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ABSTRACT 

 

Anthropogenic disturbance from urbanization has introduced a range of contaminants into 

freshwater ecosystems. Wastewater Treatment Works (WWTW) in particular, deposit 

effluent with high metal concentrations directly into rivers. These pollutants may affect river 

biota directly or through modifications to habitat and prey. Therefore, the impact of metal 

pollution through a food chain should be evident in high trophic level predators such as 

Neoromicia nana. N. nana is a small, insect-eating bat that occurs in forest and riparian 

habitats in Africa. Most importantly, it is an urban exploiter, i.e. a species that takes 

advantage of anthropogenic food and habitat resources. I investigated the foraging behaviour 

and metal content of N. nana at wastewater-polluted sites (WWTW sludge tanks and sites 

downstream of wastewater discharge into the rivers) and unpolluted sites (sites upstream of 

wastewater discharge) at three urban rivers in Durban, South Africa, during winter and 

summer. To assess water quality, I determined cadmium, copper, chromium, iron, nickel, 

zinc and lead concentrations using Inductively Coupled Plasma Optical Emission 

Spectrometry (ICP-OES). To investigate the foraging behaviour of N. nana, I quantified 

relative N. nana abundance, and feeding activity from recorded echolocation calls. Using 

ICP-OES, I quantified metal concentrations in three tissues (liver, kidney and muscle). My 

results show that concentrations of most metals were generally lowest upstream, intermediate 

at downstream sites and highest at the tanks. The relative abundance and feeding activity of 

N. nana were significantly higher at wastewater-polluted sites than at upstream sites, despite 

there being significantly more insect orders upstream. However, pollution-tolerant 

Chironomidae (Diptera), were significantly more abundant at wastewater-polluted sites. 

Indeed, at wastewater-polluted sites, Diptera represented the highest percentage of insects in 

the diet of N. nana. Essential metals (copper, zinc and iron) were detected in all tissue 

samples of N. nana. In contrast, the toxic metals cadmium, chromium and nickel were 

present in tissue of bats only at wastewater-polluted sites (except one upstream occurrence of 

cadmium). This suggests that these metals may accumulate in tissue through the ingestion of 

pollutant-exposed prey. Thus, metal pollution from WWTWs affects not only water quality 

of rivers, but also the diversity of resident aquatic insects and ultimately the ecology of N. 

nana populations, which may pose serious long-term health risks for these top predators. 
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CHAPTER 1: INTRODUCTION 

THE EFFECT OF WASTEWATER POLLUTION ON A HIGH 

TROPHIC LEVEL PREDATOR AND ITS PREY AT RIVERS 

 

1.1. Background 

 

The global expansion of cities is increasing rapidly, with large areas of natural land being 

transformed into urbanized landscapes (McKinney, 2006). It is projected that the majority of 

this urbanization will occur in coastal countries such as South Africa, where anthropogenic 

stress on the environment is already widespread (McKinney, 2006). To cater for the growing 

human populations, industrial development and services are increased. However, this 

development creates serious habitat alteration, which impacts on both the environment and its 

resident wildlife. The physical manipulation of the landscape by anthropogenic activities such 

as fragmentation has had predominantly negative impacts on the resident fauna and flora 

(Schmiegelow & Monkkonen, 2002).  

 

In addition to the physical land-transformation, a chief anthropogenic disturbance to the urban 

environment is pollution. River pollution is currently a major problem, and there has been a 

recent influx of data highlighting the poor state of South African rivers in urban areas 

(eThekwini Municipality State of the Rivers Report, 2007). The rapid rate of urbanization in 

South Africa has resulted in the introduction of a range of contaminants into freshwater 

ecosystems (Gleick, 1998). Increased industrial development produces inorganic and organic 

pollutants, such as chemical runoff from textile factories and sewage effluent that are 

deposited directly into rivers (Sacks & Buckley, 1998).  

 

These pollutants often have an adverse effect on biodiversity (Nedeau et al., 2003; Azrina et 

al., 2006; Vörösmarty et al., 2010). They may have a direct effect on organisms or may 

influence them through modifications to the habitat or prey. Within the previous century, the 

species diversity of aquatic invertebrates (Williams et al., 2003) and aquatic vertebrates (Reash 

& Berra, 1987) has decreased significantly in polluted rivers. For instance, the global diversity 
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of non-marine mollusks has been steadily decreasing, with 708 freshwater mollusc species 

included in the 2002 IUCN Red List of Threatened Species (Lydeard et al., 2004). Vertebrates 

such as the African bullfrog (Pyxicephalus adspersus), have shown a rapid decline in numbers 

in urban reserves in South Africa (Oberholster et al., 2008). This is due to developmental and 

behavioural abnormalities resulting from anthropogenic water pollution (Bridges & Semlitsch, 

2000). Furthermore, industrial and pharmaceutical substances containing xenobiotic chemicals 

such as endocrine disrupting chemicals (EDCs) are found in specific pollution sources such as 

wastewater (Fossi et al., 2002). These may have serious negative effects on the reproductive, 

endocrine and immune systems of pollutant exposed organisms (Fossi et al., 2002).   

 

Wastewater treatment works (WWTWs) provide an ideal model to investigate the toxic effect 

of river pollution on exposed organisms. They are ubiquitous in urban landscapes and are 

constantly in operation. Wastewater treatment works are an essential service, linked to 

urbanization and the concentration of human populations associated with it. They also have a 

precise point of effluent discharge into the river, allowing for a clear partitioning of sites 

receiving or not receiving wastewater. Furthermore, the type of pollution can be assessed 

from identifying wastewater constituents (Leland et al., 1974).  

 

Wastewater effluent contains both industrial and domestic input including solids, pathogens 

and organic and inorganic pollutants (Gagnon & Saulnier, 2003).  Various types of 

operational practices are employed by wastewater treatment plants to treat waste effluent. 

Conventional operational practices such as the screening and spraying of wastewater onto 

percolating filter beds have been largely replaced by more recently designed systems 

(Govender, 2002). The system most often used in South Africa is the process of activated 

sludge, because it is able to cater for larger populations and requires small land space 

(Govender, 2002). Domestic and industrial waste influent received by treatment plants 

employing this system, undergoes an aerobic biological process whereby wastewater is 

degraded using microbial communities (Lalbahadur, 2005). The wastewater is treated in 

aeration and settling tanks. It is then chlorinated to remove pathogenic organisms before 

being discharged into rivers (Jackson et al., 2002). However, the sludge produced in the tanks 

used for this process contains high levels of metals (Govender, 2002; Braum, 2004). These 

metals, including lead (Pb), cadmium (Cd), chromium (Cr) and nickel (Ni), are particularly 

toxic to living organisms when ingested in large quantities or over a long period of time 
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(Andres et al., 2000). The processes used to treat wastewater focus on the removal of solids, 

nutrients and pathogenic bacteria, often neglecting the treatment of metals (Gagnon & 

Saulnier, 2003).  

 

In addition to the metals in the wastewater sludge, are large amounts of organic waste. High 

input from nutrients such as nitrogen (N) and phosphorous (P) compounds, promote 

eutrophication where elevated quantities of organic matter are produced (Yount & Crossman, 

1970). Pollution-tolerant insects often thrive in eutrophied waters (Yount & Crossman, 1970). 

Consequently, pollution-tolerant insects such as the family of aquatic flies known as the 

chironomid midges, often occur at a high density at artificial tanks containing wastewater 

(Broza et al., 2003). The growth rate of chironomids is rapid, with a quick generation 

turnover, ensuring constant availability to the ecosystem (Menzie, 1981). Although 

chironomid larvae are found in sediment, the chironomid life cycle is dominated by the adult 

stage which is spent on and above the water surface (Ristola, 2000). Chironomid midges are 

capable of enduring polluted environments (Postma et al. 1995). Because they are strongly 

associated with polluted water, chironomids have long been used as indicators of poor water 

quality (Chutter, 1972). They are generally more abundant at sites located downstream of 

sewage discharge points than at sites located upstream of the effluent discharge into rivers 

(Abbott et al., 2009). 

 

 In the wastewater, particulate matter upon which the midges feed contains metal toxicants 

(Stuijfzand et al., 2000). Midges, amongst few other insect groups, are able to accumulate 

metals without being affected (Groenendijk et al., 1998). Calculated bioconcentration ratios 

indicate that metal pollutants bioaccumulate in even higher concentrations in the predators of 

the affected insects (Hsu et al., 2006). Unable to undergo metabolism, most metallic elements 

that are not excreted, become stored in the body (Fritsch et al., 2010). In turn, the physiology 

and anatomy of the organism may be negatively impacted (Walker, 1998). For instance, the 

great tit (Parus major) is an insectivorous predator, which has shown marked impairment in 

breeding success of populations in Finland as a result of metal exposure (Eeva et al., 2009). 

Decreased clutch size and hatching success of P. major populations were evident in a polluted 

area when compared to unexposed populations (Eeva et al., 2009). In addition to the well 

established negative effects of metal pollution observed in predatory bird species, metal 
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concentrations measured in small mammal species also indicate that metal exposure can have 

acute or chronic effects on mammalian health (Fritsch et al., 2010).  

 

Bats are top mammalian predators of many ecosystems. In addition, bats are excellent 

indicators of habitat quality (Jones et al., 2009). This is because the life history characteristics 

of bats render them vulnerable to environmental changes (Kunz, 1982; Walsh & Harris, 

1996). The long life span of bats is especially important because the accumulation of certain 

metals is specifically associated with age (Walker et al., 2002). In addition, the slow 

reproductive rate of bats allows for clear trends of population decline or increase to be 

elucidated (Jones et al., 2009). Rivers are important foraging habitats for numerous bat 

species (Racey et al., 1998; Warren et al., 2000). Insect-eating bats may be particularly 

vulnerable to water pollution because riparian vegetation and the emergent aquatic insects 

upon which bats feed are in direct contact with the polluted water (Walsh & Harris, 1996).  

 

Kalcounis-Rueppell et al. (2007) compared the abundance and feeding rates of insectivorous 

bats at sites upstream and downstream of a sewage output in North Carolina, USA. The 

abundance and foraging activity of Eptesicus fuscus was lower downstream than upstream of 

the sewage discharge point. However, Perimyotis subflavus, a species that specializes in 

riparian habitats (Ford et al., 2005), was more abundant and fed more extensively at 

downstream sites (Kalcounis-Rueppell et al., 2007). Thus, poor water quality does not affect 

all bat species negatively. Some bat species may in fact, in the short term, benefit from the 

proliferation of prey insects in polluted water. Vaughan et al. (1996) also investigated 

differences in bat activity above and below sewage outputs and found that while certain 

species such as Pipistrellus pipistrellus were most active upstream of a pollution source; 

others such as Myotis species concentrated their feeding activity downstream of the pollution 

source. In addition, Racey et al. (1998) compared two rivers with differing water qualities and 

established that a river with inferior water quality could support bat activity and insect density 

as great as a healthy river. Most studies on the impacts of wastewater pollution on bats have 

been undertaken in Europe and the USA.  

 

Studies in southern Africa have only recently begun to elucidate these effects (Naidoo et al., 

in press). Abundance and species richness of insectivorous bats was higher at a polluted river 

than at an unpolluted river in Durban, South Africa (Naidoo et al., in press). Furthermore, bat 
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species composition and phenotypic structure differed between the polluted and the 

unpolluted river (Schoeman & Waddington, in press). The majority (approximately 41%) of 

bats recorded at the polluted river was represented by Neoromicia nana. N. nana is generally 

known as the banana bat because it typically roosts in rolled-up banana leaves (LaVal & 

LaVal, 1977). It is a small (3 - 4 grams), insect-eating bat that commonly occurs in forest and 

riparian habitats throughout sub-Saharan Africa (Monadjem et al., 2010). Most importantly, 

N. nana is an urban exploiter; i.e. a species that takes advantage of food or habitat resources 

provided by humans (Jung & Kalko, 2011).  The small size and the fact that it is an urban 

exploiter suggest that N. nana would exploit the increased availability of small chironomid 

midges at sewage-polluted sites. Furthermore, chironomid activity is at its peak during the 

early evening (Broza et al., 2003), which correlates with the foraging period of N. nana. The 

toxic effects of pollution should thus be evident in N. nana, making this species an ideal 

model predator to assess the impact of wastewater pollutants through a food chain. 

 

 

1.2. Outline of thesis 

 

The main purpose of this study is to compare foraging behaviour and the metal content in 

tissues of Neoromicia nana at sites polluted and unpolluted by wastewater effluent. I 

investigate biotic and abiotic components of the ecosystem that are closely associated with 

bat activity and are also affected by wastewater pollution. In obtaining an overall 

representation of the risk of wastewater impact on N. nana, I ask the following questions and 

test the following predictions: 

 

1. Do concentrations of wastewater-associated metals (copper, chromium, iron, nickel, zinc, 

lead and cadmium) differ between water samples collected at sites upstream of the point of 

wastewater effluent discharge into the rivers, at sludge tanks of WWTWs and at sites 

downstream of the point of wastewater effluent discharge into rivers (Chapter 2)? This 

provides a measure of water quality at the sites where foraging behaviour of N. nana was 

investigated. 
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2. How does wastewater pollution affect the foraging ecology of N. nana populations 

(Chapter 3)? I predicted that the relative abundance and feeding activity of N. nana would be 

higher at wastewater-polluted sites (sludge tank and downstream sites) than at sites situated 

upstream of the wastewater pollution, as a result of the high abundance of the pollution-

tolerant chironomid midges specifically associated with wastewater and eutrophication 

(Marques et al., 1999). If so, I further predicted that there would be a significant correlation 

between the abundance of pollution-tolerant insects at wastewater-polluted sites and in the 

diet of N. nana at the sites.  

 

3. What is the risk associated with foraging at wastewater-polluted rivers for N. nana 

(Chapter 4)? To investigate this, I quantified concentrations of the wastewater-associated 

metals (see Chapter 2) in the kidney, liver and muscle tissue of N. nana at sites unpolluted 

and polluted by wastewater. I predicted that metal concentrations in N. nana tissue would 

correlate with the metal concentrations in the water at the sites. 

 

Finally, in Chapter 5 I synthesize the conclusions of the previous chapters, specifically within 

the framework of the main aims of the research. Factors contributing to differences in the 

foraging behaviour of N. nana at sites polluted and unpolluted by wastewater effluent, and the 

potential health and population effects in pollutant exposed N. nana are discussed. 

Implications of wastewater pollution for bat communities and river ecosystems are explored. 

To conclude, recommendations for future studies are made. 
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CHAPTER 2: 

METAL CONTENT AS AN INDICATION OF WATER QUALITY 

IN RIVERS POLLUTED BY WASTEWATER EFFLUENT 

 

2.1. Summary 

 

Wastewater effluent, which contains pollutants from domestic and industrial waste, is treated 

at WWTWs and then directly deposited at a discharge point into the river. Metals are not easily 

degraded and thus remain in the treated and discharged effluent, becoming toxic at elevated 

concentrations. Organisms, including insects upon which N. nana feeds, are exposed to the 

metals in the water, and in turn may cause elevated metal concentrations in these 

animalivorous bats. To obtain a measure of water quality and later evaluate possible health 

risks for N. nana, I used Inductively Coupled Plasma Optical Emission Spectrometry (ICP-

OES) to determine cadmium, copper, chromium, iron, nickel, zinc and lead concentrations at 

sites upstream of the point of wastewater effluent discharge into the rivers, at sludge tanks 

within the WWTWs, and at sites downstream of the point of wastewater effluent discharge 

into each of three rivers (Mdloti River, Little Amanzimtoti River, Umbilo River) selected in 

Durban, South Africa. 

Concentrations of all metals tested at the Umbilo and Mdloti Rivers (Cu, Cr, Fe, Ni, Zn and 

Pb), and four of the six metals tested at the Little Amanzimtoti River (Cr, Ni, Zn and Pb), were 

highest at the tank sites. Nearly 80% of the ANOVAs performed were significant, with post-

hoc tests showing differences between sites, for all metals except Ni and Pb. Fe was the metal 

with the highest content at all rivers, and Pb/ Cr were the lowest. Metal concentrations at the 

downstream sites were generally higher than at upstream sites, although a few of the metals 

were higher upstream. This may be the result of illegal waste discharge into the rivers, and 

other external factors such as use by residents of informal settlements. The point source 

pollution of WWTWs is evidently the most significant contributor of contaminants into the 

rivers. Furthermore, most of the metals are in excess of the Target Water Quality Range 

(TWQR) set for the aquatic ecosystem. Thus, predators such as N. nana, foraging at the tanks, 

may be at a higher health risk than those foraging at other points along rivers.  
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2.2. Introduction 

 

Although rivers comprise a small quantity of the biosphere‟s stored water, they serve an 

invaluable function in the preservation of life on earth (Allan & Flecker, 1993). Rivers provide 

physical, geological, chemical, hydrological and biological functions. For example, the 

flowing water of rivers is a key component to the water cycle and to the global movement of 

nutrients and minerals. In addition, river ecosystems support unique and diverse biotic 

communities and in turn affect the surrounding terrestrial life (Pompeu & Alves, 2005). While 

rivers are vital to the functioning of the natural world, they also provide important services 

such as agriculture, recreation, waste removal and renewable energy to mankind. 

Anthropogenic activities, however, have resulted in modifications which often cause major 

degradation to the functions of rivers (Paul & Meyer, 2001). 

 

Wastewater pollution in particular is a major cause of river degradation. Industrial, business, 

drainage and domestic waste sent to wastewater treatment works (WWTWs) contain solids, 

pathogens and organic and inorganic pollutants (Gagnon & Saulnier, 2003). After treatment, 

the effluent is deposited at a discharge point into the river, ultimately going to marine outfalls. 

Organic material in the effluent is considerably reduced by chemical processes during 

treatment. However, metals are not biologically degradable (Moeletsi et al., 2004), and 

different metals may be toxic at varying concentrations (Newman & Unger, 2003). The term 

„toxic‟ can be defined as natural or synthetic chemical substances that have adverse effects on 

living organisms (DWAF, 1996). There are more than twenty metals classified as toxic, many 

of which contribute significantly to the pollution of river water (Nomanbhay & Palanisamy, 

2005). Waste effluent from industries such as tanneries, electronics, electroplating, 

petrochemical, textile mills, paint/ alloy/ plastic manufacturers; and iron producers are some 

of the main sources of metals sent to WWTWs (DWAF, 1996; Chuah et al., 2005). 

 

The most toxic metals found in WWTW effluent are lead (Pb) and cadmium (Cd) 

(Kazemipour et al., 2008). These metals are known as non-essential elements, because they 

are not required for biological functioning. Cd has strong carcinogenic properties, and Pb may 

induce neurological dysfunction with chronic exposure (Newman & Unger, 2003). Due to 

their high toxicity, the concentrations of these metals should be low in river water according 
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to the standards stipulated by the South African Water Quality Guidelines for Aquatic 

Ecosystems (DWAF, 1996). However, an evaluation of a South African river (the Umtata 

River in the Eastern Cape) found that both Cd and Pb concentrations exceeded permissible 

amounts by ±100 fold (Fatoki et al., 2002). In freshwater, both Pb and Cd often exist as free 

ions and are therefore readily assimilated by aquatic organisms (DWAF, 1996).   

 

Chromium (Cr) and nickel (Ni) are also non-essential metals which occur in wastewater. Cr, 

like other metals, occurs in several forms, each with a different degree of toxicity (DWAF, 

1996). One broad effect of Cr is that it may temporarily reduce growth in young fish (DWAF, 

1996), whereas high concentrations of Ni are both toxic and carcinogenic (Newman & Unger, 

2003). The other metals most commonly occurring in wastewater, including copper (Cu), zinc 

(Zn) and iron (Fe), are essential to the biological functioning of organisms. However, they are 

potentially hazardous in highly elevated concentrations (Moeletsi et al., 2004), causing for 

example, acute or chronic physiological effects such as neurotoxicity (Du & Wang, 2009) and 

decreased reproductive success (Eeva et al., 2009) in exposed organisms.  

 

Metals released into rivers can exist in solution as free cations (Newman & Unger, 2003), 

become adsorbed onto the sediment and/or by plants in the water (Wang et al., 2003), or get 

taken up by aquatic and semi-aquatic insects and other organisms living in or near the water 

(Rainbow, 2002).Ultimately these metal particles may end up in the bodies of higher predators 

(Hsu et al., 2006). For example, metal induced damage in the organs of aquatic predators such 

as fish often correspond to a high metal content in the surrounding water (Cerqueira & 

Fernandes, 2002; Grosell et al., 2003; van Heerden et al., 2004; van Heerden et al., 2006). 

Terrestrial predators such as animalivorous bats can also be affected by metal pollution in 

rivers by, for example, drinking water from rivers, and feeding on large quantities of river-

dwelling insects (Walker et al., 2007). It is thus through the food chain that metal 

concentrations magnify from river water to predators (Vickerman & Trumble, 2003).  

 

The aim of this chapter was to measure the water quality of three urban rivers in Durban, 

South Africa that are used by Neoromicia nana, by quantifying metals (cadmium, copper, 

chromium, iron, nickel, zinc, and lead) commonly found in wastewater, at sites upstream of 

the point of wastewater effluent discharge, at the sludge tanks of WWTWs, and at sites 
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downstream of the point of wastewater effluent discharge. I predicted that metal 

concentrations would be lowest at upstream sites and highest at sludge tanks.  

 
 
 

2.3 Methods 

 

2.3.1. Study area 

 
The study was conducted in the urban landscape of Durban, South Africa (S29°58'; E30°57'). 

There are approximately 32 WWTWs which operate within the Durban Metropolitan 

(CEROI, 1999). These WWTWs collectively receive over 400 million litres of domestic and 

industrial waste per day (CEROI, 1999). The discharge volume of the waste effluent to rivers 

is high, amounting to an average of 220 million litres per day (eThekwini Municipality State 

of the Rivers Report, 2007). Three rivers which receive effluent from WWTWs that use the 

activated sludge tank system were selected: the Mdloti River (DWAF, 2009), the Little 

Amanzimtoti River (Naidoo et al., 2002) and the Umbilo River (Lacko et al., 1999) (Fig. 1). 

The WWTWs included the Verulam Wastewater Works (S29º38.38; E31º03.49) situated on 

the Mdloti River, the Kingsburgh Wastewater Works (S30º04.29; E30º51.26) situated on the 

Little Amanzimtoti River and the Umbilo Wastewater Works (S29º50.44; E30º53.31) situated 

on the Umbilo River. Domestic and industrial waste influent received by these treatment 

plants undergoes an aerobic biological process whereby wastewater is degraded using 

microbial communities (Lalbahadur, 2005). The wastewater is treated in aeration and settling 

tanks. It is then chlorinated to remove pathogenic organisms before being discharged into the 

rivers (Jackson et al., 2002).  

 

The Verulam Wastewater Works is located in the northern region of Durban, the Kingsburgh 

Wastewater Works in the southern region, and the Umbilo Wastewater Works centrally (Fig. 

1). Upstream and downstream sites at each river had similar abiotic and biotic features 

including water flow rate, width between banks (range 3 - 9 m), water surface clutter 

(Biscardi et al., 2007), and riparian vegetation (visual assessment). The distance between sites 

and the distance from outflow point were also similar among the rivers. 
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Fig. 1. Map of the study area in Durban, South Africa showing the location of the Verulam, 

Kingsburgh and Umbilo Wastewater Works on the Mdloti, Little Amanzimtoti and Umbilo 

Rivers respectively. 

 

2.3.2. Collection and preparation of samples 

 
Water samples were collected in 500 ml plastic collection bottles at sites upstream of the point 

of wastewater effluent discharge, at the sludge tanks of WWTWs, and at sites downstream of 
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the point of wastewater effluent discharge. At each site, water was collected at sunset to 

correspond with the feeding emergence times of bats, on consecutive days in January 2010, 

between the summer and winter bat/ insect sampling periods (Chapter 3). Three replicates 

were taken at each of the nine sites, resulting in a total of 27 samples. To minimize the 

possibility of contamination and eradicate bacterial growth, the 500 ml plastic bottles were 

soaked overnight in a 10% acid wash (distilled water and HNO3), and then washed in distilled 

water. They were then prepared for sample collection with 2 ml 65% concentrated nitric acid 

(Jackson et al., 2007). At each site, water was collected just below the surface. After allowing 

for overnight nitric acid digestion, the samples were filtered through Advantec GA - 55 (47 

mm) glass fiber filter membranes on a filtration pump, to remove particulates. Ten ml of the 

filtered water was refrigerated until analysis for metal content.  

 

 

2.3.3. Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) 

 
Metal content was determined using ICP-OES. This method includes the following 

components: a sample introduction system, ICP torch, high frequency generator, transfer 

optics, and spectrometer and computer interface (Halday, 2007). A metal solution of 5 mg/L 

concentration was prepared using cadmium (Cd), copper (Cu), chromium (Cr), iron (Fe), 

nickel (Ni), zinc (Zn) and lead (Pb). This was further diluted with double distilled water to 

produce calibration standards of the following concentrations: 1 mg/L; 0.5 mg/L; 0.25 mg/L; 

0.1 mg/L; 0.05 mg/L and 0.01 mg/L. The accuracy of the calibration standards were tested 

using the „automated analysis control‟ function on WinLab32 ICP Continuous software 

(Perkin Elmer, USA). Baseline calibration curves were set for each metal (Table 1) to create a 

reference wavelength at which metal content is determined in each sample. An ICP-OES 

(Perkin Elmer, Optima 5300 DV) was then used to measure the content of each metal in the 

samples. 

 

Although mercury (Hg) is also a toxic metal which is of major concern as a pollutant in rivers 

(Moeletsi et al., 2004), it was not included in the suite of metals (Cd, Cu, Cr, Fe, Ni, Zn and 

Pb) tested at the rivers in this study. This is because Hg is a hydride and detection therefore 
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requires specialized equipment, i.e. a cold vapor system, which is not commonly available 

(Henry & Miles, 2001).  

 
Table 1. Baseline wavelengths (nm) selected for individual elements.  Samples were analysed 

for copper (Cu), chromium (Cr), iron (Fe), nickel (Ni), zinc (Zn) and lead (Pb).  Cadmium was 

excluded from the analysis because concentrations were below the detection limit of ICP-OES. 

Element Baseline wavelength (nm) 

Cu 327.393 

Cr 267.716 

Fe 238.204 

Ni 231.604 

Zn 206.200 

Pb 220.353 

Cd Excluded (Values below detection limit) 

 

 

2.3.4. Target water quality range (TWQR) index 

 
South African Water Quality Guidelines (SAWQG) specify target concentrations of metals for 

different water uses. For aquatic ecosystems, the Target Water Quality Range (TWQR) is not a 

water quality criterion, but rather a management objective (DWAF, 1996). In the current study 

a metal concentration index (I) was calculated as (I) = measured water metal concentration/ 

TWQR (Table 3). Where (I) ≤ 1, the metal content measured at the site complies with the 

TWQR. Where (I) > 1, the metal content measured at the site exceeds the TWQR. 

 

 

2.3.5. Statistical analysis  

 
One-way ANOVAs were used to compare differences between upstream, tank and 

downstream sites for each of the metals at the rivers. Assumptions of normality and equality of 

variance for the metal content data were tested using a 1-sample Kolmogorov-Smirnov Test 
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and a Levene‟s Test, respectively. The assumptions were satisfied for all metals at each of the 

three rivers. Tukey HSD post-hoc tests were performed on significant ANOVAs. All results 

were reported as means ±standard deviation. 

 

 

2.4. Results 

 

2.4.1. Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) 

 

The concentrations of Cr, Cu, Fe, Ni and Zn were significantly different between upstream, 

tank and downstream sites at the Umbilo River (all P < 0.05, Table 2, Fig. 2). There were 

significant differences between upstream and tank, tank and downstream, and upstream and 

downstream sites for all metals except Cu and Fe (Table 2). There were no significant 

differences between the downstream and tank sites for Cu, and between the downstream and 

upstream sites for Fe. Although there was no significant difference between the sites for Pb, 

the concentration of this metal was higher at the tanks than at the upstream or downstream 

sites. The concentrations of the rest of the metals were generally lowest at the upstream site, 

intermediate at the downstream site and highest at the tank site (Fig. 2). The metals occurred in 

the following order of descending concentration at the Umbilo River: Fe > Zn > Cr > Ni > Cu 

> Pb. 

 

At the Little Amanzimtoti River; Cr, Cu, Fe, Zn and Pb (i.e. all metals except Ni) 

concentrations were significantly different between upstream, tank and downstream sites (all P 

< 0.05, Table 2, Fig. 3). With the exception of Cu and Fe, there were significant differences 

between upstream and tank, and tank and downstream sites for all metals (Table 2). The 

concentration of Ni at the Little Amanzimtoti River was higher at the tanks than at the 

upstream or downstream sites, albeit not statistically significant. The concentrations of the 

other metals were similar at upstream and downstream sites and highest at the tank sites (Fig. 

3), with the exception of Cu and Fe, which had the highest concentrations at the upstream site. 

The metals at the Little Amanzimtoti River occurred in the following order of descending 

concentration: Fe > Zn > Cu > Ni > Pb > Cr. 
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There was a significant difference between upstream, tank and downstream sites at the Mdloti River 

for Fe, Zn, Cu and Cr (all P < 0.05, Table 2, Fig. 4). Tukey HSD post-hoc tests revealed that there 

were no significant differences between the upstream and downstream sites, except for Fe. 

However, there were numerous significant differences between the tanks and upstream sites, and 

the tanks and downstream sites, with metals having the highest concentration at the tank site (Fig. 

4). Cr, Cu, Ni and Fe were higher upstream than downstream.  The metals occurred in the following 

order of descending concentration at the Mdloti River: Fe > Zn > Cu > Ni > Cr > Pb. 

 

 

(a) 

 

 

Fig. 2. Means (±std error) concentrations (mg/L) of chromium (Cr), copper (Cu), iron (Fe), 

nickel (Ni) and lead (Pb) at upstream, tank and downstream sites at the Umbilo River. 
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(b) 

 

Fig. 3. Means (±std error) concentrations (mg/L) of chromium (Cr), copper (Cu), iron (Fe), nickel 

(Ni) and lead (Pb) at upstream, tank and downstream sites at the Little Amanzimtoti River. 
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(c)   

 

 

 

Fig. 4. Means (±std error) concentrations (mg/L) of chromium (Cr), copper (Cu), iron (Fe), 

nickel (Ni) and lead (Pb) at upstream, tank and downstream sites at the Mdloti River.  
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Table 2. Results of one-way ANOVAs (n = 9 per metal) and significant Tukey HSD post- hoc 

tests between upstream (U), tank (T) and downstream (D) sites, for metals tested at the 

Umbilo, Little Amanzimtoti and Mdloti Rivers. (* indicates significance at the P < 0.05 level) 

Metals One-Way ANOVA Significant differences based 

on Tukey post-hoc tests 

UMBILO  
  

Cr F = 136.8; *P < 0.0005 D < T; D > U; U < T 

Cu F = 20.7; *P = 0.002 D > U; U < T 

Fe F = 20.6;*P = 0.002 D < T; U < T 

Ni F = 948.3; *P < 0.0005 D < T; D > U; U < T 

Zn F = 79.2; *P < 0.0005 D < T; D > U; U < T 

Pb F = 0.37; P = 0.708 - 

LITTLE AMANZIMTOTI   
Cr F= 48.8; *P < 0.0005 D < T; U < T 

Cu F = 16.9; *P = 0.003 D < T; D < U 

Fe F = 72.4; *P < 0.0005 D < U; U > T 

Ni F = 3.1; P = 0.121 - 

Zn F = 6.9; *P = 0.028 D < T; U < T 

Pb F = 9.5; *P = 0.014 D < T; U < T 

MDLOTI   
Cr F = 1669.9; *P < 0.0005 D < T; U < T 

Cu F = 100.8; *P < 0.0005 D < T; U < T 

Fe F = 545.7; *P < 0.0005 D < T;  D < U; U < T 

Ni F = 99.1; *P  < 0.0005 D < T; U < T 

Zn F = 120.3; *P < 0.0005 D < T; U < T 

Pb F = 3.5; P > 0.05 - 
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2.4.2. Target water quality range (TWQR) index 

 
For Cr, Cu, Zn and Pb (that have available TWQR values), I > 1 for all except Cr, at the three 

rivers, i.e. this indicates that the concentrations of the metals at the sites exceeded the TWQR 

stipulated. Compliance with TWQR was generally closer at upstream sites, whereas the metal 

concentration index at all tank sites were much higher than the TWQR. 

 

Table 3. TWQR and concentration index (I) for Cr, Cu, Zn and Pb concentrations of upstream 

(U), tank (T) and downstream (D) sites at the Umbilo, Little Amanzimtoti and Mdloti rivers. If 

(I) ≤ 1, metal content at site complies with TWQR; If (I) > 1, metal content at site exceeds 

TWQR (indicated in bold). 

 

Metal TWQR 

(mg/L) 

UMBILO (I) LITTLE AMAN. (I) MDLOTI (I) 

U T D U T D U T D 

 

Cr 0.95 30.38 24.19 0.57 4.57 0.43 0.62 6.00 0.38 0.95 

Cu 68.89 292.22 192.22 82.22 58.89 11.11 127.78 571.11 108.89 68.89 

Fe - - - - - - - - - - 

Ni - - - - - - - - - - 

Zn 64.33 192.67 152.00 65.33 121.67 69.83 57.00 314.50 82.67 64.33 

Pb 85.00 101.67 71.67 53.33 93.33 58.33 56.67 86.67 56.67 85.00 

 
-  indicates that TWQR has not yet been set. 

 
 

 

2.5. Discussion 

 

In this chapter I compared the concentrations of individual metals (copper, lead, zinc, nickel, 

chromium and iron), at sites upstream of the point of wastewater effluent discharge into the 

rivers, at sludge tanks and at sites downstream of the point of wastewater effluent discharge at 

three rivers. I predicted that metal concentrations would be lowest at upstream sites and 
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highest at tank sites, based on industrial input of metals into WWTW effluent. My results were 

partially consistent with this prediction: the concentrations of all metals tested at the Umbilo 

and Mdloti Rivers (Cr, Cu, Fe, Ni, Zn and Pb), and four of the six metals tested at the Little 

Amanzimtoti River (Cr, Ni, Zn and Pb), were highest at the tank sites. Tukey HSD post-hoc 

tests showed significant differences between the upstream and tank sites for fourteen of the 

fifteen significant ANOVAs obtained. Similarly, metal content measured in industrial effluent 

at the Potsdam WWTW in Cape Town, South Africa, was higher than the metal content in the 

treated effluent for discharge into the river (Halday, 2007). In another study, which determined 

the occurrence of metals (including the six tested in the current study), along a Turkish river 

receiving wastewater effluent, metal concentrations were also higher at the WWTW than 

downstream metal concentrations (Ustun, 2009).  

 

Cr, Cu, Fe, Ni, Zn and Pb are frequently produced from industrial activities (Chipasa, 2003; 

Gagnon et al., 2009). Among the metals tested, Fe and Zn concentrations were highest at the 

three rivers. This is a general trend for metals in wastewater, and has been reported in other 

studies (Chipasa, 2003; Karvelas et al., 2003). Although Fe is deposited in habitats naturally 

from weathering processes (DWAF, 1996), it is anthropogenic sources that contribute to the 

excess concentrations of Fe in rivers (Gerzau et al., 2003). Fe is used in the chlor-alkali, 

household chemical, fungicide, and petro-chemical industries (DWAF, 1996). Fe is an 

essential metal for living organisms, and has a limited bio-availability (fraction of the total 

metal concentration that may be taken up by an organism) (Van Leeuwen et al., 2005). 

Nevertheless, at extremely elevated concentrations Fe is toxic to organisms. Zn, which is also 

an essential metal, is used widely in industry. Industrial sources of Zn include the galvanizing 

of metal and the manufacturing of dyes, pigments (paints and cosmetics), pharmaceuticals, 

fertilizers and insecticides (DWAF, 1996). Although Zn is essential for biological functioning, 

it can also be toxic to aquatic organisms (DWAF, 1996).  

 

In general, Fe and Zn are the most abundant metals in wastewater, followed by Cu and Ni 

(Karvelas et al., 2003). This was found at the Mdloti River and the Little Amanzimtoti River. 

At the Umbilo River, however, Cr concentrations were higher than Cu, suggesting an 

additional source of Cr at the Umbilo WWTW. Copper is a metal which occurs naturally from 

weathering processes, but is also extensively used in iron and steel producing industries, and as 

a component of algicides, fungicides and pesticides (DWAF, 1996). Despite its natural 
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occurrence, Cu may become toxic when in excess concentrations (Gaetke & Chow, 2003), and 

is thus regarded as potentially hazardous by the United States Environmental Protection 

Agency (USEPA) (DWAF, 1996). Ni is used in welding, electroplating and electroforming. In 

addition, Ni is used to manufacture products such as nickel-cadmium batteries, electronic 

equipment, tools, machinery, armaments, jewellery and appliances (Denkhaus & Salnikow, 

2002).  

 

Metals generally found in the lowest concentrations in wastewater are Pb, Cr and Cd, 

respectively (Karvelas et al., 2003). Cd concentrations were below the detection limit and thus 

excluded from the analyses. Pb concentrations were the lowest of all metals tested at the rivers 

except at the Little Amanzimtoti River, where Cu concentration was lowest. Pb is produced 

from the mining, smelting and refining of lead and other metals (Hoffman et al., 2001). 

Despite the low concentrations at which Pb was measured, it was still much higher than the 

TWQR. Pb is a non-essential metal and can therefore have detrimental effects on organisms 

even at the lowest concentrations (Hoffman et al., 2001). The TWQR is thus particularly low 

for Pb due to this high toxicity to life (DWAF, 1996). The TWQR is merely a guideline for the 

management of freshwater ecosystems (DWAF, 1996). This may play a strong role in the 

influence of WWTWs to not adhere strictly to the metal concentrations stipulated in the South 

African Water Quality Guidelines. More than 80% of all sites exceeded TWQRs, with just Cr 

at upstream sites and two downstream sites in compliance. The fact that the concentrations of 

metals at downstream sites were still above TWQR concentrations suggests that the removal of 

metals from the wastewater effluent was not efficient. 

 

I found evidence for the prediction that metal concentrations at the upstream sites would be 

lowest. However, Pb at the Umbilo River, Cr at the Little Amanzimtoti River, and Cr, Cu, Fe 

and Ni at the Mdloti River had upstream concentrations that were higher than those at the 

downstream sites, but lower than at the tank sites. Furthermore, at the Little Amanzimtoti 

River, upstream Cu and Fe concentrations were much higher than those at both downstream 

and tank sites. It is possible that these metal concentrations were lower downstream because 

conditions there were more suitable for metal particles to settle into the sediment (Rondeau et 

al., 2000). Higher concentrations of nutrient input from WWTW effluent results in the 

presence of particulate matter in the water. This biomass often binds easily to free ions of 

metal in the water, causing them to sink and settle in sediment (Sauve et al., 1998). This 
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process of complex formation, along with other physico-chemical processes, may contribute to 

the lower metal concentrations observed in surface water at these downstream sites. Future 

studies should quantify metal concentrations in the sediment at the sites.  

 

Moreover, there are pollution sources other than WWTWs which may have contributed to 

these increased metal concentrations at upstream sites. Besides storm water runoff, there are 

many commercial and industrial sources of metal pollutants that are unknown because of 

illegal dumping activities (Moeletsi et al., 2004). For example, it was noted in the State of the 

Rivers Report that tent hiring companies were washing tents on rocks at upstream sites of the 

Little Amanzimtoti River (eThekwini Municipality State of the Rivers Report, 2007) using 

cleaning detergents manufactured with Fe (DWAF, 1996). The other notable source of Fe from 

cleaning detergents is most likely from washing activities at the river by members of nearby 

informal settlements. The unusually high Cu concentration at this upstream site may be due to 

nearby piping systems which release Cu during erosion. This enters into storm water runoff 

flowing into rivers (DWAF, 1996).  

 

In summary, upstream sites had lower metal concentrations, and thus lower risk of metal 

toxicity than WWTW tanks and downstream sites. This shows that the point source pollution 

of WWTWs was the most significant contributor of metal contaminants into the rivers. This 

means that animals such as Neoromicia nana foraging near the WWTW tanks were probably 

exposed to these metals, resulting in a higher risk of accumulated concentrations of metals in 

the tissues and organs of their bodies (Chapter 4). Future work should investigate the 

interactions of metals with physical characteristics of the environment. For instance, pH affects 

the availability and toxicity of metals in the aquatic environment (eThekwini Municipality 

State of the Rivers Report, 2007). Nonetheless, pH readings taken at various points along the 

three rivers indicated that the pH levels were relatively neutral (ranging from 6 to 8). Future 

studies should also quantify concentrations of organic pollutants and synthetic compounds at 

the rivers to assess the general health and quality of the aquatic systems. 
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CHAPTER 3:  

FORAGING ECOLOGY OF THE BANANA BAT (NEOROMICIA 

NANA, FAMILY: VESPERTILIONIDAE) AT RIVERS 

 POLLUTED BY WASTEWATER WORKS 

 

3.1. Summary 

 

Wastewater pollution decreases ecosystem quality. Negative effects on a species may transfer up 

the food chain and impact other trophic levels. To understand how WWTWs affect N. nana 

populations that forage along wastewater-polluted rivers, the activity and foraging behaviour of 

N. nana was evaluated at upstream, tank and downstream sites situated along the Umbilo, Little 

Amanzimtoti and Mdloti Rivers (summer 2010 and winter 2009). Relative bat abundance 

(represented by an activity index, AI) was significantly higher at wastewater-polluted sites (tank 

and downstream sites) than at upstream sites at all rivers, regardless of season. The Umbilo and 

Little Amanzimtoti Rivers had the highest relative bat abundance at downstream sites, while at 

the Mdloti River it was highest at the tank. Similarly, feeding activity (number of feeding 

buzzes) was significantly higher at wastewater-polluted sites than upstream, but did not differ 

significantly between tank and downstream sites. Total insect abundance was significantly 

highest at downstream sites. The number of insect orders was significantly higher at upstream 

and downstream sites, than at tanks. The most abundant insect order at wastewater-polluted sites 

at all rivers was Diptera, of which > 80% were comprised of pollution-tolerant Chironomidae 

(non-biting midges). The abundance of midges was significantly lower at upstream sites than at 

wastewater-polluted sites. Dietary analysis revealed that the insect order constituting the highest 

proportion in the diet of N. nana at wastewater-polluted sites was indeed Diptera. The proportion 

of insect orders in the diet of N. nana captured at most tank and downstream sites was 

significantly correlated to the proportion of insect orders captured at the site. This suggests that 

the bats feed opportunistically at the sites, exploiting swarms of midges associated with 

wastewater. It can thus be concluded that N. nana activity along rivers within the urban 

landscape is concentrated at WWTWs and sites downstream of effluent discharge into rivers. 

Thus, wastewater pollution along rivers affects the composition of insect communities and, in 

turn, influences the activity and foraging behaviour of N. nana populations within the landscape.  
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3.2. Introduction  
 
Studies of the negative impacts of metal pollutants on vertebrates have focused predominantly 

on birds because they are heavily dependent on both insect and fish prey (Rattner, 2009). 

Research into the effects of river metal pollutants on small mammal predators has thus far, 

focused on voles, mice and shrews (Wijnhoven et al., 2007; Fritsch et al., 2010). These small 

mammals generally exhibit short life expectancies and high reproduction rates (Shore & Rattner, 

2001). In contrast, bats have long life spans, slow reproductive rates and long population 

recovery periods (Jones et al., 2009). Bats have thus been advocated as viable bioindicator 

species for demonstrating environmental change (Jones et al., 2009).  

 

Although biodiversity is generally negatively affected by pollution, the impact of river pollution 

on bats is not clear, with several studies showing less negative effects on bat populations 

(Vaughan et al., 1996; Racey et al., 1998; Park & Cristinacce, 2006; Kalcounis-Rueppell et al., 

2007; Abbot et al., 2009). For example, in North Carolina, USA, certain insectivorous bats (eg. 

Perimyotis subflavus, which is a species that specializes in riparian habitats (Ford et al., 2005)), 

were found to be more abundant at sites downstream of a sewage output (Kalcounis-Rueppell et 

al., 2007). Similarly, Vaughan et al. (1996) found that while certain species were more active 

upstream of a sewage output, Myotis species concentrated their feeding activity downstream of 

the pollution source. Sewage polluted water promotes eutrophication, which in turn affects the 

composition of aquatic insect populations (Lawrence & Gresens, 2004). Pollution-tolerant 

insects such as chironomid midges increase in abundance, altering the insect prey base available 

to animalivorous bats (Racey et al., 1998). 

 

The majority of studies that investigated the impacts of wastewater-polluted rivers on bats have 

been limited to Europe and the USA. Little is known about the impact of wastewater pollution 

on bats in other regions, particularly Africa. In Africa, Neoromicia nana is an animalivorous bat 

species that has been observed to forage in riparian habitat (Rautenbach et al., 1996, Monadjem 

& Reside, 2008). Approximately 41% of the bats recorded at a polluted river in Durban, South 

Africa, were N. nana (Naidoo et al., in press). N. nana is a particularly small bat (3 - 4 grams; 

Monadjem et al. 2010) and would therefore exploit the increased availability of small pollution-

tolerant chironomid midges at wastewater-polluted sites. The toxic effects of pollution should 
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thus be evident in this animal, making N. nana an ideal model predator to investigate the impact 

of wastewater pollutants through a food chain.  

 

The aim of this chapter was to evaluate the influence of wastewater pollution on the foraging 

ecology of N. nana populations at sites polluted and unpolluted by wastewater effluent along 

rivers. I predicted that the relative abundance and feeding activity of N. nana would be higher at 

wastewater-polluted sites (sludge tank and downstream sites) than at sites situated upstream of 

the wastewater pollution, as a result of the high abundance of the pollution-tolerant chironomid 

midges specifically associated with wastewater and eutrophication (Marques et al., 1999). I 

further predicted that there would be a significant correlation between the abundance of 

pollution-tolerant insects at wastewater-polluted sites and in the diet of N. nana at the sites.  

 

 

 

3.3 Methods 

 

3.3.1. N. nana sampling and identification  

 
N. nana was sampled during winter (June/July 2009) and summer (March/April 2010), for three 

nights at each of the three sites per river (Chapter 2), for each season. At each river, one site was 

situated upstream of the point of effluent discharge into the river, one at the sludge tanks in the 

wastewater treatment works and one site downstream of the point of wastewater effluent 

discharge (Chapter 2). I captured N. nana at each site with mist nets which were set across the 

rivers and next to the sludge tanks, from 18h30 and 18h00 until 22h00 and 21h00 in summer and 

winter, respectively. Nets were checked every 10 to 15 minutes.  

 

Bats were sexed and identified to species using a taxonomic key (Monadjem et al., 2010). Bat 

species other than N. nana were released where they were caught. N. nana were held 

individually in cotton bags until the next morning to collect faecal pellets. I measured forearm 

length (to nearest 0.01 mm) with calipers, and body mass with a Pesola scale (to nearest 0.5 g). 

The presence of cartilaginous epiphyseal plates was used to determine age (juvenile or adult) 

(Anthony, 1988).  
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In addition, I passively monitored the relative abundance and feeding activity of N. nana by 

recording bat echolocation calls at each site from 18h30 and 18h00 until 22h30 and 21h00 in 

summer and winter, respectively. Echolocation calls were recorded using an Avisoft Ultrasound 

116 Bat Detector (Avisoft Bioacoustics, Berlin, Germany) connected to a laptop computer 

(Hewlett Packard Pavilion 6210 notebook). At upstream and downstream sites, the recording 

equipment was set up alongside the river with the microphone positioned at a 45° angle to record 

bats flying directly above the river. At tank sites, the recording equipment was set up a few 

metres from the sludge tank, with the microphone pointing toward the tank. 

 

Batsound Pro-Sound Analysis software (version 3.31b, Pettersson Elektronik AB, Upsala, 

Sweden) was used to analyze the recorded echolocation calls. A sampling rate of 500 000 Hz (16 

bits, mono) with a threshold of 16 was used. The dominant harmonic, i.e. peak frequency, and 

the bandwidth from each recorded bat pass was examined in a power spectrum (size 1024) 

(Schoeman & Jacobs, 2008) (Fig. 1a), and duration of the call was noted from the oscillogram. 

N. nana calls were identified by comparing peak echolocation frequency and duration of call 

with reference calls (Monadjem et al., 2010). 

 

 

3.3.2. N. nana relative abundance/ activity index (AI) 

 
I quantified the relative abundance of N. nana with an acoustic activity index (AI) (Miller, 

2001).  I defined a bat pass as a series of echolocation calls made by one individual (Saunders & 

Barclay, 1992). If N. nana passes occurred within a 1 min interval, N. nana was said to be 

present in that count (Miller, 2001). AI per night for each site was calculated as: 

 

                                                                   n 
AI = ∑ P (x 100) 

                                                                        l 
 where P = sum of presence counts and n = number of 1 min intervals for the sampling night. 
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3.3.3. N. nana feeding activity 

 
I quantified the feeding activity of N. nana at each site as the number of feeding buzzes (Fenton 

et al., 1977). Feeding buzzes (Fig. 1b) consist of high pulse-repetition rates of echolocation 

pulses emitted by animalivorous bats as they capture prey (Griffin et al., 1960). All feeding 

buzzes recorded per night were counted. 

 

 

Fig. 1. (a) Echolocation call (Mean peak frequency ±SD: 68.6 ±2.0 kHz (n = 10)) and (b) feeding 

buzz of Neoromicia nana 

 

 

3.3.4. Insect diversity  

 
At each site I captured nocturnal insects with a 22 W black-light bucket trap (Black, 1974) for 

the same time period that mist nets were set. Black-light traps effectively sample Diptera, 

Lepidoptera and Coleoptera (Nabli et al., 1999), which are the insect orders most frequently 

recorded in the diets of South African insectivorous bats (Aldridge & Rautenbach, 1987; 

Schoeman & Jacobs, 2011). The black-light trap was positioned along sludge tanks or above 
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water level near the river (1m above water, 1 - 3 m from the edge of the river), and at least 50 

m away from the mist nets to prevent the light from affecting bat activity. The collected insects 

were placed in jars and stored in a freezer. In addition, I captured insects by sweep netting (20 

sweeps) along the edge of the river or tank, every hour from the start to the end of the sampling 

period per night. All insects collected from the sweeps and the light trap were pooled and 

identified to order using a taxonomic text (Scholtz & Holm 1985). Diptera were further analysed 

to obtain the abundance of chironomid midges (Family: Chironomidae). At least one individual 

from each collected order was mounted on a slide and used as a reference library for dietary 

analyses (see below). 

 

 

3.3.5. N. nana dietary analysis 

 
Five faecal pellets from each bat (Whitaker et al., 1996) and a minimum of 20 pellets in total 

(when possible) from N. nana bats captured at the upstream, tank and downstream site at each 

river (Whitaker et al., 1999) were collected for dietary analyses. Faecal samples were 

individually teased apart in 70% alcohol. Remnants of insect exoskeletons were identified to 

order with the aid of a classification key (Scholtz & Holm, 1985) and a reference collection of 

insects trapped at each site. The percentage of the total pellet volume comprising each order 

present was visually estimated following Whitaker (1988), where the percent insect order per bat 

was calculated from the average percent insect order per pellet. 

 

 

3.3.6. Statistical analysis 

 

Three-way ANOVAs were used to compare differences in N. nana relative abundance, N. nana 

feeding activity, total insect abundance, insect order richness and midge abundance among sites 

(upstream, tank and downstream) and rivers (Umbilo, Little Amanzimtoti, Mdloti), and between 

seasons (summer and winter). Assumptions of normality and equality of variance for the data 

were tested using a 1-sample Kolmogorov-Smirnov Test and a Levene‟s Test, respectively. If 

assumptions were not satisfied, the data were rank transformed and non-parametric tests were 

run. Tukey HSD post-hoc tests were performed on significant ANOVAs.  
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The dietary composition of N. nana bats captured during winter and summer at each site was 

compared with the insect abundances at each of the rivers using a Pearson‟s correlation, or a 

Spearman‟s rank correlation if assumptions were not satisfied. All analyses were performed with 

SPSS 19.0, using alpha of 0.05. 

 

 

3.4. Results 

 

3.4.1. N. nana relative abundance and feeding activity  

 
N. nana emits low duty-cycle, frequency modulated echolocation calls (LD-FM). The peak 

echolocation frequency of N. nana was 68.6 ±2.0 kHz, with a bandwidth of 14.1 ±3.7 kHz and a 

call duration of 4.6 ±0.8 ms (means ±SD; n = 10). 

 

There was a significant difference in the relative abundance of N. nana among upstream, tank 

and downstream sites (F = 84.424; df = 2; P < 0.0005). Tukey HSD post-hoc tests showed that 

N. nana relative abundance was significantly higher at downstream than at tank and upstream 

sites (P < 0.0005). The lowest relative abundance was at the upstream sites (Fig. 2; Table 1). 

There was no difference in N. nana relative abundance among rivers, however there was an 

interaction effect between river and site (F = 6.783; df = 4; P < 0.0005). The significant 

interaction indicates that the difference among sites was not consistent among rivers. There were 

no significant seasonal differences in N. nana relative abundance.  
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Fig. 2. Mean (bars: ±SD) AI/night at upstream, tank and downstream at the Umbilo, Little 

Amanzimtoti and Mdloti Rivers.  

 

 

Similar to relative abundance, feeding activity was significantly higher at wastewater-polluted 

sites than at upstream sites (F = 10.315; df = 2; P < 0.0005) (Fig. 3; Table 2), but did not differ 

significantly between tank and downstream sites. There were no significant seasonal differences 

in N. nana relative abundance or feeding activity. Feeding activity differed significantly between 

rivers, with the Little Amanzimtoti River having a significantly lower number of feeding buzzes 

than the Umbilo and Mdloti rivers (F = 9.438; df = 2; P < 0.0005). 
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Fig. 3. Mean (bars: ±SD) number of feeding buzzes/night at upstream, tank and downstream 

sites at the Umbilo, Little Amanzimtoti and Mdloti Rivers.  

 

3.4.2. Insect abundance and richness of orders 

 
The total number of insects captured during both sampling seasons was 3742 at the Umbilo 

River, 3209 at the Little Amanzimtoti River and 3513 at the Mdloti River. There was a 

significant difference in insect abundance among the upstream, tank and downstream sites (F = 

4.818; df = 2; P = 0.015) (Table 1). Furthermore, Tukey HSD post-hoc tests showed that 

downstream sites had a significantly higher insect abundance than tank sites (P = 0.014). There 

was a significantly larger number of insects captured during summer than in winter (F = 

313.867; df = 1; P < 0.0005). In addition, there were significant interaction effects between site 

and season (F = 8.462; df = 2; P = 0.001), river and season (F = 4.038; df = 2; P = 0.028), site 

and river (F = 16.911; df = 4; P < 0.0005), and season, site and river (F = 18.062; df = 4; P < 

0.0005).  
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The number of insect orders also differed significantly among sites, with Tukey HSD post-hoc 

tests showing a significantly higher order richness at upstream and downstream sites than at tank 

sites (F = 10.627; df = 2; P < 0.001). A significantly higher number of insect orders was 

encountered during summer than in winter (F = 64.234; df = 1; P < 0.001). At all three rivers, the 

most prevalent order at the upstream sites was Coleoptera (45.8 - 69.8%) and the most prevalent 

order at wastewater-polluted sites was Diptera (41.2 - 73.1%) (except for the Umbilo 

downstream site, which varied) (Table 1). The Neuroptera, Dermaptera and Mantodea orders 

were rare (i.e. ≤ 2%) and were pooled into one category classified as “other”. Trichoptera and 

Ephemeroptera were more abundant at upstream sites than at wastewater-polluted sites (Table 

1).   

 

More than 80% of Diptera at the tank and downstream sites comprised chironomid midges 

(Family: Chironomidae). The mean abundance of midges/night was significantly lower at 

upstream sites than at wastewater-polluted sites (F = 156.086; df = 2; P < 0.0005) (Fig. 4; Table 

2). In addition, midge abundance was significantly lower at downstream sites than at the tank 

sites (Tukey HSD post-hoc tests, all P < 0.0005) (Fig. 4; Table 2). Midge abundance also 

differed significantly between seasons and among rivers. There was a significantly higher midge 

abundance in summer than in winter (F = 143.973; df = 1; P < 0.0005), at the Little Amanzimtoti 

and Mdloti rivers than at the Umbilo River (F = 10.372; df = 2; P < 0.0005). There were 

significant interaction effects between site and season (F = 36.468; df = 2; P < 0.0005), and 

between site and river (F = 10.540; df = 4; P < 0.0005). Thus, significant differences obtained 

for site were not constant for both seasons and for all rivers. 
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Table 1. Means (±SD) percent abundance (per night) of the insect orders Coleoptera (Col), Diptera (Dip), Lepidoptera (Lep), Hemiptera 

(Hem), Hymenoptera (Hym), Trichoptera (Trich) and Ephemeroptera (Ephem) captured at upstream (U), tank (T) and downstream (D) sites  

at the Umbilo, Little Amanzimtoti and Mdloti Rivers during winter (2009) and summer (2010). 

 

   
% Insect Order 

River Site Season Col Dipt Lep Hem Hym Trich Ephem Other 

Umbilo U S 69.8 ±33.8 9.5 ±10.1 1.6 ±1.0 6.4 ±3.6 11.3 ±2.1 0.5 ±0.3 0.7 ±0.6 0.1 ±0.3 

W 45.8 ±50.8 12.4 ±7.1 2.9 ±3.6 34.4 ±31.9 1.2 ±2.0 2.2 ±1.0 1.2 ±0.1 0.0 

T S 26.5 ±3.7 44.0 ±12.1 4.9 ±3.1 19.1 ±5.8 4.5 ±1.5 0.0 0.0 1.1 ±1.8 

W 19.9 ±24.8 73.1 ±17.3 2.3 ±1.6 4.1 ±5.7 0.0 0.0 0.0 0.6 ±0.8 

D S 44.1 ±7.9 16.1 ±1.4 1.3 ±0.4 35.6 ±5.7 0.8 ±0.2 0.1 ±0.1 0.0 1.9 ±1.7 

W 27.6 ±3.9 58.6 ±6.8 3.4 ±1.0 9.0 ±4.8 1.4 ±1.9 0.0 0.0 0.0 

Little  

Amanzimtoti 

U S 57.7 ±14.5 10.9 ±7.8 6.0 ±1.2 12.4 ±6.0 8.6 ±5.2 2.1 ±1.1 0.7 ±1.0 1.6 ±0.7 

W 46.0 19.0 4.8 12.7 14.3 3.2 0.0 0.0 

T S 29.4 ±14.2 52.8 ±7.5 2.0 ±0.8 11.9 ±4.1 3.2 ±1.7 0.1 ±0.4 0.3 ±0.2 0.3 ±0.2 

W 39.2 ±10.3 43.2 ±7.9 2.8 ±0.7 14.0 ±5.4 0.8 ±1.4 0.0 0.0 0.0 

D S 20.1 ±12.9 47.2 ±4.5 5.1 ±2.0 12.0 ±2.4 14.8 ±4.6 0.4 ±0.5 0.0 0.4 ±0.4 

W 21.0 ±6.0 52.1 ±16.4 3.8 ±1.0 12.2 ±1.2 10.1 ±4.0 0.2 ±2.2 0.0 0.6 ±0.5 
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Table 1 Continued 

 

 

 

 

 

 

Mdloti U S 48.1 ±4.0 4.1 ±3.0 6.9 ±2.4 31.8 ±9.9 1.4 ±0.7 6.1 ±1.2 0.5 ±0.5 1.1 ±0.5 

W 46.9 ±6.2 11.5 ±3.7 11.5 ±3.7 28.3 ±5.0 0.9 ±1.2 0.9 ±0.4 0.0 0.0 

T S 31.9 ±6.6 55.8 ±3.7 2.5 ±1.4 6.7 ±3.4 1.5 ±0.7 0.2 ±0.7 0.0 1.5 ±1.5 

W 37.2 ±7.7 55.8 ±7.5 2.1 ±0.5 3.9 ±1.3 1.0 ±0.5 0.0 0.0 0.0 

D S 28.1 ±7.2 41.2 ±5.7 10.5 ±2.9 9.2 ±4.0 7.3 ±4.5 1.0 ±0 0.0 2.6 ±1.6 

W 17.8 ±8.9 65.5 ±19.7 7.4 ±2.5 7.8 ±5.2 1.5 ±1.5 0.0 0.0 0.0 

   
% Insect Order 

River Site Season Col Dipt Lep Hem Hym Trich Ephem Other 
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Fig. 4. Mean (bars: ±SD) midge abundance/night at upstream (U), tank (T) and downstream (D) 

sites at the Umbilo, Little Amanzimtoti and Mdloti Rivers during winter (2009) and summer (2010).  

 

3.4.3. N. nana diet 

 
At least 20 faecal pellets were analyzed for N. nana captured at the upstream, tank and downstream 

sites except at the Umbilo upstream site where no faecal pellets were collected from the single N. 

nana captured. The proportions of insect orders in the diet of N. nana captured at tank sites were 

significantly correlated to the proportions of insect orders captured at the respective tank site at 

Umbilo (r = 0.900, n = 6; P = 0.014) and Mdloti (r = 0. 964, n = 6; P = 0.002) in summer, and 

Little Amanzimtoti in summer (r = 0.978, n= 6; P = 0.001) and winter (r = 0.979, n= 6; P = 0.001) 

(Table 3). There was a significant correlation between the proportions of insect orders in the diet 

and those captured at the upstream site at Mdloti River, for both summer and winter (summer: r = 0. 
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931, n = 6; P = 0.007/ winter: r = 0.884, n = 6; P = 0.019). There were also significant correlations 

between the insects in the diet and those captured at downstream sites at Mdloti in both seasons 

(summer: r = 0.974, n = 6; P = 0.001/ winter: r = 0.987, n = 6; P = 0.001), Umbilo in winter (r = 

0.974, n = 6; P = 0.001) and Little Amanzimtoti in summer (r = 0.966, n = 6; P = 0.002). At all 

tank and downstream sites, the insect order constituting the highest proportion (or second highest by 

≤ 1%) in the diet of N. nana was Diptera (Table 3). 

 

 

Table 2. Summary of lowest (1), intermediate (2) and highest (3) N. nana relative abundance, N. 

nana feeding activity and midge abundance at upstream, tank and downstream sites at the Umbilo, 

Little Amanzimtoti and Mdloti Rivers during both sampling seasons. 

 

River    Site N. nana 

relative 

abundance 

N. nana 

feeding 

activity 

Midge  

abundance 

Umbilo Upstream 1 1 1 

 Tank 2 2 3 

 Downstream 3 3 2 

     

Little Amanzimtoti Upstream 1 1 1 

 Tank 2 2 3 

 Downstream 3 3 2 

     

Mdloti Upstream 1 1 1 

 Tank 3 3 3 

 Downstream 2 2 2 
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Table 3. Mean (±SD) percent volume of the insect orders Coleoptera (Col), Diptera (Dip), Hymenoptera (Hym), Hemiptera (Hem), 

Lepidoptera (Lep) and Trichoptera (Trich) in the diet of N. nana captured at upstream (U), tank (T) and downstream (D) sites at the Umbilo, 

Little Amanzimtoti and Mdloti Rivers during winter (2009) and summer (2010). 

    
Insect Order (% volume diet composition) 

 

River 

 

Site 

 

Season 
No. of 

pellets 

 

Col 

 

Dipt 

 

Lep 

 

Hem 

 

Hym 

 

Trich 

Umbilo T S      15 14.0 ±7.6 61.0 ±5.3 9.3 ±3.8 11.7  ±10 2.7 ±2.3 1.3 ±2.3 

W      10 35.5 ±17.7 35.0 ±21.2 8.0 ±4.2 8.5 ±0.7 13.0 ±1.4 0 

D S       5 37.0 ±2.7 46.0 ±8.2 9.0 ±5.5 6.0 ±8.2 2.0 ±2.7 0 

W      15 21.7 ±24.3 50.0 ±25.7 12.7 ±10 8.0 ±9.2 7.7 ±6.8 0 

Little 

Amanzimtoti 

U S       5 53.0 ±2.7 4.0± 5.5 20.0 ±0 10.0 ±6.1 13.0 ±6.7 0 

W       10 24.0 ±9.9 28.0 ±7.1 20.5 ±12 14.0 ±7.1 9.5 ±3.5 4.0 ±5.7 

T S        20 35.3 ±12.7 46.8 ±10.3 6.0 ±1.8 8.5 ±7.2 3.5 ±4.7 0 

W        15 40.0 ±29.9 39.0 ±28 9.33 ±4 9.0 ±4.4 2.7 ±3.1 0 

D 

 

S         5 12.0 ±2.7 60.0 ±12.2 7.0 ±2.7 7.0 ±6.7 14.0 ±13.4 0 

W 20 32.3 ±8.5 13.0 ±10.1 27.5 ±5.8 25.8 ±12.7 1.5 ±3 0 
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   Table 3 Continued 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

  
Insect Order (% volume diet composition)  

 

River 

 

Site 

 

Season 
No. of 

pellets 

 

Col 

 

Dipt 

 

Lep 

 

Hem 

 

Hym 

 

Trich 

Mdloti U S 10 41.5 ±23.3 2.0 ±2.8 7.0 ±7.1 32.5 ±0.7 15.0 ±15.6 2.0 ±2.8 

T S 20 22.3 ±15.4 52.8 ±33.3 7.3 ±4.9 15.8 ±14.9 2.0 ±4 0 

W 40 11.9 ±11.2 57.5 ±15.4 3.8 ±2.9 23.9 ±11.7 3.0 ±3.3 0 

D S 20 23.8 ±6.9 45.8 ±10.4 7.8 ±2.1 13.3 ±4.6 9.5 ±7.5 0 

W 43 22.4 ±15.4 61.3 ±16.7 1.5 ±1.6 14.4 ±8 0 0.33 ±1 
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3.5. Discussion  

 

In accordance with my prediction, the relative abundance and feeding activity of N. nana were 

highest at wastewater-polluted sites and lowest at sites located upstream of the wastewater 

pollution at all three rivers. My results are consistent with previous published studies that 

showed high abundances and feeding rates of focal bat species below sewage discharge points 

(Vaughan et al., 1996; Racey et al., 1998; Kalcounis-Rueppell et al., 2007; Abbot et al., 2009). 

For instance, Pipistrellus pygmaeus foraging along rivers in Ireland were significantly more 

active at sites located downstream of a sewage outfall than at sites located upstream of the outfall 

(Abbot et al., 2009). Vaughan et al. (1996) surveyed bat activity upstream and downstream of 

WWTWs, and concluded that treatment works may be important foraging areas for particular 

insectivorous bats such as Myotis daubentonii. These bat activity and foraging patterns are 

associated with increased insect productivity as a result of eutrophication and in Europe, the 

increase in abundance of Myotis daubentonii has been directly attributed to the increased 

incidence of eutrophic streams across the mainland (Kokurewicz, 1995). 

 

Of the wastewater-polluted sites at the Umbilo and Little Amanzimtoti rivers, the relative 

abundance and feeding activity of N. nana was higher at downstream sites than at tank sites. The 

differences in relative abundance and feeding activity between wastewater-polluted sites, were 

however, not significantly different. The higher relative abundance and feeding activity of N. 

nana may be attributed to the total insect abundance, which was highest at downstream sites. 

There were significant correlations between the insects in the diet and those captured at the 

downstream sites on the Umbilo River in winter, the Mdloti River in summer and winter, and the 

Little Amanzimtoti downstream site in summer. Thus, N. nana at the downstream sites 

opportunistically feed on the available insect prey. 

 

The most prevalent insect order at the wastewater-polluted sites was Diptera. Furthermore, more 

than 80% of Diptera at wastewater-polluted sites comprised chironomid midges, with the highest 

abundance of chironomid midges at the tank sites. The tank sites, however, had the lowest insect 

order richness. This suggests that fewer orders were thriving under the physical and chemical 

conditions at the tank sites compared to upstream and downstream sites. One reason may be the 

high metal content at the tank sites (see Chapter 2). The insect orders Ephemeroptera and 
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Trichoptera, which are pollution-sensitive invertebrate taxa and indicative of „cleaner‟ water 

(Dinakaran & Anbalagan, 2007), were most abundant at upstream sites. Pollution-sensitive 

insect taxa are susceptible to the toxic effects of metals. For instance, mayfly larvae often die 

before emergence when exposed to metals (Hatakeyama, 1989). 

 

However, pollution-tolerant insect taxa such as chironomid midges can tolerate high levels of 

metals (Postma et al., 1995). Consequently, chironomid midges often occur at high densities 

near wastewater (Broza et al., 2003). Chironomid midges at metal-contaminated sites contain 

particularly high concentrations of metals in the midgut tissue (Krantzberg & Stokes, 1990). This 

is a result of the ability of midges to accumulate metals without being adversely affected, as 

illustrated by the occurrence of metal-adapted genetic strains of chironomid midges at sites 

downstream of pollution (Groenendijk et al., 1998).  Although chironomid midge larvae 

captured at sites polluted with industrial discharge have shown morphological deformities such 

as head capsule and mouthpart asymmetry, there were no observed adverse effects on their 

survival and growth (Al-Shami et al., 2010). Thus, the high abundances of chironomid midges at 

the wastewater-polluted sites may be due to the insects‟ ability to tolerate and store metal 

pollutants.  

 

At the tank sites for two of the rivers (Umbilo and Mdloti), there were significant correlations 

between the insects in the diet and those at the site in summer. The dietary analysis also revealed 

that at both tank and downstream sites, the insect order comprising the largest proportion in N. 

nana’s diet was Diptera. Thus, the bats were exploiting the large swarms of chironomid midges 

present at the tank sites during this season. A similar pattern was found in studies of European 

Myotis species, which often fed opportunistically on swarms of insects, specifically chironomid 

midges, which were abundant near sewage outputs (Vaughan, 1980; Vaughan et al., 1996).  

 

Contrary to these patterns, the N. nana diet at upstream sites generally comprised Coleoptera and 

Lepidoptera. There was a significant correlation between the proportions of insect orders in the 

diet and those captured at the upstream site, at the Mdloti River. This suggests that the bats were 

feeding opportunistically on the insects available at this upstream site. Conversely, at the 

upstream site of the Little Amanzimtoti River, bats were found to forage selectively on 

Lepidoptera. In addition to the large component of Coleoptera in the diet, the diet of these bats 

contained a large amount of Lepidoptera, even though Lepidoptera were not as abundant as other 
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insect orders, including Diptera, at the site. Thus, even when Diptera was available, N. nana 

selected other orders at upstream sites.  

 

An important conclusion arising from this chapter is that within the urban landscape, N. nana 

activity is concentrated at wastewater-polluted sites along rivers. The diet of the bats indicates 

that they are exploiting the high abundance of chironomid midges occurring at the tanks and 

downstream sites. Because pollution-tolerant chironomid midges are able to store metal 

pollutants without being negatively affected, the opportunistic feeding of N. nana, at wastewater-

polluted sites puts this bat species at risk of being exposed to the high metal levels at those sites.  
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CHAPTER 4:  

THE RISK OF FORAGING AT WASTEWATER-POLLUTED 

RIVERS:  METAL LEVELS IN N. NANA 

 

4.1. Summary 

 

Metal pollutants may directly or indirectly affect the health of wild mammals. In terrestrial 

organisms, metals are most often taken up through the drinking of polluted water and the 

ingestion of contaminated prey. N. nana investigated in this study may be exposed to 

wastewater metals through their prey. To determine whether the metal pollutants detected in the 

water at upstream and wastewater-polluted (tank and downstream) sites accumulate in N. nana 

that forage there, I quantified the concentration of metals (Cu, Cr, Fe, Ni, Zn, Pb and Cd) in the 

liver, kidneys and pectoral muscle of individuals captured at the sites. Pb was below detection 

levels. Essential metals (Cu, Zn and Fe) were detected in the muscle, kidney and liver of N. 

nana captured at all sites. In contrast, Cd, Cr and Ni were detected in tissue collected from only 

wastewater-polluted sites (except one occurrence of Cd at an upstream site) for all rivers. Cr 

and Ni were present in the kidney and muscle of bats only at wastewater-polluted sites. Cd, 

however, was present in all tissue types. This is of particular concern as Cd is a highly toxic 

metal and is known to have a high tendency to accumulate in tissue over time. I further 

investigated whether the concentrations of metals measured in liver, kidney and muscle of N. 

nana were related to concentrations in the water at upstream and wastewater-polluted sites. 

There was a positive significant relationship between tissue metal and water metal 

concentrations for only kidney samples. This relation between metal concentration at the sites 

and in the bat kidney tissue suggests that there is potential for transfer of metals through the 

food chain. More specifically, important toxic metals, Cd, Cr and Ni, may be accumulating in 

organs and may therefore pose negative long-term health effects for N. nana. This chapter thus 

provides an indication of potential risk for N. nana foraging at wastewater-polluted rivers. 
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4.2. Introduction  
 
Numerous studies conducted in the past few decades have documented the severe negative 

impact of anthropogenic pollutants on the health of wildlife (for review see Rattner, 2009). 

Pollutants, including metals, may directly or indirectly affect the health of individual organisms, 

resulting in impaired physiology (Sanchez-Chardi et al., 2009), reproduction (Eeva et al., 2009) 

and behaviour (Bridges & Semlitsch, 2000) or, in severe cases, mortality (Hoenerhoff & 

Williams, 2004). In terrestrial organisms, metals are most often taken up through the drinking of 

polluted water and the ingestion of contaminated prey (Brueske & Barret, 1991).  

 

Metal pollution is known to have harmful impacts on predatory bird species (Rattner, 2009). For 

example, significant impairments in the breeding performance of passerine birds, such as the tree 

swallow (Tachycineta bicolor), have been observed in metal polluted areas (Brasso & Cristol, 

2008). Studies have attempted to elucidate the effects of metal pollution on small mammals 

(voles, mice and shrews) that feed in metal contaminated habitats (Metcheva et al., 2003; 

Hamers et al., 2006; Wijnhoven et al., 2007).  

 

In an analysis of metal loadings of the herbivorous snow vole (Chionomys nivalis), there was a 

significant correlation between metal content in the food source and in vole liver (Metcheva et 

al., 2003). Bioaccumulation of metals is, however, characteristically more prominent in 

carnivorous small mammals than in herbivorous small mammals (Alleva et al., 2006; Hamers et 

al., 2006). In a risk assessment of metals for herbivorous and carnivorous small mammals, metal 

concentrations were higher in the kidneys of the insectivorous shrew, S. araneus, than in the 

herbivorous bank vole, C. glareolus (Hamers et al., 2006). S. araneus also had the highest metal 

concentration in a study of seven small mammal species representing various feeding guilds 

(Wijnhoven et al., 2007). Thus, animalivorous bats such as N. nana, which feed extensively on 

insect prey, are at a high risk for metal bioaccumulation in the body. 

 

Metals accumulate at different concentrations in different organs (Johnson et al., 1978). For 

instance, the accumulation of toxic metals, such as Cd, is most evident in the kidneys (Johnson et 

al., 1978).  The accumulation of metals in different tissue types is influenced by factors such as 

calcium, phosphorus and vitamin D levels (Sobel et al., 1940). Although metals may be detected 
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in various body tissues, they most often occur at higher concentrations in the target organs 

associated with detoxification, i.e. the kidney and liver (Hunter & Johnson, 1982). Metal 

residues may additionally accumulate in muscle tissue (Hunter & Johnson, 1982). 

 

The lethal effects of large contaminant doses on bats have been well documented (Clark et al., 

1978). However, sub-lethal effects, such as metal-induced damage in target organs, are usually 

undetected in bats (Clark & Shore, 2001). To date, little research (approximately 30% of all bat 

contaminant studies) has been conducted on metal pollutants in bats (Clark & Shore, 2001). In 

addition, there have been no studies that have quantified metal concentrations in bat species in 

Africa, or evaluated metal concentrations in animalivorous bats foraging at wastewater-polluted 

rivers. 

 

In Chapter 3, it was established that N. nana concentrated their feeding activity at wastewater-

polluted sites (tank and downstream sites) compared to sites located upstream of wastewater 

pollution along the Umbilo, Little Amanzimtoti and Mdloti rivers in Durban. Furthermore, their 

diet at these wastewater-polluted sites consisted of predominantly Dipteran prey (specifically 

chironomid midges), which are in direct contact with the metal-polluted water at the sites. Thus, 

N. nana may be exposed to wastewater metals through their prey. In Chapter 2, it was 

established that metal concentrations in the water at upstream sites were low compared to those 

measured in the water at wastewater-polluted sites. The aim of this chapter was to, therefore, 

determine whether the metal pollutants detected in water samples from sites upstream of and at 

wastewater-polluted sites are also found in individuals of N. nana that forage there. I quantified 

the concentration of seven metals (Cu, Cr, Fe, Ni, Zn, Pb and Cd) in the liver, kidneys and 

pectoral muscle of N. nana captured at upstream and wastewater-polluted sites and tested 

whether the concentration of metals in the tissues of N. nana were correlated with the metal 

concentrations in the water at the site. I predicted that metal concentrations would be higher in 

tissues of N. nana foraging at tank and downstream sites than at those foraging at sites upstream 

of wastewater pollution. 
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4.3. Methods 

 

4.3.1. Preparation of samples 

 

Twenty six N. nana were collected from upstream (n = 3), tank (n = 15), and downstream (n = 8) 

sites along the Umbilo, Little Amanzimtoti and Mdloti rivers during the summer sampling 

period (March/April 2010) (see Chapter 3 for further details). Ethical approval was obtained for 

the capture of N. nana for dissection. The bats were euthanized and dissected, using autoclaved 

instruments, for the collection of liver, kidney and pectoral muscle samples. Newly sterilised 

tools were used for each individual, to prevent metal contamination between samples. Only 

adults were used for the analysis, to control for differences in metal content between juveniles 

and adults. The removed tissue samples were kept at -80 °C until preparation for metal analysis. 

Samples were dried at 60 °C for two days in an oven and then weighed to obtain the dry mass of 

the sample. Using a ratio of 45.5 ml HNO3: 1 g tissue, the dried tissue samples were digested 

overnight in 65% concentrated nitric acid. To remove particulate matter, the digested samples 

were diluted with distilled water (1: 2) and filtered through syringe filters with a diameter of 25 

mm and pore size of 0.45 µm (PALL, Acrodisc). The liquid filtrate was kept for analysis. To test 

recovery rates, the same procedure used to prepare N. nana tissue samples for metal analysis, 

was performed on certified standard reference material (dried oyster tissue, SRM1566b) 

(National Institute of Standards and Technology). 

 

 

4.3.2. Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) 

 
The concentrations of Cu, Cr, Fe, Ni, Zn, Pb and Cd in liver (n = 26), kidney (n = 26) and 

muscle (n = 26) samples were determined using ICP-OES (Perkin Elmer, Optima 5300 DV), as 

described in Chapter 2. Calibration standards of varying concentrations were prepared according 

to trial measurements of each metal in the samples. The same baseline calibration curves set in 

Chapter 2 (Chapter 2) were used. The only metal in the tissue samples where all concentrations 

were below detection of the ICP-OES was Pb (DL = 0.0420 µg/g), which was therefore not 

presented in the results. The major limitation of ICP-OES is the high detection limit for the 

metal quantification. A number of measured concentrations for Cd, Ni and Cr were also below 
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their detection limits (DL = 0.0027 µg/g; 0.0150 µg/g; 0.0071 µg/g respectively). All metal 

concentrations below detection were assigned the value of the detection limit for the respective 

metal. Recovery rates for the metals in the standard reference material (dried oyster tissue, 

SRM1566b) ranged from 67% to 150%, with the exception of Cd which had a poor recovery rate 

of 11%. However, metal concentrations between the three replicates of oyster samples analyzed 

were consistent, with only 1% to 6% standard deviation between replicates. Thus, despite the 

wide range of recovery rates between metals, the trends across upstream, tank and downstream 

sites per metal should be consistent.  

 

 

4.3.3. Statistical analysis  

 

Because of low sample sizes (n = 0 or 1 for some sites), statistical analyses could not be used to 

compare differences in tissue metal concentrations among upstream, tank and downstream sites 

at all three rivers. The tissue metal data for the sites could not be pooled for the three rivers 

because metal concentrations (all metals except Pb) measured in the water (Chapter 2) differed 

among rivers. Therefore, one-way ANOVAs (including Tukey HSD post-hoc tests) comparing 

differences among sites were performed for only the Mdloti River where n ≥ 3 per site. 

Assumptions of normality and equality of variance for the metal concentration data were tested 

using a 1-sample Kolmogorov-Smirnov Test and a Levene‟s Test, respectively.  

  

To determine the extent to which metal concentrations measured in N. nana tissue (dependent 

variable) are associated with metal concentrations in the water (independent variable), I 

conducted simple linear regression analyses for each tissue type. All water and tissue metal 

concentration data were log10 transformed. Assumptions of linearity, normality and equality of 

variance of residuals were tested. If assumptions could not be satisfied with data transformation, 

Spearman‟s rank correlation was used to assess whether there was a significant association 

between metal concentrations measured in N. nana tissue and metal concentrations in the water. 

Analyses were performed with SPSS 19.0, using alpha of 0.05. 
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4.4. Results 

 
Results for metal concentrations measured in tissue samples are presented as means (±standard 

deviation), range of metal concentrations (µg/g), and number of samples below detection limit 

(BDL) in Table 1 (kidney), Table 2 (liver) and Table 3 (muscle). Only Zn (liver: F = 4.968, df = 

2, P = 0.029; muscle: F = 6.420, df = 2, P = 0.014) and Fe (muscle: F = 6.957, df = 2, P = 0.011) 

concentrations differed significantly among upstream, tank and downstream sites at the Mdloti 

River. Tukey HSD post-hoc tests showed that Zn in the liver was significantly higher at the 

upstream site than at the tank site (P = 0.029). Fe in the muscle tissue was significantly higher at 

the upstream site than at the tank and downstream site (down vs. tank: P = 0.024, down vs. up: P 

= 0.029), while Zn in the muscle tissue was significantly higher downstream than at the tank site 

(P = 0.013). There were no significant differences in Cu, Cd, Cr and Ni concentrations among 

sites. 

 

Cu, Zn and Fe were detected in all samples of all tissue types (Table 1, Table 2, Table 3). Cd, Cr 

and Ni, however, were detected in tissue collected from only wastewater-polluted sites (except 

one occurrence of Cd at an upstream site) for all rivers. At all three rivers, the maximum Cd 

concentration at wastewater-polluted sites in the kidney tissue was higher than that of the 

upstream sites (see range, Table 1). In liver and muscle tissue, the maximum Cd concentration at 

wastewater-polluted sites was higher than or equal to that of the upstream sites (see range, Table 

2 and Table 3). Cr and Ni were below detection in all liver samples. However, at the Mdloti 

River, Cr was detected in one downstream kidney sample, and in three muscle samples from the 

tank site (Table 1, Table 2). Ni was detected in only kidney samples from the wastewater-

polluted sites of the Mdloti River, and in muscle tissue samples from the wastewater-polluted 

sites of the Umbilo River.  

 

There were no significant relationships between tissue metal and water metal concentrations at 

the Umbilo and Little Amanzimtoti Rivers. There was a positive significant relationship between 

tissue metal and water metal concentrations for only kidney samples. Metal concentrations in N. 

nana kidney increased with increasing metal concentrations in the water (R2 = 0.662; df = 1; P < 

0.0005; F = 48.974). The regression equation was y = 1.158 x + 2.753, where y: tissue metal 

concentration, and x: water metal concentration (Fig 1). 
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Table 1.  Means ±SD and range of metal concentrations (µg/g), and number of samples below detection limit (BDL) in the kidney of N. nana at 

upstream (U), tank (T) and downstream (D) sites of the Umbilo, Little Amanzimtoti and Mdloti Rivers.  

  
Umbilo L. Amanzimtoti Mdloti 

  T D U T D U T D 

           
  No. of samples 

 
3 

 
1 

 
1 

 
6 

 
1 

 
2 

 
6 

 
6 

Cadmium Mean ±SD 2.639 ±1.582 1.775 0.003 0.910 ±0.948 0.273 0.070 ±0.097 0.614 ±0.645 0.228 ±0.111 
 Range 0.819 - 3.686 - - 0.003 - 2.594 - 0.003 - 0.137 0.137 - 0.956 0.137 - 0.410 
 BDL 0 0 1 1 0 1 0 0 
  

 
        

Chromium Means ±SD 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.120 ±0.276 
 Range 0.007 - 0.007 - - - - 0.007 - 0.007 0.007 - 0.007 0.007 - 0.683 

 BDL 3 1 1 6 1 2 6 5 
  

 
        

Nickel Means ±SD 0.015 0.015 0.015 0.015 0.015 0.015 1.375 ±3.272 3.289 ±8.018 
 Range 0.015 - 0.015  - - - - 0.015 - 0.015  0.015 - 8.054 0.015 - 19.656 
 BDL 3 1 1 6 1 2 4 5 

  
 

        

Copper Means ±SD 4.459 ±1.060 4.914 5.187 4.914 ±1.209 3.686 6.552 ±0.579 11.102 ±4.613 9.805 ±1.282 
 Range 3.276 – 5.324 - - 3.276 - 6.416 - 6.143 - 6.962 6.552 - 18.018 8.054 - 11.603 
 BDL 0 0 0 0 0 0 0 0 

  
 

        

Zinc Means ±SD 392.256 ±17.975 386.022 465.875 422.559 ±101.246 375.375 513.513 ±115.052 471.448 ±91.292 496.178 ±86.807 
 Range 373.055 - 408.681 - - 300.846 - 577.259 - 432.159 - 594.867 352.580 - 617.799 434.616 - 645.372 
 BDL 0 0 0 0 0 0 0 0 
  

 
        

Iron Means ±SD 174.993 ±33.859 236.828 122.850 330.307 ±216.314 127.901 177.178 ±41.890 333.879 ±106.520 285.444 ±124.466 
 Range 138.684 - 205.706 - - 144.417 - 746.149 - 147.557 - 206.798 242.424 - 486.486 138.684 - 468.468 
 BDL 0 0 0 0 0 0 0 0 
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Table 2.  Means ±SD and range of metal concentrations (µg/g), and number of samples below detection limit (BDL) in the liver of N. nana at 

upstream (U), tank (T) and downstream (D) sites of the Umbilo, Little Amanzimtoti and Mdloti Rivers.  

 

All Cr and Ni samples were below the detection limit 

 

 

 

 

  Umbilo L. Amanzimtoti Mdloti 

  T D U T D U T D 

           
  No. of samples 

 
3 

 
1 

 
1 

 
6 

 
1 

 
2 

 
6 

 
6 

Cadmium Means ±SD 1.866 ±1.290 0.546 0.003 0.071 ±0.166 0.003 0.003 0.070 ±0.113 0.003 
 Range 0.410 - 2.867 - - 0.003 - 0.410 - 0.003 - 0.003 0.003 - 0.273 0.003 - 0.003 
 BDL 0 0 1 5  2 4 6 
  

 
        

Copper Means ±SD 15.925 ±8.237 11.057 9.419 8.918 ±0.940 9.419 17.813 ±6.274 14.082 ±3.152 13.195 ±2.862 
 Range 10.374 - 25.389 - - 8.054 - 10.511 - 13.377 - 22.250   8.054 - 17.063 9.692 - 16.380 
 BDL 0 0 0 0 0 0 0 0 

  
 

        

Zinc Means ±SD 268.233 ±19.508 269.042 281.873 266.425 ±68.643 254.573 316.953 ±43.627 244.381 ±10.989 268.700 ±35.731 
 Range 252.525 - 290.063 - - 191.100 - 376.194 - 286.104 - 347.802 235.053 - 262.217 232.460 - 325.553 
 BDL 0 0 0 0 0 0 0 0 
  

 
        

Iron Means ±SD 940.622 ±169.350 859.131 705.978 1130.220 ±195.366 850.205 1237.509 1103.807 ±373.536 1278.377 ±481.068 
 Range 834.970 - 

1135.953 
- - 875.102 - 1332.517 - - 736.281 - 1584.356 941.441 - 2118.753 

 BDL 0 0 0 0 0 0 0 0 

49
 



50 

 

Table 3.  Means ±SD and range of metal concentrations (µg/g), and number of samples below detection limit (BDL) in the muscle of N. nana at 

upstream (U), tank (T) and downstream (D) sites of the Umbilo, Little Amanzimtoti and Mdloti Rivers.  

  Umbilo L. Amanzimtoti Mdloti 

  T D U T D U T D 

           
  No. of samples 

 
3 

 
1 

 
1 

 
6 

 
1 

 
2 

 
6 

 
6 

Cadmium Means ±SD 0.047 ±0.077 0.003 0.003 0.025 ±0.055 0.003 0.003 0.003 0.071 ±0.166 
 Range 0.003 - 0.137 - - 0.003 - 0.137 - 0.003 - 0.003 0.003 - 0.003 0.003 - 0.410 
 BDL 2 1 1 5 1 2 6 5 
  

 
        

Chromium Means ±SD 0.007 0.007 0.007 0.007 0.007 0.007 1.209 ±2.313 0.007 
 Range 0.007 - 0.007 - - 0.007 - 0.007 - 0.007 - 0.007 0.007 - 0.956 0.007 - 0.007 

 BDL 3 1 1 6 1 2 3 6 
  

 
        

Nickel Means ±SD 0.056 ±0.070 1.229 0.015 0.015 0.015 0.015 0.015 0.015 
 Range 0.015 - 0.137 - - 0.015 - 0.015 - 0.015 - 0.015 0.015 - 0.015 0.015 - 0.015 
 BDL 2 0 1 6 1 2 6 6 

  
 

        

Copper Means ±SD 12.285 ±1.190 15.152 14.196 13.263 ±1.350 14.196 16.380 ±1.351 15.993 ±2.291 16.062 ±1.380 
 Range 11.466 - 13.650 - - 11.330 - 14.742 - 15.425 - 17.336 13.514 - 18.974 14.196 - 17.882 
 BDL 0 0 0 0 0 0 0 0 

  
 

        

Zinc Means ±SD 212.986 ±11.330 214.988 209.528 225.453 ±39.952 229.047 234.712 ±3.185 196.697 ±18.206 243.129 ±28.967 
 Range 201.611 - 224.270 - - 167.759 - 267.131 - 232.460 - 236.964 173.492 - 214.305 232.050 - 300.164 
 BDL 0 0 0 0 0 0 0 0 
  

 
        

Iron Means ±SD 118.619 ±7.517 154.655 115.206 134.976 ±25.347 84.494 203.590 ±3.571 184.048 ±35.822 131.131 ±24.818 
 Range 113.295 - 127.218 - - 91.728 - 158.477 - 201.065 - 206.115 141.960 - 220.721 104.423 - 159.432 
 BDL 0 0 0 0 0 0 0 0 
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Fig. 1. Relationship between kidney metal concentration and water metal concentration 

(regression equation: y = 1.158 x + 2.753), in N. nana at upstream (U), tank (T) and 

downstream (D) sites of the Umbilo, Little Amanzimtoti and Mdloti Rivers 

 

 

4.5. Discussion  

 

Differences in metal concentration measured in the kidney, liver and muscle tissue of N. nana 

captured at upstream, tank and downstream sites along the Umbilo, Little Amanzimtoti and 

Mdloti rivers varied for Cd, Cr, Ni, Cu, Zn and Fe. Consistent with my prediction, Cd, Cr and Ni 

were detected in tissue collected from bats foraging at wastewater-polluted sites (except one 



52 

 

occurrence of Cd at an upstream site). Conversely, Cu, Zn and Fe were detected in samples from 

bats foraging at upstream and wastewater-polluted sites.   

 

While Cu, Zn and Fe are essential for normal cellular processes and bodily function, Cd, Cr and 

Ni are considered non-essential, and Cd is particularly harmful even at relatively low 

concentrations (Hoffman et al., 2001). The fact that Cr, Ni and Cd were most frequently detected 

in tissues of bats feeding at polluted sites bears important implications. When the mammalian 

body does not require metals, they are excreted, sequestered within protein such as 

metallothioneins, or deposited into intracellular granules for storage (Hoffman et al., 2001). The 

liver and kidney are adapted to the active regulation of essential metals, thus concentrations of 

toxic metals in the tissue reflect exposure and accumulation of those metals for a prolonged 

period (Mcgeer et al., 2000).  

 

Cr and Ni in the kidney and muscle were detected only at wastewater-polluted sites. Cr and Ni 

concentrations in N. nana kidney ranged from 0.007 - 0.683 µg/g and 0.015 - 19.656 µg/g 

respectively. Cr and Ni are of less concern to mammal health than more toxic metals such as Cd, 

Hg and Pb, and are thus less studied. However, it is notable that in one study where the kidneys 

of meadow voles (Microtus pennsylvanicus) were collected at a site treated with municipal 

sewage sludge, average Cr (0.51 µg/g) and Ni (0.59 µg/g) concentrations were much lower than 

the upper limit of the ranges in this study (Alberici et al., 1989). Although detrimental 

physiological damage is not likely to occur from Cr and Ni concentrations in response to 

wastewater exposure in the current study, there is a risk of undetected sub-lethal effects. In 

mammals, chronic exposure to Ni may cause degenerative effects in various organs (Sheffield et 

al., 2001) while Cr has been linked to chromosomal aberrancy (at mean Cr concentrations as low 

as 3.053 µg/g) (Tull-Singleton et al., 1994) and carcinogenicity (O‟Brien et al., 2003). In 

addition, it has been demonstrated in bats that both Ni and Cr are readily transferred from adult 

to young through lactation (Streit & Nagel, 1993). Cr and Ni were below detection in the liver of 

N. nana at all sites.  

 

Cd, however, was present in kidney, muscle and liver. Cd is known to have deleterious effects on 

health (Henson & Chedrese, 2004; Burger, 2008). It is one of the metals of most concern to 

wildlife, and is a teratogen, carcinogen and possible mutagen (Burger, 2008). It has also been 

recently recognized as an endocrine-disrupting chemical (EDC), reported to mimic the effects of 
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oestrogen in the body (Henson & Chedrese, 2004). The concentrations obtained for tissue Cd in 

wastewater-polluted sites in this study ranged from 0.003 – 3.686 μg/g. This was similar to those 

found in the liver of Pipistrellus pipistrellus bats in Germany, which ranged from 0.044 to 1.53 

μg/g (Streit & Nagel, 1993), but are far below the concentration of 350 μg/g (in kidney), which 

indicates measurable harmful effects such as kidney damage in small mammals (Cooke & 

Johnson, 1996). Cd however, has a high tendency to accumulate in tissue and Cd concentration 

is therefore strongly correlated with exposure time (Fritsch et al., 2010). Furthermore, the 

recovery rate of Cd was particularly low. This implies that Cd concentrations may have been 

underestimated due to low extraction from tissue samples. Metals found in lower quantities 

require a finer resolution and are therefore often under-detected in samples. Thus, Cd 

concentrations in N. nana tissue may in fact, be higher than those obtained. 

 

Cd concentrations in the kidney and liver of small mammal species increase with age (Walker 

et al., 2007; Fritsch et al., 2010). Although Cd was below detection in the water at the sites 

(Chapter 2), even very low concentrations in the source can ultimately contribute to high levels 

in the predator because of Cd accumulation (Fritsch et al., 2010). Thus, despite the fact that the 

Ni, Cr and Cd tissue concentrations were below critical levels, there is potential for increased 

metal concentration over time, and the possibility of metal transfer to young.  

 

Cu concentrations in kidney, liver and muscle tissue did not significantly differ among sites at 

the Mdloti River, where statistical analyses were performed. The highest mean tissue Cu 

concentration across the rivers in the current study (17.813 μg/g) fell into normal Cu ranges 

found in other bat species (Hoenerhoff & Williams, 2004; Allinson et al., 2006). Cu 

concentrations are only toxic when in elevated concentrations. Acute liver toxicity caused by 

copper may be fatal. For example copper-associated hepatopathy occurred in a Mexican fruit bat 

(Artibeus jamaicensis) at a Cu concentration of > 4000 μg/g) (Hoenerhoff & Williams, 2004). 

Cu homeostasis is generally very efficiently regulated in small mammals regardless of 

environmental concentrations (Hunter & Johnson, 1982). Similarly, Zn and Fe are utilized in 

biological processes in the body and are thus well controlled by homeostasis (Johnson et al., 

1978).  

 

Concentrations of Zn in the liver and muscle, and Fe in the muscle differed significantly among 

sites at the Mdloti River. Zn in the liver and Fe in the muscle was highest at the upstream site. 



54 

 

Zn in the muscle was highest at the downstream site. Although Zn and Fe do not pose serious 

health risks, they may affect the regulation of other metals. For instance, high Zn concentrations 

inhibit Cu absorption in rats, which may lead to Cu deficiency (Oestreicher & Cousins, 1985). 

Significant differences were not found for Cd, Cr, Ni or Cu. This may be because of the high 

variability in the data obtained for these metals. Contaminant concentration data obtained from 

tissue samples often contain some degree of natural variability between individuals due to 

genetic variation and physiological fluctuations (Rothery, 2000). The major caveat of this 

chapter was the small sample sizes which prevented statistical analysis. A larger sample size and 

detailed age determination would have accounted better for the noise in the data from natural 

variability. The recovery rate of Cd in standard reference tissue was low, implying that future 

methods of metal extraction from tissue samples should be optimized. In addition, using 

methods with a lower detection limit for metal determination than ICP-OES, such as ICP-MS or 

differential pulse anodic stripping voltammetry (Pikula et al., 2010) would be better to obtain 

high resolution for the metals detected in lower concentrations.  

 

There was a positive significant relationship between all concentrations of metals in the kidney 

tissue and metals in the water. This is an important result because  the kidney is the main storage 

site of toxic metals including Cd (Hunter & Johnson, 1982). This suggests that there is potential 

for transfer of metals through the food chain. Although I did not test metal concentrations in the 

insects captured at the sites, chironomid midges at metal-contaminated sites usually contain high 

concentrations of metals (Krantzberg & Stokes, 1990). Park et al. (2009) sampled aerial 

invertebrates (including chironomid midges) which take up various wastewater-associated 

endocrine disrupting chemicals, and calculated exposure levels for a bat species that forages on 

them. It was suggested that the contaminant intake rates of bats may be sufficient to cause 

physiological effects (Park et al., 2009). Future studies should aim to quantify metal levels in the 

tissue of the main insect prey items of N. nana at wastewater-polluted sites to demonstrate metal 

transfer from prey to predator. Few studies have managed however, to conduct a full-scale food 

chain analysis. In addition to prey data, factors including biological processes, detoxification 

rates, biotransformation and physiological functioning of the predatory species of interest, must 

be determined (Linder & Joermann, 2001).  

 

To conclude, this chapter provides an indication of the potential risk of metal contamination for 

the high abundance of N. nana bats foraging at wastewater-polluted rivers (Chapter 3). Based 
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on concentrations in target organs, it can be concluded that metals from wastewater may be 

passing through the food chain to N. nana. More specifically, important toxic metals, Cd, Cr 

and Ni, may be accumulating in organs and thus pose negative long-term health effects for N. 

nana. Further research should investigate specific physiological effects, such as quantifying 

lesions from metal exposure in the kidney and liver, and consequent health effects. In addition, 

the interactive effect of metals (amongst each other and with other pollutant types) has not 

received sufficient attention, and it is unclear as to whether the effect of a mixture of metals 

may, in fact, be greater than the sum of the toxicity of the components (Peraza et al., 1998). 

Nevertheless, the presence of toxic wastewater metals in N. nana suggests a risk of sub-lethal 

effects in both adult bats and their offspring, which could negatively affect growth and 

reproduction. 
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CHAPTER 5:  

SYNTHESIS, CONCLUSIONS AND FUTURE WORK 

 

 

5.1. Synthesis/ Conclusions 

 

River pollution is known to have negative effects on biodiversity (Nedeau et al., 2003; Azrina 

et al., 2006; Vörösmarty et al., 2010); specifically notable decreases in population 

abundances and acute health effects in study organisms (Lydeard et al., 2004; Oberholster et 

al., 2008). Although the results of this study revealed a high abundance of N. nana at 

wastewater-polluted sites, and no obvious acute health problems in individuals, there was 

evidence of heavy metal content in different tissues of bats foraging at these polluted sites. 

These results suggest that N. nana may benefit from WWTWs in the short-term but in the 

long-term there may be negative implications for this species and for other river biota 

exposed to wastewater pollution. 

 

For some bat species, pertinently urban exploiters, increased activity has been noted at 

wastewater-polluted sites along rivers (Vaughan et al., 1996; Kalcounis-Rueppell et al., 

2007). Similarly, N. nana abundance was significantly higher at wastewater-polluted sites 

(tank and downstream) than at sites located upstream of effluent discharge into rivers 

(Chapter 3). This was related to the increased abundance of chironomid midges captured at 

wastewater-polluted sites (Chapter 3), and in the diet of N. nana (Chapter 3). Although 

chironomid midges are able to tolerate polluted environments, metal pollutants accumulate in 

the body of this organism (Krantzberg & Stokes, 1990). Indeed, the concentrations of metals 

associated with wastewater pollution (Cr, Cu, Fe, Ni, Zn, Cd and Pb) were generally lower in 

the water at upstream sites than at wastewater-polluted sites, with the highest concentrations 

occurring at the tanks (Chapter 2). Because metal pollutants accumulate in midges, N. nana 

foraging on them at sites polluted with effluent from WWTWs have a high chance of being 

exposed to these metals. 

 

I found evidence that metal pollutants at WWTWs were transferred to N. nana (Chapter 4). 

There was a significant positive relationship between the concentrations of metals in the 
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kidney tissue samples and in water samples. The kidney is the primary target organ for the 

accumulation of toxic metals including Cd (Hunter & Johnson, 1982). In addition, the non-

essential metals Cr, Ni, and Cd (except for one occurrence at an upstream site) were detected 

in N. nana at only wastewater-polluted sites. Notwithstanding the low sample size and high 

detection level of the instrument, the presence of the more toxic metals in N. nana tissue 

samples collected from bats foraging at polluted sites is particularly notable. Cd has a 

tendency to accumulate in target organs over time, and Ni and Cr may be transferred from 

adult to young through lactation (Streit & Nagel, 1993). Thus, my results show the 

accumulation of specific metals in the tissues of N. nana at sites polluted by WWTWs. These 

results, in combination with the increased foraging behaviour of N. nana along wastewater-

polluted rivers, imply long-term risks for the health of individuals.  

 

 

5.2. Potential consequences for N. nana populations and the local ecosystem 
 

Pollutant exposure and the accumulation of toxic metals in organs and tissue may result in 

negative effects on reproduction over time, as discussed in Chapter 4. Therefore, pollutant 

effects on the reproductive health of N. nana individuals may potentially extend to the 

population level. Furthermore, the stable equilibrium of a population is also negatively 

impacted by an increase in death rate (Krebs, 2008). Increased mortality is particularly 

significant for slow reproducing, long-lived species such as bats (Fairbrother, 2001). 

 

Mortality rates are affected by a number of factors including predation and parasitic/ 

infectious diseases. Although increased mortality from chronic health problems related to 

sub-lethal pollutant exposure may be insignificant in the short-term, it may have dire 

consequences over a long time period. Moreover, pollutant exposure has been linked to 

stressors that regulate mortality (Fairbrother, 2001). For example, impaired immune system 

functioning from exposure to metals and other pollutants has been associated with outbreaks 

of parasitic/ infectious diseases (Fairbrother, 2001; Boyd, 2010). This „contaminant-pathogen 

synergy‟ has been, for example, linked to the phocine distemper epidemic that struck the seal 

population in the Wadden Sea in the early 1990s, which coincided with depressed immune 

response from polychlorinated biphenyl contamination (Ross et al., 1995). Bat populations 
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exposed to pollutants remain to be tested for parasitic/ infectious diseases. This may be 

particularly important for urban exploiters, such as N. nana, that are active at polluted sites. 

 

Exposure to pollutants may also elicit behavioural changes (Boyd, 2010). Metals in particular, 

have been shown to affect predator-prey interactions by modifying both prey response 

behaviour and predator capture ability (Boyd, 2010). In predatory fish, respiration rate and 

swimming performance to capture prey is impaired by exposure to metals (Atchison et al., 

1987). Loss of co-ordination, for instance, in bats, would greatly impair their hunting ability. 

In insects, metals result in behaviours that increase susceptibility to predation (Mogren & 

Trumble, 2010). For instance, metals induce phototaxis where organisms move to areas with a 

high risk of predation (Mogren & Trumble, 2010). Metals may also reduce locomotive ability, 

resulting in decreased escape ability from predators (Mogren & Trumble, 2010). In addition, 

infochemical disruption by metals may prevent the organism from detecting approaching 

predators (Klaschka, 2008). Thus, the effects of metal pollutants affect multiple trophic levels 

within the local ecosystem.  

 

Furthermore, there are both direct (physiological functioning) (Long et al., 1995) and indirect 

(modifications to the food web) effects that may arise as a result of exposure to pollutants 

(Fleeger et al., 2003). With the majority of urban rivers becoming polluted, the resident 

biodiversity is under serious threat (Vörösmarty et al., 2010). To preserve river biota in 

landscapes altered by anthropogenic pollution, it is important that the mechanisms of 

chemical-induced damage are understood. A detailed analysis of the food chain is rarely 

attainable due to the range of variables that have to be taken into consideration (Linder & 

Joermann, 2001). By unravelling pollutant effects in higher predators such as N. nana, much 

insight into these processes can be acquired. 

 

 

5.3. Future work 

 

The measurement of metal concentrations in the main insect prey items of N. nana 

(chironomid midges) would clearly show the transfer of metals from the pollutant source to 

the predator. One important caveat of this study was that metal concentrations could not be 
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determined in chironomid midges, mainly due to the low abundance of the insects at upstream 

sites.  In future studies, control midges that are not exposed to pollution should be laboratory-

bred to compare with those captured at polluted sites. In addition, stable isotope analyses of 

N. nana fur and its food items could complement dietary analysis by tracking nitrogen and 

carbon isotope signals through the trophic levels (Hobson, 1999). Stable isotope analyses can 

determine the precise quantity of specific prey items assimilated into the body of N. nana 

(Hobson, 1999). This will further contribute to the calculation of metal bioconcentration 

(BCF) and bioaccumulation factors (BAF) (Linder & Joermann, 2001). 

 

To provide a better understanding of how metal pollutants affect N. nana through the food 

chain, further research should aim to quantify sub-lethal physiological effects such as lesions 

in target organs and DNA damage in blood cells, which may serve as biomarkers of exposure 

(Zocche et al., 2010). Metal exposure at the cellular level should also be explored by the 

quantification of metallothioneins (metal-binding proteins). There is currently only one study 

that evaluated metallothionein levels in bats (Pikula et al., 2010). High metallothionein levels, 

related to high metal content in organs, were found in aquatic-insect-foraging vespertilionid 

bat species (Pikula et al., 2010). Hormone responses to pollutants are also poorly understood 

in bats; therefore there is an especially urgent need for research into endocrine disruption 

(Ringer, 2001). In the USA, insectivorous tree swallow nestlings showed altered plasma 

corticosterone and thyroid hormone levels at metal-contaminated sites along a river (Wada et 

al., 2009). Wastewater pollution is of particular importance because it contains metals that are 

endocrine disruptors, and other endocrine disrupting compounds from pharmaceuticals, 

personal care products and illicit drugs (Kasprzyk-Hordern et al., 2009). Abnormally small 

testes and bacula from chemically-induced endocrine disruption have been observed in male 

river otters (Clark & Shore, 2001). Male bats are ideal candidates for investigating bacula 

abnormalities associated with endocrine disruptors (Clark & Shore, 2001).  

 

To conclude, the results of this study establish a link between the foraging behaviour patterns 

and the presence of toxic metals in N. nana. The results show that N. nana is an ideal model 

to pursue further research into pollutant transmission from water to prey to predator, and the 

subsequent health effects. Furthermore, many exciting and productive research avenues can 

be extrapolated from this study. Further research into the effects of river pollution on urban 
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biodiversity is vital particularly because of the increasing rate of urbanization. In addition, 

pollutants in rivers pose an even greater threat to the resident fauna in the light of global 

warming (Clements et al., 2008). With increased water evaporation from rivers, it is 

estimated that the toxicity of metals and other pollutants will increase significantly due to 

lower dilution (Clements et al., 2008). Thus, the future functioning of river ecosystems faces 

serious threat unless the mechanisms of pollutant transfer and effects are elucidated. 
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