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Abstract—We present a statistical characterization of the
segment size distribution of video streaming services based on
dynamic adaptive streaming over HTTP (DASH). We first obtain
the empirical distributions from traffic captures of available data
sets encoded with different quality and segment size duration.
Then, we determine the distributions that provide a better fit
to the empirical data. We show that Weibull and truncated
logistic distributions are adequate to modeling the chunk size
distributions for a wide range of video qualities and segment
size duration. Results are used to develop a source model for
DASH traffic, implementing a synthetic generator of DASH-like
video traces.

I. INTRODUCTION

Nowadays, multimedia traffic streaming is still under de-
velopment in comparison with its market potential. Currently,
each business platform is a closed system which develops its
own transport protocol and content format. In other words,
a proper inter-operability among the wide range of different
devices and service providers is lacked. In a few years’ time,
it is expected that Internet video streaming traffic becomes
even more predominant, reaching almost the 82% of the global
traffic consumed by users by 2021 [1]. One way to provide the
desired inter-operability among different servers and devices is
enabled by MPEG Dynamic Adaptive Streaming over HTTP
(DASH). DASH was developed to adapt the video contents to
a wide range of devices and networks capabilities [2].

In a DASH server, video data sets are available in different
qualities so that each player can request the bitrate that better
suits the current network status [3]. For every available quality,
videos are divided into chunks or segments in order to enable
an adaptive progressive download of the video, as it is played
back at the client. In general, shorter video chunks allow for
a better adaptation to network conditions and a more efficient
buffer management, at the expense of a worse encoding
efficiency and a higher number of requests.

In the literature, different algorithms have been proposed to
improve the streaming performance of DASH [4–7]. Because
different scenes on a video may have a quite dissimilar
behavior from a compressibility perspective, chunk sizes on
a video may significantly vary – even within a given bitrate
level. The effect of such variation over the bitrate adaptation
techniques in DASH was recently evaluated in [8], by using
a Gaussian approximation for the chunk size distribution.
A proper characterization of the chunk size distribution is
desirable in many ways: (a) it helps reducing the rebuffering
probability and increasing the average bitrate level; (b) it can

be used to accurately predict the sizes of future segments
[9], which ultimately reduces rebuffering events and improves
users’ quality of experience (QoE); (c) it can be used to
emulate different video streaming sources, in order to evaluate
the system performance in real networks without the need to
resort to real video traces [10]; (d) it enables the analytical
characterization of system performance metrics.

In this paper, we provide a statistical characterization of the
chunk size distribution in DASH systems based on empirical
data from real video traces. Using a fitting procedure over a
wide data set of videos with different qualities and segment
size duration, we determine the choice of distribution param-
eters that provides the best fit to the empirical distributions.
Results reveal that the duration of a video segment has an
impact on which is the best distribution to model the segment
sizes in DASH.

II. DASH OVERVIEW

In a DASH system, as represented in Fig. 1, the video is en-
coded using different bitrates, known as representation rates.
Each encoded video is fragmented into small video segments
or chunks of a given size (i.e. segment/chunk size) that contain
several seconds of the video content (i.e. segment/chunk
duration). All the information related to representation rates,
metadata, encoders, server IP address, etc. is specified in the
Media Presentation Description (MPD).

DASH operation is controlled by the client, and can be
described as follows:

1) The client makes a HTTP request to obtain the MPD.
2) Once the client has the MPD, the streaming session is

started and the client requests video fragments to fill its
video buffer. This is known as Initial Burst phase.

3) Afterwards, the client operates in a periodic mode in
which it downloads new video chunks as the video is
played back. The bitrates of these video segments will
depend on the network status as well as the adaptation
algorithm implemented by the client. This is known as
Throttling phase, for which the video traffic follows an
ON/OFF pattern [3].

A key aspect of DASH is that the client can request
video chunks of different qualities in order to adapt to the
instantaneous network status. Depending on the quality and
duration of the video chunks, the encoder performance and
the specific video scenes to be encoded, the size of the video
segments in bytes will be different. Our goal is to provide a
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Fig. 1. DASH client-server architecture

statistical model for the chunk size distribution based on real
video traces of different characteristics.

III. CHARACTERIZATION OF CHUNK SIZE DISTRIBUTION

A. Experimental set-up

We first aim at attaining an empirical characterization of the
chunk size distributions for a wide set of reference videos. We
used the widely employed reference data set in [11]1, and more
specifically, the Big Buck Bunny animation video available
in twenty different quality levels, and segment size durations
between 1-15 seconds.

The experimental set-up is described as follows: we used
the DASH player provided by Akamai [12], and the MPD is
retrieved for each video. Then, each of the twenty available
representations is downloaded, for two different choices of
segment duration τs (1s and 6s). We denote all combinations
as TC-X-Y , where X ∈ [1−20] denotes the different qualities
and Y ∈ {1, 2} denotes the selected segment size duration
(1→ τs = 1s, 2→ τs = 6s).

Note that the adaptive feature of DASH is turned-off
throughout the experiment, as we want to characterize the
chunk size distribution for every combination of quality and
segment size duration. A very-high speed Gigabit Ethernet
wired connection is used in order to avoid any potential
rebuffering. Traffic is captured using Wireshark and processed
with TShark to extract the packet sizes and arrival times.
For every HTTP request, the segment size is computed as
the sum of the payloads of all TCP packets within a given
ON period. As observed in Fig. 2, the size of consecutive
segments varies even for a fixed video quality. Once the
empirical segment sizes are computed, we obtain the empirical
cumulative distribution functions (CDFs) for each experiment.

B. Chunk Size Distribution Fitting

After the set of forty empirical CDFs was estimated, we
aim at obtaining the best fit for a set of target distributions.

1x264 codec for encoding video streams into the H.264/MPEG-4 AVC
compression format is used.

3 4 5 6 7 8
0

20

40

60

80

100

120
1.33 MB 1.39 MB 1.65 MB

t(s)

R
ec
ei
ve
d
d
a
ta

(K
B
)

Data

ON/OFF

Fig. 2. Evolution of DASH traffic for 3 consecutive segments and fixed video
quality, with segment duration of 2 seconds.

These target distributions are Weibull and truncated logistic2

(TL) [13], whose CDFs are respectively given by

FW (x) = 1− e−(
x
λ )
k

x ≥ 0. (1)

FTL(x) =
1− e− x

s

1 + e
−(x−µ)

s

x ≥ 0, (2)

where λ, k ≥ 0 and s, µ ≥ 0 are the scale and shape
parameters of the Weibull and TL distributions.

Tables I and II show the results of the fitting to Weibull
and TL distributions, for test cases TC-X-1 and TC-X-2,
respectively. For each of the test cases, which corresponds
to a given video resolution and bitrate, the distribution that
provides a best fit in the sense of minimizing the root mean
square error (RMSE3) is highlighted in bold format. The
average segment size for each test case is also included.

For the case of segment duration τs = 1s, we observe that
in most cases (and specially those corresponding to better
video qualities) the truncated logistic distribution provides
a better fit. However, Weibull distribution outperforms the
TL distribution in some cases. We observe that the fitting is
reasonably good for all video qualities, as observed in Fig. 3.
We also see the RMSE is slightly reduced as the video bitrate
is decreased.

If we now consider a longer segment duration τs = 6s,
we see that Weibull distribution always outperforms the TL
distribution, regardless of the video quality. Similarly to the
previous case, the fitting error is small in all test cases (see
Fig. 4), although the RMSE is now reduced as the video bitrate

2The exponential distribution was also originally considered in the exper-
iment. However, this choice yielded a poor fitting performance and was not
relevant for being included in the analysis.

3Other goodness-of-fit (GOF) statistics such as R-square, adjusted R-square
and the sum of squares due to error (SSE) were evaluated. For the sake
of conciseness, we use the RMSE in the discussion, although equivalent
conclusions are obtained using the other GOF statistics. A RMSE value closer
to 0 indicates that the model has a smaller random error component and hence
the fit is better.



TABLE I
PROPOSED MODEL FOR DIFFERENT VIDEO QUALITIES. SEGMENT DURATION τs = 1S.

Test Case Resolution Video Bitrate Scale
Factor (λ)

Shape
Factor (K) RMSE 1 Mean (µ) Scale Factor (s) RMSE 2 Av. Chunk

Size (kB)
TC-1-1 320x240 47.0 kbps 0.006596 3.861 0.07004 0.005979 0.001177 0.0669 6.14
TC-2-1 320x240 92.0 kbps 0.0124 11.42 0.02971 0.01197 0.0007527 0.03843 11.78
TC-3-1 320x240 135.0 kbps 0.02098 1.848 0.07797 0.01593 0.006948 0.07733 17.47
TC-4-1 480x360 182.0 kbps 0.02463 5.675 0.0769 0.02306 0.003025 0.0743 23.15
TC-5-1 480x360 226.0 kbps 0.03454 1.308 0.06309 0.01244 0.01942 0.0600 28.79
TC-6-1 480x360 270.0 kbps 0.03626 6.716 0.0511 0.03426 0.003637 0.0498 34.30
TC-7-1 480x360 353.0 kbps 0.04773 8.675 0.04668 0.04566 0.003722 0.0486 45.16
TC-8-1 480x360 425.0 kbps 0.05829 7.546 0.04655 0.0553 0.005275 0.0561 53.42
TC-9-1 854x480 538.0 kbps 0.08211 1.157 0.0552 0.0007553 0.05539 0.0523 69.2

TC-10-1 854x480 621.0 kbps 0.08265 8.76 0.0445 0.07909 0.006409 0.0467 78.33
TC-11-1 1280x720 808.0 kbps 0.1064 10.18 0.03723 0.1024 0.007054 0.0380 101.18
TC-12-1 1280x720 1.1 Mbps 0.1429 8.967 0.0273 0.1368 0.01079 0.0332 134.12
TC-13-1 1280x720 1.3 Mbps 0.1891 2.32 0.0407 0.1586 0.04912 0.0356 165.5
TC-14-1 1280x720 1.7 Mbps 0.2477 2.318 0.0261 0.2094 0.06756 0.0197 217
TC-15-1 1920x1080 2.2 Mbps 0.3021 5.262 0.0400 0.2811 0.03796 0.0388 282
TC-16-1 1920x1080 2.6 Mbps 0.3584 4.966 0.0411 0.3319 0.04813 0.0409 326
TC-17-1 1920x780 3.3 Mbps 0.483 1.884 0.0266 0.3732 0.1608 0.0205 419
TC-18-1 1920x780 3.8 Mbps 0.5474 2.956 0.0269 0.4811 0.1161 0.0265 484
TC-19-1 1920x780 4.2 Mbps 0.6154 1.742 0.0326 0.4524 0.2253 0.0252 529
TC-20-1 1920x780 4.7 Mbps 0.6314 1.825 0.0130 0.4753 0.2204 0.0129 565

TABLE II
PROPOSED MODEL FOR DIFFERENT VIDEO QUALITIES II. SEGMENT DURATION τs = 6S.

Test Case Resolution Video Bitrate Scale
Factor (λ)

Shape
Factor (K) RMSE 1 Mean (µ) Scale Factor (s) RMSE 2 Av. Chunk

Size (kB)
TC-1-2 320x240 46.0 kbps 0.03535 18.53 0.0158 0.03455 0.001284 0.0277 34
TC-2-2 320x240 89.0 kbps 0.06925 13.85 0.0193 0.06721 0.00339 0.0334 66
TC-3-2 320x240 128.0 kbps 0.1021 9.711 0.0397 0.09784 0.007205 0.0533 95
TC-4-2 480x360 177.0 kbps 0.138 13.87 0.0251 0.1339 0.006761 0.0400 132
TC-5-2 480x360 218.0 kbps 0.1718 11.29 0.0371 0.1656 0.01046 0.0514 163
TC-6-2 480x360 255.0 kbps 0.2034 8.71 0.0430 0.1941 0.01593 0.0544 189
TC-7-2 480x360 321.0 kbps 0.2609 5.713 0.0464 0.2432 0.03048 0.0537 237
TC-8-2 480x360 374.0 kbps 0.3077 4.245 0.0379 0.2809 0.0468 0.0434 276
TC-9-2 854x480 506.0 kbps 0.4045 8.619 0.0394 0.3857 0.03181 0.0498 378

TC-10-2 854x480 573.0 kbps 0.4633 6.799 0.0456 0.4364 0.04597 0.0542 428
TC-11-2 1280x720 780.0 kbps 0.6143 11.31 0.0317 0.5924 0.03668 0.0445 582
TC-12-2 1280x720 1.0 Mbps 0.8081 7.43 0.0420 0.7649 0.07312 0.0508 749
TC-13-2 1280x720 1.2 Mbps 0.1452 5.354 0.0393 0.911 0.1205 0.0455 899
TC-14-2 1280x720 1.5 Mbps 1.209 3.655 0.0334 1.088 0.2089 0.0373 1100
TC-15-2 1920x1080 2.1 Mbps 1.674 6.943 0.0428 1.58 0.1615 0.0519 1500
TC-16-2 1920x1080 2.4 Mbps 1.959 5.241 0.0402 1.817 0.2451 0.0469 1770
TC-17-2 1920x780 2.9 Mbps 2.41 3.502 0.0313 2.16 0.4348 0.0352 2150
TC-18-2 1920x780 3.3 Mbps 2.72 2.891 0.0314 2.376 0.5808 0.0352 2430
TC-19-2 1920x780 3.6 Mbps 2.947 2.585 0.0343 2.521 0.6976 0.0376 2640
TC-20-2 1920x780 3.9 Mbps 2.995 2.272 0.048 2.879 0.806 0.0519 2900

is increased. Hence, the fitting quality is now better for lower
video qualities.

We also observe that even though the segment duration is
increased by a factor of 6 between both sets of test cases,
the average chunk size is increased by a smaller factor. This
is due to the fact that a larger segment duration allows for a
more efficient video compression of the video scene because
of temporal correlation.

IV. APPLICATION: SOURCE MODEL FOR DASH

We now illustrate how the previous statistical character-
ization of the chunk size distributions for different video
bitrates and segment duration can be leveraged to implement
a source model for generating synthetic DASH-like video
traces. In Fig. 5, we generated different segments with random

sizes according to the distribution parameters in Table II. For
simplicity, we assumed that the sizes of consecutive segments
are independent, which is a valid approximation for longer
segments. Indeed, the inter-segment correlation can also be
estimated and incorporated into the source model [14]. Real
video traces (corresponding to the DASH throttling phase) are
also included, together with the average segment size for each
test case as a reference. We see that the synthetic and real
video traces exhibit a similar behaviour.

V. CONCLUSION

A statistical model for the segment size distribution in
DASH has been developed, using a large set of real video
traces with different characteristics (quality, resolution and
segment size duration). We have seen that Weibull distribution
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distribution. Parameter values for the fitted CDFs extracted are from Table
II and correspond to the Weibull distribution.

is more suited to model the segment size distribution for longer
video segments, whereas the truncated logistic distribution
provides a better fit in most situations corresponding to shorter
video segments. The developed model facilitates the genera-
tion of synthetic video traces of configurable characteristics.
Future extensions include studying the effect of the choice of
video codec in the segment size distribution, and the use of
different data sets corresponding to other video types.
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