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Študij dinamike zvezdne snovi med
dogodkom plimskega raztrganja

DISERTACIJA

Aurora Clerici

Mentor: prof. dr. Andreja Gomboc

Nova Gorica, 2020





UNIVERSITY OF NOVA GORICA
GRADUATE SCHOOL

Aurora Clerici, A study of stellar debris dynamics during a tidal disruption event,
Dissertation, (2020)

Copyright and moral rights for this work are retained by the author.

A copy can be downloaded for personal non-commercial research or study, without
prior permission or charge.

This work cannot be reproduced or quoted extensively from without first obtain-
ing permission in writing from the author.

The content must not be changed in any way or sold commercially in any format
or medium without the formal permission of the author.

When referring to this work, full bibliographic details including the author, title,
awarding institution and date of the thesis must be given.





Abstract

The number of observed tidal disruption events is increasing rapidly with the
advent of new surveys. Thus, it is becoming increasingly important to improve
TDE models using different stellar and orbital parameters.

We study the dynamical behaviour of tidal disruption events produced by a
massive black hole like Sgr A* by changing different initial orbital parameters,
taking into account the observed orbits of S stars. Investigating different types of
orbits and penetration factors is important since their variations lead to different
timescales of the tidal disruption event debris dynamics, making mechanisms
such as self-crossing and pancaking act strongly or weakly, thus affecting the
circularisation and accretion disk formation.

We have performed smoothed particle hydrodynamics simulations. Each sim-
ulation consists in modelling the star with 105 particles, and the density profile
is described by a polytrope with γ = 5/3. The massive black hole is modelled
with a generalised post-Newtonian potential, which takes into account relativistic
effects of the Schwarzschild space-time.

Our analyses find that mass return rate distributions of solar-like stars and
S-like stars with same eccentricity have similar durations, but S-like stars have
higher mass return rate, as expected due to their larger mass. Regarding debris
circularisation, we identify four types of evolution, related to the mechanisms and
processes involved during circularisation: in type 1 the debris does not circularise
efficiently, hence a disk is not formed or is formed after relatively long time; in type
2 the debris slowly circularises and eventually forms a disk with no debris falling
back; in type 3 the debris relatively quickly circularises and forms a disk while
there is still debris falling back; finally, in type 4 the debris quickly and efficiently
circularises, mainly through self-crossings and shocks, and forms a disk with no
debris falling back. Finally, we find that the standard relation of circularisation
radius rcirc = 2rt holds only for β = 1 and eccentricities close to parabolic.

Keywords:
07.05.Tp Computer modeling and simulation
95.30.Lz Hydrodynamics
98.35.Jk Galactic center, bar, circumnuclear matter, and bulge
98.62.Js Galactic nuclei (including black holes), circumnuclear matter, and bulges
98.62.Mw Infall, accretion, and accretion disks





Povzetek

Število opaženih dogodkov plimskih raztrganj hitro narašča zahvaljujoč novim
pregledom neba. Zato postaja vedno pomembneje, da izbolǰsamo modele do-
godkov plimskih raztrganj in dobimo teoretične napovedi za različne zvezdne in
orbitalne parametre.

V tej disertaciji smo proučevali dinamično obnašanje snovi ob plimskih raztr-
ganjih zvezd v bližini masivne črne luknje, kakršna je Sgr A* v sredǐsču naše
Galaksije, pri čemer smo spreminjali začetne orbitalne parametre in upoštevali
opazovane orbite S zvezd. Proučevanje različnih vrst orbit in parametrov trka je
pomembno, saj le-ti vplivajo na časovno skalo dinamike ostankov plimskih raztr-
ganj, na jakost mehanizmov, kot sta samo-prečkanje in sploščitev, ter s tem na
cirkularizacijo in nastanek akrecijskega diska.

Simulacije smo izvedli z metodo hidrodinamike zglajenih delcev. V simulaci-
jah smo zvezdo modelirali z 105 delci in gostotnim profilom, kot ga opǐse politropni
model z γ = 5/3. Vpliv masivne črne luknje smo modelirali s posplošenim post-
Newtonskim potencialom, ki upošteva relativistične efekte Schwarzschildovega
prostor-časa.

Naše analize kažejo, da imajo porazdelitve hitrosti vračanja snovi za zvezde
podobne Soncu in za zvezde podobne S-zvezdam pri enaki ekscentričnosti podoben
čas trajanja, vendar imajo S-zvezde vǐsjo vrednost histrosti vračanja snovi, kot
je pričakovano zaradi njihove večje mase. Glede cirkularizacije ostankov smo
identificirali štiri tipe razvoja, ki so povezani z mehanizmi in procesi med cirku-
larizacijo: pri tipu 1 se ostanki zvezde ne cirkularizirajo učinkovito in posledično
disk ne nastane ali pa nastane po relativno dolgem času; pri tipu 2 se ostanki
zvezde cirkularizirajo počasi in sčasoma tvorijo disk, pri čemer ne ostane nič
snovi, ki bi še padala proti disku; pri tipu 3 se ostanki zvezde relativno hitro
cirkularizirajo in tvorijo disk, vendar ostane še nekaj snovi, ki pada na disk; pri
tipu 4 pa se ostanki zvezde hitro in učinkovito cirkularizirajo, večinoma zaradi
samo-prečkanja in udarnih valov, in tvorijo disk, pri čemer ne ostane nič snovi,
ki bi padala proti disku. Ugotovili smo tudi, da standardna zveza, da je cirku-
larizacijski polmer enak dvakratniku plimskega polmera, rcirc = 2rt , velja le za
parameter trka β = 1 in ekscentričnosti blizu parabolični.

Ključne besede:
07.05.Tp Računalnǐsko modeliranje in simulacije
95.30.Lz Hidrodinamika
98.35.Jk Sredǐsče Galaksije, prečka, snov okrog sredǐsča in odebelitev
98.62.Js Sredǐsča galaksij (vključno s črnimi luknjami), snov okoli sredǐsč in ode-
belitve
98.62.Mw Padanje snovi, akrecija in akrecijski diski
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Introduction

It is well established from both gas and stellar dynamical measurements that
massive black holes (MBH) reside in the nuclei of most galaxies (e.g. Magorrian
& Tremaine, 1999, and references therein). These extreme astrophysical objects
have masses between 105M� and 1010M�, and are embedded in dense stellar
environments, as it can be observed from the nearest MBH we can study, i.e.
Sgr A* in our Galactic center. While nearby MBHs can be studied dynamically,
distant ones can only be observed if they are undergoing luminous accretion.
This is the case for active galactic nuclei (AGN), which are providing the most
valuable information about MBHs; however, they represent a small fraction of the
MBH population. In order to have a more complete picture of the astrophysical
properties of MBHs, it is necessary to probe also those that are in quiescent state.

A variety of dynamical processes are capable of feeding stars to MBHs, which
can result in tidal disruption events (TDEs) which can temporarily turn on a
dormant MBH. Among these feeding mechanisms, the two-body relaxation is
the most understood. Calculations of TDE rates based on this mechanism in
realistic galaxies find that they are rare events, with a rate of & 10−4 yr−1 per
galaxy (Wang & Merritt, 2004; Stone & Metzger, 2016; Stone & van Velzen,
2016). In comparison, observational estimates for the TDE rate are typically
∼ 10−5 yr−1 per galaxy (Donley et al., 2002; Khabibullin & Sazonov, 2014),
which is discrepant by an order of magnitude (or more) with theoretical estimates
(Stone & Metzger, 2016). Other processes can in principle enhance the TDE rate
above the order set by two-body relaxation, such as non-conservation of angular
momentum in axisymmetric or triaxial potentials (Magorrian & Tremaine, 1999;
Merritt & Poon, 2004), interactions with massive perturbers (Mp > 102M�) such
as molecular clouds, globular stellar clusters, intermediate MBHs (Perets et al.,
2007) and large-scale accretion disks (Karas & Šubr, 2007), or gravitational wave
recoil of the central SMBH (Stone & Loeb, 2011). The impact of these more
exotic mechanisms is more difficult to quantify observationally.

The general picture of a TDE (Lacy et al., 1982; Carter & Luminet, 1983; Rees,
1988; Phinney, 1989; Evans & Kochanek, 1989) considers a star approaching a
MBH on a nearly parabolic orbit from large separation (∼ pc). After the star
gets squeezed and disrupted by the MBH, approximately half of the stellar debris
loses orbital energy inside the tidal disruption radius and becomes gravitationally
bound to the MBH. The bound debris falls back, circularizes due to self-crossings
and collisional shocks between gas streams, and eventually accretes on to the
MBH. The properties of this accretion disk have been investigated by many au-
thors (e.g Cannizzo et al., 1990; Loeb & Ulmer, 1997; Strubbe & Quataert, 2009;
Lodato & Rossi, 2011; Shen & Matzner, 2014). The power emitted during the
accretion process is enough to generate a highly luminous event; several of these
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events have been observed (Bade et al., 1996; Komossa & Bade, 1999; Halpern
et al., 2004; Bloom et al., 2011; Cenko et al., 2012; Bogdanović et al., 2014; Ko-
mossa, 2015). The catalogue of TDE candidates is steadily growing as more of
them are detected at optical, UV and soft X-ray wavelengths (e.g. Bade et al.,
1996; Komossa & Greiner, 1999; Gezari et al., 2006), and thanks to high-cadence
surveys, a larger fraction of these observed events have well-sampled lightcurves
that include the early rise to peak (e.g. Gezari et al., 2012; Arcavi et al., 2014;
Chornock et al., 2014; Blagorodnova et al., 2019). A few of them are thought to
produce a relativistic jet launched from the inner region of the accretion flow, to
which is attributed the observed hard X-ray emission (Bloom et al., 2011; Cenko
et al., 2012; Brown et al., 2015a).

It was analytically shown (Rees, 1988; Phinney, 1989) that the rate at which
debris returns to the MBH is dm/dt ∝ t−5/3. This feature is considered to be the
observational signature of a TDE. Indeed, many of the observed TDE candidates
show a lightcurve that follows this power-law. However, this feature is expected
for the bolometric lightcurve and for the X-ray band, while the optical/UV bands
is expected to follow a flatter dependence ∝ t−5/12 (Lodato & Rossi, 2011). Ob-
servationally, on one hand TDEs are found to follow the t−5/3 feature in the first
few months (e.g. Gezari et al., 2008), on the other hand there are TDEs which
are best approximated by the t−5/12 (Holoien et al., 2019), and lastly TDEs like
ASASSN-14li and ASASSN-14ae are found to be best fitted with an exponential
law e−t (e.g. Holoien et al., 2014, 2016b).

The dynamics of stellar tidal disruption have been modelled by several au-
thors, starting with simple analytical considerations (Rees, 1988; Phinney, 1989;
Lodato et al., 2009; Kesden, 2012a), going to more complex dynamical models
(e.g. Luminet & Marck, 1985; Kosovichev & Novikov, 1992; Ivanov & Novikov,
2001; Gomboc & Čadež, 2005), and hydrodynamical simulations (e.g. Nolthe-
nius & Katz, 1982; Evans & Kochanek, 1989; Laguna et al., 1993; Kobayashi
et al., 2004; Guillochon et al., 2009; Rosswog et al., 2009a; Antonini et al., 2011;
Shiokawa et al., 2015; Bonnerot & Lu, 2019).

As the number of observed TDEs increases, it becomes more important to
improve models of dm/dt for disruptions with different stellar and orbital pa-
rameters. Early smoothed particle hydrodynamics (SPH) calculations (Evans &
Kochanek, 1989) supported the initial analytic estimates, showing that the dis-
tribution of specific energies, calculated not long after the time of disruption,
produces a fallback rate ∝ t−5/3. Lodato et al. (2009) investigated the effects of
the structure of the star during the disruption process, demonstrating that the
early stages of the fallback depend on the properties of the star. Guillochon &
Ramirez-Ruiz (2013) found that shallower impact parameters affects the nature
of the event, often resulting in the survival of a bound stellar core (partial disrup-
tion). Hayasaki et al. (2013); Bonnerot et al. (2016); Hayasaki et al. (2016) and
Shiokawa et al. (2015) studied stars on elliptical orbits and the effects of general
relativity on the stream, showing how apsidal and Lense-Thirring precession can
alter the formation of the disk which forms when the tidally-disrupted debris
returns to pericenter.

The Galactic center (GC) is a unique laboratory to study physical processes
and phenomena that may be occurring in many other galactic nuclei, where they
are not observationally accessible. The general picture of the GC, in particular
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that of the central parsecs, is rapidly changing (e.g. Yusef-Zadeh et al., 2000;
Alexander, 2005; Yusef-Zadeh & Wardle, 2012). In order to understand the stellar
environment in the inner parsecs, it is relevant to study the stars well outside the
dynamical sphere of influence of Sgr A* and within the ≤ 100 pc scale. The
Galactic bulge stellar population is composed of old stars (∼ 10 Gyr), while the
inner ≤ 100 pc stellar population seems to have been forming throughout the life
of the Galaxy. In particular, the discovery of the so called ”S stars” provided a
new way to study Sgr A*, around which they are orbiting ( < 0.04 pc). However,
their great proximity to the MBH was soon called the ”paradox of youth” (Ghez
et al., 2003). Those S stars which have been analysed are young, main sequence
massive stars, and their existence was unexpected as it is not clear how they
could form in such a violent environment. A current idea is that these stars have
formed far away from the central region, to which they migrated through the Hills
mechanism (Hills, 1988; Brown, 2015). In this scenario, we start with binary stars,
which get scattered under certain dynamical conditions toward the MBH. Due
to the interaction with the latter, one of the binary components gets ejected at
high velocity (high velocity star), while the other gets on a bound orbit to the
MBH. In these regards, there is an interesting mechanism outlined by Hamers &
Perets (2017), which involves nuclear spiral arms in the enhancement of TDEs,
S stars and high velocity stars’ rates. On ∼ 100 pc scale, gas can be perturbed
by torques from nuclear bars (e.g. Shlosman et al., 1989; Englmaier & Shlosman,
2004), which drive inflows to the nuclear regions, giving rise to nuclear spiral
arms. These structures can perturb orbits of stars, making them an additional
channel that can drive stars onto orbits which bring them very close to the MBH.
As a consequence, strong interactions such as stellar TDEs and stellar binary
TDEs can be triggered.

From TDE observations we can infer not only the mass and spin of the MBH
responsible of disrupting the star (e.g. Leloudas et al., 2016; Gomez et al., 2020;
Mummery & Balbus, 2020), but also the mass of the star being disrupted (Guillo-
chon & Ramirez-Ruiz, 2013; Blagorodnova et al., 2017) and information related
to its composition (e.g. Arcavi et al., 2014; Blagorodnova et al., 2019). To be
noted that the estimate of these parameters depends on our current understand-
ing of TDEs and the deriving models. Considering this, TDEs have the potential
to be a tool to study not only quiescent MBHs, but also the innermost galactic
environment surrounding the MBH itself. TDEs are already proving to be a use-
ful source of information regarding the host galaxy. For example, Graur et al.
(2018) suggest the possibility of the existence of a relation between the TDE rate,
which depends on the properties of the stars near the MBH (which are on sub-pc
scales and so rarely measurable), and global galaxy properties. Even though it
is difficult to resolve galactic nuclei down to sub-pc scales, studies found, for ex-
ample, that many galaxies harbour young stellar populations in the central few
parsecs, like our Galaxy, M31 and nearby galaxies (e.g. Krabbe et al., 1991, 1995;
Seth et al., 2006; Chang et al., 2007; Lockhart et al., 2018), and this discovery
has implications on the nuclear environment and the role of the MBH (e.g. Ghez
et al., 2003).

Our work proposes to test the feasibility of TDEs to be used as a (comple-
mentary) source of information of the stellar population residing in the innermost
parts of a galactic nucleus. The idea is to investigate whether there are any char-
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acteristic features in the dynamics of TDEs that depend on the particular type
of stars and on their orbital parameters, that can reflect in the mass fallback rate
and, in turn, possibly in the lightcurves.

To do this, we have performed SPH simulations. Each simulation consists in
modelling the star with 105 particles, and the density profile is described by a
polytrope with γ = 5/3. The MBH is modelled with a generalised post-Newtonian
potential, which takes into account relativistic effects of the Schwarzschild space-
time. We study the TDE dynamical behaviour produced by a MBH like Sgr A*
by changing different orbital parameters and taking into account the observed
orbits of S stars. In particular, we explore the evolution of the debris and of its
fallback depending on different values of eccentricities and penetration factors,
since this affects the timescale of the resulting lightcurves. We perform analyses
on the evolution of specific energy over time for different values of eccentricities or
penetration factors to obtain insight on the circularization processes responsible
for disc formation. We also analyse the evolution of accreted matter and its
energy, and the distribution of eccentricities and angular momentum as these also
add more information about the circularization processes and disc formation.

In Chapter 1, we give an overview of the state of the art in the TDE field. In
Chapter 2, we describe the TDE theory, going through the characteristic stages,
i.e. scattering into the loss cone, first passage to pericenter, debris stream evo-
lution and fallback, circularization and disc formation. In Chapter 3, we give an
overview of the SPH code used for this work and a description of the simulation
setup. In Chapter 4, we discuss results, and finally we give our Conclusions.
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CHAPTER 1

Overview

1.1 Massive black holes

In the year 1783, a paper for the Philosophical Transactions of the Royal
Society of London presented the idea that there could exist objects called dark
stars in the universe. Its author, the natural philosopher John Michell, started
his reasoning in the context of Newton’s corpuscular theory of light, which states
that light consists of particles with finite velocity. It was noted that the escape
velocity from the surface of a body of mass M and radius R exceeds the velocity
c, if R < Rcrit, where

Rcrit =
2GM

c2
(1.1)

The particles emanated from a star would be slowed down by the stellar grav-
itational pull. According to Michell’s calculations, a star with more than 500
times the Sun’s size would have a gravitational pull strong enough to not let light
particles escape. It was the first conceptualization of a black hole (BH). In 1799,
also Jean-Pierre Laplace forms his own idea of a BH (Montgomery et al., 2009).

In 1915 Albert Einstein developed the theory of general relativity (Einstein,
1915c,d,e,a,b), which was published in 1916 (Einstein, 1916). In the same year,
Karl Schwarzschild provided the first exact solution to the Einstein field equa-
tions, for the case of a single spherical non-rotating mass (Schwarzschild, 1916,
1999). This solution becomes singular at the Schwarzschild radius, however the
physical nature of this surface was not quite understood at the time. Later in
1931, Subrahmanyan Chandrasekhar used special relativity to find that a non-
rotating body of electron-degenerate matter has no stable solutions above some
limiting mass (Chandrasekhar, 1931), which is now known as the Chandrasekhar
limit at 1.4 M�, and it would collapse. In 1939, Robert Oppenheimer and col-
legues predicted that neutron stars above the Tolman-Oppenheimer-Volkoff limit
would collapse further, and no law of physics could stop it (Oppenheimer &
Volkoff, 1939; Tolman, 1939). In 1958, David Finkelstein was the first to figure
out that Schwarzschilds solution had an event horizon separating the interior
from the exterior region of a BH (Finkelstein, 1958). It was only some years
later, in 1963, when Roy Kerr found the exact solution for a rotating black hole
(Kerr, 1963), and two years later the no-hair theorem came to light, stating that
a stationary black hole solution can be completely described by just three pa-
rameters, i.e. mass, angular momentum and electric charge (Misner et al., 1973).
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However, the astrophysical existence of a BH was still not taken very seriously,
as people were inclined to believe that there was still some unknown mechanism
which could prevent the complete collapse of a massive body. In 1964, Yakov Zel-
dovich and Edwin Salpeter proposed that the quasar 3C273 (Schmidt, 1963) and
others could be explained by matter falling onto a massive compact object, with
an estimated mass of 108M� (Salpeter, 1964; Zel’dovich, 1964). In the 1970s, the
first clear association of X-ray astronomy and BHs was made by Giacconi and
colleagues on Cygnus X-1 (Bowyer et al., 1965; Tananbaum et al., 1972). It was
soon identified as a BH candidate by Thomas Bolton, Louise Webster and Paul
Murdin (Bolton, 1972; Webster & Murdin, 1972). In the same years, more phe-
nomena appeared to require the presence of a very massive object at the center
of galaxies. For example, Arthur M. Wolfe and Geoffrey Burbidge invoked a mas-
sive object to explain the large velocity dispersion of stars in the nuclear region
of elliptical galaxies (Wolfe & Burbidge, 1970). In 1978, a dynamical evidence
for a massive dark object was found in the nucleus of Messier 87 (Sargent et al.,
1978).

Now BHs present a big challenge to the current foundations of physics, being
at the heart of fundamental questions unifying general relativity with quantum
physics (Hawking, 1976; Giddings, 2017). We are also in a new era of astronomy
where gravitational wave observations, for example the recent LIGO detections
(Abbott et al., 2016, 2017), and very long baseline interferometry, can provide
important hints about new principles of physics from BHs.

From the theory of general relativity, there are virtually no constraints on the
mass of a BH. They can be arbitrarily small or large. However, from observations
it is known that BHs have a (wide) range of masses, which can be roughly divided
into stellar-mass BHs and massive BHs.

Stars which cannot maintain anymore their thermal pressure generated by
burning their nuclear fuel can collapse into a BH, provided the original star
had enough mass (Fig. 1.1). If the mass of the remnant exceeds ∼ 3 − 4M�,
the pressure of degernate neutrons is insufficient to stop the collapse, and the
object will inevitably collapse and form a stellar-mass BH (Shapiro et al., 1985;
Camenzind, 2007). Evidence for stellar-mass BHs come from X-ray observations
(Webster & Murdin, 1972; Remillard & McClintock, 2006) and from the more
recent gravitational wave measurements.

BHs with masses from 106 to 109 solar masses were speculated to exist in the
centers of nearly all galaxies (Lynden-Bell, 1969; Kormendy & Richstone, 1995;
Miyoshi et al., 1995), the Galactic Center (GC) included (Eckart & Genzel, 1997;
Ghez et al., 1998). Now it is well established from both gas and stellar dynamical
measurements that massive black holes (MBH) do reside in the nuclei of most
galaxies (e.g. Young et al., 1978; Kormendy & Richstone, 1995; Ferrarese & Ford,
2005, and references therein). How do these massive objects form is still an open
research field, with different proposed mechanisms.

There are also claims about the existence of intermediate MBHs - those with
mass range 102 − 105M�. Intermediate MBHs are yet an elusive class, theorized
to be potential seeds of super MBHs and to reside in globular clusters, but no
observation has confirmed their presence up to date. Recently there have been
speculations about a new class of MBHs dubbed ultra MBHs (Mezcua et al.,
2018), which should have MBH > 1010M�. In order to keep the discussion general,
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Figure 1.1: Formation of a BH. A BH is the result of the lifecycle of a massive
star. The cycle starts from the nebula and goes clockwise. Image: Jack Hughes
/Twitter: @jackmrhughes
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Figure 1.2: Gravitational wave signal of BH formation resulting from the merger
of a BH binary. The signal was detected in 2015 by LIGO (Abbott et al., 2016,
2017). Image: c©LIGO.

in this thesis we choose to refer to black holes with masses larger than ∼ 105M�
up to 1010M� (McConnell et al., 2011; Mehrgan et al., 2019) simply as MBHs.

According to general relativity, any information related to the BH matter
stays inside its event horizon, making it not accessible to external observers (the
”no hair” theorem, Misner et al., 1973). The electrical charge is usually neglected
(Zajacek & Tursunov, 2019) and implicitly set to zero. This is a good approx-
imation when dealing with neutral particles and photons, while care must be
taken when dealing with charged particles, such as cosmic rays, as even a small
charge is significantly sufficient in affecting their motion. Electromagnetic and
multimessenger experiments focus at determining mainly the BHs mass, and spin,
assuming that the charge is negligible, also often backed up by the assumption
that the presence of plasmas around astrophysical BHs leads to prompt discharg-
ing. In order to detect MBHs and infer properties such as their mass, there are
different methods, which can be direct and indirect. In general, they can be ob-
served through luminous accretion of gas or via gravitational interactions with
the surrounding stellar environment. In the following, we illustrate few of these
methods in order to give a general idea of how MBHs are studied.

Most galaxies host within their bulge a MBH and various correlations have
been observed between the MBH itself and the properties of the galactic bulge
hosting it. The first correlation called Magorrian relation (Magorrian et al.,
1998) relates the mass of the MBH to the mass of the galactic bulge Mbulge as
MBH ∼ 0.001Mbulge. Ferrarese & Merritt (2000) and Gebhardt et al. (2000a)
discovered the scaling relation between the mass of the MBH and the velocity
dispersion of the stellar population of the spheroid bulge of galaxies, written as
MBH − σ∗ (Fig. 1.3). This relation has been confirmed several times in the
following years (Gebhardt et al., 2000b; Merritt & Ferrarese, 2001; Tremaine
et al., 2002; Ferrarese & Ford, 2005; Graham, 2008; Hu, 2008) and demonstrated
that there is a high likelihood of a co-evolution between the MBH and its host
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galaxy, and interest followed in studying more relations between the MBH and the
galaxy properties. The strong correlation found between the MBH mass and the
velocity dispersion of the galactic bulge suggests a mechanical feedback between
the MBH and the host galaxy, which extends beyond the sphere of gravitational
influence and the merging/accretion history of the MBH. However, this relation
is observationally constrained and is not well calibrated for low-mass galaxies,
since the galactic samples suffer from luminosity bias and large uncertainties.

Other relations between the MBH and the host galaxy include a correlation
between the mass of the MBH and the light profile of the galactic bulge quantified
by the galactic Sérsic index (Sérsic, 1963; Graham et al., 2001, e.g.): the Sérsic
index n appears in the Sérsic model R1/n, which is most commonly expressed as
a parametrization of the galactic intensity as a function of the projected galactic
radius R (Graham & Driver, 2005). Another correlation discovered by Seigar
et al. (2008) involves the mass of the MBH and the tightness of the spiral arms
in disc galaxies.

The origin and nature of the link between the MBH mass and the host galaxy
properties are not yet clear. Thus, it is important to obtain an unbiased knowl-
edge of the BHs demographics in galactic centers as a function of cosmic time.
The issue is the detection of MBHs in quiescent galaxies via direct methods, such
as stellar and gas dynamics, as they are limited by the current ability to resolve
spatially the sphere of influence of the MBH. This is why direct mass measure-
ment of MBHs are restricted to nearby galaxies and active galaxies. Regarding
this issue, tidal disruption events are an additional tool to study MBH because
they temporarily turn on a quiescent state MBH.

Another interesting method to measure mass of a MBH in an AGN involves
using reverberation mapping. In particular, this technique is used to study the
structure and kinematics of the broad emission-line region by observing the re-
sponse of the broad emission lines to changes in the continuum. The mass of the
MBH is then measured directly considering that the motion of gas is induced by
the MBH gravitational force. However, also this technique presents restrictions
in that it requires multi epoch observations in order to measure the spectral time
lag.

A different approach relies on the established relation between the X-ray emis-
sion, the radio emission and the mass of the MBH, which form the so-called fun-
damental plane of BH activity (Merloni et al., 2003; Plotkin et al., 2012). This
relation, which is shown in Fig. 1.4 originates from the following considerations.
When studying BH-powered activity, there are some distinctive signatures which
are usually regarded as a proxy of the BH existence: relativistic jets emitting
synchrotron radiation in the radio band are one such signature, the second being
the presence of a strong, compact power-law X-ray emission, which is usually
associated with the inner part of an accretion flow (aside stellar-mass objects,
in which case these signature are common also for neutron stars, and dynamical
studies are needed to provide distinction between a neutron star and a BH). An
increasing number of studies suggest that accretion physics scales globally across
the entire BH mass scale, from stellar-mass BH to MBHs. The discovery of the
fundamental plane of BH activity for low-accretion rate BHs supports this unifi-
cation: once normalised by the BH mass, the process that regulates the fraction
of energy accreted onto a BH, which is eventually converted into radiation, could
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Figure 1.3: The M − σ∗ relation for galaxies with dynamical measurements.
Symbols denote the method used to measure mass of the BH. Arrows denote the
3σ upper limits. For clarity only error boxes for upper limits close to or below
the best-fit relation are shown. Colors denote the type of galaxy. Squares are
galaxies not included in the fit. From Gültekin et al. (2009).

be universal for weakly accreting BHs. Fig. 1.4 shows the fundamental plane
of BH activity for stellar-mass BHs (GBH, i.e. galactic BH in the figure), L+T
objects, where L stands for LINER (low-ionisation nuclear emission-line regions)
and T stands for Transition object (LINER/H II), Seyfert galaxies (a group of
active galaxies), and quasars.

This short review of methods tells us that to study MBHs at large distances
the only efficient approach to measure mass is through luminous accretion flows,
which are present only for a small fraction of the entire MBH population. This
introduces also a potential bias into mass measurements, which becomes more
sever for spin measurements. While the existence of MBHs in active galactic
nuclei has been demonstrated, a similar confirmation of dormant or quiescent
state MBHs in distant non-active galaxies is difficult to obtain. But in order to
have a complete picture of the astrophysical properties of MBHs, it is of interest
to probe also those that are in quiescent state. For very nearby galaxies, for which
telescopes can resolve the MBH sphere of influence, the stellar motion around the
MBH can be studied and used to measure the mass. For distant galaxies, stellar
disruptions which occur when the tidal forces of the MBH shred a star passing too
close to it, can be used as probes to determine the MBH mass. The stellar debris
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Figure 1.4: Fundamental plane of BH activity. Symbols denote the type of object,
where GBH stands for galactic BHs, that is stellar-mass BHs, L+T stand for
LINER and Transition object (LINER/H II), Sy stands for Seyfert galaxies and
QSO stands for quasar. Colors denote the magnitude of the object. From Merloni
et al. (2003).

will temporarily (∼ months to years) fuel the otherwise quiescent MBH. These
events were theorized in the 1970s-1980s and are referred to as tidal disruption
events (TDE) (e.g. Hills, 1975; Frank, 1978, 1979; Carter & Luminet, 1982; Lacy
et al., 1982; Luminet & Marck, 1985; Rees, 1988). Although also AGN can host
tidal disruption events, the most unambiguous cases for a stellar disruption come
from host galaxies with no or faint permanent activity.

1.2 The importance of massive black holes

The most important motivation to study MBHs is that they offer a unique
laboratory to probe general relativity. For example, observations of Sgr A*, the
MBH in the center of our Galaxy and nearest MBH we can observe, have provided
some of the first most important evidence for the existence of event horizons
(Broderick et al., 2009), before the recent direct imaging of the disc surrounding
the MBH in M87 with the Event Horizon Telescope (Doeleman et al., 2009; Event
Horizon Telescope Collaboration et al., 2019).

It is evident, but yet not fully understood, the fact that MBHs play also an
important role in the growth and evolution of galaxies. MBHs and their bulges
also formed at about the same epoch with respect to the age of the Universe.
These observations suggest that BH formation and bulges formation are closely
related.

In more detail, it is seen that MBH with masses of the order 109M� are
observed up to redshifts z ' 7.5, when the Universe was only about 0.7 Gyr
old (Yang et al., 2020). However no mechanism is known, which could create
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and grow such a MBH in a relatively short lapse of time (e.g. Volonteri & Rees,
2005; Lodato & Natarajan, 2006, 2007; Volonteri et al., 2008; Volonteri, 2010b,a;
Volonteri & Bellovary, 2012; Latif & Ferrara, 2016). It is unclear what role the
environment plays in the existence of such objects at early times, nor it is yet
understood which is the role of the first primordial stellar population (population
III; e.g. Latif & Ferrara (2016) and references therein). There is an ongoing
debate on whether the origin of MBH should be associated to BH seeds of stellar
origin, that is BH with masses ∼ 1− 102M� or to heavier BH seeds, that is BH
with masses ∼ 104 − 106M� (Volonteri & Natarajan, 2009; Volonteri, 2010b).
MBHs with masses of ∼ 105M� are thought to be found in Seyfert galaxies, for
example POX 52 and NGC 4395 (Barth et al., 2004; Woo et al., 2019). Even
lower mass BHs are expected to exist in dwarf galaxies, and, if the existence will
be proved, they could give further insight in the process that formed the seeds of
MBH detected in larger galaxies (Greene et al., 2019, and references therein).

The remnants of quasar phases at early times are possibly the MBHs found
at the centers of galaxies in the local Universe. As discussed in the previous
Section, the properties of these MBHs are tightly related to the mass and velocity
dispersion of the host galaxies. In addition, the BH mass is correlated with the
concentration or Sérsic index (Graham & Driver, 2007). All this observational
evidences, which span from local galaxies to high-redshift quasars, suggest that
there is a close connection between the formation and evolution of galaxies and
their MBHs, which is yet to be fully understood (see Sesana, 2012, for a review).

Pulling together all the strings, we get a picture in which quiescent MBHs
that populate galaxies in the present are relics of past luminous quasars. The
MBHs we see are expected to be the final product of a complex evolutionary
path, where black holes seeds in protogalaxies at high redshifts grow via MBH-
MBH mergers and accretion episodes (Kauffmann & Haehnelt, 2000; Volonteri
et al., 2003; Hopkins et al., 2006). In addition, a better understanding of the
relation between the MBH and its host galaxy may also help in other aspects
of astrophysics: demographics and growth history of MBHs could tell something
more about black hole accretion and star formation.

BHs more massive than stellar-mass BHs are expected to be widespread in
stellar systems, however only a small fraction of these BHs are active at levels of an
AGN. In fact, most MBHs are in a quiescent state at the present. Nevertheless,
since these objects are not completely isolated, but instead are embedded in
stellar environments, they are unlikely to become fully inactive. Possible accreting
sources can be material stripped by stars or stellar winds coming from mass
loss of evolved stars. Indeed, the luminosity of Sgr A* could be explained by
inefficient accretion of gas from stellar winds (Quataert, 2004), which can be also
a significant fuel source in elliptical galaxies.

1.2.1 Sgr A*

The nearest observable MBH is Sgr A*, with mass MBH ' 4.3 · 106M� and
distance R0 ' 8.3 kpc (1 pc ' 3.26 ly) from the Solar system (Gillessen et al.,
2009). Its existence was first proposed its existence in 1971 by Lynden-Bell &
Rees (1971). The first radio signal coming from the GC, which was later called

20



Figure 1.5: Orbits of individual stars near the Galactic center. Results from
the Ghez group using the Keck telescope and from the Genzel group using the
Europen Very Large Telescope (VLT) are combined. From Kormendy & Ho
(2013).

Sagittarius A, was discovered by Karl Jansky in the ’30s (Jansky, 1933). Ob-
servations in the following decades found that Sagittarius A consists of several
components (Becklin & Neugebauer, 1968; Balick & Brown, 1974; Lacy, 1980;
Ekers et al., 1983). One of those was brighter and very compact, and was discov-
ered by Balick & Brown (1974). Later in 1982, Brown named this source Sgr A*
(Brown, 1982).

A firm evidence for the existence of a MBH coincident with the radio source
Sgr A* came in ’90s (Genzel et al., 1997; Ghez et al., 1998). The tracking of the
motions of these stars (since 1992) in the immediate vicinity of Sgr A* (Eckart
& Genzel, 1996; Ghez et al., 1998; Gillessen et al., 2009), allowed the detection
of accelerations and the determination of stellar orbits (Fig. 1.5), giving an
observational evidence of a MBH in the GC.

Given its under luminosity, Sgr A* was not the first MBH to be detected
(Baganoff et al., 2003), but despite the strong dust extinction along the line of
sight through the Galactic disc (Schödel et al., 2007), it is the most accessible
to high resolution observations. In the last decades, observations in the infrared
and X-ray bands allowed us to detect the faint accretion emitted from Sgr A*, as
well as to accurately track stars and gas clumps orbiting around it (Genzel et al.,
2010).

The GC offers the unique opportunity to detect phenomena, which cannot
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Figure 1.6: The inner two parsecs of the Galactic Centre region schematic plot,
to scale. The main structures are indicated by different colours. The black
star represents the Galactic Centre black hole Sagittarius A*. The red oval is
the molecular ring or circumnuclear disk (torus), containing molecular gas. The
structure in cyan is the mini-spiral, consisting of three streams of ionized gas
rotating counterclockwise, orbiting the black hole and/or inflowing. The grey
circle represents the nuclear star cluster. The yellow line marks the galactic
plane (viewed edge-on). The dark-blue oval is the orbit of star S2 as projected on
the sky and the orange line is the observed track of the G2 object as projected
on the sky. The light-blue oval in the centre around Sgr A* is the ionized gas
disk detected in the H30α line. The direction of rotation of the structures, where
relevant, are shown with arrows, the circled cross indicates recession from Earth,
and the circled dot indicates approach to Earth. The colours of the rotation
markers match the colours of the rotating structures. The projected distances in
parsecs were calculated for a distance to the Galactic Centre DSgrA∗ = 8.0 kpc.
At this distance 1 arcsec corresponds to 0.04 pc. From Murchikova et al. (2019).
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currently be observed in more distant nuclei, considering its proximity (distance
to GC is ∼ 100 times closer than the MBH in Andromeda, the nearest large
galaxy, and ∼ 2000 times closer than galaxies in Virgo, the nearest cluster of
galaxies; Alexander (2005)). High resolution observations of the GC get a lot
more detailed and specific information than it is possible for any other galactic
nucleus. As such, the GC allows us to study not only the MBH, but also to explore
the impact of the MBH on its stellar and interstellar surrounding environment.
It must be noted, however, that due to the nucleus being highly obscured by
interstellar dust along the Galactic disc plane, observations in the optical band
are not possible (Rieke et al., 1989; Alexander, 2005). Observations can be done
in the infrared and microwave bands or X-rays and γ-rays.

The young stars paradox

Due to large interstellar extinction, the GC was not well studied until the
1990s, but now we know that the environment in the GC is varied. As other
galactic nuclei, also the GC presents a rich molecular gas region, the so-called
circumnuclear disc or ring (Fig. 1.6; Christopher et al. (2005)), orbiting around
Sgr A*and extending ∼ 2 − 7 pc. Observations in the innermost regions nearby
Sgr A* show that it is surrounded by a parsec-scale star cluster, which consists of
different components: an old spheroidal stellar population (Genzel et al., 2003),
a population of early type stars of unknown origins (possibly confined within
two discs; Paumard et al. (2006); Lu et al. (2009)), several dozen Wolf-Rayet
stars (extremely hot, white stars with a high mass loss rate; Abbott & Conti
(1987); Najarro et al. (1997)), a cluster of few luminous blue supergiants (Genzel
et al., 2003), and a complex of ionized gas clouds called Sgr A West (Yusef-Zadeh
et al., 1998). The study of these components can help in better understanding of
star formation and accretion processes in this kind of extreme environments. In
more detail, within the 0.04 inner parsecs, there are blue stars knowns as S-stars,
orbiting in the immediate vicinity of Sgr A*, while between 0.04 and 0.4 pc there
are few tens of OB supergiants, giants, and main-sequence stars mixed in faint
red stars (Krabbe et al., 1995; Oh et al., 2009).

The discovery of the existence of a population of young stars (Krabbe et al.,
1991, 1995), that is with ages < 6 Myr, which are bright enough to be tracked
around the GC and reside in the hostile tidal environment close to Sgr A*, raised
questions on star formation and stellar dynamics theories (Genzel et al., 2003;
Ghez et al., 2003). There is no unique explanation to how these stars can exist
so close to the MBH, which poses the so-called ”young stars paradox”, a problem
that constitutes one of the major issues in GC research field. It has been proposed
that a star cluster could have formed in a region far outside the central parsec,
which then migrated inwards, or in situ star formation occurred, where a model
requires a gravitationally unstable gaseous disc around the MBH for the young
stars to form (Nayakshin et al., 2007).

The gaseous material which formed the young stars most probably came from
farther regions. According to a well studied scenario, the circumnuclear gas may
form from the tidal disruption of giant molecular clouds and could create the
circumnuclear disc and the young stellar disc (Wardle & Yusef-Zadeh, 2008; Trani
et al., 2018). It is also worth noting that there is evidence of ongoing (episodic)
star formation in the GC (Yusef-Zadeh et al., 2008) and in the circumnuclear
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Figure 1.7: Illustration showing a stream of stellar material as it is being devoured
by a MBH in a tidal disruption flare. Image credit: NASA/JPL-Caltech.

disc itself. Similar episodes of star formation in the innermost central parsecs
are expected in other nearby galaxies, and could be detected with the advent
of 30-meter telescopes (Gullieuszik et al., 2014). Furthermore, young luminous
stars such as the ones observed in the GC are good candidates for kinematic
measurements to determine the mass of the MBH. These facts highlight even more
the importance to study the stellar populations and environments surrounding
MBH residing at the center of galaxies, and the reason we decided to focus on
this kind of environment for this thesis.

1.3 Observations of tidal disruption events

A TDE occurs when a star approaches a MBH close enough to be disrupted by
its tidal forces (Fig. 1.7). Part of the disrupted star then forms an accretion disc
around the MBH. TDEs produce large amplitude flares, which last from months
to years and occur at the center of a galaxy. In the following, we will resume
the status of observations of TDEs (see also a review by Komossa, 2015). An
exhaustive list of detected TDEs up to date can be found online1 or in Auchettl
et al. (2017).

It is not fully clear what observational features define a TDE as opposed to an
AGN or a supernova (SN), for example. Most TDEs do not have multiwavelength
coverage (see Table 1.1). For example, many TDE candidates are observed in X-
rays, as expected, while others are detected in the optical/UV but show no sign of
X-ray emission. Also, it is not clear if all the objects dubbed as TDE candidates
do belong to the same class. For this reasons and for convenience of describing
a general status of observations of TDEs, we are going to resume the observed
TDEs according to their emission:

• TDEs with emission in the X-ray band;

1https://tde.space
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Table 1.1: Simple representation of TDE status of observations. From I. Arcavi,
TDE school in Jerusalem, 2015.

PS1-10jh, PTF09ge,
TDE Swift J1644, Swift J2058 PTF09axc, PTF09djl, ASASSN-14li

ASASSN-14ae, ASASSN-15oi

X-rays × ×
Optical/UV × ×

Radio × ×

• TDEs with emission in the optical and UV bands;

• TDEs with luminous and energetic emission in the hard X-ray and γ-ray
bands, along with radio emission.

The early TDE discoveries were made in the 1990s by the ROSAT satellite,
which was well suited to detect such events with its high sensitivity, long lifetime,
all-sky coverage in the first year of operation and soft X-ray response (0.1-2.4
keV). The first TDEs were discovered during the ROSAT X-ray all-sky survey
(Bade et al., 1996; Komossa & Bade, 1999; Komossa & Greiner, 1999; Brandt
et al., 1995; Grupe et al., 1995). Their X-ray lightcurves are plotted in Fig. 1.8
and they follow a t−5/3 power law. The best covered events in terms of X-ray
lightcurves, spanning more than a decade are NGC 5905 and RXJ1242-1119,
which also show decline amplitudes larger than a factor 1000.

Later TDEs were observed in X-rays also by XMM-Newton, Chandra and Swift
satellites. The XMM-Newton survey data has been compared to the ROSAT
database and few events have been found (Esquej et al., 2007, 2008; Saxton
et al., 2012, 2014). Instead of a normal galaxy, that is nn-active galaxy, some
TDEs were also identified in clusters of galaxies. One of these was found in the
field of the moderately rich cluster Abell 1795, at redshift z = 0.062476 (Donato
et al., 2014), with an estimated MBH mass < 106M�. Other TDEs discovered
by XMM-Newton and ROSAT occurred in relatively nearby galaxies at redshifts
z = 0.03 − 0.2, which are optically quiescent. Finally, the Swift satellite gave
an important contribution by providing rapid follow-ups, thus confirming fading
X-rays and providing tight constraints on the luminosity evolution.

These events have mostly lightcurves with peak luminosity up to ∼ 1044 erg
s−1, which is followed by a temporal decay ∝ t−5/3. They have an effective
temperature T ≈ 105 K, which is slowly increasing with time. Their total energy
is typically less than few 1051 erg.

TDEs were also observed in the optical and UV bands. TDEs were detected
first by the GALEX satellite (Gezari et al., 2006, 2008, 2009), and later by sur-
veys like SDSS, PTF, Pan-STARRS and ASAS-SN (Komossa et al., 2008; van
Velzen et al., 2011; Gezari et al., 2012; Arcavi et al., 2014; Chornock et al., 2014;
Holoien et al., 2016b,a; Leloudas et al., 2016). Starting from GALEX, which
performed the first sky survey in the UV from space, three TDEs were detected.
Data from SDSS together with spectroscopic followup found seven events, which
show extreme coronal line emitters (ECLEs) (Komossa et al., 2009; Wang et al.,
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Figure 1.8: Joint X-ray lightcurve of TDEs detected by ROSAT (given by differ-
ent symbols and colours), shifted to the same peak time. The decline is consistent
with a t−5/3 power law, given by the dashed line. From Komossa (2015).

2011, 2012; Palaversa et al., 2016). The class of ECLE is interesting because
they exhibit distinct features, in particular strong coronal lines such as [FeX] λ
6376, [FeIX] λ 7894, [FeXIV] λ 5304, which require a high energy photoionizing
continuum, and strong variability of their intensities over time. TDE powered
flares are interpreted as the source of the high photoionizing continuum, which
powers the Fe-lines. One of these events is ECLE SDSSJ095209.56+214313.3,
which is characterized by a strong, fading, high ionization lines, and was long
under discussion on whether it is a TDE or a SNe before finally setting down
on the TDE origin. In fact, ruling out between these two astrophysical types is
quite often the case when looking for TDEs. Time domain optical astronomy
gives the possible advantage to have a large and high cadence TDE sample, but
optical TDE flares can be more easily confused with nuclear Type II SNe, which
are intrinsically more common.

A special TDE observed in the optical/UV is PS1-10jh. It was observed in
2010 by Pan-STARRS and GALEX (Gezari et al., 2012). Fig. 1.9 shows its
lightcurve in the optical/UV (g, r, i, z bands from Pan-STARRS, near-UV from
GALEX), and one point in the UV as measured by Hubble Space Telescope. The
data is fitted with models by Lodato et al. (2009) and Guillochon & Ramirez-
Ruiz (2013) and is consistent with a continued decline close to the canonical t−5/3

power law. PS1-10jh is important because it is the first event whose lightcurve
follows the rise to peak brightness and not just the later-time decline; it is the
second optically-selected event to be followed up in real time after PTF10iya; it
is the first event whose optical spectrum shows lines at all and, in particular,
its spectrum shows He II emission lines but no hydrogen, which suggests that
the event was the disruption of the core of a red giant star rather than the
disruption of a main sequence star. As a consequence of the type of star being
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disrupted, the host galaxy (at z = 0.1696) of this TDE may contain a low-mass
MBH (MBH ∼ 2×105M�), which are difficult to find because of the small radius
of influence. Furthermore, UV observations indicate a relatively cool effective
temperature T ∼ 3 × 104 K, which remained constant for almost a year, while
the luminosity declined by a factor ∼ 50 (Strubbe & Murray, 2015).

As another example, more recently the intermediate Palomar Transient Fac-
tory (iPTF) discovered an optical TDE candidate (Blagorodnova et al., 2017).
This event, dubbed iPTF16fnl, was discovered in 2016 and is localized in the
center of a post-starburst E+A galaxy (Mrk 950) lying at a distance of 66.6
Mpc (z = 0.016328), making this TDE the closest in optical/UV wavelengths.
The multi-band Swift and optical lightcurve is shown in Fig. 1.10. A best fit
is also shown with a green line using the model by Guillochon & Ramirez-Ruiz
(2013). iPTF16fnl is the faintest and fastest event among the optical TDEs.
From Blagorodnova et al. (2017), its luminosity at peak is one order of magni-
tude lower than any other optical/UV TDE so far, and it has one of the shortest
exponential decay timescales (∼ 15 days). In addition, the host of iPTF16fnl
is another example of a post-starburst galaxy, giving another suggestion that
TDEs occur more often in E+A galaxies (Arcavi et al., 2014; French et al., 2016).
Blagorodnova et al. (2017) estimate the MBH mass from the model, which gives
MBH ∼ 2× 106M�. As a consequence, the mass of the disrupted star should be
M∗ ∼ 0.03M�, which argues a low mass star or a partial disruption.

A more recent collection of 17 optically discovered TDEs by ZTF can be found
in van Velzen et al. (2020).

In general, optical/UV TDEs present lightcurves with peak luminosity up to
∼ 1043 erg s−1, which is followed by a temporal decay broadly consistent with
t−5/3. They present an effective temperature T ≈ 104 K, which remains constant
over time, and are lower than the X-ray events for which T ≈ 105 K. Their
total energy is also typically less than few 1051 erg. The majority of the low-
temperature events did not have detectable X-ray emission.

There has been a recent discovery of a TDE with a particularly rich dataset.
ASASS-14li includes spectra and lightcurves in soft X-rays (Miller et al., 2015),
optical and near-UV (Cenko et al., 2016; Holoien et al., 2016b), and radio (Alexan-
der et al., 2016; van Velzen et al., 2016). It was discovered in an optical monitoring
survey by ASASSN in 2014 and its host galaxy lies at redshift z = 0.0206, mak-
ing ASSAN-14li one of the closest TDE found. Its optical lightcurve has been
described as exponential with a decay time of ' 60 days. The spectra indicate
that it mantained a nearly constant color temperature at ' 3.5 × 104 K over a
period of several months. The first X-ray observations were less than a week after
discovery and the flux reached a peak 20-30 days after discovery. Fig. 1.11 shows
the flux decay of ASASSN-14li as observed by Swift. The gray band denotes the
t−5/3 flux decay as predicted by fundamental theory. The V-band light is consis-
tent with a shallower t−5/12 decay, indicating that there is direct thermal emission
from the disc or reprocessed emission. Two different groups monitored the flare’s
radio flux and give different explanations. Alexander et al. (2016) attribute much
of the low-frequency flux to a pre-existing, time-steady and optically thin syn-
chrotron source. On the other hand, van Velzen et al. (2016) argue that the
pre-existing source is suppressed and then replaced by a jet. ASASSN-14li, with
such a complete dataset and different interpretations, invites to further analyses
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Figure 1.9: Optical/UV lightcurve of TDE PS1-10jh, observed in the g, r, i,
z bands by PanSTARRS and near-UV by GALEX. One point in the UV was
measured by Hubble Space Telescope. The data is fitted with models by Lodato
et al. (2009) (thick lines) and Guillochon & Ramirez-Ruiz (2013) (thin lines).
From Gezari et al. (2015).

(e.g. Krolik et al., 2016).

There are few TDEs which have been found to be particularly energetic and
present a relativistic jet. In fact, a new chapter in the study of TDEs started
when Swift J1644+57 (Bloom et al., 2011; Levan et al., 2011; Burrows et al.,
2011; Zauderer et al., 2011) was detected by the Swift satellite, and at first
seemed to share similarities to GRBs. This event was characterized by a rapid
rise, long duration, luminous and energetic emission in the hard X-ray and γ-
ray bands, as well as a compact and variable associated emission in the radio
band, and an optically inactive galaxy (z = 0.353). This TDE high luminosity
can be explained considering a relativistic jet beamed towards our line of sight.
In addition, in the first few days after discoveries the X-ray lightcurve features
large amplitude variations, with possible quasi-periodicity of 200 s (Reis et al.,
2012), then it decays ∝ t−5/3, and suddenly drops after ∼ 500 days (Zauderer
et al., 2013). The discovery of this TDE triggered a number of theoretical studies,
addressing the trajectory and type of the disrupted star and mass and spin of the
MBH, and the nature of the radio emission and jets (Shao et al., 2011; Krolik &
Piran, 2011; Metzger et al., 2012; Krolik & Piran, 2012). Interesting questions
were also raised regarding the role of the magnetic fields in jet formation models
and whether they are generated in situ in the disc. These questions stem from
the fact that the estimated magnetic field strength is much higher than that of a
main-sequence star, so it should be generated by the disc.

Swift also detected a second jetted TDE, Swift J2058+05 (Cenko et al., 2012).
It is characterized by a luminous, long-lived X-ray outburst with peak isotropic
X-ray luminosity ≈ 3 × 1047 erg s−1, a X-ray lightcurve with rapid variability,
strong radio emission, and an optically inactive host galaxy (z = 1.185). Like
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Figure 1.10: Observed lightcurve for TDE iPTF16fnl. The green line shows the
best fit to the g-band data corrected for Galactic extinction. The peak time
(MJD 57632.1) in g-band is taken as the reference epoch. From Blagorodnova
et al. (2017).

Swift J1644+57, this event also shows an sudden drop after 200-300 days.
These two TDEs posed some questions on whether and when a TDE can

launch a powerful radio jet. Jets similar to Swift J1644+57 were expected to be
detected by deep radio follow-ups, which is not the case. Thus, the discovery of
jetted TDEs influenced the study of jets formation, re-exploring the parameters
which allow such phenomena.

Multiwavelength observations of TDE candidates allow to improve our un-
derstanding of the mechanisms undergoing in these events. More observational
data is available from wide-field optical surveys as ZTF and Gaia, and the TDE
sample will be significantly increased with up to thousands of candidates with
the upcoming surveys such as LSST in the optical band and eROSITA in the
X-ray band. In addition, the combination of radio and X-ray data from SKA and
ATHENA is expected to increase the detection of jetted TDEs.

1.4 State of the art in tidal disruption events

theory

A TDE occurs when a star passes too close to the MBH, that the tidal field
is able to overcome the stellar self-gravity, and as a consequence the star is torn
apart. The TDE process was initially studied by Hills (1975) as a mechanism to
fuel AGN. The basic theory concerning TDEs as a mean to identify the presence
of quiescent MBHs in nearby galaxies has been developed in the late 70s and 80s
(Lacy et al., 1982; Rees, 1988; Phinney, 1989; Evans & Kochanek, 1989). The
discovery of the first jetted TDEs by Swift started a new effort in understand-
ing the physics governing these events, and now, relatively to the ’80s, there are
available many more detailed hydrodynamical models (see e.g. Rossi et al., 2020,
for a review), which can be compared to observational data. There is still work
to do regarding the models, since there are none that can describe accurately all
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Figure 1.11: Multiwavelength lightcurve of ASASSN-14li, based on observations
from Swift satellite. Colors denote different bands. The errors shown are the 1σ
confidence limits on the flux in each band. The gray band depicts the t−5/3 flux
decay as predicted by fundamental theory. The X-ray flux points carry relatively
large errors, so one representative error is shown. From Miller et al. (2015).

the observed TDEs. One example regards the selection of TDEs: this used to be
done according to the shape of their optical/UV lightcurve, which is expected to
be described by a t−5/3 power law decline (Gezari et al., 2009, 2012). However,
Lodato & Rossi (2011) found that this decline is actually not expected for the
optical/UV. Instead, the power law should track the weaker temperature evo-
lution of the system. As a consequence, this led to revised TDE models, which
include reprocessing of the disc emission by outer debris (Guillochon et al., 2014).
Numerical simulations have always played a big role in understanding the hydro-
dynamics of the processes governing TDEs. The dynamics of a TDE is relatively
complex, indeed it involves hydrodynamics of a self-gravitating fluid (represent-
ing the star) that is subject to a relativistic force from a MBH. As such, a correct
treatment of a TDE would include general relativistic (magneto)-hydrodynamics
with heating and radiation (see Lodato et al., 2020, for a review on TDE sim-
ulations). Over the years a lot of work has been done to study the process of
the debris fallback and the accretion disc formation, and it has been shown that
relativistic effects such as relativistic precession are important to determine the
self-crossing of the debris stream and lead to circularization. In addition, the
resulting disc properties depend on the cooling property of the gas. Works have
been carried out also to study how magnetic fields would affect the TDE evo-
lution. Furthermore, recent models take into account Lense-Thirring precession
in the presence of a Kerr MBH. More detailed reviews on the state of the art in
TDE theory and simulations can be found in Lodato et al. (2015); Rossi et al.
(2020); Lodato et al. (2020).

In the Chapter 2, we are going into more detailed theory.
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1.5 Importance of tidal disruption events

One of the initial ideas was to use TDEs as tracers of dormant MBHs in quies-
cent galaxies, but with more TDEs being discovered and with more observatories
and surveys being available TDEs turned to be events that can be exploited in
different ways.

Since TDEs can reach distances very close to the Schwarzschild radius, they
can be used to probe relativistic effects such as apsidal and nodal precession
TDEs can be used to probe relativistic effects via emission line profiles (e.g. Štolc
& Karas, 2019) or precession effects in the Kerr metric (e.g. Dai et al., 2013;
Guillochon & Ramirez-Ruiz, 2015; Shiokawa et al., 2015; Franchini et al., 2016;
Liptai et al., 2019). TDEs provide a good opportunity to study the accretion
physics (e.g Strubbe & Quataert, 2009; Mageshwaran & Bhattacharyya, 2020,
and references therein) during accretion at high rates and near the last stable
orbit (e.g. Shen & Matzner, 2014), and can provide a new method to measure
not only the MBH mass, but also its spin (e.g. Sponholz, 1994; Kesden, 2012a,b;
Mummery & Balbus, 2020). The maximum mass of a MBH that can disrupt a
star depends on the MBH spin (e.g. Kesden, 2012a), rising the prospect of using
TDEs as probes of general relativity. An interesting example of how TDEs can
be used is given by Lu et al. (2017), who demonstrate that samples of TDEs may
rule out exotic alternatives to Kerr black holes, such as boson stars.

TDEs occurring in environment rich in gas will illuminate the circumnuclear
material and the reprocessed emission lines give the opportunity of reverberation
mapping the cores of quiescent galaxies (e.g. Komossa, 2015). They can poten-
tially help in revealing the population of IMBHs , for which there are no firm
observational evidences yet (e.g. Baumgardt et al., 2006; Fragione et al., 2018;
Chen & Shen, 2018; Sakurai et al., 2019). TDEs can tell us if the MBH is a
binary or if it is recoiling: this can be argued from the fact that TDE rates are
enhanced under these conditions (e.g. Chen et al., 2009; Schnittman, 2010; Stone
& Loeb, 2011; Coughlin et al., 2017) and they can occur off-nuclear.

Although there are only three firmly established candidates of jetted TDEs
up to date (Bloom et al., 2011; Cenko et al., 2012; Brown et al., 2015b), they
can potentially provide in the future new insight into the formation and early
evolution of radio jets, and shed new light on issues like the cause of the radio-
loud radio-quiet dichotomy2 of AGN (e.g. Gopal-Krishna et al., 2008). Stellar
dynamics in galactic nuclei is on spatial scales which cannot be resolved directly,
however, since TDE rates depend on stellar dynamics, they also trace it, giving
us a tool to investigate it (e.g. Stone & Metzger, 2016).

From the properties of a TDE, we can not only infer properties of the MBH
that caused it, but also of the disrupted stellar object. We can find out not
only the mass of the star (e.g. Blagorodnova et al., 2017), but also its type
with spectroscopical data (Arcavi et al., 2014, e.g.). As a consequence we can

2The so-called radio loudness of an AGN is usually defined as the ratio of its radio and
optical flux densities or luminosities at two specific frequencies. The radio-loud/radio-quiet
dichotomy is a bimodality that can be encountered in the radio loudness distribution of AGN.
This dichotomy is an on-going topic, whose resolution is important if one wants to fully address
the accretion BH physics, jet formation and feedback (see Broderick & Fender, 2011, and
references therein).
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have detailed information on the stellar population of the host galaxy nucleus.
Then, although depending on the models used to fit the TDE data, we could also
determine if the star is fully or partially disrupted, and how near the MBH it
plunged in (e.g. Blagorodnova et al., 2017).
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CHAPTER 2

TDE theory

Occasionally stars in a galactic nucleus are perturbed and placed on orbits,
which bring them too close to the MBH and they are tidally disrupted, losing
part or all their mass in a TDE. Although the encounter between the star and
the MBH is relatively close to the latter, we can still derive much of the relevant
physics of a TDE in a Newtonian framework. In this chapter, we are going to
describe the TDE theory following its evolutionary stages: scattering into the
loss cone (Sec. 2.4), pericenter passage (Sec. 2.2), debris stream evolution and
debris fallback (Sec. 2.3), disc formation (Sec. 2.4), jet formation (Sec. 2.5).

Figure 2.1: TDE stages. The MBH is shown as a white circle with radius equal
to rISCO, while the dashed circle denotes the tidal radius. Panel a) shows the star
when is still approaching the MBH; panel b) shows the wings formed after the
first passage to pericenter of the star; panel c) shows the debris stream returning
to the MBH; panel d) shows the debris self-crossing with itself; panel e) shows
debris circularization and beginning of disc formation; panel f) shows the remnant
disc.

33



2.1 Disruption conditions and loss cone

A MBH in the galactic nucleus can be thought of as a sink, which removes
stars as they come sufficiently close to it. The removal of a star can occur in two
ways, depending on the mass of the MBH and on the star’s properties: swallowed
by falling inside the event horizon, or disrupted by the tidal forces of the MBH.
In the case that the star is a compact object, such as a neutron star or a BH,
tidal stresses due to the MBH do not affect it, and the star is swallowed. This
fate can happen also to ordinary stars, if they meet the conditions to resist being
shred apart by the MBH tidal forces.

Figure 2.2: Parameter space of tidal disruption. Adapted from Stone (2013).

The critical distance from the MBH at which a star can be torn apart is
called tidal radius, rt. It can be estimated by equating the acceleration due to
self-gravity ag ≈ GM∗/R

2
∗, where M∗ is the mass of the star and R∗ is the radius

of the star, and the tidal acceleration at ≈ GMBHR∗/r
3, which gives

rt ' R∗

(
MBH

M∗

)1/3

. (2.1)

We define the depth of the encounter with penetration factor

β ≡ rt

rp

, (2.2)

where rp is the pericenter distance of the star orbit.

In the simple case of a non-spinning MBH, the event horizon, defined by the
Schwarzschild radius, rs, grows linearly with its mass

rs =
2GMBH

c2
, (2.3)

while from Eq. 2.1 it can be seen that rt grows as M
1/3
BH . It follows that there is
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a MBH critical mass

Mcrit = 1.1 · 108M�

(
R∗

R�

)3/2(
M∗

M�

)−1/2

(2.4)

above which the star is swallowed whole by falling into the horizon and tidal
disruption doesn’t occur. Thus, such events are not interesting from the point of
view of electromagnetic flares, and Eq. 2.4 implies that for stars with 1M� and
1R�, tidal disruption occurs for black holes with MBH . 108M�.

The estimate of the tidal radius rt assumes that the gravitational field of the
MBH is that of a Newtonian point particle, which is valid only at large distances,
that is for rt >> rs. In the general relativistic treatment of a Kerr MBH, the
tidal radius and thus the MBH critical mass can change according to the spin of
the MBH (Ivanov & Chernyakova, 2006; Kesden, 2012b).

Figure 2.3: Plot shows the maximum mass Mmax of a MBH capable of disrupting
a star of 1M� and R� as a function of the MBH spin a/M . The blue line
shows the relativistic prediction, while the dashed black line shows the Newtonian
prediction. Red squares are values of the estimation by Ivanov & Chernyakova
(2006). Figure from Kesden (2012b).

Theoretical estimates of MBH spins depend on the extent to which the MBH
grows by accretion or mergers. For example, a MBH accreting from a standard
thin disc can attain a limiting spin a/M ' 0.998, after increasing their mass by
a factor ∼

√
6 (Thorne, 1974; Bardeen, 1970). On the other hand, for MBHs

formed in mergers the spin varies depending on whether the spins of the initial
binary BHs become aligned with their orbital angular momentum prior to merger
(Berti & Volonteri, 2008).
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Kesden (2012b) estimated the mass of the heaviest MBH that can disrupt a
star of mass M∗ = 1M� and radius R∗ = 1R� as a function of the MBH spin a/M .
In Fig. 2.3, their relativistic and Newtonian predictions are shown in blue line
and dashed black line, respectively (in the plot they compare their results with
the estimate done by Ivanov & Chernyakova (2006), denoted with red squares).
The relativistic estimate for tidal disruption by a Kerr MBH is given by

r < rt =

[(
|β−|

MBH/r3

)(
MBH

M∗

)]1/3

R∗, (2.5)

where β− is the numerical value of negative value of the tidal tensor in Eqs. 9A,
9b, 9c, and 9d from Kesden (2012b). In the Newtonian limit, the eigenvalue is
equal to β− = −2MBH/r

3, giving for the Newtonian estimate

r < rt =

(
2MBH

M∗

)1/3

R∗. (2.6)

Using these estimates, Kesden (2012b) find that for MBHs with MBH & 107M�,
a significant fraction of solar-type stars will directly plunge in the MBH horizon,
thus reducing the TDE rate. Above MBH ' 108M�, only highly spinning MBH
(a/MBH & 0.9) will be able to produce observable TDEs.

As it will be briefly reviewed in Sec. 2.1.1, there are different scattering
mechanisms from which the final orbit depends on. In general we can expect
stars in a galactic nucleus to be more likely scattered onto highly eccentric orbits.

Nuclear stellar cluster with a central MBH are dense environments where
interactions between stars play an important role. Although they are very dense
environments, the MBH dominates their gravitational potential, resulting in stars
moving on nearly stationary Keplerian orbits. The stellar gravitational potential
leads to small perturbations that modifies the potential of the MBH. However,
these small perturbations, together with corrections from general relativity, drive
the long-term evolution of the stellar cluster.

In the classic loss cone theory, stars are supplied to the MBH via gravita-
tional scattering onto low angular momentum orbits, while high feeding rates are
achievable when the gravitational potential near the MBH is non-axisymmetric
and orbits are chaotic. We now briefly explain the concept by which stars are
supplied by angular momentum diffusion into the so-called loss cone of the MBH.

A schematic of the loss cone is shown in Fig. 2.4. In the context of TDEs, the
loss cone radius rLC corresponds to the tidal radius rt for stars of a given type.
An orbit that grazes the loss cone sphere at r = rLC has angular momentum value

JLC ≈
√

2GMBHrt. (2.7)

Orbits with J ≤ JLC are called loss cone orbits (sometimes the ensemble of such
orbits is just called the ”loss cone”). The loss cone can be also thought of a region
in velocity space, that is a set of velocity vectors, which lie at a distance r from
the MBH and are associated to orbits that pass within rLC. For the condition to
be satisfied, a star’s velocity vector must lie within a cone of opening angle θLC,
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Figure 2.4: Representation of a loss cone. Stars with orbits with velocity vectors
that fall within the cone defined by aperture θ ≤ θLC will pass within the capture
or disruption sphere at rLC. Adapted from Merritt (2013).

which is given approximately by

θLC ≈
√
rLC

r
, r . rinfl

≈
√
rLCrinfl

r2
, r & rinfl (2.8)

where

rinfl ≡
GMBH

σ2
≈ 10

(
MBH

108M�

)(
σ

200 km s−1

)−2

pc (2.9)

is the MBH’s gravitational influence radius, and σ is the stellar velocity dispersion
of the galaxy (Merritt, 2013).

In a spherical galaxy, the stars that satisfy the condition given by Eq. 2.7
are a small number, and they are removed from the loss cone at first pericenter
passage. It follows that a mechanism to refill the loss cone is needed in order
to have a continuous supply of stars. The efficiency of said mechanism will de-
termine the supply rate of stars. The best-known repopulation mechanism is by
gravitational encounters, which cause the stellar orbital elements to gradually
evolve over time. However, if we consider non spherical galactic nuclei, that is
those with an axisymmetric or triaxial potential, the feeding rates can be high
even without encounters: the distributed mass will cause fixed torques that will
change orbital angular momenta on a smaller timescale than that associated to
gravitational encounters. Even if we were to consider a perfect spherical nucleus,
the gravitational encounters timescale called the relaxation time, may be longer
than the age of the Universe. The loss cone repopulation rate may occur at a rate
strongly dependent on the initial conditions, and these are te main reasons why is
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not possible to compute TDE rates for individual galaxies with good confidence.
The TDE rate are currently uncertain. Typically, it is estimated a rate of

∼ 10−5 yr−1 per galaxy from X-ray and optical/UV events. However, this rate
are an order of magnitude lower than theoretical predictions of & 10−4 yr−1

per galaxy (Stone & Metzger, 2016, and references therein), which means there
is a certain tension between theory and observations. Stone & Metzger (2016)
calculate the rates of stellar TDEs due to two-body relaxation in galactic nuclei,
and their results either kept the current discrepancy or heightened it. It must
be noted that their estimates rely on conservative assumptions, that is spherical
symmetry and neglect the influence of nuclear stellar clusters.

2.1.1 Scattering mechanisms

Stars in a stellar system will inevitably influence each other’s trajectories due
to gravitational encounters over the course of many orbits. There are different
scattering mechanisms, we list some of them:

• two-body relaxation;

• resonant relaxation;

• non-spherical galactic nuclei (axisymmetric, triaxial);

• nuclear stellar disc;

• nuclear bars;

• binary MBHs.

The standard and most simple invoked scattering mechanism is two-body
relaxation, which is driven by local scatterings. A star gravitationally interacts
with another star and their individual angular momenta are changed, thus driving
the stars into the loss cone. However, to deliver a star into the loss cone, it is
necessary to reduce its orbital angular momentum to a very small value. In
spherical geometry, this can be only achieved by two-body relaxation, but the
time needed is typically very long. A timescale associated with this process is
the relaxation time, during which stellar velocity changes by order unity and it
is given by

tr ∼
0.34σ3

∗
G2M∗ρlnΛ

, (2.10)

where σ∗ is the stellar velocity dispersion, ρ is the density of stars, M∗ is the
stellar mass, and lnΛ is the Coulomb logarithm (Λ is the ratio between the largest
and smallest impact parameters possible in the system for elastic collisions) (e.g.
Alexander, 2005; Merritt, 2013).

Another very well known mechanism is resonant relaxation (Rauch & Tremaine,
1996). It is an efficient mechanism to change the angular momentum of stars,
which results from the coherent motion of the stars along their nearly fixed Ke-
plerian orbits. Resonant relaxation occurs in potentials with a high degree of
symmetry, like a Keplerian potential. In a nearly Keplerian potential, orbits will
be fixed over many periods, leading to a coherent buildup of torques on each
orbit (Rauch & Tremaine, 1996), as opposed to the uncorrelated changes from
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two-body relaxation. Rauch & Ingalls (1998) suggested that the rapid changes in
orbital eccentricity produced by resonant relaxation may enhance TDE rates at
small scales. However, Merritt et al. (2011) found that the combination of res-
onant relaxation and general relativistic precession gives rise to a Schwarzschild
barrier, which quenches resonant relaxation for stars with small semi-major axis.

If the galaxy cannot be considered precisely spherically symmetric, then the
angular momenta of stars are not conserved and they are driven into the loss
cone by collisionless torques (e.g. Norman & Silk, 1983), as opposed to two-body
relaxation which is collisional. In recent studies (e.g. Merritt & Poon, 2004) it has
been suggested that the non-Keplerian triaxial potential in galactic nuclei may
keep the capture rate well above that of a similar spherical system. An example of
four major orbits families which can be found in a triaxial nucleus in the vicinity
of the MBH is shown in Fig. 2.5. A significant enhancement to the TDE rate can
occur if the central distribution of stars is axisymmetric or triaxial. While in the
case of non-spherical potentials the orbits generally fail to conserve all components
of angular momentum, orbits in fully triaxial potentials generally conserve no
components of angular momentum (Stone et al., 2013). As a consequence, over
many orbital times, a stars orbit will go through pericenter of arbitrarily low
value, eventually falling inside the tidal radius and the star getting disrupted.
Axisymmetric potentials can lead to modest TDE rates with factors of a few
enhancement (Magorrian & Tremaine, 1999; Vasiliev & Merritt, 2013). Orbits in
these potentials still conserve the component of angular momentum parallel to
the symmetry axis, but in a fully triaxial potential no component is conserved
(Poon & Merritt, 2004), leading to a subpopulation of stars on centrophilic and
chaotic orbits; in such scenario the TDE rate can be enhanced by a factor ∼ 10
relatively to the rate given by the two-body relaxation (Merritt & Poon, 2004).

In the GC there is a rotating stellar disc of young stars (Bartko et al., 2010).
In this case, the presence of the disc can modify the relaxation timescale. The
star cluster is flattened and disc-like, thus the non-resonant relaxation timescale
drops due to greater encounter rates between stars (Hayasaki et al., 2013). For
instance, Kocsis & Tremaine (2011) estimated the two-body relaxation timescale
as tr ∼ 4 × 108 yr, assuming the stellars disc mass ∼ 5000M� (Paumard et al.,
2006). Assuming a typical stellar mass of 10M�, the disc star TDE rate of
∼ 10−6 yr−1, implying that if similar discs are common in other galaxies, they
could contribute to the total TDE rate (Hayasaki et al., 2013).

An interesting mechanism is given by nuclear bars (Englmaier & Shlosman,
2004; Hamers & Perets, 2017). About 1/3 of barred galaxies host a secondary
(nuclear) bar in the central region, in addition to the primary large-scale stellar
bar, forming a nested bar system. Double barred galaxies have been observed
already in the ’70s, however they were classified as having triaxial (elliptical)
bulges, instead of nuclear bars. Nuclear spiral arms are observed in 50% to 80%
of both active and quiescent galaxies (e.g. Laine et al., 1999; Regan & Mulchaey,
1999; Pogge & Martini, 2002), and are considered to be the small-scale variants of
galactic-scale spiral arms. In a similar way as the galactic-scale spiral arms, the
nuclear-scale ones can perturb the orbits of stars in certain regions of the central
few hundred pc around the MBH. In particular, nuclear spiral arms can drive stars
onto orbits which bring them very close to the MBH, triggering strong interactions
such as stellar TDEs and stellar binary TDEs (Hills, 1988). In the latter case, one
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Figure 2.5: Four major orbits families which can be found in a triaxial galactic
nucleus. From Vasiliev (2014).
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of the binary stars remains bound to the MBH in a close eccentric orbit, while the
other stars is ejected at high speeds (∼ 1000 km s−1). This scenario is favourable
to explain both the presence of S-stars in the GC (Genzel et al., 2003; Eisenhauer
et al., 2005; Gillessen et al., 2009), and the so called hypervelocity stars, which
are stars moving with unusual high speeds and not bound to the Galaxy (see
Brown, 2015, for a review). However, for stellar binaries the rates estimated from
relaxation by stars are too low to explain the observed number of S-stars and
hypervelocity stars (Yu & Tremaine, 2003). It can be considered, though, that
relaxation can also be driven by massive structures such as giant molecular clouds
and massive stellar clusters. As compared to relaxation by single stars only, the
TDE rate can be up to 20% higher (Hamers & Perets, 2017). Even though it is
not that high, the enhancement by nuclear spiral arms complements other models
such as triaxial nuclei (Vasiliev & Merritt, 2013).

The presence of MBH binaries (Begelman et al., 1980) can affect the rate (as
well as the appearance of a TDE, Coughlin et al. (2017)). When the MBH binary
is still relatively wide, the secondary MBH acts as a perturber that increases
the rate at which stars diffuse into the loss cone of the primary (Polnarev &
Rees, 1994).As the binary evolves and approaches coalescence, the TDE rate
from unbound stars is predicted to be suppressed, since stars are most likely
ejected rather than being disrupted (Chen et al., 2008). Instead, the TDE rate
from bound stars may be greatly enhanced (up to 10−1 yr−1) due to the Kozai-
Lidov effect (Kozai, 1962; Lidov, 1962), a secular mechanism that increases the
eccentricities of the stars, driving them towards nearly-radial orbits (e.g. Ivanov
et al., 2005; Chen et al., 2009).

2.2 Dynamics of encounter at pericenter

In this Section, we describe the general picture of a TDE. TDEs are observed
when a star passes close enough to a MBH and is disrupted due to the tidal
forces exceeding the star’s self-gravity. In the case of a star approaching on
a (nearly) parabolic orbit, it is predicted that about half of the stellar debris
will remain bound to the MBH, while the other half gains enough energy to be
unbound and to escape the gravitational attraction of the MBH (Rees, 1988).
When the bound debris returns to pericenter, it will feed the MBH, giving rise
to a flare of detectable radiation. The basic theory, which assumes a uniform
mass distribution over energy, states that mass fallback rate Ṁ will follow a t−5/3

power law. In the following, we review the theory in more detail.

The star is initially in hydrostatic equilibrium at a large distance from the
MBH, which means that pressure forces and internal self-gravity of the star are
in equilibrium. The unbalanced force is the gravitational pull of the MBH. In
this condition, if we consider the star as formed of various fluid elements, each
of these elements move in essentially Keplerian orbits around the MBH. Each
of these fluid elements has its own eccentricity, which at this stage far from the
MBH is very close to the one of the star’s center of mass. As a consequence,
the distribution of specific energy within the star is narrow around the energy
corresponding to the center of mass of the star.

The situation changes as the star begins to approach the MBH. The Keplerian
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Figure 2.6: Tidal disruption of a star. When the star approaches a MBH (black
circle) within the tidal disruption radius rt, it will be disrupted by the MBH’s
tidal forces. Roughly half of the stellar debris is gravitationally bound to the
MBH and eventually forms an accretion disc. The remainder half stellar debris
is gravitationally unbound and escapes the MBH’s gravity. From Gezari (2014).
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orbits are squeezed (this occurs in both in Newtonian dynamics and in General
Relativity), hence perturbing the initial hydrostatic equilibrium. As a reaction,
the star’s pressure forces redistribute the internal energy, resulting in a wider
specific energy distribution after the encounter of the star with the MBH at rp. At
this stage, part of the fluid elements of the star will have negative energy and part
will have positive energies. Stellar debris with negative energies is bound to the
MBH and will return to it, while stellar debris with positive energies is unbound
and escapes the MBH’s gravity. See Fig. 2.6 for a schematic representation.

What has been described above is the classical and general picture of a TDE,
as it was first described by Rees (1988). In this picture, it is only the resulting
redistribution of specific energies that determines the final lightcurve of the TDE.
It will be explained in more detail in the next Section. In the following we now
give an estimate of the spread acquired by the specific energy distribution and
the final range of energies.

During the first passage to pericenter, the most important consequence is the
disruption of the star, while additional effects are specific to deep disruptions,
that is at high penetration factor β. From the initial hydrostatic equilibrium, the
star starts to get deformed due to the MBHs tidal force influence already at a
distance of few tidal radii from the MBH. In particular, the star gets stretched
along an almost radial direction, due to the fact that stellar elements closer to the
MBH are influenced by a larger gravitational pull. The deformation can reach
order unity as the star reaches the tidal radius. The stellar debris gets a spread
in orbital energy as the pressure reacts to deformation as ∆ε (Eq. 2.12).

The star starts to be deformed due to the influence of the MBH tidal force at
a distance of few rt, in particular it is stretched along an almost radial direction.
The deformation becomes of order unity as the stars reaches the tidal radius rt.
By the time a star passes through pericenter and is tidally disrupted, the gas
moves on almost ballistic trajectories. As the star plunges into the tidal sphere
(defined by rt), the MBH tidal field overcomes internal forces, with a ratio of the
tidal to self-gravitational acceleration given by

at

ag

≈
(rt

r

)3

. (2.11)

In comparison, the work done by internal forces decreases more slowly as ∼
GM∗r/R

2
∗. However, this is a simple expression that overestimates the amount of

work of internal forces, which at r ≈ rt self-cancel each other to first order, with
the assumption that the star is initially in hydrostatic equilibrium.As a response
of pressure to the deformation the star is experiencing, the stellar debris has a
spread in orbital energy, which is due to leading portions of the star sitting deeper
in the MBH potential well than the trailing portions, which are in a shallower
potential. The Taylor expansion of the MBH potential at the star’s position gives
an approximation of the debris specific energy spread (Lacy et al., 1982; Rees,
1988; Evans & Kochanek, 1989)

∆ε = ±GMBH

r2
t

R∗ (2.12)

This expression can be understood under the impulse approximation, where the
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stars is unaffected until rt. At this point, the trajectories of the debris change
instantaneously, implying the stellar elements have the same kinetic energy, which
is in turn the same as the one of the star at the disruption moment. However,
each debris element has a different potential energy due to their different positions
within the MBH potential, resulting in an energy spread ∆ε. In past literature,
the initial estimates of the energy spread were done with rp instead of rt (e.g.
Lacy et al., 1982). A consequence would have been that deep encounters, which
have rp < rt, led to large energy spreads. However, it was shown by Sari et al.
(2010) and Stone et al. (2013) that Eq. 2.12 is the correct estimate. In addition,
it has been found that relativistic effects produce a wider energy spread due to
the stronger tidal field, which in turn leads to an early and higher peak in the
mass fallback rate (Laguna et al., 1993; Kesden, 2012a).

When a star is on a parabolic orbit the orbital energy εorb of the star will
be centered on zero and, due to the energy spread, stellar elements closer to the
MBH have an orbital energy decrease, while those farther from the MBH have
an increase in orbital energy. It follows that in general the orbital energy after
disruption is distributed symmetrically around zero over a range

−∆ε+ εorb < ε < εorb + ∆ε, (2.13)

implying that roughly half material is bound and half is unbound (Rees, 1988).
Given that the specific orbital energy is given by

εorb = −GMBH

2a
, (2.14)

where a is the semi-major axis, which is related to the pericenter rp by rp =
(1− e)a, we can find the new range of eccentricities of the gas elements resulting
from the redistribution of energy as

1− e = ± 2

β

(
MBH

M∗

)−1/3

. (2.15)

This forms an elongated eccentric stream (Fig. 2.6).

On the other hand, when a star is on an eccentric orbit, its specific orbital
energy is given by

εorb = −GMBH

2a
= −GMBH

2rt

β(1− e), (2.16)

The difference in this case is that the energy is less than zero because a is finite
or, alternatively, because e < 1. Thus, it is possible to have a situation in
which εorb < ∆ε, resulting in all the debris being bound to the MBH even after
disruption. The condition for this to happen is εorb = ∆ε from which follows a
critical value for the stellar eccentricity

ecrit ≈ 1− 2

β

(
M∗

MBH

)1/3

, (2.17)

below which all the stellar debris should be gravitationally bound to the MBH. In
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both cases of parabolic and eccentric orbits, the stellar debris energy distribution
specifies the eventual fallback mass rate of the bound material.

We now discuss the effect of the penetration factor β on the approach of the
star to the MBH.

The most likely encounters between star and MBH are those with β ≈ 1. In
this case, the star is grazing the tidal sphere, and the disruption can be partial,
resulting with a surviving stellar core after passage at pericenter (Guillochon &
Ramirez-Ruiz, 2013). This is a likely scenario for giant stars, since they have an
external gaseous envelope which is more easily stripped by tidal forces. Then, the
giant’s denser core could pass around the MBH several times, losing a fraction of
its mass at every encounter.

Another tidal disruption scenario is deeper encounters, given for penetration
factors β & 3. Though as not likely to occur as β ≈ 1 cases, they still make about
a third of TDEs (Luminet & Barbuy, 1990). Stars which undergo disruption
under this condition, get compressed into a pancake (e.g. Carter & Luminet,
1982, and see also Brassart & Luminet (2008) and references therein), and suffer
a vertical collapse at passage at pericenter given by

vc ≈ β

(
GM∗

R∗

)1/2

. (2.18)

This strong vertical compression can cause shocks, which in turn can raise the
temperature of the stellar core. Carter & Luminet (1982) thus assumed that
nuclear reactions could be triggered during a deep encounter of a main sequence
star. However, this possibility is under debate (e.g. Laguna et al., 1993; Kobayashi
et al., 2004), and white dwarfs are more likely to produce such nuclear reactions,
since they have larger initial densities (Rosswog et al., 2009a; Tanikawa et al.,
2017; Tanikawa, 2018).

The pancake star was further studied with a semi-analytical affine star model,
which is described in detail in Carter & Luminet (1985), both in Newtonian dy-
namics (Carter & Luminet, 1983; Luminet & Carter, 1986) and in General Rela-
tivity with non-spinning MBHs (Luminet & Marck, 1985). This model allowed to
show that along a plunging orbit within the tidal radius rt, the MBHs tidal field
increases rapidly enough to temporarily overcome the pressure and self-gravity of
the star (Carter & Luminet, 1983). Then the stellar matter is in free fall in the
external gravitational field, and gets squeezed in the direction orthogonal to the
orbital plane as a response to tidal effects. When it reaches the orbits pericenter,
the pressure field rapidly increases within the stellar core in response to the com-
pression. As a consequence, while the star is moving within the tidal radius, the
stellar matter bounces within the core and quickly expands in an almost sym-
metric way to the free fall. In the relativistic case, the star is subject to multiple
squeezing phases instead (Luminet & Marck, 1985).

Lastly, though statistically rare, Darbha et al. (2019) investigated the outcome
of ultra-deep TDEs (β � 1). The stellar debris can experience extreme tidal dis-
tortion, avoiding to plunge directly into the MBH, for β & 10 and MBH . 106M�.
As a consequence, this type of TDEs could produce X-ray emission from either
self-crossing (discussed in next Section) of stellar debris or tidal compression (as
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for deep encounters). In addition, they would also produce gravitational wave
emission (Kobayashi et al., 2004). A first gravitational wave signature would
come from the orbital motion of the debris near pericenter, including when the
debris is fully captured, while a second signature would come from the tidal de-
formation of the star itself. Finally, a third signature would come from unstable
accretion discs (Toscani et al., 2019).

Regarding the topic of deep TDEs, we make here a final note about the impor-
tance of relativistic effects. The role of General Relativity in TDEs is discussed in
Sec. 2.6. When relativistic effects are taken into account, relativistic precession
plays a fundamental role in the circularisation process, which is described in Sec.
2.4. In a completely Newtonian treatment, the debris stream does not self-cross.
As a consequence, kinetic energy is not removed from the debris and the specific
energy remains unchanged. On the other hand, relativistic precession changes
the trajectory of the debris at pericenter. An example of this comparison can be
seen in Bonnerot et al. (2016). This relativistic effect has a strong impact on deep
(β >> 1) TDEs, since the tidal stream self-crosses at smaller radii, steeper angles
and with relatively large velocities (see e.g. Shiokawa et al., 2015; Tejeda et al.,
2017). The importance of the relativistic effects is related to the ratio between
pericenter distance rp to the gravitational radius rg (Tejeda et al., 2017).

2.3 Debris stream evolution and fallback

After disruption, the stellar debris becomes an elongated structure (Fig. 2.6).
In this Section, we describe the evolution of the debris stream around the MBH.

The debris stream plays an important role in determining the evolution of
circularization and following accretion, which will be discussed after this Section.
It is in fact the stream cross section to determine the effectiveness of transfer of
energy and angular momentum.

The stream motion is characterized by different trajectories which the debris
acquired due to the energy spread during the disruption process. Both analytical
and numerical studies show that the debris stream is dense enough so that its
structure’s hydrostatic equilibrium is kept due to interplay of self-gravity and
pressure in the transverse direction Kochanek (1994). Assuming gas evolves adi-
abatically following P ∝ ρ5/3, it is possible to define the width H of the debris
stream (Fig. 2.7) as

H ∝ Λ−1/4 (2.19)

where Λ is the mass per unit length, giving the linear density (Kochanek, 1994;
Guillochon et al., 2014; Coughlin et al., 2016a). For gas elements close to the cen-
ter of mass of the stream the linear density goes as Λ ∝ r−2 and as a consequence
the stream’s width is

H ∝ r1/2. (2.20)

When the debris stream begin to deviate from the trajectory of the center of
mass, the linear density changes to Λ ∝ r−1, yielding

H ∝ r1/4. (2.21)

From these scalings we can see that the stream’s width increases slowly with
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Figure 2.7: Debris stream returning to the MBH. The velocity v and width H of
the stream are denoted.

distance. This is due to the effect of self-gravity, which keeps the stream into a
thin shape also at distances r � rt. However, the role of self-gravity depends on
the stream’s density. If its density is too low, the gravitational force of the MBH
dominates self-gravity, in which case the width scaling becomes

H ∝ r. (2.22)

Self-gravity of the stream can become dominant in the transverse direction
(Kochanek, 1994). As a consequence it is possible to encounter a gravitational
instability which may lead to fragmentation (Coughlin & Nixon, 2015; Cough-
lin et al., 2016a,b). It is demonstrated by Coughlin & Nixon (2015) that the
stream was gravitationally unstable when the adiabatic index of the gas was set
to γ = 5/3, resulting in its fragmentiation into bound clumps. These clumps,
when accreted at discrete times, caused the late time fallback rate to fluctuate
about the t−5/3 average. In their following work, Coughlin et al. (2016a) found
that for stiffer equations of state, that is γ & 5/3, the collapse was induced
sooner and was enhanced by a post-periapsis pancake soon after the disruption.
To define whether the stream is gravitationally unstable, that is subject to frag-
mentation, an instability criterion for the stream can be defined with a critical
density for the MBH

ρBH ∼
MBH

r3
. (2.23)
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It follows that the instability condition is in the form ρ > ρBH : the critical
density falls at a rate that is steeper than the debris density with respects to
radial distance from the MBH. This physically means that the rate at which the
material is torn apart is slower than the rate at which aggregates, thus leading to
fragmentation (Sacchi et al., 2020). Further investigation regarding what causes
fragmentation was done by Sacchi et al. (2020). In particular , they explain
the origin of the fragmentation in the slowing down of the stretching of the
debris in the unbound portion of the stream. In addition, they find that a star
modelled as a polytropic sphere with adiabatic index γ = 5/3 is in fact prone to
fragmentation. However, it occurs only after more than 3 years after disruption
(for standard TDE parameters), when the TDE is likely not observable any more.
Sacchi et al. (2020) also describe the fragmentation process using an analytical
approach, which generalizes previous results.

After passage of the star to pericenter rp, the formed stellar debris moves
ballistically around the MBH. In particular, the most tightly bound debris has
an orbital energy εorb = −∆ε, which correspond to orbits with the following
semi-major axis and period

amin =
R∗

2

(
MBH

M∗

)2/3

, (2.24)

tmin =
π√
2

√
R3

∗
GM∗

√
MBH

M∗
. (2.25)

The mass fallback rate dm/dt, that is the rate at which the debris reaches the
MBH, is given by

dm

dt
=

dm

dε

dε

dt
=

1

3
(2πGMBH)2/3 dm

dε
t−5/3, (2.26)

where dε/dt is found from using Kepler’s third law to define the energy of the
most bound debris elements after a period t

ε = −1

2

(
2πGMBH

t

)2/3

(2.27)

From how Eq. 2.26 is derived, it follows that the only term on which the mass
fallback rate depends on is dm/dε. In works by Rees (1988) and Phinney (1989),
it is assumed that this energy distribution is uniform, thus the standard t−5/3

power law decay is obtained. If we consider that half the stellar mass reaches the
MBH for t ≥ tmin, we can define a peak value Ṁpk (Lodato & Rossi, 2011)

Ṁpk =
M∗

3tmin

, (2.28)

and rewrite the fallback mass rate as

dm

dt
= Ṁpk

(
t

tmin

)−5/3

. (2.29)
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Figure 2.8: Distribution of specific energies. Comparison between Evans &
Kochanek (1989) (left panel) and Lodato et al. (2009) (right panel). In the right
panel, the four plots show the distribution for the initial condition (top left),
when the star is at pericenter (top right), at four times the pericenter distance
(bottom left) and at ten times the pericenter distance (bottom right).

Lodato et al. (2009) revisited the assumptions of this theory and found that the
fallback mass rate depends on the internal structure of the star, which means
that to better determine the fallback mass rate, the energy distribution dm/dε
should not be assumed uniform. The standard t−5/3 power law is still valid, but
only at later stages.

When the stellar structure is taken into account the energy distribution changes:
in general there is a peak at the central value (ε ≈ 0) and decrease towards the
limits. Fig. 2.8 shows a comparison between results from Evans & Kochanek
(1989) (left panel) and Lodato et al. (2009) (right panel). In both works the star
is modelled as a polytrope with γ = 5/3. The bottom left plot in the right panel
accurately replicates the results shown in the left panel. A difference appears as
the energy distribution keeps evolving with time as the star gets nearer to the
MBH (≈ 10rp; Lodato et al. (2009)) and it finally settles down in the distribu-
tion shown in the bottom right plot. Here the distribution is characterized by a
central peak at lower energies, followed by two wings at larger energies. While
the central peak is expected (Lodato et al., 2009), the wings are related to the
stellar material at the surface of the star, which at pericenter is distorted from
its initially spherical shape.

Recently, Law-Smith et al. (2019, 2020) performed simulations of TDEs from
stars with realistic structures and compositions using MESA models Paxton et al.
(2010). The results show that Ṁpk decreases with stellar age and that the time
of peak of the mass fallback rate increases with stellar age, which means that
younger stars can provide faster flares. These effects diminish with increasing
penetration factor β. Another study using MESA based stellar density profiles
to emphasize their role in affecting the mass fallback rate was done by Golightly
et al. (2019b).

As a final note, it is generally assumed in the literature that the accretion
rate onto the MBH traces the mass fallback rate given by Eq. 2.26, and that also
the resulting flare luminosity traces the fallback rate, that is L ∝ Ṁ ∝ t−5/3. We
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will return to this in the next Section.

2.4 Circularization and disc formation

In this Section we describe the processes that allow the debris stream to cir-
cularize and form an accretion disc. The process of circularization involves all
the mechanisms that allow the debris stream to dissipate kinetic energy, bring-
ing the stream’s trajectories from elliptical to circular, thus forming a disc. The
circularization process is not yet fully understood and there are different mech-
anisms involved, the main ones being pancake shock, self-crossings and shearing
(Evans & Kochanek, 1989). A pancake shock occurs at star’s disruption, when
part of the stellar material is accelerated out of the initial orbital plane, resulting
in a range on inclinations. The various orbits of the debris are vertically focused,
intersecting the orbital plane close to pericenter, where the stream undergoes
strong compression and a shock (Evans & Kochanek, 1989).

Self-crossings occur when the debris stream is already formed and the bound
part falls back to orbit the MBH. The leading part of the stream collides with
the part which is still falling back. This happens because as the leading part of
the stream returns to pericenter, it experiences changes to their apsidal angles
due to relativistic apsidal precession. Self-crossings generate shocks in the debris
stream (Evans & Kochanek, 1989).

Also shearing occurs when the stream comes back to pericenter. At some point
the debris stream orbits will have similar pericenters but different apocenters,
causing an effect similar to a nozzle as the whole stream passes through pericenter,
inducing shearing of the debris. In addition, this mechanism is enhanced by
relativistic apsidal precession because the debris precess by different angles due
to the range of pericenters, leading to more shearing (Evans & Kochanek, 1989).

From these mechanisms, two models for stellar debris circularization have been
proposed in the literature. In the first model, apsidal precession due to general
relativistic effects is responsible in causing tightly bound debris, after the second
passage to pericenter, to intersect with less bound debris, which is still returning
from the apocenter. As a consequence, shocks will form in the collision of the two
gas streams, resulting in energy dissipation and eventual circularisation (Rees,
1988). A possible delay for this mechanism could be the nodal general relativistic
precession given by Lense-Thirring torques, in the case of rapidly spinning MBHs
(Kochanek, 1994; Dai et al., 2013; Guillochon & Ramirez-Ruiz, 2015; Hayasaki
et al., 2016; Liptai et al., 2019).

In particular, Guillochon & Ramirez-Ruiz (2015) show that effects from Gen-
eral Relativity are important when considering the evolution of the debris stream.
They find that when General Relativity effects are weak and the precession an-
gles are small, the stream crosses itself far from the pericenter. As a consequence,
it can potentially affect the mass accretion rate by reducing it and can increase
the time of peak accretion by a factor ∼ 100. Thus, these TDEs likely peak on
timescales of several years and their bolometric luminosities decays at a rate shal-
lower than t−5/3. This effect works mostly for tidal disruptions around MBHs with
mass < 106M�. For more massive MBHs, Guillochon & Ramirez-Ruiz (2015) find
that the General Relativity effects are significantly stronger, resulting in stream
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self-crossings that occur at large angles and closer to the stars pericenter. They
also find different behaviours depending on the MBHs spin. In particular, if the
spin is a . 0.2 the accretion rate onto the MBH follows the fallback rate, with
no significant delay between the return of the mostly bound debris and accretion
onto the MBH. If the spin is a & 0.2 the stream self-crossing only occurs after
the mostly bound debris orbited has gone through the pericenter many times.
In this case, very little energy is dissipated since there are no self-crossings, and
the specific energy of the debris is unchanged until circularisation starts. When
this happens, the accretion rate will equal the fallback rate but with a fixed time
delay, Ṁacc(t + tdelay) = Ṁfb(t), where Ṁfb is the mass fallback rate (Guillochon
& Ramirez-Ruiz, 2015). While Guillochon & Ramirez-Ruiz (2015) suggested that
the MBH spin would delay circularisation due to Lense-Thirring precession caus-
ing the debris stream to change plane and avoid self-crossing, in a more recent
work Liptai et al. (2019) find that nodal precession due to the MBH spin does
not prevent disc formation, since it causes only a short delay. More discussion is
done in Sec. 2.6.

In the second model, circularization is given by the vertical compression of
stellar debris during passages at pericenter after the first. At this stage, the thin
gas streams are funnelled by tidal acceleration into a vertically compressed nozzle,
and the convergent flow leads to shocks. However, direct energy dissipation in
the nozzle is not an efficient circularization mechanism, as it can be inferred from
the following. Assuming roughly ballistic motion for the debris between first and
second passages to pericenter, the specific kinetic energy of vertical collapse at rp
will be εz ∼ β2(GM∗/R∗). Even if all this energy was dissipated in shocks, the
debris still has to return

Np ∼
1

2β

(
MBH

M∗

)2/3

(2.30)

times to fully circularize (Stone, 2013). Even so, nozzle shocks change the orbital
parameters of the debris, leading to an effective apsidal precession. The debris
then circularises through collisions and shocks with itself. This type of circular-
isation has been seen in simulations of stars on parabolic orbits disrupted by a
103M� IMBH by Ramirez-Ruiz & Rosswog (2009); Stone et al. (2013).

Once the accretion disc is formed, its structure and evolution will depend
on the efficiency and balance between the timescales of the circularization itself,
radiative cooling, viscous accretion and debris infall (Evans & Kochanek, 1989). If
we define the timescale of circularization, radiative cooling and viscous accretion
as tcirc, tcool and tvisc respectively, we can find three regimes (e.g. Bonnerot et al.,
2016):

• if tvisc < tcirc, viscosity may be important during circularization;

• if tvisc > tcirc, accretion can begin only once a disc is formed;

– if tcool < tcirc, the disc cools during formation, resulting geometrically
thin;

– if tcool > tcirc, the disc has an excess of thermal energy while it forms
and puffs up.

Even if it is difficult to describe the correct processes of circularization of stellar
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debris, it is safe enough to assume that at some point after disruption, a circular-
ized accretion flow will exist around the MBH. Since this stage of a TDE relates
directly to observations, the evolution and emission of the transient accretion disc
is subject to many theoretical studies.

Bonnerot et al. (2017) developed an analytical model for the circularization
process, in particular for the long-term evolution of the stream of debris under
the influence of the simultaneous effect of shocks and magnetic stresses. It is
demonstrated that a critical efficiency of magnetic stresses (vA/vc ≈ 10−1, where
vA is the Alfvén velocity and vc is the circular velocity) exists that sets the
boundary between circularization and ballistic accretion, and it is found to be
largely independent of the BH mass and penetration factor β. The presence of
magnetic stresses acting on the stream has the dominant effect of accelerating
the stream evolution by strengthening self-crossing shocks. As a consequence,
the ballistic accretion occurs very early in the stream evolution. However, the
t−5/3 decay of the luminosity lightcurve, usually associated to the optical emission
(Piran et al., 2015), requires a slow stream evolution, which is favored by low BH
masses, MBH . 106M�. Bonnerot et al. (2017) note how this is hard to reconcile
with the strong magnetic stresses necessary for the ballistic accretion scenario
proposed by Svirski et al. (2017). On the other hand, in absence of magnetic
stresses, the predictions of this model are qualitatively consistent with existent
numerical simulations of disc formation from TDEs (e.g. Bonnerot et al., 2016).
The BH spin was not considered in this model for simplicity.

Since the discs have short viscous timescales, a common assumption is that
mass accretion onto the MBH depends on the supply of fallback material into the
disc, instead of internal viscous processes. This leads to the generally accepted
assumption that the luminosity should evolve as L ∝ Ṁ ∝ t−5/3 (Rees, 1988).
However, recent works are showing that this might not be the case. Until recently,
it was believed that the observed TDE emission comes from the dissipation of
the debris energy as the stream falls back to the MBH. This process was assumed
to occur due to the rapid formation of an accretion disc, but observational data
cast doubts on this model, which now needs revision. In practice, the t−5/3 power
law evolution is valid only at late times, that is several months after the event
(see Lodato & Rossi, 2011, for a discussion). In addition, most properties of
TDE candidates are difficult to explain in the classical picture. The observed
luminosity and temperature are lower than expected, emission radius is larger,
and observed energy is significantly lower than the potential supply from accretion
of the typical solar mass onto a MBH (e.g. Piran et al., 2015). Different physical
process have been proposed to solve the problem, such as photon trapping (e.g.
Krolik & Piran, 2012), kinetic outflow that can carry away orbital energy (e.g.
Ayal et al., 2000), low-mass outflow that regulates the accretion rate (e.g. Strubbe
& Quataert, 2009).

From numerical simulations it is also seen that after disruption of the star, the
debris stream shocks during self-crossings when it returns to pericenter. However,
this shock is weak (in the general case of star on parabolic orbit grazing the tidal
sphere). As a consequence, the debris keeps following a highly eccentric orbit.
A model has been suggested by Piran et al. (2015), where shocks rather than
accretion onto the MBH could power the optical emission of TDEs. This model
is consistent for optical TDEs and the luminosity produces by shocks is expected
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to scale as L ∝ t−5/3, as it is found observationally. A problem arises in explaining
the lack of X-ray emission. The model proposes that magnetic stresses can make
a consistent fraction of the gas to plunge directly into the MBH (Svirski et al.,
2017), however strong self-crossing would occur as the debris passes very close to
the gravitational radius, resulting in some X-ray emission (Bonnerot et al., 2017).

2.5 Jets formation

During a TDE, the main electromagnetic emission comes from the flare orig-
inating as a consequence of the stellar disruption and disc formation. Another
possible source of electromagnetic emission in TDEs is the launching of colli-
mated relativistic jets, most notably the cases of Swift J1644+57 (e.g. Bloom
et al., 2011) and Swift J2058+05 (Cenko et al., 2012). Such jets are seen in a
wide range of accreting BH systems, but only recently has arisen the interest in
TDE jets (e.g. Farrar & Gruzinov, 2009). These jets have been studied as sources
of ultra-high energy cosmic rays and probes of the gaseous circumnuclear medium.
In addition, the relatively clean initial conditions of a TDE make such jets ideal
laboratories to examine open questions about roles played by the magnetic flux
or disc-jet misalignment in jet launching mechanisms.

Observational data indicate that there is a pletora of TDE properties, indeed
some TDEs are seen only in the UV/optical, others are seen in X-rays, UV/optical
and radio (Tab. 1.1). However, there is a rarity of jetted TDEs, which suggests
that there are specific conditions for which a jet will form. Other than the de-
pendence on the viewing angle, it is reasonable to suppose that jet formation
depends on the properties of the MBH and the star.

The work by Dai et al. (2018) studies the dependence on the viewing angle with
a 3D general relativistic magnetohydrodynamics simulation of a TDE accretion
disc. The authors investigated the case of a modestly rotating MBH with spin
a = 0.8 and mass 5× 106M�, and their models led to a mildly relativistic, wide
angle and ultrafast outflow. The viewing angle-dependent spectra from their
model suggests that the optical to X-ray flux ratio increases as the observer
moves towards the disc plane. Even if this model doesn’t apply to TDE that may
launch ultra relativistic jets, it does offer a qualitative picture of how the viewing
angle of the observer can affect the observed TDE properties.

A further study has been done by Curd & Narayan (2019). In their work the
authors investigate the case of a solar mass star disrupted by a MBH with 106M�
mass and compute the viewing angle-dependent spectra from general relativistic
magnetohydrodynamics simulations of the super-Eddington MBH accretion disc
resulting from the disruption. They find that an accretion disc with a relatively
weak magnetic field around the MBH does not launch a relativistic jet, inde-
pendently on whether the MBH is rotating or not. The same results occur for
a non-rotating MBH with a strong magnetic field. The model that launches a
powerful relativistic jet has a rapidly rotating MBH with spin a = 0.9 and a
strong magnetic field, and reproduces the high-energy emission and jet structure
of Swift J1644+57.
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2.6 The role of general relativity

General relativity modifies the dynamical evolution of the star approaching
the MBH on a disruption path, the stellar debris stream and the accretion disc
produced by the tidal disruption (see e.g. Stone et al., 2019, for a review). In this
Section, we give a brief description of effects of general relativity on TDEs.

In Newtonian gravity, a star nearby a MBH experiences tides due to the
spatial gradient in the gravitational force acting on it. As a consequence, two
nearby particles of the star with initially same velocity will experience different
accelerations and will change their relative positions. In general relativity, gravity
affects the motion of particles by determining the metric spacetime, which in turn
determines the geodesic on which freely falling particles move.

Considering the TDE general picture, an important effect to consider is how
general relativity can modify the orbits of the tidal streams following tidal dis-
ruption. A first consideration is that, in general, tidal debris spend most of its
time near apocenter, i.e. far from the MBH. In this case, one can still use New-
tonian expressions for dE/dt even in the relativistic case. In principle, one can
compare energy equations in the two cases to predict how the fallback rate dif-
fers between Newtonian gravity and general relativity. However, this comparison
must be performed carefully as it is not straightforward which Keplerian orbit
should be compared to which geodesic (Stone et al., 2019). A gauge-invariant
choice is the comparison between a geodesic with angular momentum magnitude

L =
√
Q+ L2

x, (2.31)

where Q is the Carter constant, and the Keplerian orbit with the same an-
gular momentum. It follows that, for non-spinning MBHs described by the
Schwarzschild metric, stars experience stronger tides at pericenter in general rel-
ativity than in Newtonian gravity with the same angular momentum L. An
implication is that the penetration factor β for full disruption is lower in general
relativity. However, although one can expect that the stronger tides in general
relativity would lead to more tightly bound debris, followed by a higher fallback
accretion rate, one actually finds that tidal debris is slightly less tightly bound in
general relativity. For the most massive MBH capable of fully disrupting a star
without capturing it, the most tightly bound debris is ∼ 77% as tightly bound in
general relativity as it is in Newtonian gravity (Stone et al., 2019). Assuming that
the TDE luminosity traces the fallback accretion rate, i.e. L ∝ Ṁ , this would
imply slightly fainter TDEs in general relativity compared to the Newtonian case.

Tests have been performed using hydrodynamic simulations. Cheng & Bog-
danović (2014) performed TDE simulations of solar-type stars with M∗ = 1M�
and R∗ = R�, with Schwarzschild MBH masses equal to 105M�, 106M� and
107M�. They find that in the case of 107M� MBH, general relativity has a mod-
est effect on the fallback rate: the peak fallback rate is reduced with respect to
the Newtonian case, but the time it remains super-Eddington by ∼ 15% (Fig.
2.9).

Another test with spinning MBH were performed by Tejeda et al. (2017). The
authors performed TDE simulations of solar-type stars with spinning MBHs.
Their work shows that the penetration factor β and the MBH spin have little
effect both on the debris energy distribution and fallback rates, except for β & 8,
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Figure 2.9: Fallback rates of solar-type star TDEs. Comparison between Newto-
nian (red cross) and Schwarzschild (green dot) cases for different MBH masses.
At late times the curves follow t−5/3. From Cheng & Bogdanović (2014).

where relativistic precession and tidal compression are relevant.

It is more uncertain how general relativity can affect the outcome of a TDE,
i.e. how general relativistic precession controls circularization and disc formation
or how the MBH spin can lead to precession of the TDE disc. Nonetheless,
understanding these mechanisms is very important in the context of using TDEs
as probes of MBH spins.

General relativity plays a central role during circularization processes. Apsidal
precession leads to self-intersection of highly eccentric debris streams, which cre-
ate shocks. As a consequence, there is large dissipation of energy, which drives the
circularization process. However, relativistic nodal precession can work against
circularization: debris streams are brought on different orbital planes, hinder-
ing self-crossings and thus circularization of debris (Guillochon & Ramirez-Ruiz,
2015).

Hayasaki et al. (2016) performed simulations with a post-Newtonian approach
to model general relativistic effects, including leading order MBH spin corrections.
Their simulations involve solar-type stars and a 106M� MBH. The star is on el-
liptical orbits with eccentricities e = 0.7, 0.8 and 0.9, β = 1 and 2. The orbits
are in the equatorial plane and inclined (θ = 0◦, 45◦, 90◦). They showed that
nodal precession for highly elliptical orbits out of the MBH spin plane can delay
debris circularization. More recently, Liptai et al. (2019) made full general rela-
tivistic SPH simulations of TDEs involving solar-type stars and 106M� MBHs.
The star is on elliptical orbits with eccentricity e = 0.95, β = 1 and 5, both
in the equatorial plane and inclined (θ = 0◦, 30◦, 60◦, 89◦). They considered
MBH with spin a = 0 and 0.99. Their work shows that stream-stream collisions
caused by relativistic apsidal precession rapidly circularize the debris, whereas
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for inclined trajectories nodal precession inhibits stream-stream collisions. How-
ever, this happens only for the first orbit, causing just a short delay in the disc
formation, which is inclined with respect to the MBH equatorial plane. In ad-
dition, they also find that Lense-Thirring precession causes the remnant disc to
precess about the MBH spin axis in both cases of radiatively efficient cooling,
which produces a narrow ring disc, and no cooling, which produces an extended,
thick torus. Finally, TDEs with high penetration factors are significantly more
luminous and produce discs faster with respect to a lower β. In particular, Liptai
et al. (2019) find that β = 5 TDEs have ∼ 2 orders of magnitude higher energy
injection rates than those with β = 1.

Another interesting work has been done by Gafton & Rosswog (2019), who
performed relativistic TDE simulations of solar-type stars by spinning MBHs with
spins between -0.99 and 0.99 and penetration factors between 0.5 and 11. They
find that relativistic precession always causes thicker debris streams in the bound
and unbound parts. They find that general relativity is particularly important in
deep encounters, where strong precession modifies the morphology of the debris
stream in ways not possible with Newtonian equations. Part of the debris can
be launched on plunging orbits, reducing the fallback mass rate and the mass
of the resulting accretion disc (up to 80% in deepest encounters with retrograde
spin). In addition, Gafton & Rosswog (2019) find that the disruption can occur
inside the marginally bound radius, in the case the angular momentum spread
launches part of the debris on non-plunging orbits, and that relativistic effects
are important also in partial disruptions. There is also a potential distinctive
X-ray signature arising from the shock breakout due to multiple squeezings and
bounces at pericenter.
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CHAPTER 3

Hydrodynamical simulations

There are two fundamental ways for describing the physical governing equa-
tions: the Eulerian description and the Lagrangian description. Eulerian methods
make use of geometric grids, which can be fixed or adaptive, and derivatives are
calculated at fixed points in space, given by the grid. These codes formed the
basis of computational fluid dynamics that started in the 1960s-1970s, and they
are still nowadays the most widely used approach. Lagrangian methods, instead,
calculate derivatives in a coordinate system attached to a moving fluid element.
The two methods can be visualized as a boat following the river flow (Lagrangian
method), rather than sitting on a river bank and watching the river flow pass by
(Eulerian method).

In the Lagrangian method, since each grid node follows the material at the grid
point, the relative movement of the connecting nodes can result in a deformation
of a mesh cell, and the mass, momentum and energy are transported with the
movement of the mesh cells. The mass within each cell is fixed, thus there is
no mass flux between cells. However, this method can be difficult in practice
whenever there is an extremely distorted mesh, for example, as the accuracy of the
formulation and thus the solution will be severely affected (see e.g. Liu et al., 2004,
for more details). On the other hand, in the Eulerian method, the grid nodes and
cells are fixed in space, without changing when the material flows across the grid.
Thus, large deformations do not affect the mesh itself and therefore we do not
run in the same numerical problems that can be encountered in the Lagrangian
method. This property makes the Eulerian method dominant in computational
fluid dynamics, where the flow of the material dominates. Nevertheless, also
this method has some disadvantages. For example, the grid should be large
enough to cover the entire area to which the material can possibly flow. Due
to computational efficiency, this can result in a coarser grid at the expenses of
resolution and accuracy (see e.g. Liu et al., 2004, for more details).

Eulerian and Lagrangian methods have complementary features, which led
to development of approaches that apply both descriptions, namely the Coupled
Eulerian Lagrangian (Noh, 1963) and the Arbitrary Lagrange Eulerian (Hirt et al.,
1974). For more details see for example Liu et al. (2004).
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3.1 Phantom code

Numerical simulations have an important role in astrophysics, alongside an-
alytic theory and observations, as they allow us to explore physical regimes in
place of laboratory experiments.

We use a numerical code developed by Price et al. (2018) called Phantom.
It is a fast, parallel, modular and low-memory code developed for astrophysical
applications in 3D. Phantom is based on the SPH Lagrangian hydrodynamics
modelling technique by Lucy (1977) and Gingold & Monaghan (1977) (see Benz,
1990; Monaghan, 1992, 2005; Rosswog, 2009; Springel, 2010; Price, 2012, for
reviews), which is a grid-less technique in which fluid elements are represented by
individual particles governed by hydrodynamic flow equations. SPH is a versatile
technique and it has been used to model a wide range of astrophysical phenomena.
In fact, Phantom is used to solve different astrophysical problems. It has been
successfully employed to study TDEs (e.g. Coughlin & Nixon, 2015; Coughlin
et al., 2016a,b; Bonnerot et al., 2016; Golightly et al., 2019a; Toscani et al., 2019;
Sacchi & Lodato, 2019; Sacchi et al., 2020).

We now describe the equations behind SPH. In SPH the fluid is described by
discrete mass elements called particles, whose properties are computed by suitable
averages between neighbouring particles that lie within a smoothing region around
it. Within this smoothing region, particles gain lower weight as they lie close to
the edge. For instance, the density ρ at the position of particle a is given by

ρ(ra) =
N∑
b=1

mbW (ra − rb, h), (3.1)

where W is the so-called smoothing kernel, typically a bell-shaped function with
compact support, h is the smoothing length, which defines the size of the kernel,
and N defines the number of neighbouring particles within the kernel.

Each particle has its own smoothing length h. It is defined such that each par-
ticle has approximately a constant number of neighbouring particles (Hernquist
& Katz, 1989) and it can be given by

h(ra) = η

(
ma

ρa

)1/3

, (3.2)

where η should be chosen in the range between 1.2 and 1.5 (Rosswog, 2009,
and references therein). Thus, SPH has the advantage that resolution follows
density, that is high density regions have relatively small smoothing length, giving
a higher spatial resolution. As a consequence, SPH is naturally an adaptive
method (Rosswog, 2009; Lodato et al., 2020).

The equation of motion for each particle is derived from the Euler-Lagrange
equations obtained from a variational principle formulation of fluid dynamics
(Eckart, 1960). The Lagrangian of a perfect fluid is given by

L =

∫
ρ

(
v2

2
− u(ρ, s)

)
dV, (3.3)

where ρ is the density, v is the fluid velocity, u is the specific energy and s is the
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specific entropy (Rosswog, 2009). This can be discretized as

L =
∑
b

mb

(
v2
b

2
− u(ρb, sb)

)
. (3.4)

The discretized equations for the fluid can then be derived by applying the Euler-
Lagrange equations

d

dt

(
∂L

∂va

)
− ∂L

∂ra
= 0. (3.5)

The first term of Eq. 3.5 gives the change of particle momentum ma
dva

dt
. The

second term is like a potential: if self-gravity is considered, the term −
∑

bmbub
becomes −

∑
bmb(ub + Φb), where Φb is the gravitational potential (Price, 2007;

Rosswog, 2009). After some algebra and using the first principle of thermody-
namics for a dissipationless fluid, we get the Euler-Lagrange equation of motion
(see Rosswog, 2009; Price, 2012, for details)

dva
dt

= −
∑
b

mb

[
Pa

Ωaρ2
a

∂Wab(ha)

∂ra
+

Pb
Ωbρ2

b

∂Wab(hb)

∂ra

]
, (3.6)

where Ω is a term accounting for the gradient of the smoothing length (Price,
2012)

Ωa ≡

[
1− ∂ha

∂ρa

∑
b

mb
∂Wab(ha)

∂ha

]
. (3.7)

For a constant smoothing length, Eq. 3.6 becomes

dva
dt

= −
∑
b

mb

(
Pa
ρ2
a

+
Pb
ρ2
b

)
∇aWab, (3.8)

which is the standard SPH expression (Monaghan, 1992; Rosswog, 2009; Price,
2012). It can be noted that total linear angular momentum is conserved exactly
since

d

dt

∑
a

mava =
∑
a

ma
dva
dt

= −
∑
a

∑
b

mamb

(
Pa
ρ2
a

+
Pb
ρ2
b

)
∇aWab = 0 (3.9)

because the double summation gives zero due to antisymmetry in the kernel
gradient (Price, 2012). Also the total angular momentum is conserved exactly
since

d

dt

∑
a

ra ×mava =
∑
a

ma

(
ra ×

dva
dt

)
= −

∑
a

∑
b

mamb

(
Pa
ρ2
a

+
Pb
ρ2
b

)
ra × (ra − rb)∇aWab = 0

(3.10)

because the last term gives zero due to antisymmetry in the double summation
again (Price, 2012).
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After finding the momentum equation, Eq. 3.8, we find the energy equation.
The equation for internal energy can be derived by first considering the first law
of thermodynamics, dU = TdS − PdV , where δQ = TdS is the heat added
to the system per unit volume and δW = PdV is the work done by expansion
and compression of the fluid. Using quantities per unit mass instead of per unit
volume, so du instead of dU for example, the law can be rewritten as (Price,
2012)

du = Tds+
P

ρ2
dρ. (3.11)

For constant entropy, the change in thermal energy is given by

∂ub
∂ρb

∣∣∣∣
s

=
P

ρ2
. (3.12)

Thus, with no dissipation, we get from the last equation

dua
dt

=
Pa
ρ2
a

dρa
dt
, (3.13)

from which we can write the evolution of internal energy, by taking the time
derivative of Eq. 3.1, as (Rosswog, 2009; Price, 2012)

dua
dt

=
Pa

Ωaρ2
a

∑
b

mb(va − vb) · ∇aWab(ha). (3.14)

It can be noted that the total energy is also exactly conserved from the Lagrangian
via the Hamiltonian (see Price, 2012, for details) as

dE

dt
=
∑
a

ma
dea
dt

= −
∑
a

∑
b

mamb

[
Pa

Ωaρ2
a

vb · ∇aWab(ha) +
Pb

Ωbρ2
b

va · ∇aWab(hb)

]
= 0

(3.15)

because again the double sum is zero due to the antisymmetry with respect to
particle index. Now we have the full system of equations for ρ, v and u from Eqs.
3.1, 3.8 and 3.14.

The main computational expense common to any SPH code is finding neigh-
bours. The most popular approach are tree methods (e.g. Barnes & Hut, 1986;
Hernquist & Katz, 1989; Springel, 2005; Gafton & Rosswog, 2011). The tree
search algorithm involves creating ordered trees according to the particle posi-
tions. Once the tree structure is created, it can be used efficiently to find the
nearest neighbouring particles (Liu et al., 2004). Barnes & Hut (1986) intro-
duced a scheme that involved a systematic division of the physical space and it
has become the basis of most hierarchical tree codes. In their original work, the
algorithm began with an empty cubical cell that had a size such that it could
contain all the particles of the system. Then particles would be introduced one
by one into this cell called root cell. The algorithm would then divide the cell
into daughter cells whenever two particles fall into the same cell, which would
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Figure 3.1: Example of kd-tree build in 2D. it represents the projection of particles
in the xy plane from a polytrope test. Each level of the tree recursively splits the
particle distribution in half, bisecting the longest axis at the center of mass until
the number of particles in a given cell is < Nmin. In this example Nmin = 100 for
clarity. Adapted from Price et al. (2018).
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occur as soon as the second particle is introduced in the root cell. The daughter
cells would have exactly half the length of the parent cell, in a way that viewed
in 3D the cell is split into eight pieces. If two particles happen to be still in the
same daughter cell after splitting, the cell is recursively divided in the same way,
until particles are in different cells. This space division is not used as a grid but
as a bookkeeping structure for the tree (see e.g. Pfalzner & Gibbon, 1996, for
more details).

Since in Phantom self-gravity is implemented, the default option is using a
kd-tree (Price et al., 2018). Self-gravity is essential in many astrophysical simu-
lations, however, due to its long-range nature, it is generally the major computa-
tional burden in N-body simulations. The underlying idea is too collect particles
in groups organised in a hierarchical fashion called nodes, as explained above. In
this way computationally expensive tasks are performed on aggregate quantities
of the groups rather than on individual particles. In addition, Phantom performs
neighbour search for groups of particles (Price et al., 2018). The resulting posi-
tions of all neighbours are cached and used to check for neighbours for individual
particles in the group. The implemented kd-tree algorithm follows Gafton &
Rosswog (2011), which splits the particles recursively based on the center of mass
and bisecting the longest axis at each level. An example of a kd-tree build is
shown in Fig. 3.1. The tree build is refined until a single cell contains less than
a minimum number of particles Nmin. The cell containing < Nmin is called a leaf
node, and by default Nmin = 10. Finally, the neighbour search is performed once
for each leaf node.

In Phantom code, linear and angular momentum are both conserved to round-
off error (typically ∼ 10−16 in double precision), but exact conservation is violated
when using individual particle timesteps or when using the kd-tree to compute
gravitational forces. The magnitude of these quantities, as well as the total
energy and its individual components, should be monitored at runtime. Con-
sidering individual timesteps, one should typically expect energy conservation to
∆E/E ∼ 10−3, and linear and angular momentum conservation to ∆E/E ∼ 10−6

with default code settings. Also, by default the code execution is aborted if con-
servation errors exceed 10% (Price et al., 2018).

The ideal gas equation of state relating the pressure P to the density ρ or
internal energy u is

P = (γ − 1)ρu, (3.16)

where γ is the adiabatic index. The default equation of state in Phantom has the
adiabatic index set to γ = 5/3. The sound speed cs is given by γ, P and ρ by the
following equation

cs =

√
γP

ρ
, (3.17)

while the pressure can be related to the gas temperature T by

P =
ρkBT

µmH

, (3.18)

where kB is the Boltzmann’s constant, µ is the mean molecular weight and mH is
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the mass of a hydrogen atom. Eq. 3.18 can be recasted using Eq. 3.16, finding a
relation between temperature and internal energy

T =
µmH

kB

(γ − 1)u. (3.19)

In our simulations we evolve the gas using an isothermal equation of state
instead of the standard adiabatic. In this case, the gas particles keep their initial
thermal energies and physically represents an efficient cooling, since the thermal
energy in excess is radiated away.

The timestepping algorithm used in Phantom to integrate the equations of
motion is based on the Leapfrog method in Kick-Drift-Kick form or Verlet scheme
(Verlet, 1967). The particle positions and velocities are evolved from time tn to
tn+1 according to

vn+ 1
2 = vn +

1

2
∆tan (3.20)

rn+1 = rn + ∆tvn+ 1
2 (3.21)

an+1 = a(rn+1) (3.22)

vn+1 = vn+ 1
2 +

1

2
∆tan+1. (3.23)

In Phantom the approach is slightly different. Considering that in SPH there
is the possibility to have velocity-dependent terms in the acceleration, it follows
that Eq. 3.23 becomes implicit. Since these terms are not usually dominant over
position-dependent terms, Phantom uses a first-order prediction of the velocity
as follows (Price et al., 2018)

vn+ 1
2 = vn +

1

2
∆tan (3.24)

rn+1 = rn + ∆tvn+ 1
2 (3.25)

v∗ = vn+ 1
2 +

1

2
∆tan (3.26)

an+1 = a(rn+1,v∗) (3.27)

vn+1 = v∗ +
1

2
∆t[an+1 + an]. (3.28)

An error check is performed at the end of the step against a tolerance set by
default to 10−2. If the computed value doesn’t satisfy the condition, the accel-
erations are recomputed by substituting v∗ with vn+1 and iterating the last two
passages till the condition is satisfied. In practice this happens rarely.
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3.2 Setup and parameters

3.2.1 Simulations setup

It is essential in SPH to start with initial conditions that are as accurate as
possible and that the initial particle setup is as close as possible to a configuration
which would arise itself in a SPH simulation (e.g. Diehl et al., 2015). In Phantom
the simplest method to initialise particles is to set them on a uniform Cartesian
distribution. There are different arrangements (Fig. 3.2):

• cubic lattice, where particles are equally spaced in each direction, i.e. ∆x =
∆y = ∆z;

• cubic close-packed lattice, where ∆y =
√

3/4∆x and ∆z =
√

6/3∆x, re-
peated every 3 layers in z;

• hexagonal close-packed, as for close-packed but repeated every two layers
in z;

• uniform random.

Figure 3.2: Particle initial configurations. Colors change with z-axis simply to
show depth. From Diehl et al. (2015).

While the cubic lattice is the simplest and most widely used particle arrange-
ment, it is an unstable equilibrium configuration and has preferred directions
along the xyz axes (Morris, 1996). On the other hand, cubic and hexagonal
close-packed lattices are optimal and efficient ways to pack spheres of equal sizes,
and they are stable against random perturbations (Monaghan, 1992).

To avoid geometrical effects, initial conditions are perturbed and then relaxed
before calculation into a stable configuration by application of a dampening force
proportional to and directed against particle velocities as

aaext,damp = −fdv, (3.29)

where fd is the damping parameter. This step is useful to produce low-noise
initial conditions, however there is no way to guarantee the exact configuration
into which particles will settle eventually.

In the case of setup of non-uniform density profiles, the procedure of stretch
mapping is used to achieve a spatially adaptive resolution (Herant, 1994). In
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this method a uniform lattice configuration is stretched in the radial direction,
where each point of the lattice is multiplied by a radially varying scaling factor
q(r) in order to achieve the desired spherical symmetric distribution. Since this
method basically distorts the initial lattice, it still includes and expands the bad
characteristics of the lattice configuration. Thus, before starting a simulation, it
is essential to relax the resulting configuration into a more isotropic equilibrium
state.

In Phantom the spherical distribution procedure is the most commonly used
(e.g Fryer et al., 2007; Rosswog & Price, 2007), and in addition the method is gen-
eralised for any density profile along one coordinate direction. Once the stretch
mapping is done, in the case of a star, relaxation of the particle distribution into
equilibrium is done with the standard approach of adding an external acceler-
ation (e.g. Gingold & Monaghan, 1977) as in Eq. 3.29 such that a percentage
of the kinetic energy is removed at each time step. The damping parameter is
defined by the user and the value used in this work is fd = 0.03, such that a small
fraction of the kinetic energy is removed over a Courant timescale (Price et al.,
2018). The Courant timescale is defined by the Courant-Friedrichs-Lewy (CFL)
condition for stability, which requires that the time interval employed should be
no greater than that required for a sound wave to cross a spatial cell.

To resume, in Phantom it is implemented a general method for setting up stel-
lar density profiles, which can be based on analytical functions such as polytropes
or tabulated data files, e.g. from stellar evolution codes. A uniform density parti-
cle sphere is set up and then the density profile is stretched. It is taken care that
the thermal energy of the particles is such that the pressure gradient is in hydro-
static equilibrium with self-gravity of the star, according to the chosen equation
of state. The star is then relaxed into equilibrium over several dynamical times
(Price et al., 2018).

3.2.2 Stellar model

Here we are going to introduce the Lane-Emden equation, which describes
polytropes in hydrostatic equilibrium to be used as simple star models. The
polytropic stellar model can be defined as the one in which the equation of state
is

P = Kργ, (3.30)

where K is a constant, γ = 1 + 1/n and n is the polytropic index. By combining
the equation of state Eq. 3.30 with the equation of hydrostatic equilibrium

dP

dr
= −GM(r)

r2
ρ(r) (3.31)

we get
1

r2

d

dr

(
r2

ρ

dP

dr

)
= −4πGρ (3.32)

and the Lane-Emden equation

(n+ 1)Pc
4πGρ2

c

1

r2

d

dr

(
r2dθ

dr

)
= −θn, (3.33)
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where θ is a dimensionless variable defined as ρ(r) = ρcθ
n(r) (ρc = ρ(r = 0)),

Pc is the central pressure, Pc = Kρ
1+1/n
c . The power law for pressure is P (r) =

Pcθ
1+n(r) (see e.g. Hansen et al., 2004, for details). By introducing a new dimen-

sionless radial coordinate ξ in r = rnξ, where rn = (n+ 1)Pc/(4πGρ
2
c), we get the

dimensionless Lane-Emden equation

1

ξ2

d

dξ

(
ξ2dθ

dξ

)
= −θn. (3.34)

The solutions found by solving this equation for a chosen n are models called
polytropes of index n, and a star which obeys such equation of state is called a
polytropic star. In Phantom the creation of a polytropic star is achieved by first
placing particles on a close-packed sphere, which is then stretched to achieve the
correct polytropic density profile, which is obtained by numerical integration of
the Lane-Emden equation.

There are different cases where the equation of state in a star can be ap-
proximated by a polytropic equation of state. One case is a star in convective
equilibrium. The ascent and descent of the convective cells are typically assumed
to be part of an adiabatic process. In such case, the equation of state for an ideal
monoatomic gas is P = Kργ, with γ = 5/3 (since γ = (n+ 1)/n, n = 1.5). Other
cases where one can apply the polytropic equation of state are stellar regions
where the pressure is dominated by a completely degenerate electron gas, that
is in the core of evolved stars and in white dwarfs. The equation of state with
n = 3 is usually used to model main-sequence stars as the Sun (Hansen et al.,
2004) and in the case of relativistic degenerate matter. See LeBlanc (2010) for
more details. In general, the n = 3/2 less concentrated polytropes are used to
represent lower main sequence stars, while n = 3 models are used to represent
highly concentrated stars. In addition, going from a polytrope with n = 3 to
n = 3/2 means going from a radiative star to a convective one.

Main sequence stars like the Sun are usually described by a n = 3 polytrope.
A comparison between the n = 3 polytrope and results from a zero age main
sequence model with same mass and radius (Hansen et al., 2004) show that the
polytrope works well for the inner regions where density and temperature are
high. For outer regions, a n = 3/2 polytrope suits more because of convection.
However, this constitutes only about 0.6% of the mass of the star, so most of the
star has a structure close to that of an n = 3 polytrope.

If a star is massive enough (> 1.5M�), it will go into the carbon-nitrogen-
oxygen (CNO) regime, instead of the proton-proton chain. In this case, the CNO
regime releases energy in a smaller region of the star than the proton-proton
chain, so it drives convection in the stellar center. For massive stars, the surface
gas is hotter, the hydrogen mostly ionised and it is the radiation that carries the
power (see e.g. Hansen et al., 2004, for more details on stellar structure).

In our simulations, we decided to model the stars with a n = 1.5 index (or
γ = 5/3). In TDE simulations it is common to set up solar-like stars, that is stars
with 1M� and 1R� as n = 1.5 polytropes (e.g. Evans & Kochanek, 1989; Ayal
et al., 2000; Hayasaki et al., 2013; Coughlin & Nixon, 2015; Bonnerot et al., 2016),
since they are structurally similar to low-mass main sequence stars. In order to
be able to compare our results to other studies, our solar-like star was modelled
with such polytrope. We decided to apply the same polytrope also for the S-like
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star, since they are massive (∼ 8 − 14M�; Habibi et al. (2017)) main sequence
stars. The polytrope is most probably not the most suitable for this kind of star,
as it should have only a small convective core, as discussed above. Thus, the
choice was supported mainly for comparison reasons with our solar-like star TDE
simulations. A more detailed analysis on more realistic stars (for example with
the MESA code; Paxton et al. (2010)) was thought to be more appropriate for a
future work, which would expand the work done here.

3.2.3 Gravitational potential

During the simulation, the particles representing the gas evolve according
to the gravity of the MBH which is modelled with the generalised Newtonian
gravitational potential given by Tejeda & Rosswog (2013)

ΦG(r, ṙ, φ̇) = −GMBH

r
−
(

2rg

r − 2rg

)[(
r − rg

r − 2rg

)
ṙ2 +

r2(θ̇2 + sin2 θφ̇2)

2

]
, (3.35)

where rg = GMBH/c
2 is the gravitational radius, θ the polar angle and φ is the

azimuthal angle in spherical geometry. This potential is derived from the geodesic
motion of test particles in the Schwarzschild spacetime. Pseudo-newtonian po-
tentials (e.g. Paczyńsky & Wiita, 1980; Nowak & Wagoner, 1991) have been
proposed to capture more carefully some properties of the relativistic solutions
to the accretion disc and they have been widely used in accretion studies onto
Schwarzschild BHs to reproduce general relativistic effects within a Newtonian
framework (e.g. Chakrabarti & Titarchuk, 1995; Chen et al., 2008; Rosswog et al.,
2009b). However, not all specific general relativistic features are well reproduced,
thus reducing the range of their applicability. For instance, the Paczyńsky and
Wiita pseudo-Newtonian potential

Φ = −GMBH

r − 2rg
(3.36)

correctly reproduces the positions of the innermost stable circular orbit, rISCO =
6rg, and the marginally bound circular orbit, rb = 4rg. It reasonably reproduces
quantities such as angular momentum of circular orbits, i.e. with a percentage
error ≤ 6%, however other quantities are not accurately reproduced, for example
orbital frequency has a percentage error ≤ 50% (Tejeda & Rosswog, 2013). As
dsicussed by Tejeda & Rosswog (2013), another common problem when using
pseudo-Newtonian potentials is that they accurately reproduce circular orbits,
but not necessarily more general trajectories. Regarding this issue, the general-
ized Newtonian potential by Tejeda & Rosswog (2013) has the feature of accu-
rately describing the motion of test particles in Schwarzschild spacetime. From
Eq. 3.35, we can see that the potential includes the typical Newtonian term
which scales as 1/r. In addition, it includes in the second term a dependence
on the velocity of the test particle, which can be interpreted as an additional
contribution due to the kinetic energy being also gravitationally attracted by
the central mass. This potential accurately models several relativistic features of
the Schwarzschild spacetime, reproducing in particular the exact location of the
marginally stable, marginally bound and photon circular orbits, as well as the ex-
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act radial dependence of the binding energy and angular momentum. Moreover,
this potential exactly reproduces the time evolution of parabolic-like trajectories
and the pericenter advance of elliptical trajectories.

An example of a tidal disruption of a solar-type star with M∗ = 1 M�, R∗ = 1
R� on a parabolic trajectory by a MBH = 106 M� MBH is shown in Fig. 3.3. The
figure shows the comparison of the SPH simulation by Tejeda & Rosswog (2013)
run for four different potentials, including the generalised Newtonian potential,
to the exact trajectory in Schwarzschild spacetime.

The generalized Newtonian potential has been used also by Bonnerot et al.
(2016) in a similar setup, with the difference that they explored tidal disruption
of stars on eccentric orbits with penetration factor β = 1 and 5 and eccentricities
e = 0.8 and 0.95.

Figure 3.3: Comparison of the same TDE simulation with four different poten-
tials. The figure shows the trajectory followed by the center of mass of the star
in each case, projected onto the orbital plane. The solid blue line is the reference
exact geodesic trajectory of a test particle in Schwarzschild spacetime. Adapted
from Tejeda & Rosswog (2013).

A test particle evolving under this generalized Newtonian potential conserves
the specific orbital energy and angular momentum, which are given by

ε =
1

2

[
r2ṙ2

(r − 2rg)2
+
r3(θ̇2 + sin2 θφ̇2)

r − 2rg

]
− GMBH

r
, (3.37)

l =
r3

√
θ̇2 + sin2 θφ̇2

r − 2rg

. (3.38)
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The generalised Newtonian potential is implemented in Phantom and the accel-
eration components are given by

ẍi = −GMxi

r3

(
1− 2rg

r

)2

+
2rgẋ

i

r2(r − 2rg)

∑
j

xjẋj − 3rgx
i

r5

∑
j

(∑
kl

εkjlx
kẋl

)2

.

(3.39)

3.2.4 Stellar and orbital parameters

Since we want to study the dynamics of TDEs occurring in a nuclear en-
vironment like our GC, we choose a MBH and stars which are representative
for such environment. The mass of the MBH is set to the mass of Sgr A*,
MBH = 4.3 · 106M� (Gillessen et al., 2009). We define an accretion radius, i.e. a
distance within which we remove any particle from the simulation due to accre-
tion to the MBH, and we set this distance to be at the innermost stable circular
orbit for a non-spinning BH, rISCO = 6rg.

Most TDE simulations found in the literature study the disruption of solar
type stars, i.e. stars with M∗ = 1M� and R∗ = 1R� (e.g. Laguna et al., 1993;
Ayal et al., 2000; Coughlin & Nixon, 2015). For comparison purposes, we choose
this kind of star for our simulations and, in addition, we choose a star with
M∗ = 10M� and R∗ = 5R�: this choice comes from the observation that the
group of stars orbiting around Sgr A* within a distance of < 0.04 pc are S stars,
which are main sequence massive stars. According to the recent study made by
Habibi et al. (2017), high resolution spectroscopy infers that the spectral type of
these stars is B0-B3V, masses range between 8 and 14 M�, radii range between
4 and 6 R�, and ages are < 15 Myrs.

In order to explore the stellar disruption evolution of the two chosen types of
stars, we ran simulations over a range of orbital parameters. Considering that
it is observed that S stars have eccentricities in the range from ∼ 0.4 to 0.95
(Eisenhauer et al., 2005; Parsa et al., 2017), we performed simulations for such
orbits. We noticed that below e = 0.5 our simulations do not show dynamically
interesting TDEs for this study, therefore we opted for 0.5 ≤ e ≤ 0.99. We added
the high eccentricity e = 0.99 orbit to include stars scattered from large distances
(on nearly parabolic orbits).

To study the effects of the strength of a tidal disruption we chose different
penetration factors β (Eq. 2.2), in particular we chose orbits with β between 1 and
5. In order for a complete disruption to occur outside the MBH, rp of the star’s
orbit must be ≤ rt, and rt must be greater than the MBH event horizon, 2rg. Fig.
3.4, panel a) shows how orbits with fixed β change with eccentricities, and panel
b) shows how orbits with fixes e change with different β. Each orbit represents
the trajectory in one period of the center of mass of a star in the generalised
Newtonian potential described by Eq. 3.35. The MBH rISCO is represented by
the filled black circle, and rt distance is given by the dashed line.

The list of the 37 performed simulations is given in Table 3.1. Each simulation
is labelled with the letter S or s, denoting a M∗ = 10 M�, R∗ = 5 R� star (S
star-like) and a M∗ = 1 M�, R∗ = 1 R� star (solar-like), respectively, a number
denoting the β value, and a number after the dot denoting the eccentricity. So,
for example, S1.6 is the simulation corresponding to the model of a S star on an
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Figure 3.4: Orbits with eccentricities ranging from e = 0.6 to 0.95 with fixed β =
1 (a), and orbit with penetration factor ranging from β = 1 to 5 with fixed e = 0.8
(b). Each orbit is the trajectory of the center of mass of a star in the generalised
Newtonian potential (Eq. 3.35) in one period. The filled circle represents the
rISCO, while the dashed circle represents rt.
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initial orbit with penetration factor β = 1 and eccentricity e = 0.6.

The simulations performed for this work were run on the HPC cluster offered
by Arctur d.o.o.. The cluster consists in different nodes, each with 28 cores @ 2.6
GHz, which allowed us to run simulations within a reasonable time.

Simulation data in this work are visualised using the SPLASH tool (Price,
2007). Fig. 3.5 shows a sequence of snapshots of model S1.8.

Figure 3.5: Sequence of snapshots of model S1.8. The MBH is represented by
the full white circle, which has radius equal to rISCO, while the dashed white line
represents the tidal radius rt. In panel a) the star is in its initial position ra and
orbits the MBH on an anticlockwise trajectory. In panel b) the star has been
disrupted and the debris formed two tails, which will stretch and fallback (panel
c)). In panels d)-g) the debris is going through circularisation processes, which
result in the formation of a disc (panel h).
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Table 3.1: List of simulations. For each model the respective penetration factor
β, eccentricity e, the pericenter distance rp, the apocenter distance ra and the
velocity at apocenter va are reported. The model name includes the type of star,
the penetration factor and a number related to the eccentricity. A star with 10
M�, 5 R� is dubbed as S (S star like), while a star with 1 M�, 1 R� is dubbed
as s (solar like). For instance, S1.6 is a model with an S star, β = 1 and e = 0.6.

Model Star β e ecrit rp ra va

Units R�(rg) R�(rg) m/s
S1.6 S 1 0.60 0.974 377.4 (41.4) 1509.6 (165.4) 1.5 · 107

S1.7 S 1 0.70 0.974 377.4 (41.4) 2138.6 (234.4) 1.1 · 107

S1.8 S 1 0.80 0.974 377.4 (41.4) 3396.5 (372.3) 7.1 · 106

S1.9 S 1 0.90 0.974 377.4 (41.4) 7170.5 (785.9) 3.5 · 106

S1.95 S 1 0.95 0.974 377.4 (41.4) 14718.3 (1613.1) 1.7 · 106

S1.99 S 1 0.99 0.974 377.4 (41.4) 75101.0 (8231.1) 3.4 · 105

S2.5 S 2 0.50 0.987 188.7 (20.7) 566.1 (62.0) 2.8 · 107

S2.6 S 2 0.60 0.987 188.7 (20.7) 754.8 (82.7) 2.1 · 107

S2.7 S 2 0.70 0.987 188.7 (20.7) 1069.3 (11.7) 1.6 · 107

S2.8 S 2 0.80 0.987 188.7 (20.7) 1698.3 (18.6) 1.0 · 107

S2.9 S 2 0.90 0.987 188.7 (20.7) 3585.2 (39.3) 5.0 · 106

S2.95 S 2 0.95 0.987 188.7 (20.7) 7359.1 (80.7) 2.5 · 106

S3.6 S 3 0.60 0.991 125.8 (13.8) 503.2 (55.2) 2.7 · 107

S3.7 S 3 0.70 0.991 125.8 (13.8) 712.9 (78.1) 2.0 · 107

S3.8 S 3 0.80 0.991 125.8 (13.8) 1132.2 (124.1) 1.3 · 107

S3.9 S 3 0.90 0.991 125.8 (13.8) 2390.2 (262.0) 6.3 · 106

S3.95 S 3 0.95 0.991 125.8 (13.8) 4906.1 (537.7) 3.1 · 106

S4.7 S 4 0.70 0.993 94.3 (10.3) 534.6 (58.6) 2.3 · 107

S4.8 S 4 0.80 0.993 94.3 (10.3) 849.1 (93.1) 1.5 · 107

S4.9 S 4 0.90 0.993 94.3 (10.3) 1792.6 (196.5) 7.5 · 106

S4.95 S 4 0.95 0.993 94.3 (10.3) 3679.6 (403.3) 3.7·106

S5.7 S 5 0.70 0.995 75.5 (8.3) 427.7 (46.9) 2.6 · 107

S5.8 S 5 0.80 0.995 75.5 (8.3) 679.3 (74.5) 1.7 · 107

S5.9 S 5 0.90 0.995 75.5 (8.3) 1434.1 (157.2) 8.6 · 106

S5.95 S 5 0.95 0.995 75.5 (8.3) 2943.7 (322.6) 4.3 · 106

s1.6 s 1 0.60 0.988 162.6 (17.8) 650.5 (71.3) 2.3 · 107

s1.7 s 1 0.70 0.988 162.6 (17.8) 921.5 (101.0) 1.7 · 107

s1.8 s 1 0.80 0.988 162.6 (17.8) 1463.5 (160.4) 1.1 · 107

s1.9 s 1 0.90 0.988 162.6 (17.8) 3089.7 (338.6) 5.4 · 106

s1.95 s 1 0.95 0.988 162.6 (17.8) 6341.9 (695.1) 2.7 · 106

s1.99 s 1 0.99 0.988 162.6 (17.8) 32360.1 (35446.7) 5.3 · 105

s2.5 s 2 0.5 0.994 81.3 (8.9) 243.9 (26.7) 4.3 · 107

s2.6 s 2 0.60 0.994 81.3 (8.9) 325.2 (35.7) 3.4 · 107

s2.7 s 2 0.70 0.994 81.3 (8.9) 460.7 (50.5) 2.5 · 107

s2.8 s 2 0.80 0.994 81.3 (8.9) 731.8 (80.2) 1.7 · 107

s2.9 s 2 0.90 0.994 81.3 (8.9) 1544.8 (169.3) 8.2 · 106

s2.95 s 2 0.95 0.994 81.3 (8.9) 3171.0 (347.5) 4.1 · 106
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CHAPTER 4

Results and discussion

4.1 Debris at pericenter and falling back

4.1.1 Specific energy distribution

Let us assume as initial condition that the star at a large distance from the
MBH is in hydrostatic equilibrium. We consider each fluid element of the star to
initially move in a Keplerian orbit, each one with its own energy, and thus each
with an eccentricity close to that of the center of mass of the star. As the star
approaches the MBH the orbits get squeezed, resulting in a perturbed hydrostatic
equilibrium. The energy inside the star is redistributed and the specific energy
distribution will be wider, with a spread on energy (Stone et al., 2013)

∆ε ∼ GMBHR∗

r2
t

. (4.1)

After the close approach to the MBH, the fluid elements move on orbits according
to their new specific energy with a distribution ranging over

−∆ε+ εorb ≤ ε ≤ ∆ + εorb, (4.2)

where εorb is the specific orbital energy of the stellar center of mass approaching
the MBH. For eccentric orbits, εorb is given by

εorb =
GMBH

2rt

β(1− e). (4.3)

Since we are interested in fluid elements which will form an accretion disc, we
consider those with negative energy. These will return close to rp after a Keplerian
period

T =
2πGMBH

(−2ε)2/3
. (4.4)

The most tightly bound debris and the most loosely bound debris have periods
tmin and tmax, respectively, which can be calculated as (Hayasaki et al., 2013)

tmin =
π√
2

tdyn

β3/2(1− e)3/2
(4.5)
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tmax =
π√
2

[
β(1− e)

2

(
M∗

MBH

)1/3
]−3/2

(4.6)

where tdyn is the dynamical time given by
√
R3

∗/(GM∗), and tmax is valid for
e < ecrit, where ecrit is given by Eq. 2.17 and is the eccentricity below which
all the debris remains bound after disruption (among our models only S1.99 and
s1.99 have e > ecrit; see Tab. 3.1). Thus, the duration time of mass fallback of
eccentric TDEs with e < ecrit can be predicted to be finite and it is given by
∆t = tmax − tmin. We calculate tmin and tmax analytically using Eq. 4.5 and Eq.
4.6, and we find discrepancies with values obtained from our simulations. For
example, Eq. 4.5 and Eq. 4.6 give for S1.6 tmin = 0.002 yr and tmax = 0.005
yr, and for S3.8 tmin = 0.001 yr and tmax = 0.003 yr. The tmin values do not
agree with values found from simulations (see Fig. 4.6, right panels), where we
find for S1.6 tmin ≈ 0.004 yr and tmax ≈ 0.005 yr, and for S3.8 tmin ≈ 0.002 yr
and tmax ≈ 0.003 yr. This is due to the fact that they are evaluated taking into
account the energy spread ∆ε, which is fixed by Eq. 4.1. This discrepancy has
been noted previously by Hayasaki et al. (2013). The discrepancy is due to the
fact that they are estimated based on Newtonian potential, which has smaller
spread in energy than in the simulations.

We calculate dm/dε directly from our simulations, where the specific energy
is given by Eq. 3.37. Fig. 4.3, Fig. 4.4 and Fig. 4.5 show the specific energy
distributions (left panels), calculated from the stellar debris at the second passage
to pericenter, before self-crossings and circularisation mechanisms begin to act.
In general, the specific energy distribution can show two features: a peak around
the central value and two lateral peaks called wings. The wings are related to
the formation of the tails after the first passage at rp (see panel b) in Fig. 3.5).
From Fig. 4.3, Fig. 4.4 and Fig. 4.5, it is evident that the tails tend to disappear
for high β and high e. In particular, in models S5.7, S5.8, S5.9 and S5.95, the
wings in the specific energy distribution are not visible at all and instead there is
a single peak distribution (Fig. 4.4, bottom row). It can also be noticed that with
increasing β the energy spread ∆ε weakly depends on β (Fig. 4.1), in agreement
with Stone et al. (2013),Hayasaki et al. (2013) and Guillochon & Ramirez-Ruiz
(2013). This is related to the fact that for higher β, the star is subject to stronger
tidal force as it resides in a deeper potential well (rp < rt) than models with β = 1.
Hence, after the first passage at rp, the stellar debris cannot extend the two tails,
resulting in a more compact clump and the tails fall back almost together and
with similar energies (Fig. 4.2). For β = 1, in particular in models S1.9, S1.95,
S1.99, s1.9, s1.95 and s1.99, there is a small peak around the central value of
the distribution, which flattens as e decreases (top panel in Fig. 4.3). The peak
is formed by mass congregation due to self-gravity. After seconds passage to
pericenter, the distributions show high variability due to circularisation processes
and disc formation during fallback.

In order to see how the time evolution of the energy distribution changes with
β, in Fig. 4.6 we compare, as example, S1.6 (top panel) to S3.8 (bottom panel).
We plot distributions at different times of the debris evolution: the star’s initial
position at ra (blue), the first passage at rp (orange), the formation of two debris
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Figure 4.1: Plot of specific energy distribution of models S1.95, S2.95, S3.95, S4.95
and S5.95. The distributions are normalised with respect to the energy, in order
to compare the energy spread. The colours correspond to different penetration
factors β.

tails (green), the stretching and falling back of the most bound debris tail (red),
and the second passage to rp (purple). At higher β we can observe a shift of the
specific energy distribution at later times with respect to the distribution at ra
and first passage to rp: while at β = 1 all the distributions are symmetric with
respect to the central value over time, as β is increased there is a shift towards
higher energies of the distribution at later times. The shift may be due to a
stronger torque felt by the star with higher β.

4.1.2 Mass return rate distribution

In order to estimate the mass return rate dm/dt, we follow the method used
in e.g. Hayasaki et al. (2013). We assume that fluid elements with negative
energies returning to pericenter, lose energy and angular momentum on a viscous
timescale << T . The mass return rate is then evaluated from the specific energy
distribution dm/dε and the specific energy derivative with respect to time dε/dt,
which is calculated from Kepler’s third law. Thus, the mass return rate is given
by Eq. 2.26.

Fig. 4.3, Fig. 4.4 and Fig. 4.5 (right panels) show the mass return rates.
After the star is disrupted at first passage at rp, the debris forms two tails, which
stretch when falling back (Fig. 3.5, panel b) and c)). The tail which falls back
first, with lower energy, translates to the rising part of the mass return rate
distribution. The stretched debris which follows the leading tail translates to the
t−5/3 power law curve of the mass return rate distribution, and it becomes longer
as eccentricity increases with fixed β, the most noticeable examples being models
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Figure 4.2: Fallback phase of the debris after first passage to rp from two TDEs.
In panel a) is shown the typical stretching and fallback at low β of the leading
tail, which is in deeper potential with respect to the second tail. The situation
is different for higher β (panel b)), where the tails both sit in deep potential and
cannot stretch, resulting in a more compact clump.

with β = 1 (first row of Fig. 4.3 and Fig. 4.5). Finally, the second debris tail at
higher energy, which is the last to fall back, translates into the decrease in the
fallback rate. For low eccentricity, the fallback timescale of both debris tails is
similar, while for longer eccentricities the timescale for the second tail fallback is
longer. We note that it is not evident how the canonical assumption

L ∝ Ṁ ∝ t−5/3 (4.7)

should hold at late stages of the TDE (Lodato & Rossi, 2011), when the circular
disc forms due to circularisation processes.

The central peak present in the specific energy distribution in models S1.95
and S1.99 is slightly visible also in the mass return rate distribution. This is not
the case for s1.95 and s1.99.

Regarding the duration of TDEs, we find that for TDEs with e = 0.99, i.e.
S1.99 and s1.99, the mass return rate distribution behaves as what expected from
the parabolic one, lasting for order months to years. For β = 1, for s1.6, s1.7
and s1.8 the duration is few hours and for the other models it is ∼ days to
few months, but the rate is higher. If translated to a lightcurve assuming that
L ∝ Ṁc2 is valid (Lodato & Rossi, 2011), these TDEs would be hard to catch
observationally because they would appear as short peaks. If they were to occur
in active galaxies, then they could be hidden as AGN variability, making them
even more difficult to observe; however, this assertion needs considerations on
the duration with respect to the variability, and on the relative luminosity. The
detectability situation becomes even worse for β ≥ 2, as the duration is of the
order . day.

Finally, a comparison between S like stars and solar like stars shows that TDEs
produced by a MBH like Sgr A* are similar in duration, as it can be expected
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Figure 4.3: Plots of specific energy distributions (left) and corresponding mass
return rate distribution (right) of TDEs with M = 10 M�, R = 5 R� for β = 1
to 3, from top to bottom. The colours correspond to different eccentricities of
the simulation as shown in the legend. Each plot corresponds to the debris after
disruption at first passage and before second passage through rp.
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Figure 4.4: Plots of specific energy distributions (left) and corresponding mass
return rate distribution (right) of TDEs with M = 10 M�, R = 5 R� for β = 4
to 5, from top to bottom. The colours correspond to different eccentricities of
the simulation as shown in the legend. Each plot corresponds to the debris after
disruption at first passage and before second passage through rp.
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Figure 4.5: Plots of specific energy distributions (left) and corresponding mass
return rate distribution (right) of TDEs with M = 1 M�, R = 1 R� for β = 1
to 2, from top to bottom. The colours correspond to different eccentricities of
the simulation as shown in the legend. Each plot corresponds to the debris after
disruption at first passage and before second passage through rp.
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Figure 4.6: Plot of specific energy distribution (left) and corresponding fallback
mass rate (right) of models S1.6 (top) and S3.8 (bottom). The colours correspond
to different times of the simulation: blue is at star’s initial position at ra, orange
is at the first passage to rp, green is during the formation of two debris tails, red
is during stretching and falling back of the most bound debris tail, and purple is
at the second passage to rp.

since the main timescale behind a TDE depends on the mass of the MBH. We
note that TDEs produced by S stars are likely to have a higher peak since more
stellar mass contributes to the mass return rate.

4.2 Circularization of debris

There are different mechanisms which allow the debris to dissipate kinetic
energy and to circularize (Evans & Kochanek, 1989; Kochanek, 1994). When
the star is disrupted, the debris obtains a range of inclinations and their orbits
will be vertically focused, intersecting close to pericenter. As a result of the
strong compression at this point, a so-called pancake shock is generated. Upon
returning to pericenter, relativistic apsidal precession contributes to debris self-
crossing, generating shocks due to the head of the debris colliding with its tail,
which is still falling back.

Another effect that occurs is shearing due to the radial focusing of the debris:
their orbits have a small range of rp and a wide range of ra, resulting in the
debris going through the nozzle. In addition, the debris also have a range of
apsidal angles and eccentricities, which shear the stellar material.

In general, we observe two behaviours of the circularisation of the stellar
debris, depending on the initial orbital parameters e and β: a) shocks and higher
precessing angles allow the debris to form a circular disc quickly, b) the shocks
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Figure 4.7: Sequence of snapshots of model S1.6. The dashed circle defines the
tidal radius rt = 377.4R� = 41.4rg, the white full circle defines the MBH rISCO =
54.7R� = 6rg. The reference distance scale is shown for 1000R� = 109.6rg. Time
is in code units (∆t = 1594 s = 5 · 10−5 yr).

Figure 4.8: Sequence of snapshots of model S1.8. The dashed circle defines the
tidal radius rt = 377.4R� = 41.4rg, the white full circle defines the MBH rISCO =
54.7R� = 6rg. The reference distance scale is shown for 1000R� = 109.6rg. Time
is in code units (∆t = 1594 s = 5 · 10−5 yr).
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are not impactful enough to allow fast circularisation and, as a consequence,
the debris follows elliptical orbits. From our simulations, we find that we can
distinguish four different types of debris behaviour:

• type 1: the debris does not circularise efficiently and a disc is not formed
or is formed after relatively long time (e.g. S1.6, Fig. 4.7);

• type 2: the debris slowly circularises and eventually forms a disc with no
debris falling back (e.g. S1.8, Fig. 4.8);

• type 3: the debris relatively quickly circularises and forms a disc while there
is still debris falling back (e.g. S1.95, Fig. 4.10);

• type 4: the debris quickly and efficiently circularises, mainly through self-
crossings and shocks, and forms a disc with no debris falling back (e.g. S3.8,
Fig. 4.11).

Type 1 occurs in TDE models with β = 1 and low eccentricity (e = 0.6 and
0.7). In this case self-crossings are basically non existent since the leading debris
does not reach the still in falling tail, thus not allowing the typical circulariza-
tion processes to occur. The debris settles on an elliptical disc as shown in the
bottom row of Fig. 4.7 and precesses around the MBH, gradually and eventually
becoming a circular disc (it can be deduced, for example, from the shift to lower
eccentricities values of the distribution of eccentricity in Fig. 4.12, first panel in
the top row).

In types 2, 3 and 4 self-crossing occurs and leads to circularization. From
visual inspection of simulation snapshots we can estimate the time at which the
circularization and disc formation happen (relative to the start of the simulation).
We find that, for example, model S3.8, which is of type 4, forms a disc at t ∼ 500
in code units (Fig. 4.11), while model S1.95, which is type 3, forms it at t ∼ 4000
(Fig. 4.10) while there is still debris falling back. Also for model S1.8 we find
that the disc forms at t ∼ 4000 (Fig. 4.8), however in this case there is no debris
falling back and is therefore classified as type 2.

For S-like stars and β = 1, we can identify a dividing value of the initial stellar
eccentricity e = 0.8: models S1.6, S1.7 and S1.8 show a transition from type 1
to type 2, while models S1.9 and S1.95 are of type 3 (we could not identify the
type for S1.99 since circularisation starts at very late times and would require
very long computational time). Models with β = 2 are also divided at e = 0.8,
but with the difference that models with low eccentricity S2.6, S2.7, S2.8 show a
transition from type 2 to type 4, while models S2.9 and S2.95 are of type 2. For
β = 3, 4 and 5 the S star models show a behaviour of type 4.

For solar-like stars and β = 1, we find that models with low eccentricities,
that is s1.6, s1.7, are of type 1, while models s1.8, s1.9 and s1.95 are of type 2,
and model s1.99 of type 3. Lastly, for β = 2 models s2.6, s2.7 show transition
from type 2 to type 4, while s2.8, s2.9 and s2.95 are of type 4.

We estimated from visual inspection of simulation snapshots the approximate
distance rsc at which the first self-crossing occurs. We then calculate the ratio
between rsc and the tidal radius rt, the apocenter distance ra and the pericenter
distance rp (Tab. 4.2) to check if there are any particular relations between them
and circularization types to help further into the classification. In Fig. 4.9 we
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Figure 4.9: Plots of the ratio between the distance of first self-crossing and the
tidal radius, rsc/rt against the types (upper plots), and between the distance of
first self-crossing and the pericenter distance, rsc/rp against the types (bottom
plots). S stars data are plotted on the left side and solar-like stars on the right
side. Types for each model and the ratios are in Tab. 4.2. For models where
the type could not be defined exactly (for example, model S1.8 is defined as type
1/2), it was taken the lower type (S1.8 is shown as type 1 in the plots).
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Figure 4.10: Sequence of snapshots of model S1.95. The dashed circle defines the
tidal radius rt = 377.4R� = 41.4rg, the white full circle defines the MBH rISCO =
54.7R� = 6rg. The reference distance scale is shown for 1000R� = 109.6rg. Time
is in code units (∆t = 1594 s = 5 · 10−5 yr).
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Figure 4.11: Sequence of snapshots of model S3.8. The dashed circle defines the
tidal radius rt = 377.4R� = 41.4rg, the white full circle defines the MBH rISCO =
54.7R� = 6rg. The reference distance scale is shown for 1000R� = 109.6rg. Time
is in code units (∆t = 1594 s = 5 · 10−5 yr).

show the most relevant plots, that is between types and rsc/rt and rsc/rp. We do
not find any relation.

In the following we describe our analyses and support for this type classifica-
tion.

4.2.1 Eccentricity and angular momentum distribution

We analysed the identified circularisation types by using angular momentum
and eccentricity distribution of debris. We calculated angular momentum l from
Eq. 3.38 and eccentricity e by using the specific energy of each fluid element (Eq.
3.37) and its angular momentum:

e =

√
1 +

2εl2

(GMBH)2
for r >> rg. (4.8)

In Fig. 4.12, the debris eccentricity distributions (first column) and the angular
momentum distribution (second column) are shown at different times, for models
S1.6, S1.7 and S1.8, which we find to show a transition from type 1 to type
2. In particular, for model S1.6 little to no shock contributes and hence the
debris follows the initial distribution of eccentricities (type 1). This is reflected
in the angular momentum distribution, which changes very little over time. In
model S1.7 (second row of Fig. 4.12) the situation is similar to S1.6, however
in the angular momentum distribution there is a larger shift towards angular
momentum l/l∗ = 1 at t = 2000, which we associate to the transition from type 1
to type 2. The eccentricity distribution remains wide and shifts slightly to lower
values. Finally, in model S1.8 (third row of Fig. 4.12), the effect given by shocks
during the circularization process is more evident by the more significant shift
towards lower eccentricities of the debris. At time t = 4000 the disc settles and
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the eccentricity distribution is narrow and centred around e ∼ 0.16. This is seen
also in the angular momentum distributions, where the distributions at t = 1000
and 1500 show a secondary peak at lower angular momenta that represents matter
which is going to be accreted and thus rising the angular momenta of the rest
of the debris, and at t = 4000 the distribution is narrow centred around a value
slightly larger than l/l∗ = 1.

In Fig. 4.13, we show examples with models s1.95, S1.95 and S3.8 to show the
difference between type 2, 3 and 4. The left panel of Fig. 4.13 shows the angular
momentum distribution of model s1.95 (type 2). Here the debris is spread over a
wider range of angular momenta with respect to S1.8 and the behaviour is similar;
the distribution gets narrower as the debris is circularizing at t = 10000 (yellow
line). A different case is shown in the middle panel of Fig. 4.13, where we show
the angular momentum distribution of S1.95 (type 3, Fig. 4.10). At t = 6000
there is a circular disc already formed (peak centred around 0.85 l/l∗), while
there is still most of the debris falling back, which has similar angular momenta
ranging between ∼ 1.2 and 1.4 l/l∗. The debris configuration at t = 8000, 12000
and 14000 is similar, and the angular momentum of the disc is increasing. Finally,
the angular momentum distribution of S3.8 (type 4, Fig. 4.11) in the right panel
of Fig. 4.13, shows the angular momenta span over a similar range through all
the circularisation process because the debris undergoes stronger self-crossings
and shocks. We see that the disc forms in a short time and that there is not a
lot of debris left over.

We note that in type 3 TDEs, we observe disc formation while there is still de-
bris falling back, as also seen from the angular momentum distribution. In model
S1.95, the bound debris falling back on elliptical trajectories, with ra of the order
of the initial stellar orbit, has a range of angular momenta and form an ”elliptical
shaped disc”, as seen in Fig. 4.10. In order to form this accretion flow, the bound
debris need to lose a significant amount of energy. As suggested by Piran et al.
(2015), the energy thus liberated during disc formation may power the optical
TDE candidates, rather than the energy coming from the accretion disc itself.
Furthermore, it is a common idea to consider circular accretion as an efficient
radiation source to power TDEs, since it was successfully applied as the Shakura
& Sunyaev (1973) model to power AGN. However, the recent TDE observational
data do not show such high energetic efficiencies, and simulations show that in
some case most of the debris stay on eccentric orbits for long times. As demon-
strated by Svirski et al. (2017), high accretion flows may radiate little enough to
explain the relative small radiation fluence observed from TDE candidates. It is
not clear, however, how this would affect the resulting lightcurve.

4.2.2 Temporal evolution of energy

To get some additional insight in the circularization process, we calculate the
temporal evolution of the average specific orbital energy relative to circularization
energy εcirc (later defined in Eq. 4.10) and how it is affected by the orbital
parameters e and β. The circularization energy is the energy corresponding to
the disc formed by circularization. To analyze how the evolution of specific energy
changes with e and β, we refer to two example cases, which we show in Fig. 4.14.
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Figure 4.12: Eccentricity distributions (first column) and angular momentum
distribution (second column) for models S1.6, S1.7 and S1.8. For each plot the
evolution of the corresponding distribution is shown for different times t (at t = 0
the star is at the apocenter ra). Time is in code units (∆t = 1594 s = 5 · 10−5

yr).
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Figure 4.13: Angular momentum distribution for models s1.95, S1.95 and S3.8.
For each plot, the evolution of the distribution is shown for different times t (at
t = 0 the star is at the apocenter ra). Time is in code units (∆t = 1594 s).
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Figure 4.14: Plot of average specific energy relative to circularisation energy of
S-star models with β = 3 (left) and for solar-like and S star models with initial
orbital eccentricity e = 0.95 (right).

In the left-hand panel of Fig. 4.14 , we plot all S star models with β = 3 and
we observe a drop in average specific energy that becomes steeper for increasing
eccentricity from e = 0.6 to 0.9 and then becomes slightly shallower for e = 0.95.
The drop comes from the orbital energy dissipated during debris self-crossings
and the generated shocks. This behaviour is consistent with results observed in
previous simulations (e.g. Hayasaki et al., 2013). The increase in drop steepness
with eccentricity is related to the relativistic precession acting more effectively
for more eccentric orbits, thus allowing self-crossing to be more efficient. This
mechanism becomes more effective with increasing β, as shown in the right-hand
panel of Fig. 4.14. In addition, we observe a shallower drop instead of an increase
of steepness for e = 0.95 for β = 1, 2 and 3 for S stars, while for solar-like stars
only for β = 1 and also e = 0.99. At β = 4 and 5 for S stars and 2 for solar-like
stars, this behaviour is not observed.

All results are shown in Fig. 4.15, where we give the evolution of average
specific energy for S star and solar-like star models and each plot includes models
with same β for the same type of star, while in Fig. 4.16 each plot includes
models with same eccentricity.

The specific energy curves are characterised by a constant temporal evolution
after the drop to lower energies. This reflects the fact that the debris is circular-
ising, but it does not tell us when the disc might or might not have settled. From
visual inspection of the simulation snapshots, we find that the disc can be formed
at different times during the constant temporal evolution for different models.

4.2.3 Temporal evolution of accreted matter

Since the circularization process affects the dynamics of the debris, it can
also affect how much debris is accreted before the disc is formed affecting the
mass of the final disc. We carried out an analysis on the temporal evolution of
the accreted matter, which we now start to describe by referring to two example
cases shown in Fig. 4.17. All results are shown in Fig. 4.18, where we give
the evolution of the accreted mass of S star and solar-like models and each plot
includes models with same β for the same type of star, while in Fig. 4.19 each
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Figure 4.15: Plots of average specific energy relative to circularisation energy of
all models. In each plot the value of the penetration factor β is fixed.
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Figure 4.16: Plots of average specific energy relative to circularisation energy of
all models. In each plot the value of the eccentricity e is fixed. Solid lines define
S stars, while dashed lines define solar-like stars.
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plot includes models with same eccentricity.

In Fig. 4.17 we show the mass of accreted debris for S-stars models with
fixed eccentricity e = 0.7 (left panel) and e = 0.95 (right panel) for β from 1
to 5. The curves are characterised by a rise followed by a knee and a somewhat
constant increase over time. The initial rise corresponds to the phase in which
self-crossings occur. We evaluate the rise time between the start of the rise and
the knee from the plot in Fig. 4.17 and report the values in Tab. 4.1. From the
rise time we observe that for e = 0.7 (left panel of Fig. 4.17) debris is accreted
faster when β is increased from 1 to 2. Increasing the value of β further affects
very little the rise time of accreted matter in this phase. In general, the mass
of accreted matter is increasing with increasing values of β. These models show
a transition in type going from type 1/2 for model S1.7 to type 4 for the other
models. In type 4 models the self-crossings and the shocks play a more important
role. In this case they modify the trajectory of the debris such that more of it is
accreted by the MBH.

The situation is different if the eccentricity is increased. For e = 0.95 (right
panel of Fig. 4.17) the matter is accreted faster for each increase of β (see values
in Tab. 4.1). From a visual inspection of the simulation snapshots we see that in
models S2.95, S3.95, S4.95 and S5.95 the debris falls in an almost radial trajectory
into the MBH to which we attribute the larger accreted mass. The models in this
plot are type 3 for S1.95, type 2 for S2.95 and type 4 for the others. For S1.95
the disc forms while there is still debris falling back and circularising, which
we interpret from the lower amount of accreted mass with respect to the other
models.

We now comment what happens after the knee in the curves. When the disc
is starting to form, the mass of accreted matter increases linearly with time. We
note a global increase of accreted matter between left panel and right panel of
Fig. 4.17: at the moment of the simulations’ end, the accreted matter is in the
range ∼ 0.5−1.2M� in the left panel (e = 0.7), while in the right panel (e = 0.95)
the range is ∼ 1.5 − 5M�. As mentioned, we attribute the increase of accreted
matter to the debris falling back in an almost radial trajectory, thus being directly
accreted by the MBH.

As discussed, the increase of accreted matter depends both on eccentricity e
and on penetration factor β. High eccentricity (more evident the case of e = 0.95;
see Fig. 4.18 and compare models with e = 0.95 to lower eccentricities) leads to a
bigger initial fraction of accreted debris because it is already on highly eccentric
orbits, and a higher penetration factor β (see Fig. 4.19) also leads to higher
amount of accreted matter because the debris is affected by stronger precession,
thus stronger self-crossing and shocks, which bring part of the debris on plunging
orbits. We can also see how e and β affect together the evolution of the accreted
mass by comparing model S1.95, S2.95, S3.95 and S4.95 in Fig. 4.17. We can see
that between β = 1 and 2 there is an increase of accreted matter (the knee for
S1.95 is at ∼ 1.25M�, while for S2.95 is at ∼ 4M�), leading to think that higher
penetration factor is responsible. However, if we compare S2.95 with S3.95 there
is little difference, regarding the accreted matter, and if we go to β = 4, the knee
is at ∼ 3M�, even though it shows a steeper increase after that. We interpret
this difference due to interplay between e and β, which both play a role during
this phase.
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As a final note, in Fig. 4.18 we can notice the dividing line in behaviour
at e = 0.8, which is more evident in the top right panel: models from e = 0.6
to 0.8 (type 4) show a similar accreted matter curve, different from the larger
eccentricities which show a more pronounced knee followed by a linear curve
(type 2).

Table 4.1: Rise time of accreted matter. The reported values are relative to the
models in Fig. 4.17.

Model S1.7 S2.7 S3.7 S4.7 S5.7 S1.95 S2.95 S3.95 S4.95 S5.95

Rise time [yr] 0.037 0.014 0.013 0.011 0.011 0.132 0.046 0.026 0.024 0.016

Figure 4.17: Plots of accreted debris mass over time. The eccentricity is fixed to
e = 0.7 (left panel) and e = 0.95 (right panel), while the penetration factor β
changes.

4.2.4 Circularization radius

Once the debris goes through the circularisation mechanism as described
above, it will eventually form a disc, which is generally thought to be responsible
for the emission we observe. In order to analyse the disk formed by circulariza-
tion, a characteristic radius and specific energy, rcirc and εcirc respectively, can be
derived (Bonnerot et al., 2016) as

rcirc =
r4

av
2
a +

√
r4

av
2
a[−12GMBH(ra − 2rg)2rg + r4

av
2
a]

2GMBH(ra − 2rg)2
(4.9)

εcirc = −GMBH

2rcirc

(
rcirc − 4rg

rcirc − 3rg

)
. (4.10)

In the literature, it is typically found that if all the fluid elements were able to cir-
cularize while conserving a common angular momentum equal to that of the star,
l∗ =

√
2GMBHrt, then the final disk would be a ring with rcirc = l2∗/(GMBH) = 2rt.

We calculated rcirc using Eq. 4.9 and compared it to the tidal radius rt (see Tab.
3.1, last two columns). We find that when the disk forms, the radius is approx-
imately equal to the estimated one for β = 1 and eccentricity close to parabolic
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Figure 4.18: Plots of accreted debris mass over time. The penetration factor β is
fixed for each plot, while the eccentricity changes. The first five plots are for the
S star models, while the last two are for the solar-like models.
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Figure 4.19: Plots of accreted debris mass over time. The eccentricity e is fixed
for each plot, while the penetration factor changes. Solid lines define S stars,
while dashed lines define solar-like stars.
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Table 4.2: List of TDE models and their correspondent type, circularisation
radius rcirc, the ratio between rcirc and tidal radius rt, the rise time of the accreted
mass, the approximate time of disc formation tdisc and the ratio between the
distance of first self-crossing, rsc and tidal radius rt, apocenter distance ra and
pericenter distance rp, respectively.

Model Type rcirc rcirc/rt Rise time tdisc rsc/rt rsc/ra rsc/rp

Units R�(rg) yr yr
S1.6 1 607.5 (66.6) 1.6 0.220 - 3.4 0.9 3.5

S1.7 1/2 646.5 (70.9) 1.7 0.037 - 4.2 0.7 4.2
S1.8 2 685.7 (75.2) 1.8 - 0.20 7.5 0.8 7.5
S1.9 3 725.1 (79.5) 1.9 0.048 0.14 13.3 0.7 13.3
S1.95 3 744.9 (81.6) 2.0 0.132 0.20 21.4 0.6 21.4
S1.99 - 760.8 (83.4) 2.0 - - - - -
S2.6 2 306.0 (33.5) 0.8 - - 1.7 0.9 3.4
S2.7 2/4 326.3 (35.8) 0.9 0.014 0.05 2.2 0.8 4.4
S2.8 4 346.7 (38.0) 0.9 0.016 0.04 3.7 0.8 7.4
S2.9 2 367.4 (40.3) 1.0 0.015 0.03 6.6 0.7 13.2
S2.95 2 377.9 (41.4) 1.0 0.046 - 10.4 0.5 20.7
S3.6 4 205.9 (22.6) 0.6 - 0.02 1.0 0.7 2.9
S3.7 4 220.0 (24.1) 0.6 0.013 0.02 1.5 0.8 4.4
S3.8 4 234.4 (25.7) 0.6 0.008 0.02 2.0 0.7 6.2
S3.9 4 248.9 (27.3) 0.7 0.007 0.02 3.4 0.5 10.3
S3.95 4 256.3 (28.1) 0.7 0.026 0.06 5.9 0.5 17.8
S4.7 4 167.4 (18.3) 0.4 0.011 0.01 1.0 0.7 3.8
S4.8 4 178.8 (19.6) 0.5 0.009 0.02 1.1 0.5 4.5
S4.9 4 190.4 (20.9) 0.5 0.014 0.02 1.8 0.4 7.1
S4.95 4 196.3 (21.5) 0.5 0.024 0.03 3.0 0.3 11.9
S5.7 4 136.4 (15.0) 0.4 0.011 0.01 0.8 0.7 3.7
S5.8 4 146.1 (16.0) 0.4 0.009 0.01 0.8 0.5 4.2
S5.9 4 156.1 (17.1) 0.4 0.010 0.01 1.2 0.3 5.9
S5.95 4 161.2 (17.7) 0.4 0.016 0.03 1.6 0.2 7.7
s1.6 1 264.4 (29.0) 1.6 0.031 0.05 1.6 0.9 3.6
s1.7 1 282.1 (30.9) 1.7 0.024 0.03 2.1 0.8 4.8
s1.8 2 300.0 (32.9) 1.9 0.015 0.03 3.3 0.8 7.6
s1.9 2 318.2 (34.9) 2.0 0.016 0.04 5.9 0.7 13.7
s1.95 2 327.3 (35.9) 2.0 0.052 - 7.9 0.5 18.2
s1.99 3 334.7 (36.7) 2.0 0.10 0.34 - - -
s2.6 2 135.9 (14.9) 0.8 0.013 0.04 0.6 0.7 2.8
s2.7 2/4 145.9 (16.0) 0.9 0.005 0.02 0.8 0.7 3.7
s2.8 4 156.1 (17.1) 1.0 0.004 0.01 0.9 0.5 4.4
s2.9 4 166.6 (18.3) 1.0 0.005 0.02 1.3 0.3 6.2
s2.95 4 171.9 (18.8) 1.0 0.009 0.03 3.0 0.4 13.8
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(S1.95, S1.99, s1.9, s1.95 and s1.99). The estimate does not hold for lower ec-
centricities and β > 1. In addition, over time the disc radius in our simulations
can increase (Fig. 4.10, panels c and d) differing from the estimated one. More
detailed simulations by Bonnerot & Lu (2019) find that the trajectories of the
gas within the disk span a large range of radii because angular momentum gets
efficiently redistributed among the debris through multiple shocks. Thus the com-
monly made assumption that rcirc = 2rt is only expected if angular momentum
exchange is negligible from the stellar disruption onwards, which, for instance,
Bonnerot & Lu (2019) find is not the case, and also our results show.

4.3 Convergence of the results

Our simulations were performed with ∼ 105 particles. To test how our results
converge, we performed a higher resolution simulation, that is with ∼ 5 · 105

particles for model S1.8. We limited the test to this model due to limited com-
putational resources.

We describe the differences we found in the following. We note some small
differences from visual inspection of the simulation snapshots, the most notable
being during circularization of the debris (Fig. 4.21). We see this also from left
panel of Fig. 4.20, where we show the average orbital specific energy relative to
circularization energy for all matter (blue lines), accreted matter (orange lines)
and non-accreted matter (green lines) for the simulation with 105 particles (solid
line) and with 5 · 105 particles (dashed lines). We interpret the decrease of the
average specific orbital energy of all the matter due to shocks occuring from
apsidal precession that converts orbital energy into thermal energy (since the
simulations were performed evolving the gas with an isothermal equation of state,
the extra thermal energy is removed, so that the result is shocks reducing the
energy). For the same reason, the accreted matter shows the lowest energies
due to shocks. Here there seem to be a somewhat less impactful effect of the
shocks due to self-crossings in the higher resolution simulation in the time between
∼ 0.02 and 0.04 yrs, while afterwards, as the debris starts to circularize, there
are relatively minor differences.

In the right panel of Fig. 4.20 we show the evolution of accreted matter for
the simulation with 105 particles (solid line) and with 5 · 105 particles (dashed
line). We find that the increase of number of particles decreases the amount of
accreted matter: at the end of the simulations, the accreted matter is slightly less
than 2% at higher resolution, instead of > 6%.

Overall, from these results we conclude that the resolution at which we ran our
simulations does not affect the discussion relative to the types of circularization.
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Figure 4.20: Left plot shows the evolution of average specific orbital energy rel-
ative to circularisation energy of all matter (blue line), accreted matter (orange
line) and non-accreted matter (green), while right plot shows the evolution of
accreted matter for model S1.8. Solid lines denote resolution at 105 particles,
while dashed lines denote resolution at 5 · 105 particles.

Figure 4.21: Comparison of snapshots of simulation for model S1.8 at different
resolutions. The left snapshot from the simulation with 105 particles, while the
right one has 5 · 105 particles. Both snapshots are shown at the same time of
the simulation. The dashed circle defines the tidal radius rt = 377.4R� = 41.4rg,
the white full circle defines the MBH rISCO = 54.7R� = 6rg. The reference
distance scale is shown for 1000R� = 109.6rg. Time t = 2000 is in code units
and corresponds to t = 0.1 yr.
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Conclusions

In order to fully exploit TDEs as a tool to investigate otherwise quiescent
MBHs, their dynamics should be better understood. Here we study TDEs that
may be produced in an environment similar to the inner parsecs of our GC. We
used the SPH Phantom code (Price et al., 2018) to simulate TDEs of S-like stars
(10M� and 5R�) and solar-like stars (1M� and 1R�) disrupted by a Sgr A*-
like MBH (4.3 · 106M�). The stellar profiles are modelled with a polytrope with
γ = 5/3 and the MBH is modelled with the generalised Newtonian gravitational
potential (Tejeda & Rosswog, 2013). The gas is evolved with an isothermal
equation of state. We simulated TDEs with a wide range of orbital parameters,
eccentricities e and penetration factors β. The chosen parameters for each TDE
are given in Tab. 3.1.

Our main findings are the following:

• dm/dε distributions show two features: a peak around the central value,
which flattens as eccentricity decreases, and two lateral peaks called wings,
related to debris tails formation;

• dm/dt distributions show similar fallback timescale of the debris tails at
low eccentricities, while for higher eccentricities the tail following the head
has substantially longer fallback periods. This directly affects the duration
of a TDE, making those with higher eccentricities longer and more likely to
be observed. Comparing TDEs produced by solar-like stars and S-like stars
with same eccentricity, we find that they have similar durations, however S-
like stars have higher dm/dt distributions than solar-like stars, as expected
since their masses are larger;

• we identify four types of circularisation evolution: (i) the debris does not
circularize efficiently and a disc is not formed or is formed after relatively
long time (type 1), (ii) the debris slowly circularize and eventually forms a
disc with no debris falling back (type 2), (iii) the debris relatively quickly
circularises and forms a disc while there is still debris falling back (type
3), (iv) the debris quickly and efficiently circularises, mainly through self-
crossings and shocks, and forms a disc with no debris falling back (type
4).

The debris evolution and disc formation is dependent on the mechanisms
and processes involved during circularisation. We find that for β = 1,
if we increase the initial orbital eccentricity, there is a transition from a
situation where the circularization mechanisms are not efficient (type 1)
(the disc is not likely to form in short times) to a situation where relativistic
apsidal precession and debris shocks begin to play a role, leading to disc
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formation (type 2 and 3). An increase in the penetration factor β leads to
more impactful self-crossings and shocks, which allow a quick and efficient
circularisation of the debris (type 4). The behaviour of S-stars and solar-
like stars is almost similar for β = 1, while for β = 2 TDEs of solar-like
stars evolve as type 4 instead of type 2, meaning that for these stars the
debris is all circularised when the disc is formed.

In type 4 TDEs, stellar debris is in general accreted in a more efficient
way into the MBH, mostly through the self-crossings and shocks process,
whereas for type 3 the accretion is more moderate. In these respects, less
debris is available for the disc in type 4 than type 3.

• in general, we find rcirc 6= 2rt, as shown also by Bonnerot & Lu (2019).
We find that the relation holds only for β = 1 and eccentricities close to
parabolic.

The classification of circularization types that we discussed in this work is based
on rough estimations. Quantifications of the circularization processes are needed,
for example on the strength of the shocks, which can be estimated from the
change of kinetic energy into thermal energy in the debris, to better characterise
the transition in behaviour between types. For example, we attribute to S1.8 type
1/2 (Tab. 4.2) because we could not exactly discern the type of circularization.
More generally such quantification would help in understanding the difference in
behaviour between type 3 and 4, which differ in the fact that in one case debris
is still falling back while the disc formed and in the other case there is almost no
debris falling back. This could also help in identifying timescales and magnitudes
of the circularization processes.

Our models assume stars with polytropic index γ = 5/3: while polytropes
might be a good first order approximation, they do not describe well the detailed
structure of density profiles of different stellar types. A more detailed analysis
would require more realistic stellar models. Indeed, Golightly et al. (2019b), find
that there are significant deviations regarding the fallback mass rate when using
realistic stellar profiles instead of polytropes, with the exception of a 0.3 zero-age
main sequence star, which is well modelled by a γ = 5/3 polytrope, and the 1
M� zero-age main sequence star, which is well modelled by a γ = 4/3 polytrope.
In particular, they find that their 3 M� stars all present significant differences
to the fallback mass rate from both polytropes. So, we expect differences in the
fallback rates for our 10 M� star if modelled with a realistic stellar structure, in
particular a higher peak by few magnitudes (see Fig. 4 in their paper). Another
notable difference when using realistic stellar models found by Golightly et al.
(2019b) is that highly evolved stars are not fully disrupted even at β = 3. This
does not have direct consequences on the results presented in this work because
S stars are young stars (< 15 Myrs).

Also stellar spin can affect the TDE (Stone et al., 2013; Golightly et al., 2019a),
and considering that young stars rotate faster, we expect possible differences.
The star can be spinning retrograde or prograde with respect to its orbit. A
retrograde spinning star can cause a delay or partial disruption, while a prograde
spinning star can cause the debris to fallback sooner and with higher peak rate.

100



How much this will possibly affect our simulations depends on the magnitude of
stellar rotation of the S stars.

We note that the debris is subject to viscous effect that can affect the accretion
onto the MBH. We do not consider viscosity effects in our simulations and we
do not expect this to significantly affect our results, following the estimation by
Bonnerot et al. (2016) for an efficiently cooling gas, which is our case.

Due to computational costs, we chose to model a non-spinning MBH. However,
there are observational evidences that in many cases MBHs are spinning. Based
on the studies by other authors (Dai et al., 2013; Guillochon & Ramirez-Ruiz,
2015; Hayasaki et al., 2016; Liptai et al., 2019) we expect that in our study case a
circularization delay may be introduced, depending on whether the stellar orbit
is prograde or retrograde (considering also that a fraction of young stars found
in the GC are orbiting clockwise and others counter-clockwise, and that there is
a warped disk). In addition, depending on the inclination, Liptai et al. (2019)
find that simulations show the peak mass fallback rates are higher by ∼ 1 order
of magnitude in early stages and discs are formed ∼ 1 orbital period earlier.

The next step in characterising TDEs which could occur in similar galactic
environments as our GC is to study TDEs with different orbital parameters β
and e (as found in the GC) including realistic stellar models of different types of
stars found in such environments and relativistic effects due to a spinning MBH.
Such study could provide better insight not only on the MBH responsible for
the disruption, but also on the type of disrupted star, thus allowing us to learn
more about the innermost stellar populations of far galaxies, otherwise difficult
to observe directly.

101



102



Bibliography

Abbott, B. P., Abbott, R., Abbott, T. D., et al. 2016, , 116, 241102

Abbott, B. P., Abbott, R., Abbott, T. D., et al. 2017, , 118, 221101

Abbott, D. C. & Conti, P. S. 1987, , 25, 113

Alexander, K. D., Berger, E., Guillochon, J., Zauderer, B. A., & Williams,
P. K. G. 2016, , 819, L25

Alexander, T. 2005, , 419, 65

Antonini, F., Lombardi, James C., J., & Merritt, D. 2011, , 731, 128

Arcavi, I., Gal-Yam, A., Sullivan, M., et al. 2014, , 793, 38

Auchettl, K., Guillochon, J., & Ramirez-Ruiz, E. 2017, , 838, 149

Ayal, S., Livio, M., & Piran, T. 2000, , 545, 772

Bade, N., Komossa, S., & Dahlem, M. 1996, , 309, L35

Baganoff, F. K., Maeda, Y., Morris, M., et al. 2003, , 591, 891

Balick, B. & Brown, R. L. 1974, , 194, 265

Bardeen, J. M. 1970, , 226, 64

Barnes, J. & Hut, P. 1986, , 324, 446

Barth, A. J., Ho, L. C., Rutledge, R. E., & Sargent, W. L. W. 2004, , 607, 90

Bartko, H., Martins, F., Trippe, S., et al. 2010, , 708, 834

Baumgardt, H., Hopman, C., Portegies Zwart, S., & Makino, J. 2006, , 372, 467

Becklin, E. E. & Neugebauer, G. 1968, , 151, 145

Begelman, M. C., Blandford, R. D., & Rees, M. J. 1980, , 287, 307

Benz, W. 1990, in Numerical Modelling of Nonlinear Stellar Pulsations Problems
and Prospects, ed. J. R. Buchler, 269

Berti, E. & Volonteri, M. 2008, , 684, 822

Blagorodnova, N., Cenko, S. B., Kulkarni, S. R., et al. 2019, , 873, 92

103



Blagorodnova, N., Gezari, S., Hung, T., et al. 2017, , 844, 46

Bloom, J. S., Giannios, D., Metzger, B. D., et al. 2011, Science, 333, 203
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