weak van der Waals forces 

between planes and stronger shorter covalent in-plane carbon bonds.44  Graphite has 

delocalised electrons since C atoms only uses three of its valence electrons in bonding.  

Electrons can move along the layers and therefore it conducts electricity along the layers.  

CNTs consist of graphite-based structures.  The next section presents some background 

information on CNTs.  

 

2.4.1  Carbon nanotubes 

CNTs can generally be visualised as rolled-up graphene sheets held together by van der 

Waals forces.  Semi-fullerene-like caps may close the CNTs.  Diameters are in the nanometre 

(nm) range.21,23,35,37  The single dimensional geometry of a CNT tubule 21,35,45 induces 

quantum confinement in radial and circumferential directions.18,46  CNTs are the stiffest and 

strongest nanomaterial with a Young’s modulus of 1 TPa and a tensile strength of 50 GPa.  

The hybridisation of carbon strongly influences the physical, chemical and electronic 

file:///E:/thesis..Si/Chapter%202..printing.docx%23_ENREF_42
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properties of CNTs.  In terms of the electron transport properties of CNTs, defects and 

heteroatoms influence electronic conductivity and ballistic transport of electrons.46,47  CNTs 

have high thermal and electrical conductivity, and good chemical stability.  All these 

properties can be altered.  The current research and development is focused on controlling 

parameters at the nano level such as porosity, purity, homogeneity, straightness, graphitic 

nature and CNT chemical state. 

Classification of CNTs is according to the number of graphene sheets, chiral angle, and 

diameter.48  The main classes of CNTs are single-walled (SWCNTs), double-walled (DWCNTs) 

and multi-walled carbon nanotubes (MWCNTs) (see Figure 2.1).  SWCNTs exhibit metallic 

and semi-metallic behaviour depending on chirality.23,35,49   

 

 

Figure 2.1:  The structures of carbon nanotubes: (A) single-walled, (B) double-walled and (C) 

multiwalled carbon nanotubes50-52 

 

2.4.2  Single-walled carbon nanotubes 

Single-walled carbon nanotubes (SWCNTs, shown in Figure 2.1A) may be defined as a rolled 

up sp2 bonded graphene sheet.21  Position vectors of SWCNTs can be given by using the (n, 

m) integers for the 𝑐,  𝑎1and 𝑎2 direction vectors.  Therefore, lattice vectors can be given by 

a general chiral vector (see Figure 2.2). 
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Figure 2.2:  Position vector of SWCNTs21 

 

𝐶 = 𝑛𝑎1⃗⃗⃗⃗⃗ + 𝑚𝑎2⃗⃗⃗⃗⃗                                                 (equation 2.1) 

length of 𝐶 = |𝐶| = 𝑎√𝑛2 + 𝑛𝑚 + 𝑚2     (equation 2.2) 

 

The “a” is related to carbon bond length.  The chiral vector points from the first atom 

towards the second atom.21  Varying integers (n, m) generate different diameters and helical 

arrangement of hexagons.53  The chiral vector is perpendicular to the lattice vector.  The 

length of the chiral vector is the circumference of the SWCNTs.  The chiral vector and the 

corresponding chiral angle define the CNT type as chiral, armchair or zigzag.  If n  m and 

0° < 𝜃 < 30° then it is chiral or if n = m it implies armchair and the corresponding 𝜃 = 0°,  

lastly if m = 0 it is zigzag and 𝜃 = 30°.21  Electronic properties are influenced by the 

structure of SWCNTs.41,53,54  For example, if n = m then SWCNTs are metallic but if n - m is 

three times an integer then an extremely small band gap arises and the SWCNTs will be 

metallic.  For other values of n - m SWCNTs are semi-conducting with an appreciable band 

gap.53  Research effort in hybrid CNT conjugated molecule systems has largely focused on 

the use of SWCNTs.49  
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2.4.3  Double-walled carbon nanotubes 

Double-walled carbon nanotubes (DWCNTs, shown in Figure 2.1 B) consist of two concentric 

graphene sheets.53,55,56  The van der Waals forces hold graphene sheets in DWCNTs.  The 

inter-shell distance varies between 0.33 nm to 0.42 nm depending on the geometrical 

orientation of either sheet.57  Inter-layer spacing influences the stability of DWCNTs.  

DWCNTs are a one-dimensional material between SWCNTs and MWCNTs.  They are more 

thermally stable and mechanically stronger than SWCNTs.51,53  Properties are difficult to 

identify due to inter-shell interactions.56  The two shells may have the same or different 

chirality.51  Chirality affects the buckling load of DWCNTs and the effect increases with 

increase in index of translation.55,57  Electronic properties can be determined in a similar way 

as with SWCNTs by using chiral indices (see Figure 2.2) and can be different on isolating the 

tube sheets.51,56  There exists low potential for current leakage between sheets.  The band 

gap structure is influenced by the superposition of the graphene sheets.56  Covalent 

functionalization with groups such as NH2 and COOH can be used to control the electronic 

properties and in band structure engineering.  The outer sheet shields the inner one from 

external perturbations.  Application of DWCNTs include sensors,51 hydrogen storage,58 

nano-electronic devices,56 in high strength materials and reinforcement in composites.57 

 

2.4.4  Multiwalled carbon nanotubes  

MWCNTs are generalised as structures comprising of a coaxial arrangement of graphene 

sheets.  The graphene interlayer spacing in MWCNTs is 0.34 nm (see Figure 2.1 C).59,60  

Rolling of graphene sheets occurs at specific discrete angles.61  MWCNT electron transport 

properties depend on structural effects such as imperfections.  MWCNTs are metallic in 

nature.62  In the nanometre range, physicochemical properties do not depend on chemical 

composition only but also on particle size and shape.41,63,64  Some characteristics of 

MWCNTs reported in the literature are discussed in the next section.  
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2.4.4.1  Physicochemical properties of MWCNTs 

The stiffness and axial strength of MWCNTs depends on the carbon-carbon sp2 bonding60 

and is between 11 and 63 GPa.  Radial compressibility from small forces is 10 GPa.46  The 

elastic Young’s modulus of MWCNTs can exceed 1 TPa.59 

MWCNTs readily agglomerate due to van der Waals forces.  MWCNTs have two regions of 

reactivity: carbon bonds at the tip are more reactive due to high strain from large curvature 

and the second reactive region is the cylindrical region.  The low activation energy of the 

former confirms the difference in reactivity.37,65  Although there is partial loss of electronic 

structure/optical properties and material loss, oxidative functionalization is applicable to 

both regions.37  The combination of the rolling, radius and length of MWCNTs influences the 

nanotube properties.45,66  MWCNTs absorb hydrophobic substances.67  MWCNTs reduce 

catalytic activity and lower desorption of reaction products when applied as catalyst 

supports in hydrophilic reactions using a hydrophilic solvent.68 

The numerous concentric graphite sheets in MWCNTs37,45 render them more efficient 

electron carriers/acceptors.37  MWCNTs can be viewed as long molecular wires which allow 

free electron movements.69  The tubes act as wave guides with ballistic behaviour.  Ballistic 

behaviour is one in which the mean free path of electrons is longer than the length of the 

tubes.  Individual MWCNTs participate in quasi-ballistic conducting behaviour.  MWCNT 

layers are a set of connected interacting layers though not completely close.  This means 

multiple walls take part in electrical conductivity and a large external diameter implies a 

small band gap.69,70  The overlap of graphene sheets in MWCNTs affects electronic 

properties in addition to chirality.  Ellis and Ingham71 reported that MWCNTs are semimetals 

with overlapping occupied and empty bands. The electrical conductivity of MWCNTs is ~ 

1.85 × 103 S cm-1 and the current density along the axis is ~ 107 A cm-2.70 

A combination of nanotubes with various electron donors led to a new generation of donor-

acceptor nano-hybrids used for the development of photovoltaic cells.37  Their good 

electron acceptance and storage capability makes them good charge trapping sites.72  Semi-

conducting CNTs are generally p-type.42,73  Zhu et al. 42  reported the MWCNT resistivity, 

electron mobility and hole mobility at 300 K to be 0.1 Ω cm, 108 cm2 V-1 s-1 and 103 cm2 V-1 s-1 

respectively. The thermal conductivity of MWCNTs can be as high as 3000 W m-1 K-1.  
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MWCNTs are good candidates for DSSCs because they are chemically stable, have low 

resistivity,48 and are stiff and strong.45 

2.4.4.2  Synthesis of MWCNTs 

The MWCNT market is expected to reach a value of US $ 1 billion by 2014 and finally US $ 

9.4 billion by 2020.47  MWCNTs have lower production costs (estimated production cost is 

$5/g) and are available in large quantities relative to SWCNTs.42,65,73  MWCNTs are 

synthesized by three main methods, i.e. laser ablation, arc discharge74 and chemical vapour 

deposition (CVD).75  A catalyst is used to enhance the MWCNT yield.40,66   

In the laser ablation method, a graphite piece is vaporised by laser irradiation under high 

temperature in an inert gas atmosphere.  The product quality is dependant on the reaction 

temperature.  In the arc discharge method, an electric arc vaporises a hollow graphite anode 

packed with graphite powder and a mixture of transition metals such Co and Fe.  The yield is 

affected by gas flow rate, pressure and metal concentration.76  The laser method is suitable 

for low yields of MWCNTs.  The biggest problem with the arc discharge method is the 

removal of catalyst material and other graphitic contaminants. The CVD method is a thermal 

dehydrogenation reaction in which a transition metal catalyst such as Ni or Fe lowers the 

bond energy resulting in easier bond breaking in hydrocarbons forming carbon and 

hydrogen.76  The basic CVD definition can be deposition of a solid on a heated surface from 

a chemical reaction.  Chemical vapour catalytic grown MWCNTs have fewer impurities and 

more defect density than arc grown tubes.77  CVD techniques tend to be the most popular 

method, perhaps due to their input cost advantages61 and the ease of scale-up.  

Experimental parameters such as catalyst, nature of carbon source, flow rate, temperature 

and reactor design influence homogeneity, purity, morphology, structure and quality of 

MWCNTs.47  MWCNTs are reported to occur as by-products of natural and industrial 

processes such as methane- and propane- based stoves.78  Innovations in using those 

nanotubes will be an effective utilisation of organic fuels.   
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2.4.4.3  Modification of MWCNTs for applications 

Applications of MWCNTs include electric field emitters, shielding agents, lithium batteries, 

electromagnetic wave absorbers, hydrogen storage materials, fillers in nanotube based 

conducting composites, super capacitors and nano-probes.45  A survey on possible 

modifications towards energy generation goals follows.  MWCNTs are added to functional 

materials to enhance key properties such as an increase in surface area, activity and 

conductivity.73,79  Generally, nanoparticles or bio-molecules functionalise MWCNTs when 

used in nanoscale devices such as photo-electrochemical cells, molecular electronics and 

biosensors.  This is because these applications require low resistance contacts and the 

organised assembly of MWCNTs onto other functional units.80  In some instances controlled 

surface modifications, such as acid treatment, is a prerequisite.  After synthesis of MWCNTs, 

the material may need to be purified to get rid of metallic catalysts and carbonaceous 

material.81  One such method is vacuum annealing, which removes defects and amorphous 

material.  However, the most common method is to treat MWCNTs with one or more acids. 

Acid treatment with HNO3 should be below its degradation temperature (130 C) to prevent 

release of NO2 as a by-product.  Acid treatment might not remove metal catalyst particles 

completely due to inability to reach encapsulated iron.42  Sonochemical treatment in a 

mixture of concentrated nitric and sulfuric acids cause opening of the tube cap, shortening 

of tubes, defect formation and introduction of functional groups on the sidewalls.42  Acid 

strength and time of treatment have been the most varied parameters in this area.  A milder 

treatment, using a single acid at moderate concentration (3-6 M), involving reflux minimises 

tube shortening.82  Acid treatment influences the chemical properties, increases solubility 

and purifies MWCNTs.45,65  This allows for the manipulation of MWCNTs for various 

functions by influencing the electronic structure and surface reactivity.82  Organic stabilisers 

are used to prevent agglomeration by some researchers.20   

MWCNT modifications are either on the side walls or the inside along the hollow core.45  

There exist two broad ways of modifying MWCNTs involving either the conjugated skeleton 

on the surface of MWCNTs in chemical reactions to introduce groups on the surface or 

adsorption of molecules through non-covalent interactions.  Surface modification can be 

done either by boiling with oxidative acids or associating with pyrene derivatives.80  Some of 
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the reported methods of MWCNT modification include plasma activation,3 electrophilic 

addition,83 ozonolysis,53 addition of inorganic compounds,26 radical addition,84 sidewall 

halogenations,9 mechano-chemical functionalisation,54 cycloaddition,17 polymer grafting,8 

and hydrogenation.13  A combination of titania and MWCNTs produces excellent composite 

material but composition proportions ties into the idea of investigating optimum ratios.  The 

next section presents some background information and attributes of titania. 

 

2.5  Titania 

Titania has been applied in solar-based devices such as photo-catalysts and DSSCs.  TiO2 has 

other applications in cosmetics, catalysts, ultra-thin capacitors, chemical sensors, anti-

reflecting coatings, micro-electronics and as a white pigment because of its chemical and 

physical properties.20,85,86  ZnO offers much competition to TiO2 since it has a similar 

electronic structure, higher electronic mobility and can be synthesised by a variety of 

techniques which is a positive attribute to our low cost goals.  However, it is difficult to 

determine the most suitable of the two since photo conversion efficiency (𝑛) depends on a 

number of parameters and ZnO lacks reproducibility in synthesis.87  A brief background of 

the intrinsic properties of titania is given in the subsequent sections.   

 

2.5.1  Titanium dioxide attributes and setbacks 

Titanium dioxide is a non-toxic, environmentally friendly and chemically stable abundant 

substance with reported excellent photo-catalytic properties by many scientists.72,73,88,89  

TiO2 is mainly used due to its low cost, availability, chemical and physical properties as a 

thermoelectric material.  Attributes of a good thermoelectric material include high electrical 

conductivity and low thermal conductivity.81  However, since titanium is a transition metal, 

it has high surface free energy and this causes particle agglomeration problems.42   

Titanium dioxide has a low quantum yield associated with recombination of photo-

generated electrons and holes.73  Titanium dioxide has a large refractive index and is 

transparent in the range 350 nm to 1100 nm.85  It also has good transmittance in the visible 

region and is associated with large dielectric constant values.86,90  Titania is an n-type 
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semiconductor due to oxygen vacancies.91  Variations in titania properties are due to 

different synthesis methods and post-treatment conditions.86,91 

 

2.5.2  Forms of titania 

Available titanium oxides include titanium monoxide (TiO), titanium dioxide (TiO2) and 

titanium sesquioxide (Ti2O3).  Titanium dioxide exists in three phases, i.e. rutile, brookite and 

anatase.  Rutile is tetragonal (a = 0.4593 nm and c = 0.2959 nm) with a band gap of 3.02 

eV.86,92  Rutile is the most dense and thermodynamically stable phase.86,92,93  Brookite is 

orthorhombic (a = 0.9182 nm, b = 0.5456 nm and c = 5143 nm) with a band gap of 2.9 

eV.86,92  Brookite is the least thermodynamically stable and is obtained via complex 

preparation procedures but as a mixture with one of the other two polymorphs.93  Anatase 

is tetragonal (a = 0.3785 nm and c = 0.9514 nm).  In this phase, Ti4+ is octahedrally co-

ordinated to six O2- ions and has the widest band gap of 3.2 eV.18,20,88,94,95  Phase 

transformation from anatase to rutile is observed at ca. 500 C. The two polymorphs have 

distinct peaks in powder X-ray diffraction (XRD), Raman spectroscopy and Fourier transform 

infrared spectroscopy (FTIR).  Anatase can only be excited by light with wavelengths shorter 

than 387.5 nm.92  The anatase polymorph exhibits excellent conductivity and was therefore 

the target polymorph of this work for use in DSSC applications.  Titania exists in various 

morphologies such as nanotube arrays,96 nanotubes,91 rod-like nanospheres,97 nanofibres,98 

nanorods,99 and snow-like nanostructures.100  One dimensional TiO2, such as nanotubes and 

nanowires, is preferred to other dimensions because of the enhanced surface area for dye 

absorption,89 intrinsic electron mobility,95 semi-directed charge transport and high red light 

scattering culminating in enhanced blue light-harnessing.95 

 

2.5.3  Exciton behaviour in titania 

Illumination of inorganic materials generates free charges directly but in organic materials it 

causes delocalisation of photo-excited states, or excitons.  Excitons are bound electron-hole 

pairs which must dissociate into a free electron donor/acceptor for a photovoltaic system to 

deliver appreciable photocurrent.101  This typically requires a smart material to happen 
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efficiently.  Smart materials are materials that have the ability to respond to an induced 

external stimulus.  The material must have inherited sensing and/or actuation capability.43  

Pure titania has high recombination rates.80  Bing-shuan et al.72 reported that recombination 

can be minimised by metal coating.  Rice grain titania is better than titania Degussa P25 in 

PV.95 

Work reported by various researchers indicates that TiO2 is suitable for our work since it is 

stable against photo-corrosion and chemical corrosion amongst other advantages.  Table 

2.4 shows some of the titania structures reported for applications in light-harvesting.  

Table 2.4:  Selected performance of TiO2-based solar cells 87 

Structure JSH /mA cm-1 Voc /V FF 𝑛 /% Light intensity 
/mW cm-2 Year 

porous 4.71 0.87 0.68 2.81 100 2011 

Nano-rod 4.33 0.78 0.65 2.20 100 2009 

Nano-rod 2.73 0.64 0.56 0.98 100 2008 

nanotube 1.80 0.62 0.58 0.50 100 2011 

 

Illumination of a sensitizer attached to titania film causes absorption of the incident light.  

The electron (e-) in the dye/sensitizer absorbs the incident radiation.  The e- in the dye 

becomes excited to a higher energy level than the CB of titania leaving behind a positive 

electron hole.  The electron and hole (excitons) formed are bound by electrostatic forces of 

attraction.18,94  The force required to break this Columbic attraction is provided by the 

energy level offset of the sensitizer LUMO and TiO2 CB.18  The electron moves via diffusion 

across the TiO2 interface95 and the stability must be maintained.73  Excitons have a short 

diffusion length.87  The disordered motion of the photo-injected electrons in the TiO2 

network increases the probability of recombination with the oxidised sensitizer or 

electrolyte.  The e- moves via the external circuit to the counter electrode.  At the counter 

electrode, the e- moves to the oxidised species of the redox couple electrolyte.  The reduced 

species of the electrolyte then transfers the e- to the dye and the ground state dye is 

regenerated.95  Figure 2.3 illustrates the mechanism involved in DSSCs.   
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Figure 2.3:  The mechanism involved in the electric generation during light-harnessing95 

 

The generation of photocurrent on illuminating electrodes is a sign of charge collection 

efficiency.  It has been reported that a system with graphite as counter electrode and a 

MWCNT/TiO2 electrode increases the photocurrent five times than a system with no 

MWCNTs incorporated.102  TiO2 dominates the electron transfer processes.  Holes from 

photon-induced e-/h+ pairs must move from the TiO2 phase and a sensitizer, such as a dye, 

facilitates this event.  The conductive structure of the MWCNT scaffold facilitates the 

separation of the photo-generated electron/hole pairs at the MWCNT interface.  The local 

anodic potential across the TiO2/MWCNT interface contributes to this event.  An effective 

pathway culminating in high photocurrent values is subject to MWCNTs/TiO2 interfacial area 

and electron conductivity.66,79,102  MWCNTs have good electron capture capacity compared 

to TiO2 due to a lower Fermi level, ground state energy (see section 2.8.10).18,73  Jiang et 

al.103 reported a decrease in transfer of charge and an increase in anodic potential on 

addition of MWCNTs on titania.  Electron transfer is prompted from the titania CB towards 

the surface of the MWCNTs due to a lower Fermi level.  The Schottky barrier forms an 

interface between the MWCNTs and TiO2.  Photo-generated electrons move towards the 
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MWCNTs freely while the holes move towards the VB of titania inhibiting recombination 

and creating a large specific surface area for dye adsorption.73  A report by Ming-Liang79 

tends to present a contradictory mechanism to the mechanism mostly reported on electron 

movement in the composite, suggesting excited electrons move from valence band of the 

MWCNTs to the conduction band of TiO2. 

 

2.5.4  Titania band gap modification 

The band gap is the energy range in a solid with electron state probability of zero.  It is the 

energy required to free an electron from its orbit around the nucleus to become a mobile 

free electron.  This gap influences electrical conductivity.  Solids with large band gaps are 

insulators whereas conductors have overlapping valence and conduction bands.  Band gap 

engineering is the process of altering/controlling the energy gap between the valence band 

(VB) and conduction band (CB) of a material by varying composition.  The band gap effects 

on conductivity in solid-state solar cells can be minimised by the use of sensitizers such as 

quantum dots (QDs) and dyes.   

A few attempts to modify the band gap in titania via doping have been reported.  

Absorption of electromagnetic radiation by anatase TiO2 occurs in the UV region (below 385 

nm).72,95  The UV region accounts for 5% of the total solar energy that reaches the surface of 

the earth.72,87,88  Attempts to shift the TiO2 optical response by using cationic doping (Fe, Co, 

Ni, etc.) and anionic doping (N, C, F, etc.) 20,72,73,88 have been reported but this may create 

recombination centres for electrons and holes (see Table 2.5).  Most of the articles reviewed 

that report on doping of titania for application in DSSCs application do not report the 

observed band gaps.  Co-deposition of metals and mixing two semi-conductors are other 

ways of adjusting the band gap.88 
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Table 2.5:  Some reported titania doping outcomes 104-108 

Dopant General observations and band gap 

2 wt.% V5+ 

The V5+ species substituted Ti4+ by creating 
Ti4+ vacancies in the lattice. 

Particle sizes were reduced and had larger 
surface areas than undoped titania. 

Band gap was 3.8 eV 

N 

The e-/h+ recombination decreased and 
improved electron conductivity. 

P-N junctions formed with anatase at the P 
junction and rutile at the N junction. 

Band gap was 3.1 eV. 

I-, I7+ and Zr (co-doping) 

Surface area was large due to I- and I7+ 
species. 

Increase in electron capture due to Zr ions 
and reduced e-/h+ recombination than 
undoped titania. 

Band gap was 2.73 eV for iodine doping 
alone and 2.52 eV on co-doping. 

Ca2+ 

Ca2+ occupied the quadivalent Ti4+ and this 
increased net electron concentration and 
conductivity. 

Electron injection efficiency was also 
improved. 

S6+ and S4+ 

S4+ was incorporated into the lattice and S6+ 
due to SO-

4 adsorbed on titania surface. 

Reduced particle surface, larger surface area 
and reduced e-/h+ recombination than 
undoped titania. 

Band gap was 2.78 eV. 

 

2.6  Nanocomposites  

According to the English Oxford dictionary, a nanocomposite is a solid material made up of 

more than one phase having dimensions less than 100 nm.  General examples include gels, 

colloids, copolymers and organic-inorganic mixtures and some specific examples include N-

doped ZnO-Ag,109 SnS2-graphene,110 and MWCNT-titania.95  Nanocomposites are synthesised 
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to improve various functional properties of components such as reduction of e-/h+ 

recombination,111 enhancing mechanical and catalytic properties,109 and enhancing 

flexibility, dielectric, ductility and processability.112  Applications of nanocomposites include 

thin film capacitors and batteries,110 electrolytes,113 fuel cells,97 solar cells95 and 

photocatalysis.111  The properties of nanocomposites depend on the parent materials, and 

the morphology and interfacial characteristics. 

 

2.6.1  MWCNT-titania nanocomposites 

In this section, the review is directed to nanocomposites consisting of MWCNTs and titania.  

The reasons for using MWCNTs in nanocomposites include their cost-effectiveness in mass 

production, high aspect ratio, nanosize and low density.70  Carbon nanotubes are used to 

enhance carrier transport and achieve a light-trapping effect.94  TiO2 supported on MWCNTs 

to make a composite material have been reported to have excellent photocatalytic 

capability.114 

 

2.6.1.1  Precursors 

Most research articles reporting the synthesis of MWCNT-titania nanocomposites opted for 

metal organic precursors and the reasons for such choices were not made clear in the 

articles.  Precursors of TiO2 include titanium(IV) isopropoxide (TIP), titanium propoxide 

(TPP), titanium(IV) n-butoxide (TNB )and titanium methoxide (TM).79  Various types of 

composites have been reported which include titania nanoparticles on MWCNTs, titania 

layer coating on an aligned MWCNT array, MWCNTs incorporated into a titania film and a 

titania layer coating MWCNTs.73 

 

2.6.1.2  Preparation 

The method used in composite preparation influences the physical properties.  Composite 

materials have been fabricated by a number of ways such as sol-gel synthesis of TiO2 in the 

presence of MWCNTs,115 mechanical mixing,39 electrospinning methods,95,116 

electrophoresis deposition,117 novel surfactant sol-gel wrapping method,102 blending,118 
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physical vapour deposition, sputtering deposition,103 supercritical fluid deposition,20 

capillary action, hydrothermal67 and chemical vapour deposition (CVD).  Creation of a 

homogeneous surface layer on the MWCNT tube walls remains a challenge.102  Reports are 

that CVD and electro-spinning methods produce uniform coated composites.   

By means of the sol-gel method, Jitianu et al.119 reported a 3-5 nm thick homogenous 

coating of titanium dioxide on MWCNTs.  The authors also noted that the tube walls were 

partially damaged when using the hydrothermal method and suggested that the sol-gel 

method was a better method for tube coating.  Ming-Liang et al. 79   stated that the sol-gel 

method gives a heterogeneous non-uniform coating of MWCNTs by TiO2 with bare MWCNTs 

and random aggregation of TiO2 on the MWCNT surface. A trial of this method by possibly 

employing surfactants to arrive at ideal composites with less sophisticated equipment might 

contribute positively. 

 

2.6.1.3  Properties 

MWCNTs are used in composites with titania due to their high chemical stability and low 

space charge recombination in resulting composites.67  The high aspect ratio (length to 

radius ratio) and high conductivity of MWCNTs makes them preferred as a conducting 

composite material.  Nanotube composites have preferred morphology.21,42,61,120  Li et al.66 

reported that a high MWCNT ratio in MWCNT-titania nanocomposites resulted in higher 

photocurrent values.  However, the insolubility of MWCNTs is a barrier to their applications. 

Instead, various solvents are used to disperse MWCNTs in composite synthesis.  Organic 

solvents reported in literature for dispersion of MWCNTs include chloroform, toluene, 

water, carbon disulfide, ethanol, methanol and acetone.78  Acid treatment, discussed in 

section 2.4.4.3, is vital for using MWCNTs in reactions/chemical processes since it causes 

de-bundling first, thereafter it introduces functional groups that help with the solvation and 

prevent unwanted agglomeration into bundles,65 and it removes amorphous carbon which 

has low photoconductivity.42   
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2.6.1.4  Application in light-harvesting 

Most reported nanocomposites of MWCNT-titania in literature were applied in 

photocatalysis for water purification.  Other applications include hydrogen evolution, DSSCs, 

CO2 photoreduction and sensor devices.102  The combination of charge transfer abilities of 

MWCNTs and effective titania absorptivity in composites is one of the breakthroughs in 

photo-catalytic world.  The electronic conductivity of titania-based nanocomposites increase 

with MWCNT composition.66  Most reported light-harvesting related work is based on 

enhancing charge transfer and reducing e-/h+ recombination but MWCNTs can be used as 

sensitizers to enhance absorption.72  MWCNTs provide spatial confinement of TiO2 and a 

large supporting area contributing to fast observed redox reactions.66  MWCNTs increase 

the conductivity of titania and minimise recombination.73,95  Properties of CNTs and TiO2 

have been combined in various attempts to increase efficiency of solar cells.  For instance, 

Wang et al.79 reported a decrease in agglomeration and an increase in surface area of TiO2 

on making composites with MWCNTs.  Sawatsuk et al.48 reported a 50% energy conversion 

efficiency increase in a titania-based composite solar cell with 0.025% MWCNTs.  MWCNTs 

resulted in high Jsc with a slight increase in Voc.  Energy conversion efficiency was observed 

to decrease at higher MWCNT content due to optical absorption of carbon material.48  

MWCNT-TiO2 nanocomposites have achieved a 60% energy conversion efficiency increase.95  

A 0.2 wt.% CNT electro-spun titania composite was reported to achieve 35% 

enhancement.95  TiO2-based solar cells made by Weng et al.114 had a two-fold increase in 

photocurrent on inclusion of MWCNTs.   

There is need to investigate the physicochemical properties of nanocomposites for 

technological gain in solar cells.23  Characterisation of nanocomposites and investigation of 

their physicochemical properties towards light-harvesting functionality is the key to this 

work and a discussion of relevant characterisation techniques follows in the subsequent 

sections.  Peining et al.95 reported that the ideal titania thickness on MWCNTs in DSSCs is 11 

𝜇𝑚 at 0.2 wt.% MWCNT on TiO2.  Beyond that, it is suspected that a decrease in optical 

transparency and dye-loading could be the reasons for a decrease in efficiency since the two 

factors depend on TiO2 content in the nanocomposite.  Cong et al.73 used a molten salt 

method (TiC and MWCNTs) and the controlled oxidation process to coat TiO2 on MWCNTs.  
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An investigation of the composites synthesised by the sol-gel and CVD methods in terms of 

efficiency in photovoltaic applications will contribute immensely to cheap DSSCs, and this is 

one of the key aims and objectives of this work.  A review of the performance of DSSCs is 

discussed in detail in section 2.8.  

 

2.7  Characterization methods for nanomaterials 

MWCNTs have unique morphology and dimensions.  This distinguishes them from other 

forms of carbon and there are several techniques that are used to characterise MWCNTs.121  

Titania forms three distinct phases and different morphologies as described in previous 

sections, thus there is a need to characterise it fully both physically and chemically.  The 

next sections review various techniques fundamental to the elucidation of the properties of 

nanocomposites for light-harvesting applications.  The techniques that can be used to 

characterise nanomaterials include scanning electron microscopy (SEM), transmission 

electron microscopy (TEM), Raman spectroscopy, thermogravimetric analysis (TGA), Fourier 

transform infrared spectroscopy (FTIR), textural characteristics, diffuse reflectance, 

inductively coupled plasma-optical emission spectroscopy (ICP-OES), photoluminescence 

(PL), X-ray photon electron spectroscopy and powder X-ray diffraction (XRD). 

 

2.7.1  Thermogravimetric analysis  

The technique is a thermal method that measures changes in weight with temperature 

under inert, reducing or oxidizing conditions.114,115,122  Figure 2.4 shows TGA instrument.  TG 

curves of pure substances provide a fingerprint of that substance.  Thermal stability is 

deduced from the oxidation temperatures of a sample.115  Oxidation temperature is 

influenced by carbon-carbon bond-length, curvature and strains.65  Functionalization of 

MWCNTs in composites introduces different effects on the overall structure, thereby 

affecting thermal stability.  Furthermore, the purity of MWCNTs has an effect on oxidation 

temperature.  Pure MWCNTs approach theoretical in-plane graphite defect-free carbon 

bond properties.102 
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Figure 2.4:  The thermogravimetric analysis instrument: (A) TA Instruments Q seriesTM 
Thermal Analyser TGA (Q600) model and (B) the various parts involved in the 
system 

 

Defect-free graphite-like structures will be the most thermally stable structures of 

MWCNTs.122  However, real MWCNT structures deviate from the ideal and hence 

characterisation is crucial prior to various applications.  Defects in MWCNTs include dangling 

bonds, edges, vacancies, dislocations, and steps and these defects are reactive with oxygen 

at high temperatures.  Other defects are five- and seven-member rings forming azulene unit 

substitutes to naphthalene in MWCNTs.122  Using this technique, below 200 C water and 

organic impurities are removed then oxidation follows.65,123  Mun et al.123 reported the 

temperature range for MWCNT of oxidation to be between 400 and 650 C.  Acid-treated 

MWCNTs have a broader temperature range.123  MWCNT oxidation is reported to start 

between 440 C and 450 C.  In TGA, sample mass is limited by the less dense nature of 

MWCNTs and the size of the pan.  A 3-10 mg sample size was used by Lehman et al.102 while 

Mun et al.123 used 10-15 mg of MWCNT at a heating rate of 20 C/min up to 400 C.  Both 

Lehman and Munn obtained good and reproducible thermograms.  TGA can also be used 

qualitatively to confirm the presence of metals in composites without specific identification.  

Energy dispersive X-ray spectroscopy (EDX) can be used to identify specific metals.79,122  Bom 

et al.122 reported that the metal catalyst has little or no effect on oxidation stability of 

MWCNTs.  
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2.7.2  Raman spectroscopy 

The basis of Raman spectroscopy is inelastic scattering of a monochromatic excitation 

source.  A Raman instrument is shown in Figure 2.5A.  In this technique, photons of known 

energy are irradiated on molecules or polyatomic ions.  Photon absorption by the molecules 

causes transformation to high-energy states.  The molecules use some of the energy in 

transformation to high vibrational and rotational states. Excess energy is emitted as 

photons.  Raman spectroscopy is a result of change in polarizability.  Raman spectroscopy is 

a quick non-destructive vibrational spectroscopy that provides some structural information 

on the graphitic nature of carbon-based materials.  Illustration of laser during sample 

analysis in Raman spectroscopy is shown in Figure 2.5B. 

 

 
 

Figure 2.5:  The (A) Raman instrument and (B) illustration of laser in sample analysis in 
Raman technique  

 

2.7.2.1  Raman spectroscopy in carbon nanostructures 

Raman spectroscopy can be used to analyse various forms of carbon, such as amorphous 

carbon, activated carbon, graphene sheets, and carbon platelets, SWCNTs, DWCNTs and 

MWCNTs.  MWCNTs have a distinct Raman fingerprint.40  For MWCNTs, several bands are 

observed depending on the laser used.  For example, the D band is located at ca. 1350 cm-1 

for MWCNTs,124 the D’ (or G’) band may occur at ca. 1615 cm-1, the radial breathing mode is 

mostly located between 100-500 cm-1 and the G band is close to that of graphite located at 
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ca. 1580 cm-1.  The basis of the technique is that the G band is the first order Raman 

scattering 82,102 from the tangential in-plane stretching vibrations of carbon bonds within 

graphene sheets, the Raman allowed phonon mode (E2(g)).125  The incident laser power 

influences the E2g mode since an increase in temperature increases the carbon bond 

distance.125  MWCNTs resemble graphite due to their large diameter and reduced strain.  

The origin of the D band is not yet fully understood.65  The D band is thought to be the 

defect dependant second order Raman scattering, A(g1) mode.126,82  This is due to disordered 

defects or ion interaction between graphitic walls.65  The position of the D band is more 

defect dependant than curvature on SWCNTs.82  The radial breathing mode is due to the 

innermost tube diameter of MWCNTs and D’ is due to long range order in the sample.127  

The ID/IG ratio is used by many researchers to estimate defect content 82 and inter-defect 

distance in MWCNTs.  The ratio indicates the overall graphitic nature of the nanocomposite 

MWCNTs.  In a way it gives a measure of how the given carbon bond structure would 

deviate from the ideal graphite sp2 hybrid structure.  Pristine MWCNTs are commonly found 

to have more amorphous carbon and sp2 hybridised carbons. This explains why iron 

catalysts are encapsulated in the tubes leading to a compromised crystalline structure of 

graphite.  The R (ID/IG) ratio increases due to an increase in curvature as the diameter 

becomes smaller and defect sites increase.  Smaller diameter MWCNTs have high sp2 to sp3 

ratio and therefore R is higher than expected.66  The full width at half maxima of a Raman 

line vibration indicates that the interactions between vibrations and integral of the Raman 

line is proportional to the number of excited vibrations states.128  Li et al.66 reported that as 

the number of acid treatment cycles increases defect sites increase but vacuum annealing at 

1800 C improves crystallinity and decreases local defect intensity.  The IG’/IG ratio is used as 

an indicator of long range order and the overall crystalline quality is deduced by the IG’/ID 

ratio.40  Stobinski et al.129   observed that the lower the IG’/IG ratio the better was the 

structural order. Bom et al.122 observed that defects on MWCNTs caused a decrease in 

oxidation stability and that smaller diameters resulted in a high degree of curvature 

consequently leading to high reactivity towards oxygen.  Scalese et al.127 observed the radial 

breathing mode at 328 cm-1.  They also observed a peak at 2920 cm-1 that they assigned to 

C-H stretching for oxidised samples and a large G band shift (> 14 cm-1) due to change in 

electrochemical structure.  According to a report by Sawatsuk et al. the G- and D-bands 
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were located at 1624 cm-1 and 1348 cm-1 respectively.  The absence of a radial breathing 

mode and G-G’ splitting were due to a weak signal of the large inner diameter of the tubes 

and some wider distribution range of MWCNT diameter.48 

 

2.7.2.2  Raman spectroscopy in titania 

Raman spectroscopy in titania provides valuable information about the polymorph present.  

The existence of any of the titania polymorph crystalline forms is an indication of 

crystallinity.  Sawatsuk et al.48 reported that the anatase phase of TiO2 has peaks at ca. 395, 

518 and 642 cm-1.  

From this brief survey it is clear that Raman spectroscopy is a vital tool in the 

characterisation of MWCNT-titania composites since the constituent ratios of the 

composites introduce varying effects on carbon bond length, strain and curvature.  The next 

section looks at techniques used mainly for determining the morphology of the composites. 

 

2.7.3  Scanning electron microscopy  

Historically, the technique dates as early as 1933 with the first attempt by Ruska, which only 

managed ten times magnification.  The instrument developed over decades through the 

surface topography breakthrough by Marl in 1941.131  Knoll invented scanning electron 

microscopy (SEM) in the 1930s and thereafter progress was much faster culminating to the 

Jeol model developed in Japan.131  SEM is a technique that produces three-dimensional 

images of a sample.  It involves scanning of the surface of a sample with a focused beam of 

highly energetic electrons that generate a variety of signals at the surface.132  Surface 

topography, crystalline structure, textural and chemical composition details result from the 

interactions of electrons and sample.  Figure 2.6 shows a diagram of the SEM instrument.   
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Figure 2.6:  The scanning electron microscope: (A) instrument and (B) the enlarged parts  

 

Accelerated electrons with high kinetic energy dissipate energy as variety signals during 

deceleration.  Signals comprising of secondary electrons that give SEM images, back-

scattered electrons, photons and continuum X-rays, visible light,131 and diffracted back-

scattered electrons are received by the detector and passed to the display.  Photons play a 

role in elemental analysis and diffracted back-scattered electrons in determining mineral 

orientations.  Field emission-scanning electron microscopy (FE-SEM) and SEM are used to 

study the morphology and dimensions of MWCNTs.73,123 

In the works of Tessonnier et al.133 varying magnifications in SEM were able to show both 

agglomeration of tubes and surface topography.  The morphology of a nanotube is subject 

to the growth substrate.133  For example, methane decomposition at 600 C over nickel or 

aluminium catalysts produces bamboo shaped MWCNTs.45  This means the source of 

MWCNTs used in nanocomposites ultimately has an effect on applications in light-

harvesting.  Both TiO2 and TiO2-MWCNT are reported to be spherical.20  The oxide layer 

makes the MWCNT diameter appear larger than the actual.82  Korbély et al.134   observed 

that the majority of MWCNTs were covered with titania in their work using SEM. In their 

work, they were able to observe the variation in titania coat uniformity on changing solvents 

in the wet impregnation method. The information from SEM is vital because morphology 

and surface roughness can affect physical chemical properties. For example, thicker layers 
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can result in a larger band gap or longer distances for charge carriers to travel.  

Furthermore, new trap sites may form for carriers between the oxide and CNTs on coating 

MWCNTs.  These effects are crucial in the ultimate electron transport in the MWCNT-titania 

nanocomposites. Maximum power conversion efficiency is a subject of nano-morphological 

arrangement and surface properties of the composite.66,87,94  This is the reason why 

employing this technique in nanomaterials for light-harvesting is crucial.  Furthermore, 

transmission electron microscopy (TEM) is important for almost the same reasons (see 

subsequent section). 

 

2.7.4  Transmission electron microscopy 

G.P. Thomson was the first to appreciate that if electrons are passed through a thin 

specimen, a transmission diffraction pattern forms.135  Electrons are negatively charged and 

have a wave-like character.  Therefore, electric magnetic fields deflect electrons.  This was 

the foundation of TEM since transmitted electrons can be focused and have very short 

wavelength which allows imaging.  Magnetic electron lenses are required for focusing the e- 

beam onto the sample producing an enlarged image.132  Modern TEMs use an accelerating 

voltage between 100 and 300 Kv because going beyond increases electron momentum, 

which decrease the de Broglie wavelength of electrons lowering the diffraction limit to 

spatial resolution.  In TEM, an electron beam from the electron gun is passed into an ultra-

thin sample.135  The size and intensity of the beam are controlled.  An image, which is 

magnified in the objective lens onto the CCD camera sensor, is produced.  Figure 2.7 shows 

a diagram of the TEM.  The image is produced from the interaction of electrons and sample.  

In this technique, the side with nanoparticles should be facing down in the sample holder 

and high resolution images are possible due to the small de Broglie electron wavelength.  

The TiO2 film thickness is a key factor that controls electron transfer.66  TEM can be used to 

confirm the dispersion of dopants on the TiO2 and microstructure.20  TEM is used by many 

researchers to determine the structure and dimensions of MWCNT-based composites,79 and 

hence the technique is crucial in the investigation of the structure and morphology of the 

proposed nanocomposites.  Jitianu et al.119 observed a homogeneous coverage of MWCNTs 

with a coat thickness of 3 to 5 nm (see Figure 2.8). 
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Figure 2.7:  Diagram of a transmission electron microscopy instrument 

 

 

Figure 2.8:  TEM images for MWCNT-titania nanocomposites reported by: (A) Jituanu et 

al.119 and (B) Yan et al.30 

 

In other similar work reported on MWCNT-titania nanocomposites Mokaya et al.66 were 

able to determine the inner and outer diameters of the MWCNTs (10 - 30 nm) and that the 

titania film thickness on the MWCNTs was between 5 to 15 nm thick.  This shows that their 

coat was thin since it was possible to see inside the tube by using TEM.  Manchester et al.136 

in their works observed a uniform MWCNTs coverage of 5 nm to 10 nm in thickness.  Titania 

particles were clearly attached on the MWCNTs but the film thickness was not reported by 

Boccaccini et al.117  Casous et al.118 observed agglomeration of titania in their 
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nanocomposites and they did not report film thickness.  Amorphous titania agglomerates 

were not clearly observed by using TEM but the structure of the MWCNTs was roughened 

and most clusters were observed at open tube ends.137  This could be explained by the fact 

that most carboxylic acid groups from acid treatment will be found at the tube ends. 

 

2.7.5  Powder X-ray diffraction  

This section presents some background details on X-ray diffraction (XRD) technique and 

linking it to materials for light-harvesting analysis. 

Powder XRD (see Figure 2.9A and B) gives valuable information such as the dimensions of 

the elementary cell from the peak position, atom position, and crystal size from peak 

broadening, quantitative phase amount from the scaling factor, false order from diffuse 

background, and close order from modulated background.   

 

 

Figure 2.9:  XRD instrument: (A) powder XRD instrument used in the current work and (B) 
schematic diagram of how the instrument operates 

 

Figure 2.9B displays some important parts of the XRD instrument.  An X-ray typically from a 

copper cathode ray tube passes through a nickel filter. The filter allows monochromatic 

radiation to pass through.  It is thereafter, passed onto the sample in the sample holder.  

The detectors detect diffraction beams from the sample.138 

Powder samples particularly nanocomposites give cones when high intensity scattered 

beam is used.  Control of nano crystal shape is vital in solar cells117 and hence XRD analysis is 
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helpful in this regard.  Crystalline structures would imply large particle sizes and therefore a 

reduced number of boundaries, this minimises possible e-/h+ recombination centres at the 

nanoparticle boundaries.  XRD identifies changes in the MWCNTs on purification and 

functionalization in terms of crystallinity.  The subsequent paragraph highlights some 

literature cases that support the importance of this technique.  Some experimental 

procedures such as calcining may introduce phase changes and XRD is vital in monitoring 

these changes.  The coating of carbon with titania has been reported to prevent titania 

phase change.79  Metals can catalyse the anatase-rutile transformation72 which causes low 

efficiency in PV.  For example, according to X-ray patterns by Mian-liang et al.73 the anatase 

phase below 500 C transforms to the rutile phase above 600 C (700-900 C) but on 

annealing both phases are present at 700 C.  This makes it necessary to investigate the 

titanium dioxide crystal phase by XRD73,79,123 in solar cells.   The technique allows one to 

estimate the titania phase ratios.  However, most material scientists report that peaks due 

to MWCNTs in MWCNT-titania nanocomposites are difficult to locate due to overlap with 

TiO2 peaks (see Table 2.6).  Cong et al.73 reported the graphite d-spacing to be similar to that 

of TiO2 (0.34 nm and 0.35 nm respectively).  Table 2.6 gives some of the reported peaks of 

MWCNT-titania nanocomposites. 
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Table 2.6:  Some reported peaks of TiO2 and MWCNTs in MWCNT-titania nanocomposites 

Peak:2𝜃 
Miller 
indices  

(h k l) 

Comments 
Ref 

25.28 (101) 

Anatase phase of TiO2 
95

 

37.80 (004) 

48.18 (200) 

54.09 (105) 

26.40 - MWCNT 20
 

26.3 (002) Intense and sharp peak of MWCNTs  

42.8 (100) 

MWCNTs reflection peaks 

73
 

44.5 (101) 

54.2 (004) 

25.3 (101) The peak is due to TiO2 and MWCNTs 

37.8 (004) 

TiO2 anatase peaks are intensified when oxidation 
temperature is 300 C 

48 (200) 

53.9 (211) 

62.7 (204) 

26 - anatase 
Peaks used to identify changes during 

purification and functionalization. Peaks  
are narrower and symmetrical on removal 

of amorphous carbon 

115
 33 - brookite 

27 - rutile 

25.28 (101) Anatase phase of TiO2. 

Peak at 25.2 overlaps with MWCNTs peak. 

123
 

37.8 (004) 

47.9 (200) 

54 (105)  

62.6 (204) 

25.9 - MWCNT peak overlaps with TiO2 

43.2 - MWCNTs 
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2.7.6  Inductively coupled plasma-optical emission spectroscopy 

ICP-OES is an analytical technique that determines the elemental composition and 

concentrations present in nanocomposites in a precise way.  This method uses highly 

energised plasma from a noble gas such as He or Ar to excite an element.  The emitted 

photons are characteristic of the metal present and the intensity of the spectral signal is 

subject to the amount present.  The wavelength of light emitted is influenced by energy 

difference between the ground and excited state.  This energy difference is characteristic of 

the element.  Nanoparticles need to be digested, the ions atomised and vaporised in the 

plasma.  Ideally, nano-pure water should be used as solvent since double deionised water 

has some metals.  Elements with similar atomic structure will have emissions with similar 

wavelength causing interference.   

Recent technological advances have led to the realisation that ICP-MS can be used for the 

determination of nanoparticle sizes, in this manipulation, very dilute solutions are used and 

one particle per droplet is delivered in the nebuliser.  However, this could not be done in 

this work because the ICP was not of the correct configuration required. 

The technique determines the titanium content of the TiO2/MWCNT composites, by using a 

suitable digestion method.  Similar approaches are reported for metal determination in food 

samples, this is briefly discussed below.  The analytical technique requires digestion 

followed by dissolution in aqueous media before analysis.  Anatase and rutile phases of 

titania are insoluble at ambient pH.140  Methods available for metal digestion are hot plate, 

microwave and alkaline fusion.  Microwave-assisted digestion and hot plate methods have 

been reported by some researchers mainly for solid samples.139  Microwave digestion 

usually gives better reproducibility. Various acid combinations have been used for metal 

digestion.  However, our survey on titania digestion points out that HF141 or concentrated 

H2SO4 are typically used to dissolve TiO2.  Sulfuric acid is most preferred due to its relatively 

satisfactory recoveries, health and safety attributes.  HF aids in the solubilisation of titania, 

but has several health and safety risks associated with its use.  Nitric and sulfuric acids 

combinations were used in food samples for ICP-OES. 
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2.7.7  Textural characteristics  

Lastly, other important parameters in nanocomposites are the pore volume and surface 

area since surface area and porosity are linked to physicochemical properties (see Table 

2.7).  Surface area is the total sum of the surface areas of individual particulates constituting 

the material.142  Surface area is important for adsorption of the dye and a general 

expectation will be an increase in chemical reactions in nanomaterials with an increase in 

surface area.  Therefore, investigating the available surface area in synthesised 

nanocomposites is vital.  Furthermore, pore volume defined as the size of empty spaces in a 

material is equally important.  Heat treatments may influence surface area.  Textural 

characteristics have a role in light-harvesting since they influence the amount of dye 

adsorbed on the nanocomposite.  In this technique, samples were out-gassed and nitrogen 

gas adsorption was used for the study.  Jitianu et al.119 out-gassed samples at 150 C for 12 

hours and the final pressure was 10-6 mbars.  They deduced that the amount of titania 

deposited on MWCNTs is subject to the precursor and deposition method.  An increase in 

the titania layer causes a decrease in the specific and micro pore volume due to blockage of 

the micro pores of MWCNTs.  Type IV isotherm mesoporous character was preserved in 

their work.102,119  Such reports from literature implies that textural characteristics cannot be 

ignored for mesoporous composites particularly MWCNT support materials. 

 

Table 2.7:  Surface areas and pore volumes of some MWCNT-titania nanocomposites  

Sample SBET (m2/g) Va (cm3/g) References 

MWCNTs 300 0.13 
119

 

MWCNTs 187 0.07 

CNTs 264.08 2.419 

102
 Pure titania 196.72 0.136 

CNTs/titania (10% Ti) 230.23 0.337 
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Characterisation of nanomaterials is vital because their properties influence their 

performance in various applications.  For example, in DSSC applications, surface area and 

porosity play a key role in dye adsorption.  The subsequent section reviews the concept of 

PVs and some key parameters important in this field. 

 

2.8  Dye-sensitised solar cells 

Alexandra-Edmond Becquerel first observed the photovoltaic effect in 1839.  The 

photovoltaic effect states that when a photon is directed on a region close to a p-n junction 

built barrier, an electric potential is generated.143  The photovoltaic effect involves a self-

generated electromotive force (emf), generation of electron hole pairs under optical 

excitation, collection of charge at a counter electrode and finally the ability to deliver power 

to an external load.   

Other well-known energy technologies such as wind offer competition to PV technology.  

Various researchers in the India Brazil South Africa (IBSA) energy initiation project are 

working towards that goal.  Silicon solar cells currently dominate the PV market due to high 

power conversion efficiencies of up to 25%.  Titanium-based solar cells have the potential to 

challenge silicon-based solar cells in terms of cost.  Methods of depositing titania on ITO 

glass substrates include low temperature heating, microwave irradiation, hydrothermal 

crystallisation and CVD.  The easiest method for depositing titania on ITO coated glass is 

doctor blading.  The doctor blading method is a compatible technique used to coat a 

material on a substrate involving roll to roll active layer deposition.144  Glass solar cells are 

rigid and annealing is usually in the range between 400 and 450 C.  Such PV cells have 

achieved conversion efficiencies of ±4 %.145  Titanium nanocomposite-based solar cells have 

the potential to bring about a competitive product since silicon solar cells are 

expensive.18,145,146  However, applications of titania towards this goal have been limited by 

the band gap of titania in utilising the visible region of the solar spectrum as discussed in 

section 2.5.4.  Some of the approaches to counteract this effect are to use quantum dots 

(QDs) and dyes as sensitizers. 
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QDs employ the multi-exciton generation phenomenon.94  An investigation of QD 

integration in PVs might possibly contribute something positive to the efficiency of titania-

based solar cells.  Integration of QDs nanocrystaline material opens the possibility to 

develop low cost solid-state solar cells.  The absorption of QDs depends on composition and 

this offers an advantage of being able to fine tune the absorption properties of the 

sensitizer.  QDs allow energy level matching between donor and acceptor and this 

contributes greatly to efficiency of a PV.  QDs have three-dimensional quantum 

confinements, which induce discretization of electronic states.  QDs containing a 

nanocomposites coating are an alternative for the fabrication of planar QDs concentrators.  

The advantage of quantum dots over dye molecules includes the tunability of the optical 

properties with size and better hetero-junction formation with solid hole conduction.63  

However, new generation solar cells also include dye-sensitized semi-conductors and 

organic hetero-junction films organic-inorganic hybrid structure based PV materials.   

Gerischer and co-workers were one of the pioneers of DSSCs in the 1960s and they used 

semi-conductors and organic sensitizers.  Gratzel invented efficient and low fabrication cost 

DSSCs in 1991. Initial conversion efficiency was 11.1%.48,95  The highest recorded efficiency is 

12%.95  A major area of study since then is still on the efficient transfer of electrons across a 

nanometre particle interface.  The drive is to couple high efficiency and low cost in addition 

to easy scalability to vast areas.  Electron conversion efficiency (ECE) is important for 

commercialisation of DSSCs147 and this phenomenon is influenced by the semi-conductor 

oxide layer.  ECE is discussed in detail in section 2.8.7.  Several semi-conductor oxide layers 

tried in DSSCs include SnO2, WO3, SrTiO3, CeO2, ZnSnO4 and FeS.  Oxygen deficiency induces 

visible light absorption.146  Efficiencies of greater than 8% have been reported in recent 

reports.148  Plastic-based DSSCs have achieved power conversion efficiencies of 6.4%.145  

DSSCs-based on composites from a simple direct mixing method are reported to have 

achieved a conversion two times efficiency improvement.48,95  A longer electron diffusion 

length might promote recombination.147  A 2 𝜇𝑚 thickness of 0.2 wt.% CNTs on TiO2 

achieved an increase in energy conversion of 1.51%, Jsc increase of 3.58 mA cm-2 , Voc 

increase of 0.05% and FF increase of 0.02.37  DSSCs from MWCNT-TiO2 via sol-gel synthesis 

achieved a conversion efficiency of 4.97%.149 
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A redox mediator such as I-
3 redox couple diffuses to the counter electrode where it is 

reduced.  The oxidized form of a sensitizer accepts an e- from the reduced mediator.  The 

counter electrode controls the regeneration of oxide mediator into the reduced form and 

must have low charge resistance.  A Pt counter electrode and I-/I3
- system may be used since 

Pt is stable and able to catalyse I3
- reduction.36,94  However, the iodine concentration has 

been reported to have an influence on the performance of PVs because it absorbs strongly 

at 430 nm (see Table 2.8).150  The iodine concentration needs optimisation since a decrease 

in concentration leads to a high transmittance but values that are too low might fail to 

regenerate the ground state of the sensitizer (see Table 2.8).  Electrolyte leakage remains a 

set-back in DSSCs and expensive conductive material.  Although we focus more on the active 

area, ionic, quasi-solid and solid electrolytes such as CuI and CuSCN have been reported in 

literature but the efficiency is still very low.150   

Table 2.8:  Effect of iodine concentration on PV performance 

Iodine 
concentration 

/M 

Voc 

/V 

JSH 

/mA cm-1 
FF 

𝑛 

/% 

0.01 0.720 4.12 0.709 2.11 

0.02 0.692 6.01 0.720 3.00 

0.05 0.687 5.41 0.738 2.75 

0.08 0.692 3.08 0.774 1.01 

 

Advantages of polymer gel electrolytes, such as polyvinyl acetate as gelator, include lower 

leakage, lower volatilisation, excellent interfacial contact, higher ionic conductivity and high 

long term stability.  Recombination of photo-injected electrons with electrolyte (I3
-) 

decreases VOC and several ways for inhibition include blocking with metal oxide layers or 

composite oxide films, attaching hydrophobic chains to the pyridine rings and treating dye 

coated TiO2 films with pyridine derivatives.151  Pyridine rings are able to form bonds with the 

metal oxides.  Fu et al.36 suggested fibber (pear) shaped DSSCs to prevent present 

electrolyte problems.  Pt is expensive and using it will lead to expensive PVs, so we will 

propose trying other cheap counter electrodes.42,87  Wright and Uddin used aluminium as a 
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counter electrode.  Zhu et al.42 reported that MWCNTs are better than other carbon counter 

electrodes.  We also propose that CNTs be used as counter electrodes since they might also 

enhance efficiency by nanoscale conduction, light weight and high flexibility.42  The power 

gained is due to the photons gained by the sensitizer.  TiO2/MWCNTs inhibit recombination 

of photo-induced carriers.66,73 

Many researchers reported ruthenium complex dye-sensitized semiconductor solar cells 

using mainly TiO2 as semiconductor.19,79,89,151-155  These well researched dyes can be used as 

standards for new dye trials.  A photo-excited dye transfers electrons to the nanotube to 

generate a positively charged dye and negatively charged nanotube.101  In summary, 

electrons move from the HOMO into the LUMO of the sensitizer (dye) on excitation, then to 

the conduction band of MWCNT-TiO2
152 and via the external circuit through the load to the 

counter electrode before being picked by the redox mediator and finally back to the 

sensitizer (see Figure 2.3 in section 2.5.3). 

 

2.8.1  Indium tin oxide  

Indium tin oxide (ITO) coated glass allows light to pass through and collects holes from the 

device.  The ITO glass is part of the photoanode side in a DSSC.  A conductive polymer 

mixture (PEDOT-PSS) may be applied between the anode and the photoactive layer to block 

excitons, transport holes, to make ITO glass smooth, and prevent oxidation and allows the 

cathode to protrude into the active layer.87 

 

2.8.2  N3 dye standard 

Dyes are sensitizers in DSSCs and properties of an ideal dye are given in Chapter Five.  

Reports of a number of different dyes in DSSCs applications exist and most of them are 

ruthenium-based complexes (see Table 2.9).  In this section a brief insight of the N3 dye 

application as a standard in DSSCs is given.  The N3 dye can be used in trials of some natural 

dyes in solar cells89 since the dye is amongst well documented dyes in literature.   
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Table 2.9:  Some reported dyes applied in DSSCs 

Dye References 

ruthenium 535-bis-tetrabutylammonium 99 

cis-bis(2,2’-bipyridyl-4.4’-dicarboxylato)-ruthenium(II)-bis-

tetrabutylammonium 
82 

N3 153 

eosin Y 89 

ruthenium (bipyridyl-4,4’-dicarboxylic acid)2(NCS)2.2H2O 95 

ruthenium (II) (2,2’-bipyridyl-4,4’-dicarboxylate)(NCS):2 

tetrabutylammonium 
48 

cis-dithiocynate-N,N-bis(4-carboxylate-4-tetrabutylammonium carboxylate-

2.2’-bipyridine) ruthenium(II) 
39 

 

 

Figure 2.10:  Typical current density-voltage curve for N3 dye in TiO2-based solar cell155 
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The Table 2.10 and Figure 2.10 show some of reported performance characteristics of N3 

dye.151  The last section of the review discusses important parameters that characterise PV 

quality. 

Table 2.10:  Performances of some reported N3 dye-sensitised titania-based solar cells 

VOC /V JSC /m Acm-2 𝑛 /% FF References 

0.690 14.60 5.70 0.570 151
 

0.688 1.53 2.37 0.670 89
 

0.680 10.55 4.00 0.560 152
 

0.656 18.33 7.49 0.620 155
 

0.639 17.86 6.12 0.537 153
 

0.653 12.00 4.80 0.610 154
 

 

2.8.3  Performance characteristics 

Current-voltage graphs are important tools for measuring performance (see Figure 2.10).  

Defects and dipoles at the interface, energy barriers and a low surface recombination rate at 

the photocathode can cause an S-kink in current-voltage graphs, i.e. S-shaped current-

voltage graphs.  An S-kink in a DSSC is mainly caused by two effects: a mobility imbalance 

between e-/h+ causing the creation of an additional E-field thereby reducing efficiency and 

Fill factor (FF is discussed in section 2.8.10) and secondly, an adverse barrier as contact 

resistance.156  Air mass (AM) is the standard terrestrial solar spectral irradiance 

distribution.72  AM is important in standardising DSSCs because the temperature and water 

vapour in the atmosphere will affect the performances of devices differently depending on 

location.  This means Voc, Jsc, FF and efficiency are subject to AM.  Valid international 

standards are AM = 1.5 G, light intensity 1000 W cm-1 or 100 m W cm-1 and cell temperature 

at 25 C.87,89,152-155 

 

  

file:///E:/thesis..Si/Chapter%202..printing.docx%23_ENREF_151
file:///E:/thesis..Si/Chapter%202..printing.docx%23_ENREF_151
file:///E:/thesis..Si/Chapter%202..printing.docx%23_ENREF_89
file:///E:/thesis..Si/Chapter%202..printing.docx%23_ENREF_152
file:///E:/thesis..Si/Chapter%202..printing.docx%23_ENREF_155
file:///E:/thesis..Si/Chapter%202..printing.docx%23_ENREF_153
file:///E:/thesis..Si/Chapter%202..printing.docx%23_ENREF_154
file:///E:/thesis..Si/Chapter%202..printing.docx%23_ENREF_156
file:///E:/thesis..Si/Chapter%202..printing.docx%23_ENREF_72
file:///E:/thesis..Si/Chapter%202..printing.docx%23_ENREF_87
file:///E:/thesis..Si/Chapter%202..printing.docx%23_ENREF_89
file:///E:/thesis..Si/Chapter%202..printing.docx%23_ENREF_152


 

E.T. Mombeshora Page 57 

 

2.8.4  External quantum efficiency 

External quantum efficiency (EQE) is the ratio of photo-generated electrons collected to the 

number of incident photons at a specific wavelength.  Incident photon-to-current efficiency 

(IPCE) is the same as EQE.  ICPE is calculated from the short circuit photocurrent, intensity 

of incident light and wavelength.  It is defined by the number of generated electrons per 

number of incident photons.145 

EQE =
number of e− hole pairs generated/area

number of photons striking device/area
     (equation 2.3)143 

 

2.8.5  Fermi level 

Fermi level (Ef) is the average energy of the charge carriers i.e. energy of the p- and n-

junctions in a device.  Thus, VOC is the energy required to add an electron into the p-junction 

from the n-junction (see Figure 2.11 and section 2.8.6).  The high the VOC between 

interfaces of DSSCs the greater the ability to transport an e- across the interfaces. 

 

 

 

Figure 2.11:  A schematic diagram showing the relationship between potential energy 

(voltage) and Fermi level143 
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2.8.6  Open circuit voltage  

Open circuit voltage (VOC) is the difference of electrical potential between two terminals of 

an illuminated PV with no external load connected.  Brabec et al.87 reported that VOC is 

weakly influenced by type of metal counter electrode used.87,89,94,152-155   

From Figure 2.11, 𝑉𝑂𝐶 = 𝐸𝑓𝑝 − 𝐸𝑓𝑛     (equation 2.4) 

where Efp and Efn are Fermi energy levels for the p and n junction respectively.143 

 Major limitations of efficiency are in two main groups:  

  1. Recombination due to diffusion time through TiO2 

 dye recaptures an electron 

 electrolyte (I3
-) recaptures an electron 

2. Rate of ion transport from counter electrode to dye and this more pronounced at high 

electrolyte concentrations causing VOC, JSH and FF to decrease.147,154 

 

2.8.7  Short circuit current 

A short circuit is an electrical circuit (ISC) that allows current to pass through an unintended 

path.  ISC is the highest current passing through an illuminated PV with no external load 

under short circuit conditions.87,94  ISC is proportional to the light intensity and device area.143  

High electron mobility is good for exciton dissociation and carrier transport but 

recombination is enhanced.156 

 

2.8.8  Short circuit current density 

Short circuit current density (JSC) is the maximum photocurrent density which can be 

extracted from the device under short circuit conditions.  Generation of photocurrent is in 

the near infrared (NIR) and this reduces the heating effect while increasing shunt resistance 

(RSH).87 
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2.8.9  Resistance 

Series resistance (RS) is influenced by poor conductivity and the charge carrier imperfection.  

RS is derived from bulk resistances between the active layer and electrodes, while RSH is from 

current leakage from the edge of the cell.  RS determines the current flow direction between 

diode and external load.  The ideal Rs is 0 and the ideal shunt resistance, RSH is infinity.  If RSH 

is infinity then there is no current leakage in the device by the traps.  RSH and Jsc decreases if 

transit time is larger than lifetime of carriers.  Annealing improve interfacial morphology and 

decrease surface recombination and leakage.156  However, imperfections within photoactive 

film or current leakage reduce Rs.87,89,143,152-155  

 

2.8.10  Fill factor  

The shape of a device’s I-V curve is a true indication of the device performance efficiency.  

This is the largest rectangle under the J-V curve.  Fill factor (FF) is the ratio of the maximum 

obtainable power i.e. Pmax to the product of VOC and JSC.143   It measures the squareness of 

the J-V curve.157  The more rectangular the J-V curve the better the FF and the higher the 

efficiency.  The quality of the diode is affected by physical constraints when FF< 1 and 

varies mostly between 0.3 and 0.8 in real diodes.  Real diodes deviate from the ideal due to 

recombination. 

FF = 
𝑉𝑚𝑎𝑥×𝐽𝑚𝑎𝑥 

𝐽𝑠𝑐×𝑉𝑜𝑐
                                 (equation 2.5) 

For an ideal diode PV, Jsc = Jmax and 𝑉𝑜𝑐 = 𝑉𝑚𝑎𝑥.  This implies that 𝐹𝐹 = 1 and shape J-V is a 

perfect rectangle (see Figure 2.12).  Theoretical FF is given by 

FF = 
𝑑𝑃𝑚𝑎𝑥

𝑑𝑉
=

𝑑𝐼𝑉

𝑑𝑉
= 0                          (equation 2.6) 

Vmax= Voc -  
𝑛𝐾𝑇

𝑞
𝐼𝑛(

𝑉𝑚𝑝

𝑛𝐾𝑇\𝑞
+ 1)                (equation 2.7) 

FF = 
𝑉𝑂𝐶−𝐼𝑛(𝑉𝑂𝐶+0.72)

𝑉𝑂𝐶+1
                       (equation 2.8) 
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Figure 2.12:  The J-V curve for an ideal diode.87,89,152-155,157 

 

2.8.11  Power conversion efficiency 

Power conversion efficiency (𝑛) is the ratio between the maximum electrical power and 

incident electrical power (PIN) 

𝑛 =
Maximum power output

Incident intensity×Area of device
          (equation 2.9) 

=
𝑉𝑚𝑎𝑥𝐼𝑚𝑎𝑥

Insolation × Area
 

=
𝑉𝑚𝑎𝑥𝐼𝑚𝑎𝑥

𝑃𝐼𝑁
 

=
𝐹𝐹×𝐼𝑆𝐶×𝑉𝑂𝐶

Total insolation
    94,143  

Also total efficiency can be expressed in a different way according interface processes from 

light absorption to charge collection, 

𝑛𝑇 = 𝑛𝐴 𝑛𝐸𝐷𝑛𝐶𝑇𝑛𝐶𝐶                (equation 2.10) 

where 𝑛𝐴, 𝑛𝐸𝐷, 𝑛𝐶𝑇 and 𝑛𝐶𝐶  are absorption efficiency, exciton dissociation efficiency, charge 

transfer efficiency and charge carrier collection efficiency respectively.156 

Effects of J-V characteristics in PV are: 

 Sunlight intensity 

 Cell operating temperature 
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 Prevailing wind velocity of site143 

The ideality factor (n) is the measure of the junction quality and type of recombination in 

solar cells.  Ideality factor is one - only if the diffusion current flows into the junction and 

two - if recombination is predominantly occurring.  Interaction of RS, RSH and diode 

influences current flow in a device.156  In practice, FF is lowered by parasitic resistive losses.  

Resistive effects in solar cells decrease efficiency by dissipating power in the resistances.157   
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Chapter Three 

 Experimental details 

This chapter presents details on the reagents, equipment, and various experimental 

conditions involved in the synthesis of the MWCNT-titania nanocomposites and dye 

sensitised solar cells (DSSCs). 

 

3.1  Reagents and solvents for nanocomposite synthesis 

 Ethanol (Analar, BDH, 99.7% to 100%) 

 Concentrated sulfuric acid (SSM Instruments, South Africa, AR, 98% to 100%) 

 Nitric acid (Sigma Aldrich, Germany, ISO,  69%) 

 Hydrochloric acid (SMM Instruments, South Africa,  32%) 

 Titanium(IV) isopropoxide (Sigma Aldrich, India, 97%)  

 Titanium(IV) methoxide (Sigma Aldrich, USA, 95%) 

 Titanium(IV) dioxide (Sigma Aldrich, Germany, 99-100%) 

 Titanium standard (Industrial Analytical, South Africa, 1.002±5 µg/mL, 2%) 

 Double distilled water (Biby sterlin ltd, England, Aquatron model A4000Dl) 

 MWCNTs (8-15 nm OD, length 10 – 50 𝜇m , ash < 1.5 wt%, SSA > 233 m2/g, EC >10-2 

S/cm, SKU number 030102,95 wt%) – Purchased from Cheaptubes.com 

(www.cheaptubes.com) 

 

3.2  Reagents and solvents for DSSCs 

 Acetonitrile (Merck Schuchardt, Germany HPLC grade, 99.9%) 

 Iodine-resublimed (Analysed Analytical Reagent, AAR, SMM instruments) 

 Ethanol (Analar, BDH, 99.7% to 100%) 

 1-Methyl-3-propylimazolium iodide (Sigma Aldrich, Germany, HPLC grade, ≥ 98%) 

 Lithium iodide (Sigma Aldrich, Germany, Trace metal basis, 99.9%) 

 Eosin B (Sigma Aldrich, USA, 90%) 

http://www.cheaptubes.com/
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 Guanidinium thiocynate for synthesis (Merck Shuchardt, OHG, Germany, IR passed 

test, Assay ≥ 98%) 

 4 Tert-butylpyridine (Sigma Aldrich, USA, 96%) 

 Polyvinyl acetate (PVAc) (Sigma Aldrich, USA, MW = 100 000 gmol-1) 

 Nanocomposites (synthesised in this work) 

 ITO glass (Lumtec, Taiwan, 15 Ω, 30 × 30 × 0.7 mm) 

 

3.3  Equipment and apparatus  

The subsequent sections present details of the equipment that was used for the synthesis of 

the MWCNT-titania nanocomposites. 

 Stirring and digestion of nanocomposites for ICP-OES was done on a Lab Smart MS-

H-Pro+ model hot plate.  Sintering of DSSCs was also done on a hot plate. 

 Ultrasonic water bath treatment was done with a digital ultrasonic heater supplied 

by Shalom lab, South Africa. 

 Calcining and chemical vapour deposition synthesis was done in an Elite thermal 

system TSH12/50/610 model tube furnace. 

 

3.3.1  Metal-organic chemical vapour deposition reactor  

The metal-organic chemical vapour deposition (MOCVD) apparatus was constructed with 

commercially available stainless steel parts, which were purchased from Swagelok 

(Swagelock, Durban, South Africa).  The bottom of the reactor was made of Swagelock 316 

SS VCR face seal fitting, 1/2 in. cap.  The reactor consisted of a cylindrical stainless steel 

(Sandvick 3R60 ASTME/ASME, Canada) reaction chamber body made from 316/316L SS 

seamless tubing (1/2 in. OD x 0.035 in. wall x 6 meters) sealed at one end (top) with a 

Swagelock face seal fitting with a blind gasket (see Figure 3.1).  The top consisted of a 

Swagelock 316 2DA and PSIG SS-42GS4-A.  A 316 SS VCR face seal fitting, 1/2 in. silver-plated 

filter gasket, non-retained style, 0.5 micron was fitted at the bottom to minimise loss of 

sample and contamination of the whole system connected to a vacuum pump.   
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Figure 3.1:  A photograph of the MOCVD reactor used in the CVD synthesis of MWCNT-

titania nanocomposites  

 

The vacuum line was constructed from 316/316L SS seamless tubing, (1/4 in. OD x 0.035 in. 

wall x 6 meters).  Valves were included in the system by use of SS 1-piece 40 series angle 

pattern ball valves, (0.35 cv, 1/4 in).  A 316 SS VCR face seal fitting, 1/2 in. female nut was 

used to seal the VCR fittings and SS Swagelok tube fitting, 1/2 in. x 1/4 in. tube OD was used 

to connect 1/4 Swagelok fitting to the tubing coming from the valve.  A thyracont VD84/1 

Pirani vacuum gauge was used to measure absolute pressure.   

 

3.3.2  Nanocomposite synthesis experiments 

This section outlines the stages involved in nanocomposite synthesis from acid treatment of 

pristine MWCNTs.  Two synthetic methods which were sol-gel and CVD were used in this 

work and are presented in sections 3.3.2.1 and 3.3.2.2.  The as prepared nanocomposites 

had varying wt.% of MWCNTs in the range 2-98 wt.%. 

Acid treatment was first carried out to introduce oxygen containing functional groups onto 

the MWCNTs tube walls and to remove iron.  Iron was introduced in MWCNTs as a catalyst 

in pyrolysis (during the SCNM synthesis). 

The acid treatment of the MWCNTs was carried out in an ultrasonic water bath for 4 hrs.  

The general mixing ratio consisted of about 1 g of MWCNTs (accurately weighed) in an acid 
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mixture made up of 30 mL of HNO3 and 10 mL HCl.  The water bath temperature was 

generally kept at 60 C for 4 hrs while the application of the ultrasound energy was set to go 

off for 15 min for every 30 min of ‘on-time’ to prevent tube shortening (total of 6 hrs under 

treatment).  Initially a Buchner funnel was used for vacuum filtration ensuring that there 

were no MWCNTs passing through the filter paper but gravity filtration was later used 

instead for convenience since drainage did not require close monitoring as in vacuum 

filtration.  The residue was washed with distilled water until the water draining through was 

neutral.  Neutrality was checked by using a blue litmus paper.  The MWCNTs were left to dry 

in open air overnight, then dried at 120 C in a Scientific Economy 220 model oven and 

stored in a desiccator.  At this stage the MWCNTs were ready for nanocomposite synthesis.  

 

3.3.2.1  Sol-gel method  

During loading of TiO2 onto MWCNTs, high ratios of MWCNTs and small ratios of titania, was 

done by accurately weighing MWCNTs.  The MWCNTs were thereafter dispersed in 30 mL 

ethanol and treated with an ultrasonic water bath for 10 min to reduce agglomeration.  A 

predetermined volume of titanium(IV) isopropoxide (TIP) was added with a micro-pipette to 

10 mL of ethanol.  For large titania wt.%, a measuring cylinder was used to measure the 

volume of TIP.   

The volume of TIP required was calculated as follows: 

For 1:1 wt.% ratio using 0.5 g of MWCNTs, if 𝑥 is mass of titania required then 

𝑥

𝑥 + 0.25
= 0.5 

𝑥 − 0.5𝑥 = 0.25 × 0.5 

𝑥 = 0.25 𝑔 

Number of moles of titania in 0.25 g =
0.25

79.866
  = 0.00313 mol 

Mass of titanium(IV) isopropoxide = 
0.25

79.866
 × 284.22 𝑔 = 0.8897𝑔 
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Volume of titanium(IV) isopropoxide = 
0.8897𝑔

0.96 
𝑔

𝑚𝐿

 = 0.9268 𝑚𝐿 

 

The TIP dispersed in 10 mL of ethanol was added to MWCNTs.  The mixture was treated in 

an ultrasonic water bath for 30 min, followed by stirring for 30 min at 1000 rpm to improve 

homogeneity and contact.  The reaction mixture was then left for about 16 hrs in air with no 

stirring.  The nanocomposites were filtered using vacuum until dry and left exposed to air 

overnight.  Thereafter, calcining was carried out at 4 C/min linearly up to 400 C and held 

there for 30 min in a furnace open to air.  This step was meant to decompose the organic 

components of the titanium precursor.  High titania wt.% ratio nanocomposites, i.e. loading 

MWCNTs onto TiO2, were synthesised in a similar way.  The nanocomposites with high 

titania wt.% were dried at 120 C in an oven prior to calcining because they had more water 

adsorbed on the surface.  

 

3.3.2.2 CVD method  

In this section the loading of TiO2 onto MWCNTs by the CVD method is described.  The 

general procedure was to accurately weigh MWCNTs (0.5000 g or 1.000 g) then mixing them 

with a predetermined mass of titanium(IV) methoxide (TM) with the aid of a pestle and 

mortar. 

Calculation example: 

For 1:1 wt.% ratio using 0.5 g of MWCNTs, if x is the mass of titania required then 

Mass of titanium methoxide = 
0.25𝑚𝑜𝑙

79.866
× 172 𝑔 𝑚𝑜𝑙−1 = 0.5384 g 

 

The mixture was transferred into the MOCVD reactor (details discussed in section 3.3.1.) 

and the reactor inserted horizontally in a tube furnace connected to a vacuum pump (see 

Figure 3.2).  The vacuum pump was turned on with valve one opened, valve two closed, and 

the furnace off.  Valve two was only opened when a pressure of about 1.3 × 10−2 mbar had 

been achieved and the furnace was turned on when the whole system was at about the 
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same pressure.  The furnace temperature programme was to reach 100 C in 50 min from 

room temperature and held for 30 min in order to remove water, the temperature was then 

raised to 400 C in 3 hrs 33 min and held there for 30 min before dropping back to room 

temperature.  The heating temperature programme was kept below 400 C partly to avoid 

titania from changing phase to rutile and to avoid the loss of MWCNTs by thermal 

decomposition.  The vacuum pump was turned off after the valve was closed during the 

heating phase between 100 C and 400 C (after the first 30 min at 100 C). The 

nanocomposite was stored in a desiccator.  The apparatus allowed sublimation of the 

precursor and reactive deposition of titania onto the MWCNTs in the same reactor.   

For loading MWCNTs onto TiO2 by CVD method i.e. high ratios of titania, a predetermined 

mass of MWCNTs was mixed with 1.3882 g TM with a pestle and mortar.  The mixture was 

transferred into the reactor and the apparatus set-up horizontally with the reactor inserted 

in a furnace connected to vacuum pump as explained above.  The procedures were done in 

the same way as above. 

 

 

Figure 3.2:  Photograph of the CVD experimental set-up used in the synthesis of the 

MWCNT-titania nanocomposites 
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3.4  Characterisation instruments 

The physicochemical properties of the synthesized nanocomposites were investigated 

thoroughly by means of the techniques outlined in the subsequent sections. 

 

3.4.1  Scanning electron microscopy 

The morphology of the MWCNT-titania nanocomposites was investigated by means of 

scanning electron microscopy (SEM) using a JEOL JSM 6100.  The accelerating voltage was 

10 kV.  Aluminium stubs were used as sample holders and the required sample size was 

sprinkled on top of a carbon tape.  The optimum working distance was about 7 mm and the 

aperture size was 30 𝜇m.  The software package employed in the data acquisition and 

analysis from the instrument was Zeiss Smart SEM version 5.03.06. 

 

3.4.2  Electron dispersive X-ray spectroscopy  

Electron dispersive X-ray spectroscopy (EDX) was used as a qualitative technique for the 

detection of titanium, carbon and also as an indication of whether the nanocomposites 

consisted of titania and MWCNTs.  EDX was also used to check for the presence of a metal 

catalysts contaminant from MWCNT synthesis.  The instrument used for EDX was a Bruker 

X-ray spectrometer attached to the JEOL JSM 6100 SEM instrument.  The optimum working 

distance was 4 mm.  The magnification of images was at 2.5 µm and the scans lasted for 5 

min.  Bruker Espirit 1.8 software was used for data acquisition.   

Elemental mapping was done on a separate instrument, a JEOL 2100 attached to the SEM 

instrument above.  Data from this analysis technique was limited to qualitative analysis.  

This was because of limited fluctuating number of electrons bombarding the sample, noise 

interferences, and variation in the number of backscattered electrons and number of 

generated X-rays emitted by the sample on bombardment.  These affect repeatability and 

precision of quantitative analysis.1 

 

  

file:///E:/thesis..Si/Chapter%203..printing.docx%23_ENREF_1
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3.4.3  Transmission electron microscopy 

The dimensions and topography of the nanocomposites were investigated by using 

transmission electron microscopy (TEM).  The instrument used was the JEOL JEM 1010 

transmission electron microscope using lacey or holey carbon-coated copper grids.  The 

images were taken at different magnifications by using the Megaview 3 camera.  Sample 

preparation for imaging began with ultrasonic water bath treatment of the nanocomposites 

in 1 mL of ethanol for 3-5 min.  The grids were then dipped into the ethanolic dispersion and 

allowed to dry prior to insertion in the specimen chamber.  Image J software was used to 

compute the length of the outer diameters of the MWCNTs in the nanocomposites.  At least 

200 MWCNTs were counted.   

 

3.4.4  High resolution transmission electron microscopy 

The as prepared nanocomposites were also investigated by high resolution transmission 

electron microscopy (HRTEM).  An HRTEM (model JEOL JEM 2100 200 KV) instrument was 

used to further observe the morphology and existence of lattice fringes due to titania on the 

MWCNT walls in the nanocomposites.   

 

3.4.5  Fourier transform infrared spectroscopy  

Fourier transformation infrared spectroscopy (FTIR) analysis were done on a pellet disk by 

using a Perkin Elmer FTIR spectrometer.  0.1500 g powder was pressed into a pellet under 

pressure of 10 Tons for about 2 min.  The ring press model was 00-25 supplied by Research 

Industrial Company, England.  The pellet consisted of KBr:nanocomposite ratio of 500:1 

weighed using a Shimadzu analytical balance.  Air scanning was done to remove any CO2 

absorption in the background. Thereafter, the pellet disks were scanned from 350 – 4500 

cm-1.  The data from the instrument was initially saved as an Ascii file then as an Excel 

document by using the computer connected to the instrument.  The data analysis was done 

using Origin software. 
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3.4.6  Inductively coupled plasma-optical emission spectroscopy  

Digestion of titanium was difficult since it is a refractory material and therefore not soluble 

to most acids and/or mixtures such aqua regia.  Several sulfuric: nitric acid ratios were tried 

until a mixing ratio with the best titania solubility was identified.  An accurately weighed (50 

mg) mass of nanocomposite was digested with a mixture of sulfuric and nitric acids (98 -100 

% H2SO4: ≥ 37 % HNO3, ratio 10:1) and heated at 350 C on a hot plate whilst stirring for 5 

min.  The digest was diluted into 100 mL volumetric flask.  A 1 mL aliquot was diluted in a 

100 mL volumetric flask using double distilled water.  Double distilled water was used to 

wash the digestion vessels and as the blank.  It was also used in making standard solutions.  

Standards used were 2 mg/L, 4 mg/L, 6 mg/L, 8 mg/L and 10 mg/L.  A standard calibration 

curve was obtained on every run.  The instrumental parameters used are shown in Table 

3.1.   

 

Table 3.1:  ICP-OES instrumental conditions used in the titania concentration determination 

Parameter Condition 

Power (W) 1300 

Plasma gas flow rate (L min-1) 15 

Auxiliary gas flow rate (L min-1) 0.2 

Nebulizer gas flow rate (L min-1) 0.8 

Pump flow rate (ml min-1) 1.5 

Wavelength (nm) 336.121 

 

The titania wt.% was calculated as shown below: 

Dilution factor from digested nanocomposite = 
100

1
 = 100 

Inductively coupled plasma-optical emission spectroscopy (ICP-OES) reading for sample with 

a theoretical wt.%  of 60, was 2.981 mg L-1
 and nanocomposite mass digested was 50.5 mg 
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Mass of Ti from the digested nanocomposite = 
2.981 𝑚𝑔×0.1 𝐿×100

𝐿
 

Ti wt.% = 
29.81

50.5
 × 100 = 59.0297% 

Activated carbon was spiked with known amounts of titania and the samples were digested 

in a similar way as the nanocomposites.  This procedure was done to validate the results 

obtained from the nanocomposites since no commercial reference materials were available 

during the time of the experiments. 

 

3.4.7  Thermogravimetric analysis  

Thermal stability analysis was confirmed by using a TA Instrument Q seriesTM Thermal 

Analyser TGA (Q600).  The measurements were done in oxygen flowing at 50 mL/min from 

ambient temperature to 1000 C, the isothermal time was 1 min and the ramp temperature 

was 10 C/min.  TA instruments Universal Analysis 2000 software package was used for data 

acquisition and analysis.  Origin software was used to re-plot the weight-loss curves for the 

determination of oxidative stability of MWCNTs, i.e. initiation and oxidation temperatures.   

 

3.4.8  Raman spectroscopy 

The measurements were done with a Delta Nu Advantage 532TM Raman spectrometer.  The 

detector used was a 2D CCD detector and grating lines were 1800 per mm. The excitation 

wavelength of the laser was 532 nm and the power generally used was medium high (as per 

instruments software).  The integration time was 35 s and resolution was 10 cm-1.  An 

average of three spectra was acquired for each nanocomposite.  A background smoothening 

was done by using the Raman instrument.  The analysis of data from the instrument was 

done by using Origin software package.   
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3.4.9  Powder X-ray diffraction  

Powder X-ray diffraction (XRD) analysis were done to deduce crystallinity and the phase of 

titania in the nanocomposite.  XRD instrument used in this work was D8 Advance 

diffractometer supplied by BRUKER AXS, Germany.  Measurements were done with a𝜃-𝜃 

scan in locked coupled mode, with Cu-K radiation (K1 = 1.5406 Å) and the detectors used 

were PSD Vantec-1.  The measurement parameters are shown in Table 3.2.  The instrument 

software used for the analysis of data was EVA software from BRUKER. 

 

Table 3.2:  Instrumental parameters employed in the MWCNT-titania XRD measurements 

Parameter Value 

Tube voltage 40 kV 

Tube current 40 mA 

Variable slits V20 variable slit 
2𝜃 Range 10 - 89.94 

Increment 2𝜃 0.028 

Measurement time 0.5 s/step 

 

3.4.10  Textural characterisation 

 Accurately weighed masses of the nanocomposites in an analysis tube were degassed at 90 

C for one hr and then at 160 C overnight.  The nanocomposites were accurately reweighed 

after degassing.  The textural analyses were done by using a Micrometrics TRI STAR 

3020V1.03 (V1.03) instrument at 77 K in N2.  The adsorption/desorption isotherms obtained 

were fitted to the BET equation in order to determine the surface areas of the 

nanocomposites.  The pore volumes were obtained from the BJH model. 

 

3.4.11  Diffuse reflectance 

A HR2000+ model High Resolution spectrometer was used with halogen HL-2000-FHSA light 

source supplied by Narich.  The software used for data acquisition was spectra suite.  A 

T300-RT-UV-VIS EOS 1212277 optical fibre was used for data transfer.  Ten scans were 

averaged, box width was five and integration time was 15 ms. 
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3.4.12  Photoluminescence 

Photoluminescence (PL) was done by using a Perkin Elmer LS35 fluorescence spectrometer.  

A front surface accessory LS55 model solid probe was used since the nanocomposites were 

in a solid state.  Excitation was done at 300 nm, spectrum range from 450 to 700 nm, 

excitation slit was 5 nm, emission slit was 0 nm and scan speed was 120 nm/min.  The 

software used for data acquisition was FL Winlab version 4.00.03 Perkin Elmer Inc. 

 

3.4.13  Conductivity 

A conductivity meter was purchased from Wellhelm, Germany and the model was Cond 

7110, WTW 82362 certified to Can/CSA standard C222. 

A Perkin Elmer UV Winlab UV-Vis spectrometer was used to obtain the absorption spectrum 

of Eosin B.  The software used was Lambda 35 version 2.85.04. 

 

3.4.14  Solar simulator 

Photo-electrochemical measurements were done using a solar simulator supplied by 

Keithley instruments, USA, (model SS50AAA ) with a Xenon short AKC 150 W lamp, light 

source was steady state ( shutter controlled), Air mass (AM) was 1.5 G, voltage was 116-220 

V, frequency was 50-60 Hz and maximum power was 750 W.  Complete IV measurements 

for PV were done using PVIV test solution Oriel Instruments. 

 

3.4.15  Thermoevaporator 

A thermoevaporator (depositing unit) carbolite type 300 supplied by Barloworld scientific 

was used to deposit alumium layer on glass. i.e. counter electrode.  Multi-film rate/ 

thickness monitor (Inficon) instruments for intelligent control SQM 160 by Keithley that uses 

Inficon quartz crystal sensor technology to measure rate and thickness in the film deposition 

processes. 
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3.5  Solar cell experiments 

This section give details of the experiments carried out in application of the nanocomposites 

synthesised as explained in the previous section. 

 

3.5.1  Synthesis of gel state electrolyte 

The concentration of iodine was optimised prior to synthesis of a liquid electrolyte in terms 

of conductivity.  This was done by dissolving a predetermined mass of iodine in acetonitrile 

and optimised by a conductivity meter.  A liquid electrolyte was synthesized by mixing 

lithium iodide (0.6695 g), iodine (0.6346 g), 1-methyl-3-propylimidazolium iodide (7.5622 g), 

4-tert-butylpyridine (3.38 g) and guanidium thiocyanate (0.5914 g) before dissolving in a 50 

mL volumetric flask with acetonitrile and then filled to the mark.  Liquid electrolyte 

(2.4986 g) was mixed with PVAc (1.2044 g).  A glass rod was then used to stir until the 

polymer dissolved completely and thereafter stored in the fridge. 

 

3.5.2  Fabrication of dye-sensitised solar cells 

Nanocomposites (100 mg) were added to ethanol (0.3 mL).  The mixture was treated for at 

least 20 minutes in an ultrasonic water bath.  Nanocomposite dispersed in ethanol were 

then deposited onto ITO coated glass using the doctor blade method (See Figure 3.3).2,14  

The use of PEG binder in deposition of nanocomposites onto ITO was also investigated.  A 

scotch tape was used to control the film thickness.  The thickness of the layers were 

measured using a micrometer screw gauge.  The electrode was then sintered at 300 C for 

30 minutes by means of a hotplate.  Eosin B dye (150 𝜇L) was added using a micropipette 

onto the anode electrode.  Plasticine was placed on either side of the deposited 

nanocomposite to prevent the electrolyte from flowing outside the active area.  The 

electrolytes used were iodine liquid and gel state electrolyte. 

Aluminium was then used as the counter electrode and the thickness of aluminium 

deposited on the glass was 0.608 KÅ.  The device was made with aluminium coated glass 
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side facing the dye stained nanocomposite in a sandwitch like fashion (see Figure 3.3).  The 

counter electrode was connected to the cathode terminal and nanocomposite to the anode 

before illuminated with 1 sun (100 mW cm-2) through the nanocomposite side (see 

Figure 3.3).   

 

 

Figure 3.3:  The images of DSSC components and complete device under characterisation 

 

Five measurements were taken for each device and the best result recorded.  To control and 

determine the film thickness used as photoanode material a micrometer screw gauge was 

used to measure the thickness of the scotch tape. 
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Chapter Four 

 Physicochemical characterisation of the 
nanocomposites 

 

In this chapter the results and discussion on the physicochemical properties of multiwalled 

carbon nanotube-titania (MWCNT-titania) nanocomposites synthesised in this work are 

presented.  The materials were characterised by means of scanning electron microscopy 

(SEM), electron dispersive X-ray (EDX) spectroscopy, transmission electron microscopy 

(TEM), high resolution transmission electron microscopy (HRTEM), inductively coupled 

plasma-optical emission spectroscopy (ICP-OES), Fourier transformation infrared (FTIR), 

Raman spectroscopy, thermogravimetric analysis (TGA), powder X-ray diffraction 

spectroscopy (XRD) and textural investigations. 

 

4.1  Morphology 

A number of MWCNT-titania nanocomposites were synthesised by varying the wt.% of 

MWCNTs, i.e. 2, 5, 10, 15, 20, 40, 50, 60, 80, 90 and 95 wt.% by means of the sol-gel and 

CVD methods.  In this work, these nanocomposites are discussed by their targeted wt.% 

rather than the actual experimental loadings.   

The first step in the synthesis of the nanocomposites was to functionalise the commercially 

purchased MWCNTs.  The acid treatment using mild ultrasonic bath was principally chosen 

because it has been reported to cause both minimal damage to MWCNTs and to open the 

ends of the MWCNTs to enable the removal of impurities.1  Common impurities in MWCNTs 

are metal oxide particles arising from the catalyst used in their synthesis and soot-like 

amorphous carbon pyrolysis formed as a by-product.  Such defects on MWCNTs alter their 

physicochemical properties such as lowering the thermal decomposition stability.1  Most 

importantly, amorphous carbon can interfere with MWCNT/titania interactions in 

electrochemistry and disperseability in ethanol during the synthetic sol-gel method.1,2  The 

acid treatment of MWCNTs was done to improve their dispersion in ethanol and thereby 
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enhance chemical interactions during MWCNT-titania nanocomposite synthesis.  Similar 

observations have been reported in the literature.1,3  In these reports the acid treatment of 

MWCNTs introduces oxygen-containing surface groups. This improve the overall chemical 

reactivity of the MWCNTs and the dispersion of metal or metal oxides onto the surfaces of 

the MWCNTs.  Ultrasonic treatment detaches loosely attached amorphous carbon via 

acoustic streaming and jet pulses.1   

SEM was used to check the morphology of the MWCNTs after acid treatment and in the 

MWCNT-titania nanocomposites.  A comparison of the SEM images of the as-received 

pristine MWCNTs (see Figure 4.1A) and the acid-treated MWCNTs (see Figure 4.1B) 

indicates fewer agglomerates in the acid treated-MWCNTs.  However, this is not conclusive.  

The key findings from SEM analysis are that the acid treatment did not drastically alter the 

surface morphology of the MWCNTs.  The lengths and diameters are not significantly 

affected by acid treatment.  Several authors have noted that a mixture of concentrated 

H2SO4 and HNO3 does not severely damage MWCNTs.   Our results using a mixture of HCl 

and HNO3 show a similar trend and corroborate those earlier reports.3-5  

 

 

Figure 4.1:  Morphology of (A) pristine MWCNTs and (B) MWCNTs treated with a mixture of 

nitric and hydrochloric acids in the ratio 3:1 in an ultrasonic water bath 

 

Typical electron microscopy images of the morphology of the MWCNT-titania 

nanocomposites are shown in Figures 4.2 and 4.3.  The SEM images generally show that 

titania coated the MWCNTs.  With the sol-gel samples, at low titania loadings (designated 90 
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wt.% and 80 wt.% MWCNTs) the metal oxide forms isolated particulate-like structures on 

the walls of the MWCNTs.  With increasing amounts of titania, the sol-gel method results in 

more coating of material along the walls of the MWCNTs.  However, the SEM images do 

show that some tubes are not uniformly coated, and that spherical titania agglomerates 

form that are not associated with the MWCNTs.  The morphology of MWCNT-titania 

nanocomposites observed was similar to the structures reported by several authors,6-10 

especially at high MWCNT ratios.11  The use of surfactants to detangle MWCNTs and thereby 

cause their separation and flexibility has been reported.13  In this study no surfactants were 

used, therefore it must be concluded that the ratios of the components in the 

nanocomposites influenced the distribution of titania on the MWCNTs tube walls.  As can be 

seen in Figures 4.2 and 4.3 there was a shift from isolated titania particulates to a uniform 

coating of the MWCNTs with an increase in the titania wt.%.14   The increase in appearance 

of titania nanoparticle aggregates in the MWCNTs walls with an increase in the wt.% ratios 

of titania (see Figure 4.2C) shows that MWCNTs are centres of deposition.15  A comparison 

of the morphology at 10 and 20 wt.% MWCNTs by the sol-gel and CVD methods (see 

Figures 4.2 and 4.3), shows that the CVD approach gave a more uniform coating of titania 

on the MWCNTs than the sol-gel.   

The observations by SEM of smaller titania particulates on acid-treated MWCNTs (shown in 

Figure 4.2B and C) concurred with the observations by Zhao et al.16 in that the MWCNTs 

were homogenously covered.  However, in some instances more than one MWCNT was 

coated together in a cluster in the CVD method (see additional information in Appendix G, 

Figure G2).  This was not observed in the sol-gel method because the synthesis procedure 

involved the use of an ultrasonic water bath and stirring which reduces the chances of 

agglomeration.  MWCNTs were completely coated at 2 and 10 wt.% of MWCNTs (low 

MWCNTs wt.%) in the nanocomposites synthesised by CVD method (see Figure 4.3).  At 10 

wt.% of MWCNTs most MWCNTs were fully coated although some bare MWCNTs were 

visible.  Furthermore, Fana et al.2 reported that defects such as roughened surfaces on the 

MWCNT walls are vital nucleation centres for metal oxide deposition.  In another report, 

explanation by Aman et al.12 basis was the mismatch of particle size of Ti4+ cations (6.8 nm) 

and MWCNTs diameter.  The MWCNT size promote particle growth on the surface and thus 

titania is deposited onto the MWCNTs walls since it cannot fit inside the MWCNTs.12  Also, 
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the MWCNT interlayer spacing, i.e. 0.34 nm, is similar to the titania d-spacing, i.e. 0.35 nm, 

and therefore titania particles cannot fit in-between layers.18,19    

 

 

Figure 4.2:  Morphology of MWCNT-titania nanocomposites synthesised by the sol-gel 

method at MWCNT wt.% of: (A) 90, (B) 80, (C) 50, (D) 20 (E) 10 and (F) 2 
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Figure 4.3:  Typical morphology of MWCNT-titania nanocomposites synthesised by the CVD 

method at MWCNT wt.% of: (A) 2, (B) 10, (C) 20, (D) 50, (E) 80 and (F) 90 

 

MWCNTs are covered homogeneously via preferential heterogeneous nucleation on 

hydroxyl, carbonyl and carboxyl groups on the MWCNT surfaces.16  In the nanocomposites 

with a 1:1 titania:MWCNT ratio, nanocomposites synthesized by the CVD method had more 

agglomerated titania than those prepared by the sol-gel method (see Figure 4.4) even 

though the component ratios were the same.  Again this suggest the influence of the 
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synthetic method on the ultimate morphology of the nanocomposites, e.g. the use of an 

ultrasonic water bath during the sol-gel method.  Also, it is noted that at a 1:1 ratio of 

MWCNT:titania the nanocomposites were more spaghetti-like (see Figure 4.4), i.e. more 

randomly oriented in the sol-gel method than the CVD method.20 

 

 

Figure 4.4:  A comparison of the morphology at a 1:1 wt.% ratio of MWCNTs:titania for the 

nanocomposites synthesised by the (A) CVD and (B) sol-gel methods 

 

4.2  Dimensions of MWCNTs in the nanocomposites and in their 

pristine state 

To further investigate the structure and morphology of the nanostructures in the 

nanocomposites TEM was carried out.  The diameters of the images from both the CVD and 

sol-gel methods at similar wt.% ratios were compared.  In this section, representative 

images of MWCNTs and MWCNT-titania nanocomposites are displayed.  The TEM image 

shown in Figure 4.5 shows that pristine MWCNTs had some encapsulated iron particles.  By 

using the Image J® software, the outer diameters of 200 different MWCNTs from several 

TEM images were measured.  Data was then rearranged according to sizes and histograms 

were plotted.     
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Figure 4.5:  Representative TEM image for pristine MWCNTs 

The results showed that a large percentage (39%) of the pristine MWCNTs had an outer 

diameter (OD) between 16-25 nm (see Figure 4.6).   

 

 

Figure 4.6:  A comparison of the outer diameter distribution for pristine and acid-treated 

MWCNTs  

 

A fairly good uniformity of diameters was observed in the pristine MWCNTs.  The average 

OD of pristine MWCNTs was 30 ± 15 nm.  On acid treatment (see Figure 4.6), the fraction of 

MWCNTs with ODs between 36 and 45 nm increased from 15% to 30%, and in general the 

tubes increased in OD.  The average OD after acid treatment was 34 ± 16 nm.  This is best 
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explained by the hydrochloric acid purifying mechanism reported by Fan et al.2 which states 

that hydrochloric acid attack MWCNT defective sites causing expansion of tube walls 

followed by peeling off.  Therefore, since hydrochloric acid was part of the acid treatment 

mixture that means the ultrasonic treatment was too mild to cause peeling off after 

expansion.  Furthermore, the nitric acid treatment also debundled the MWCNTs so that a 

greater variety of MWCNT diameters were obtained causing a decline in homogeneity of the 

MWCNTs.22  TEM results correlated well with both the crystalline quality and thermal 

stability results discussed in the subsequent sections (see sections 4.4.1 and 4.5).  For 

example, R (𝐼𝐷
𝐼𝐺

, i.e. the ratio of the Raman D band to G band, see section 2.7.2) increases 

while thermal stability decreases on acid treatment.  This may be explained by slight 

roughening of the tube walls (see Figure 4.7).  This observation is in agreement with the 

work of Scalese et al.23  However, not all tube walls were roughened. 

 

 

Figure 4.7:  Representative TEM image for acid-treated MWCNTs showing the resulting 

roughening of the tube walls 

 

All the nanocomposites from the sol-gel method (see Figures 4.8 and 4.10) showed 

particulate titania on the tubular MWCNT walls although the degree of coating was strongly 

influenced by wt.% ratios.12  With an increase in titania, the coating became more uniform 
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and the coverage of the MWCNT tube walls more continuous.  This observation was in 

strong agreement with the report by Vincent et al.24 in that the MWCNT surface is a 

preferred site of titania crystallisation.  

 

 

Figure 4.8:  Representative TEM images for MWCNT-titania nanocomposites synthesised by 

the sol-gel method at (A) 5 and (B) 10 wt.% of MWCNTs  

 

In the nanocomposites with low wt.% of MWCNTs, i.e. high titania wt.% (a representative 

sample is 10 wt.% MWCNTs) the most frequent OD range shifted to 26-35 nm (see 

Figure 4.9) for both methods.  The CVD method seems to be coating smaller diameter 

MWCNTs pretty well since the OD range of 5-15 nm and that of 16-25 nm decreased in 

frequency from 17% to 0% and 27% to 5% respectively (see Figure 4.9C).  A similar trend is 

seen in the sol-gel method where the 5-15 nm frequency decreased from 17% to 3%, 

although the most significant drop was in the 36-45 nm range, i.e. from 29% to 12% (see 

Figure 4.9C).  CVD nanocomposites were thicker than those by the sol-gel method.  

However, the CVD method gave some tubes with ODs above 95 nm, i.e. 22%, which was far 

more than twice the OD of uncoated MWCNTs (see Figure 4.9).  This was due to more than 

one tube being clustered together as a bundle, i.e. two MWCNT tubes were coated together 

with titania in some instances (see additional information in Figure G2, Appendix G).  The 

changes in population of diameter ranges showed that the CVD method gave better 

coatings than the sol-gel method although the coating thickness was spread over a wider 

range (see Figure 4.9B and C). 
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Figure 4.9:  Distribution of MWCNT outer diameters in MWCNT-titania nanocomposites 

containing 10 wt.% of MWCNTs.  Comparison of: (A) sol-gel and CVD methods, 

(B) before and after sol-gel coating, and (C) before and after CVD coating 

 

At high wt.% of MWCNTs, i.e. low titania wt.%, represented by the 90 wt.% MWCNT 

samples (see Figures 4.10 and 4.12) from both methods, the dominant OD ranges were the 

26-35 nm (25%) and 36-45 nm (35%) ranges for the CVD method and 16-25 nm range for the 

sol-gel method (see Figure 4.11).  According to these observations, it may suggest that the 

sol-gel method is a better method of loading low wt.% titania onto MWCNTs because it gave 

a narrower distribution of MWCNT outer diameters. 
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Figure 4.10:  Representative TEM images for MWCNT-titania nanocomposites synthesised 

by the sol-gel method at (A) 90 and (B) 80 wt.% of MWCNTs  

 

 

Figure 4.11:  A comparison of the MWCNT outer diameter distribution for MWCNT-titania 

nanocomposites at 90 wt.% of MWCNTs by the sol-gel and CVD synthetic 

methods 
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Figure 4.12:  Representative TEM images for MWCNT-titania nanocomposites synthesised 

by the CVD method at (A) 90 and (B) 80 wt.% of MWCNTs  

 

The coating on the nanocomposites with low wt.% of MWCNTs from the CVD method had 

more uniform coatings than those from the sol-gel method (see Figures 4.8 and 4.13).  

Furthermore, some tubes from CVD method were completely covered.  The 

nanocomposites from CVD method tend to move towards a honeycomb structure25 on 

crossing over from high to low MWCNT wt.% (see Figures 4.12 and 4.13). 

 

 

Figure 4.13:  Representative TEM images for nanocomposite synthesised by CVD method at 

(A) 5 wt.% and (B) 10 wt.% of MWCNTs  

 

While most researchers, such as Gao et al.15 used surfactants, for example sodium 

dodecylsulfate, to coat MWCNTs, this work shows that a comparable coating can be 
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achieved without the use of surfactants.  TEM images from similar nanocomposites 

reported in literature (see Figure 2.8 in Chapter Two, section 2.7.4) were comparable to the 

CVD-loaded nanocomposites reported were especially at high wt.% of MWCNTs.  At high 

wt.% of MWCNTs a thin layer on the tube walls was observed in both methods.27  HRTEM 

images for the CVD and sol-gel methods at 5 wt.% MWCNTs are shown in Figure 4.14A and 

B respectively at different magnifications to show the topography of the individual MWCNTs 

in the MWCNT-titania nanocomposites.22   

 

 

Figure 4.14:  Representative HRTEM images at different magnifications for MWCNT-titania 

nanocomposites containing 5 wt.% of MWCNTs synthesised by the CVD (A1 

and A2) and sol-gel methods (B1 and B2) 

 

The titania lattice fringes (ca. d spacing of 0.35 nm) on the MWCNT walls for both synthetic 

methods are observed.  However, the coating from the CVD method (see Figures 4.14, A1 
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and A2) was better because it completely covered the MWCNTs.  This is in concordance with 

the TEM observations.  In the sol-gel method some parts of the MWCNTs were bare whilst 

some were thickly covered (see Figures 4.14, B1 and B2) and this is in agreement with 

observations by Korbély et al.17  This further suggests that the CVD method is better than 

the sol-gel method.  These results can be attributed to the vacuum effect on titania 

deposition in the CVD method.  Furthermore, it can be seen that the MWCNTs exhibit a 

curved texture due to defective graphene sheets1 in the nanocomposites from both 

methods (see Figures 4.14A2 and G1 in appendix G).22  From the TEM analysis it can be seen 

that titania caused changes in the morphology and diameters of the MWCNTs.14  Also, the 

mass ratio influenced the ultimate morphology of the nanocomposite, i.e. a change from 

isolated titania particulates to a uniform coating of titania on the MWCNTs with an increase 

in the titania wt.% (see SEM, TEM and HRTEM in Figures 4.2, 4.3, 4.8, 4.10, 4.13 and 4.14).  

This is in agreement with work reported by authors such as Aman et al.12 

 

4.3  Functional groups and bonding within nanocomposites 

This FTIR spectroscopy was used to investigate the functional groups and bonding between 

components in the nanocomposites.  Figure 4.15 shows a representative spectrum of the 

nanocomposites.   

 

Figure 4.15:  Typical FTIR spectrum for the MWCNT-titania nanocomposites synthesised 

either by the sol-gel or CVD methods 
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The peak at ca. 1635 cm-1 was observed in all the nanocomposites from both methods and 

was assigned to carbonyl groups in the MWCNT framework.28,29  The FTIR peaks at 2738.31 

cm-1 and 2839.25 cm-1 in the pristine and acid-treated MWCNTs respectively is assigned to 

C-H bond.30,31  This peak correlates with the in-plane C-H deformation peak observed in the 

Raman analysis (see section 4.4.1).  The new peaks at 2327.62 cm-1 and 2329.14 cm-1 that 

appeared after acid treatment of the MWCNTs (see additional information in Figure H1 in 

Appendix H) can be assigned to oxygen-containing functionalities introduced onto the tube 

walls during the acid treatment, i.e. C-O , C=O and COO groups.24 

In nanocomposites with high wt.% of MWCNTs by the sol-gel method, one of the peaks at 

circa (ca.) 2330 cm-1 disappears first (see additional information in Figure H1 in Appendix H) 

and this agrees with the views by Stobinski et al.21 in that surface groups on MWCNT walls 

are active sites for further functionalization.  However, these peaks were present at high 

titania wt.% nanocomposites synthesised by the sol-gel method.  In the CVD, the peak at 

2342 cm-1 disappears in the same way as the peak at 2330 cm-1 in the sol-gel method.  On 

the other hand, both peaks at ca. 2342 cm-1 and 2361 cm-1 disappear in nanocomposites 

with high wt.% MWCNTs produced by the CVD method.  The preferred site for titania 

coating (see section 4.1) can be explained with the aid of observations above especially at 

low wt.% of titania.  The hydrogen bonds due to the oxygen-containing functionalities on 

the walls of the MWCNTs are disrupted when the titania wt.% increases.  This is in 

agreement with the views of Korbély et al.17 in that oxygenated groups stimulate coverage 

and therefore enhance the degree of coating.   

Furthermore, the peak due to C-H stretching is also absent in the nanocomposites 

containing more than 10 wt.% of MWCNTs.  The peak at 3427.40 cm-1 is assigned to OH 

groups from the water molecules and/or carbonyl groups.21,29  It was observed in all 

nanocomposites and increases with an increasing amount of TiO2.  This is in agreement with 

the TG analysis which showed a slight water loss at ca. 100 ⁰C.  This is explained further in 

section 4.5.  Table 4.1 summarises the important chemical moieties identified within the 

nanocomposites. 
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Table 4.1:  FTIR absorption peaks exhibited by the nanocomposites obtained from both 

synthetic methods  

Peak /cm-1 Assignment 

3437 OH groups from structural water 

2920 C-H stretching 

2361 Oxygen-containing  groups 

2342 hydrogen bond between OH groups 

1635 MWCNT carbon groups 

1110 Ti-O-O-C 

669 Anatase Ti 

577 Anatase Ti 

411 Anatase Ti 

 

In all nanocomposites, as the titania wt.% increased a new peak appeared at ca. 600 cm-1.  

This peak was assigned to the anatase phase of titania.14  The Ti-O-C covalent bond14 was 

observed at ca. 1110 cm-1 and this correlated with the phase observed in the Raman results 

presented in the section 4.4.1.  This observation is similar to the key views presented by Li 

et al.14  In their work they suggested that titania was covalently linked to the MWCNTs.  

Therefore, in this work titania was covalently linked to the MWCNT in the nanocomposites 

synthesised by the two methods.  The covalent link between titania and the MWCNTs 

facilitates stable energy conversions and strong interfacial interactions2 vital for DSSC 

applications.  Both methods show isolated deposits on the walls of the MWCNTs at high 

wt.% of MWCNTs (see Figures 4.2 and 4.3).   
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4.4  Crystallinity and phases 

The crystallinity and titania phases present in the nanocomposites synthesised in this work 

were investigated by means of Raman spectroscopy and powder X-ray diffraction. 

 

4.4.1  Vibrational-based characteristics  

Generally all Raman spectra (representative spectra in Appendix D) had the peaks at ca. 810 

and 1030 cm-1.  These peaks may be assigned to the lower energy radial breathing mode of 

MWCNTs35 and the in-plane CH deformation respectively.30  The position of the radial 

breathing mode was outside the range reported by some authors such as Scalese et al.23 

(100-500 cm-1).  This is because they used a different excitation wavelength of the Raman 

laser.23  The in-plane CH peak correlated with FTIR observation of the C-H functional group 

in the nanocomposite.  Peaks at ca. 2300 and 2400 cm-1 were present in all nanocomposites.  

The peaks are assigned to the first overtone of D mode (G’) and combination mode of the D 

and G modes respectively.22,23,30,36  Pristine MWCNTs had peaks at 632 cm-1, 702 cm-1, 924 

cm-1 and 1149 cm-1 which could have been due to inner most diameter23 impurities such as 

iron because they disappeared on acid treatment.  It should be noted that the scope of the 

study was mainly from acid-treated MWCNTs.   

Acid treatment slightly up-shift the D band position towards the graphite position (1350   

cm-1) and a downshift of about 37 cm-1 is observed on the G band (see Table 4.2).  Li et al.26 

suggest this could be due to oxygen-containing functionalities’ strain on MWCNT walls.  Fan 

et al.2 reported that such a downshift is due to polygonal and less cylindrical structural 

defects on the MWCNT surface as well as increasing diameter.  TEM and Raman 

spectroscopy agrees in this regard.   

As titania wt.% increased new peaks appeared at around 630 cm-1, 514 cm-1 and 396 cm-1 

(see additional information in Appendix D).  All these peaks can be assigned to Eg, A1g + B1g(2) 

and B1g(1) modes respectively for anatase phases of titania.7,28,34  The decrease in width for 

both D and G bands peaks agrees with findings by Osswald et al.35  However, the acid 

treatment tends to introduce more defects since the ID/IG (R) value increased from 0.5112 to 

file:///E:/thesis..Si/Chapter%204..%20printing.docx%23_ENREF_35
file:///E:/thesis..Si/Chapter%204..%20printing.docx%23_ENREF_30
file:///E:/thesis..Si/Chapter%204..%20printing.docx%23_ENREF_23
file:///E:/thesis..Si/Chapter%204..%20printing.docx%23_ENREF_23
file:///E:/thesis..Si/Chapter%204..%20printing.docx%23_ENREF_22
file:///E:/thesis..Si/Chapter%204..%20printing.docx%23_ENREF_23
file:///E:/thesis..Si/Chapter%204..%20printing.docx%23_ENREF_30
file:///E:/thesis..Si/Chapter%204..%20printing.docx%23_ENREF_36
file:///E:/thesis..Si/Chapter%204..%20printing.docx%23_ENREF_23
file:///E:/thesis..Si/Chapter%204..%20printing.docx%23_ENREF_26
file:///E:/thesis..Si/Chapter%204..%20printing.docx%23_ENREF_2
file:///E:/thesis..Si/Chapter%204..%20printing.docx%23_ENREF_7
file:///E:/thesis..Si/Chapter%204..%20printing.docx%23_ENREF_28
file:///E:/thesis..Si/Chapter%204..%20printing.docx%23_ENREF_34
file:///E:/thesis..Si/Chapter%204..%20printing.docx%23_ENREF_35


 

E.T. Mombeshora Page 103 

 

0.9028.  This result was contrary to the findings by Rinaldi et al.1 in that the R value 

decreased on ultrasonic treatment due to removal amorphous carbon.  

 

Table 4.2:  Comparison of D and G bands for pristine and acid-treated MWCNTs obtained 

from the Raman spectroscopy 

Sample 
D band G band 

ID/IG 
Position  Width Position Width 

Pristine 
MWCNTs 

1347.2 60.996 1595.6 88.865 0.5112 

Acid-treated 
MWCNTs 

1350.6 44.741 1558.0 10.740 0.9028 

 

 This trend is not expected in the MWCNTs used in this work because the TG thermogram 

presented in Figure 4.18 does not show presence of substantial amount of amorphous 

carbon.  The decrease in R value may imply the decline in crystallinity and introduction of 

defects onto MWCNTs from acid treatment.  The main impurity was the Fe catalyst as 

indicated by the TGA residue in correlation with EDX and TEM (see Figures 4.21 and 4.5).  

The encapsulated catalyst was difficult to remove without compromising the multi-shell sp2 

hybridised carbon structures constituting the walls.   

General trend was observed to be upshift of the G band position by about 32 cm-1 on 

loading titania which is almost equal to the initial downshift by the acid treatment of 

MWCNTs (see additional information in Table D1 to D4 in Appendix D).  This is due to 

titanium metal strain on C-C bonds.26  G band shift could also, have been introduced by a 

wide range of tube sizes, varying defect density, tube bundling and rough sample surface 

due to the coating process also observed by TEM and HRTEM images (see Figures 4.5-

4.19).35  No significant change on width of the D band (see additional information in Table 

D1 to D2, in Appendix D) may be deduced from the Raman data but G band generally tends 

to increase with an increase in titania wt.% in the sol-gel method.  On the contrary, G band 

width tends to decrease with an increase in MWCNTs ratio in the nanocomposite by the 

CVD method (see additional information in Appendix D and Table D4) but no noticeable 

trend was observed on the D band.  No noticeable effects were observed in nanocomposites 
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with high MWCNTs wt.% by the CVD method, i.e. low titania wt.% ratios (see additional 

information in Appendix D, Table D3). 

While authors such as Delhaes et al.23 reported that the G band of MWCNT is narrower than 

the D band, additional data in Appendix D shows an opposite trend.  Peak broadening in 

Raman spectroscopy is influenced by temperature, excitation wavelength and crystalline 

nature of the nanomaterials.  Hence, this was the source of the differences of this work and 

their work.  The results from this work concurred with report by Stobonski et al.21 in that 

peak width of the G and D bands of the MWCNTs depends on their electrochemical 

environment and experimental parameters. 

The spectrum was re-plotted, the bands were fit into Lorenztian curve and no other 

corrections were done using the Origin software.  The ID/IG ratio (R) was calculated by using 

the area under the D- and G-band peaks respectively.  The R value decreased from that of 

acid-treated MWCNTs in the nanocomposites (see Figure 4.16 and Table 4.2).  This may 

imply that titania seats on the MWCNTs defects introduced during the acid treatment.  This 

observation agreed with the work reported by Li et al.14  where reduction in R value was 

attributed to calcinations.  Furthermore, R value (see Figure 4.16) for most nanocomposites 

was comparative to the range reported by Osswald et al.35  In Figure 4.16, low wt.% 

MWCNTs (5-20 wt.% of MWCNTs) by the sol-gel and CVD methods, R values increased with 

an increase in wt.% of MWCNTs.  A similar trend in R was also observed in nanocomposites 

with high MWCNTs wt.% (5-20 wt.% of MWCNTs).  It is also seen in Figure 4.16 that 

nanocomposites by the CVD synthetic method had smaller R value than those by sol-gel 

except at 95 wt.% of MWCNTs.  According to this observation it may be suggested that CVD 

method gave less defective and more crystalline nanocomposites than sol-gel method.  This 

is in agreement with powder XRD results in section 4.4.2. 
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Figure 4.16:  Comparison of the ID/IG ratio of the nanocomposites by the sol-gel and CVD 

synthetic methods 

 

4.4.2  Crystal structures and phases  

The XRD results are presented in Figure 4.17 and Table 4.3 gives representative spectra.  

The XRD analysis shows that intensity of the main peaks of the MWCNTs increased by the 

acid treatment (see additional information in Appendix B).  This may imply that acid 

treatment increased crystallinity degree of the MWCNTs.37  This is in agreement with a 

number of characterisation techniques, i.e. SEM, TEM and HRTEM results, TGA residual 

mass decrease and shape of the residual TG curve, Raman spectroscopy peaks that 

disappeared at 630, 702, 924 and 1149 cm-1 on acid treatment.  The peaks observed from 

powder XRD analysis for pristine MWCNTs and after acid treatment include Miller indices (h 

k l) assigned to 002, 100 and 004 for 2 𝜃 of 25.9°, 42.5° and 53° respectively.  MWCNT peaks 

were not observed in nanocomposites with high titania wt.% ratios (see Figure 4.17).  The 

XRD results corroborate the views of many researchers such as Cong et al.37 in that anatase 

phase (with h k l index of 101) overlapped with the MWCNTs plane characteristic peak (with 

h k l index of 002).  This has been explained due to similar crystal inter-planer spacing, d 

spacing reported to be 0.35 nm for the anatase phase titania and 0.34 nm for the 

MWCNTs.37,38  Table 4.3 gives the assignment of peaks at 2𝜃 angles to various Miller indices.  

According to the peaks in the diffractogram, the only phase of titania in the nanocomposites 

was anatase.17  It should be noted that both methods gave similar XRD spectra. 
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Figure 4.17:  XRD spectra for MWCNT-titania nanocomposites with high titania wt.% 

synthesised by CVD method 

 

Table 4.3:  The assigned 2𝜃 angles for anatase titania and MWCNTs in MWCNT-titania 
nanocomposites synthesised by the sol-gel and CVD synthetic methods 

2𝜃/ (h k l) 

26.2 
(101) titania and MWCNTs 

overlap 

42.1 (100) MWCNTs 

44.1 (101) MWCNTs 

54.1 (105) MWCNTs 

38 (004) Anatase Titania 

48.1 (200) Anatase Titania 

55 (211) Anatase Titania 

63 (204) Anatase Titania 

68.8 (116) Anatase Titania 

70.3 (220) Anatase Titania 

75 (215) Anatase Titania 

 

The nanocomposites by the CVD synthetic method at low wt.% of MWCNTs were observed 

to have sharper peaks than at high wt.%.  This may imply that crystallinity of titania 

decreased with an increase in wt.% of MWCNTs in the CVD synthetic method.   
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The diffractogram at high wt.% of MWCNT shows that nanocomposites from sol-gel method 

had less symmetrical peaks and broader peaks.  Furthermore, the nanocomposites with high 

titania wt.% by the sol-gel synthetic method had less intensity values, broader and less 

symmetrical peaks than CVD.  In addition, if TEM images from Figure 4.13 and 4.8 from 

similar MWCNT:titania ratios are compared, it is seen that titania aggregates on MWCNT 

wall are bigger in nanocomposites by the CVD than sol-gel method.  According to the 

diffractogram obtained, it can be suggested that nanocomposites synthesised by the sol-gel 

synthetic method are less crystalline than those by the CVD (see additional information in 

Appendix B, Figures B2-B3).37  This observation concurred with the deductions from the 

smaller values of R in CVD method nanocomposites except at 95 wt.% MWCNTs relative to 

sol-gel method (see Figure 4.16).  This is due to the heat treatment17,22,23 involved in the 

CVD synthetic method even though nanocomposites from sol-gel also involved calcining, the 

period was shorter.  Li et al.14 reported intensity of anatase diffraction to increase with an 

increase in titania coating ratio and this was in agreement with the observations in this work 

from both synthetic methods. 

 

4.5  Thermal stability 

The thermal stability behaviour of the nanocomposites was deduced from TGA and 

analysing the first derivative curves of the change in wt.% against temperature (see Figures 

4.18-4.21 and Table 4.4).  TGA was also used as a quality control technique, i.e. checking the 

presence of other forms of carbon from the titania precursors in the final MWCNT-titania 

nanocomposite and checking for catalyst remnants from MWCNTs.  From the TG data 

obtained, the MWCNTs showed no loss below 200 C indicating that minimal if any water 

and amorphous carbon were present.26  The pristine MWCNTs were 95% pure as indicated 

by the supplier (see Figure 4.18).  The thermogram obtained indicated that acid treatment 

reduced the iron content to almost zero (see Figure 4.18).  This, is also, shown by the 

difference in the shapes of the thermograms in the residual region for pristine and acid-

treated MWCNTs.  The thermogram for pristine MWCNTs shows an increase in mass 

(inclined TG curve, see Figure 4.18) indicating an increase in mass due to a substantial 

formation of iron oxide but that effect was absent in the thermogram of the acid-treated 
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MWCNTs.  This correlated with the results presented on TEM images, i.e. encapsulated iron 

in MWCNTs (see Figure 4.5) and the qualitative analysis (see section 4.7.1). 

A decrease in the thermal stability of pristine MWCNTs was observed after acid treatment 

(see Figure 4.18).  The slight decrease in thermal stability was due to compromise of the 

MWCNT walls from the introduction of oxygen containing functional groups and slight 

defects observed in typical TEM images (see Figure 4.7) which decrease oxidative stability.32  

This observation is in agreement with the report by Lehman et al.33 that states that 

carboxylic acid functional groups on MWCNTs reduce their thermal stability. 

 

 

Figure 4.18:  Comparison of the TG thermograms for pristine and acid-treated MWCNTs 

 

Generally, in this work the decomposition temperature range for MWCNTs was between 

450 and 620 C.  This range was within the range reported by Li et al.26  Nanocomposites 

with low wt.% of MWCNTs, i.e. high titania wt.% ratio, showed a weight loss below 200 C 

even though the nanocomposites were dried overnight in an oven prior to the analysis and 

weight loss increased with increase in titania wt.% (see Figure 4.19).  This correlated with 

the structural water27 peak observed in FTIR spectroscopy.  The residual amount in Figure 

4.19 was fairly close to the wt.% of titanium obtained by ICP-OES analysis of the composite.  
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The slight variation could possibly arise from the residual iron introduced as a catalyst in the 

MWCNT synthesis. 

Thermogram at high wt.% of MWCNTs ratio were steeper than at lower ratios and this may 

indicate a higher purity level of MWCNTs in the nanocomposites at high MWCNTs ratios 

(see Figure 4.19 and Table 4.4).  Furthermore, at low wt.% of MWCNTs, i.e. higher wt.% of 

titania, thermal stability of MWCNTs decreased (see Table 4.4).  Titania may act as a catalyst 

aiding thermal destruction of MWCNTs.34 

 

 

Figure 4.19:  Comparison of thermogram for MWCNT-titania nanocomposites synthesised by 

sol-gel method at (A) high and (B) low MWCNTs wt.%  

 

No clear trend in thermal stability was observed (see Table 4.4) even though a decrease was 

expected since Raman spectroscopy showed that MWCNTs defects decreased with increase 

in titania wt.% (see section 4.4.1).  MWCNTs in the nanocomposites with high titania wt.% 

ratios synthesised by CVD method were more thermally stable than sol-gel method (see 

Table 4.4).  This implies a higher graphitic nature of MWCNTs in the nanocomposites.  

However, thermal stability was seen to decrease with increase in wt.% of MWCNTs ratio.  

On the contrary, MWCNTs thermal stability was seen to decline from that of acid-treated 

MWCNTs (see Table 4.4) on increasing titania wt.% in the nanocomposites with high 

MWCNTs ratio.    
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Table 4.4:  Thermal stability temperatures for nanocomposites by the sol-gel and CVD 

methods 

MWCNTs wt.% 

Maximum decomposition 
temperature /C 

Sol-gel CVD 

5 607.5 683.7 

10 558.5 635.5 

20 596.9 630.6 

80 610.0 597.7 

90 608.7 599.0 

95 604.4 624.2 

 

Similar thermogram was obtained for nanocomposite synthesised by CVD method (see 

Figure 4.20).  However, no weight loss was observed below 200 C.  This can be attributed 

to synthetic method which eliminated water using the vacuum system and high 

temperatures involved. 

 

Figure 4.20:  Comparison of thermogram for MWCNT-titania nanocomposites by the CVD 

synthetic method at (A) high (B) low MWCNTs wt.%  
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A comparison of nanocomposites from the sol-gel and CVD methods at 20 wt.% of titania 

(see Figure 4.21) shows that nanocomposite by the CVD method is more thermally stable 

and had no loss of water below 200 C.  A similar comparison at 20 wt.% of MWCNTs (see 

Figure 4.21), also shows that nanocomposites by the sol-gel synthetic method are less 

thermally stable but the difference was largely pronounced.  According to these results, it is 

seen that the method of synthesis and ratios of components of the nanocomposites has an 

effect on overall thermal stability of the MWCNTs in nanocomposites.  It is also seen in this 

work that the nanocomposites from CVD method were more thermally stable than those 

from sol-gel method despite the wt.% ratios of components.  The results on thermal stability 

are explained well with reference to Figures 4.2, 4.3, 4.8 and 4.13.  In these Figures, it is 

seen that the titania coat was less uniform with more bare MWCNTs in nanocomposites by 

the sol-gel than by CVD method.  The titania coat on MWCNTs could have limited 

movement of oxygen to the surface of the MWCNT and thus slow down the MWCNT 

decomposition.  From the thermograms, a correlation with ICP-OES titanium values is seen 

on the overall titania wt.% ratios in the nanocomposites.  According to the thermogram (see 

Figure 4.21A and B), titania wt.% in nanocomposites by the CVD synthetic method were 

closer to the targeted wt.% than those by sol-gel.  

 

 

Figure 4.21:  Comparison of the TG thermograms for MWCNT-titania nanocomposites by the 

CVD and sol-gel synthetic methods at MWCNTs wt.% of (A) 80 and (B) 20  
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4.6  Surface area and porosity 

Textural characteristics of MWCNT-titania nanocomposites determined by means of fitting 

isotherms into the BET equation from sol-gel and CVD prepared samples are shown in Table 

4.5.  The highest surface area (328 m2g-1) was observed at 90 wt.% and 95 wt.% of MWCNTs 

(134 m2g-1) produced by sol-gel and CVD respectively.   

 

Table 4.5:  Comparison of textural characteristics of MWCNT-titania nanocomposites by 

the sol-gel and CVD synthetic methods  

Titania wt.% 

BET surface 

(m2/g) 

Pore volume 

(cm3/g) 
Pore size (nm) 

Sol-gel CVD Sol-gel CVD Sol-gel CVD 

0 (MWCNTs) 143.15 143.15 0.50 0.50 13.98 13.98 

5 149.80 134.82 0.52 0.46 13.93 13.67 

10 128.56 100.53 0.54 0.49 16.72 19.87 

40 284.44 105.03 0.39 0.48 5.44 18.44 

50 188.79 26.82 0.22 0.11 4.73 15.99 

60 185.70 76.85 0.37 0.38 7.95 19.80 

80 108.11 71.27 0.19 0.34 6.88 19.32 

90 328.21 62.59 0.21 0.29 2.57 18.32 

95 135.36 38.08 0.10 0.21 2.93 21.80 

100 (titania) 7.16 0.03 16.12 
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The MWCNTs seems to increase the surface area of titania in both synthetic methods.  

Similar results were previously reported by Li et al.14   

However, nanocomposites prepared by the CVD have smaller surface areas than those 

produced by the sol-gel method.  From the TEM images (see section 4.2) the titania coat 

was seen to be thicker in nanocomposites by the CVD method than those by the sol-gel.  

This observation bears the key views of Scalese et al.23  In their work they reported that 

interfacial surface area is inversely proportional to MWCNT thickness.  Since fitting of 

isotherms into the BET equation gives total surface area and cannot discriminate between 

components,17 a decrease in surface area in one component affect the total surface area. In 

addition to that, an agreement is seen on nanoparticle size, i.e. nanocomposites by the CVD 

had larger nanoparticle sizes (see section 4.2) and smaller surface areas than those by sol-

gel method.    

MWCNTs reduced size of titania nanoparticles in both synthetic methods.  Zhang et al.39 also 

suggested that post heat treatment reduces surface area of nanomaterials and therefore 

heat treatments involved in CVD method could have played a similar role.  Even though the 

sol-gel method involved heat treatment, the period was shorter than the CVD.  

Nanocomposites by the sol-gel method had increased surface area, i.e. mostly greater than 

that of pristine MWCNTs and titania whereas nanocomposites by the CVD was far less than 

that of pristine MWCNTs (see Table 4.5).  The sol-gel had the advantage of sonication during 

synthesis, this will help to debundle the tubes throughout, and will help increase the surface 

area.  The two acids used, i.e. nitric and hydrochloric acid has opposing effects on surface 

area.  Nitric acid opens capped MWCNTs thereby increasing surface area whilst the contrary 

is true for hydrochloric acid.2,22 

The MWCNTs improved titania pore volume from 0.03 cm3 g-1 to a maximum of 0.54 cm3 g-1 

at 10 wt.% of MWCNTs in the nanocomposites by the sol-gel synthetic method (see Table 

4.5) and in general pore volume increased with an increase in wt.% of MWCNTs.  The CVD 

nanocomposites followed a similar trend and the highest pore volume was 0.49 cm3 g-1 at 10 

wt.% of titania.  Addition of MWCNTs to titania by the sol-gel method generally decreased 

pore size but it tends to increase in nanocomposites by CVD (see Table 4.5).  Both methods 

yielded porous nanocomposites (see additional information in Appendix A). 
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4.7  Elemental composition 

Elemental composition analysis was done qualitatively and quantitatively by means of the 

EDX and ICP-OES respectively. 

 

4.7.1  Qualitative analysis 

EDX analysis was performed to confirm the presence of the expected elements; namely, 

titanium and carbon (see Figure 4.22C).  The quantity of low atomic mass elements, i.e. 

carbon and oxygen, is often overestimated by this technique and it is therefore not suitable 

for actual quantification of wt.% ratios in the MWCNT-titania nanocomposites. 21   

  

 

Figure 4.22:  Representative mapping from the (A) sol-gel method and (B) CVD method, and 

(C) a representative EDX spectrum 

Through EDX, some traces of iron were detected in some nanocomposites.  This arises from 

the catalyst used in the synthesis of the MWCNTs.  Also, the residue obtained from TGA was 

faint reddish and white in colour, indicating the presence of titania and iron.  According to 
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the mapping from this technique, titanium, carbon and oxygen were present in a 

comparable distribution in the nanocomposites synthesised from both methods (see Figures 

4.22A and B).  The difference in the false colour image is an artefact of the system. 

 

4.7.2  Quantitative analysis 

Inductively coupled plasma-optical emission spectroscopy (ICP-OES) was used to 

quantitatively confirm the targeted titania wt.% for each nanocomposite prepared.  The 

Figure 4.23 shows the calibration curve of titanium standards used in the determination of 

titanium concentration in the MWCNT-titania nanocomposites.  As can be seen, good 

linearity was achieved over the 2-10 mg L-1 concentration range.  The titanium 

concentrations determined were then used to calculate the wt.% loadings on the MWCNTs. 

 

 

Figure 4.23:  A typical calibration curve for the determination of the titanium concentration 

in the MWCNT-titania nanocomposites 

 

The development of a suitable digestion method for the MWCNT-titania nanocomposites 

and deducing the titania wt.% was difficult as reported by Li et al.14  This is because titanium 

is a refractory metal, i.e. cannot be solubilised by some acids or solvents.  In this work, 

nitric/sulfuric acid mixture coupled with heating on a hot plate in the fume hood was used 
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to digest the MWCNT-titania nanocomposites.  The digestion method gave good recovery of 

titania from the spiked activated carbon, i.e. 2.32, 5.21, and 9.66 wt.% for 2, 5 and 10 wt.% 

spiked titania respectively.  The loaded titania was within the expected ranges (see Table 

4.6) for both methods.  For example, for a targeted 50 wt.% titania loaded onto MWCNTs, 

the experimental values were 49.67 wt.% and 51.78 wt.% for the CVD and sol-gel methods 

respectively.  Two replicates were measured starting from digestion and the averaged 

values are recorded in Table 4.6.  

 

Table 4.6:  Titania wt.% loadings for MWCNT-titania nanocomposites synthesised by the sol-

gel and CVD methods 

targeted titania 

wt.% 

Experimental wt.% (standards 

deviation, n=2) 

sol-gel CVD 

98.00 98.15 (0.28) 98.60 (0.64) 

95.00 94.21 (0.15) 94.28 (1.08) 

90.00 89.50 (0.04) 92.84 (0.77) 

85.00 85.95 (1.20) 86.94 (0.27) 

60.00 59.03 (0.37) 60.64 (0.35) 

50.00 51.78 (1.42) 49.67 (0.23) 

40.00 40.28 (1.01) 37.51 (1.35) 

20.00 19.85 (1.44) 21.32 (0.36) 

10.00 12.17 (1.06) 9.63 (0.57) 

5.00 5.68 (0.71) 6.51 (0.13) 

 

Overall, both methods produce composites with a composition close to the desired 

loadings. 
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4.8  Conclusion 

Physicochemical properties MWCNT-titania nanocomposites were investigated thoroughly 

by a number of techniques such as Raman, TGA, FTIR and X-ray.  Acid treatment appears to 

lower the thermal stability of pristine MWCNTs.  The structural integrity of the MWCNTs 

was retained after acid treatment.  Synthesis of titania below 400 C yield only anatase 

phase of titania.  Anatase titania was successfully coated onto MWCNTs to form porous 

nanomaterials and there exist a covalent link between titania and MWCNTs in the 

nanocomposites.  This bond improves intimacy between MWCNT and titania.   

The morphology and dimensions were greatly influenced by the wt.% ratios of MWCNTs to 

titania.  The general trend was increase in diameter ranges with an increase in titania ratio 

and the lower the MWCNTs ratio the more they were completely coated.  In 

nanocomposites by the sol-gel synthetic method, low wt.% of titania gave isolated 

particulates whilst higher wt.% gave larger coatings along walls.  In the nanocomposites by 

the CVD synthetic method, nanocomposites became honeycomb-like with an increase in 

titania wt.%.  Both methods coated small diameter MWCNTs well.  CVD synthetic method 

gave better precision of titania loadings with the targeted load than sol-gel. 

The techniques correlated well and it was observed that the physicochemical properties of 

the nanocomposites can be influenced by the synthetic method and ratios of components.  

CVD method is a better method than sol-gel because it had more attributes as discussed in 

previous sections in this chapter.  For example, nanocomposites by the CVD method were 

more crystalline than those by sol-gel, had MWCNTs with less defects and more thermally 

stable.  MWCNTs improved surface area and pore volume of titania in both synthetic 

methods.  The increased pore size in nanomaterials by the CVD synthetic method is amongst 

other positive attributes for dye adsorption in DSSC applications.  The larger the pores the 

larger the number of dye molecules adsorbed and this can ultimately enhance photon 

reception.  In conclusion, physicochemical properties were successfully investigated. 
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Chapter Five 

 Light-harvesting experiments 
 

The main focus of this chapter is application of nanocomposites in light-harvesting 

(synthesised and characterised as explained in Chapter Three).  Photoluminescence (PL) and 

diffuse reflectance results and discussion are also presented in this chapter.  Also note that 

parameters such as wind velocity, humidity (since Durban is very humid) and cell operating 

temperature which may affect cell performance in light-harvesting1,2 were not monitored in 

this study but the effects were minimised in an enclosed room condition.  The ideal 

condition would have been the use of a glove box.  However, the devices will perform better 

in a more controlled environment for better analysis and the focus of the study was to 

investigate trends due to varying MWCNTs for devices measured under the same 

conditions. 

 

5.1  Introduction 

Harnessing energy efficiently and cheaply is the focus of this work.  In doing so, one cannot 

avoid the term photovoltaic (PV) cell.  Photovoltaic (defined and explained in the literature 

review, Chapter Two) is a latin term born in the nineteenth century into the English 

language.  In the current literature, the term is used interchangeably with solar devices.  The 

terms can generally be used to refer to energy from the sun although they are sometimes 

employed in a wider scope such as photo detectors.  The PV technology has been realised as 

a green energy approach to counteract increasing world energy demands.3  This technology 

largely consists of silicon-based solar cells (first generation); semiconductor thin films 

(second generation); organic solar cells and DSSCs (third generation).4  Nowadays, attention 

is shifting largely towards DSSCs from silicon-based solar cells, especially in the last two 

decades, due to reasons discussed in the literature review such as low fabrication costs.6 
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This chapter focuses on DSSCs discovered by Grätzel in 1991.4,5  A typical DSSC is a photo-

electrochemical system made up of a mesoporous n-type semi-conducting photoanode 

nanomaterial film coated on top of a conducting metal oxide on a transparent glass 

substrate.  This is coupled with a thin film photocathode material coated on a glass 

substrate and redox couple electrolyte solution between the two photoelectrodes to make 

energy generation a continuous process.4,7,8  A good electrolyte enables reduction of excited 

dye molecules thereby eliminating the possibility of recombination with their neighbours.9  

The background of photo-electrochemical systems originated in the 1950s with common 

applications being group four and five elements due to their narrow band gaps.4  However, 

these narrow band gap semiconductors unlike titania are corroded by electrolytes.  The 

efficiency of a DSSC is influenced by electron injection, optical absoption, internal 

resistance, light scattering, surface area and rate of electron transport.8,10  Various 

morphologies of titania such as nanorods11 and rice-grain12 have found much attention in 

the field of DSSCs.  Nanoparticles have some interesting capabilities based on dimensional 

alterations.  Nanoparticles enhances surface area of the photoanode thereby enhancing 

absorption via light scattering.4,5 

 

5.2  Properties of an ideal dye for solar cell sensitisation 

The key role of dye molecules in DSSCs is to capture photons from the sun.  To achieve this, 

a dye must have certain favourable characteristics such as: 

 Broad absorption spectrum. 

 High extinction coefficient. 

 Ability to form chemisorption bonds with oxide. 

 Suitable excited state energy level relative to conduction band of the oxide. 

 Good lifetime. 

 Long term stability. 

 Higher enough redox potential for it to be regenerated by the electrolyte.13 

The chemical reactions involved in the electrolyte systems where S is a dye molecule are 

represented in equations 5.1-5.4. 
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1. Photoanode 

Photon capture:  𝑻𝒊𝑶𝟐 +  𝑺 → 𝑻𝒊𝑶𝟐 /𝑺∗              (equation 5.1) 

Electron injection:   𝑻𝒊𝑶𝟐 /𝑺∗ → 𝑻𝒊𝑶𝟐 /𝑺+ + 𝒆−         (equation 5.2) 

2. Photocathode 

Regeneration:  𝑺+ +  𝟑𝑰 → 𝑰𝟑
− + 𝑺                  (equation 5.3) 

Redox reaction:  𝑰𝟑
−  + 𝟑𝒆− → 𝟑𝑰−                   (equation 5.4) 

 

This work briefly focuses on application of titania nanoparticles coated onto the MWCNT 

walls by the CVD and sol-gel synthetic methods in DSSCs.  MWCNT-titania nanocomposites 

were the semi-conducting photoanode material, ITO glass was the transparent substrate 

that allows light to pass through, the redox couple was gel state electrolyte and a thin film 

of aluminium on an ordinary glass substrate was the photocathode. 

  

5.3  Results and discussion 

This section outlines diffuse reflectance, photoluminescence results and the light-harvesting 

results of the devices fabricated by the use of nanocomposites. 

 

5.3.1  Diffuse reflectance 

Although diffuse reflectance is a standard technique for measuring and providing some 

insight into the band gap of photoactive materials.15  It is preferred to simple UV-Vis 

because it can distinguish between dispersed light and absorbed light unlike the UV-Vis 

which also introduces spectra complexity from solvents.44  The technique uses the fact that 

semiconductors produce charge carriers at wavelengths below band gap wavelength.15  

Absorption or band gap edge is the transition between strong short wavelength and weak 

long wavelength absorption in spectrum of solid.45  Diffuse reflectance depends on 

thickness, refractive index and surface roughness of the sample.15  Spectra position of band 

gap edge is determined by energy separation between valence band and conduction 
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band.45,44  Variations in band gap were particularly expected in this work since these 

parameters changed due to different ratios and different synthetic methods used.  Different 

positions of the absorption edges with various materials, i.e. the point on the spectrum at 

which reflectance decreases sharply implies different band gap energies.   

Nanomaterials were prepared for measurements by pilling about 3 mm nanocomposites on 

a black surface.  BaSO4 was used as a standard because it is a brilliant white compound with 

total reflectance.15  The BaSO4 was initially spread on a black surface to allow for 

background correction.  It must be noted that all the nanocomposites, including a 

commercial titania sample, were measured under the same conditions and that the focus of 

the study was to deduce the trend observed with the change in wt.% of MWCNTs in the 

nanocomposites.   

The following equation was used to compute the band gap energy from the cut off 

wavelength (); 

 

Energy (eV)  =
ℎ𝑐


=

1.24×10−6

 (𝑚)
              (equation 5.5) 

 

Where h is Plank’s constant and c is the speed of light.   

The formula given by equation 5.5 assumes that the experiment was done in a vacuum but 

the experiments were done at room temperature.  The variations associated were 

insignificant because the work was more concerned on band gap trends at various wt.% 

ratios of MWCNTs:titania.  The 2-20 wt.% of MWCNTs (see Table 5.1) represent samples 

with small MWCNT ratios.  Samples synthesized using the sol-gel method showed an 

increase in band gap with an increase in wt.% of the MWCNTs in the range 2 to 20 wt.%.  For 

the CVD synthetic method, the band gap decreased from 2 to 10 wt.% of MWCNTs then 

increased between 10 and 20 wt.%.  The lowest band gap was observed at 50 wt.% of 

MWCNTs by both methods.  Decreasing the band gap of titania via doping has been 

reported in the literature16-18 (see literature review) but this creates e-/h+ recombination 
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centres.11  Furthermore, at 50 wt.% MWCNTs the band gap of the titania-MWCNTs is 

comparable to N-doping of titania (ca. 2.9 eV) reported by Aman et al.19  Therefore, from 

the results of this work and other similar reports using MWCNTs to reduce band gap might 

be preferable to doping because MWCNTs inhibit e-/h+ recombination as observed from 

photoluminescence results (see section 5.4.2).  This is because MWCNTs readily conducts 

the e- from the titania CB.  In nanocomposites with high wt.% of MWCNTs (e.g. at 95 wt.% of 

MWCNTs), the band gap was greater than that of anatase, 3.2 eV (see Table 5.1) implying 

higher e-/h+ recombination than anatase.  The band gap shifted towards that of MWCNTs 

which is reported to be 4.5 eV.12  This observation concurred with the key findings of 

Murphy in that the thinnest coating will have the largest band gap.15  This means that 

nanocomposites of higher MWCNTs ratios were not ideal for light-harvesting and this 

agreed with the observations of this work.  According to the results in Table 5.1 it is noted 

that the band gap of the nanocomposites is lower than the band gap of MWCNTs.  In some 

cases for nanocomposites produced by the sol-gel and/or CVD synthetic methods (i.e. 95 

and/or 90 wt.% of MWCNTs) the band gaps are higher than that of titania. 

 

Table 5.1:  The band gap determination using diffuse reflectance spectroscopy 

Wt.% 
MWCNTs 

Band gap energy (eV) 

Sol-gel 
method  

CVD 
method 

2 3.062 3.179 

10 3.100 3.024 

20 3.139 3.062 

50 2.918 2.988 

90 3.163 3.333 

95 3.351 3.605 

titania 3.2 

MWCNTs 4.5 

 

5.3.2  Photoluminescence 

PL is a form of Iuminescence i.e. light emission-based technique and is triggered when a 

substance is photo-excited from a ground state usually at shorter wavelength than the 

emitted light.  Since energy is inversely proportional to wavelength, the emitted light is of 
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lower energy implying longer wavelength.  The technique focuses on electronic and 

vibrational states.  In this work, PL is used to investigate e-/h+ recombination dynamics since 

MWCNTs in MWCNT-titania nanocomposites offered large surface-area-to volume ratio (see 

Chapter Four, section 4.6).  The titania surface area was enhanced by incorporation of 

MWCNTs in nanocomposites (see Table 4.5).  High surface area plays a role in interfacial e- 

transfer in the MWCNTs/titania interface of nanocomposite as well as in 

nanocomposite/electrolyte interface.40  Also, intra-band-gap, which is related to local 

defects, can act as traps for free carriers and this influences recombination and e- transport.  

Hence, it was necessary to investigate e-/h+ recombination dynamics. 

Defects that act as e- traps are located on the nano-crystalline particle surface.  Defects on 

the titania surface are associated with oxygen vacancies and sintering can remove these 

defects.30  Therefore, since MWCNT-titania nanocomposites were analysed as samples 

rather than as sintered photoanode materials on the DSSC device, the actual defects and e-

/h+ recombination in the devices are less than that projected in the nanocomposites 

analysis.  However, since the analysis was done under the same conditions, the trends based 

on different nanocomposite ratios were elucidated.  In section 4.4.1 (see Figure 4.16), 

MWCNT-titania nanocomposites with more defects (by the sol-gel method) had higher e-/h+ 

recombination as expected (see Figure 5.1 A and B).30   

 

Figure 5.1:  A comparison of PL spectra for 2, 20, 40 and 50 wt.% of MWCNTs in MWCNT-

titania nanocomposites by the (A) CVD and (B) sol-gel synthetic methods 
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This is due to a drastic reduction of e-/h+ recombination in the MWCNT-titania 

nanocomposites.24,30  This means e-/h+ recombination was less in nanocomposites by the 

CVD than sol-gel synthetic method.  According to Figure 5.1A and B, coating titania onto 

MWCNTs and increasing MWCNTs ratios in nanocomposites reduced strong recombination 

in titania.  This observation concurred with the report by Bing-shun et al.24  TiO2 exhibit PL 

emission spectra at ca. 650 nm due to radiative recombination of self-trapped excitons due 

to oxygen vacancies at an uncoordinated surface defect, i.e. green light emission and that at 

ca. 420 nm is due to shallow trap emission which is a bulk phenomenon.20-23  It is observed 

from the PL spectra (see Figure 5.1A and B) that the peak intensity at ca. 625 nm decreased 

with an increase in wt.% of MWCNTs.  This observation agreed with the views by Zhao et 

al.25  This is attributed to a decrease in e-/h+ recombination and the observed peak position 

suggest that recombination in the nanocomposite was due to radiative recombination of 

self-trapped excitons.  There are two possible traps in this work.  The h+ traps due to oxygen 

vacancies as stated above.  The h+ traps are more likely to be present since titania in 

MWCNT-titania nanocomposites had 101 as the main surface orientation (see section 4.4.2 

and additional information in Appendix B).22  Removal of bridging oxygen atoms leaves two 

electrons which reduces neighbouring Ti4+ to Ti3+.  The Ti3+ species and e-s at oxygen vacant 

centres trap holes.31  Oxygen vacancies are favourable as carrier transport but reported 

elsewhere to be detrimental in DSSCs performances.31   

Candy et al.31 suggested that surface shallow traps facilitate carrier diffusion whereas deep 

traps seem to conflict with the intrinsic n-type semiconductor titania.  According to the 

spectra obtained it is seen that MWCNTs achieved the goal of readily accepting the excited 

electron from titania thereby quenching the PL.  The absence of NIR emission peak at ca. 

835 nm correlated with absence of rutile in the nanocomposites.32  The lack of peaks at 143 

cm-1, 235 cm-1, 447 cm-1 and 612 cm-1 in the Raman spectra 21 and XRD peaks at the value of 

2 = 27.3⁰, 35.9⁰, 41.2⁰ and 54.4⁰  (see section 4.4.1 and 4.4.2) also implies absence of rutile 

phase titania.26,27 
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5.3.3  Gel state electrolyte 

An electrolyte is also an important part of a DSSC device because recombination of photo-

injected electrons with the oxidised form of the electrolyte redox couple can be 

detrimental.28  The most suitable way of enhancing DSSCs efficiency is the addition of 

appropriate chemical species in the electrolyte in order to tune electrolyte/semiconductor 

interface.29  1-Methyl-3-propylimidazolium iodide is a charge transfer intermediate 30 and its 

involvement in the synthesized gel state electrolyte as an ionic liquid requires higher iodine 

concentration.  This is because high viscosity of ionic liquids retards I-
3 diffusion.  Hence, 

reduces charge-transport efficiency under irradiation.   

Conductivity of iodine was seen to increase with its concentration (see Table 5.2) but the 

higher the concentration of iodine, the darker the solution.  Dark iodine solutions are strong 

light absorbers at ca. 430 nm.28,31  Stergiopoulus et al.29 reported that short circuit current 

density (Jsc) decrease systematically with increase in iodine concentration and this implies 

that there exist a specific critical iodine concentration for an optimum DSSC functioning.  

Higher iodine concentration cause unwanted recombination of photo-injected electrons 

with I-
3.28  Hence, at higher concentration of iodine, the performance of the device can 

greatly deteriorate.  For these reasons 0.5 M was selected to avoid competition for light 

absorption with the photoanode material and detrimental effects in the DSSCs devices.  

Iodine (0.5 M) was also used in the synthesis of liquid electrolyte in this work. 

 

Table 5.2:  The optimisation of iodine concentration for gel state electrolyte synthesis used 

in DSSCs 

Iodine 
concentration 

/M 

Conductivity 
/ 𝜇 S cm-1 

Temperature 

/C 

0.1 1.0 18.5 

0.2 8.1 18.9 

0.5 16.3 19.0 

0.8 33.3 19.3 

1.0 36.4 19.2 
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According to the results in Table 5.3, addition of lithium iodide, 1-methyl-3-

propylimidazolium iodide, 4-Tert-butylpyridine and guanidium thiocyanate improved 

conductivity of iodine.  This concurred with findings reported earlier, for example, addition 

of 4-Tert-butylpyridine improve open circuit voltage (VOC) whilst guanidium thiocyanate 

addition was found to increase both VOC and JSC.29  4-Tert-butylpyridine deprotonate the 

titania surface and hence shift conduction band (CB) towards negative potentials and 

passivates the surface active recombination centres.  On the contrary, guanidium 

thiocyanate accumulates positive charge on titania surface thereby causing a positive shift 

of the CB and hence increase e- injection efficiency.29  This slows down e-/h+ recombination.  

From this view, synergistic effects of these additives in a single identical system affect direct 

recombination reaction with iodine. 

PVAc act as gelator in the electroltye.30  Conductivity of the liquid electrolyte was observed 

to decrease with mass of PVAc from 0-0.4 g (see Table 5.3).  On addition of about 0.6 g PVAc 

an abrupt increase in conductivity was observed.  However, on addition of about 0.8 g PVAc, 

the conductivity was observed to decreased due to poor solubility of the polymer.  Hence, 

the mass used in gel state electrolyte synthesis was 0.6 g.  The effect of high solvent 

volatility which limits long run applicability was elliminated by the use of PVAc (see section 

5.3.5.2).  These results are similar to literature reports.9  This means a working electrolyte 

with reasonable conductivity was synthesised for light-harvesting. 

Table 5.3:  The optimisation of PVAc mass in gel state electrolyte synthesis used in DSSCs 

PVAc mass /g Conductivity 
/𝜇 S/cm 

Temperature /C 

0.0000 30.4 18.0 

0.1963 20.7 19.1 

0.3914 13.8 19.2 

0.5670 84.0 19.7 

0.7828 61.6 19.2 
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5.3.4  Absorption spectra of dye 

Eosin B has two absorption peaks (see Figure 5.2) at 400 nm and 525 nm.  The latter is the 

absorption maxima.  Therefore, according to the spectra, eosin B absorbs in the visible 

region making it a suitable sensitizer in DSSCs.32  The spectra show that at lower 

concentrations the absorption peak at 400 nm is very weak and the absorption maxima are 

sharper.  Therefore, to increase the absorption region, a higher concentration (600 mg L-1) 

was used in this work. 

 

Figure 5.2:  The absorbance spectra for eosin B used in DSSCs 

 

5.3.5  Set up of DSSCs 

In this section the effects of MWCNTs as photo-electrochemical materials in light-harvesting 

experiments were presented.  Eosin B dye was able to facilitate removal of h+ from photon 

e-/h+ pairs from the TiO2 phase.  This event was also aided by MWCNTs strong conductivity 

of electrons due to their lower Fermi level relative to titania33 since an e- has a shorter 

diffusion length.11  The general film thickness unless stated otherwise was 70 µm and the 

concentration of eosin B dye was 600 mg L-1. 
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5.3.5.1  Polyethylene glycol binder effect on DSSC performance 

The effect of polyethylene glycol (PEG) as a binder in DSSCs was investigated using sol-gel 

synthesised titania.  The values obtained were 0.35 m A cm-2, 0.41 V, 17.11 and 0.02 for JSC, 

VOC, fill factor (FF as explained in Chapter One) and efficiency (n) respectively.  The values 

were compared to sol-gel synthesised titania with no binder i.e. JSC of 2.26 m A cm-2, VOC of 

0.83 V, FF of 27.76 and n of 0.50.  PEG reduced the device performance drastically in a 

similar manner as reported elsewhere.32  Hence, the study was done with no binder even 

though binders are reported to reduce cracks in nanocomposites thereby improving 

contact.34  A decrease in performance could have been due to the thickness of the 

photoanode material involved in this work which was above 1 µm introducing adverse 

effect to the electron movement.34  Therefore, since the anode film thickness involved in 

this work was 70 and 160 µm, it was ideal not to use the PEG binder. 

 

5.3.5.2  Liquid iodine electrolyte application in DSSCs 

Initially, the electrolyte used was liquid iodine.  Table 5.4 results show poor DSSCs 

performance obtained from the use of iodine liquid as an electrolyte.  The JSC values 

obtained indicates that there was e- movement in the DSSCs devices fabricated but the 

potential to transfer these electrons was very low.  The poor results were due to the drying 

effect of the electrolyte since acetonitrile is highly volatile.  A gel state electrolyte was 

synthesised to overcome this effect (see section 3.6.1 in Chapter Three and light-harvesting 

results in section 5.3.5.3). 

 

Table 5.4:  The Light-harvesting performance for the titania synthesised by the sol-gel 

method at 70 µm using iodine liquid electrolyte 

JSC /m A cm-2 VOC /V FF n 

0.187 0.584 22.594 N/A 

0.130 0.002 N/A N/A 

0.139 0.003 N/A N/A 

0.533 0.043 N/A N/A 

0.465 0.027 N/A N/A 

 N/A means devices gave negligible values 
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The redox electrolyte was drying out before transferring the e-s from the photoanode via 

the external circuit to the eosin B dye molecules.  This means the circuit was broken and 

there was no regeneration of the ground state eosin B dye.  Hence, no substantial efficiency 

values were obtained (see Table 5.4).  However, it may be noted that some high efficient 

DSSCs have been reported using similar organic solvents.28  The design of the DSSC devices 

matters in this regard i.e. devices involving drilled and sealed holes containing the liquid 

electrolyte will not have drying effects unlike the system used in this work. 

 

5.3.5.3  Application of nanocomposites in DSSCs 

In this section results presented and discussed are for light-harvesting experiments carried 

out without using PEG binder and using a gel state electrolyte. 

For sol-gel synthetic method, FF generally increased with an increase in MWCNTs wt.%.  The 

highest FF was at 15 wt.% of MWCNTs (see Table 5.5). However, the highest efficiency and 

open circuit voltage was at 10 wt.% of MWCNTs (see Table 5.5).  In the nanocomposite from 

the sol-gel method only VOC (ca. 0.63 V) was comparative with the values regarded as 

standard in the report by Lee et al.35  It must be noted that the devices in this work were 

fabricated differently.   In this work MWCNTs were part of the photoanode material whilst 

in their work, the MWCNTs were part of the electrolyte system and counter electrode.  

From the VOC values, it can be seen that nanocomposites from the CVD method have 

potential to do more work than those from sol-gel except at 10 MWCNTs wt.%.  Generally, 

VOC values presented in Table 5.5 predicts high efficient devices.  However, the low device 

efficiencies in the DSSCs fabricated could have been due to the charge carriers’ 

recombination or loss during the various transfer and redox processes along the DSSC 

functional chain i.e. eosin B dye to MWCNT-titania, aluminium counter electrode to iodide 

and iodide back to eosin B dye. 

In this work, above 15 wt.% of MWCNTs the performance of the fabricated DSSC devices 

deteriorated (see 40 and 50 MWCNTs wt.% in Table 5.5).  The most likely possibility is the 

interference of MWCNTs in electron transport, i.e. high MWCNTs e- conductivity disrupts e- 

transfer to the counter electrode in MWCNT-titania nanocomposites with high MWCNTs 
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wt.%.  Also high MWCNTs wt.% means reduced titania wt.% ratio in the nanocomposites 

which is required for the initial electron-hole pair separation. 

Table 5.5:  Light-harvesting performance for the nanocomposites synthesised by the sol-gel 

and CVD methods at 70 µm using gel state electrolyte 

Wt.% 

MWCNTs 

JSC (m A cm-2) VOC (V) FF n 

Sol-gel CVD Sol-gel CVD Sol-gel CVD Sol-gel CVD 

2 1.54 29.51 0.54 0.64 11.71 1.82 0.10 0.34 

5 1.76 76.11 0.66 0.71 11.66 1.40 0.14 0.76 

10 0.03 0.56 0.83 0.65 16.91 63.76 0.17 1.07 

15 0.20 13.00 0.58 0.68 43.20 19.25 0.13 1.71 

40 1.22 18.77 0.23 0.62 16.91 2.86 0.05 0.33 

50 0.01 1.42 0.68 0.95 33.99 7.02 0.03 0.09 

 

According to the results obtained from nanocomposites by the sol-gel synthetic method, 

performance was poorer compared to titania with no MWCNTs loaded (see Table 5.5).  The 

best sol-gel nanocomposite was 66% reduced in efficiency from that of titania.   

The Table 5.6 displays the performance of the best performing wt.% of MWCNTs from both 

methods at 130 µm thickness (thicker than 70 µm used for data in Table 5.5).   

 

Table 5.6:  The MWCNT-titania nanocomposites synthesised by the CVD and sol-gel 

methods at 130 µm 

wt.% MWCNTs 

(method) 
JSC (m A cm-2) VOC (v) FF n 

0 2.26 0.83 26.76 0.50 

10 (Sol-gel) 3.87 0.53 33.12 0.68 

10 (CVD) 11.95 0.69 3.36 0.28 

15 (Sol-gel) 4.09 0.76 9.34 0.29 

15 (CVD) 0.21 0.47 25.17 0.02 
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There was not much change observed in terms of VOC in the nanocomposites by the CVD 

synthetic method.  However, 50 wt.% of MWCNTs had the highest VOC yet the efficiency was 

very low.  The increase in VOC means a decrease in e-/h+ recombination.32  This agreed with 

the observed lowest band gap and lowest PL peak intensity at 50 wt.%.  This means poor 

performances can be due to current loss (or electrons) via parasitic processes such as slow 

redox processes with the iodide system, slow redox between the dye and the iodide 

couple.28  Furthermore, MWCNTs might be interfering with electron movement i.e. their 

high e- conductivity causing more electrons to be trapped in the MWCNTs interface without 

being transferred to the counter electrode.  Since MWCNTs wt.% has an effect on band gap 

energy (see section 5.3.1), the change in band gap at 50 wt.% might have been misaligned 

with energy levels of the eosin B dye.  This compromised the injection of excited electrons 

into the LUMO of titania above 20 wt.% of MWCNTs.  

The best FF was observed at 10 wt.% of MWCNTs and best performance was observed at 15 

wt.% of MWCNTs with a 242% enhancement of efficiency from that of titania with no 

MWCNTs.  Short circuit current density was seen to decrease with wt.% of MWCNTs (see 

Figure 5.3).   

 

Figure 5.3:  The short circuit current density for nanocomposites synthesised by CVD 

method 
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The lower band gap (see Table 5.1) and decrease in defects (see Chapter Four, section 

4.4.1, Figure 4.16) for MWCNT-titania nanocomposites from CVD method is an indication of 

inter-particle connectivity differences.  Lower band gap energy enhances e- transport in the 

titania nano-crystalline and reduced defects decreases recombination.30  According to data 

presented in Table 5.5 the range 5 to 15 wt.% of MWCNTs, nanocomposites from the CVD 

synthetic method had better efficiencies than titania. 

Even though nanocomposites with 50 wt.% MWCNTs had the lowest band gap from both 

methods, it may be noted that at such high MWCNTs loadings the strong background 

MWCNTs absorption between 400 nm and 800 nm arises.36  Also, a decrease in optical 

transparency and shifting of band gap towards that of MWCNTs above 50 wt.% of MWCNTs 

may have been the main reasons why such nanocomposites did not work in light-harvesting 

experiments.12  The low JSC at 50 wt.% of MWCNTs implies poor electron transport yet high 

MWCNTs wt.% provides excellent electron pathway.  The most likely possibility is failure of 

e- re-injection into the iodide redox couple.37 

High VOC values shows that there was no recombination of photo-generated electrons with 

the electrolyte.38  It can also imply decrease in charge recombination as discussed above.28  

Furthermore, VOC is weakly influenced by counter electrode,7,11 hence, high VOC may suggest 

that aluminium is a good counter electrode material.  This is a positive attribute because 

aluminium is cheaper than platinum which is commonly used in PV.39  Despite the fact that 

high electric potential values (VOC) were observed from both methods, efficiencies were 

generally lower than expected (see Table 5.5).  This could have been due to parasitic 

resistive losses such as slow interface e- transfer and slow redox processes with the iodide 

system leading to recombination as mentioned earlier.40  The high electric potential can be 

attributed to addition of guanidium thiocynate as discussed above.13   

In general, nanocomposites by the CVD synthetic method performed better than those 

produced by sol-gel in terms of JSC and n.  Furthermore, the VOC from CVD nanocomposites 

was generally higher than those by sol-gel method except at 10 wt.% of MWCNTs.  This 

observation is seen to correlate with the higher defects in sol-gel nanocomposites which 

increase recombination with oxidised species of iodine in the contacting gel state electrolyte 

decreasing photovoltage and photocurrent.  Therefore, since VOC is inversely proportional to 

file:///E:/thesis..Si/Chapter%205..printing.docx%23_ENREF_36
file:///E:/thesis..Si/Chapter%205..printing.docx%23_ENREF_12
file:///E:/thesis..Si/Chapter%205..printing.docx%23_ENREF_37
file:///E:/thesis..Si/Chapter%205..printing.docx%23_ENREF_38
file:///E:/thesis..Si/Chapter%205..printing.docx%23_ENREF_28
file:///E:/thesis..Si/Chapter%205..printing.docx%23_ENREF_7
file:///E:/thesis..Si/Chapter%205..printing.docx%23_ENREF_11
file:///E:/thesis..Si/Chapter%205..printing.docx%23_ENREF_39
file:///E:/thesis..Si/Chapter%205..printing.docx%23_ENREF_40
file:///E:/thesis..Si/Chapter%205..printing.docx%23_ENREF_13


 

E.T. Mombeshora Page 136 

 

FF, FF from nanocomposites by the sol-gel method was higher than those from CVD 

method.   

Synthetic method affect the physicochemical properties such as uniformity of oxide coat on 

MWCNTs walls and surface area 41 which ultimately affects device performance.  The 

thickness of the titania oxide layer on MWCNTs alters the diffusion path length in the titania 

interface before being conducted by the MWCNTs.  This could play a big role in 

performance, when electrons are transported by the MWCNTs the electrons can be taken to 

the wrong way, i.e. back recombination with the dye, this may account for low FF generally 

presented in Table 5.5.  The synthetic method will have an effect on surface morphology, 

surface defects, nanostructure, electronic properties and ultimately on efficiency of DSSCs.  

This plays a role in electron transport via creation or reduction of recombination centres.  

For example, nanocomposites by the CVD method were highly crystalline and the particle 

sizes were larger than sol-gel method.  This could have reduced the number of boundaries 

for potential e-/h+ recombination even though it reduced the surface area of the 

nanocomposites compared to those by the sol-gel method.32 

Shi et al.32 reported that more crystalline structures have low PL intensity.  This agrees with 

the observations in this work since low PL intensity suggests low e-/h+ recombination.  The 

enhanced surface area from both methods relative to that of titania, in turn enhanced 

electrochemical properties such as improved electron transport of titania.12,35  The 

possibility of Schottky barrier creation between titania/MWCNTs interface lowers chances 

of recombination in the titania interface.37  Furthermore, the observed covalent link 

between anatase titania and MWCNTs via oxygen-containing groups (see Table 4.1 and 

Figure 4.15, Chapter Four in section 4.3) improved intimacy between titania and MWCNTs 

which may be absent in the physical mixture reported by some authors.25,42  This C-O-Ti 

bond extends light absorption to longer wavelength.25   

It was interesting to observe that increasing the thickness of the photoanode layer 

improved the performance of the sol-gel nanocomposite at 10 wt.% of MWCNTs, it 

performed better than both pure titania and CVD nanocomposites.  A 36% improvement 

and a 62% decrease in efficiency were observed for sol-gel and CVD methods respectively.  
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The improvement of efficiency of sol-gel method nanocomposite with thickness of 

photoanode in the device agreed with the observation by Fan et al.43 

 

5.4  Conclusion 

The band gap of titania decreased with increase in wt.% of MWCNTs up to 50 wt.% i.e. 

lower MWCNTs wt.% reduced titania band gap and above 50 wt.% it shifted towards the 

band gap of MWCNTs in both methods.  Radiative recombination of self trapped excitons 

was more dominant in MWCNT-titania nanocomposites synthesised from both methods.  

The e-/h+ recombination in titania decreased with an increase in MWCNTs.  The sol-gel 

nanocomposites have higher e-/h+ recombination than those by the CVD synthetic method.  

MWCNTs are good electron acceptors at the MWCNT/titania interface in MWCNT-titania 

nanocomposites. 

The gel state electrolyte synthesised was less volatile than liquid iodine on its own.  Eosin B 

absorbed in the UV region of light and therefore was a suitable sensitizer in this work.  The 

DSSC devices fabricated had positive rectification (see additional information in Figures F1 

and F2 in Appendix F).  Aluminium coated on ordinary glass can be used as a counter 

electrode in DSSCs.  Nanocomposites by the CVD synthetic method were better photoanode 

nanomaterials than those by sol-gel.  Use of PEG as a binder was detrimental to the 

performance of DSSC devices fabricated in this work.  Crystal structure of nanocomposites 

influences light-harvesting capabilities, i.e. the more crystalline the nanocomposites the 

better were the light-harvesting abilities.  Surface defects and larger band gap reduced 

DSSCs performances.   
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Chapter Six 

 Thesis conclusions and future work 
 

In this chapter, summaries of each previous chapter, overall conclusions from the study and 

future work suggestions based on the findings from this work are presented. 

 

6.1  Summary 

Chapter One links the significance of studying physicochemical properties of MWCNT-titania 

nanocomposites for DSSC applications with the reported work in literature.  This was done 

by means of a brief background of the importance of energy in the global village and 

problems associated with growing demand.  This culminates in the need to look for 

alternatives to current energy sources.  The aim and objectives of the study, and motivation 

behind the study are stated.  This chapter justified certain choices that were made in this 

study such as nanomaterials used in the work, research approach, i.e. CVD and sol-gel 

methods and properties to be investigated.  The systematic approach to the study, based on 

the stated hypotheses and research questions, is also presented and justified.  This chapter 

generally gave the direction taken based on the reviewed materials in Chapter Two when 

the work was started.  Finally, this chapter stated the overview of the thesis.  Therefore, in 

brief, this chapter gives an insight of the ideas from literature involved in solving a real 

world problem, i.e. energy crisis and directs the reader to the various chapters 

mushrooming from the review. 

Chapter Two describes the realization of the importance of energy by the earliest man on 

the planet and also reviews the energy resources in modern societies.  Current energy 

demands against resources are further explained; thereafter the chapter discusses the 

possible alternative energy resources to fossil fuels.  Disadvantage of each possible 

renewable energy and attributes of solar energy as a good green energy resource are also 

stated.  The world energy production levels are reviewed in this chapter.  Also, various 
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policies are discussed within this chapter pointing out how both developing and developed 

countries aims to face a potential energy crisis through various roadmaps.  

Chapter Two further explains how nanotechnology has the potential to solve the real 

world’s problem, “energy crisis” via generation of nanomaterials with higher efficiencies and 

band gap engineering of current nanomaterials on the market.  Nanoscience and 

nanotechnology which are terms often confused were defined and differentiated.  Carbon 

was recognized as the key player and thus carbon allotropes, including CNTs and their 

chemistry are described within this chapter.  Properties and applications of MWCNTs are 

also presented in greater detail within this chapter.  MWCNTs require modifications in order 

to manipulate them as functional moieties and therefore possible modifications of MWCNTs 

were identified.  Chapter Two further narrowed down to MWCNTs in MWCNT-titania 

nanocomposites.   

Background information on titania in terms of properties, forms, band gap modifications 

and exciton generation mechanism was also explained in this chapter.  The survey showed 

that MWCNTs had a potential to tune physicochemical properties of tinania nanoparticles 

towards higher light-harvesting capabilities.  MWCNT-titania nanocomposites synthesis 

methods were identified.  In addition, analytical techniques used for characterization of 

nanomaterials are discussed in terms of how they are crucial to the study presented in the 

subsequent chapters.  The theory behind DSSC as a photo-electrochemistry system was 

explained within the chapter.  The background on some important parameters involved in 

PV systems are also stated and explained.  Chapter Two also gives some reported work done 

in the field of DSSCs which is relevant to our approach in order to have a rough idea of what 

was on the ground when the work was started.   

Chapter Three is an experimental section.  Chapter Three presents the details of; reagents, 

solvents, materials and experimental procedures involved in the acid treatment of 

MWCNTs, synthesis of nanocomposites as well as in fabrication of DSSCs.  The details of; 

reagents, solvents and procedures involved in electrolyte synthesis were also given within 

this chapter.  This chapter also outlines details of the two synthetic methods used in this 

study, i.e. sol-gel and CVD.  Details of the experimental procedures such as use of an 

ultrasonic water bath, stirrer, solvents and how the precursors were mixed by the sol-gel 
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method are also given in greater detail.  The information of the parts used in constructing 

the CVD reactor, temperature program involved and how precursors were mixed together 

were also presented within this chapter.  Range of MWCNTs ratio to titania in the MWCNT-

titania nanocomposites was from 2 to 98 wt.%.  Instrumental and software details for the 

physicochemical characterisation, i.e. SEM, TEM, HR-TEM, TGA, Raman spectroscopy, 

powder XRD, FTIR spectroscopy and textural characteristics, and light-harvesting 

characterization techniques, i.e. diffuse reflectance, PL, UV-Vis and solar simulator, engaged 

in this work are given within the chapter.  The diagram showing components and the design 

of DSSC devices used in this work, and a brief view of how measurements were carried out 

in this work is given.  In short, this chapter gives all experimental steps involved, i.e. from 

acid treatment of MWCNTs via MWCNT-titania nanocomposite synthesis, physicochemical 

characterization to application of nanocomposites in DSSCs. 

Chapter Four is the core of the study.  It discusses each method and the results obtained in 

this work.  Morphology and dimensional studies were done by SEM, TEM and HRTEM.  The 

three dimensional images from SEM shows that uniformity of titania coating on MWCNTs 

varied with differences in wt.% of MWCNTs.  The TEM gave good two dimensional images 

showing that titania coated MWCNTs.  EDS was used as a qualitative technique in identifying 

the elements present as titanium and carbon.  This technique also gave a rough view of how 

the two elements identified were distributed within the nanocomposites.  ICP-OES 

quantified the amount of titanium in each nanocomposites culminating in the calculation of 

the wt.% ratios of MWCNTs to titania.  The FTIR spectroscopy was the method used to 

investigate the relationship of titania and MWCNTs in the nanocomposites and other 

chemical bonds present.  This technique also identified the phase present in the 

nanocomposites as anatase.  Thermal stability of MWCNTs in the synthesized 

nanocomposites was investigated by TGA and according to the results from this technique, 

high titania wt.% reduced MWCNTs resistance to oxidation and it also showed that 

experimental wt.% ratios of MWCNTs:titania correlated with those obtained by means of 

ICP-OES.  The graphitic quality trend of MWCNTs in the nanocomposites was investigated 

using Raman spectroscopy which also agreed with FTIR spectroscopy on anatase being the 

only phase present.  This was further confirmed by powder XRD which also gave the surface 

crystal arrangements in addition to its ability to reveal the high degree of crystalinity in the 
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nanocomposites.  According to the textural characteristics obtained, the MWCNTs improved 

surface area by reducing titania agglomeration, pore volume of titania and showed that the 

nanocomposites were mesoporous.  In short, Chapter Four presents and compares a 

thorough characterization approach to MWCNT-titania nanocomposites synthesized from 

the sol-gel and CVD methods. 

Chapter Five gave a presentation of some electrical characterizations of the MWCNT-titania 

nanocomposites, i.e. band gap and e-/h+ recombination dynamics using diffuse reflectance 

and photoluminescence respectively.  A brief explanation of the DSSCs and the properties of 

an ideal dye were also presented.  UV-Vis was used to investigate absorption maxima of the 

eosin B dye.  From this technique it was observed that eosin B was potentially suitable for 

DSSCs applications because it absorbed in the visible region.  The light-harvesting 

experiments results and discussion are presented in greater detail within this chapter.  The 

main aim of this chapter is to apply the MWCNT-titania nanocomposites in light-harvesting.  

The nanocomposites synthetic method influences physicochemical properties such as 

defects, surface area and interfacial contact on the MWCNT/titania interface and hence 

affects e- transport.  The nanocomposites prepared by the CVD method performed better in 

DSSCs than those made by sol-gel techniques and band gap engineering is not the only 

factor than can enhance light harvesting capabilities. 

A summary of the work or conclusions are given in Chapter Six.  A possible description of 

possible future is also given. 

 

6.2  Overall conclusion  

According to the experimental data obtained from the current work, various conclusions can 

be made.  The acid treatment reduced agglomeration of MWCNTs during the sol-gel 

synthesis.  Nitric acid opened MWCNTs and created defects on the tube walls for both sol-

gel and CVD methods thereby reducing MWCNTs thermal stability.  The oxygen containing 

functional groups aided titania coating onto MWCNTs by improving chemical interactions in 

the sol-gel method.  The procedures in both sol-gel and CVD methods were able to coat 

titania onto MWCNTs.  In this study, it was also seen that MWCNTs to titania ratios and 
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synthetic method influenced physicochemical properties such as nanostructure, ultimate 

morphology and surface area.  According to EDX mapping, CVD approach gave a better 

distribution of titania dispersion on MWCNTs than sol-gel method.  From Raman 

spectroscopy results, CVD nanocomposites were less defective i.e. had smaller 
ID

IG
 ratio.  

Titania sat on the defects thereby reducing defect intensity on the MWCNT walls.   

Thermal stability of the MWCNTs improved in MWCNT-titania nanocomposites from both 

sol-gel and CVD method relative to that of acid-treated MWCNTs.  In addition to this, 

coating MWCNTs caused tube bending which created weak points for thermal oxidation at 

elevated temperatures.  TGA and ICP-OES suggested that CVD approach was a better titania 

loading method since the actual loaded titania wt.% had better precision with the 

theoretically expected values than sol-gel.  According to the FTIR spectrum obtained, titania 

was covalently linked to MWCNTs via the oxygen-containing groups on the tube walls.  The 

FTIR and other techniques such as Raman spectroscopy, photoluminescence and powder 

XRD suggested that the only phase present in the MWCNT-titania nanocomposites from 

both CVD and sol-gel methods was anatase.  According to XRD diffractogram, CVD 

nanocomposites were more crystalline.  Also, from the textural characterization done, the 

sol-gel method gave large surface area of nanocomposites than those from CVD method.  

CVD was found to be a better synthetic method than sol-gel.  The vacuum effect involved in 

the CVD method is critical for better quality of MWCNT-titania nanocomposites than sol-gel.  

The MWCNT-titania nanocomposites produced by the CVD method have more uniform 

coating, higher thermal stability, and larger pore volume and size, less defects and were 

more crystalline compared to those made by sol-gel process.   

Some interesting conclusions were made from observed electronic properties and light-

harvesting experiments.  To begin with, MWCNTs reduced e-/h+ recombination and band 

gap when loaded to titania.  The e-/h+ recombination was more in sol-gel MWCNT-titania 

nanocomposites than CVD.  Band gap shifted towards that of MWCNTs above 50 wt.% of 

MWCNTs ratio whereas below 50 wt.%, MWCNTs reduced band gap of titania.  The 

conclusion from the redox system synthesized was that the gel state electrolyte was more 

stable and less volatile than iodine electrolyte alone. Hence, the gel state electrolyte was 

more ideal for the DSSC design used than liquid iodine.  The gel state electrolyte unlike 
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iodine was able to regenerate dye molecules in the DSSC design used in this work.  Eosin B 

absorbed in the UV-Vis region and hence, is a suitable metal-free sensitizer for DSSC light-

harvesting. 

From the physicochemical characteristics and light-harvesting experiments the conclusions 

deduced are elucidated below.  The nanostructures synthesized were working photo-anode 

materials with a positive rectification and therefore MWCNT-titania nanocomposites can be 

applied in DSSCs.  The devices have high potential to do work.  Also, low wt.% ratios of 

MWCNTs to titania in MWCNT-titania nanocomposites from both sol-gel and CVD methods 

performed better in DSSCs than high ratios.  From the experiments carried out, the 

optimum MWCNTs wt.% in DSSCs applications from CVD method was 15 and 10 wt.% for 

sol-gel method.  CVD method nanocomposites performed better in DSSCs than sol-gel 

nanocomposites.  This is because of number reasons such that CVD nanocomposites had 

larger pore size and pore volume which is available for dye to fill in.  Also, CVD 

nanocomposites were more crystalline and therefore had less number of nanoparticle 

boundaries.  Crystalinity improve electrical conductivity.  Therefore, CVD nanocomposites 

had minimal chances of e-/h+ recombination at nanoparticle boundaries.  An intimate 

contact between TiO2 and MWCNTs caused relative positions of MWCNTs CB edge to allow 

e- transfer from TiO2 to MWCNTs at the titania/MWCNTs interface.  In addition to that, the 

CO-Ti link improved intimacy of titania and MWCNTs more in CVD.  The deductions are 

made from the more intense CO-Ti peak from FTIR spectroscopy observed in CVD approach 

than sol-gel method.  This also improved light-harvesting capabilities in DSSC devices 

fabricated using nanocomposites by the CVD method.   

In short, titanium optical properties were tailored to enhance its light harvesting capabilities 

and the ideal properties for better light-harvesting performance deduced from this work 

include crystalinity, large pore size and volume, uniform morphology, existence of chemical 

bonds between components of nanocomposites and a defect-free nature.  VOC is influenced 

by CB of MWCNT-titania nanocomposite.  Band gap engineering is not the only factor vital 

for enhancement of light harvesting capabilities.  Absorption properties of DSSC 

components rather than nanocomposites also affect device performances.  The high e- 

conductivity nature of MWCNTs interferes with e- transfer from the MWCNT/titania 
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interface to the counter electrode in nanocomposites with high MWCNTs wt.% thereby 

causing DSSCs deterioration.   

 

6.3  Future work 

Many possible avenues for future research exist and of particular interest include the 

following.  Firstly, an investigation of the effects of incorporating silver and gold 

nanoparticles into MWCNT-titania nanocomposites-based hybrid solar cells has the 

potential to enhance efficiencies because the two metals are reported in literature to 

enhance light harnessing.  Secondly, an investigation of the effect of various nanocomposite 

deposition techniques onto ITO coated glass such as spin coating can improve 

understanding of the ideal morphology on the device.  The morphology of the photoanode 

nanomaterials plays a key role in e-  transport since surface defects can act as e- or h+ traps 

influencing the e-/h+ recombination dynamics.  In addition, determination of the diffusion 

path length of the exciton and optimization of the film thickness of a DSSC active layer such 

that it is shorter is equally vital in enhancing efficiencies of a DSSC device.  Also, although 

high MWCNTs wt.% provide an excellent e- pathway it affect reinjection into the redox 

couple, it will be interesting to investigate the performances of a DSSC device using thin 

films.  A comparison of nanocomposites synthesized by sol-gel and CVD methods with a 

physical mixture of laboratory synthesized titania and acid-treated MWCNTs in DSSC 

applications can bring a better understanding of the effects of the covalent link between 

titania and MWCNTs.  In addition, comparison of physicochemical properties of 

nanocomposites from different precursors but by the same synthetic method can contribute 

immensely in understanding the effects.  Even though iron levels were reduced to almost 

zero use of iron free MWCNTs will be a good control experiment of this work. 

Other possible areas of investigation include the effect of dye soaking time of a DSSC device 

on the performance and the use of two dyes that compliment each other in light-harvesting 

as well as the effect of dye concentrations in DSSCs.  The use of common natural dyes such 

as flower dyes as sensitizers in DSSCs leaves a lot to be desired against the metal-based 

laboratory synthesized dyes.  The redox system in a DSSC device is equally crucial to the 

electrode nanomaterials and therefore an investigation of the effects of pH on the 
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performance of an electrolyte is worth a focus.  A more challenging approach will be to 

characterize the PV cells electrochemically.  This involve designing a way of quantifying 

absorption efficiency, exciton dissociation efficiency, charge transfer efficiency and charge 

carrier collection efficiency at interfaces separately since they constitute the overall 

efficiency of a DSSC device.  Whilst there exist some speculations that ITO coat on glass 

disintegrate above 200 C FTO does not, the DSSCs devices of this work were sintered above 

that temperature.  Therefore, a comparison of FTO and ITO in DSSCs using MWCNT-titania 

nanocomposites can be a good avenue to explore.  Finally, the use of a glove box eliminates 

the possibility of environmental effects during light-harvesting experiments. 
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Appendices 

 Appendix A 

Isotherms 
 

 

Figure A1:  The representative isotherms for sol-gel and CVD nanocomposites 
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Appendix B 

Powder XRD spectra 
 

 

 

Figure B2:  XRD spectra for nanocomposites with high titania wt.% ratios synthesised by sol-

gel method 
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Appendix C 

TGA derivative curves 
 

 

 

Figure C1:  The temperature derivative curve in air for acid-treated MWCNTs  

 

Figure C2:  The representative temperature derivative curve in air for sol-gel 

nanocomposites at 10 wt.% of MWCNTs 
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Figure C3: The representative temperature derivative curve in air for CVD nanocomposites 

at 10 wt.% MWCNTs  

 

Figure C4: The representative temperature derivative curve in air for sol-gel 

nanocomposites at 90 wt.% MWCNTs 

 

Figure C5:  The representative temperature derivative curve in air for CVD nanocomposites 

90 wt.% MWCNTs 
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Appendix D 

Raman results 
 

 

Figure D1:  The representative Raman spectrum for pristine MWCNTs 
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Figure D2:  The representative Raman spectrum for the acid-treated MWCNTs 
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Figure D3:  The representative Raman spectrum for the 10 wt.% of titania synthesised by 

sol-gel method 
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Figure D4:  The representative Raman spectrum for the 15 wt.% of titania synthesised by 

CVD method 
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Table D1:  The G and D band for nanocomposite synthesized by sol-gel at varying high 

MWCNTs wt.% 

wt.% 
D band G band ID

IG
 

Position  Width Position Width 

4 1371.9 25.768 1581.5 16.224 0.0950 

7 1347.2 56.154 1588.1 105.39 0.4860 

8 1376 10.366 1581.9 12.142 0.1716 

15 1351 61.662 1591.3 118.38 0.3794 

2 1352 67.432 1590.3 123.05 0.4906 

5 1351.3 62.642 1590.3 106.17 0.5513 

10 1351 60.338 1592 127.84 0.3154 

15 1350.2 70.504 1591.8 210.12 0.1243 

20 1350.5 55.224 1588.4 133.71 0.2736 

40 1351.1 55.319 1558.0 7.176 1.7532 
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Table D2:  The D and G band for nanocomposites synthesized by sol-gel at varying low 

MWCNTs wt.%  

wt.% 
D band G band ID

IG
 

Position  Width Position Width 

2 1350.3 54.763 1557 5.7904 0.0179 

10 1349.1 69.432 1586.9 145.97 0.3854 

15 1350 61.952 1588.4 184.10 0.1652 

5 1372.2 15.385 1802.5 183.03 0.0281 

10 1350.7 67.372 1586.9 150.02 0.2762 

20 1355.3 182.91 1585.4 118.77 2.1945 

2 1353.2 69.673 1583.6 129.44 0.3238 

10 1354.3 73.322 1583.6 129.44 0.1176 

0.5 1356.1 72.001 1587.4 149.62 0.2322 

40 1350.2 64.369 1588.3 122.24 0.4165 

50 1352.2 66.911 1588.6 171.06 0.1937 
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Table D3:  The D and G band for CVD synthesized nanocomposites with varying high 

MWCNTs wt.% 

wt.% 
D band G band ID

IG
 

Position  Width Position Width 

5 1351.2 61.911 1590.2 168.46 0.1942 

8 1348 63.670 1587 135.89 0.3173 

15 1351.0 64.41 1591.3 134.68 0.2589 

2 1348.9 59.43 1591.8 149.79 0.1989 

5 1352.7 103.95 1592.6 172.07 0.4413 

10 1352.2 64.56 1594.0 99.98 0.3605 

20 1349.7 63.704 1592.2 119.1 0.3705 

40 1350.1 67.65 1589.0 134.61 0.0020 

50 1349.5 65.81 1588.6 140.89 0.2654 
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Table D4:  The D and G band for CVD synthesized nanocomposites with varying low 

MWCNTs wt.% 

wt.% 
D band G band ID

IG
 

Position  Width Position Width 

2 1343 112.05 1597.0 66.26 0.7169 

5 1334.1 156.09 1593.3 73.40 1.6718 

12 1322.6 148.48 1602.2 53.73 1.8199 

4 1372.3 8.59 1796.2 226.93 0.0035 

2 1344.4 98.97 1582.1 184.52 1.2769 

5 1345 73.891 1596 67.474 0.3009 

10 1324.4 136.05 1599.8 66.997 1.1365 

15 1335.8 110.02 1599.8 66.451 0.3114 

20 1348.1 77.828 1600.9 57.418 0.1866 

0.5 1326.7 95.44 1603.9 53.579 0.8577 

50 1349.5 65.81 1588.6 140.89 0.2654 
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Appendix E 

Diffuse reflectance 
 

 

Figure E1: Representative diffuse reflectance for determination of cut off wavelength 
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Appendix F 

Current density-voltage curves 
 

 

Figure F1:  The representative J-V curve for CVD nanocomposite at 10 wt.% of MWCNTs 

 

 

Figure F2:  The representative J-V curve for sol-gel nanocomposite at 10 wt.% of MWCNTs 
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Appendix G 

TEM images 

 

Figure G1:  Representative images synthesised by CVD method at 20 wt.% of MWCNTs 

showing defects  

 

 

Figure G2:  Representative images synthesised by CVD method at 20 wt.% of MWCNTs 

showing two MWCNTs coated together to form a cluster 
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Appendix H 

FTIR spectra 

 

Figure H1:  Comparison of functional groups for (A) pristine MWCNTs, (B) acid-treated 

MWCNTs and (C) representative nanocomposites at high wt.% of MWCNT 


