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Abstract: Dynamic programming (DP) is often seen in inventory control to lead to optimal
ordering policies. When considering stationary demand, Value Iteration (VI) may be used to
derive the best policy. In this paper, our focus is on the computational procedures to implement
VI. Practical implementation requires bounding carefully the state space and demand in an
adequate way. We illustrate with small cases the challenge of the implementation. We also
show that handling service level constraints is not straightforward from a DP point of view.
Moreover, when taking the age distribution into account for perishable products, the curse of
dimensionality provides an additional challenge. Copyright (©) 2019 IFAC
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1. INTRODUCTION

As inventory control is a dynamic process, also dynamic
programming has been considered an appropriate tech-
nique to derive so-called order policies, see Silver et al.
(1998). We use here small retailer models to illustrate the
determination of the optimal order policy. In many cases, a
so-called base stock policy works well, where an order-up-
to level S is used, Minner (2000). The retailer inspects the
current inventory level I and orders an amount @ = ¢(I)
up to level S, i.e. the rule ¢(I) = (S—1)7 is followed, where
(x)* = max{z,0}. However, whether this is the optimal
policy ¢(I) depends on the drive towards ordering.

For some inventory models, it is possible to derive the so-
called optimal order policy via Stochastic Dynamic Pro-
gramming (SDP) using a computational procedure which
is called Value Iteration (VI). This paper discusses the
features of deriving the optimal policy implementing Value
Iteration using several small inventory control situations.
In all situations, we consider a fixed order cost k and in-
ventory holding cost h. As such this would lead to ordering
nothing at all, so there are different drives in the practical
situation. We fist consider a case with backordering. The
second (and fourth) situation takes sales into account and
the third situation considers a service level requirement.

This paper is organised as follows. We first sketch the
concept of deriving the optimal policy by VI in Section
2. Section 3 then introduces and investigates several cases
based on Poisson distributed demand. Section 4 summa-
rizes our findings.
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2. THE PROCEDURE OF VI

First of all, to define the ordering decision problem as a
Markov Decision Problem (MDP), we have to define the
state space, decision space and transition probabilities. For
the inventory situation, this requires to have a good vision
on the order of events. For our retailer case, we assume
that the order of size Q¢ = q(I;) is placed and received next
morning, just before the next decision is made based on
the total inventory I; in stock. The dynamics is following
the equation

Iy =1 + q(Iy) — dy, (1)
where d; is the stochastic customer demand during day
t. Notice that we implicitly think in time steps of one
day instead of in terms of continuous time, which is also
reasonable for a retailer situation. The state space S
translates here easily to the inventory I in stock. However,
in most MDP situations, this is thought of as a finite state
space. Apparently, we also should think of a discretized
space here. For an overview of practical problems, we refer
to the book Boucherie and van Dijk (2017). We will first
look at the theoretical background to embed the inventory
problem and then derive the VI procedure to be followed.

2.1 MDP background

Under certain circumstances, the optimal order amount
q*(I) can be characterized by the MDP theory, introduced
originally by Bellman (1957). For the optimal policy, there
exists a so-called value function v(I) and a scalar 7 such
that VI € S

v(I)+7r:mén (C(I,Q)+/OOOU(I+Q—d)pd), (2)

where pg is the probability density of demand d and
C(I,Q) the costs associated with inventory I and order

quantity Q.



To work with (2) in a practical way considering S to be
finite, we observe two problems. If d is from a continuous
distribution, we require what is called interpolation to
evaluate v in between known grid points. Moreover, if the
support of d is not finite, we may arrive at state values out
of range and require extrapolation to evaluate v outside of
the range. An example of such a system in fishery dynamics
is given in van Dijk et al. (2014).

The practical cases we are interested in concern low
discrete demand of perishable items, see Ortega et al.
(2018), which may lead to hard to determine optimal
policies. This means, in the sequel, we consider d from
a discrete distribution with low mean and & C Z. This
translates the optimality condition (2) to the existence of
a vector V and constant 7 such that

VD) + 7= min (C(I, Q)+ paVI+Q- d)) e
d=0
where now py is the probability mass function of d. The
optimal decision rule (called order policy) is given by

q"(I) = argmin, <C(I, Q)+ > paV(I+Q- d)) - (4)
d=0
This is the theory, but how to derive the optimal policy
now in practice? And, do we always reach an optimal
policy?

2.2 Value Iteration procedure

In principle, the optimal valuation can be found following
a fixed point idea about (3) with respect to value 7 called
Value Tteration (VI). Although terminology and concepts
are more extensive, from a computational point of view it
is sufficient to think in those terms. One copies the last
valuation in a vector W and determines the new valuation
vector V' as sketched in Algorithm 1 up to convergence
takes place of what is called the span, i.e. the maximum
and minimum difference of the two vectors.

Algorithm 1. Pseudocode of VI for one product inventory control
1: Set vector elements V; to C(,0) for i =0,...,N —1
2: repeat
3: Copy vector V into vector W

4 fori=0,...,N—-1do

5 for @ =0,...,Q do

6: for all demand realisations (events) d do
7: Retrieve W;, with state j =i+ Q —d
8 V; = minQ[C(i, Q)+ dede]

9: until max;(V; — W;) —min; (V; — W;) <e

As mentioned before, we might in line 7 arrive out of range
when demand is larger than the available material. There
are two solutions. Either we follow a lost sales model and
the next inventory state is given by j = (i —d)* +Q, or we
follow a backlogging model that allows negative inventory
positions. The latter requires to define a minimum value
I for the inventory position and to apply extrapolation.
Bounding plays a big role in the implementation of VI.
In the case we sketch, we also should define a maximum
order quantity (). Moreover, the range of inventory values
S = [I, I] should be realistic in the sense that all positions
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Fig. 1. Data dependence in Value Iteration

have a positive probability to be reached. Extrapolation
for values larger than I can be avoided limiting the order
quantities to be evaluated to Q < max{Q,I—1I}. Figure 1
sketches the lost sales situation, where the inventory value
I and state number ¢ coincide.

3. CASES

We consider a retailer case. Dynamics (1) represents the
case of backlogging (with negative inventory) where a
customer is prepared to wait for the order to be delivered.
However, a retailer case mainly concerns a lost sales
situation, where the demand (and potentially client) is
lost, described by the dynamics

Iipr = (I = dy) ™ 4+ q(1). (5)
This means that negative inventory does not occur. We will

describe both situations here to focus on the consequences
for the implementation of VI.

Notice that the expected inventory cost given a starting
inventory I is due to the final inventory at the end of the
day

E(Invcost(I)) = hE(I —d)*. (6)
For the illustration, we consider a Poisson demand with
mean p = 2 and the cost values k = 4 and h = 0.25. In case
of deterministic demand, this would lead to an economic
order quantity FOQ = %TH =
called replenishment period of 4 days, see Silver et al.
(1998). As ordering also implies cost, the optimal solution
is to order zero if there is no drive for selling the product.
We discuss low dimensional inventory cases with three
different drives, i.e. that of backlogging, of having sales
and that where the sales are forced by a so-called service
level requirement.

8 or alternatively, a so-

8.1 First case, backlogging

We first introduce a backlogging cost of ¢ = 1 per unit per
day. This implies that I can take negative values and adds



an expected cost ¢(—I)" to (6). How negative can I be?
Let G be the cumulative distribution function (CDF) of d.
We consider a maximum demand as the .9999 percentile !
of d giving d = G~1(.9999) = 9.

To determine the maximum inventory level I we take the
EOQ plus a margin s reasoning that the retailer prefers to
incur the inventory cost h over the backlogging cost ¢ in
I cases, i.e. s = GT1(<2) = 3. This means we can take
I = EOQ + s = 11. For the minimum inventory level we
reason that the retailer intends to stay over s in its final
inventory level and may be confronted with the maximum
demand I = s—d = —6, such that S = [I, I] = [-6, 11]. As
we are evaluating the VI for state values [[,I] = [—6,11],
we still have to extrapolate the value of W for state values
lower than I.
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Fig. 2. Optimal order quantity ¢(I) as function of the
inventory level for case 1

Running the VI algorithm with an accuracy of € = 1075,
provides the optimal solution as sketched in Figure 2 after
28 iterations to an average daily cost of m = 2.01. The
outcome corresponds to a so-called (s,S) policy, where
the retailer orders when the level drops below re-order
point (value) s = 3 a quantity Q = S — I, with in this
case order-up-to level S = 11. Such cases are typical in
inventory theory (Minner (2000)), although it is also used
in continuous review, i.e. the order takes place any moment
instead of at the beginning of the day.

3.2 Second case, sales

Although popular in theory due to some nice mathematical
properties, backlogging is not very realistic in the practice
of retail situations of supermarkets. We consider here
that the retailer is obtaining a profit of f = 2 per unit
which is in fact lost on lost sales (demand is larger than
inventory). In the bounding of the state space now I = 0,
such that extrapolation is not necessary anymore. For
the maximum inventory I we take the maximum demand
during the replenishment cycle in terms of the .9999
percentile, providing I = 20, such that S = [I, I] = [0, 20].

We change the objective in maximising profit, where for
each state I the profit is set to

C(I,q) = fEmin{I,d} — hE(I —d)* — k(g > 0). (7)

1 Notice that the inverse G~!(a) = z is in fact the smallest value x
for which G(z) > «, also called the percentile point.
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Fig. 3. Optimal order quantity ¢(I) as function of the
inventory level for case 2

Running the VI algorithm with an accuracy of € = 107
provides now an average daily profit of # = 1.77. The
optimal policy depicted in Figure 3 is surprising, as for
I = 0, it deviates from an (s,S) policy. Of course the
policy is data dependent. For lower values of the profit
f, the policy first converges to a preemptive policy only
ordering when being out of stock to the value of f = 0.95
under which the business is not profitable anymore and
costs exceed expected profit.
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Fig. 4. Distribution inventory, frequency in blue and
Markovian stationary state in yellow

Following a dynamic model with a finite number of states,
allows us in this case to observe the occurrence of the
state values. On one hand, we can simulate the model
and count which inventory levels occur, but we can now
also follow the theory of MDP and construct the Markov
transition matrix M where each element M;; represents
the probability given the optimal order quantity ¢(7)
that we will reach state j. The so-called stationary state
distribution of inventory levels is a row eigenvector of M
belonging to eigenvalue 1, e.g. see Puterman (1994). Notice
first of all, that the actual state space S is too large, as
the maximum possible amount in stock is I = max; q(i) +
max(argmax; ¢(¢)) = 10+ 1 = 11.

We can also observe this from the distribution in Figure
4. Notice for instance that the probability of being out of
stock at the beginning of the day is extremely low. Given



the optimal policy (Figure 3), this would imply having
ordered nothing the day before, i.e. this can only occur if
the inventory is I > 4 and the demand has been larger
than I.

3.3 Third case, service level requirements

An often applied measure in inventory control is the use
of service level requirements. The so called a-service level
measures the number of days that the shop is out of
stock before the end of the day and there is demand that
cannot be fulfilled. To be more precise, in our model, a
requirement could be

Pd; <L) > a, (8)

where for instance a = 0.9,0.95,0.97. As illustrated
in Pauls-Worm and Hendrix (2015) for a case of non-
stationary demand, this is hard to capture in an optimal
way in dynamic programming. What can be implemented
in a DP approach is to have a conditional probability,
for the current inventory level I, that at the end of the
next day the requirement is fulfilled. However, as depicted
in Figure 4, not each inventory level I has the same
probability of occurence causing DP to over achieve the
requirement (8). Le. for some states (inventory levels) one
could relax the conditional constraint. However, for which
levels is only known after achieving a certain order policy.

Moreover, the conditional constraints also have to be
derived with care. For the situation ¢ = 0, we know we
should order ¢(0) > so(a) = G~!(a) to be certain that
next day (this day is lost), we have a probability to have
enough in stock. For an inventory level ¢ > 1 we derive the
minimum order quantity s;(«) in a conditional way on the
inventory level j at the end of the day. Let s;(«) be the
minimum quantity s for which

7
S Py <s+) x P(—d) =) > a. (9)
§=0
We can first derive the conditional probabilities of the so-
called loss function II;; = P((i—d)™ = j|i) and then solve
(9) over s using the equation

D ,G(si(@) +4) > a. (10)
§=0

Let F' be the CDF of the demand d; 4+ d;1, which in case
of Poisson demand is also Poisson distributed with mean
241. Then we have that for i > F~! we can take s;(a)=0, as
there is sufficient material in stock for the next two days.

The conditional requirement can be taken as g €
[s;(cr), max{@, I —I}] as action space to prevent ”ordering
nothing” to be the optimal solution. As maximum inven-
tory level we can take the EOQ again plus the margin
that intends to have enough for the coming two days;
I =FEOQ + F~1(a).

Using a service level requirement of o = 90% and the
accuracy of € = 107°, the value iteration converges in
20 iterations to an average daily cost of m = 2.61. The
shape of the order policy provides the same surprise, that
it does not completely follow an (s, .S) policy. The a-service
level reaches a level of 0.99, i.e. much higher than the
required amount. In this specific case, this is caused by
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Fig. 5. Optimal order quantity ¢(I) for case 3

the relatively large replenishment cycle length, such that
most of the days, the inventory cannot be out of stock.
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Fig. 6. Distribution inventory case 3, frequency in blue and
Markovian stationary state in yellow

This specific case with a long replenishment cycle and low
demand illustrates very well that the Dynamic Program-
ming approach with an individual requirement ¢ > s;(«)
for each state ¢ according to (10) exceeds the global re-
quirement (9) and does not necessarily lead to an optimal
solution. Running the same VI with an individual require-
ment of & = 0.6 provides a global service level of 0.91
against an average daily cost of 7 = 1.89 according to a
simulation over 200,000 days.

3.4 Fourth case, perishable products

This last case illustrates how taking the shelf life of
products into account, not only the state space dimension
is increasing, but also the underlying MDP theory may
be violated due to the parameter values. Consider again
the second case where the retailer sells products against
a price s = 3 and buys for a price ¢ = 1 such that the
profit is the same. However, now the product is highly
perishable and expires after two days after delivery. The
state space becomes two-dimensional taking the age of the
product into account; Iy is the fresh product delivered in
the morning and I; is already a day old and will expire
wen not sold at the end of the day. We consider a so-called



FIFO issuing policy, where the client first buys the oldest
product and then the fresher one. The dynamics of the
model is now
Tory1 = Qu (11)
and
Lipyr = (lor = (dy — L) ™)™
The objective in terms of random variables is now
C(ly, I1,q) = sEmin{ly + I,d} — hl; — cq — k(g > 0).
13
The generated waste is in fact given by (I1; — dy)* (an(i
is implcit in the model as we loose the buying price ¢
of the product. Having a maximum order quantity Q,
we can now limit the state space to the two dimensional
space (I, I1) € S := {0, ..,Q}2. Using the same parameter

(12)

order quantity
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Fig. 7. Optimal order quantity q(Io, ;) case 4, for para-
meter values s =3,c=1,h=0.1,k =0

values as in case 2, k = 4,h = 0.25, leads to an optimal
replenishment cycle of 4 periods, which is not relevant
anymore due to the shelf life of 2 days of the product.
Interesting and illustrative is that for such a case, the
optimal policy provides a periodic policy which means to
order every two periods 5 units. One period an order is
placed and the next one nothing is ordered, such that all
items in stock expire. In such a case, the value iteration
per period is not valid anymore and we cannot follow the
procedure we were following before.

To force the policy to replenish also when not being out
of stock, we removed the order cost setting ¥ = 0 and
lowered the inventory cost A = 0.1 using a maximum order
quantity of Q = 5. Running the value iteration provides
an optimal policy after 12 iterations to an average daily
profit of m = 3.15 as depicted in Figure 7.

Like in the former cases, we can analyse the behavior of
the system from a Markovian perspective. First notice that
the optimal policy has been derived for (1o, I;) € {0, ..,5}2.
However, the maximum inventory for each age is in fact
maxy,r, ¢(lo, 1) which is @ = 3 in the given numerical
case. This means, there are many transient states where
the Markov chain is not returning for which we calculated
the optimal policy.

Computing the stationary state which presents the proba-
bility distribution of being in a certain state, requires com-
puting the transient probabilities where we have to map
the two-dimensional state space into a one-dimensional
one to define the Markov matrix M. The stationary state
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Fig. 8. Probability of occurence of inventory states for case
4 of a perishable product

according to the eigenvalue of the Markov chain coincides
with the frequency measured by the simulation model and
is depicted in Figure 8. Notice that as soon we leave the
zero inventory state, we never return there and the fresh
inventory fluctuates among Iy = 2,3 as in every period an
order of this size is placed.

4. CONCLUSIONS

This contribution illustrated with small one product ex-
amples several characteristics of finding the optimal order
policy using value iteration in an MDP model. Working
with a discrete demand distribution facilitates to work
over a grid of inventory values in state space. However,
bounding of demand is of importance for a backlogging
situation as minimum inventory levels may be negative.
Secondly, bounding of state space and action space is of
importance to let the method converge. In backlogging
situations, we also have to take care of extrapolation of
the value function.

Although the use of service level constraints is popular
in inventory control, there is a challenge to find the
optimal solution, as only conditional requirements can be
developed as a minimum order quantity for each state
individually, independently of the occurence of the state.
For small instances as we used, the stationary distribution
can also be derived using the row eigenvector of the
Markov matrix.

This paper also illustrated the idea o a multi-dimensional
state space when taking the age distribution into account
for perishable products with a finite shelf life, which
basically may lead to the curse of dimensionality. We
observed there that in some situations the system may
start to behave in a periodic way, such that the Value
Iteration should be adapted to the periodic behavior.
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