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Abstract. In the current IoT era, the number of smart things to interact
with is raising everyday. However, each one of them precises a manual and
specific configuration. In a more people-friendly scenario, smart things
should adapt automatically to the preferences of their users. In this
field, we have participated in the design of People as a Service, a mobile
computing reference architecture which endows the smartphone with the
capability of inferring and sharing a virtual profile of its owner. Currently,
we are developing Digital Avatars, a framework for programming interac-
tions between smartphones and other devices. This way, the smartphone
becomes a personalized and seamless interface between people and their
IoT environment, configuring the smart things with information from the
virtual profile. In this work, we present a formalization of Digital Avatars
by means of a Linda-based system with multiple shared tuple spaces.

Keywords: Digital Avatars, People as a Service, PeaaS, Linda, Shared
Tuple Spaces.

1 Introduction

The Internet of Things (IoT) is built over a layer of connected devices and sensors
that offer specific interfaces to access the information they collect and also to
configure how they work, e.g. the frequency to pick up the data or how to format
them [J]. Recent research in the IoT field has promoted the development of
devices and sensors which are more configurable and provide easier interfaces.
They are known as smart things [11]. However, smart things still require a lot of
manual configuration, and this problem becomes more challenging the bigger the
number of devices we daily interact with. In a desirable scenario, the technology
should work for the people and not the other way around. Every smart thing
should adapt to the needs of the people seamlessly and in an automatic way,
reducing the need for interaction with the users to the minimum.

Considering the pervasive presence of smartphones, the authors of this paper
have participated in the design of a mobile computing reference architecture
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called People as a Service (PeaaS) [10]. This architecture promotes the use of
smartphones to learn about their users, creating and storing virtual profiles with
their preferences and context information. These profiles are then offered as a
service to third parties in a secure manner. This way, smartphones become seam-
less and automatic interfaces that negotiate their owner’s preferences, adapting
and configuring the smart things in their surroundings.

For that purpose, the required interactions are not just simple data transfers,
but we need mechanisms that allow to configure smart things, and also to
complete virtual profiles with context knowledge obtained from these interactions.
The more complete virtual profiles are, the better may the technology adapt
to the people. With this goal in mind, we are developing Digital Avatars, a
dynamic programming framework which allows defining the interactions between
smartphones and smart things by means of on-the-fly scripts [I3]. The scripts are
executed in the smartphone, and they make use of the virtual profile stored in it
for reconfiguring the behavior of the smart thing with the information available.

Our programming framework is inspired by the vision of a Programmable
World [I7], which foresees the evolution from today’s IoT based on data recollec-
tion to truly programmable devices. This way, both smart things and smartphones
are able to learn from each other, and to evolve through each interaction in a
transparent and dynamic way.

In this paper, we present a formal framework for Digital Avatars. The frame-
work provides a formal description of virtual profiles and the scripts to execute on
them, and it establishes the basis for issues like privacy or security, with secure
connections controlling the access to virtual profiles. The formalization is based
on a multiple shared tuple spaces model inspired by Linda, which makes possible
to ensure the soundness of the framework, and makes feasible the analysis of
some interesting properties.

The rest of this paper is structured as follows. In Section 2 we present the
motivations of this paper and discuss some related works. Next, Section 3 defines
the concepts necessary to reason on Digital Avatars. In Section 4, we formalize
the interactions that take place in the framework and demonstrate interesting
formal properties of the system. Then, Section 5 presents a proof of concept and
analyze its implementation using the framework. Finally, Section 6 draws the
conclusions of the paper and briefly discusses future work.

2 Background

The development of smart things is transforming people’s lives, as we increasingly
interact with them everyday. Social Computing (SC) [I§] is the area of computer
science that deals with the interaction between social behavior and computer
systems. SC encompasses all those systems that collect, process and disseminate
information related to individuals and groups of people. The goal is learning
about people and their preferences and providing an easy adaptation of their IoT
environment, reducing manual configuration of devices to a minimum. Indeed, a



number of recent research works agree on giving support to the IoT by means of
a paradigm focused on people [16].

Currently, very few companies are able to access and process this enormous
quantity of social information, and to exploit and make a profit from it. In
practice, this reduces the SC marketplace to a small number of big stakeholders.
As Tim Berners-Lee declared recently [I], SC systems should empower people,
making them the fair owners of their information, and deciding who has access
to it. Moreover, this information must be stored in a unique and accessible place
which lets third parties use it in a controlled way, following the privacy preferences
of the users.

In this same sense, we advocate for developing collaborative architectures
based on smartphones. Their pervasive presence in people’s everyday lives and
their increasing sensoring and computing capabilities, together with their com-
munication skills, make them key elements for obtaining, processing, and sharing
information about their users [15]. Smartphones are also the most appropriate
devices to be in charge of negotiating the interactions of their users with smart
things in their environment.

Architectures based on P2P models are gradually acquiring a greater presence
in fields such as social networks [19] or recommendation systems [20]. The basis
of these architectures are the virtual profiles of the users, plenty of contextual
data (e.g. activities, relations with other users, etc.) [8]. Our goal is sharing
these virtual profiles with third parties and to adapt the IoT environment to the
preferences and needs of each user.

With that purpose in mind, our approach is based on a Linda-like model.
Linda [7] is a coordination language where synchronization is achieved by means
of a shared tuple space, and through a set of simple but enough expressive
primitives [2]. However, a single shared tuple space would violate the principles
of the PeaaS model. Some other Linda-like proposals have been made by different
authors, introducing some kind of mobility, mainly based on adding capabilities
for remotely modifying a given tuple space. Thus, Lime [I4] was proposed as a
Linda extension to support mobile computing, by the definition of transiently
shared distributed tuple spaces to establish P2P communications. Some of its
goals are common with ours, but our framework also takes into account privacy
issues, which are crucial for virtual profiles. Another well-known proposal is
KLAIM [5], which extends Linda by considering the possibility of remote adding
tuples to an accessible tuple space. With a similar philosophy, SCEL [6] was
designed to provide a parametric language to capture various programming
abstractions for autonomic components and their interaction. In both cases,
Linda-like primitives were added to allow the remote interaction with shared
tuple spaces. Although the PeaaS paradigm could be (artificially) coded by these
languages, a number of assumptions and constraints should be made to ensure
the main PeaaS features. In fact, we consider that accessing to a virtual profile
has to be made only by its owner, and remote accessing to transient tuple spaces
or shared repositories do not model these scenarios properly.



3 Modeling Digital Avatars

In order to define a formal framework for reasoning on Digital Avatars, we
introduce the notion of virtual profile together with a number of related concepts,
and we describe how virtual profiles can be offered as services under the PeaaS
paradigm.

3.1 Definitions

The key issue for taking into account the user in an IoT environment is her
virtual profile. It contains information about user preferences, habits, movements,
or relations. All this information is only stored in the user’s device (e.g. a
smartphone), and it is offered as a service to third parties. The definition below
formalizes this notion.

Definition 1. A virtual profile P is a multiset of entities, where each entity
is a 5-tuple t = (n, s,p,v,ts) composed of (i) n € Name representing the name
of the entity, (ii) s € Type defines the entity’s type, (iii) p € Privacy, which
provides the level of privacy, (iv) v € Value is the value of the entity itself, with a
structure which will depend on the entity’s type, and (v) a timestamp ts € Time,
which allows recording the time when the tuple is added to the virtual profile. We
will denote by T the set of tuples, and by P the set of virtual profiles.

The complexity of virtual profiles depends on the sets Name, Type, Privacy,
Value, and Time. These entities are structured in nested sections for the secure
and correct functioning of the profile. Although the model does not depend
on how these particular domains are defined, we consider a common minimum
structure for predefined entities which are characterized as follows:

Personal It consists in personal and contact information of the user (personal €

Name); the default privacy is private € Privacy, although it can be over-
written in each attribute to allow accessing it to family or friends, for in-
stance. Basically, it contains a collection of entity identifiers like name, phone,
address, or email with the corresponding information.

Relations It provides information on how users are related to each other (relation €
Name), such that values includes entity names like family, friends, colleagues,

or acquaintances. These nested entities are collections of user (personal)
information with information about location, social profiles and their certifi-
cate hash fingerprint. The default privacy level of these entities is private €
Privacy.

Places It defines information in a profile concerning locations (place € Name):

home, place of work, known places or other places. Thus, constants like home
or work belong to the Name set in the value of this entity. Their default
privacy level is trusted.

A virtual profile can be accessed and/or modified by means of processes
executing appropriate actions. In order to formalize this idea, we are inspired by



Linda [4], a coordination language [7] consisting of a set of inter-agent communi-
cation primitives, which can be virtually added to any programming language.
Primitives in Linda allow processes to read, delete, and add tuples in a shared
tuple space. Tuple spaces are a convenient approach to represent virtual profiles
shared by concurrently running processes. A virtual profile is represented by a
multiset of tuples encapsulated in a device. Thus, we adopt a multiple tuple
space model.

Following other approaches [3J12], we shall consider a process algebra £ includ-
ing the Linda communication primitives and the usual concurrency connectives,
parallel and non-deterministic choice. The primitives permit to add a tuple (out),
to remove a tuple (in), and to check the presence (or absence) of a tuple (rd,
nrd) in a given profile (tuple space).

Processes in £ provide a convenient way to model scripts which can be
downloaded from a server and run on a smart device. Thus, the syntax of L is
formally defined as follows:

SeLz=0]aS | S+S|S|S| S@H
a € Act n=rd(t) | nrd(t) | in(t) | out(d,t)

where 0 denotes the empty process, d € D a device identifier, and ¢ denotes a
tuple. The process S(f) denotes a procedure call where the procedure definition
will be given by a script template S(Z) (where Z is a sequence of variables
instantiated by a sequence of tuples £). In order to simplify the definition of
rules modelling the £ primitive actions in Subsection [£.2] we will assume that
reading a tuple do not imply the evaluation of usual operations (e.g. arithmetic
operations) nor the variable instantiation as usual in Linda-based languages. This
assumption does not imply any loss of generality of the proposal.

Notice that we consider primitives for locally accessing, adding, and removing
tuples to a tuple space (i.e. a virtual profile). Although we could have also
considered accessing and deleting tuples from remote tuple spaces, for our purposes
we only need to add tuples remotely. For this reason, only the out primitive
includes as a parameter the device on which adding the tuple. That is, rd, in and
nrd actions will be made locally, on the same device where the script is being
run. The same considerations were made in [12]. As it will be shown later, remote
adding of tuples will only affect to the artifact where the script was downloaded
from, thus we will not allow arbitrary remote adding of tuples. This asymmetric
treatment of out and read primitives are precisely one of the features devoted
by the PeaaS model: local accessing is only made by device owners, and remote
changes can only be made on artifacts providing the scripts to be run.

In our framework, we distinguish two kinds of artifacts: smart devices and
smart things. The difference between them is that smart devices exhibit computing
capabilities, and therefore they can download and execute scripts, whereas smart
things only provide a (link to a) script.

Formally, we define an artifact as a pair consisting of a virtual profile and
a process corresponding to the execution of one or several scripts. We assume
that D is a set of artifact identifiers. Every artifact d also has associated a script



definition Sy(Z) which can be downloaded by other artifacts with computing
capabilities (i.e. smart devices).

Definition 2. An artifact d € D is characterized by a pair (P : S)q, including
a virtual profile P and a process S € L, corresponding to the running scripts on
the artifact. In addition, an artifact can contain a script definition Sq(Z). We
will denote by Sq(P) the script instantiated by the specific tuples in the profile P.
And we will represent by D =P x L x D the set of artifacts.

A smart thing will be characterized by having only a profile; that is, its
process is always the empty process 0. A typical example of smart thing would be
a beacon broadcasting a Bluetooth Low Energy (BLE) signal which encodes the
URL of a script file to be downloaded from a server. On the other hand, typical
smart devices are smartphones, tablets, or any other device with computing
capabilities. Both kinds of artifacts —smart things and smart devices— store
information in a virtual profile.

3.2 Security in Digital Avatars

The actions executed over the virtual profile of a smart device may emerge from
internal processes of the device, or they may be part of a script downloaded
from another artifact (e.g. a beacon broadcasting a link to a script file) when
several conditions are fulfilled: the smart device is close enough to the beacon,
the beacon artifact is registered, its script code is trusted, etc.

In order to avoid running untrusted scripts, we assume a Certification Author-
ity capable to ensure the trustfulness of an artifact d, and a Boolean mapping
certify which provides this information in such a way that certify(d) is true when
the emitter of d has been authenticated.

In addition, the out primitive considered in the previous section allows adding
tuples to both local and remote virtual profiles. Although the model imposes
no limitations on which profiles can be remotely modified, the artifact identifier
d used in a remote out(d,t) in a script Sq(Z) can only be that of the artifact d
itself. Thus, an artifact’s profile may only be remotely modified by running a
script downloaded from this same artifact.

Hence, in order to guarantee that the actions executed while running a script
on a smart device are secure, we assume a Boolean mapping accept : Act x P —
{true, false} that restricts which primitives are enabled, in such a way that
accept(a, P) is true when the action « is acceptable on the profile P.

However, using certificates and restricting remote addition of tuples is not
enough to ensure a correct interaction between source and target artifacts, and
we also need to consider some technical issues. Indeed, whereas certify provides
a third-party declaration about the trust of an artifact, and accept controls what
actions are permitted inside an artifact once the script has been downloaded, we
need a way to detect when two artifacts are actually able to communicate with
each other. For instance, consider a scenario where a smartphone (represented by
a virtual profile P) approaches a smart thing d which provides a script Sg(Z). For



downloading the script from d and running it in the smartphone, we assume a
mapping links : P x D — 27 which provides a link to connect to the smart thing,
depending on the availability to download, the closeness between both artifacts,
good signal strength, etc. This mapping returns a set of tuples representing links
(e.g., a URI or a bluetooth connection) providing a way to access the artifact
d. If there are no links, or the profile P does not accept downloading the script
offered by d, links(P,d) will be the empty set.

Notice that all the notions introduced in this subsection (accept, certify, and
links) are application specific, in such a way that their particular definitions will
depend on the application domain and context where our framework is applied
to.

4 Formal framework

Now that we have defined the main elements and concepts of our framework, we
can formalize the interactions between artifacts by means of a transition system
with in-device and remote operations. Then, we show how some interesting
properties like bisimilarity and congruence are accomplished by the model.

4.1 In-device transition system

The operational semantics of £ is modeled by the following labelled transition
system:
—SCDxAxD

defined by the rules E| of Table (1, where D =P x L x D and A = {¢t,t,t : t €
TyU{r}.

Rule OuT; describes how the output operation proceeds as an internal move
(represented by label 7) which adds the tuple ¢ to the profile P (comma is used
to represent the multiset union). Rule OUTy shows that a tuple ¢ is ready to
offer itself to the artifact/device by performing an action labelled ¢. Rules IN and
READ describe the behavior of the prefixes in(t) and rd(t) whose labels are ¢ and
t, respectively. Rule NREAD describes the prefix action nrd(t), which proceeds
when ¢ is not in the profile P; the transition is labelled with —¢. All these rules
need that the current device’s profile accepts the corresponding action. It is worth
noting that we do not include any kind of evaluation nor variable instantiation
when reading tuples, as it is usually made in Linda-related transition rules. This
is only for simplicity reasons without loss of generality.

Rule SuM is the standard rule for choice composition. Rule SYNC; is the
standard rule for the synchronization between the complementary actions ¢ and t.
It models the effective execution of an rd(t) operation. Notice that the resulting
profile is left unchanged, since the read operation rd(t) does not modify it. Rule
SYNC; defines the synchronization between two processes performing transitions
labelled with ¢ and %, respectively. It models the effective execution of in(t)

! For the sake of simplicity we will consider only finite processes here.



action. The usual rule PAR; for the parallel operator can be applied to any label.
The transition system is considered closed w.r.t. commutative and associative
properties for sum (+) and parallel (||) operators.

accept(out(d,t), P)

(OuTy) (P out(d, t).S)g — (P,t: S)a
(OuT,) t
(P,t:S)a — (P:S)a
accept(rd(t), P)
(READ) (P:rd(t).S)a — (P : S)a
() accept(in(t), P)
(P :in(t).S)a RN (P:5)a
tZ P A accept(nrd(t), P)
(NREAD) (P:nrd(t).S)a —% (P : S)q
(Su) (P:S1)a—= (P':51)a

<P S+ SQ>d N <Pl : S{ + SQ>d

) {P:S1)a (P S (P Sa)a —s (P Sa)

(SYNCq - :
<P 0 51 H 52>d — <P 0 S H SQ>d

(Sney) (P 5 81)a = (P s 81)a (P : Sa)a = (P Sa)a
(P81 S2ya — (P : 51| S2)a
(PARl) <P : Sl)d - <Pl : Si>d

<P : S1 H 52>,1 i) <Pl : S{ || 52>d

Table 1. Transition system for smart devices

Notice that action out(d,t) is only considered in Table |I| when it is running
in the device d. Its full behavior (remote adding of tuples) will be defined when
the interaction among devices is expressed in Table

4.2 Remote transition system

In order to define how artifacts interact, we consider configurations composed of
a parallel composition of artifacts as follows:

(Pr:S1)a [ (P22 S2)dy |+ | (Pn Sh)d,



where P; (i = 1..n) are virtual profiles of artifacts —either smart devices and
smart things—, S; are scripts running in smart devices, and d; represent the
device identifiers. Notice that we denote in a different way the parallel composition
of artifacts (|) and the parallel composition of processes inside a smart device (||).

The transition system — defined in Table|[l]is extended to configurations
by the inference rules given in Table [2}

accept(out(e,t), Q)
(P :out(e,t).8)a | (Q:T)e — (P :8)a | (Q,t:T)e

(REMOTE)

certify(e) Ab € links(P,e)
(P:8)al(Q:T)e — (Pb: S Se(b,Q))a | (Q:T)e

(SyNCs)

D, = D)

PAR: [
(PARz) Dy | D - Dy | Ds

Table 2. Transition system

Rule REMOTE models remote actions modifying the virtual profile which
belongs to the smart thing from which the script being run was downloaded. We
consider this transition as a silent step from an observational point of view. For
this reason, we use the label 7.

Rule SYNCj3 represents the interaction between two artifacts (typically, a smart
device and a smart thing). In this case, the script associated with a smart thing
e, previously certified, is downloaded through a link b establishing a connection
between the virtual profile P and e. Thus, the script to be executed in the context
of the smart device d (in parallel with other possible pending processes) will be
Se(b, Q) (such as it was defined in Definition . Notice that, in this case, the
script is instantiated not only by the profile @ but also by the link b. This allows
customizing the script to the artifact which provides access to it. In addition, the
link tuple b is added to the profile P, so recording that the smart thing has been
already “visited”.

Rule PARjy describes the way in which the parallel composition of artifacts
proceeds. Note that the parallel composition of processes inside a smart device is
modelled by Rule PAR; in Table [I} Actually, any interaction in the context of a
smart device is governed by rules in that table.

We consider the transition system closed w.r.t. usual structural congruence
(commutative and associative properties) of both parallel connectors.

The rules in Table [l and Table 2 are used to define the set of derivations in
an environment where smart devices and smart things are interacting with each
other. Following [3], both reductions labelled 7 and reductions labelled =t are
considered. Formally, this corresponds to introducing the following derivation



relation:

D+~ D' iff (D-55D' or D% D).

4.3 Bisimilarity and congruence

The scripts downloaded from a given artifact may evolve under certain circum-
stances. For instance, a software upgrade, or the development of a new version of
the script. In this kind of situations, a notion of script equivalence would be very
relevant to reason about compatibility among different versions. To formalize
this, we consider the usual notion of bisimilarity-based equivalence, taking into
account the device in which the script has to be run.

Definition 3. Given a virtual profile P, two scripts S and T in L are bisimilar
with respect to P, written S ~p T if and only if for each « € A and d € D:

1 if (P:8)g =2 (P : 8" then (P :T)q ->5 (P':T')q for some T' such that
S ~p T

2. if (P:T)g = (P':T")g then (P : S)q - (P": S")q for some S’ such that
s’ ~pr T

Lemma 1. The bisimilarity relation ~p is an equivalence relation.
Proof. Tt is directly derived by reasoning on different rules in Table a

In fact, the transition relation — (restricted to devices) defines a notion
of bisimilarity which permits to decide about script equivalence. In addition,
it would be very useful that this bisimilarity relationship is a congruence with
respect to the connectors + and ||.

Theorem 1. The bisimilarity relation ~p is a congruence with respect to non-
deterministic choice and parallel operators.

Proof. Let P be a virtual profile, and let us assume S; ~p S3. We will prove
Sy || T ~p Sa || T by structural induction. To do it, we will only analyze the first
condition in Definition [3] since the second one is symmetric. That is,

(P:S) || TYa - (P 5y (1)

First, we proceed by proving the proposition on the inductive base, processes 0
and .0 (o € Act). For these processes, the result is easily proved, by considering
each case in rules (OuTy), (OUTs), (READ), (IN) and (NREAD).

In a general case, we have the following alternatives (depending on the rule
in Table [1| triggering the transition):

1. If (PARq) was the rule applied to get , then we have two possibilities:
either

(P:S1)a — (P :5))a (8'=57|T)



or

(P:T)g (P :Thg (8=8|T)

In the first case, as S1 ~p S, we have (P : S3)4 N (P" : S%)q, with
S1 ~pr Sh. Therefore, in both cases, by applying rule (PAR;):

(P:Sy || T)g = (P 8"y

S being S5 || T or Sy || T, respectively. Then, by applying inductive
hypothesis on the first case 8" = S1 || T ~p S5 || T = 5", and §” = 5’
(hence S” ~p S’ by Lemma in the second one.

2. If the applied rule to get is (SYNCy), then o = 7, P’ = P, and either Sy
or T is a parallel composition of processes T7 and T5 such that T; implies
a transition labelled by ¢. If T = T3 || T, we would have in the previous
alternative (1). So, let’s suppose S; =T} || T2, and

(P:Ty)g -5 (P:Tq (P:Ty|| Ty — (P : Ty || T)a

with 8" =T} || T | T. By applying rule (PAR;) to the left transition above,
we have (P :S1)4 N (P:T] || T2)q. As Sy ~p Sa, we have

(P:85)q -5 (P:Sh)a

for some S} with S5 ~p T} || T». Taking into account that transition ¢ only

affects to the profile P, we also have (P : T4 SN (P" : T)4. Therefore, rule
(Syncy) applied to Sa || T' gets

(P82 || Tha == (P55 || T)a

At this point S =T7 || T2 || T and S ~p T7 || T2, which implies (again by
inductive hypothesis) S ~» S5 || T

3. The last alternative to get transition is applying rule (SYNC2). The
reasoning is similar to the previous one.

In a similar way, we could prove S1 +T ~p So + T when S ~p Ss. a

5 Case study: a Treasure Hunt

Now that we have formally defined our framework for reasoning on Digital
Avatars, we present a motivating example for showing how it works, and we
discuss how the formalization provides useful tools for checking properties and
inferring results of the systems built according to our proposal.

For that, we have implemented a treasure hunt game, in which several players
look for a set of five hidden treasures following clues. Each treasure found provides
a clue for a new treasure, and the player that first finds all the treasures wins
the game. Treasures are represented by beacons, scattered over the scenario of



the treasure hunt. Each beacon emits a BLE signal with the URL of a script
file. When a player gets close enough to a beacon, her phone detects it, and
downloads and runs the script.

For implementing the game, we only need to define one script template TH
for all the beacons. This script is stored in a server which also keeps a virtual
profile containing tuples with the clues for the treasures, and two extra tuples
for the global state of the game, as it will be explained below. Prior to each
download, the script is instantiated with the clues for finding five
treasures (binding _Cluel, ..., _Clueb by the read actions in lines 1-3), and the
current status of the game, which depends on whether there exists a gameover
tuple (lines 4-5) or not (lines 7-8).

1 rd(<cluel,_Cluel>). rd(<clue2,_Clue2>).

2 rd(<clue3,_Clue3>). rd(<clued ,_Clued>).

3 rd(<clueb, _Clueb>).(

4 rd(<gameover>).

5 TH(<gameover >, _Cluel , _Clue2 , _Clue3 , _Clue4 , _Clueb)
6 +

7 nrd(<gameover >).

8 TH(<playing >,_Cluel , _Clue2 , _Clue3, _Clue4 , _Clueb5) )

Code 1. Script instantiation.

The execution of the script interacts with the virtual profile in the smartphone,
checking and updating which treasures have been already found by the player,
and showing the clue for a new treasure. It also informs the game when a player
has found all the treasures. The rest of the players will be notified the next time
they find a beacon. The full script is shown in

1 TH(-Status,_Cluel,_Clue2,_Clue3, _Clued4,_Clueb) =

2 nrd(<clue ,C>).

3 out(<clue ,_Cluel>). out(<clue,_Clue2>).

4 out(<clue , _Clue3>). out(<clue,_Clued>).

5 out(<clue ,_Clueb5>). out(<treasures,0>). 0

6 +

7 in(<clue ,C>). out(<_Status>).(

8 in(<playing>).(

9 nrd(<treasures ,4>).

10 in(<treasures ,X>). out(<treasures ,X+1>).

11 out(<mnotify ,C>). 0

12 +

13 in(<treasures ,4>). out(<treasures,5>).

14 rd(<personal .name,Me>). rd(<system.now,Time>).
15 rout(<winner ,Me, Time>). rout(<gameover>). 0 )
16 +

17 in(<gameover>).

18 out(<notify ,”You lose!”>). 0 )

Code 2. Script for the Treasure Hunt.

The branch starting from line 2 in the script is performed when a player
begins the treasure hunt (we assume an additional beacon in the starting place),



as no clues are present in his virtual profile yet (line 2). In that case, all the five
clues are added to the virtual profile of the player (lines 3-5). The last tuple
added in line 5 is <treasures, 0>, indicating that no treasures have been found
yet.

Alternatively (line 7), a random clue is read (and consumed) from the profile,
and the current status of the game (<gameover> or <playing>) is written in the
player’s profile. Then, we have again two alternatives. Either the game is over
(lines 17-18) and the player is notified of this fact, or it is still being played (lines
8-15). In the latter case, the tuple <treasures,N> stores the number of beacons
that the player has already found. If they are less than four (i.e. <treasures,4>
is not in the profile, line 9), then we increase the number of treasures found (line
10), and show a new clue to the player (line 11). On the contrary, if the player
had already found four treasures (line 13), she wins the game (please recall that
the script is executed whenever the player finds a beacon, which makes it the
fifth one). In this case, both the name of the player and the current time are
get from the player’s profile (line 14), which are used to update the global state
of the game. Indeed, two tuples are remotely added to the server from which
the script has been downloaded: one with information on the winner, and the
other one indicating that the game is over (line 15). It is worth noting that the
remote out actions in line 15 only have one argument, instead of two arguments
as defined in Act in Section [3] because the first argument implicitly corresponds
to the server storing the script.

5.1 Reasoning on the example

The formalization of Digital Avatars presented in this paper allows us to reason
on the behavior of our treasure hunt game. One of the properties that we may
want to analyze is whether it is ensured that eventually someone wins the game.
Indeed, this property can be proved with the Linda-based semantics presented in
Section [4] just making a couple of basic assumptions. First, let us consider an
initial configuration composed of a non-empty set of smart devices (players) and
at least one smart thing (beacon) pointing to a server which contains the script.
This configuration is represented by a parallel composition of all those artifacts:

Co = HZ‘n:1<Pi : O>di

(P:0) (2)

being d; the smart devices, each with a profile P;, and b the beacon associated
with a server with a profile P and script template S as specified in

Second, let us assume that the smart thing is certified (i.e. certify(b)) and
that all the devices d; can always get a link to the beacon b. In other words, let
link(P;,b) # () for an unlimited number of times, and for every ¢ = 1..n. These
two assumptions are formalized as hypothesis of the next proposition, which
ensures the eventual end of game.

Proposition 1. Let us consider a smart thing b containing the script template

Sy as defined z'n and the initial configuration Cy specified in equation @/,



such that accept(a, P;) for every action a in any instance of Sy, and certify(b).
If for every sequence of transitions Cy — C', some of the smart devices dy in C
has a virtual profile Qy which satisfies link(Qp,b) # 0, then there exists a trace

C() '—>C/ | <t,PI : 0>b
with t=<gameover>.

Proof. Applying the assumption to the empty sequence of transitions Cy — Cy,
we can find a device dj, such that rule SYNC3 can be applied, because both
conditions of that rule are fulfilled: link(Py,,b) # 0 and certify(b). Therefore,
running the script on that device, after applying several times the rules of Table
we obtain a trace:

C— Cl

where a new configuration C) is achieved containing a device di, whose profile
includes the tuple <treasures, 1>. If we apply again the hypothesis to Cy, we
find a device dj, such that rule SYNC3 may be applied once more, and a new
instance of the script S, will make Dy to progress to Co (D1 — D). If di, = dy,,
its profile will include the tuple <treasures,2>. If this is not the case, then we
will have a new device with a profile also including <treasures, 1>. Taking into
account that we can always repeat this procedure, and that we have a finite
number (n) of smart devices, after at most 4n iterations, some of the devices will
exhibit a profile with the tuple <treasures,4>. Hence, the branch represented
by lines 13—-15 of S;, will be eventually triggered, adding the tuple <gameover>
to b’s profile. a

The proposition above shows that, under some basic assumptions, a proper
initial configuration will eventually progress to a gameover status.

Additionally, some unexpected scenarios can be detected if we analyze the
script in more deeply. An exhaustive exploration of all possible traces
generated from a configuration C, like in equation [2] would provide interesting
information about the soundness of the script. In fact, a model checker capable
of exhaustively exploring all possible traces achievable from C would detect some
target configurations such that C' — C’ | (P’ : 0);, where the profile P’ includes
two or more copies of tuple <winner,Me,Time>. This means that two or more
players could postulate themselves as winners of the treasure hunt. Indeed, it is
easy to imagine how C can progress to a configuration D, such that:

D:-~-|<Pd5Sd>d|<Pe:Se>e|---‘<P50>b (3)

where <treasures,4> is both in the profiles P; and P,, and <playing> is still in
P. In other words, two devices would have found four clues each, and the game
is still being played. In this situation, if we consider a scenario where links(Py, b)
and links(P.,b) are not empty, then two consecutive transitions can occur:

DL> |<Pd:Sd || Sb(P,ld)>d ‘ <Pe5Se>e| ‘ <P:O>b
(P Sq || Su(Pla))a | (Pat Se || So(Pyle))e | ... | (P 0,



Both transitions are a consequence of applying rule SYNC3, where lg € links(Py, b)
and [, € links(P,,b). The scripts downloaded from b, Sy(P,14) and Sy(P,l.) are
conveniently instantiated with information on profile P. As P still includes the
tuple <playing>, both instances of S; will add that tuple to the local profiles of
d and e (line 7 in . And then, because <treasures,4> is present in both
profiles P; and P,, the actions in lines 13-15 of are executed:

Cr— D+— <Pd : Sd || Sb(P, ld))d | <Pe : Se || Sb(P, le)>e ‘ <P : O>b
— (P S a | (PL:Sh)e | (P':0)y

where both Pj and P! include the tuple <treasures,5>, and the hunt will
be stopped by remotely adding (twice) the tuple <gameover> to P’. However,
two remote out actions would have been previously made adding to P’ two
<winner,M,T> tuples, too, which of course is not what we would desire as the
result of the game.

This phenomenon could be addressed in several ways. The first idea that may
come up to us is implementing locks for controlling the atomic execution of the
script, blocking it for downloading in a smart device until its execution in some
other device ends. Another solution would be adding to the game a final podium
stage, where the server announces the actual (photo finish) winner, depending
on the time of each <winner,M,T> tuple. In any case, the formalization of the
framework allows us to analyze the behavior of the system and to study these
and other situations in order to detect problems and solve them.

6 Conclusions

In this paper, we have shown how the formalization of Digital Avatars by means
of a multiple tuple space approach provides interesting tools to verify different
properties of the system. We may validate the compatibility of a Digital Avatars
system with different versions of a script proving bisimilarity and congruence
properties. Moreover, we have shown that we may formally check the interactions
in a Digital Avatars system, which gives us the opportunity of studying its
correctness, proving desired (or undesired) properties, and studying what happens
in different situations, like in our treasure hunt example ensuring that the game
always ends, or whether they may exist multiple winners.

As for future work, we plan to extend the transition system in order to model
the atomic execution of the scripts, avoiding this way the mutual exclusion
issues previously mentioned. Furthermore, it would be necessary to build model
checking tools for analyzing desired or undesired properties of the scripts.
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