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ABSTRACT

The acquisition of 3D MRIs is adversely affected by many degrading
factors including low spatial resolution and noise. Image enhance-
ment techniques are commonplace, but there are few proposals that
address the increase of the spatial resolution and noise removal at
the same time. An algorithm to address this vital need is proposed in
this presented work. The proposal tiles the 3D image space into par-
allelepipeds, so that a median filter is applied in each parallelepiped.
The results obtained from several such tilings are then combined by
a subsequent median computation. The convergence properties of
the proposed method are formally proved. Experimental results with
both synthetic and real images demonstrate our approach outper-
forms its competitors for images with high noise levels. Moreover,
it is demonstrated that our algorithm does not generate any halluci-
nations.

Index Terms— 3D magnetic resonance imaging, median filter,
image denoising, single image super-resolution

1. INTRODUCTION

In Magnetic Resonance Imaging (MRI) data is affected by a number
of degrading factors, notably the finite spatial resolution and noise.
Lack of resolution may imply the loss of details that could be critical
for medical diagnosis. Noise heavily affects image quality in some
imaging modalities and, in general, it has a negative effect on the
contrast and visibility of details that could contain vital information.
Given that the acquisition times and protocols are limited for prac-
tical reasons, various postprocessing algorithms have been proposed
to enhance resolution, and they are continuously being improved.
Interpolation techniques such linear or bicubic interpolation
methods have been extensively used [1, 2], but the resulting images
are typically blurred versions of the high resolution (HR) goal im-
age. Moreover, these techniques may also introduce ringing and

This work is partially supported by the Ministry of Economy and Com-
petitiveness of Spain (TIN2016-75097-P and PPIT.UMA.B1.2017). It is also
partially supported by the Ministry of Science, Innovation and Universities of
Spain (RT12018-094645-B-100), and by the Autonomous Government of An-
dalusia (Spain) under project UMA18-FEDERJA-084. All of them include
funds from the European Regional Development Fund (ERDF). The authors
thankfully acknowledge the computer resources, technical expertise and as-
sistance provided by the SCBI (Supercomputing and Bioinformatics) center
of the University of Mélaga. They also gratefully acknowledge the support of
NVIDIA Corporation with the donation of two Titan X GPUs. The authors
acknowledge the funding from the Universidad de Malaga. Karl Thurnhofer-
Hemsi is funded by a Ph.D. scholarship from the Spanish Ministry of Educa-
tion, Culture and Sport under the FPU program (FPU15/06512).

aliasing artifacts. Super-resolution (SR) techniques offer a better
approach for resolution enhancement [3, 4, 5, 6]. Single-image SR
employs a single low resolution (LR) image, which is typically an
ill-posed inverse problem. Nearest neighbor search [7, 8] and sparse
representation approaches [9, 10, 11] have been proposed. However,
example-based SR highly depends on the database of LR and HR
patch pairs. It is also difficult to apply these methods with arbitrary
zoom factors, since the model needs to be retrained for each new
zoom factor. Self-similarity based methods achieve SR by searching
for similar patches in the same image, as done in [12], where the
patches are also searched across different scales. However, self-
similarity and example-based methods usually assume there is little
noise in the images, or respond well only to low levels of noise
[11]. Even though [10] has started to address this issue, it still works
on a 2D-basis and requires either a low-noise single-image input
or a low-noise database. A conventional approach to overcome
noise-sensitivity is to apply a denoising algorithm before SR. This
is not optimal, since denoising removes details and fine textures,
and these effects can then be magnified in the SR step. An iterative
combination of the two procedures (denoising and SR) is presented
in [13], although it also works in 2D only. In order to avoid the
difficulties associated with the use of an external database, there has
been proposed to use an additional HR image of the same object
instead [14, 15].

The proposed method allows enhancing resolution and remov-
ing noise at the same time for 3D images (not 2D slices) without us-
ing any additional images. The method is a modified version of the
Median Filter Transform [16]. It is based on the computation of the
median filter over randomly chosen, parallelepiped-shaped tilings of
the 3D space, followed by the computation of the median of the re-
sults of these median filters. The algorithm does not make any as-
sumptions about the noise type or the noise level, which facilitates
its use for different imaging techniques. No assumptions are made
either about the parameters of the imaging system, so the procedure
is not affected by errors in the estimations of these parameters [17].
Moreover, arbitrary fractional scales are allowed without the help of
an additional interpolation algorithm.

The remainder of this paper is as follows: Section 2 describes the
proposed transform, named as MFT3D, and proves some important
properties. Section 3 deals with the experiments on synthetic and
real images. Finally, Section 4 is devoted to conclusions.

2. THE MFT3D MODEL

In this section the MFT3D is presented. First, the median of over non
overlapping parallelepipeds (called bins) is computed. The output



HR voxels are not necessarily at the center of the bin which is used
to compute its value. This procedure is repeated several times with
different random template parallelepipeds to tile the space. Thus, a
collection of different HR images are obtained and finally the median
of each HR voxel over all the images is computed. In this way, the
robustness properties of the median are preserved and the resulting
HR image features a higher resolution. The MFT3D is defined in
Subsection 2.1 and convergence is studied in Subsection 2.2.

2.1. Definition

To compute the MFT3D a median operation by using sample quan-
tiles based on mid-distribution functions is implemented [18]. For
discrete distributions, these sample quantiles behave more favorably
than the classical sample quantiles, which have no asymptotic nor-
mality properties. The formulation and algorithm is specified with
more details in [18]. Since we need the sample median, we only
compute Q(0.5) and we will call it the mid-sample median, where
Q is the sample quantile function.

Next, the MFT3D is defined. Let us consider an LR image f (x)
with voxels at coordinates x = (1, 2, v3) € Z>. The pixel coordi-
nates in the HR image are y = (y1,y2,¥3) € Z>. The pixel at x in
the LR image is associated to coordinates ax = (ax1, azz, axs) €
R3, a € R, a > 1, in the HR image, where « is the zoom factor.
We define the MFT3D of f as
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where H is a constant number of tilings, A; are 3 X 3 matrices
drawn at random from a suitable distribution p(A), b; are 3 x 1
vectors drawn at random from a suitable distribution p(b), ¢ is a set
of voxel values of the LR image defined as

C(y,A,b) =
{f (x) | round (Aax + b) = round (Ay + b)}, (3)

and O stands for a median function which can be either the classical
sample median or the mid-sample median. In both cases, the quan-
tity ¢ (y, A, b) is seen as a random variable from which H samples
are drawn in (1). The set ¢ (y, A, b) contains all the LR voxel values
which belong to the parallelepiped where the HR voxel y belongs,
according to the tiling of the space defined by A and b. The A ma-
trix is obtained as the product of a rotation matrix U and a diagonal
scaling matrix A:

A =UA, “)

where det(U) = 1, det(A) = det(A) = Ai1A2A3, and \; are the
diagonal elements of A. We define BinSize as the length of the
sides of the parallelepiped which defines the bin, measured in pixels
in the LR image. Consequently, as the same size for all sides are
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2.2. Convergence study

This section determines whether the MFT3D converges to any values
when the number of random tilings H — oo, and it is also estimated
how close the result is to the original noiseless HR image.

If ¢ (y, A, b) were a continuous random variable, then a con-
vergence rate 1/H would be ensured [19]. But it is a discrete vari-
able with many ties because the values of the LR voxels close to y

are reused many times to obtain each v (y, A;, b;). Propositions
1 and 2 in [16] show results about the variance of the MFT3D for
increasing finite values of H.

Let fH denote the MFT3D computed with H tilings. Let us de-
note by 21, ..., zn the possible values of the discrete random vari-
able ¢ (y, A, b). Also, let us denote

where ¢; > 0, and Zf\il qi; = 1. If the following condition holds:
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then both z; and z;41 are medians of ¢ (y, A, b). This is a degen-
erate case that is unlikely to occur in practice, since if ¢; is chosen
at random from any continuous distribution, then the probability that
(7) holds is zero. If (7) does not hold, then there is a unique median
m = zj41 with j € {0,1, ..., N — 1}, where:

j 1 J+1 1
<Z ¢i < 2) and (Zq > 2) @®

=1 i=1
This second case is the one to be expected in practice. Both cases
are studied by Proposition 3 and 4 in [16], that prove that the MFT3D
converges to the median of the distribution of the parallelepiped me-
dians ¢ (y, A, b), which are the median of the values of the voxels

inside the parallelepiped defined by A and b. This median can be
unique in the general case or two medians in the degenerate case.

Proposition 1. The probabilities q; are continuous functions of y.

Proof. In order to study the continuity of g; as a function of y we
must show that |g; (y + €) — ¢; (y)| — 0 as ||€]| — 0. Let us con-
sider that y and y + € belong to different parallelepipeds if and only
if round (Ay + b) # round (A (y + €) + b). Since the values of
¥ (y,A,b) and ¢ (y + €, A, b) can only be different if the paral-
lelepipeds are different, it follows that:

lg: (y +€) —ai (y)| <
P (round (Ay + b) # round (A (y +€) + b)) (9)

From (4) and (5) we find that the norm of A is upper bounded:

1
1Al = [UAI < [UI AT = Al = ——  (10)
where ||-|| stands for the spectral norm of a matrix and [|U|| = 1

because U is orthogonal, and the spectral norm of A is its largest
element because A is a diagonal matrix with non-negative entries.
Consequently || A€l| is also bounded:

[Aell < [[A] lle]l < (1)

BinSize lell
On the other hand:
[(A(y +€)+b)— (Ay + b)|| = [[A€] (12)

Then it turns out that [|(A (y + €) + b) — (Ay + b)|| — Oas
lle]l = 0. Since b is uniformly distributed on [0, 1], the fractional
part of Ay + b is also uniformly distributed on [0, 1]3 irrespective
of the values of A and y. Consequently,

P (round (Ay + b) # round (A (y +€) + b)) <
8[(A(y+e)+b)—(Ay+Db)| (13)

so that the probability in (9) tends to 0 as ||€|| — 0, which implies
that g; is a continuous function of y. O



From this result we can deduce that the functions of the form
>~7_, qi are continuous, since they are sum of continuous functions.
The MFT3D defines regions so that inside a region it always con-
verges to the same value as H — oo. This can be derived from
(8) and Proposition 4 in [16]. It means that this method is valid
for subvoxel value estimation, because as H — o0, a subvoxel and
all its immediate neighbors lie in the same region and converge to
the same value. Lastly, the following proposition proves the conver-
gence in distribution of the MFT3D when the mid-sample median is
employed.

Proposition 2. Let fH be the MFT3D computed for an image y
using the mid-sample median, and consider the distribution of the
discrete random variable ¢ (y, A, b), from which we have H in-
dependent observations. Let z1 < --- < zn be the support and
qi,...,qN the corresponding probabilities of the distribution. De-
fine m, = Zi.:ll qi + qr/2. Then,

N ~ 1 +
VH(fu _f),w — N(0,0%)
2 Zpyo — 2o

in distribution as H — oo, (14)
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where 0 < \ < 1 and for some k € {0,..., N — 2},
0.5 = Amist + (1 — Nhse, (16)
f=Xzer1+ (1= Nzpso amn

Proof. It follows immediately from the case 3 of Theorem 2 in [18],
where we take p = 0.5. The other cases of Theorem 2 in [18] are
extreme cases that have a negligible probability of occurrence for
real medical images. O

3. EXPERIMENTS AND RESULTS

In this section, the results of our SR experiments are presented. Since
there are not many developed SR algorithms for three dimensional
MR images, and most of them do not have available code, we have
used MR denoising algorithms as the first step, and then we resample
the denoised image to the desired resolution using a 3D cubic spline
interpolation as implemented in Matlab. The following denoising
methods were used to compare the proposed method: NLM3D [20,
21,22], WSM [23], ODCT3D [24], PRI-NLM3D [24], BD4M [25].
In addition, a 3D SR algorithm for MRIs is tested: NLMU [26].

Dimensions of the original images were trimmed to be congru-
ent with the zoom factor. LR images were obtained by downsam-
pling the original HR images using two steps [27]: first, the noisy
HR image was filtered using a 3-D Gaussian smoothing kernel with
unit standard deviation. Then, noisy LR image of the required size
is obtained by cubic spline interpolation of the noisy HR image.

Furthermore, all experiments with our method were carried out
using H = 150 median filters. Integer zoom factors a € {2, 3,4}
and fractional zoom factors o € {2.5,3.5} have been considered.
None of the competitors except NLMU use the zoom factor because
they are denoising methods, while the super-resolution step is done
by the bicubic interpolation algorithm.

Two quality measures were used to evaluate the proposed ap-
proach: Mean Squared Error (MSE), where a lower value is better,
and Structural Similarity Index (SSIM), where higher is better. In
addition, a qualitative evaluation is performed by examination of the

1000 1200 1400

800 1000 1200

800 1000
w 600 w - // w
(%] [ — (%]
2 2 e0f 4 2 80
400 /
400 ¥ 600

200 oA 00f F 400

Noise Level

(b) @ = 3 (T1 image)

Noise Level

(c) o = 4 (T1 image)

Noise Level

(a) a = 2 (T1 image)

o7é§;\

06 AN

N
-

SSIM

—

d A

2 4 6 8 10

Noise Level Noise Level Noise Level

(d) @ = 2 (Tl image) (e) o« = 3 (T1 image) (f) o = 4 (T1 image)

Zoom factors

Zoom factors

(g) Average (T1, T2, PD) (h) Average (T1, T2, PD)

‘ —=%— ODCT3D —%— PRI-NLM3D MFT3D —4A— NLM3D —&— WSM BM4D —<— NLMU ‘

Fig. 1. Quantitative results varying zoom factor and noise levels
experiments using the Brainweb database.

residual images, i.e. the difference between the input noisy image
and the restored image obtained by each method. The reported ex-
periments have been carried out in Matlab on a 64-bit PC with an
eight-core Intel i7 3.60GHz CPU and 32 GB RAM.

3.1. Synthetic data

The freely available open access BrainWeb benchmark database was
used to carry on the synthetic experiments [28]. T1, T2 and PD
weighted volumes of 181 x 217 x 181 voxels and voxel resolution
of 1x 1x 1mm?® were used, with zero noise and zero non-uniformity.
Five Rician noise levels have been tested: 1%, 3%, 5%, 7%, 9%. The
noisy images have also been obtained from the Brainweb database.
Quantitative results for the tested integer zoom factors, and noise
levels are reported in Figure 1(a-f). As seen, the MFT3D method
obtain the best results when moderate and heavy noise is present in
the image (> 5%). This happens both at the voxel level (MSE) and
at the local structure level (SSIM). For lower noise levels our method
produces slightly larger errors than the competitors. As expected, all
the NLM based filters have a similar behavior and almost the same
values, they suffer from its lack of adaptation to the properties of
Rician noise. The pure SR competitor, NLMU, obtains the worst
results. In Figure 1(g-h) is summarized in two plots the results of the
images extracted from the Brainweb dataset. For each zoom factor
a € {2,2.5,3,3.5,4}, the average over all the images and noise
levels has been computed. MFT3D method clearly overcomes the
competitors for all the zoom factors analyzed, both for MSE and
SSIM measures, which confirms the better performance of MFT3D.
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Fig. 2. Qualitative results for T2 weighted real image from CIMES, o = 2, axial view.
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Fig. 3. Example of presence of hallucinations in restored images for
NLM based methods (BD4M), o = 4.

An axial slice of T1 Brainweb image is presented in Figure 3.
It can be noted that white spots appear in the superior and right part
of the restored image. These spots must not appear since neither the
noiseless image nor the LR noisy image evince any imperfections
outside the brain. Therefore, they are hallucinations. NLM learns
from the data, which could be from any similar but far apart region
of the image, and may introduce features from other regions of the
brain in the wrong place. However, MFT3D only takes into account
the voxels which are neighboring to the estimated one so it does not
suffer this kind of imperfections.

3.2. Real data

A real image provided by CIMES, a medical research center of the
General Foundation of the University of Malaga (FGUMA), was
tested in order to study the algorithm’s performance. T1-weighted
and T2-weighted MR images were provided where the MRI studies
were acquired on a Philips 3T Intera MRI scanner. The image size is
256 x 256 x 190, with pixel spacing 0.93 x 0.93 x 1.0mm?. Only the
qualitative results for these images are shown since the original im-
ages already have noise. The noise present in the real images is too
low, so as proposed in [29], it has been augmented by simulated 9%
Rician noise to achieve a better discrimination between the different
compared methods.

Our approach yields good results, specially in terms of sharp-
ness. MFT3D can recover brain structures that the other methods
loose with large zoom factors. This can be seen in the red rectangles
in Figure 2, where there are very definite surcus and gyrus in the
brain of the original images but they can not be appreciated in the

competitors’ results. It can be seen that the restored images obtained
by the other methods are oversmoothed, and MFT3D is the only one
that can remove the aliasing while keeping the small features to ob-
tain a HR image similar to the original one, even when large zoom
factors are employed. If we compare the residual images, the com-
petitors manifest accrued losses of brain structures, i.e. anatomical
features are visible in the residual image for the competitors. All
methods remove noise properly, but NLM based methods remove
more in the background, which is useless. MFT3D provides a good
balance between noise removal and detail preservation.

In which respects to the CPU time, on average the competing
methods need around 2 minutes at most and MFT3D method spends
at least 1 hour to compute the restored image, depending on the size
factor employed for the SR. The use of a GPU would improve be-
tween 25 and 50 times the processing time, since each of the H
tilings of the MFT3D can be computed in parallel.

4. CONCLUSIONS

A new method for both superresolution and noise removal applied to
3D magnetic resonance images is presented. It is based on the appli-
cation of median filters in two steps. Since the median is used for de-
noising, the noise distribution in the image is not relevant, and could
be completely unknown. Besides, the convergence of the method has
been demonstrated. The proposed method yields better quantitative
results than other state-of-the-art methods when 5% or more Rician
noise is present in the images, irrespective of the integer or frac-
tional scale factor employed in the super-resolution process. MSE
and SSIM results confirm the better quality of the HR images ob-
tained by our proposal. It has been shown that MFT3D also achieves
good qualitative results when heavy noise is present in the image.
The noise is removed while the finer details of the image are pre-
served. In contrast to this, the competing methods suffer from over-
smoothing and relevant anatomical features are lost. This can incur
in errors since a lesion can disappear due to its similarity to noisy
pixels. Moreover, it does not generate hallucinations in the HR im-
age, the presence of which could be could be largely detrimental for
medical diagnosis. Further works will evaluate the effect of different
super-resolution methods in combination with noise removal algo-
rithms. Besides, the inclusion of the median filter transform might
be beneficial if super-resolution deep networks could integrate them.
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