DIPLOMADO DE PROFUNDIZACION CISCO PRUEBA DE HABILIDADES PRÁCTICAS CCNP

DIANA CAMILA MANRIQUE SASA

UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA - UNAD ESCUELA DE CIENCIAS BÁSICAS, TECNOLOGÍA E INGENIERÍA - ECBTI INGENIERÍA TELECOMUNICACIONES

BOGOTA

2019

DIPLOMADO DE PROFUNDIZACION CISCO PRUEBA DE HABILIDADES PRÁCTICAS CCNP

DIANA CAMILA MANRIQUE SASA

Diplomado de opción de grado presentado para optar el título de INGENIERA EN TELECOMUNICACIONES

DIRECTOR:

GERARDO GRANADOS ACUÑA

UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA - UNAD ESCUELA DE CIENCIAS BÁSICAS, TECNOLOGÍA E INGENIERÍA - ECBTI INGENIERÍA EN TELECOMUNICACIONES

BOGOTA

2019

NOTA DE ACEPTACIÓN

Firma del Presidente del Jurado

Firma de Jurado

Firma de Jurado

Bogotá, 11 de diciembre de 2019

AGRADECIMIENTOS

Agradezco a Dios quien ha sido mi guía, mi fuerza, mi apoyo, mi todo, en cada momento es EL quien siempre me acompaña, y es aquel que ha permitido culminar esta carrera.

Agradezco a mi mamá Diana S, por su apoyo incondicional y dedicación, es gracias a ella que he logrado mucho en la vida y gracias a ella me he convertido en lo que soy, pues su ejemplo es el que me impulsa a seguir adelante a seguir luchando y nunca rendirme, ella es mi mayor inspiración, su ímpetu, amor, trabajo y sacrificio están clavados en mi corazón, es un privilegio ser su hija.

Doy gracias a mi esposo, John Alzate, es él quien me ha visto crecer en esta carrera, quien en medio de dificultades siempre me anima, me ayuda, y me da aliento a cumplir esta meta, admiro su disciplina, y espero algún día lograr ser tan dedicada como él.

Agradezco a todos mis hermanos, a Carlitos que está en la distancia, el estaría feliz de este logro, a Andrey nuestro primer profesional, con mucho empeño lo logró, admiro su fuerza y valor, a Madelin, nuestra "mona ojiverde " gracias a ella descubrí lo que me gustaba en la vida, su dedicación a nuestra familia es de admirar, a María Aleja, su ternura sobrepasa cualquier cosa, a Esteicy "La pila de la casa ", ella que nos demuestra que todo es posible solo hay que confiar en Dios y a Felipe "el creativo" y nuestro "Gamer" él siempre nos saca una sonrisa y nos acompaña en todo momento.

Doy gracias a mi hija Dominique Alzate Manrique que a pesar de sus 4 años me enseña cada día a ser mejor, con su espontaneidad, amor y ternura, me motiva a seguir adelante, a no desmayar y a ser lo mejor por ella, mi mayor motor es mi hija.

Doy gracias a toda la familia Alzate Montoya, Don Jhon y la Sra. Fátima, han sido incondicionales en cada etapa, y su apoyo nunca me ha faltado, gracias por darme el privilegio de pertenecer a esta familia.

Agradezco a mis sobrinos Santiago y Samuel que me recuerdan que la vida es bella, que en medio de la tormenta siempre hay un arcoíris, que siempre hay quien nos cuide, a mi papá Carlos, le doy un saludo y le agradezco por ser un buen abuelo, demuestra amor.

Por ultimo agradezco a todos los docentes que me acompañaron en este proceso, aprendí mucho de cada uno de ellos, me siento orgullosa de pertenecer a una institución tan valiosa como la UNAD.

TABLA DE CONTENIDO

AGRADECIMIENTOS
LISTA DE TABLAS9
LISTA DE FIGURAS
GLOSARIO11
RESUMEN
PALABRAS CLAVES:
ABSTRACT
INTRODUCCION
DESARROLLO15
ESCENARIO 1
Parte 1: Configuración del escenario propuesto16
1. Configurar las interfaces con las direcciones IPv4 e IPv6 que se muestran en la topología de red
Configuración R116
Configuración R217
Configuración R317
2. Ajustar el ancho de banda a 128 kbps sobre cada uno de los enlaces seriales ubicados en R1, R2, y R3 y ajustar la velocidad de reloj de las conexiones de DCE según sea apropiado
Configuración R1
Configuración R2
Configuración R3
3. En R2 y R3 configurar las familias de direcciones OSPFv3 para IPv4 e IPv6. Utilice el identificador de enrutamiento 2.2.2.2 en R2 y 3.3.3.3 en R3 para ambas familias de direcciones
Configuración R219
Configuración R319
4. En R2, configurar la interfaz F0/0 en el área 1 de OSPF y la conexión serial entre R2 y R3 en OSPF área 0
5. En R3, configurar la interfaz F0/0 y la conexión serial entre R2 y R3 en OSPF área 0
Configuración R320

6. Configurar el área 1 como un área totalmente Stubby2	21
Configuración R22	21
 Propagar rutas por defecto de IPv4 y IPv6 en R3 al interior del dominio OSPFv3. Nota: Es importante tener en cuenta que una ruta por defecto es diferente a la definición de rutas estáticas. 	2 5 21
Configuración R32	21
 Realizar la configuración del protocolo EIGRP para IPv4 como IPv6. Configurar la interfaz F0/0 de R1 y la conexión entre R1 y R2 para EIGRP con el sistema autónomo 101. Asegúrese de que el resumen automático está desactivado	22
Configuración R12	22
9. Configurar las interfaces pasivas para EIGRP según sea apropiado2	23
Configuración R12	23
10. En R2, configurar la redistribución mutua entre OSPF y EIGRP para IPv4 e IPv6. Asignar métricas apropiadas cuando sea necesario	23
Configuración R22	23
redistribute ospf 1 metric 1500 100 255 1 1500 2	23
11. En R2, de hacer publicidad de la ruta 192.168.3.0/24 a R1 mediante una lista de distribución y ACL2	; 23
Configuración R22	24
Parte 2: Verificar conectividad de red y control de la trayectoria 2	<u>2</u> 4
 A. Registrar las tablas de enrutamiento en cada uno de los routers, acorde con los parámetros de configuración establecidos en el escenario propuesto 	24
 B. Verificar comunicación entre routers mediante el comando ping y 	••
traceroute	27
C. Verificar que las rutas filtradas no están presentes en las tablas de enrutamiento de los routers correctas2	э 28
ESCENARIO 2	29
Parte 1: Configurar la red de acuerdo con las especificaciones	30
1. Apagar todas las interfaces en cada switch	30
Configuración DSL1	30
Configuración ASL1	30
2. Asignar un nombre a cada switch acorde al escenario	
establecido	30
Configuración DSL1	31

Configuracion DSL2
Configuracion ASL1
Configuración ASL2
3. Configurar los puertos troncales y Port-channels tal como se
muestra en el diagrama 31
Configuración DSL1 31
Configuración DSL2
Configuración ASL1
Configuración ASL2
4. Configurar DLS1, ALS1, y ALS2 para utilizar VTP versión 3 34
Configuración DSL1
Configuración ASL1
5. Configurar en el servidor principal las siguientes VLAN:
Configuracion DSL1
6. En DLS1, suspender la VLAN 434
Configuracion DSL1
7. Configurar DLS2 en modo VTP transparente VTP utilizando VTP versión 2, y configurar en DLS2 las mismas VLAN que en DLS1 35
Configuracion DSL2
8. Suspender VLAN 434 en DLS2
Configuracion DSL2
9. En DLS2, crear VLAN 567 con el nombre de CONTABILIDAD. La VI AN de CONTABIL IDAD no podrá estar disponible en cualquier
otro Switch de la red
Configuracion DSL2
10. Configurar DLS1 como Spanning tree root para las VLAN 1, 12, 434, 800, 1010, 1111 y 3456 y como raíz secundaria para las
VLAN 123 y 234
Configuracion DSL1
 Configurar DLS2 como Spanning tree root para las VLAN 123 y 234 y como una raíz secundaria para las VLAN 12, 434, 800, 1010, 1111 y 3456.
Configuracion DSL2
12. Configurar todos los puertos como troncales de tal forma que solamente las VLAN que se han creado se les permitirá circular a través de éstos puertos

Configuracion DSL1
Configuracion DSL2
13. Configurar las siguientes interfaces como puertos de acceso, asignados a las VLAN de la siguiente manera:
Configuracion DSL1
Configuracion DSL2
Configuracion ASL1
Configuracion ASL240
Part 2: conectividad de red de prueba y las opciones configuradas
 A. Verificar la existencia de las VLAN correctas en todos los switches y la asignación de puertos troncales y de acceso40
B. Verificar que el EtherChannel entre DLS1 y ALS1 está configurado correctamente 42
C. Verificar la configuración de Spanning tree entre DLS1 o DLS2 para cada VLAN
CONCLUSIONES
BIBLIOGRAFIA

LISTA DE TABLAS

Tabla 1. Configuración vlan	
Tabla 2. Interfaces	

LISTA DE FIGURAS

Figura 1. Escenario 1	. 15
Figura 2. Simulación escenario 1	. 16
Figura 3. Enrutamiento R1	. 25
Figura 4. Enrutamiento R2	. 26
Figura 5. Enrutamiento R3	. 27
Figura 6. Ping 1	. 27
Figura 7. Ping 2	. 28
Figura 8. Rutas filtradas	. 28
Figura 9. Escenario 2	. 29
Figura 10. Simulación Escenario 2 GNS3	. 29
Figura 11. Simulación Escenario 2 pkt	. 30
Figura 12. Verificación vlans DSL1	. 41
Figura 13. Verificación vlans DSL2	. 42
Figura 14. Verificación Etherchannel DSL1	. 43
Figura 15. Verificación Etherchannel ASL1	. 43
Figura 16. Verificación spanning-tree DSL2	. 44

GLOSARIO

CCNP: Cisco Certified Network Professional.

EIGRP: Protocolo de Enrutamiento de Puerta de enlace Interior Mejorado en español, es un protocolo de encaminamiento de vector distancia, propiedad de Cisco Systems, que ofrece lo mejor de los algoritmos de vector de distancia.

ETHERCHANNEL: es una tecnología de Cisco construida de acuerdo con los estándares 802.3 full-duplex Fast Ethernet. Permite la agrupación lógica de varios enlaces físicos Ethernet, esta agrupación es tratada como un único enlace y permite sumar la velocidad nominal de cada puerto físico Ethernet usado y así obtener un enlace troncal de alta velocidad.

GNS3: es un simulador gráfico de red lanzado en 2008, que te permite diseñar topologías de red complejas y poner en marcha simulaciones sobre ellos, 123 permitiendo la combinación de dispositivos tanto reales como virtuales.

LACP: La agregación virtual de enlaces, también llamada trunking, es una característica de nivel 2, que une puertos físicos de la red en un único enlace de datos de gran ancho de banda; de este modo se aumenta la capacidad de ancho de banda y se crean enlaces redundantes y de alta disponibilidad. Si falla un enlace, la carga se redistribuye entre los enlaces restantes, con lo que el funcionamiento es continuo. Gracias a la capacidad de distributed multilink trunking (trunking distribuido por pila), el fallo o la eliminación de una unidad de la pila no causará la caída de todo un trunk.

OSPF: Open Shortest Path First, Abrir el camino más corto primero en español, es un protocolo de red para encaminamiento jerárquico de pasarela interior o Interior Gateway Protocol (IGP), que usa el algoritmo Dijkstra, para calcular la ruta más corta entre dos nodos.

ROUTER: Un rúter o enrutador, del inglés router, es un dispositivo que permite interconectar computadoras que funcionan en el marco de una red. Su función: se encarga de establecer la ruta que destinará a cada paquete de datos dentro de una red informática.

SPANNING-TREE: En comunicaciones, STP (del inglés Spanning Tree Protocol) es un protocolo de red de capa 2 del modelo OSI (capa de enlace de datos). Su función es la de gestionar la presencia de bucles en topologías de red debido a la existencia de enlaces redundantes (necesarios en muchos casos para garantizar la disponibilidad de las conexiones). El protocolo permite a los dispositivos de interconexión activar o desactivar automáticamente los

enlaces de conexión, de forma que se garantice la eliminación de bucles. STP es transparente a las estaciones de usuario.

SWITCH: Es un dispositivo que sirve para conectar varios elementos dentro de una red. Estos pueden ser un PC, una impresora, una televisión, una consola o cualquier aparato que posea una tarjeta Ethernet o Wifi.

VTP: VLAN Trunking Protocol, un protocolo de mensajes de nivel 2 usado para configurar y administrar VLANs en equipos Cisco. Permite centralizar y simplificar la administración en un domino de VLANs, pudiendo crear, borrar y renombrar las mismas, reduciendo así la necesidad de configurar la misma VLAN en todos los nodos.

RESUMEN

En este trabajo se desarrolla la evaluación denominada "Prueba de habilidades prácticas", se busca identificar el grado de desarrollo de competencias y habilidades que fueron adquiridas a lo largo del diplomado. Lo esencial es poner a prueba los niveles de comprensión y solución de problemas relacionados con diversos aspectos de Networking. En esta actividad se desarrollan dos (2) escenarios propuestos.

En el Escenario 1 (uno) se demuestra el manejo del protocolo EIGRP y el manejo de direcciones de las familias OSPF, en el problema propuesto como administradores de la red. En el escenario 2 (dos) se realiza la configuración de los switches con los protocolos LACP, Etherchannel, spanning-tree y VTP, también se configuran VLANs.

Todos estos procesos se encontrarán documentados y se han ejecutado en los programas Packet Tracert y GNS3.

PALABRAS CLAVES: ospf – eigrp – vtp – spanning-tree – lacp – pagp – router – switch – etherchannel.

ABSTRACT

In this work the evaluation called "Practical skills test" is developed, It seeks to identify the degree of development of skills and abilities that were acquired throughout the diploma. The essential thing is to test the levels of understanding and solution of problems related to various aspects of Networking. In this activity two (2) proposed scenarios are developed.

Scenario 1 (one) demonstrates the management of the EIGRP protocol and the address management of OSPF families, in the problem proposed as network administrators. In scenario 2 (two) the configuration of the switches with the LACP, Etherchannel and VTP protocols is performed, too performed VLANs.

All these processes will be documented and has been carried out in the Packet Tracert and GNS3 programs.

INTRODUCCION

En el desarrollo del siguiente trabajo, se desea demostrar fundamentalmente el manejo de los protocolos de routing y switching. Los escenarios se desarrollaron en los programas Cisco Packet Tracer y GNS3. Los ejercicios se realizaron apoyándose en los archivos que reposan en el entorno de conocimiento y en las interacciones con la plataforma de cisco. La culminación de estos ejercicios revela el nivel de aprendizaje obtenido en el transcurso del diplomado Cisco CCNP, por medio del desarrollo de cada practica se sumaron conocimientos de networking, los cuales han sido útiles y lo seguirán siendo en el transcurso del transcurso de la vida laboral.

Para este laboratorio final se realizaron 2 (Dos) escenarios en los cuales se configuran diferentes protocolos como lo son EIGRP y OSPF, también el diferente enrutamiento de switches, configuración de troncales, VLANs Y Spanning-tree.

Con este informe se espera dar por terminado el ciclo del diplomado y consolidar las evidencias de los conceptos obtenidos en el transcurso del curso.

DESARROLLO

ESCENARIO 1

Una empresa de confecciones posee tres sucursales distribuidas en las ciudades de Bogotá, Medellín y Bucaramanga, en donde el estudiante será el administrador de la red, el cual deberá configurar e interconectar entre sí cada uno de los dispositivos que forman parte del escenario, acorde con los lineamientos establecidos para el direccionamiento IP, protocolos de enrutamiento y demás aspectos que forman parte de la topología de red.

Figura 2. Simulación escenario 1

Parte 1: Configuración del escenario propuesto

- 1. Configurar las interfaces con las direcciones IPv4 e IPv6 que se muestran en la topología de red.
- Se configuran las direcciones ipv4 e ipv6 en los routers de la topología solicitada.

Configuración R1

no ip domain-lookup hostname R1 ipv6 unicast-routing line con 0 logging synchronous exec-timeout 0 0 exit interface FastEthernet0/1 ip address 192.168.110.1 255.255.255.0 ipv6 address 2001:db8:acad:110::1/64 no shut exit interface s0/0 ip address 192.168.9.1 255.255.255.252 ipv6 address 2001:db8:acad:90::1/64 ipv6 address fe80::1 link-local

Configuración R2

ipv6 unicast-routing no ip domain-lookup line con 0 logging synchronous exec-timeout 0 0 interface s0/0 ip address 192.168.9.2 255.255.255.252 ipv6 address 2001:db8:acad:90::2/64 ipv6 address fe80::2 link-local no shut exit interface s0/1 ip address 192.168.9.5 255.255.255.252 ipv6 address 2001:db8:acad:91::1/64 ipv6 address fe80::2 link-local clock rate 128000 no shut exit interface FastEthernet0/0 ip address 192.168.2.1 255.255.255.0 ipv6 address 2001:db8:acad:b::1/64 no shut exit

Configuración R3

ipv6 unicast-routing no ip domain-lookup line con 0 logging synchronous exec-timeout 0 0 exit interface s0/1 ip address 192.168.9.6 255.255.255.252 ipv6 address 2001:db8:acad:91::2/64 ipv6 address fe80::3 link-local no shutdown exit interface FastEthernet0/0 ip address 192.168.3.1 255.255.255.0 ipv6 address 2001:db8:acad:c::1/64 no shutdown exit

2. Ajustar el ancho de banda a 128 kbps sobre cada uno de los enlaces seriales ubicados en R1, R2, y R3 y ajustar la velocidad de reloj de las conexiones de DCE según sea apropiado.

• Para este punto se configura la velocidad de reloj con el comando bandwidth y clock rate.

Configuración R1

interface s0/0 bandwidth 128 clock rate 128000 no shut

Configuración R2

interface s0/0 bandwidth 128 no shut exit interface s0/1 bandwidth 128 clock rate 128000 no shut exit

Configuración R3

interface s0/1

bandwidth 128

no shut

exit

- 3. En R2 y R3 configurar las familias de direcciones OSPFv3 para IPv4 e IPv6. Utilice el identificador de enrutamiento 2.2.2.2 en R2 y 3.3.3.3 en R3 para ambas familias de direcciones.
- Se configuran las familias de OSPF 1, ya que la versión 3 no la soportan, en los routers R2 Y R3, se configuran con los identificadores solicitados.

Configuración R2

router ospfv3 1

address-family ipv4 unicast

router-id 2.2.2.2

exit-address-family

address-family ipv6 unicast

router-id 2.2.2.2

exit-address-family

Configuración R3

router ospf 1

address-family ipv4 unicast

router-id 3.3.3.3

passive-interface FastEthernet0/0

default-information originate always

exit-address-family

address-family ipv6 unicast

router-id 3.3.3.3

passive-interface FastEthernet0/0

default-information originate always

exit-address-family

4. En R2, configurar la interfaz F0/0 en el área 1 de OSPF y la conexión serial entre R2 y R3 en OSPF área 0.

• Se configura el área 0 y 1 en R2.

interface FastEthernet0/0

ospf 1 ipv4 area 1

ospf 1 ipv6 area 1

exit

```
interface s0/1
```

ospf 1 ipv4 area 0

ospf 1 ipv6 area 0

exit

- 5. En R3, configurar la interfaz F0/0 y la conexión serial entre R2 y R3 en OSPF área 0.
- Se configura la interfaz con la ip

Configuración R3

interface FastEthernet0/0

ospf 1 ipv4 area 1

ospf 1 ipv6 area 1

exit

interface s0/1

ospf 1 ipv4 area 0

ospf 1 ipv6 área 0

6. Configurar el área 1 como un área totalmente Stubby.

 Se realiza la configuración Stubby en IPv4 e IPv6 con el comando stub no-summary

Configuración R2

router ospf 1

address-family ipv4 unicast

area 1 stub no-summary

exit-address-family

address-family ipv6 unicast

area 1 stub no-summary

exit-address-family

- 7. Propagar rutas por defecto de IPv4 y IPv6 en R3 al interior del dominio OSPFv3. Nota: Es importante tener en cuenta que una ruta por defecto es diferente a la definición de rutas estáticas.
- Se configuran las rutas en IPV4 e IPv6

Configuración R3

router ospf 1

address-family ipv4 unicast

default-information originate always

exit-address-family

address-family ipv6 unicast

default-information originate always

exit-address-family

exit

- Realizar la configuración del protocolo EIGRP para IPv4 como IPv6. Configurar la interfaz F0/0 de R1 y la conexión entre R1 y R2 para EIGRP con el sistema autónomo 101. Asegúrese de que el resumen automático está desactivado.
- Se configura el protocolo EIGRP en IPv4 e IPv6

Configuración R1

router eigrp DUAL-STACK

address-family ipv4 unicast autonomous-system 101

af-interface FastEthernet0/0

passive-interface

exit-af-interface

topology base

exit-af-topology

network 192.168.9.0 0.0.0.3

network 192.168.110.0 0.0.0.255

eigrp router-id 1.1.1.1

exit-address-family

address-family ipv6 unicast autonomous-system 101

af-interface s0/0

passive-interface

exit-af-interface

topology base

exit-af-topology

eigrp router-id 1.1.1.1

exit-address-family

- 9. Configurar las interfaces pasivas para EIGRP según sea apropiado.
- Se configuran las interfaces pasivas

Configuración R1

Router rip

Passive-interface FastEthernet 0/1

End

Show ip protocols

10. En R2, configurar la redistribución mutua entre OSPF y EIGRP para IPv4 e IPv6. Asignar métricas apropiadas cuando sea necesario.

 Se realiza la configuración con los comandos dual stack y distribute en R2

Configuración R2

router eigrp DUAL-STACK

address-family ipv4 unicast autonomous-system 101

topology base

distribute-list 1 out

distribute-list R3-to-R1 out

redistribute ospfv3 1 metric 1500 100 255 1 1500

exit-af-topology

address-family ipv6 unicast autonomous-system 101

topology base

redistribute ospf 1 metric 1500 100 255 1 1500 exit-af-topology

exit-ai-topoi

exit

- 11. En R2, de hacer publicidad de la ruta 192.168.3.0/24 a R1 mediante una lista de distribución y ACL.
- Se configura con acces-list deny

Configuración R2

access-list 1 deny 192.168.3.0 0.0.0.255

access-list 1 permit any

Parte 2: Verificar conectividad de red y control de la trayectoria.

- A. Registrar las tablas de enrutamiento en cada uno de los routers, acorde con los parámetros de configuración establecidos en el escenario propuesto.
- Se evidencian las tablas de enrutamiento con el comando show ip route

Figura 3. Enrutamiento R1

R1#show ip route
Codes: C - connected, S - static, R - RIP, M - mobile, B - BGP
D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
E1 - OSPF external type 1, E2 - OSPF external type 2
i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2
ia - IS-IS inter area, * - candidate default, U - per-user static route
o - ODR, P - periodic downloaded static route
Gateway of last resort is not set
C 192.168.110.0/24 is directly connected, FastEthernet0/1
192.168.9.0/24 is variably subnetted, 2 subnets, 2 masks
C 192.168.9.0/30 is directly connected, Serial0/0
D 192.168.9.0/24 is a summary, 00:57:29, Null0
R1#show ip protocols
Routing Protocol is "eigrp 101"
Outgoing update filter list for all interfaces is not set
Incoming update filter list for all interfaces is not set
Default networks flagged in outgoing updates
Default networks accepted from incoming updates
EIGRP metric weight K1=1, K2=0, K3=1, K4=0, K5=0
EIGRP maximum hopcount 100
EIGRP maximum metric variance 1
Redistributing: eigrp 101
EIGRP NSF-aware route hold timer is 240s
Automatic network summarization is in effect
Automatic address summarization:
192.168.110.0/24 for Serial0/0
192.168.9.0/24 for FastEthernet0/1
Summarizing with metric 20512000
Maximum path: 4
Routing for Networks:
192.0.0.0
192.168.9.0/30
192.168.110.0
Kouting information Sources:
Gateway Distance Last Update

Figura 4. Enrutamiento R2

```
R2#show ip protocols
Routing Protocol is "ospf 1"
Outgoing update filter list for all interfaces is not set
Incoming update filter list for all interfaces is not set
Router ID 2.2.2.2
   It is an area border and autonomous system boundary router
   Redistributing External Routes from,
eigrp 1, includes subnets in redistribution
   Number of areas in this router is 2. 1 normal 1 stub 0 nssa
   Maximum path: 4
   Routing for Networks:
     192.168.2.0 0.0.0.255 area 1
     192.168.9.0 0.0.0.255 area 0
 Reference bandwidth unit is 100 mbps
   Routing Information Sources:
     Gateway
                          Distance
                                               Last Update
   Distance: (default is 110)
Routing Protocol is "ospf 3"
   Outgoing update filter list for all interfaces is not set
   Incoming update filter list for all interfaces is not set
   Router ID 192.168.9.5
   Number of areas in this router is 0. 0 normal 0 stub 0 nssa
  Maximum path: 4
   Routing for Networks:
 Reference bandwidth unit is 100 mbps
   Routing Information Sources:
     Gateway
                          Distance
                                              Last Update
   Distance: (default is 110)
Routing Protocol is "eigrp 1"
Outgoing update filter list for all interfaces is not set
Incoming update filter list for all interfaces is not set
Default networks flagged in outgoing updates
Default networks accepted from incoming updates
EIGRP metric weight K1=1, K2=0, K3=1, K4=0, K5=0
  EIGRP maximum hopcount 100
  --More--
```

Figura 5. Enrutamiento R3

```
R3#show ip protocols
Routing Protocol is "ospf 1"
Outgoing update filter list for all interfaces is not set
Incoming update filter list for all interfaces is not set
Router ID 3.3.3.3
It is an autonomous system boundary router
Redistributing External Routes from,
Number of areas in this router is 0. 0 normal 0 stub 0 nssa
Maximum path: 4
Routing for Networks:
Reference bandwidth unit is 100 mbps
Passive Interface(s):
FastEthernet0/0
Routing Information Sources:
Gateway Distance Last Update
Distance: (default is 110)
```

B. Verificar comunicación entre routers mediante el comando ping y traceroute

```
R1#
R1#
R1#ping 192.168.110.1
Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 192.168.110.1, timeout is 2 seconds:
11111
Success rate is 100 percent (5/5), round-trip min/avg/max = 1/1/1 ms
R1#ping 192.168.9.1
Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 192.168.9.1, timeout is 2 seconds:
1111
Success rate is 100 percent (5/5), round-trip min/avg/max = 1/5/20 ms
R1#ping 192.168.9.2
Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 192.168.9.2, timeout is 2 seconds:
1111
Success rate is 100 percent (5/5), round-trip min/avg/max = 1/2/2 ms
R1#ping 192.168.9.5
Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 192.168.9.5, timeout is 2 seconds:
1111
Success rate is 0 percent (0/5)
R1#ping 192.168.2.1
Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 192.168.9.5, timeout is 2 seconds:
....
Success rate is 0 percent (0/5)
R1#ping 192.168.9.6
Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 192.168.9.6, timeout is 2 seconds:
....
Success rate is 0 percent (0/5)
R1#ping 192.168.9.6
Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 192.168.9.6, timeout is 2 seconds:
....
Success rate is 0 percent (0/5)
R1#ping 192.168.9.6
Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 192.168.9.6, timeout is 2 seconds:
....
Success rate is 0 percent (0/5)
R1#ping 192.168.9.6
Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 192.168.9.6, timeout is 2 seconds:
....
Success rate is 0 percent (0/5)
R1#ping 192.168.9.1
```

Figura 6. Ping 1

Figura 7. Ping 2

```
R1#ping 172.16.1.2
Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 172.16.1.2, timeout is 2 seconds:
Success rate is 0 percent (0/5)
R1#ping 2001:db8:acab:110::1
Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 2001:DB8:ACAB:110::1, timeout is 2 seconds:
Success rate is 0 percent (0/5)
R1#ping 2001:db8:acad:110::1
Type escape sequence to abort.
 ending 5, 100-byte ICMP Echos to 2001:DB8:ACAD:110::1, timeout is 2 seconds:
Success rate is 100 percent (5/5), round-trip min/avg/max = 0/0/4 ms
R1#ping 2001:db8:acad:90::1
Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 2001:DB8:ACAD:90::1, timeout is 2 seconds:
Success rate is 100 percent (5/5), round-trip min/avg/max = 0/0/0 ms
R1#ping 2001:db8:acad:90::2
Type escape sequence to abort.
 ending 5, 100-byte ICMP Echos to 2001:DB8:ACAD:90::2, timeout is 2 seconds:
 Success rate is 100 percent (5/5), round-trip min/avg/max = 0/1/4 ms
1#
```

C. Verificar que las rutas filtradas no están presentes en las tablas de enrutamiento de los routers correctas.

Nota: Puede ser que Una o más direcciones no serán accesibles desde todos los routers después de la configuración final debido a la utilización de listas de distribución para filtrar rutas y el uso de IPv4 e IPv6 en la misma red.

ESCENARIO 2

Una empresa de comunicaciones presenta una estructura Core acorde a la topología de red, en donde el estudiante será el administrador de la red, el cual deberá configurar e interconectar entre sí cada uno de los dispositivos que forman parte del escenario, acorde con los lineamientos establecidos para el direccionamiento IP, etherchannels, VLANs y demás aspectos que forman parte del escenario propuesto.

Figura 9. Escenario 2

C

Parte 1: Configurar la red de acuerdo con las especificaciones.

1. Apagar todas las interfaces en cada switch.

 Se apagan las interfaces 0/7-12 con el comando shutdown en DSL1 y ASL1.

Configuración DSL1

Interface range fastethernet 0/7-12 shutdown

Configuración ASL1

Interface range fastethernet 0/7-12 shutdown

2. Asignar un nombre a cada switch acorde al escenario establecido.

• Se asigna a cada switch el nombre con el comando hostname, aunque si se trabaja en pkt se puede configurar por medio de la consola o de la parte física.

Configuración DSL1

hostname DSL1

Configuracion DSL2

hostname DSL2

Configuracion ASL1

hostname ASL1

Configuración ASL2

hostname ASL2

3. Configurar los puertos troncales y Port-channels tal como se muestra en el diagrama.

1) La conexión entre DLS1 y DLS2 será un EtherChannel capa-3 utilizando LACP. Para DLS1 se utilizará la dirección IP 10.12.12.1/30 y para DLS2 utilizará 10.12.12.2/30.

2) Los Port-channels en las interfaces Fa0/7 y Fa0/8 utilizarán LACP.

3) Los Port-channels en las interfaces F0/9 y fa0/10 utilizará PAgP.

4) Todos los puertos troncales serán asignados a la VLAN 800 como la VLAN nativa.

Configuración DSL1

Interface range fastethernet 0/11-12 No switchport Channel-group 12 mode active Exit

Interface port-channel 12 Ip address 10.12.12.1 255.255.255.252 Exit Interface range fastethernet 0/7-10 Switchport trunk encapsulation dotlq Switchport trunk native vlan 800 Switchport mode trunk Switchport nonegotiate No shutdown

Interface range fastethernet 0/7-8 Desc member of pol to ASL1 Channel-group 1 mode active Exit

Interface range fastethernet 0/9-10 Desc member of pol4 to ASL2 Channel-group 4 mode desirable Exit

Configuración DSL2

Interface range fastethernet 0/11-12 No switchport Channel-group 12 mode active Exit

Interface port-channel 12 Ip address 10.12.12.2 255.255.255.252 Exit

Interface range fastethernet 0/7-10 Switchport trunk encapsulation dotlq Switchport trunk native vlan 800 Switchport mode trunk Switchport nonegotiate No shutdown

Interface range fastethernet 0/9-10 Desc member of pol3 to ASL1 Channel-group 4 mode desirable Exit

Configuración ASL1

Interface range fastethernet 0/7-10 Switchport trunk encapsulation dotlq Switchport trunk native vlan 800 Switchport mode trunk Switchport nonegotiate No shutdown

Interface range fastethernet 0/7-8 Desc member of pol to DSL1 Channel-group mode 1 active Switchport trunk allowed vlan 12, 123, 234,800, 1010,1111,3456 No shutdown Exit

Interface range fastethernet 0/9-10 Desc member of pol 3 to DSL2 Channel-group mode 3 active Switchport trunk allowed vlan 12, 123, 234,800, 1010,1111,3456 No shutdown Exit

Interface vlan 3456 Ip address 10.34.56.101 255.255.255.0 No shutdown Exit Ip default-gateway 10.34.56.254

Configuración ASL2

Interface range fastethernet 0/7-10 Switchport trunk encapsulation dotlq Switchport trunk native vlan 800 Switchport mode trunk Switchport nonegotiate No shutdown

Interface range fastethernet 0/7-8 Desc member of pol 2 to DSL2 Channel-group mode 2 active Switchport trunk allowed vlan 12, 123, 234,800, 1010,1111,3456 No shutdown Exit

Interface range fastethernet 0/9-10 Desc member of pol 4 to DSL2 Channel-group mode 4 active Switchport trunk allowed vlan 12, 123, 234,800, 1010,1111,3456 No shutdown Exit

Interface vlan 3456 Ip address 10.34.56.102 255.255.255.0 No shutdown Exit Ip default-gateway 10.34.56.254

4. Configurar DLS1, ALS1, y ALS2 para utilizar VTP versión 3

Utilizar el nombre de dominio UNAD con la contraseña cisco123
 Configurar DLS1 como servidor principal para las VLAN.

3) Configurar ALS1 y ALS2 como clientes VTP.

Configuración DSL1

Vtp domain UNAD Vtp versión 3 Vtp mode server Vtp password cisco123

Configuración ASL1

Vtp domain UNAD Vtp mode client Vtp password cisco123

5. Configurar en el servidor principal las siguientes VLAN:

Tabla 1. Configuración vlan

Número de VLAN	Número de VLAN Nombre de VLAN		Nombre de VLAN	
800	NATIVA	434	ESTACIONAMIENTO	
12 EJECUTIVOS		123	MANTENIMIENTO	
234	HUESPEDES	1010	VOZ	
1111	VIDEONET	3456	ADMINISTRACIÓN	

• Se configuran las VLANs con sus respectivos nombres en el servidor principal el cual es DSL1.

Configuracion DSL1

Vlan 800 Name NATIVA Exit

Vlan 434 Name ESTACIONAMIENTO Exit

Vlan 123 Name EJECUTIVOS Exit

Vlan 1010 Name HUESPEDES Exit

Vlan 3456 Name VIDEONET Exit

6. En DLS1, suspender la VLAN 434.

Se ingresa a la VLAN 434 y se suspende con el comando state suspend.

Configuracion DSL1

Vlan 434 State suspend exit

7. Configurar DLS2 en modo VTP transparente VTP utilizando VTP versión 2, y configurar en DLS2 las mismas VLAN que en DLS1.

• Se realizan las configuraciones en DSL2 con vtp versión 2 y se agregan las mismas vlan que se configuraron en DSL1.

Configuracion DSL2

Vtp versión 2 Vtp mode transparent

Vlan 800 Name NATIVA Exit

Vlan 434 Name ESTACIONAMIENTO Exit

Vlan 123 Name EJECUTIVOS Exit

Vlan 1010 Name HUESPEDES Exit

Vlan 3456 Name VIDEONET Exit

8. Suspender VLAN 434 en DLS2.

Se ingresa a la VLAN 434 y se suspende con el comando state suspend.

Configuracion DSL2

Vlan 434 State suspend Exit

- 9. En DLS2, crear VLAN 567 con el nombre de CONTABILIDAD. La VLAN de CONTABILIDAD no podrá estar disponible en cualquier otro Switch de la red.
- Se crea la vlan 567 solo en DSL2

Configuracion DSL2

Vlan 567 Name CONTABILIDAD Exit

- 10. Configurar DLS1 como Spanning tree root para las VLAN 1, 12, 434, 800, 1010, 1111 y 3456 y como raíz secundaria para las VLAN 123 y 234.
- Se realiza la configuración con el comando spanning-tree

Configuracion DSL1

Spanninig-tree vlan 1, 12, 434, 800, 1010, 1111, 3456 root primary Spanninig-tree vlan 123,234 root secundary

11. Configurar DLS2 como Spanning tree root para las VLAN 123 y 234 y como una raíz secundaria para las VLAN 12, 434, 800, 1010, 1111 y 3456.

• Se realiza la configuración con el comando spanning-tree en DSL2

Configuracion DSL2

Spanninig-tree vlan 1, 12, 434, 800, 1010, 1111, 3456 root secundary Spanninig-tree vlan 123,234 root primary

12. Configurar todos los puertos como troncales de tal forma que solamente las VLAN que se han creado se les permitirá circular a través de éstos puertos.

• Para configurar estos puertos se nombra port-channel 1 y 2 y se permite la troncal de switchport en las vlans.

Configuracion DSL1

Interface port-channel 1 Switchport trunk allowed vlan 12, 434, 800, 1010, 1111, 3456 Exit

Configuracion DSL2

Interface port-channel 2 Switchport trunk allowed vlan 12, 434, 800, 1010, 1111, 3456 Exit

13. Configurar las siguientes interfaces como puertos de acceso, asignados a las VLAN de la siguiente manera:

Interfaz	DLS1	DLS2	ALS1	ALS2
Interfaz Fa0/6	3456	12,1010	123, 1010	234
Interfaz Fa0/15	1111	1111	1111	1111
Interfaces F0 /16-18		567		

Tabla 2. Interfaces

• Se configura el acceso a las interfaces solicitadas en la tabla.

Configuracion DSL1

Interface f0/6 Switchport acces s vlan 3456 No shutdown Exit

Interface f0/15 Switchport acces s vlan 1111 No shutdown exit

Configuracion DSL2

Interface f0/6

Switchport acces s vlan 12 No shutdown Exit

Interface f0/6 Switchport acces s vlan 1010 No shutdown Exit

Interface f0/15 Switchport acces s vlan 1111 No shutdown exit

Interface f0/16-18 Switchport acces s vlan 567 No shutdown exit

Configuracion ASL1

Interface f0/6 Switchport acces s vlan 123 No shutdown Exit

Interface f0/6 Switchport acces s vlan 1010 No shutdown Exit

Interface f0/15 Switchport acces s vlan 1111 No shutdown exit

Configuracion ASL2

Interface f0/6 Switchport acces s vlan 234 No shutdown Exit

Interface f0/15 Switchport acces s vlan 1111 No shutdown exit

Part 2: conectividad de red de prueba y las opciones configuradas.

- A. Verificar la existencia de las VLAN correctas en todos los switches y la asignación de puertos troncales y de acceso
- Se realiza la verificación por medio del comando show vlan brief

DSL1		— U	
hysical Config CLI Attributes			
IOS Co	mmand Line Interface		
DSL1(config-if-range)#exit			^
DSL1(config) #exit			
DSLI# %SVG_5_CONFIC I: Confirmed fro	le bu concele		
sis-s-cowrig_1. conrigured fic	m console by console		
DSLl#show vlan brief			
VLAN Name	Status Ports		
l default	active Pol, 1	Po4, Fa0/7,	
Fa0/8	F-0/9	E-0/10	
12 FJECUTIVOS	active	, Fa0/10	
101 VOZ	active		
111 VIDEONET	active		
123 MANTENIMIENTO	active		
234 HUESPEDES	active		
345 ADMINISTRACION	active		
434 ESTACIONAMIENTO	active Fa0/1	, Fa0/2, Fa0/3,	
Fa0/4			
	Fa0/5	, Fa0/13,	
Fa0/14, Fa0/16		// -	
E-0/10 E-0/20	Fa0/1	7, FAU/18,	
Fa0/15, Fa0/20	F=0/2	1 Fa0/22	
Fa0/23, Fa0/24	140/2.	1, 140,22,	
	Gig0/2	1, Gig0/2	
800 NATIVA	active		
1002 fddi-default	active		
1003 token-ring-default	active		
1004 fddinet-default	active		
1005 trnet-default	active		
1111 VLAN1111	active Fa0/1	5	
3456 VLAN3456	active Fa0/6		
DSLI#			
			h

Figura 12. Verificación vlans DSL1

DSL2		- 0)
Physical Config CLI Attributes			
IOS Co	ommand Line Interface		
%SYS-5-CONFIG_I: Configured fro	om console by co	nsole	^
DSL2#show vlan brief			
		-	
VLAN Name 	Status	Ports	
	-	Do2 Do2 Eo0/1	
Fa0/2	active	P02, P03, Pa0/1,	
		Fa0/3, Fa0/4, Fa0/5.	
Fa0/7			
		Fa0/8, Fa0/9, Fa0/10,	
Fa0/13			
		Fa0/14, Fa0/19,	
Fa0/20, Fa0/21			
E-0/24 Circ0/1		Fa0/22, Fa0/23,	
Fa0/24, Gig0/1		Gig0/2	
12 EJECUTIVOS	active	Fa0/6	
101 VLAN0101	active	100,0	
111 VLAN0111	active		
123 MANTENIMIENTO	active		
234 HUESPEDES	active		
345 ADMINISTRACION	active		
434 ESTACIONAMIENTO	active		
567 CONTABILIDAD	active	Fa0/16, Fa0/17,	
Fa0/18			
800 NATIVA	active		
1002 fddi-default	active		
1003 token-ring-default	active		
1004 Iddinet-default	active		
1010 VOZ	active	F=0/6	
1111 VIDEONET	active	Fa0/15	
3456 VLAN3456	active	240/10	
DSL2#			
DSL2#			
DSL2#			¥

Figura 13. Verificación vlans DSL2

B. Verificar que el EtherChannel entre DLS1 y ALS1 está configurado correctamente

• Esta verificación se realiza con el comando show etherchannel summary

Figura 14. Verificación Etherchannel DSL1

```
DSL1#show etherchannel summ
DSL1#show etherchannel summary
Flags: D - down P - in port-channel
         I - stand-alone s - suspended
         H - Hot-standby (LACP only)
         R - Layer3 S - Layer2
         U - in use
                           f - failed to allocate aggregator
         u - unsuitable for bundling
         w - waiting to be aggregated
         d - default port
Number of channel-groups in use: 3
Number of aggregators:
                                       - 3
Group Port-channel Protocol Ports
 _____

        Pol(SD)
        LACP
        Fa0/7(s)
        Fa0/8(s)

        Po4(SD)
        PAgP
        Fa0/9(s)
        Fa0/10(s)

        Po12(RD)
        LACP
        Fa0/11(D)
        Fa0/12(D)

1
4
12
DSL1#
DSL1#
DSL1#
```

Figura 15. Verificación Etherchannel ASL1

```
rysnow concrementer sum
ALS1#show etherchannel summary
Flags: D - down
               P - in port-channel
      I - stand-alone s - suspended
      H - Hot-standby (LACP only)
      R - Layer3 S - Layer2
      U - in use
                   f - failed to allocate aggregator
      u - unsuitable for bundling
      w - waiting to be aggregated
      d - default port
Number of channel-groups in use: 2
Number of aggregators:
Group Port-channel Protocol
                           Ports
+-----
                LACP Fa0/7(D) Fa0/8(D)
PAgP Fa0/9(D) Fa0/10(D)
    Pol(SD)
1
    Po3 (SD)
3
ALS1#
```

- C. Verificar la configuración de Spanning tree entre DLS1 o DLS2 para cada VLAN.
- Esta verificación se realiza por medio del comando show spanning-tree

DSL2			— U	,
Physical Confi	iq CLI Att	ributes		
-				
		IOS Co	mmand Line Interface	
DSL2#show sp	anning-tree			~
VLAN0001				
Spanning t	ree enabled	protoco	l ieee	
Root ID	Priority	28032		
	Address	0002.4	AB5.12DE	
	Cost	38		
	Port	4(Fast	Ethernet0/4)	
	Hello Time	2 sec	Max Age 20 sec Forward Delay 15 se	-
Bridge ID	Priority	32769	(priority 32768 sys-id-ext 1)	
	Address	0001.4	397.441D	
	Hello Time	2 sec	Max Age 20 sec Forward Delay 15 se	2
	Aging Time	20		
Interface	Role St	s Cost	Prio.Nbr Type	
			-	
Fa0/5	Altn BL	K 19	128.5 P2p	
Fa0/4	Root FW	D 19	128.4 P2p	
Fa0/1	Desg FW	D 19	128.1 P2p	
VLAN0012				
Spanning t	ree enabled	protoco	l ieee	
Root ID	Priority	32769		
	Address	0090.2	B15.47C7	
	Cost	19		
	Port	6(Fast	Ethernet0/6)	
	Hello Time	2 sec	Max Age 20 sec Forward Delay 15 se	2
Bridge ID	Priority	32780	(priority 32768 sys-id-ext 12)	
-	Address	0001.4	397.441D	- 14
	Hello Time	2 sec	Max Age 20 sec Forward Delay 15 se	2
	Aging Time	20		
Interface	Role St	s Cost	Prio.Nbr Type	
Fa0/6	Root FW	D 19	128.6 P2p	\checkmark

Figura 16. Verificación spanning-tree DSL2

CONCLUSIONES

- Al configurar el protocolo OSPFv3 se logra verificar el envío de actualizaciones del estado en el que se encuentran los enlaces de la red, este protocolo en versión 3 proporciona mayor seguridad y resolución de problemas a la topología de red ya que este utiliza autenticación IPv6 a diferencia de los otros que usa autenticación de texto no cifrado o autenticación MD5. Además este protocolo es veloz al momento de conocer la topología de red a la que pertenece.
- Se verifica que EIGRP es el protocolo preferido en redes que tienen varios enrutadores, ya que al aumentar el número de enrutadores a través de los cuales se comparten la información entre ellos, los tiempos de convergencia también aumentan. Se verifica que EIGRP utiliza una métrica compuesta para encontrar la mejor ruta a un destino. La información de enrutamiento se transmite por un vector que incluye demora, carga y confiabilidad.
- Se evidencia que al configurar una contraseña para VTP, debe configurarse la contraseña en todos los conmutadores en el dominio VTP. La contraseña debe ser la misma contraseña en todos esos conmutadores para este caso usamos la contraseña cisco1213. Esta contraseña de VTP que configura en un valor MD5 que se incluye en todos los paquetes de VTP.

BIBLIOGRAFIA

- Donohue, D. (05 de 10 de 2017). CISCO Press (Ed). CCNP Quick Reference. Recuperado el 11 de diciembre de 2019, de https://1drv.ms/b/s!AgIGg5JUgUBthFt77ehzL5qp0OKD
- Macfarlane, J. (15 de 07 de 2014). *Network Routing Basics : Understanding IP Routing in Cisco Systems*. Recuperado el 10 de diciembre de 2019, de http://bibliotecavirtual.unad.edu.co:2048/login?url=http://search.ebscohos t.com/login.aspx?direct=true&db=e000xww&AN=158227&lang=es&site= ehost-live
- R Froom, E. F. (28 de 03 de 2015). CISCO Press (Ed). InterVLAN Routing. Implementing Cisco IP Switched Networks (SWITCH) Foundation Learning Guide CCNP SWITCH 300-115. Recuperado el 09 de diciembre de 2019, de https://1drv.ms/b/s!AmIJYei-NT1IInWR0hoMxgBNv1CJ
- Wallace, K. (18 de 07 de 2015). CISCO Press (Ed). CCNP Routing and Switching ROUTE 300-101 Official Cert Guide. Recuperado el 07 de diciembre de 2019, de https://1drv.ms/b/s!AgIGg5JUgUBthFx8WOxig6LPJppl
- yanli. (24 de 09 de 2014). *Cisco*. Recuperado el 11 de diciembre de 2019, de https://www.cisco.com/c/en/us/support/docs/lan-switching/vtp/98154conf-vlan.html
- yanli, s. j. (17 de 08 de 2006). *Cisco*. Recuperado el 10 de diciembre de 2019, de https://www.cisco.com/c/en/us/support/docs/lan-switching/spanningtree-protocol/5234-5.html