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Abstract

Redox reactions pervade all biology. The control of cellular redox state is essential for 

bioenergetics and for the proper functioning of many biological functions. This review 

traces a timeline of findings regarding the connections between redox and cancer. There 

is ample evidence of the involvement of cellular redox state on the different hallmarks 

of cancer. Evidence of the control of tumor angiogenesis and metastasis through 

modulation of cell redox state is reviewed and highlighted. 
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1. Redox and cancer: a historic background 

Oxidoreduction reactions and processes pervade the biochemical foundations of biology 

at several levels: 1) There are many biochemical reactions catalyzed by 

oxidoreductases, the first group in the IUPAC Enzyme Classification. 2) Essential 

bioenergetics processes are based on electron transfer reactions, as illustrated by the 

chemiosmotic coupling of electron transport chain complexes and oxidative 

phosphorylation and photophosphorylation. 3) Cells use metabolic fuels to obtain the 

chemical energy required for maintaining them alive by oxidizing them under strict 

biological control. 4) Cells make use of NAD(P)+/NAD(P)H ratios as sensors of their 

metabolic status and to switch on/off key enzyme activities leading to an integrated 

metabolic control. 5) Cells have developed a triple line of defense against oxidative 

stress with small antioxidant metabolites, antioxidant enzymes and damage repair 

enzymes. Taking all this into account, it is not surprising that there is a strict control of 

redox cellular status and cell redox imbalance is associated to many pathological 

conditions [1-5]. This is also the case of redox and cancer. From here on, in the present 

section we will summarize the timeline of discoveries concerning redox and cancer, 

thus providing a historic background for the topic before focusing our attention on what 

is currently known on the control of tumor angiogenesis and metastasis through 

modulation of cell redox balance (see also Figure 1).

In the middle of the last century it was proposed for the first time the possibility that the 

accumulation of free radicals, generated as a result of our oxidative metabolism, could 

be the main cause of the aging process, as well as the appearance of diseases such as 

cancer [6]. Initially, mitochondria were pointed out as the main source of free radical 

production and as a key factor in regulating the maximum life expectancy of organisms 

[7]. Soon, reference was made for the first time to the possibility of an evolutionary 

process taking place in the tumor mass, specific to each tumor, the consequences of 

which were processes of selection of the most aggressive clones, pointing to the need of 

specific therapies for each patient [8]. At the end of the seventies, the association 

between decreased superoxide dismutase (SOD) activity, increased levels of free 

radicals and the appearance of cancer was the first relationship between redox systems 

and tumor formation to be described [9]. This seminal observation produced an increase 

in the number of publications that related metabolic changes associated with redox 

processes to specific tumors, or that suggested the use of endogenous molecules with 

antioxidant capacity as possible anti-tumor therapies [10,11]. Some authors specifically 
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mentioned an "abnormal" oxidative metabolism in certain types of cancer [12]. The 

accumulation of evidence led to the proposal of the term "oxidative stress" and the 

opening of a new field of research [13,14]. A decade later, the number of publications 

specifically mentioning the redox state and its involvement with tumor processes had 

increased markedly (from 80 articles in 1984 to almost 300 in 1994, according to 

Pubmed database). In the nineties, the importance of redox factors in the response to 

hypoxia of tumor lines and the presence of alterations in the enzymatic activities of the 

redox system in some tumor types were observed [15,16]. Shortly after, the first 

publications appeared relating changes in gene expression with the homeostasis of the 

redox system, through the modulation of the activity of transcription factors by means 

of biochemical alterations of the redox balance [17,18], followed by investigations 

involving the production of ROS by mitochondria and the redox balance in tumor 

alteration [19], as well as publications on the role of the redox state in the control of cell 

proliferation [20], an altered trait in tumor cells [21]. By the end of the 20th century, 

several reviews were published on the importance of membrane redox systems in the 

tumor transformation process [22,23].

In the following decade, works were published that related changes in the redox state in 

tumor cells with the modification of the function and structure of proteins relevant to 

the carcinogenic process, either directly, as in the case of p53, or indirectly, with the 

alteration of the phosphorylation patterns of the Rb protein, essential in the transition 

from phase G1 to S in the cell cycle [24,25]. The accumulation of evidence linking an 

altered redox state with features such as the avoidance of apoptosis or the breakage of 

DNA chains, led researchers to think of the existence of a series of redox features, such 

as an intracellular pro-oxidant medium or relatively low levels of antioxidants in tumor 

cells, which could aid in the transformation and progression of cancer, as well as 

contribute to resistance against anti-cancer treatments [26]. Parallel advances in the 

understanding of the mechanisms of tumor progression made it possible to suggest new 

therapy strategies, combining, for example, the high density and irregular vascular 

permeability of tumors with the disruption of antioxidant defense in order to modify 

their oxidation state [27]. Some studies proposed redox enzymatic activities as possible 

therapeutic targets to stop tumor growth and metastasis [28]. It was shown that redox 

enzyme systems are not only regulated by master genes or tumor suppressors such as 

p53 or BRCA1 [29], but can also regulate the activity of those genes themselves, as has 

been observed in the case of PTEN and Grx5 [30]. 
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The use of new technologies, such as ultrasequencing, proteomics, metabolomics and 

gene editing, is currently contributing to a better understanding of some of the 

mechanisms involved in the maintenance of the cell redox state and its relationship with 

cellular processes in transformed cells. These new data will be key in the future to raise 

new hypotheses of relationship between the importance of redox state and cancer.

2. All for one: redox state, the hallmark of hallmarks, and its role in cancer 

vascularization 

The key role of the redox state in the regulation of most cell signaling pathways, 

through changes in the oxidation status of key cysteine residues [31], or through post-

translational modifications such as glutathionylation [32], or nitrosylation [33], which in 

turn condition other subsequent post-translational modifications, offers a range of 

phenotypic possibilities for tumor cells that could allow the appearance of different 

cancer traits and their adaptation to variable conditions in the tumor ecosystem. This 

adaptability makes cancer a versatile and dynamically robust set of diseases in adaptive 

terms that co-evolve with their microenvironment [34,35]. Unfortunately, the role of the 

redox state in this complexity and in the appearance of the emerging properties of the 

tumor is still poorly understood. This is why it is convenient to contextualize the 

influence that the redox state and its components have on the variability of cancer traits. 

The biological redox state presents tissue and cellular specificity [36]. Some authors 

have proposed to use the determination of redox activity of tissues, and their specific 

alteration, as a marker of tumor progression status, highlighting the role of redox 

balance as a key feature of the carcinogenesis process, both at the beginning and at the 

end of the process [37]. Some studies suggest that a deregulation of redox homeostasis 

could be identified as a hallmark of tumor cells associated with progression and 

resistance to treatment [38], while in other cases it is not attributed as a trait per se, but 

as a factor underlying the alteration of the signaling networks of cancer hallmarks [39]. 

The excessive proliferation of the cells within the tumor causes them to end up 

exceeding the vascular limit that provides them with the oxygen and nutrients necessary 

to maintain this growth rate, so the strategy resulting from this stress situation is to 

promote the formation of new blood vessels from a pre-existing vascular bed, the 

process of angiogenesis, a target for therapy [40]. In fact, angiogenesis has been 

identified as one of the hallmarks of cancer [21,41]. It seems that cellular redox systems 

play an important role in the maintenance or modification of the cellular functions 
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associated with the endothelium [42], either by controlling the cellular destiny under 

physiological or pathological conditions of the cells that compose it or through 

signaling processes mediated by modifications of the cellular redox state [43-45]. 

However, it should be taken into account that it has recognized that tumor growth does 

not necessarily depends on to angiogenesis [46,47]. On the ground of the available data, 

it is   likely that the metabolic status, and therefore the redox status of the cells, might 

have a role in determining whether the cell will behave in an angiogenic or non-

angiogenic fashion.

3. Bioactive gases and the redox control of tumor angiogenesis

Some of the most important redox elements in these mechanisms are the endogenously 

produced bioactive gases NO, CO and H2S. For a specific review on this topic, see [48].

3.1. Key roles of NO in the control of cancer progression and angiogenesis 

The most studied of these three bioactive gases in relation to vascular function and the 

role in the angiogenic process is NO. In the context of tumor biology, NO exhibits a 

dual behavior, acting either as a protumor or an antitumor compound depending on its 

concentration (controlled by the expression and activity of NOS enzymes), the time 

frame in which it occurs and its interaction with other ROS produced in other cellular 

processes [49], affecting the phenotype of tumor cells. This becomes a serious problem 

when studying its importance as a possible therapeutic target [50]. NO is known for its 

direct relationship with diseases such as or its regulation of the cardiovascular system, 

acting mainly as a protective agent [51]. In contrast, the relationship of NO and its 

soluble receptor, guanylate cyclase (which generates the second messenger cGMP), 

with cellular processes such as differentiation and proliferation is still poorly 

understood, although it seems to be of great importance in carcinogenesis [52]. 

In melanoma cells, it has been observed that the post-translational modification by 

nitrosylation of the TSC2 component of the mTOR route activates proliferation [53]. 

This is important for the fate of endothelial cells during the angiogenic process, since it 

has been shown that the suppression of eNOS expression in these cells, through an 

intronic microRNA, inhibits their proliferation [54]. It has also been observed that 

vitamin D stimulates the production of NO, which, in turn, stimulates endothelial 

proliferation [55].
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The relationship of nitric oxide with tumor progression and angiogenesis has long been 

known in different types of cancer, such as colorectal, gastric and prostate cancer, 

among others [56-58]. Within the tumor ecosystem, it is necessary that not only the 

tumor clones proliferate, but that the other cells that form it (such as endothelial cells) 

also do so in line with the rates of the transformed cells. To this end, a niche 

engineering strategy by tumor cells, modifying the phenotype of endothelial cells, is a 

good way to sustain the evolution of the tumor ecosystem. This appears to be a 

biunivocal relationship, with an increase in the expression of eNOS in tumor samples 

obtained in the context of stress situations in C57BL/6 mice inoculated with B16F10 

melanoma cells [59]. Immune cells found in the tumor ecosystem may also contribute to 

the formation of new blood vessels under inflammatory conditions, mainly TAMs and a 

specific type of Tie-2 expressing monocytes (TEMs), through the release of pro-

angiogenic factors [60].

NO regulates steps of the angiogenic process, such as the activation of matrix-9 

metalloprotease (MMP-9) that can take place, either by attacking the Zn thiolate of the 

latent protein, or by preventing the binding to MMP-9 of its inhibitor, TIMP-1 [61]. 

However, its role in other aspects of angiogenesis is not so clear. In the process of tip 

cell sprouting, it has been discovered that signaling by NO derived from eNOS is key 

for cell migration [62]. It is known that NO is a mediator of permeability and vascular 

tone, as well as of blood flow in the vasculature associated with the tumor and that it 

regulates cell-cell interactions in the vasculature, as in the case of leukocytes, whose 

interaction with endothelial cells decreases when the concentration of NO increases, 

which could limit and reduce the effectiveness of immune therapy in tumors [63]. Very 

little is yet known about how the flows of this active redox element regulate the 

dynamics of the tumor ecosystem and its progression, but several studies indicate that 

NO-mediated signaling not only mediates the ability of leukocytes to interact with 

endothelial cells, but also participates in a reciprocal regulation between endothelial-

tumor and perivascular cells (pericytes and vascular smooth muscle cells), affecting the 

dynamics of vascular smooth muscle cells, inhibiting their proliferative activity [64], or 

modulating its contractile apparatus, promoting the dephosphorylation of the light chain 

of myosin 2 (MLC2) and interrupting the actin-myosin cycle, which relaxes the vascular 

smooth muscle cells and allows the dilation of the vessels, increasing blood flow [65]. 

However, in the presence of thrombospondine-1 (TSP-1), an endogenously produced 

negative regulator of angiogenesis, NO-mediated relaxation is blocked [66]. TSP-1 is 
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elevated in the circulation of cancer patients, and its inhibitory action on NO could 

promote constriction of vascular beds external to the tumor and increase blood flow to 

the tumor, as opposed to the effect of NO, which acts by reducing blood flow to the 

tumor through vasodilation of peripheral tissues [65]. However, despite the latter, NOS 

expression in some tumor types is important, as there is correlation with the expression 

of genes important for tumor progression. In the case of breast cancer, it has been seen 

that a high expression of iNOS leads to an increase in the expression of the CD44 gene, 

which can form a complex with MMP-9 and increase the local concentration of this 

metalloprotease on the front of the tumor cell progression, as well as boosting the 

vascularization of the tumor [61]. 

One of the problems faced by anti-angiogenic therapies is the mimetic vasculogenesis 

process, whereby some of the cells that form part of the tumor ecosystem would have 

the capacity to acquire phenotypic characteristics of endothelial cells to end up forming 

structures similar to a vascular bed [67]. This type of mimicry has been observed in 

both tumor cells of different types of cancer that are capable of forming tube-like 

structures [68], or that have the potential to transdifferentiate into "pseudoendothelial" 

cells, as observed in glioblastoma tumor stem cells [69]. Tumor stromal cells, such as 

TAMs, can mimic vasculogenesis -also in glioblastoma- in those areas of the tumor 

where tumor cells present a high expression of cyclooxygenase-2 [70], and through the 

secretion of IL-6 [71]. It has been observed that CD44 and TSP-1 are overexpressed in 

tumors presenting mimetic vasculogenesis and bad prognosis [72]. This observation 

raises the possibility of a phenotypic transition mechanism orchestrated by NO 

produced through iNOS, overexpressed in the tumor, thus promoting an increase in the 

expression of mimetic vasculogenesis markers, such as CD44, which is fundamental for 

the formation of vascular structures, contributing to their permeability [73], and 

favoring the diversity of cell types that can contribute to the maturation of new 

structures [74]. In situations where NO production in the tumor is inhibited, 

perivascular NO gradients are established that normalize the tumor vasculature, 

allowing better oxygenation of the tumor, but also a possible way to improve the 

efficacy of treatments [75]. On the other hand, NO produced by endothelial cells can 

trigger changes in the polarization of TAMs between M1 and M2 phenotypes, also 

regulating the inflammatory process associated with the tumor [76]. More research is 

needed on how NO affects angiogenesis and mimetic vasculogenesis, also taking into 
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account the relationships that exist between the different cell types in the tumor 

microenvironment. 

3.2. CO in the control of tumor angiogenesis

In addition to NO, CO produced in the HO-1 reaction also regulates the angiogenic 

process during tumor progression [48]. It appears that the activity of HO-1 has a dual 

effect (as with NO) on the tumor angiogenesis process, depending on the context or 

stage of disease [77]. TAMs, VSMCs, endothelial cells and tumor cells can generate 

CO, which contributes to increased VEGF concentration and stimulation of 

angiogenesis [65]. Part of this proangiogenic activity is mediated by the activation of 

the enzyme thymidine phosphorylase (TP), which in turn promotes the activity of 

cytokines IL-1ß, IL-6 and IL-8 [78]. However, CO derived from the action of HO-1 can 

also regulate the processing of pro and antiangiogenic miRNAs, with a fall in the 

activity of miRNAs that boost angiogenesis as opposed to those that have 

antiangiogenic activity, and a greater specific weight of this activity as opposed to that 

of PT [60]. Although the actual targets of CO are still not well known, CO is known to 

act as a regulator of NO signaling and a controller of H2O2 production by membrane 

NADPH oxidases [65].

3.3. H2S and tumor angiogenesis

The last of the biogases with importance in the angiogenesis process is H2S. Once 

again, it is a biogas with pro and antitumor characteristics, which promotes some 

hallmarks and limits others depending on their concentration [48,79]. Since H2S 

potentiates angiogenesis in colon and ovarian cancer, cystathionine-beta-synthase (CBS, 

the main enzyme producing H2S) could be a potential antiangiogenic target [80]. In 

colon cancer, the inhibition of H2S production by CBS produce a decrease in the 

migratory capacity of endothelial cells in coculture and a lower formation of new 

vessels, as well as a lower blood flow within the tumor, in mouse xenografts [81]. Being 

the most recent addition to this triad of bioactive gases involved in the regulation of 

angiogenesis and tumor progression, little is known about the true function of H2S, but 

its role in processes related to angiogenesis is already beginning to be uncovered. This 

is the case of a study on the effects of H2S treatment after an episode of cerebral 

ischemia [82], and studies on the role of H2S in relation to metabolic diseases that 

produce cardiovascular damage, such as hyperhomocysteinemia [65]. However, much 
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more experimental effort is required, not only to understand how H2S regulates 

angiogenesis, but also to know how the signaling routes mediated by the three gases 

with biological activity are interrelated and regulated in a reciprocal way, trying to 

establish a possible signaling hierarchy. In this regard, there are some studies that 

already point to the importance of H2S in the control of eNOS activity and in the 

production of NO [83]. It is also necessary to understand how the communication 

between these pathways is conditioned or not by the presence of certain cell types 

within a cell ecosystem, as it can happen in the case of a tumor. For instance, it has 

already been shown that H2S can inhibit the proliferation of MSCVs and platelet 

aggregation within the angiogenic microenvironment [84], which could be of great 

importance for other hallmarks of cancer, such as metastasis. It would also be necessary 

to explore how the chemical derivatives of the interaction of these three bioactive gases 

affect angiogenesis, such as the HNO formed in the NOS reaction, which could have 

effects opposite to those of NO [85].

Figure 2 summarizes the mentioned connections of these three bioactive gases with 

angiogenesis and metastasis.

4. Other small molecules and enzymes playing a role in the redox control of tumor 

angiogenesis

4.1. Other small molecules

In addition to bioactive gases, other small molecules with redox activity are involved in 

the process of tumor angiogenesis. It has been previously observed how the balance of 

the nuclear NAD+/NADH ratio in endothelial cells is correlated with the variation in 

GSH levels and the importance of pyridine nucleotides in the function of DNA repair 

enzymes [86]. Interestingly, not in the angiogenic process, but in the mimetic 

vasculogenesis process discussed above, it has been shown that nicotinamide, an 

essential component of NAD and NADP, inhibits the formation of these vascular-like 

structures in melanoma cells, which could be related to changes in gene expression 

motivated by the inhibition of enzymes such as histones deacetylases, or by failures in 

the function of enzymes that are key for damage repair [87]. 

Regarding GSH itself, it was shown that knocked out mice for intracellular adhesion 

molecule 1 (ICAM-1) have increased intracellular GSH levels in their aortic endothelial 

cells as compared to wild type mice and that this leads to VEGF-A-dependent 
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chemotaxis and NO production impairment, resulting in deficient angiogenic responses 

[88]. A more recent study with a ligustrazine-betulinic acid derivative of traditional 

Chinese medicine shows that the activation of GSH metabolism leads to angiogenesis 

inhibition [89]. Very recently, it has been shown that cysteine glutathionylation 

functions as a redox switch involved in the control of endothelial cell angiogenesis [90]. 

The central role of amino acids in the maintenance of cancer redox homeostasis has 

been recently reviewed, focusing on the contribution of amino acid skeletons to GSN 

and NAD(P) biosynthesis [91].

Melatonin is capable of restoring the redox balance through the regulation of the state of 

lipid peroxidation and the expression of the redox enzyme equipment, which decreases 

oxidative stress in different physiological and pathological contexts [92]. 

4.2. Superoxide dismutases, catalase and peroxidases

The roles of the different superoxide dismutases (SOD) in the regulation of VEGF 

production, in the response to antiangiogenic drugs or as mediators of the response to 

hypoxia have been previously studied [93-96]. In a blind in silico prediction program, 

our group identified SOD-3 as a target for antiangiogenic treatment and confirmed this 

prediction showing that an antibody blocking SOD-3 produced angiogenesis inhibition 

in vitro and in vivo [97].

 Catalase overexpression reduces the angiogenic capacity and recruitment of new blood 

vessels to the tumor, by interfering with H2O2-mediated signaling [98], and promoting 

the emergence of a less aggressive and better-responsive phenotype to 

chemotherapeutics in the MCF-7 breast cancer cell line [99]. 

Glutathione peroxidases (Gpx) are important in different stages of carcinogenesis [100]. 

Gpx1 enzyme deficiency in mice promotes a decrease in the viability and number of 

endothelial cell progenitors, which also become more sensitive to oxidative stress, 

preventing angiogenesis in situations such as ischemia damage [101]. Gpx4 seems to 

play a key role through the regulation of the activity of some specific isoforms of 

lipooxygenases. The mutant heterozygous for Gpx4 has a vascular phenotype with 

higher density of microvessels and these are smaller in diameter as compared with wild 

type vessels. These effects can be reversed with inhibitors of 12/15-lipooxygenases 

[102]. 

4.3. The thioredoxin system
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The importance of the thioredoxin (Trx) system as a possible tumor target has been 

underscored [103]. It also seems to be an important regulator of angiogenesis, through 

the control of endothelial cell functions by modulating the cell redox state [104]. Trx 

interaction protein (TXNIP), which inhibits Trx action, appears essential in the response 

of VEGFR2 to VEGF, as TXNIP regulates VEGFR2 phosphorylation by stimulating 

VEGF-promoted S-glutat.ionylation of key phosphatase in this process in endothelial 

cells, which also appears to be related to the regulation of endothelial cell migration 

[105,106]. Furthermore, TXNIP has recently been characterized as a tumor suppressor 

in the case of thyroid cancer [107].

 The enzyme thioredoxin reductase (TrxR) also appears to be important in the 

angiogenesis process. It has been observed that selenium deficiency, important for the 

formation of selenoproteins such as TrxR, causes an inhibition in the TrxR activity of 

the endothelial cells in the tumor microenvironment, which correlates with a drop in 

VEGF levels [108]. In mouse lung cancer cells, KO in mitochondrial TrxR alters cell 

redox status, stabilizes prolyl hydroxylases, and inhibits HIF-1 cascade, suppressing 

tumor angiogenesis [109]. In the case of humans, in glioblastomas with intratumoral 

hemorrhage there is an increase in the expression of VEGF and TrxR1, which can be 

related to an increase in tumor angiogenesis [110].

Trx2 is a mitochondrial redox protein with a key role in promoting angiogenesis in 

cross-talk with NADPH oxidase (NOX) 4 [111].

Several compounds targeting the Trx system have been evaluated. Lamorustine, a 

member of the family of methyl isocyanates, interferes with tumor angiogenesis by 

targeting ASK-1, which forms a complex with reduced Trx in resting endothelial cells 

[112]. On the other hand, sulforaphane promotes an increased TrxR1 activity in 

endothelial cells and modifies communication with pericytes [113]. Our group has 

recently shown through a proteomics analysis that the treatment of endothelial cells 

with the anti-angiogenic compound (+)-aeroplysinin-1 affects the expression levels of 

redox proteins, including a marked reduction in the levels of the cytosolic TrxR1 [114].

4.4. Glutaredoxin and peroxyredoxin

It has been shown that the S-glutathionylation-dependent regulation of sirtuin 1 by 

glutaredoxin (Grx) is essential for the vascular development of zebrafish [115], 

although its role in tumor angiogenesis remains unknown. 
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Peroxyredoxin 2 (Prdx2) helps in the formation of vascular patterns in colon cancer 

cells HCT116 by vascular mimicry through the activation of VEGFR2, which is 

suppressed when siPrdx2 is used [116]. On the other hand, endothelial cells treated with 

the anti-angiogenic compound (+)-aeroplysinin-1 have increased protein levels of Prdx4 

[114].

4.5. NAD(P)H oxidases

The important role of membrane NADPH oxidases (Nox) in the regulation of the 

angiogenesis process should be noted [117]. Being one of the main sources of ROS, and 

their location in plasma membranes, makes them suitable candidates for orchestrating 

signaling processes that modify the tumor ecosystem and condition the angiogenic 

microenvironment, favoring the interrelation between immune system cells, tumor cells 

and endothelial cells to trigger the whole process of tumor angiogenesis [118]. 

Interestingly, the phorbol ester-induced angiogenesis of endothelial progenitor cells 

seems to be controled by Nox-mediated gelatinase pathways [119].

Among the different types of NADPH oxidases, some seem to have a greater relevance 

for the angiogenic process. Mice deficient for Nox1, but not for Nox2 and Nox4, 

presented an inhibition of angiogenesis that was phenocopied using specific inhibitors 

of Nox1 and silencing the gene, through a mechanism that implied the inhibition of 

PPARα [120]. In CaCO-2 colon cancer cells, the phosphorylation of the transcription 

factor Sp1, which promotes its binding to the VEGF promoter and increases its 

production, requires the induction of the Ras signaling pathway by Nox1 [121]. In HT-

29, another colon cancer line, the expression of key regulators of angiogenesis, such as 

VEGF or HIF-1α, as well as the density of blood vessels, were decreased when Nox1 

was permanently silenced by shRNA [122]. The Nox1 subunit involved in regulating 

the angiogenesis process in prostate cancer appears to be p22(phox), whose knockdown 

decreases ROS production and inhibits tumor angiogenesis [123]. 

It has been shown that the proangiogenic factor deoxyribose-1-phosphate (dRP) acts 

intracellularly activating the Nox2 complex (but not Nox4) in endothelial cells, favoring 

the activation of NF-kB and increasing the expression of VEGFR2, which stimulates 

angiogenesis [124]. 

Much more information is available on the connections of Nox4 with angiogenesis. As 

mentioned above, the redox cross-talk of Nox4 and Trx2 in angiogenesis has been 

previously reviewed [111]. Nox4 isoform has been linked to the modulation of 
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proliferation, migration and adhesion in endothelial cells through the production of ROS 

and the promotion of VEGFR2 phosphorylation [125]. Studies in fibrosarcoma have 

shown that Nox4 KO produces a reduction in tumor vascularization, while the mutant 

KO for Nox1 produces the opposite effect and the mutant Nox2 has no effect on 

vascular density [126]. In renal carcinoma cells, Nox4 has been shown to promote 

angiogenesis through the accumulation of HIF-2α, so that silencing Nox4 blocks the 

accumulation of HIF-2α in the nucleus and, therefore, the angiogenic process [127]. As 

with other Nox variants, Nox4 also has p22(phox) as a regulatory element. However, it 

has been observed that, while the mutation of specific residues of p22(phox) inhibits the 

function of Nox1, Nox2 and Nox3, both the formation of the complex and the function 

of Nox4 remains intact when the mutated p22(phox) is expressed in lung cancer cells 

[128]. In glioblastoma cell lines, it has been observed that inhibition of Nox4 expression 

with a shRNA causes a decrease in the production of ROS and a decrease in the 

angiogenic capacity of tumor cells, as well as an increase in radiotherapy damage [129]. 

According to another recent study, Nox4 and Nox2 are essential to induce VEGFR2 

phosphorylation in endothelial cells through increased production of ROS [130].

Nox are well characterized components of the not so well characterized plasma 

membrane electron transport system (PMETS). Our group has contributed to the study 

of the roles of PMETS in cancer, including tumor angiogenesis [22,131-134].

5. Nrf2 and NF-B, two transcription factors with roles in the redox control of 

angiogenesis

The transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) is a master 

regulator of the expression of antioxidant proteins. Therefore, it should not be surprising 

that Nrf2 has been found to be involved in the redox control of angiogenesis. In general, 

Nrf2 acts as a double-edged sword in cancer [135], since its controlled, oscillating 

activation in normal cells via the canonical mechanism acts as a preventive action 

against cancer initiation, while its uncontrolled, constitutive activation participates in 

cancer promotion, progression and metastasis [136-138], as summarized in Figure 3. 

The term "Nrf2-addicted" has been coined to mention those cancer cells in which Nrf2 

is aberrantly activated and for which Nrf2 inhibitors could be promising therapeutic 

agents [139-141].

Nrf2 seems to control different biological responses related to all the described 

hallmarks of cancer [137]. In particular, Nrf2 affects tumor metabolic reprograming 
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angiogenesis [137, 142]. It has been shown that Nrf2 knockdown reduces HIF-1a 

protein levels, thus decreasing the expression of VEGF, PDGR, angiopoietin and 

angiogenin and reducing blood vessel formation, most probably due to an indirect 

regulation of prolyl hydroxylase domain-containing proteins [143-145]. This agrees 

with the antitumor effects shown by different treatments inhibiting Nrf2 [146-148]. 

However, the double-sword behavior of Nrf2 should not be undervalued. In fact, Nrf2 

inactivation has been shown to enhanced placental angiogenesis in a preeclampsia 

mouse model [149]. Furthermore, Nrf2 activation has been suggested as a therapeutic 

approach for angiogenesis-dependent diseases, including ocular, rheumatic and 

neurodegenerative diseases and cancer [136,150-154]. We showed that dimethyl 

fumarate, an activator of Nrf2, is a potent anti-angiogenic agent responsible for the 

described anti-psoriatic effect of the commercially available formulation Fumaderm 

[155]. 

Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-B) is another 

transcription factor is another master regulator involved in the control of cellular 

responses to different damaging stresses, including oxidative stress. Therefore, it could 

be expected to be also involved in angiogenesis regulation. Surprisingly, there is still 

scarce information on this issue, which should be further investigated in the next future 

[156,157].

6. Metastasis: following the paved road of redox systems

The process of metastasis, the primary cause of cancer morbidity and mortality, is 

considered since a long time the last stage of the carcinogenic stage, as well as the most 

dangerous characteristic of any tumor cell and a fundamental factor in establishing the 

patient's prognosis [158]. The process of metastasis has long been thought to be the 

result of interactions between tumor cells and host cells [159], which are also part of the 

tumor ecosystem. Taken together, metastasis involves a series of phenotypic changes 

that begin in the primary tumor and continue along the path of the cells to the site of 

metastasis, as well as in the new niche, modifying the conditions of the niche, preparing 

it for the arrival of new metastatic cells from the primary tumor, in a kind of niche 

engineering, probably through collaboration between tumor clones [160-163].

The redox cell state also seems to have an important weight during metastasis, being 

those cell clones that present a greater increase in the levels of ROS those of greater 

metastatic potential [164]. Some authors propose that metastasis could be a tumor 
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strategy to avoid the excess oxidative damage that is generated in the primary tumor, 

with an important role for ROS in modifying the cytoskeleton that allows cells to 

acquire the invasive phenotype [165], helping in the acquisition of an "atavistic 

depressor" program that promotes unicellular survival [166]. The modulation of cell 

adhesion through the activation of cell surface integrins is another important step in the 

metastatic process that also appears to be regulated by redox elements. This integrin 

activation triggers a slight increase in oxidative stress with the consequent increase in 

ROS levels, and factors such as TGF-β, which reduces the expression and activity of 

Grx1 and favors EMT [167]. In MDA-MB231 cells it has been observed that the control 

of the cell redox state by the copper-dependent redox protein Memo promotes the 

migration and metastasis of these cells by increasing the levels of ROS in membrane 

protrusions and modifying the activity of key proteins in this process, such as Rac1 or 

RhoA [168]. In UM-UC-6 bladder cancer and HT-1080 fibrosarcoma cell lines, it has 

been shown that modulating the expression levels of SOD2 and catalase redox enzymes 

alters the levels of H2O2 in stationary state, modifying the phosphorylation patterns and 

the recruitment towards the membrane of p130cas, an essential protein for the 

reorganization of the cytoskeleton for the formation of focal adhesions during the 

migration process [169]. Recently it has been established that the AIF protein, involved 

in the regulation of cell survival or death, also possesses redox activity and influences 

the inactivation by oxidation of PTEN phosphatase, so that inhibition of the function of 

AIF prevents, in turn, is inhibition and activates the signaling by β-catenin, which 

promotes EMT and favors metastasis [170]. Interestingly, the oxidation of PTEN also 

conditions its cellular localization, in addition to its activity, dissociating it from the 

membrane [169].

The relationships between the cells that form the tumor, as mentioned above, also 

condition the process of metastasis, and the redox state that underlies these relationships 

seems to be of vital importance to condition the progress of migration and invasion 

associated with it. Recently it has been discovered that senescent fibroblasts secrete a 

Wnt antagonist, sFRP2, which influences the metastatic capacity of melanoma cells 

[171]. In this case the metastasis process (and also angiogenesis) is favored by a 

decrease in the expression of β-catenin which in turn decreases the expression of the 

MITF factor and APE1, which modulate a redox route involved in the detoxification of 

ROS. The state of oxidative stress that is generated promotes a phenotypic change that 

is associated with metastasis and resistance to chemotherapy, and that varies between 
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genetically identical clones depending on the age of the cells that accompany the tumor 

[171].

In addition, the metabolic changes noted above will also influence metastasis and, 

again, the maintenance of redox homeostasis linked to metabolism exerts a control over 

this process [172]. Specifically, the metabolic processes taking place in the 

mitochondria appear to be fundamental in the appearance of the metastatic phenotype. 

For instance, defects associated with complex I of the electron transport chain are 

correlated with an increase in metastasis, while a recovery of activity stops tumor 

growth and metastasis [173]. The generation of ROS appears to be attenuated as a 

consequence of the Warburg effect, thanks to a decrease in the flow of pyruvate to 

mitochondrial oxidative metabolism. This seems essential to increase resistance to death 

by anoikis, a cell death caused by the loss of anchors from the cell to the substrate, and 

which is a barrier against metastasis. In such a way, the Warburg effect would help 

enable the survival of metastatic cells during their "journey" to the site of metastasis 

[174]. It appears that when cells are detached from the matrix, a metabolic 

reprogramming process occurs that activates pyruvate dehydrogenase kinase 4 (PDK4), 

which in turn inhibits PDH and limits carbon flow in mitochondrial metabolism, so 

strategies that inhibit PDK4 may increase the susceptibility of metastatic cells to 

anoikis, thanks to increased oxidative stress [175]. However, in ovarian cancer cells 

with high invasive capacity it is observed an increase in pyruvate uptake and an increase 

in ATP generation with respect to less invasive cells, so that in this case a greater 

mitochondrial activity generates a greater metastatic capacity [176]. In another study, it 

has been observed that the levels of the enzyme phosphoglycerate dehydrogenase 

(PHGDH) are important for the establishment of metastasis in breast cancer cells, 

observing that tumors with inhibited PHGDH, whose levels of NADPH and GSH were 

ostensibly reduced, did not produce lung metastases and experienced an increase in the 

concentration of mitochondrial ROS [177].

Along with the avoidance of anoikis during metastasis, another important event for this 

process is the epithelium-mesenchymal transition (EMT). Little is known about the 

metabolic changes that take place during this complex cellular mechanism and, 

therefore, very little is known about how the redox state and its homeostasis may 

contribute to its occurrence. Some authors propose that during EMT there is a catabolic 

reprogramming that increases the activity of the electron transport chain and the 

generation of ATP, but that also increases the probability of generating ROS, something 
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that would be counteracted by an increase in the flow of the oxidative branch of the 

pentose phosphate pathway, increasing the levels of NADPH, and an increase in the 

catabolism of fatty acids to the detriment of their synthesis, the main consumer of 

NADPH during anabolism [178]. The EMT process seems to be associated with the 

appearance of a hypoxic environment in the tumor context. In several tumor lines, 

hypoxia triggers changes related to EMT 72 h after oxygen deprivation appears, being 

important at the beginning a transitory increase of ROS levels [179]. The control of this 

process is also determined by the tumor microenvironment and the cellular ecosystem 

that forms it. When the tumor microenvironment becomes very oxidative, there are 

associated changes in the tumor cells leading to a reorganization of the cytoskeleton, a 

decrease in E-cadherin that maintains intercellular junctions together with an increase in 

vimentin expression, and a facilitation of metabolic reprogramming, all of which favors 

EMT [180]. A recent study shows that in breast cancer cells MDA-MB-468 there is an 

increase in the expression of motility markers N-cadherin and SERPINE1 in response to 

an increase in ROS, and that this can be reverted by N-acetyl cysteine treatment [181]. 

On the other hand, the CAFs of the tumor ecosystem promote EMT through the 

secretion of metalloproteases that produce an increase in the concentration of ROS 

mediated by the COX-2 enzyme in tumor cells [182].

The antioxidant enzymes also contribute to regulate the process of metastasis. The 

activity of enzymes that metabolize glutathione varies between metastatic and non-

metastatic melanoma cell lines, with the former being higher than the latter, which is 

also associated with a drop in the intracellular levels of GSH [183]. Gpx3 seems to have 

an important role in the regulation of the metastasis process in several types of cancer, 

so that the complete abolition of its activity, mainly through the methylation of the 

gene, promotes metastasis, while overexpression of the same reduces invasiveness in 

prostate cancer [184]. In gastric cancer, the hypermethylation of the Gpx3 promoter is 

associated with an increase in metastasis to the lymph nodes, and almost a third of the 

adjacent gastric tissue had the same hypermethylation [185]. This same type of 

metastasis, which shows tropism for lymph nodes, also occurs in cervical cancer in 

which Gpx3 is inhibited by hypermethylation of its promoter [186]. In both cases, the 

role of this redox enzyme as a potential tumor suppressor is pointed out. It seems that 

this phenomenon of hypermethylation not only takes place in the promoter of Gpx3, but 

that the isoform Gpx1, also in gastric cancer, presents the same profile and influences 

the metastatic capacity of the tumor [187]. It has also been shown that Grp3 can support 
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ovarian cancer progression and metastasis by effects on the extracellular redox 

microenvirnoment [188]. While Gpx3 and Gpx1 seem to be inhibited for the triggering 

of metastasis in some types of tumors, the isoenzyme Gpx2 is overexpressed in six 

hepatocarcinoma lines with different metastatic potential, so that inhibition by siRNAs 

decreases the migratory and invasive capacity of metastatic cells [189]. This 

dependence has also been observed in colon cancer cells, where Gpx2 activity is 

essential to neutralize H2O2 increases and favor metastasis [190]. However, it seems 

that in hepatocarcinoma also Gpx1 has a different role, with an increase in its activity 

enhancing invasion and metastasis when inhibiting the expression of SBP1 (selenium-

binding protein 1), a negative regulator of Gpx1 that binds to it in conditions of 

oxidative stress, decreasing its activity and favoring the expression of HIF1-α [191]. It 

is necessary to establish the patterns of expression and activity of these enzymes in 

more types of cancer, and relate them to the fluxes of reducing and GSH equivalents 

that exist in tumor cells and in the other cells of the tumor ecosystem, as there could be 

a correlation between the loss or gain of activity of these enzymes and the levels of 

metabolites substrates for them in the tumor microenvironment.

In addition to Gpx, Trx are also involved in the metastatic process of some types of 

tumors. It has been shown that Trx1 promotes colorectal cancer invasion and metastasis 

and that this effect is mediated by crosstalk with S100P [192]. The inhibition of 

thioredoxin-like 2 in breast cancer cells produces an increase in ROS and prevents 

metastasis, so its expression is important in tumor progression [193], while different 

levels of thioredoxin reductase 1 seem to generate different metabolic profiles in 

different melanoma cell lines and contribute to the metastasis process, since its 

inhibition decreases the metastatic potential in vivo [194]. 

In gastric cancer, metastasis has been shown to be promoted by overexpression of 

nicotinamide nucleotide transhydrogenase [195]. Plasma membrane Nox activity 

control has also been related with metastasis [196,197]. A systemic redox imbalance, 

such as that caused by albumin oxidation in plasma, can also contribute to metastasis 

promotion [198].

The master regulator of antioxidant responses, Nrf2, has also been involved in 

metastasis control [137]. On the one hand, Nrf2 promotes EMT in cancer cell lines 

[199]. On the other hand, circulating metastatic cells overcome anoikis. This could be 

related to the capacity to grow in an anchorage-independent manner of cancer cells with 

constitutively high levels of Nrf2 [200]. However, here also the double behavior of Nrf2 
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emerges, since there are other studies showing that Nrf2 has anti-metastatic potential 

[201,202].

Regarding NF-B transcription factor signaling, there are also some studies connecting 

it with control of metastasis [157,203-206].

7. Concluding remarks

An altered redox balance has been proposed, along with proteotoxic stress, as a new 

hallmark of cancer to be added to the ten so far described by Hanahan and Weinberg 

[21,137]. As shown along this review, this fact opens new options for the therapeutic 

treatment of cancer based on redox unbalance. Figure 4 summarizes the effector 

systems affected by cellular redox state giving outcomes involved in angiogenesis and 

metastasis.

Many questions regarding the role of redox control in cancer angiogenesis and 

metastasis remain to be elucidated. In particular, Nrf2 is involved in the regulation of 

both angiogenesis and metastasis but its double sword behavior remains to be fully 

understood [137]. The impact of redox balance in the tumor microenvironment should 

be also further studied and characterized, with special mention to the evolution of 

cancer within its complex ecosystem [207,208].
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Figure legends

Figure 1. Timeline representing the most significant publications and research 
described in the historical background section of the present review in terms of 
redox systems and their relationship with tumorigenesis.

Figure 2. Effects of bioactive gases NO, CO and H2S in the redox control of tumor 
angiogenesis and metastasis described in this work. Yellow represents control 
over angiogenesis and progression; green represents control over angiogenesis. 
MMP-9: matrix metalloproteinase 9; VEGF: vascular endothelial growth factor; 
VSMC: vascular smooth muscle cells.

Figure 3. Double-edge sword behavior of Nrf2 in cancer. Controlled, oscillating 
activation results in preventive action against cancer initiation. At this stage, 
activating Nrf2 could serve as a preventive, therapeutic strategy. Uncontrolled, 
constitutive activation promotes cancer progression and metastasis. At this stage, 
inhibition of Nrf2 could be a suitable therapeutic strategy.

Figure 4. “Hallmarks of redox”. Effector systems affected by redox state. Outcomes 
of the function of the four systems are reflected in tumor angiogenesis and 
metastasis.
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