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Abstract— Nowadays GPU clusters are available in
almost every data processing center. Their GPUs
are typically shared by different applications that
might have different processing needs and/or differ-
ent levels of priority. As current GPUs do not sup-
port hardware-based preemption mechanisms, it is
not possible to ensure the required Quality of Ser-
vice (QoS) when application kernels are offloaded to
devices. In this work, we present an efficient soft-
ware preemption mechanism with low overhead that
evicts and relaunches GPU kernels to provide support
to different preemptive scheduling policies. We also
propose a new fairness-based scheduler named Fair
and Responsive Scheduler, (FRS), that takes into ac-
count the current value of the kernels slowdown to
both select the new kernel to be launched and estab-
lish the time interval it is going to run (quantum).
Nine applications selected from different benchmark
suites have been used to evaluate the computing cost
and the eviction delay of our preemption mechanism,
showing our implementation has a very low over-
head. The proposed scheduler has also been compared
with Shortest Job First Scheduler (SJF), Shortest Re-
maining Time Scheduler (SRT), Round Robin Sched-
uler (RR) and Completely Fairness Scheduler (CFS).
Comparison was carried out using different metrics
like average normalized turnaround time (ANTT), de-
viation normalized turnaround time (DNTT) or sys-
tem overall throughput (STP). DNTT metric shows
that FRS consistently obtains better fairness schedul-
ing results than other schedulers, specifically FRS is
1.5 times lower (better) than SRT (the second best
fair scheduler).

Keywords— GPU preemption, Scheduling, CUDA
Streams.

I. Introduction

GPUs are broadly used in multitask environments,
such as data centers, where applications running on
CPUs offload specific functions to GPUs in order to
take advantage of the device high performance. In
these environments, it is likely to have several inde-
pendent kernels ready to run concurrently on a GPU.

In this context, several works have been published
that try to improve the way kernels are scheduled
on GPUs. They pursue different aims like reducing
the makespan of a set of kernels by taking advantage
of concurrent kernel execution capabilities available
in devices [1], [2], or providing priority-based ker-
nel execution by developing soft-real time schedulers
[3]. Implementing more complex scheduling policies
which provide quality of service (QoS), fairness, and
support for different priorities requires the ability to
preempt running kernels, i.e., evict a kernel before
finishing execution and schedule a new kernel. Un-
fortunately, although NVIDIA GPUs support some
sort of compute preemption since Pascal architecture
[4], it is restricted to a few uses such as interactive
graphics tasks and debuggers, and it is not exposed
to programmers. There are some research proposals
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of hardware-based preemption mechanisms, [5], [6],
but they are not available in real GPUs, and there is
no guarantee that they would be more efficient than
software-based approaches. The implementation of
a preemption mechanism on GPUs, similar to those
employed on CPU, would require to save the state
of all active threads (e.g., the contents of the entire
register file) in the running kernel. As thousands of
threads can be active in a standard GPU, the cost of
collecting and saving all these states would be very
high and incompatible with the implementation of an
efficient preemptive scheduler, where kernels should
be evicted and relaunched with minimum overhead.

More recently, other works have proposed the use
of software-based preemption mechanisms to im-
prove the scheduling policies [7], [8]. Thus, these
methods only need to keep track of the number
of pending thread blocks. As a result, they avoid
the execution of expensive operations to save ker-
nel state. Our preemptive scheme also follows this
thread block-based approach. The mechanisms pro-
posed by [7], [8] are based on zero-copy memory
transactions between GPU and CPU memories. In
addition, they require to run a proxy kernel on GPU
to reduce the PCI data traffic generated during pre-
emption. Our scheduler will not use a GPU proxy.
Therefore, our scheduler sends scheduling commands
to the running kernel by waiting GPU global mem-
ory variables. This can reduce the traffic through the
interconnecting bus and use all the GPU resources
only for kernel execution.

Regarding scheduling policies, previous works have
implemented systems based on simple priority, pri-
ority queues or round robin schemes, [3], [9], [8]
among others. However, not many works have stud-
ied fairness based policies to build GPU schedulers.
We think fairness-oriented policies are necessary in
GPUs servers where users demand a fair distribution
of the available resources.

With the aim of improving current techniques for
GPU kernel scheduling, we use explicit transfers to
deploy our preemption mechanism We also develop
a Fair and Responsive scheduler, FRS, that ensures,
in a holistic way, fairness across different GPU ap-
plications. Thus, we make two main contributions:

• An efficient preemption mechanism that directly
sends scheduling commands to the running ker-
nel using GPU global memory variables. This
way, we avoid the use of a proxy kernel, which
allows application kernels to have more GPU re-
sources available and, at the same time, elimi-
nates the constant PCI data traffic produced by
zero-copy operations.

• A new scheduler that guarantees fairness in the
use of GPU resources. It monitors the pending
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work of each kernel to minimize the kernel slow-
down, and implements a policy to balance the
global slowdown.

The rest of the article is organized as follows: Sec-
tion II gives an overview of the preemption mecha-
nism, while the implementation is deeply described
in Section III. Section IV introduces our fairness-
oriented scheduler along with other popular sched-
ulers used for comparison purpose. Metrics used in
our experiments are presented in Section V. The ex-
perimental setup and evaluation of our approach are
described in Section VI. Related works are discussed
in Section VII and, finally, Section VIII concludes the
article.

II. Preemption overview

Our scheduler uses the preemption mechanism to
implement different QoS-aware scheduling policies.
This scheduler, which runs on a CPU thread, is
continuously monitoring a queue of eligible kernels.
Each kernel is inserted in this queue by the corre-
sponding application. A particular kernel can be de-
clared eligible when its required device memory al-
location and host-to-device data transfers are done.
The application is responsible for memory allocation
and the data transfers.

When a condition for eviction is fulfilled, the pre-
emption mechanism is initiated by the scheduler.
The scheduler may issue three commands: 1) The
eviction command indicates that the currently run-
ning kernel should be evicted. It is implemented
through a data transfer that updates a State variable
in device memory, which indicates to the running ker-
nel that it has to evict. 2) The pending work com-
mand is intended to collect information about the
kernel remaining work, i.e. the number of pending
tasks, by reading a variable located on device mem-
ory. 3) The kernel (re-)launch command updates the
State variable associated to the re-launched kernel to
set the corresponding value. This way, it guarantees
a low delay in the preemption mechanism.

The global memory region used by an evicted ker-
nel is kept during the execution of other kernels. Sev-
eral works propose different migration techniques to
free space in global memory [10]. They are orthogo-
nal to our mechanism, and could be implemented if
needed.

Section III gives a detailed description of the im-
plementation of our preemption mechanism while
Section IV-E describes our Fair and Responsive
Scheduler (FRS), that uses this preemption mech-
anism to implement a new fairness-aware based
scheduling policy.

III. Implementation Details

In this section the two main elements of our pre-
emption mechanism are explained. First, we show
the modifications that must be applied to original
kernels to support preemption. Second, the core of
the preemption mechanism is presented, that is, all
the operations involved in the eviction mechanism.

A. Kernel Transformation

The implementation of the preemption mecha-
nism requires the modification of the original ker-
nels, although this modification can be easily au-
tomatized. First, the original kernel grid must
be modified so that it is executed using persistent
thread blocks. Thus, our scheme launches just the
number of thread blocks that fit into the avail-
able SMs (maximum number of blocks per SM ×
numSMs). This transformation can be done au-
tomatically by a compiler, as a previous work has
shown [7].

The proposed transformation has two advantages.
First, persistent thread blocks typically execute more
iterations in comparison with no persistent thread
blocks and eviction could be performed at the end
of each iteration. Thus, when a previously evicted
kernel is relaunched, each thread block would just
resume the execution from the last executed itera-
tion. Second, this eviction mechanism works faster
as only tenths (at most a few hundredths in modern
Volta architectures) of persistent thread blocks are
active instead of several thousandths blocks in many
kernels.

1 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗ GPU code ∗∗∗∗∗∗∗∗∗∗∗∗ ∗/
2 Kerne l func ( l i s t o f o r i g i n a l p a r a m s ,

int MaxNumTask, int ∗State , int ∗
TaskId ) {

3 while ( true ) {
4 // Check s t a t e ( only one thread )
5 i f ( threadIdx . x == 0) {
6 i f (∗State == EVICTED)
7 blockId = −1;
8 else
9 blockId = atomicAdd(TaskId , 1) ;

10 }
11 // synchronize b l o c k threads
12 sync threads ( ) ;
13 // end check ing : no more t a s k s or

e v i c t
14 i f ( blockId>=MaxNumTask | | blockId

==−1)
15 return ;
16 // Or ig ina l k e rne l code f o l l ow s

here
17 }
18 }
19 /∗∗∗∗∗∗∗∗∗ CPU c a l l i n g code ∗∗∗∗∗∗∗∗∗/
20 Kerne l func<persist grid size> (

l i s t o f o r i g i n a l p a r a m s , MaxNumTask
, State , TaskId ) ;

Listing 1

Original kernel code modification to support

preemption. New code is highlighted in bold type.

A flexible mechanism for load distribution among
thread blocks is also proposed. Instead of assign-
ing a specific computation to each thread block with
a fixed mapping [11], thread blocks obtain load in-
formation by atomically updating a common global
memory variable at the start of each iteration. This
global memory variable acts as a counter (starting
from zero) that increments a task index. These tasks
ordering do not affect original kernel execution and
benefits the preemption mechanism as only the in-
dex of the last executed task must be saved when



a kernel is evicted. In this paper we use the term
task to name the basic unit of work and it is given
by the amount of computation done by one thread
block during one iteration.

In Listing 1 main kernel changes are indicated. As
it can be observed, two new global memory variables
are required per kernel (line 2). One of these vari-
ables, called State, keeps the state of the GPU kernel.
It can take two possible values: Running or Evicted.
Just before a kernel is launched it is set to Running.
The other memory variable is called TaskId and con-
tains the index of the next available task. Initially
it is set to 0. In addition there is a new parame-
ter, MaxNumTask (also in line 2), that contains the
total number of tasks to execute. It is checked by
GPU threads to acknowledge when all tasks have
been computed and the kernel execution is done.

Listing 1 also shows the code for the eviction mech-
anism and the tasks distribution strategy. The orig-
inal thread block computation is enclosed within a
while loop (line 4) that finishes when either an evic-
tion command is sent by the CPU scheduler thread
or no more pending tasks are available (line 14). At
the beginning of each iteration the thread with id 0
is in charge of reading the State variable (line 6). If
the state has changed to Evicted, a variable mapped
in shared memory, called blockId, is set to -1 (line 7).
This variable is also used to store the task id when
the kernel is running (line 9). As it can also be ob-
served in line 9, new values of task id are obtained by
thread 0 at each thread block iteration by executing
an AtomicAdd instruction on TaskId variable.

A block synchronization instruction is also added
(line 12) so that the rest of the block threads wait
for thread 0. After this barrier, all block threads
read blockId and check (line 14) finishing condition
(all kernel tasks have been computed or State has
been changed to Evicted). If condition is not ful-
filled, thread block executes a new task (with the cur-
rent blockId value). An additional modification must
also be applied to the original code to change the in-
dexation employed during computation. In original
kernels this indexation is typically implemented us-
ing thread block indexes while in the modified kernel
the blockId variable should be used.

B. Eviction and launching implementation

Unlike previous approaches [7], our preemption
mechanism does not require the use of a proxy kernel
in the GPU. Therefore, all GPU resources can be de-
voted to workload execution. In addition, the sched-
uler can directly access device global memory po-
sitions by sending eviction commands and reducing
greatly the bus traffic with respect to recent works,
[7], [8], as it was explained in Section I.

In previous section we explained that the eviction
mechanism requires to distinguish between two ker-
nel states: Running and Evicted. There is a global
memory variable, State, that contains one of this two
possible values. The scheduler is in charge of chang-
ing the variable content using a Host to Device (HtD)

Fig. 1. A profiler capture showing the eviction (and re-
launching) of five kernels. Three transfers are required
to evict a running kernel and launch a new one.
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Fig. 2. Flow diagram of the scheduler that illustrates the three
transfer commands (grey boxes) involved in the eviction
and launching procedures. All commands are sent by the
scheduler to TM queues for further processing.

transfer. Thus, as it is shown in Figure 2, before
a kernel is launched (or re-launched after a previ-
ous eviction) this value is set to Running (launch
command). When the scheduler decides to evict the
running kernel it changes the state to Evict using a
new HtD transfer (eviction command). Then, when
thread blocks start a new iteration, their thread 0
consult the state of this variable and exit if the value
is set to Evicted. When all the kernel thread blocks
have exited, the kernel is considered evicted. Mean-
while, the scheduler is using a non-blocking synchro-
nization call to detect kernel termination. Kernel
termination can happen for two different reasons: 1)
all tasks have been executed, or 2) an eviction com-
mand has been issued. Thus, the complete eviction
process also requires the scheduler checks the num-
ber of pending tasks of the just finished kernel. This
way the scheduler can know if kernel has finished (no
pending tasks) or if it needs to be relaunched later.
Thus, when the scheduler detects that the current ex-
ecuting kernel has finished it issues a pending work



command to read the current value of the TaskId
variable.

When a new kernel is selected, the three com-
mands involved in the preemption mechanism are
launched again. All these commands are submitted
(gray boxes in Figure 2) using specific streams in or-
der to avoid false dependencies with other commands
using the same streams.

Figure 1 shows a capture of the NVIDIA profiler,
nvpp, that illustrates the transfers involved in the
preemption mechanism. There are three timelines in
the figure. Two of the timelines correspond to HtD
and DtH transfers since the GPU used in the exper-
iment has two DMA engines. The other timeline,
called Compute, is used to indicate kernel execution.
Thus, we can appreciate the execution of several ker-
nels (bars with different colors). In the gap between
two kernels execution, a group of three short trans-
fers appears (in brown color). From left to right,
the first transfer (HtD) changes the kernel status to
Evicted. Then, when kernel finishes, a DtH transfer
reads the number of kernel pending tasks. Finally,
when a new kernel is selected to run, its status is
changed to Running with a HtD transfer.

IV. Schedulers

In this section the schedulers used in our study are
presented. All of these schedulers support preemp-
tive scheduling. Thus, when a priority kernel arrives
the running kernel is preempted.

A. SJF: Shortest Job First

In Shortest Job First (SJF) the priority of a kernel
is based on its duration. The longer its duration, the
lower its priority. SJF minimizes the total waiting
time of a set of jobs, giving superior responsiveness.
For applications running several kernels, their pri-
ority will be computed using the total time of their
kernels.

B. SRT: Shortest Remaining Time

Shortest Remaining Time (SRT) is similar to SJF
but, in this case, the priority is dynamically updated.
When a new kernel arrives, the remaining time of
each kernel/application is estimated, and a new pri-
ority is assigned to each of them. The remaining time
of applications running several kernels is calculated
using the sum of the remaining times of their kernels.

C. RR: Round Robin

In a Round Robin scheduler (RR) all kernels
have the same priority and a fair execution time
(quantum) is assigned to each kernel. In this way,
all kernels will be executed during its quantum on a
first-come, first-served manner. If a kernel does not
finish during its quantum, the kernel is preempted
and added to the end of the waiting queue.

D. CFS: Completely Fairness Scheduler

The Completely Fair Scheduler (CFS) is a well-
known implementation of a fairness policy and it

was used as the default scheduler in the Linux ker-
nel (2007 release). CFS defines an epoch in order
to assign the same amount of computation time at
each ready kernel. Thus, the quantum assigned to a
specific kernel is given by the result of dividing the
epoch value by the number of active kernels. Within
an epoch, execution ordering is calculated using the
time a kernel has been waiting for execution. Thus,
kernels are ordered in decreasing order attending to
their waiting time values, and scheduled following
that ordering.

E. FRS: Fair and Responsive Scheduler

One of the aims of this work is the study of fair
policies for scheduling kernels on GPUs. These poli-
cies are built using some fairness measure and, in this
paper, we have selected the slowdown variance. In
this context a fair scheduling policy should try to ob-
tain similar slowdowns for all running jobs, that is,
it should implement a proportional fairness policy
[12]. We consider this type of fairness is interesting
for a scheduler that arranges jobs from different ap-
plications on a GPU as the assignment of resources
among different kernels should tend to be balanced.
Because of that, we propose a scheduler, named Fair
and Responsive Scheduler (FRS), that uses a kernel
slowdown metric to take scheduling decisions.

The design of FRS is based on the instantaneous
slowdown, IS, of a kernel. The IS of a GPU kernel
that has executed Nt tasks from a total of NT tasks,
after spending t seconds since it became ready, is
given by

IS = (t+ (NT −Nt) ∗ tpt)/(Nt ∗ tpt) (1)

being tpt the time, in seconds, required to execute
a task. The expression (NT −Nt) is the number of
tasks that remains to be executed. Thus, analyzing
the expression for IS, we can see that it calculates
the rate between the predicted execution time, as-
suming that all the remaining tasks will be executed
in a row, and the shortest execution time, assuming
the entire kernel was executed with no interruption.
The value of tpt in the expression could be extracted
from a brief previous execution of the kernel in the
case the kernel has a regular behavior, or it could be
updated after each kernel eviction. Notice that the
use of the pending work command in our preemption
mechanism allows the scheduler to know Nt and to
calculate tpt at each kernel eviction.

When a kernel is evicted, the scheduler updates
the IS values of all the ready kernels and chooses
the one with highest IS, ISmax. A quantum value
is assigned to the kernel using the following formula

quantum = ISmax∗NT ∗tpt−(NT−Nt)∗tpt−t (2)

where the values of NT , tpt, Nt and t are given by
the task with minimum IS value. This way, after
executing the chosen kernel for this quantum, the
new IS value of the task with minimum IS will be
the same as the launched task, that is, ISmax.



V. Metrics

In this section, we introduce the metrics we have
used to measure the effectiveness of each scheduler
attending to different criteria as performance, re-
sponsiveness and fairness given a set of n tasks.

A. Average normalized turnaround time (ANTT )

The NTT of tasks i is defined as follows:

NTTi = TMP
i /TSP

i (3)

where TMP
i and TSP

i are the execution times of the
task in its co-run and its standalone run respectively.
NTTi is usually greater than 1, the smaller the more
responsive the application is. ANTT is the average
of NTTs for all the executed applications.

ANTT = NTT (4)

where NTT is a random variable that takes a specific
value for each evaluated task.

B. System overall throughput (STP )

It is defined as follows:

STP =

n∑
i=1

TSP
i /TMP

i (5)

STP varies from 0 to n (the number of applications);
the higher, the better.

C. Deviation normalized turnaround time (DNTT )

We employ this metric to evaluate how fair is the
execution of a set of taks. It is based on the slow-
down variance value [12] and considers that a fair
scheduling of a set of tasks should obtain low slow-
down variance, that is, the lower, the better. Thus,

DNTT = σ(NTT ) (6)

VI. Experiments

Experiments have been conducted using different
applications with kernels belonging to CUDA SDK
[13], Rodinia [14] and Chai [15] benchmark suites.
With these applications we pursuit to build a real
workload where several applications (up to nine)
share the GPU. All experiments have been run on
a server with two Xeon(R) E5-2620 CPUs and one
NVIDIA TITAN X Pascal. The interconnecting bus
is a PCIe 3.0.

Table I shows the list of application used. Most
of them have only one kernel, but two of them,
namely Separable Convolution and Canny, are com-
posed by two (RCONV and CCONV) and four ker-
nels (GCEDD, SCEDD, NCEDD and HCEDD), re-
spectively. Kernels of both applications are executed
in a pipeline fashion since the output of one kernel
is the input to the next kernel.

In order to evaluate our approach, several exper-
iments have been designed. Thus, first two experi-
ments focus on analyzing both the overhead of the
required kernel modifications and the performance of
the preemption mechanism. The third experiment
evaluates different fairness scheduling policies.

TABLE I

Applications used in the experiments along with time,

in milliseconds, taken by their execution commands.

Most of the applications consist of one kernel

although Separable Convolution and Canny are

composed by two and four kernels, respectively.

Application Source Description
Execution Time

(ms)

CEDD Chai Canny 13.57
SPMV Rodinia Sparse MV Mult. 8.36

VA CUDA SDK Vector Addition 3.71
CONV CUDA SDK Separable Convolution 3.27

BS CUDA SDK Black Scholes 2.36
PF Rodinia Path Finder 1.65
MM CUDA SDK Matrix Mult. 1.43

HST256 CUDA SDK Histogram 1.29
RED CUDA SDK Reduction 0.87

A. Kernel transformation overhead

Implementation of the preemption mechanism re-
quires the transformation of the original kernel code.
In this experiment, original and modified kernels are
executed until they finish. This way we can measure
the overhead incurred by kernel transformation, Ot.
The value for this overhead is given by the expres-
sion Ot = Tt

To
, where Tt and To indicate the execution

times of the transformed and original kernels, respec-
tively. Experimental results are shown in the second
column of Table II.

Attending to the expression of the overhead, val-
ues higher than one are expected since the kernel
transformation explained in Section III-A increases
the number of instructions executed by the kernel.
However, there are cases where values are lower than
one. These results can be explained by the fact
that kernel transformation also implies a modifica-
tion in the number and granularity of thread blocks.
For instance, original kernel of HST256 uses a small
number of blocks with coarse granularity. After
our transformation, the number of thread blocks of
HST256 are increased and, consequently, the gran-
ularity is decreased. With these modifications the
kernel runs faster on our device. Focusing on kernels
with overhead higher than one we can see that the
execution time increases, at most, by 5%, with the
exception of MM. Thread blocks of these kernels em-
ploy all the available shared memory and the TaskId
variable must be mapped in global memory in order
to keep the occupancy of the original kernel. Then,
the overhead is increased due to longer memory la-
tency. Nevertheless, the average overhead is 0.98,
that can be considered almost negligible.

B. Eviction delay

The eviction mechanism is based on asyn-
chronously updating the State variable located on
GPU global memory (see Sec. III-A) by the sched-
uler running on the CPU. GPU thread blocks read
this variable and, depending on its content, either
finish or keep running. Consequently, a delay can
be expected between the submission of the trans-
fer command that changes the variable content and
the termination of the running kernel. This delay



TABLE II

Second column indicates the overhead incurred by

kernel modification. Third column shows the delay (in

microseconds) of the preemption mechanism for each

kernel.

Kernel
Transformation

Overhead
Eviction Delay

(µs)

GCEDD 1.02 45
SCEDD 0.98 40
NCEDD 1.02 38
HCEDD 1.04 37
SPMV 0.73 229

VA 1.00 95
BS 0.92 83

RCONV 0.91 53
CCONV 0.97 46

PF 1.00 112
MM 1.11 86

HST256 0.85 94
RED 1.05 32

is directly related to how frequently a thread block
reads the variable. Thus, a reduction of the delay re-
quires more frequent memory reads which, however,
increase the overhead of the preemption mechanism
(as it was discussed in previous subsection). As we
are interested in keeping the code modification as
simple as possible, the minimum granularity is given
by the computation enclosed within a thread block of
the original kernel (see Listing 1). If necessary, this
granularity could be increased by applying a coars-
ening technique to the thread block code.

The third column of Table II shows the eviction
delay for each kernel. Most of the kernels have an
eviction delay lower that 100 µs. Only SPMV has
high values for eviction delay. In this kernel, matrix
rows are distributed among thread blocks. When the
size of the row is large (more precisely, the number of
elements different from zero), as in our data set, the
computation performed by the thread block is high
and the response to changes in the State variable
is slow. The average delay for all kernels is around
76µs, a value that permits the development of sched-
ulers with short eviction intervals.

C. Fair scheduling

We have conducted a third set of experiments to
compare SJF , SRT , RR, CFS and FRS. Experi-
ments are run by executing all the applications con-
currently. Thus, one CPU thread per application
is created. All the HtD and DtH commands are
launched by these threads while the kernel execu-
tion commands are enqueued in a scheduling queue
that is managed by the scheduler. Similar to the ex-
periments of other previous works [7], kernels arrive
orderly and with 1 ms between them. One hundred
of kernels combinations have been run ten times, us-
ing each scheduling policy, and their execution times
have been averaged by each application and sched-
uler. In order to obtain more consistent results, all

the initial HtD transfers required by the kernels are
completed before the scheduler starts.

Several parameters have been also fixed. Thus, the
minimum quantum size for FRS is established in 1
ms. The epoch size for CFS is fixed to 4 ms (several
values were tested and the best value was chosen).
The quantum size for RR is set to 1 ms and it was
chosen to reduce the waiting time without penalizing
the turnaround time of short kernels. Table I shows
that PF, MM, HST256 and RED have an execution
time near to 1 ms; then, if we had used a larger
quantum, the turnaround time would be affected for
these applications.

Although the main objective of this experiment is
to compare fairness of different scheduling policies
using the DNTT metric, we have also computed the
other metrics introduced in Section V to extract com-
plementary information regarding the performance
of the evaluated scheduling policies. Thus, Figure
3 shows the normalized turnaround time obtained
for each kernel. This metric is used to measure the
slowdown of each application. CFS gets the worst
NTT , with RR as the second worst scheduler. As we
mentioned in Section IV-D, the quamtum assigned
to each kernel in CFS depends on the active kernels
in each epoch. Therefore, the same quantum is as-
signed to short and large kernels, and this increases
the turnaround time of the short kernels. RR obtains
a better value for Reduction because the assigned
quantum is higher that its execution time thus, al-
though it must wait a long time, it executes com-
pletely when it is scheduled. SJF and SRT obtain
the best results, followed closely by FRS. Short ker-
nels obtain better values because all these schedulers
give them higher priority.

All these NTT values can be used to compute the
DNTT , ANTT and STP metrics. DNTT metric
results are shown in the middle column of Figure
4. A high value means normalized turnaround times
of the scheduled applications have a high variability,
thus a fair scheduler should obtain low values. CFS
and RR get the worst results, with 2.99 and 1.41
respectively, mainly because NTT in short kernels
is much larger than in long kernels. SJF and SRT
obtain a slowdown variance of less than 1.0, more
precisely a value of 0.7 and 0.63 respectively. Finally,
FRS obtains the best value (0.42), which is around
1.5, 1.66, 3.35 and 7.11 times lower (better) than
SRT , SJF , RR and CFS respectively.

Average values, obtained with the ANTT metric
(Figure 4 first column), are related to the respon-
siveness of the scheduling policy. CFS gets once
again the worst value (6.0), followed by RR with a
value of 4.87. SJF , SRT and FRS have a simi-
lar average normalized response time, close to 2.0
of their standalone application execution time (1.95,
1.96 and 2.44 respectively). These scheduling poli-
cies are very responsive, to both short and long ker-
nels.

Finally, we have studied the system overall
throughput (STP ), showed in Figure 4 third col-
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umn. This metric is used to measure the throughput
of the system when all the applications are running
together with respect to their standalone execution.
Thus a higher STP value means a better value. CFS
and RR obtain the worst results because the appli-
cations need a long time to be executed (1.79 and
2.02 respectively). On the other hand, SFT and
SRT get the better STP value with 5.13 and 5.06,
respectively, while FRS stands in the middle with a
satisfactory result of 3.79.

VII. Related work

Early works on GPU tasks scheduling have tried to
increase the responsiveness of the system by minimiz-
ing the impact of the non-preemptive nature of both
DMA transfers and GPU kernels execution. Thus,
Kato et al. [16] studied how to divide memory trans-
fers in chunks to increase the concurrency with ker-
nel launches. Other works, like [3] and [17], have
proposed to profile GPU resources to schedule high
priority kernels to meet soft real-time requirements.
On the other side, some authors have analyzed tech-
niques like elastic kernels [18] or kernel slicing [19],
[20], to improve multiple kernels’ concurrent execu-
tion. Furthermore, some works use the idea of persis-
tent threads [21] for dynamic load balancing of sev-
eral kernels [22], [23]. Neither of these works have
a preemption mechanism that could be used to im-
plement a more sophisticated scheduler or to avoid

priority inversion problems.

Recent works have proposed software based pre-
emption mechanisms. Thus, Chen et al. [7] presented
a software framework that enables temporal preemp-
tion at thread block level. Compared to our work,
their mechanism needs a special kernel running in
the GPU for each application to serve as a proxy
for their host runtime, and lengthy host to/from de-
vice transfers can produce priority inversion prob-
lems. Wu et al. [8] introduced a spatio-temporal
preemption mechanism at thread block level, where
thread blocks running in some SMs can be evicted
while the others continue to run. Yun et al [24] pro-
posed a similar preemption mechanism, where GPU
resources assigned to each kernel are dynamically ad-
justed by evicting thread blocks. Once again, there
is no support for a data transfers control mechanism
that could avoid unnecessary delays.

There have been some other works that have stud-
ied hardware mechanisms to enable preemptive mul-
tiprogramming on GPUs. Tanasic et al. [5] pro-
posed two mechanisms: a context switch that needs
to save the execution context of each running thread
block, and a SM draining mechanism that waits for
each currently running thread block to finish. Park
et al. [6] added a third mechanism, SM flushing, to
instantly preempt idempotent kernels, i.e., kernels
that can be safely restarted. All these works are or-
thogonal to ours, as an efficient preemption hardware
mechanism would benefit our scheduling algorithm.

There are not many works that include QoS or fair-
ness scheduling strategies. Chen et al. [25] presented
Prophet, a QoS scheduler that predicts performance
of co-located applications. Kerbl et al. [9] proposed
bucket queues to schedule tasks using some simple
strategies, like FIFO or priorities, or more complex
strategies by assigning quotas to the queues. Never-
theless, they do not consider any preemption mech-
anism thus they are vulnerable to priority inversion
problems.

VIII. Conclusions

In this work we have presented a software-based
preemption mechanism that can be used to design
schedulers for current GPU systems. Experiments
with a workload composed by nine applications have
shown that the overhead of the kernel modifications
required by the preemption mechanism is negligible.

Nevertheless, the main advantage of our scheme,
which marks the difference with other recent works,
is that a GPU proxy is not needed for the preemption
mechanism. Only three transfers are used in our pre-
emption mechanism: 1) an eviction command from
CPU to GPU, 2) a pending work command of the
running kernel from GPU to CPU, and 3) a kernel
(re−)launch command, that updates the State vari-
able, from CPU to GPU. Our implementation ob-
tains low delays (less that 0.1 ms) and allows the
design of efficient schedulers.

Furthermore, the preemption mechanism also per-
mits to know the pending work of running kernels.



We have used this information to develop a new
Fair and Responsive Scheduler, FRS, that tries to
balance the instantaneous slowdown of the active
kernels. Comparison results with other schedulers,
Shortest Job First, Shortest Remaining Time, Round
Robin and Completely Fair Scheduler, show that our
scheduler obtains the best fairness values, 1.5 times
lower (better) than the second best scheduler, using
the DNTT metric. Furthermore, FRS get a ANTT
of 2.44 close to the most responsive scheduling poli-
cies, SJF and SRT . Finally, STP metric shows that
FRS gets a satisfactory result of 3.79.
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Luna, and N. Guil, “A tasks reordering model to reduce
transfers overhead on GPUs,” Journal of Parallel and
Distributed Computing, vol. 109, pp. 258–271, nov 2017.

[2] Florian Wende, Frank Cordes, and Thomas Steinke, “On
improving the performance of multi-threaded CUDA ap-
plications with concurrent kernel execution by kernel re-
ordering,” Symposium on Application Accelerators in
High-Performance Computing, pp. 74–83, 2012.

[3] Shinpei Kato, Karthik Lakshmanan, Ragunathan Rajku-
mar, and Yutaka Ishikawa, “Timegraph: Gpu schedul-
ing for real-time multi-tasking environments,” in Pro-
ceedings of the 2011 USENIX Conference on USENIX
Annual Technical Conference, Berkeley, CA, USA, 2011,
USENIXATC’11, pp. 2–2, USENIX Association.

[4] NVIDIA, “NVIDIA Tesla P100,” 2016.
[5] I. Tanasic, I. Gelado, J. Cabezas, A. Ramirez,

N. Navarro, and M. Valero, “Enabling preemptive multi-
programming on gpus,” in 2014 ACM/IEEE 41st Inter-
national Symposium on Computer Architecture (ISCA),
June 2014, pp. 193–204.

[6] Jason Jong Kyu Park, Yongjun Park, and Scott Mahlke,
“Chimera: Collaborative preemption for multitasking on
a shared gpu,” in Proceedings of the Twentieth Interna-
tional Conference on Architectural Support for Program-
ming Languages and Operating Systems, New York, NY,
USA, 2015, ASPLOS ’15, pp. 593–606, ACM.

[7] Guoyang Chen, Yue Zhao, Xipeng Shen, and Huiyang
Zhou, “Effisha: A software framework for enabling eff-
ficient preemptive scheduling of gpu,” in Proceedings of
the 22Nd ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, New York, NY, USA,
2017, PPoPP ’17, pp. 3–16, ACM.

[8] Bo Wu, Xu Liu, Xiaobo Zhou, and Changjun Jiang,
“FLEP: Enabling Flexible and Efficient Preemption on
GPUs,” in ASPLOS ’17, New York, New York, USA,
2017, pp. 483–496, ACM Press.

[9] Bernhard Kerbl, Michael Kenzel, Dieter Schmalstieg,
Hans Peter Seidel, and Markus Steinberger, “Hierarchi-
cal Bucket Queuing for Fine-Grained Priority Scheduling
on the GPU,” Computer Graphics Forum, vol. 36, no. 8,
pp. 232–246, 2017.

[10] Taichiro Suzuki, Akira Nukada, and Satoshi Matsuoka,
Euro-Par 2015: Parallel Processing: 21st International
Conference on Parallel and Distributed Computing, Vi-
enna, Austria, August 24-28, 2015, Proceedings, chap-
ter Efficient Execution of Multiple CUDA Applications
Using Transparent Suspend, Resume and Migration, pp.
687–699, Springer Berlin Heidelberg, Berlin, Heidelberg,
2015.

[11] Y. Liang, H. P. Huynh, K. Rupnow, R. S. M. Goh, and
D. Chen, “Efficient GPU Spatial-Temporal Multitask-

ing,” IEEE Transactions on Parallel and Distributed
Systems, vol. 26, no. 3, pp. 748–760, March 2015.

[12] Vincent J. Maccio, Jenell Hogg, and Douglas G. Down,
“On slowdown variance as a measure of fairness,” Oper-
ations Research Perspectives, vol. 5, pp. 133 – 144, 2018.

[13] NVIDIA, “Cuda sdk code samples,” May 2018.
[14] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer,

S. H. Lee, and K. Skadron, “Rodinia: A benchmark suite
for heterogeneous computing,” in Workload Characteri-
zation, 2009. IISWC 2009. IEEE International Sympo-
sium on, Oct 2009, pp. 44–54.
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