

DIPLOMADO DE PROFUNDIZACIÓN CISCO (DISEÑO E IMPLEMENTACIÓN DE SOLUCIONES INTEGRADAS LAN / WAN) (OPCI - (203092A_614)

DIANA LUCIA AVILA TASCÓN

GRUPO 203092_17

TUTOR JOSE IGNACIO CARDONA

UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA ESCUELA DE CIENCIAS BASICAS, TECNOLOGIA E INGENIERIA PROGRAMA DE INGENIERIA DE SISTEMAS

PALMIRA

DICIEMBRE, 2019

CISCO. Cisco Networking Academy[®]

Contenido

Resumen	. 3
Abstract	. 4
Introducción	. 5
Objetivos	. 6
Desarrollo de los escenarios	. 7
Escenario 1	. 7
Topología de red	. 7
Desarrollo	. 8
Parte 1: Asignación de direcciones IP:	11
Parte 2: Configuración Básica	13
Parte 3: Configuración de Enrutamiento	19
Parte 4: Configuración de las listas de Control de Acceso.	23
Parte 5: Comprobación de la red instalada	25
Escenario 2	26
1. Configuración básica	26
2. El DHCP deberá proporcionar solo direcciones a los hosts de Bucaramanga y Cundinamarca	35
3. El web server deberá tener NAT estático y el resto de los equipos de la topología emplearan NAT de sobrecarga (PAT).	37
4. El enrutamiento deberá tener autenticación.	39
5. Listas de control de acceso	41
Conclusiones	47
Bibliografía	48

Resumen

El presente trabajo representa un escenario de red en el cual se aplican los conceptos vistos en el diplomado de redes CISCO CNNAI y CNNAII, esto con el fin de demostrar nuestros conocimientos adquiridos en topología de redes, asi mismo la asignación de direcciones ip a los diferentes componentes de la red. En el desarrollo del escenario también se configura enrutamiento EIGRP y listas de control de acceso (ACL), por último, se comprueba que la red instalada funcione correctamente, cumpliendo así lo requerido en el planteamiento del problema. También se adjunta el archivo .pkt de la solución y configuración de la red.

Palabras claves: CNNA, ACL, EIGRP, protocolo, enrutamiento.

Abstract

The present work represents a network scenario in which the concepts seen in the CISCO CNNAI and CNNAII network diploma will be detected, this in order to demonstrate our knowledge acquired in network topology, as well as the assignment of ip addresses to the different network components. In the development of the scenario, EIGRP routing and access control lists (ACL) are also configured, finally, it is verified that the network is installed correctly, thus fulfilling what is required in the problem statement. The .pkt file of the solution and the network configuration are also attached.

Keywords: CNNA, ACL, EIGRP, protocol, routing.

Introducción

El escenario planteado para solucionar se realiza de forma individual y consiste en construir una red en packet tracer según las orientaciones de la guía de pruebas de habilidades CNNA, la cual indica que hay una empresa que posee sucursales distribuidas en las ciudades de Bogotá, Medellín y Cali en donde se deberá configurar e interconectar entre sí cada uno de los dispositivos que forman parte del escenario, acorde con los lineamientos establecidos para el direccionamiento IP, protocolos de enrutamiento y demás aspectos que forman parte de la topología de red.

En este trabajo se detallan los comandos utilizados para cada configuración e imágenes de resultados obtenidos por la ejecución de algún comando en particular y que brinda información del componente en el que se esta trabajando.

Objetivos

Colocar en practica los conocimientos adquiridos en el curso de CNNAI y CNNAII a través del escenario planteado.

Demostrar el paso a paso de la configuración de cada componente en la red construida.

Verificar que los resultados obtenidos sean los esperados para dar la solución a la problemática planteada.

Desarrollo de los escenarios

Escenario 1

Una empresa posee sucursales distribuidas en las ciudades de Bogotá, Medellín y Cali en donde el estudiante será el administrador de la red, el cual deberá configurar e interconectar entre sí cada uno de los dispositivos que forman parte del escenario, acorde con los lineamientos establecidos para el direccionamiento IP, protocolos de enrutamiento y demás aspectos que forman parte de la topología de red.

Topología de red

Los requerimientos solicitados son los siguientes:

Parte 1: Para el direccionamiento IP debe definirse una dirección de acuerdo con el número de hosts requeridos.

Parte 2: Considerar la asignación de los parámetros básicos y la detección de vecinos directamente conectados.

Parte 3: La red y subred establecidas deberán tener una interconexión total, todos los hosts deberán ser visibles y poder comunicarse entre ellos sin restricciones.

Parte 4: Implementar la seguridad en la red, se debe restringir el acceso y comunicación entre hosts de acuerdo con los requerimientos del administrador de red.

Parte 5: Comprobación total de los dispositivos y su funcionamiento en la red.

Parte 6: Configuración final.

Desarrollo

Como trabajo inicial se debe realizar lo siguiente.

• Realizar las rutinas de diagnóstico y dejar los equipos listos para su configuración (asignar nombres de equipos, asignar claves de seguridad, etc).

Configuración Router Medellín

El siguiente código configura nombre del router, encripta la contraseña y crea el mensaje de acceso restringido a los usuarios no autorizados.

Router>enable

Router#configure terminal

Enter configuration commands, one per line. End with CNTL/Z.

Router(config)#hostname Ro_Medellin

Ro_Medellin(config)#enable secret cisco

Ro_Medellin(config)#service password-encryption

- Ro_Medellin(config)#banner motd "Restringido, solo acceso autorizado"
- Ro_Medellin(config)#line console 0

Ro_Medellin(config-line)#password 0

Ro_Medellin(config-line)#login

Ro_Medellin(config-line)#exit

Ro_Medellin(config)#line vty 0 15

Ro_Medellin(config-line)#password class

Ro_Medellin(config-line)#login

Ro_Medellin(config-line)#end

Ro_Medellin#

Configuración Router Bogotá

Router>enable

Router#configure terminal

Enter configuration commands, one per line. End with CNTL/Z.

Router(config)#hostname Ro_Bogota

Ro_Bogota(config)#enable secret cisco

Ro_Bogota(config)#service password-encryption

Ro_Bogota(config)#banner motd "Restringido, solo acceso a personal autorizado"

Ro_Bogota(config)#line console 0

Ro_Bogota(config-line)#password 0

Ro_Bogota(config-line)#login

Ro_Bogota(config-line)#exit

Ro_Bogota(config)#line vty 0 15

Ro_Bogota(config-line)#password class

Ro_Bogota(config-line)#login Ro_Bogota(config-line)#end Ro_Bogota#

Configuración Router Cali

Router>enable Router#configure terminal Enter configuration commands, one per line. End with CNTL/Z. Router(config)#hostname Ro_Cali Ro_Cali(config)#enable secret cisco Ro_Cali(config)#service password-encryption Ro Cali(config)#banner motd "Restringido, solo personal autorizado" Ro_Cali(config)#line console 0 Ro_Cali(config-line)#password 0 Ro_Cali(config-line)#login Ro_Cali(config-line)#exit Ro_Cali(config)#line vty 0 15 Ro_Cali(config-line)#password class Ro_Cali(config-line)#login Ro_Cali(config-line)#end

Ro Cali#

Configuración Switch Medellín

Switch>enable Switch#configure terminal Enter configuration commands, one per line. End with CNTL/Z. Switch(config)#hostname Sw_Medillin Sw_Medillin(config)#enable secret class Sw_Medillin(config)#line console 0 Sw_Medillin(config-line)#password cisco Sw_Medillin(config-line)#login Sw_Medillin(config-line)#exit Sw_Medillin(config)#service password-encryption Sw_Medillin(config)#banner motd "Acceso no Autorizado" Sw_Medillin(config)#exit

Sw Medillin#

Configuración Switch Bogotá

Switch>enable Switch#configure terminal Enter configuration commands, one per line. End with CNTL/Z. Switch(config)#hostname Sw_Bogota Sw_Bogota(config)#enable secret class Sw_Bogota(config)#line console 0 Sw_Bogota(config)#line)#password cisco Sw_Bogota(config-line)#password cisco Sw_Bogota(config-line)#login Sw_Bogota(config-line)#exit Sw_Bogota(config)#service password-encryption Sw_Bogota(config)#banner motd "Acceso no Autorizado" Sw_Bogota(config)#exit Sw_Bogota(config)#exit

Configuración Switch Cali

Switch>enable Switch#configure terminal Enter configuration commands, one per line. End with CNTL/Z. Switch(config)#hostname Sw_Cali Sw_Cali(config)#enable secret class Sw_Cali(config)#line console 0 Sw_Cali(config-line)#password cisco Sw_Cali(config-line)#password cisco Sw_Cali(config-line)#login Sw_Cali(config-line)#exit Sw_Cali(config)#service password-encryption Sw_Cali(config)#service password-encryption Sw_Cali(config)#banner motd "Acceso no Autorizado" Sw_Cali(config)#exit Sw_Cali(config)#exit

• Realizar la conexión física de los equipos con base en la topología de red

Configurar la topología de red, de acuerdo con las siguientes especificaciones.

Parte 1: Asignación de direcciones IP:

a. Se debe dividir (subnetear) la red creando una segmentación en ocho partes, para permitir crecimiento futuro de la red corporativa.

b. Asignar una dirección IP a la red.

Red Bogotá

Red Medellín

Network: 192.168.1.32/27 Calculo binario: 11000000.10101000.0000001.001 00000

Netmask: 00000	255.255.255.22	24 Calculo	binario:	: 111111111.111111111.1111111111.111
Host Min: 00001	192.168.1.33	Calculo	binario:	: 11000000.10101000.00000001.001
Host Max:	192.168.1.62	Calculo binario:	110000	00.10101000.00000001.001 11110
Broadcast:	192.168.1.63	Calculo binario:	110000	000.10101000.00000001.001 11111

Red Cali

El mismo cálculo se realiza para la ampliación de subredes:

Subred 1

Network:	192.168.1.96/27
Host Min:	192.168.1.97
Host Max:	192.168.1.126
Broadcast:	192.168.1.127

Subred 2

Network:	192.168.1.128/27
Host Min:	192.168.1.129
Host Max:	192.168.1.158
Broadcast:	192.168.1.159

Subred 3

Network:	192.168.1.160/27
Host Min:	192.168.1.161
Host Max:	192.168.1.190

Mind Wide Open[™]

Broadcast: 192.168.1.191

Subred 4

Network:	192.168.1.192/27
Host Min:	192.168.1.193
Host Max:	192.168.1.222
Broadcast:	192.168.1.223

Subred 5

Network:	192.168.1.224/27
Host Min:	192.168.1.225
Host Max:	192.168.1.254
Broadcast:	192.168.1.255

Subredes en uso: 3 Subredes calculadas para ampliación: 5 Total subredes: 8

Parte 2: Configuración Básica.

a. Completar la siguiente tabla con la configuración básica de los routers, teniendo en cuenta las subredes diseñadas.

	R1	R2	R3
Nombre de Host	MEDELLIN	BOGOTA	CALI
Dirección de lp en interfaz Serial 2/0	192.168.1.99	192.168.1.98	192.168.1.131
Dirección de lp en interfaz Serial 3/0		192.168.1.130	
Dirección de lp en interfaz FA 0/0	192.168.1.33	192.168.1.1	192.168.1.65
Protocolo de enrutamiento	Eigrp	Eigrp	Eigrp
Sistema Autónomo	200	200	200
Afirmaciones de red	192.168.1.0	192.168.1.0	192.168.1.0

Se utilizan los siguientes comando para configurar las direcciones ip en los puertos de los router.

Router Bogotá

Ro_Bogota>enable Password: Ro_Bogota#conf t Enter configuration commands, one per line. End with CNTL/Z. Ro_Bogota(config)#int s2/0 Ro_Bogota(config-if)#ip address 192.168.1.98 255.255.255.224 Ro_Bogota(config-if)#no shutdown

%LINK-5-CHANGED: Interface Serial2/0, changed state to down

Ro_Bogota(config-if)#exit Ro_Bogota(config)#int s3/0 Ro_Bogota(config-if)#ip address 192.168.1.130 255.255.255.224 Ro_Bogota(config-if)#no shutdown

%LINK-5-CHANGED: Interface Serial3/0, changed state to down Ro_Bogota(config-if)#exit Ro_Bogota(config)#int s3/0 Ro_Bogota(config-if)#ip address 192.168.1.130 255.255.255.224 Ro_Bogota(config-if)#no shutdown

%LINK-5-CHANGED: Interface Serial3/0, changed state to down Ro_Bogota(config-if)#exit Ro_Bogota(config)#int fa0/0 Ro_Bogota(config-if)#ip address 192.168.1.1 255.255.255.224 Ro_Bogota(config-if)#exit

Router Medellín

Ro_Medellin>enable Password: Ro_Medellin#conf t Enter configuration commands, one per line. End with CNTL/Z. Ro_Medellin(config)#int s2/0 Ro_Medellin(config-if)#ip address 192.168.1.99 255.255.255.224 Ro_Medellin(config-if)#no shutdown

Ro_Medellin(config-if)# %LINK-5-CHANGED: Interface Serial2/0, changed state to up

Ro_Medellin(config-if)# %LINEPROTO-5-UPDOWN: Line protocol on Interface Serial2/0, changed state to up Ro_Medellin(config-if)#exit Ro_Medellin(config)#int fa0/0 Ro_Medellin(config-if)#ip address 192.168.1.33 255.255.255.224 Ro_Medellin(config-if)#no shutdown

Ro_Medellin(config-if)# %LINK-5-CHANGED: Interface FastEthernet0/0, changed state to up

%LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/0, changed state to up

Ro_Medellin(config-if)#exit

Router Cali

Ro_Cali>enable Password: Ro_Cali#conf t Enter configuration commands, one per line. End with CNTL/Z. Ro_Cali(config)#int s2/0 Ro_Cali(config-if)#ip address 192.168.1.131 255.255.255.224 Ro_Cali(config-if)#no shutdown

Ro_Cali(config-if)# %LINK-5-CHANGED: Interface Serial2/0, changed state to up

Ro_Cali(config-if)#exit Ro_Cali(config)# %LINEPROTO-5-UPDOWN: Line protocol on Interface Serial2/0, changed state to up

Ro_Cali(config)#int fa0/0 Ro_Cali(config-if)#ip address 192.168.1.65 255.255.255.224 Ro_Cali(config-if)#no shutdown

Ro_Cali(config-if)# %LINK-5-CHANGED: Interface FastEthernet0/0, changed state to up

%LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/0, changed state to up

b. Después de cargada la configuración en los dispositivos, verificar la tabla de enrutamiento en cada uno de los routers para comprobar las redes y sus rutas.

Nota: Los seriales planteados en la tabla según la guía inicial, fueron modificados a los que reflejan en esta tabla, dado que los router seleccionados para la configuración de la red con contienen esos números de serial planteados en la guía, por eso se ajusta la tabla.

c. Verificar el balanceo de carga que presentan los routers.

Verificando balanceo en Router Cali

```
Ro_Califshow ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
* - candidate default, U - per-user static route, o - ODR
P - periodic downloaded static route
Gateway of last resort is not set
192.168.1.0/27 is subnetted, 2 subnets
C 192.168.1.64 is directly connected, FastEthernet0/0
C 192.168.1.128 is directly connected, Serial2/0
Ro_Calif
```

Verificando balanceo en Router Medellin

```
Ro_Medellin#show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
* - candidate default, U - per-user static route, o - ODR
P - periodic downloaded static route
Gateway of last resort is not set
192.168.1.0/27 is subnetted, 2 subnets
C 192.168.1.32 is directly connected, FastEthernet0/0
C 192.168.1.96 is directly connected, Serial2/0
Ro Medellin#
```

Verificando balanceo en Router Bogotá

```
Ro_Bogota#show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
      D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
      N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
      E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
      i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
       * - candidate default, U - per-user static route, o - ODR
       P - periodic downloaded static route
Gateway of last resort is not set
     192.168.1.0/27 is subnetted, 3 subnets
С
       192.168.1.0 is directly connected, FastEthernet0/0
С
        192.168.1.96 is directly connected, Serial2/0
С
       192.168.1.128 is directly connected, Serial3/0
Ro_Bogota#
```

d. Realizar un diagnóstico de vecinos usando el comando cdp.

Verificando Diagnóstico de vecinos en el Router Medellín

```
Ro_Medellin#show cdp neighbors
Capability Codes: R - Router, T - Trans Bridge, B - Source Route Bridge
S - Switch, H - Host, I - IGMP, r - Repeater, P - Phone
Device ID Local Intrfce Holdtme Capability Platform Port ID
Sw_Medillin Fas 0/0 145 S PT3000 Fas 0/1
Ro_Bogota Ser 2/0 156 R PT1000 Ser 2/0
Ro Medellin#
```

Verificando en el Router Cali

```
Ro Cali#show cdp neighbors
Capability Codes: R - Router, T - Trans Bridge, B - Source Route Bridge
              S - Switch, H - Host, I - IGMP, r - Repeater, P - Phone
Device ID
         Local Intrfce Holdtme Capability Platform Port ID
Ro_Bogota Ser 2/0 165
                                 R
                                           PT1000
                                                     Ser 3/0
Sw Cali
         Fas 0/0
                       147
                                     S
                                           PT3000
                                                     Fas 0/1
Ro Cali#
```

Verificando en el Router Bogotá

Ro_Bogota#show cdp neighbors Capability Codes: R - Router, T - Trans Bridge, B - Source Route Bridge S - Switch, H - Host, I - IGMP, r - Repeater, P - Phone Local Intrfce Holdtme Capability Platform Port ID Device ID Ro_Medellin Ser 2/0 PT1000 Ser 2/0 156 R 149 Ro Cali Ser 3/0 R PT1000 Ser 2/0 Switch Fas 0/0 167 PT3000 S Fas 0/1 Ro_Bogota#

e. Realizar una prueba de conectividad en cada tramo de la ruta usando Ping.

Ping del Ro_Medellin a la ip 192.168.1.98 (Ro_Bogota)

Ro_Medellin#ping 192.168.1.98
Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 192.168.1.98, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 1/1/5 ms

Ro_Medellin#

Ping del Ro_Bogota a la ip 192.168.1.99 (Ro_Medellin)

```
Ro_Bogota#ping 192.168.1.99
Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 192.168.1.99, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 1/1/4 ms
```

Ping del Ro_Bogota a la ip 192.168.1.131 (Ro_Cali)

```
Ro_Bogota#ping 192.168.1.131

Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 192.168.1.131, timeout is 2 seconds:

!!!!!

Success rate is 100 percent (5/5), round-trip min/avg/max = 1/2/4 ms
```

Ping del Ro_Cali a la ip 192.168.1.130 (Ro_Bogota)

```
Ro_Cali#ping 192.168.1.130
Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 192.168.1.130, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 1/2/6 ms
```

Parte 3: Configuración de Enrutamiento.

a. Asignar el protocolo de enrutamiento EIGRP a los routers considerando el direccionamiento diseñado.

Protocolo de Enrutamiento para Ro_Bogota

```
Ro_Bogota>enable

Password:

Ro_Bogota#conf t

Enter configuration commands, one per line. End with CNTL/Z.

Ro_Bogota(config)#router eigrp 240

Ro_Bogota(config-router)#network 192.168.1.96

Ro_Bogota(config-router)#network 192.168.1.0

Ro_Bogota(config-router)#network 192.168.1.28

Ro_Bogota(config-router)#
```

Protocolo de Enrutamiento para Ro_Medellin

```
User Access Verification

Password:

Ro_Medellin>enable

Password:

Ro_Medellin#configure terminal

Enter configuration commands, one per line. End with CNTL/Z.

Ro_Medellin(config)#router eigrp 240

Ro_Medellin(config-router)#network 192.168.1.32

Ro_Medellin(config-router)#

*DUAL-5-NBRCHANGE: IP-EIGRP 240: Neighbor 192.168.1.98 (Serial2/0) is up: new

adjacency

Ro_Medellin(config-router)#network 192.168.1.96

Ro_Medellin(config-router)#
```

Protocolo de Enrutamiento para Ro_Cali

```
User Access Verification

Password:

Ro_Cali>enable

Password:

Ro_Cali#configure terminal

Enter configuration commands, one per line. End with CNTL/Z.

Ro_Cali(config)#router eigrp 240

Ro_Cali(config-router)#network 192.168.1.128

Ro_Cali(config-router)#

*DUAL-5-NBRCHANGE: IP-EIGRP 240: Neighbor 192.168.1.130 (Serial2/0) is up: new

adjacency

Ro_Cali(config-router)#network 192.168.1.64

Ro_Cali(config-router)#
```

b. Verificar si existe vecindad con los routers configurados con EIGRP.

Router Medellin Ro_Medellin

```
Ro_Medellin#show ip eigrp neighbors
IP-EIGRP neighbors for process 240
H Address Interface Hold Uptime SRTT RTO Q Seq
(sec) (ms) Cnt Num
0 192.168.1.98 Se2/0 12 00:02:43 40 1000 0 6
```

Ro_Medellin#

Router Bogotá Ro_Bogota

Ro_H	Ro_Bogota#show ip eigrp neighbors							
IP-H	EIGRP neighbors	for process 240						
H	Address	Interface	Hold	Uptime	SRTT	RTO	Q	Seq
			(sec))	(ms)		Cnt	Num
0	192.168.1.131	Se3/0	11	00:11:19	40	1000	0	7
1	192.168.1.99	Se2/0	13	00:09:26	40	1000	0	7

Ro Bogota#

Router Bogotá Ro_Cali

Ro_ IP-	Ro_Cali#show ip eigrp neighbors IP-EIGRP neighbors for process 240							
Н	Address	Interface	Hold	Uptime	SRTT	RTO	Q	Seq
			(sec)	(ms)		Cnt	Num
0	192.168.1.130	Se2/0	14	00:12:30	40	1000	0	5
Ro_	Cali#							

c. Realizar la comprobación de las tablas de enrutamiento en cada uno de los routers para verificar cada una de las rutas establecidas.

Tabla de enrutamiento Ro_Bogota

```
Ro Bogota#show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
       * - candidate default, U - per-user static route, o - ODR
       P - periodic downloaded static route
Gateway of last resort is not set
     192.168.1.0/27 is subnetted, 5 subnets
С
        192.168.1.0 is directly connected, FastEthernet0/0
D
        192.168.1.32 [90/20514560] via 192.168.1.99, 00:17:41, Serial2/0
        192.168.1.64 [90/20514560] via 192.168.1.131, 00:19:34, Serial3/0
D
С
        192.168.1.96 is directly connected, Serial2/0
С
        192.168.1.128 is directly connected, Serial3/0
Ro Bogota#
```

Tabla de enrutamiento Ro_Cali

```
Ro_Cali#show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
       * - candidate default, U - per-user static route, o - ODR
       P - periodic downloaded static route
Gateway of last resort is not set
     192.168.1.0/27 is subnetted, 5 subnets
        192.168.1.0 [90/20514560] via 192.168.1.130, 00:26:29, Serial2/0
D
D
        192.168.1.32 [90/21026560] via 192.168.1.130, 00:24:35, Serial2/0
        192.168.1.64 is directly connected, FastEthernet0/0
C
        192.168.1.96 [90/21024000] via 192.168.1.130, 00:26:29, Serial2/0
D
```

```
C 192.168.1.128 is directly connected, Serial2/0
```

Ro Cali#

Tabla de enrutamiento Ro_Medellin

```
Ro_Medellin#show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
       * - candidate default, U - per-user static route, o - ODR
       P - periodic downloaded static route
Gateway of last resort is not set
     192.168.1.0/27 is subnetted, 5 subnets
D
       192.168.1.0 [90/20514560] via 192.168.1.98, 00:25:58, Serial2/0
С
        192.168.1.32 is directly connected, FastEthernet0/0
D
       192.168.1.64 [90/21026560] via 192.168.1.98, 00:25:58, Serial2/0
С
        192.168.1.96 is directly connected, Serial2/0
D
       192.168.1.128 [90/21024000] via 192.168.1.98, 00:25:58, Serial2/0
Ro Medellin#
```

d. Realizar un diagnóstico para comprobar que cada uno de los puntos de la red se puedan ver y tengan conectividad entre sí. Realizar esta prueba desde un host de la red LAN del router CALI, primero a la red de MEDELLIN y luego al servidor.

Ping desde el PC3 (red Cali) hacia el PC 1 (red Medellin)

```
PC>ping 192.168.1.34
Pinging 192.168.1.34 with 32 bytes of data:
Request timed out.
Reply from 192.168.1.34: bytes=32 time=2ms TTL=125
Reply from 192.168.1.34: bytes=32 time=2ms TTL=125
Reply from 192.168.1.34: bytes=32 time=11ms TTL=125
Ping statistics for 192.168.1.34:
    Packets: Sent = 4, Received = 3, Lost = 1 (25% loss),
Approximate round trip times in milli-seconds:
    Minimum = 2ms, Maximum = 11ms, Average = 5ms
PC>]
```

Ping desde el PC3 (red Cali) hacia el servidor (red Bogotá)

```
PC>ping 192.168.1.2
Pinging 192.168.1.2 with 32 bytes of data:
Request timed out.
Reply from 192.168.1.2: bytes=32 time=13ms TTL=126
Reply from 192.168.1.2: bytes=32 time=1ms TTL=126
Reply from 192.168.1.2: bytes=32 time=1ms TTL=126
Ping statistics for 192.168.1.2:
    Packets: Sent = 4, Received = 3, Lost = 1 (25% loss),
Approximate round trip times in milli-seconds:
    Minimum = 1ms, Maximum = 13ms, Average = 5ms
PC>
```

Se comprueba que la conectividad con entre las redes Cali, Medellín y Bogotá está funcionando correctamente.

Parte 4: Configuración de las listas de Control de Acceso.

En este momento cualquier usuario de la red tiene acceso a todos sus dispositivos y estaciones de trabajo. El jefe de redes le solicita implementar seguridad en la red. Para esta labor se decide configurar listas de control de acceso (ACL) a los routers.

Las condiciones para crear las ACL son las siguientes:

a. Cada router debe estar habilitado para establecer conexiones Telnet con los demás routers y tener acceso a cualquier dispositivo en la red.

Comandos utilizados para el Ro_Bogota

Ro_Bogota>enable Password: Ro_Bogota#conf t Enter configuration commands, one per line. End with CNTL/Z. Ro_Bogota(config)#int fa0/0 Ro_Bogota(config-if)#ip access-group 102 in Ro_Bogota(config-if)#access-list 102 permit tcp any any eq telnet Ro_Bogota(config)#

Comandos utilizados para el Ro_Medellin

Password:

Ro_Medellin>enable Password: Ro_Medellin#conf t Enter configuration commands, one per line. End with CNTL/Z. Ro_Medellin(config)#int fa0/0 Ro_Medellin(config-if)#ip access-group 102 in Ro_Medellin(config-if)#access-list 102 permit tcp any any eq telnet Ro_Medellin(config)#

Comandos utilizados para el Ro_Cali

Password:

Ro_Cali>enable Password: Ro_Cali#confi t Enter configuration commands, one per line. End with CNTL/Z. Ro_Cali(config)#int fa0/0 Ro_Cali(config-if)#ip access-group 102 in Ro_Cali(config-if)#access-list 102 permit tcp any any eq telnet Ro_Cali(config)#

b. El equipo WS1 y el servidor se encuentran en la subred de administración. Solo el servidor de la subred de administración debe tener acceso a cualquier otro dispositivo en cualquier parte de la red.

Comandos utilizados en el Ro_Bogota

Ro_Bogota>enable Password: Ro_Bogota#conf t Enter configuration commands, one per line. End with CNTL/Z. Ro_Bogota(config)#int fa0/0 Ro_Bogota(config-if)#ip access-group 1 in Ro_Bogota(config-if)#access-list 1 deny host 192.168.1.3 Ro_Bogota(config)#int fa0/0 Ro_Bogota(config)if)#access-list 1 permit any Ro_Bogota(config)#

c. Las estaciones de trabajo en las LAN de MEDELLIN y CALI no deben tener acceso a ningún dispositivo fuera de su subred, excepto para interconectar con el servidor.

Parte 5: Comprobación de la red instalada.

a. Se debe probar que la configuración de las listas de acceso fue exitosa.

b. Comprobar y Completar la siguiente tabla de condiciones de prueba para confirmar el óptimo funcionamiento de la red.

ORIGEN		DESTINO	RESULTADO
	Router MEDELLIN	Router CALI	Conecta
	WS_1	Router BOGOTA	Conecta
IELNEI	Servidor	Router CALI	Conecta
	Servidor	Router MEDELLIN	Conecta
	LAN del Router MEDELLIN	Router CALI	No conecta
	LAN del Router CALI	Router CALI	Conecta
TECINET	LAN del Router MEDELLIN	Router MEDELLIN	Conecta
	LAN del Router CALI	Router MEDELLIN	No conecta
	LAN del Router CALI	WS_1	No conecta
PING	LAN del Router MEDELLIN	WS_1	No conecta
	LAN del Router MEDELLIN	LAN del Router CALI	No conecta
	LAN del Router CALI	Servidor	Conecta
	LAN del Router MEDELLIN	Servidor	Conecta
PING	Servidor	LAN del Router MEDELLIN	Conecta
	Servidor	LAN del Router CALI	Conecta
	Router CALI	LAN del Router MEDELLIN	No conecta
	Router MEDELLIN	LAN del Router CALI	No conecta

Escenario 2

Una empresa tiene la conexión a internet en una red Ethernet, lo cual deben adaptarlo para facilitar que sus routers y las redes que incluyen puedan, por esa vía, conectarse a internet, pero empleando las direcciones de la red LAN original.

Desarrollo

Los siguientes son los requerimientos necesarios:

1. Todos los routers deberán tener los siguiente:

1. Configuración básica.

Router Bucaramanga

Router>enable Router#configure terminal Router(config)#hostname Ro_Bucaramanga Ro_Bucaramanga(config)# Ro_Bucaramanga(config)#interface Serial2/0 Ro_Bucaramanga(config-if)#ip address 172.31.2.33 255.255.0.0 Ro_Bucaramanga(config-if)#ip address 172.31.2.33 255.255.255.252

Se debe configurar el Sw_Bucaramanga para asignar las vlan al router Ro_Bucaramanga

```
Switch(config-if) #exit
Switch(config) #interface vlan1
Switch(config-if) #ip address 172.31.2.1
Switch(config-if) #ip address 172.31.2.1 255.255.255.248
Switch(config-if)#
Switch(config) #interface vlan10
Switch(config-if)#ip address 172.31.0.0 255.255.255.192
Bad mask /26 for address 172.31.0.0
Switch(config-if) #ip address 172.31.0.1 255.255.255.192
Switch(config-if) #exit
Switch(config) #interface vlan30
Switch(config-if)#
%LINK-5-CHANGED: Interface Vlan30, changed state to up
Switch(config-if) #ip address 172.31.0.65 255.255.255.192
Switch(config-if) #exit
Switch(config)#
```

Configurando el Router Ro_Bucaramanga para que haya comunicación con las 3 vlans.

```
Ro_Bucaramanga(config) #int fa0/0.1
Ro_Bucaramanga(config-subif) #encapsulation dotlQ 2
Ro_Bucaramanga(config-subif) #ip address 172.31.2.1 255.255.255.248
Ro_Bucaramanga(config-subif) #exit
Ro_Bucaramanga(config) #int fa0/0.2
Ro_Bucaramanga(config-subif) #encapsulation dotlQ 3
Ro_Bucaramanga(config-subif) #ip address 172.31.0.1 255.255.255.192
Ro_Bucaramanga(config-subif) #exit
Ro_Bucaramanga(config-subif) #exit
Ro_Bucaramanga(config-subif) #encapsulation dotlQ 4
Ro_Bucaramanga(config-subif) #encapsulation dotlQ 4
Ro_Bucaramanga(config-subif) #ip address 172.31.0.65 255.255.192
Ro_Bucaramanga(config-subif) #ip address 172.31.0.65 255.255.192
Ro_Bucaramanga(config-subif) #exit
Ro_Bucaramanga(config-subif) #exit
Ro_Bucaramanga(config-subif) #exit
```

Posteriormente encendemos el puerto fa0/0 para la comunicación con el Sw_Bucaramanga, utilizando los siguientes comandos:

Ro_Bucaramanga(config)#int fa0/0 Ro_Bucaramanga(config-if)#no shutdown Ro_Bucaramanga(config-if)# %LINK-5-CHANGED: Interface FastEthernet0/0, changed state to up %LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/0, changed state to up %LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/0.1, changed state to up %LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/0.1, changed state to up %LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/0.1, changed state to up %LINK-5-CHANGED: Interface FastEthernet0/0.2, changed state to up %LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/0.2, changed state to up %LINK-5-CHANGED: Interface FastEthernet0/0.3, changed state to up %LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/0.3, changed state to up Ro_Bucaramanga(config-if)#

Router Tunja

```
Router>enable
Router#configure terminal
Router(config)#hostname Ro_Tunja
Ro_Bucaramanga(config)#
Ro_Bucaramanga(config)#interface Serial2/0
Ro_Bucaramanga(config-if)#ip address 172.31.2.34 255.255.0.0
Ro_Bucaramanga(config-if)#ip address 172.31.2.34 255.255.255.252
Ro_Tunja(config-if)#exit
Ro_Tunja(config)#interface Serial3/0
Ro_Tunja(config-if)#ip address 172.31.2.37 255.255.255.252
Ro_Tunja(config-if)#
```

Se debe configurar el Sw_Tunja para asignar las vlan al router Ro_Tunja

```
Switch(config) #interface vlan1
Switch(config-if) #ip address 172.3.2.9 255.255.255.248
Switch(config-if) #exit
Switch(config) #vlan 20
Switch(config-vlan) #exit
Switch(config) #interface vlan20
Switch(config-if)#
%LINK-5-CHANGED: Interface Vlan20, changed state to up
Switch(config-if)#ip address 172.31.0.129 255.255.255.192
Switch(config-if) #exit
Switch(config) #interface vlan30
Switch(config-if)#
%LINK-5-CHANGED: Interface Vlan30, changed state to up
Switch(config-if) #ip address 172.31.0.193 255.255.255.192
Switch(config-if)#
```

Configurando el Router **Ro_Tunja** para que haya comunicación con las 3 vlans.

```
Ro_Tunja(config) #interface fa0/0.1
Ro_Tunja(config-subif) #encapsulation dotlQ 2
Ro_Tunja(config-subif) #ip address 172.3.2.9 255.255.255.248
Ro_Tunja(config-subif) #exit
Ro_Tunja(config) #int fa0/0.2
Ro_Tunja(config-subif) #encapsulation dotlQ 3
Ro_Tunja(config-subif) #ip address 172.31.0.129 255.255.255.192
Ro_Tunja(config-subif) #exit
Ro_Tunja(config-subif) #exit
Ro_Tunja(config-subif) #encapsulation dotlQ 4
Ro_Tunja(config-subif) #ip address 172.31.0.193 255.255.255.192
Ro_Tunja(config-subif) #ip address 172.31.0.193 255.255.255.192
Ro_Tunja(config-subif) #exit
Ro_Tunja(config-subif) #exit
Ro_Tunja(config-subif) #exit
```

Posteriormente encendemos el puerto fa0/0 para la comunicación con el Sw_Tunja, utilizando los siguientes comandos:

Ro_Tunja(config)#int fa0/0 Ro_Tunja(config-if)#no shutdown Ro_Tunja(config-if)# %LINK-5-CHANGED: Interface FastEthernet0/0, changed state to up %LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/0, changed state to up %LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/0.1, changed state to up %LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/0.1, changed state to up %LINK-5-CHANGED: Interface FastEthernet0/0.2, changed state to up %LINK-5-CHANGED: Interface FastEthernet0/0.2, changed state to up %LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/0.2, changed state to up %LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/0.3, changed state to up %LINK-5-CHANGED: Interface FastEthernet0/0.3, changed state to up

Router Cundinamarca

Router>enable Router#configure terminal Router(config)#hostname Ro_Cundinamarca Ro_Bucaramanga(config)# Ro_Bucaramanga(config)#interface Serial2/0 Ro_Bucaramanga(config-if)#ip address 172.31.2.38 255.255.0.0 Ro_Bucaramanga(config-if)#ip address 172.31.2.38 255.255.255.252 Ro_Tunja(config-if)#exit

Se debe configurar el Sw_Cundinamarca para asignar las vlan al router Ro_Cundinamarca

```
Switch(config) #int vlan1
Switch(config-if)#ip address 172.31.2.9 255.255.255.248
Switch(config-if) #exit
Switch(config) #int vlan 20
Switch(config-if)#
%LINK-5-CHANGED: Interface Vlan20, changed state to up
Switch(config-if) #ip address 172.31.1.64 255.255.255.192
Bad mask /26 for address 172.31.1.64
Switch(config-if) #ip address 172.31.1.65 255.255.255.192
Switch(config-if) #exit
Switch(config) #int vlan 172.31.1.1 255.255.255.192
% Invalid input detected at '^' marker.
Switch(config) #int vlan 30
Switch(config-if)#ip address 172.31.1.1 255.255.255.192
Switch(config-if) #exit
Switch(config)#int vlan 88
Switch(config-if)#
%LINK-5-CHANGED: Interface Vlan88, changed state to up
Switch(config-if) #ip address 172.31.2.25 255.255.255.248
Switch(config-if) #exit
Switch(config)#
```

Configurando el Router Ro_Cundinamarca para que haya comunicación con las 3 vlans.

```
Ro_Cundinamarca(config)#int fa0/0.1
Ro_Cundinamarca(config-subif) #encapsulation dot1Q 2
Ro Cundinamarca(config-subif)#ip address 172.31.2.9 255.255.258.248
Ro Cundinamarca(config-subif)#exit
Ro Cundinamarca(config)#int fa0/0.2
Ro Cundinamarca(config-subif)#encapsulation dot1Q 3
Ro Cundinamarca(config-subif)#ip address 172.31.1.65 255.255.255.192
Ro Cundinamarca(config-subif)#exit
Ro Cundinamarca(config)#int fa0/0.3
Ro Cundinamarca(config-subif)#encapsulation dotlQ 4
Ro Cundinamarca(config-subif)#ip address 172.31.1.1 255.255.255.192
Ro_Cundinamarca(config-subif) #exit
Ro_Cundinamarca(config)#int fa0/0.4
Ro Cundinamarca(config-subif) #encapsulation dot10 5
Ro Cundinamarca(config-subif)#ip address 172.31.2.25 255.255.258.248
Ro Cundinamarca(config-subif)#exit
Ro Cundinamarca(config)#
```

Posteriormente encendemos el puerto fa0/0 para la comunicación con el Sw_Cundinamarca, utilizando los siguientes comandos:

Ro_Cundinamarca(config)#int fa0/0 Ro_Cundinamarca(config-if)#no shutdown Ro_Cundinamarca(config-if)# %LINK-5-CHANGED: Interface FastEthernet0/0, changed state to up %LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/0, changed state to up %LINK-5-CHANGED: Interface FastEthernet0/0.1, changed state to up %LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/0.1, changed state to up %LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/0.2, changed state to up %LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/0.2, changed state to up %LINK-5-CHANGED: Interface FastEthernet0/0.3, changed state to up %LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/0.3, changed state to up %LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/0.4, changed state to up %LINK-5-CHANGED: Interface FastEthernet0/0.4, changed state to up %LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/0.3, changed state to up %LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/0.4, changed state to up

A continuación se muestra la imagen de la configuración de cada Router.

Port	Link	IP Address	IPv6	Address	MAC Address
FastEthernet0/0	Up	<not set=""></not>	<not< td=""><td>set></td><td>00E0.A399.44BB</td></not<>	set>	00E0.A399.44BB
FastEthernet0/0.1	Up	172.3.2.9/29	<not< td=""><td>set></td><td>00E0.A399.44BB</td></not<>	set>	00E0.A399.44BB
FastEthernet0/0.2	Up	172.31.0.129/26	<not< td=""><td>set></td><td>00E0.A399.44BB</td></not<>	set>	00E0.A399.44BB
FastEthernet0/0.3	Up	172.31.0.193/26	<not< td=""><td>set></td><td>00E0.A399.44BB</td></not<>	set>	00E0.A399.44BB
FastEthernet1/0	Up	<not set=""></not>	<not< td=""><td>set></td><td>0030.A30E.AE43</td></not<>	set>	0030.A30E.AE43
Serial2/0	Up	172.31.2.34/30	<not< td=""><td>set></td><td><not set=""></not></td></not<>	set>	<not set=""></not>
Serial3/0	Up	172.31.2.37/30	<not< td=""><td>set></td><td><not set=""></not></td></not<>	set>	<not set=""></not>
FastEthernet4/0	Down	<not set=""></not>	<not< td=""><td>set></td><td>0050.0F60.D347</td></not<>	set>	0050.0F60.D347
FastEthernet5/0	Down	<not set=""></not>	<not< td=""><td>set></td><td>0050.0FA2.B067</td></not<>	set>	0050.0FA2.B067
Hostname: Ro_Tunja					
Physical Location:	Intercit	ty, Home City, Corp	orate	Office, Main Wiring Closet	
Port	Link	TD Address	TDurf	Iddrace	MAC Address
FastEthernot0/0	Up	(not set>	<pre>rev6</pre>	nulless	00D0 FFD7 DB02
FastEthernet0/0	Up	170 21 0 G/00	<not< td=""><td>sev-</td><td>0000 FFD7 0802</td></not<>	sev-	0000 FFD7 0802
FastEthernet0/0.2	Up	172 21 1 65/26	<not< td=""><td>2010</td><td>0000 8807 0802</td></not<>	2010	0000 8807 0802
FastEthernet0/0.2	Up	172 21 1 1/24	<not< td=""><td>201</td><td>0000 FFD7 0802</td></not<>	201	0000 FFD7 0802
FastEthornet0/0.3	Up	172 21 2 25/20	<not< td=""><td>seur .</td><td>0000 FFD7 0802</td></not<>	seur .	0000 FFD7 0802
FastLthernetU/U.4	Derm	1/4.31.4.25/29	<not< td=""><td>Sec.</td><td>DODU.FED7.DB82</td></not<>	Sec.	DODU.FED7.DB82
rastLtnernet1/0	Down	NOT SET?	<not< td=""><td>Sec.</td><td>UUUB.BEAA.A866</td></not<>	Sec.	UUUB.BEAA.A866
Serial2/0	Up	1/2.31.2.38/30	<not< td=""><td>set></td><td><not set=""></not></td></not<>	set>	<not set=""></not>
Serial3/0	Down	<not set=""></not>	<not< td=""><td>set></td><td><not set=""></not></td></not<>	set>	<not set=""></not>
FastEthernet4/0	Down	<not set=""></not>	<not< td=""><td>set></td><td>0002.16CA.0415</td></not<>	set>	0002.16CA.0415
FastEthernet5/0	Down	<not set=""></not>	<not< td=""><td>set></td><td>0060.70AC.657A</td></not<>	set>	0060.70AC.657A
Hostname: Ro_Cundir	namarca				
	-				
Physical Location:	Interci	ty, Home City, Corp	orate	Office, Main Wiring Closet	

Port	Link	IP Address	IPv6	Address	MAC Address
FastEthernet0/0	Up	<not set=""></not>	<not< td=""><td>set></td><td>00E0.A399.44BB</td></not<>	set>	00E0.A399.44BB
FastEthernet0/0.1	Up	172.3.2.9/29	<not< td=""><td>set></td><td>00E0.A399.44BB</td></not<>	set>	00E0.A399.44BB
FastEthernet0/0.2	Up	172.31.0.129/26	<not< td=""><td>set></td><td>00E0.A399.44BB</td></not<>	set>	00E0.A399.44BB
FastEthernet0/0.3	Up	172.31.0.193/26	<not< td=""><td>set></td><td>00E0.A399.44BB</td></not<>	set>	00E0.A399.44BB
FastEthernet1/0	Up	<not set=""></not>	<not< td=""><td>set></td><td>0030.A30E.AE43</td></not<>	set>	0030.A30E.AE43
Serial2/0	Up	172.31.2.34/30	<not< td=""><td>set></td><td><not set=""></not></td></not<>	set>	<not set=""></not>
Serial3/0	Up	172.31.2.37/30	<not< td=""><td>set></td><td><not set=""></not></td></not<>	set>	<not set=""></not>
FastEthernet4/0	Down	<not set=""></not>	<not< td=""><td>set></td><td>0050.0F60.D347</td></not<>	set>	0050.0F60.D347
FastEthernet5/0	Down	<not set=""></not>	<not< td=""><td>set></td><td>0050.0FA2.B067</td></not<>	set>	0050.0FA2.B067
Hostname: Ro_Tunja					

Physical Location: Intercity, Home City, Corporate Office, Main Wiring Closet

- Autenticación local con AAA.
- Cifrado de contraseñas.
- Un máximo de internos para acceder al router.
- Máximo tiempo de acceso al detectar ataques.

Ahora se procede a realizar la configuración de los routers, de manera que se coloca autenticación local con AAA, se hace cifrado de contraseña mediante rsa 1024 bytes. También se establece un máximo de intentos de 2 y un máximo de tiempo de espera de 60.

Ro_Bucaramanga

Ro_Bucaramanga>enable

Ro_Bucaramanga#conf t

Enter configuration commands, one per line. End with CNTL/Z.

Ro_Bucaramanga(config)#line vty 0 4

Ro_Bucaramanga(config-line)#password cisco

Ro_Bucaramanga(config-line)#login

Ro_Bucaramanga(config-line)#exit

Ro_Bucaramanga(config)#enable secret cisco

Ro_Bucaramanga(config)#ip domain-name BUCARAMANGA.com

Ro_Bucaramanga(config)#crypto key generate rsa

The name for the keys will be: Ro_Bucaramanga.BUCARAMANGA.com Choose the size of the key modulus in the range of 360 to 2048 for your General Purpose Keys. Choosing a key modulus greater than 512 may take a few minutes.

How many bits in the modulus [512]: 1024

% Generating 1024 bit RSA keys, keys will be non-exportable...[OK]

Ro_Bucaramanga(config)#ip ssh time-out 60

*mar. 1 3:49:33.346: %SSH-5-ENABLED: SSH 1.99 has been enabled

Ro_Bucaramanga(config)#ip ssh authentication-retries 2

Ro_Bucaramanga(config)#aaa new-model

Ro_Bucaramanga(config)#line vty 0 4

Ro_Bucaramanga(config-line)#transport input ssh

Ro_Bucaramanga(config-line)#username Bucaramanga secret password

Ro_Bucaramanga(config)#

Ro_Tunja

Ro_Tunja>enable Ro_Tunja#conf t Enter configuration commands, one per line. End with CNTL/Z. Ro_Tunja(config)#line vty 0 4

Ro_Tunja(config-line)#password cisco Ro_Tunja(config-line)#login Ro_Tunja(config-line)#exit Ro_Tunja(config)#enable secret cisco Ro_Tunja(config)#ip domain-name TUNJA.com Ro_Tunja(config)#crypto key generate rsa The name for the keys will be: Ro_Tunja.TUNJA.com Choose the size of the key modulus in the range of 360 to 2048 for your General Purpose Keys. Choosing a key modulus greater than 512 may take a few minutes. How many bits in the modulus [512]: 1024 % Generating 1024 bit RSA keys, keys will be non-exportable...[OK] Ro Tunja(config)#ip ssh time-out 60 *mar. 1 4:0:54.820: %SSH-5-ENABLED: SSH 1.99 has been enabled Ro_Tunja(config)#ip ssh authentication-retries 2 Ro_Tunja(config)#aaa new-model Ro_Tunja(config)#line vty 0 4 Ro_Tunja(config-line)#transport input ssh Ro_Tunja(config-line)#username Tunja secret password Ro_Tunja(config)#

Ro_Cundinamarca

Ro_Cundinamarca>enable

Ro_Cundinamarca#conf t

Enter configuration commands, one per line. End with CNTL/Z.

Ro_Cundinamarca(config)#line vty 0 4

Ro_Cundinamarca(config-line)#password cisco

Ro_Cundinamarca(config-line)#login

Ro_Cundinamarca(config-line)#exit

Ro_Cundinamarca(config)#enable secret cisco

Ro_Cundinamarca(config)#ip domain-name CUNDINAMARCA.com

Ro_Cundinamarca(config)#crypto key generate rsa

The name for the keys will be: Ro_Cundinamarca.CUNDINAMARCA.com

Choose the size of the key modulus in the range of 360 to 2048 for your

General Purpose Keys. Choosing a key modulus greater than 512 may take a few minutes.

How many bits in the modulus [512]: 1024 % Generating 1024 bit RSA keys, keys will be non-exportable...[OK]

Ro_Cundinamarca(config)#ip ssh time-out 60 *mar. 1 3:53:36.734: %SSH-5-ENABLED: SSH 1.99 has been enabled

- Ro_Cundinamarca(config)#ip ssh authentication-retries 2
- Ro_Cundinamarca(config)#aaa new-model
- Ro_Cundinamarca(config)#line vty 0 4
- Ro_Cundinamarca(config-line)#transport input ssh
- Ro_Cundinamarca(config-line)#username Cundinamarca secret password
- Ro_Cundinamarca(config)#
 - Establezca un servidor TFTP y almacene todos los archivos necesarios de los routers.

Ro_Bucaramanga#dir flash Directory of flash:/

3 -rw- 5571584 <no date> pt1000-i-mz.122-28.bin

- 2 -rw- 28282 <no date> sigdef-category.xml
- 1 -rw- 227537 <no date> sigdef-default.xml

64016384 bytes total (58188981 bytes free) Ro_Bucaramanga#copy flash: tftp: Source filename []? pt1000-i-mz.122-28.bin Address or name of remote host []? 172.31.2.20 Destination filename [pt1000-i-mz.122-28.bin]? Writing pt1000-i-mz.122-28.bin...... [OK – 5571584 bytes] 5571584 bytes copied in 6.754 secs (4970000 bytes/sec)

Ro_Tunja#dir flash Directory of flash:/

3 -rw- 5571584 <no date> pt1000-i-mz.122-28.bin 2 -rw- 28282 <no date> sigdef-category.xml 1 -rw- 227537 <no date> sigdef-default.xml

64016384 bytes total (58188981 bytes free) Ro_Tunja#copy flash: tftp: Source filename []? pt1000-i-mz.122-28.bin Address or name of remote host []? 172.31.2.20 Destination filename [pt1000-i-mz.122-28.bin]? Writing pt1000-i-mz.122-28.bin...... [OK – 5571584 bytes] 5571584 bytes copied in 6.754 secs (4970000 bytes/sec) Ro_Cundinamarca>enable Password: Ro_Cundinamarca#dir flash Directory of flash:/

3 -rw- 5571584 <no date> pt1000-i-mz.122-28.bin 2 -rw- 28282 <no date> sigdef-category.xml 1 -rw- 227537 <no date> sigdef-default.xml

64016384 bytes total (58188981 bytes free) Ro_Cundinamarca#copy flash: tftp: Source filename []? pt1000-i-mz.122-28.bin Address or name of remote host []? 172.31.2.20 Destination filename [pt1000-i-mz.122-28.bin]? Writing pt1000-i-mz.122-28.bin..... [OK – 5571584 bytes] 5571584 bytes copied in 6.754 secs (4970000 bytes/sec)

2. El DHCP deberá proporcionar solo direcciones a los hosts de Bucaramanga y Cundinamarca

Configurando Router Tunja

Ro_Tunja>enable Password: Ro_Tunja#configure terminal Enter configuration commands, one per line. End with CNTL/Z. Ro_Tunja(config)#ip dhcp excluded-address 172.31.2.1 172.31.2.2 Ro_Tunja(config)#ip dhcp excluded-address 172.31.0.1 172.31.0.2 Ro_Tunja(config)#ip dhcp excluded-address 172.31.0.65 172.31.0.66 Ro_Tunja(config)#ip dhcp excluded-address 172.31.2.9 172.31.2.10 Ro_Tunja(config)#ip dhcp excluded-address 172.31.1.65 172.31.1.66 Ro_Tunja(config)#ip dhcp excluded-address 172.31.1.1 172.31.1.2 Ro_Tunja(config)#ip dhcp excluded-address 172.31.2.25 172.31.2.26 Ro_Tunja(config)#ip dhcp excluded-address 172.31.2.11 Ro_Tunja(config)#ip dhcp pool lan_bucara_v1 Ro_Tunja(dhcp-config)#network 172.31.2.0 255.255.255.248 Ro_Tunja(dhcp-config)#default-router 172.31.0.0 255.255.255.255.192 % Invalid input detected at '^' marker.

Ro_Tunja(dhcp-config)#default-router 172.31.0.0 Ro_Tunja(dhcp-Ro_Tunja(dhcpconfig)#default-router 172.31.0.0 Ro_Tunja(dhcp-Ro_Tunja(dhcp-config)#default-router 172.31.0.0 Ro_Tunja(dhcp-config)#default-router 172.31.2.1 Ro_Tunja(dhcp-config)#ip dhcp pool lan_bucara_v10 Ro_Tunja(dhcp-config)#network 72.31.0.0 255.255.255.192 Ro_Tunja(dhcp-config)#default-router 172.31.0.1 Ro_Tunja(dhcp-config)#ip dhcp pool lan_bucara_v30 Ro_Tunja(dhcp-config)#network 172.31.0.64 255.255.255.192 Ro_Tunja(dhcp-config)#default-router 172.31.0.65 Ro_Tunja(dhcp-config)#ip dhcp pool lan_cundi_v1 Ro_Tunja(dhcp-config)#network 172.31.2.8 255.255.255.248 Ro_Tunja(dhcp-config)#default-router 172.31.2.9 Ro Tunja(dhcp-config)#ip dhcp pool lan cundi v20 Ro_Tunja(dhcp-config)#network 172.31.1.64 255.255.255.192 Ro_Tunja(dhcp-config)#default-router 172.31.1.65 Ro_Tunja(dhcp-config)#ip dhcp pool lan_cundi_v30 Ro_Tunja(dhcp-config)#network 172.31.1.0 255.255.255.192 Ro_Tunja(dhcp-config)#default-router 172.31.1.1 Ro_Tunja(dhcp-config)#ip dhcp pool lan_cundi_v88 Ro_Tunja(dhcp-config)#network 172.31.2.24 255.55.255.248 172.23.2.24 / 255.55.255.248 is an invalid network. Ro_Tunja(dhcp-config)#network 172.31.2.24 255.255.255.248 Ro_Tunja(dhcp-config)#default-router 172.31.2.25 Ro_Tunja(dhcp-config)#end Ro Tunja# %SYS-5-CONFIG_I: Configured from console by console

Ro_Tunja#

Configurando Router Bucaramanga

Ro_Bucaramanga>enable Password: Ro_Bucaramanga#int fa0/0.1 ^ % Invalid input detected at '^' marker. Ro_Bucaramanga#conf t Enter configuration commands, one per line. End with CNTL/Z. Ro_Bucaramanga(config)#int fa0/0.1 Ro_Bucaramanga(config)#int fa0/0.1 Ro_Bucaramanga(config-subif)#ip helper-address 172.31.2.34 Ro_Bucaramanga(config)#int fa0/0.2 Ro_Bucaramanga(config-subif)#ip helper-address 172.31.2.34 Ro_Bucaramanga(config-subif)#ip helper-address 172.31.2.34 Ro_Bucaramanga(config-subif)#ip helper-address 172.31.2.34 Ro_Bucaramanga(config)#int fa0/0.3 Ro_Bucaramanga(config-subif)#ip helper-address 172.31.2.34 Ro_Bucaramanga(config-subif)#exit Ro_Bucaramanga(config)#exit Ro_Bucaramanga# %SYS-5-CONFIG_I: Configured from console by console

Ro_Bucaramanga#

Configurando router Cundinamarca

Ro_Cundinamarca>enable Password: Ro_Cundinamarca#configure terminal Enter configuration commands, one per line. End with CNTL/Z. Ro_Cundinamarca(config)#int fa0/0.1 Ro_Cundinamarca(config-subif)#ip helper-address 172.31.2.37 Ro_Cundinamarca(config-subif)#exit Ro_Cundinamarca(config)#int fa0/0.2 Ro_Cundinamarca(config-subif)#ip helper-address 172.31.2.37 Ro_Cundinamarca(config-subif)#exit Ro_Cundinamarca(config)#int fa0/0.3 Ro_Cundinamarca(config-subif)#ip helper-address 172.31.2.37 Ro_Cundinamarca(config-subif)#exit Ro_Cundinamarca(config)#int fa0/0.4 Ro_Cundinamarca(config-subif)#ip helper-address 172.31.2.37 Ro_Cundinamarca(config-subif)#exit Ro_Cundinamarca(config)#exit Ro_Cundinamarca# %SYS-5-CONFIG_I: Configured from console by console

Ro_Cundinamarca#

3. El web server deberá tener NAT estático y el resto de los equipos de la topología emplearan NAT de sobrecarga (PAT).

Configurando Router Tunja

Ro_Tunja>enable Password: Ro_Tunja#conf t Enter configuration commands, one per line. End with CNTL/Z. Ro_Tunja(config)#ip nat inside source static 172.31.2.11 209.17.220.7 Ro_Tunja(config)#ip access-list standart COLOMBIA % Invalid input detected at '^' marker. Ro_Tunja(config)#ip access-list standard COLOMBIA Ro_Tunja(config-std-nacl)#permit 172.31.0.0 0.0.255.255 Ro_Tunja(config-std-nacl)#exit Ro_Tunja(config)#ip nat inside source list COLOMBIA int fa0/0 overload Ro_Tunja(config)#int fa0/0 Ro_Tunja(config-if)#ip nat outside Ro_Tunja(config-if)#int s2/0 Ro_Tunja(config-if)#ip nat outside Ro_Tunja(config-if)#int s3/0 Ro Tunja(config-if)#ip nat inside Ro_Tunja(config-if)#int fa0/0.1 Ro_Tunja(config-subif)#ip nat inside Ro_Tunja(config-subif)#int fa0/0.2 Ro_Tunja(config-subif)#ip nat inside Ro_Tunja(config-subif)#int fa0/0.3 Ro_Tunja(config-subif)#ip nat inside Ro_Tunja(config-subif)#end Ro Tunja# %SYS-5-CONFIG_I: Configured from console by console

Ro_Tunja#

A continuación se realiza la configuración de la ruta estática predeterminada.

Ro_Tunja#conf t Enter configuration commands, one per line. End with CNTL/Z. Ro_Tunja(config)#ip route 0.0.0.0 0.0.0.0 fa0/0 Ro_Tunja(config)#router ospf 1 Ro_Tunja(config-router)#default-information originate Ro_Tunja(config-router)#end Ro_Tunja# %SYS-5-CONFIG_I: Configured from console by console

Ro_Tunja#copy run start Destination filename [startup-config]? Building configuration... [OK] Ro_Tunja#

4. El enrutamiento deberá tener autenticación.

Configuración de servidor Bucaramanga

Ro_Bucaramanga>enable Password: Ro_Bucaramanga#conf t Enter configuration commands, one per line. End with CNTL/Z. Ro_Bucaramanga(config)#router ospf 100 Ro_Bucaramanga(config-router)#router-id 1.1.1.1 Ro_Bucaramanga(config-router)#network 172.31.2.31 0.0.0.3 area0 Λ % Invalid input detected at '^' marker. Ro_Bucaramanga(config-router)#network 172.31.2.31 0.0.0.3 area 0 Ro_Bucaramanga(config-router)#network 172.31.2.0 0.0.0.7 area 0 Ro_Bucaramanga(config-router)#network 172.31.0.1 0.0.0.63 area 0 Ro_Bucaramanga(config-router)#network 172.31.0.64 0.0.0.63 area 0 Ro_Bucaramanga(config-router)#passive-interface fa0/1 % Invalid interface type and number Ro_Bucaramanga(config-router)#passive-interface fa0/0 Ro_Bucaramanga(config-router)#area 0 authentication Ro_Bucaramanga(config-router)#exit Ro_Bucaramanga(config)#int s2/0 Ro_Bucaramanga(config-if)#ip ospf authentication-key osinterpf %OSPF: Warning: The password/key will be truncated to 8 characters Ro_Bucaramanga(config-if)#no ip ospf authentication-key osinterpf Ro_Bucaramanga(config-if)#ip ospf authentication-key DianaOspf %OSPF: Warning: The password/key will be truncated to 8 characters Ro_Bucaramanga(config-if)#end Ro_Bucaramanga# %SYS-5-CONFIG_I: Configured from console by console

Ro_Bucaramanga#copy run start Destination filename [startup-config]? Building configuration... [OK] Ro_Bucaramanga#

Configuración de servidor Tunja

Ro_Tunja>enable Password: Ro_Tunja#conf t Enter configuration commands, one per line. End with CNTL/Z. Ro_Tunja(config)#router ospf 100 Ro_Tunja(config-router)#router-id 2.2.2.2 Ro_Tunja(config-router)#network 172.31.2.32 0.0.0.3 area 0 Ro_Tunja(config-router)#network 172.31.2.36 0.0.0.3 area 0 Ro_Tunja(config-router)#network 209.17.220.0 0.0.0.255 area 0 Ro_Tunja(config-router)#network 172.31.2.8 0.0.0.7 area 0 Ro_Tunja(config-router)#network 172.31.0.128 0.0.0.63 area 0 Ro_Tunja(config-router)#network 172.3.2.8 0.0.0.7 area 0 Ro_Tunja(config-router)#network 172.31.0.192 0.0.0.63 area 0 Ro_Tunja(config-router)#passive-interface fa0/0 Ro Tunja(config-router)#area 0 authentication Ro_Tunja(config-router)#exit Ro Tunja(config)#int s2/0 Ro_Tunja(config-if)#ip ospf authentication-key DianaOspf %OSPF: Warning: The password/key will be truncated to 8 characters Ro Tunja(config-if)#end Ro_Tunja# %SYS-5-CONFIG_I: Configured from console by console

Ro_Tunja#copy run start Destination filename [startup-config]? Building configuration... [OK] Ro_Tunja#

Configuración de servidor Cundinamarca

Ro_Cundinamarca>enable Password: Ro Cundinamarca#conf t Enter configuration commands, one per line. End with CNTL/Z. Ro_Cundinamarca(config)#router ospf 100 Ro_Cundinamarca(config-router)#router-id 3.3.3.3 Ro_Cundinamarca(config-router)#network 172.31.2.36 0.0.0.3 area 0 Ro_Cundinamarca(config-router)#network 172.31.2.8 0.0.0.7 area 0 Ro_Cundinamarca(config-router)#network 172.31.1.64 0.0.0.63 area 0 Ro_Cundinamarca(config-router)#network 172.31.1.64 0.0.0.63 area Ro_Cundinamarca(configrouter)#network 172.31.1.0 0.0.0.63 area 0 Ro_Cundinamarca(config-router)#network 172.31.2.24 0.0.0.7 area 0 Ro_Cundinamarca(config-router)#passive-interface fa0/0 Ro_Cundinamarca(config-router)#area 0 authentication Ro_Cundinamarca(config-router)#exit Ro_Cundinamarca(config)#

00:44:19: %OSPF-5-ADJCHG: Process 100, Nbr 2.2.2.2 on Serial2/0 from LOADING to FULL, Loading Done

Ro_Cundinamarca(config)#int s2/0 Ro_Cundinamarca(config-if)#ip ospf authentication-key DianaOspf %OSPF: Warning: The password/key will be truncated to 8 characters Ro_Cundinamarca(config-if)#end Ro_Cundinamarca#

5. Listas de control de acceso

• Los hosts de VLAN 20 en Cundinamarca no acceden a internet, solo a la red interna de Tunja.

Ro_Cundinamarca>enable

Password:

Ro_Cundinamarca#conf t

Enter configuration commands, one per line. End with CNTL/Z.

Ro_Cundinamarca(config)#router ospf 100

Ro_Cundinamarca(config-router)#router-id 3.3.3.3

Ro_Cundinamarca(config-router)#network 172.31.2.36 0.0.0.3 area 0

Ro_Cundinamarca(config-router)#network 172.31.2.8 0.0.0.7 area 0

Ro_Cundinamarca(config-router)#network 172.31.1.64 0.0.0.63 area 0

Ro_Cundinamarca(config-router)#network 172.31.1.64 0.0.0.63 area Ro_Cundinamarca(config-

router)#network 172.31.1.0 0.0.0.63 area 0

Ro_Cundinamarca(config-router)#network 172.31.2.24 0.0.0.7 area 0

Ro_Cundinamarca(config-router)#passive-interface fa0/0

Ro_Cundinamarca(config-router)#area 0 authentication

Ro_Cundinamarca(config-router)#exit

Ro_Cundinamarca(config)#

00:44:19: %OSPF-5-ADJCHG: Process 100, Nbr 2.2.2.2 on Serial2/0 from LOADING to FULL, Loading Done

Ro_Cundinamarca(config)#int s2/0

Ro_Cundinamarca(config-if)#ip ospf authentication-key DianaOspf

%OSPF: Warning: The password/key will be truncated to 8 characters

Ro_Cundinamarca(config-if)#end

Ro_Cundinamarca#

 Los hosts de VLAN 10 en Cundinamarca si acceden a internet y no a la red interna de Tunja.

Ro_Cundinamarca#conf t

Enter configuration commands, one per line. End with CNTL/Z.

Ro_Cundinamarca(config)#ip access-list extended LANV20

Ro_Cundinamarca(config-ext-nacl)#deny ip 172.31.1.64 0.0.0.63 172.31.2.16 0.0.0.7

Ro_Cundinamarca(config-ext-nacl)#deny ip 172.31.1.64 0.0.0.63 172.31.0.128 0.0.0.63

Ro_Cundinamarca(config-ext-nacl)#deny ip 172.31.1.64 0.0.0.63 172.31.0.191 0.0.0.63

- Ro_Cundinamarca(config-ext-nacl)#permit ip any any
- Ro_Cundinamarca(config-ext-nacl)#exit
- Ro_Cundinamarca(config-subif)#int fa0/0.2

Ro_Cundinamarca(config-subif)#ip access-group LANV20 in

Ro_Cundinamarca(config-subif)#end

Ro_Cundinamarca#

%SYS-5-CONFIG_I: Configured from console by console

Ro_Cundinamarca#

• Los hosts de VLAN 30 en Tunja solo acceden a servidores web y ftp de internet.

Ro_Tunja>enable

Password:

Ro_Tunja#conf t

Enter configuration commands, one per line. End with CNTL/Z.

Ro_Tunja(config)#ip access-list extended LANV30

Ro_Tunja(config-ext-nacl)#permit tcp 172.31.0.192 0.0.0.63 0.0.0.0 255.255.255.255 eq % Incomplete command.

Ro_Tunja(config-ext-nacl)#permit tcp 172.31.0.192 0.0.0.63 0.0.0.0 255.255.255.255 eq ftp

Ro_Tunja(config-ext-nacl)#permit tcp 172.31.0.192 0.0.0.63 0.0.0.0 255.255.255.255 eq www

Ro_Tunja(config-ext-nacl)#exit

Ro_Tunja(config)#int fa0/0.3

Ro_Tunja(config-subif)#ip access-group LANV30 in

Ro_Tunja(config-subif)#end

Ro_Tunja#

%SYS-5-CONFIG_I: Configured from console by console

Ro_Tunja#

 Los hosts de VLAN 20 en Tunja solo acceden a la VLAN 20 de Cundinamarca y VLAN 10 de Bucaramanga.

Ro_Tunja#conf t

Enter configuration commands, one per line. End with CNTL/Z.

Ro_Tunja(config)#ip access-list extended LANV20

Ro_Tunja(config-ext-nacl)#permit tcp 172.31.0.128 0.0.0.63 172.31.1.0 0.0.0.63 ^

% Invalid input detected at '^' marker.

Ro_Tunja(config-ext-nacl)#permit tcp 172.31.0.128 0.0.0.63 172.31.1.0 0.0.0.63

Ro_Tunja(config-ext-nacl)#permit tcp 172.31.0.128 0.0.0.63 172.31.0.0 0.0.0.63

 $Ro_Tunja (config-ext-nacl) \# exit$

Ro_Tunja(config)#int fa0/0.2

Ro_Tunja(config-subif)#ip access-group LANV20 in

Ro_Tunja(config-subif)#end

Ro_Tunja#

%SYS-5-CONFIG_I: Configured from console by console

Ro_Tunja#

 Los hosts de VLAN 30 de Bucaramanga acceden a internet y a cualquier equipo de VLAN 10.

Ro_Bucaramanga>enable Password: Ro_Bucaramanga#conf t Enter configuration commands, one per line. End with CNTL/Z. Ro_Bucaramanga(config)#ip access-list exteded LANV30 % Invalid input detected at '^' marker. Ro_Bucaramanga(config)#ip access-list exteNded LANV30 Ro_Bucaramanga(config-ext-nacl)#deny ip 172.31.0.64 0.0.0.63 172.31.2.0 0.0.0.7 Ro_Bucaramanga(config-ext-nacl)#deny ip 172.31.0.64 0.0.0.63 172.31.2.16 0.0.0.7 Ro_Bucaramanga(config-ext-nacl)#deny ip 172.31.0.64 0.0.0.63 172.31.2.8 0.0.0.7 Ro_Bucaramanga(config-ext-nacl)#deny ip 172.31.0.64 0.0.0.63 172.31.1.64 0.0.0.63 Ro_Bucaramanga(config-ext-nacl)#deny ip 172.31.0.64 0.0.0.63 172.31.1.0 0.0.0.63 Ro_Bucaramanga(config-ext-nacl)#deny ip 172.31.0.64 0.0.0.63 172.31.2.24 0.0.0.7 Ro_Bucaramanga(config-ext-nacl)#deny ip 172.31.0.64 0.0.0.63 172.31.0.128 0.0.0.63 Ro_Bucaramanga(config-ext-nacl)#deny ip 172.31.0.64 0.0.0.63 172.31.0.192 0.0.0.63 Ro_Bucaramanga(config-ext-nacl)#permit ip any any Ro_Bucaramanga(config-ext-nacl)#exit Ro_Bucaramanga(config)#int fa0/0.3 Ro_Bucaramanga(config-subif)#ip access-group LANV30 in Ro_Bucaramanga(config-subif)#end

Ro_Bucaramanga# %SYS-5-CONFIG_I: Configured from console by console Ro_Bucaramanga#

 Los hosts de VLAN 10 en Bucaramanga acceden a la red de Cundinamarca (VLAN 20) y Tunja (VLAN 20), no internet.

Ro_Bucaramanga>enable Password: Ro_Bucaramanga#conf t Enter configuration commands, one per line. End with CNTL/Z. Ro_Bucaramanga(config)#ip access-list extended LANV10 Ro_Bucaramanga(config-ext-nacl)#permit ip 172.31.0.0 0.0.0.63 172.31.1.0 0.0.0.63 Ro_Bucaramanga(config-ext-nacl)#permit ip 172.31.0.0 0.0.0.63 172.31.0.128 0.0.0.63 Ro_Bucaramanga(config-subif)#ip access-group LANV10 in Ro_Bucaramanga(config-subif)#ip access-group LANV10 in Ro_Bucaramanga(config)#exit Ro_Bucaramanga(config)#exit Ro_Bucaramanga# %SYS-5-CONFIG_I: Configured from console by console Ro_Bucaramanga#

• Los hosts de una VLAN no pueden acceder a los de otra VLAN en una ciudad.

Ro_Cundinamarca>enable

Password:

Ro_Cundinamarca#conf t

Enter configuration commands, one per line. End with CNTL/Z.

Ro_Cundinamarca(config)#access-list 3 permit 172.31.0.0

Ro_Cundinamarca(config)#interface se2/0

Ro_Cundinamarca(config-if)#ip access-group 3 in

Ro_Cundinamarca(config-if)#exit

Ro_Cundinamarca(config)#ip access-list extended LANV20

Ro_Cundinamarca(config-ext-nacl)#no permit any any

٨

% Invalid input detected at '^' marker.

Ro_Cundinamarca(config-ext-nacl)#no permit ip any any

Ro_Cundinamarca(config-ext-nacl)#deny ip 172.31.1.64 0.0.0.63 172.31.2.8 0.0.0.7

Ro_Cundinamarca(config-ext-nacl)#deny ip 172.31.1.64 0.0.0.63 172.31.1.0 0.0.0.63

Ro_Cundinamarca(config-ext-nacl)#deny ip 172.31.1.64 0.0.0.63 172.31.2.24 0.0.0.7

Ro_Cundinamarca(config-ext-nacl)#permit ip any any

Ro_Cundinamarca(config-ext-nacl)#end

Ro_Cundinamarca#

%SYS-5-CONFIG_I: Configured from console by console

Ro_Cundinamarca#show access-list Extended IP access list LANV30 10 permit ip 172.31.1.0 0.0.0.63 172.31.2.16 0.0.0.7 20 permit ip 172.31.1.0 0.0.0.63 172.31.0.128 0.0.0.63 30 permit ip 172.31.1.0 0.0.0.63 172.31.0.192 0.0.0.63 Extended IP access list LANV20 10 deny ip 172.31.1.64 0.0.0.63 172.31.2.16 0.0.0.7 20 deny ip 172.31.1.64 0.0.0.63 172.31.2.16 0.0.0.7 40 deny ip 172.31.1.64 0.0.0.63 172.31.2.8 0.0.0.7 40 deny ip 172.31.1.64 0.0.0.63 172.31.2.8 0.0.0.7 60 permit ip any any Standard IP access list 3 10 permit host 172.31.0.0 Ro_Cundinamarca#

 Solo los hosts de las VLAN administrativas y de la VLAN de servidores tienen accedo a los routers e internet.

Ro_Bucaramanga#conf t

Enter configuration commands, one per line. End with CNTL/Z. Ro_Bucaramanga(config)#ip access-list extended LANV30 Ro_Bucaramanga(config-ext-nacl)#no permit ip any any Ro_Bucaramanga(config-ext-nacl)#deny ip 172.31.0.64 0.0.0.63 172.31.2.0 0.0.0.7 Ro_Bucaramanga(config-ext-nacl)#permit ip any any Ro_Bucaramanga(config-ext-nacl)#end Ro_Bucaramanga# %SYS-5-CONFIG_I: Configured from console by console

Ro_Bucaramanga#show access-list

Extended IP access list LANV30 10 deny ip 172.31.0.64 0.0.0.63 172.31.2.0 0.0.0.7 20 deny ip 172.31.0.64 0.0.0.63 172.31.2.16 0.0.0.7 30 deny ip 172.31.0.64 0.0.0.63 172.31.2.128 0.0.0.63 40 deny ip 172.31.0.64 0.0.0.63 172.31.2.192 0.0.0.63 50 deny ip 172.31.0.64 0.0.0.63 172.31.2.8 0.0.0.7 60 deny ip 172.31.0.64 0.0.0.63 172.31.1.64 0.0.0.63 70 deny ip 172.31.0.64 0.0.0.63 172.31.1.0 0.0.0.63 80 deny ip 172.31.0.64 0.0.0.63 172.31.2.24 0.0.0.7 90 deny ip 172.31.0.64 0.0.0.63 172.31.0.128 0.0.0.63 100 deny ip 172.31.0.64 0.0.0.63 172.31.0.192 0.0.0.63 110 permit ip any any Extended IP access list LANV10 10 permit ip 172.31.0.0 0.0.0.63 172.31.1.0 0.0.0.63 20 permit ip 172.31.0.0 0.0.0.63 172.31.0.128 0.0.0.63 Ro_Bucaramanga#

6. VLSM: utilizar la dirección 172.31.0.0 /18 para el direccionamiento.

Aspectos a tener en cuenta

- Habilitar VLAN en cada switch y permitir su enrutamiento.
- Enrutamiento OSPF con autenticación en cada router.
- Servicio DHCP en el router Tunja, mediante el helper address, para los routers Bucaramanga y Cundinamarca.
- Configuración de NAT estático y de sobrecarga.
- Establecer una lista de control de acceso de acuerdo con los criterios señalados.
- Habilitar las opciones en puerto consola y terminal virtual

Conclusiones

Es importante tener el conocimiento para subnetear la red, ya que este es el punto inicial para configurar una red y si al momento de construir las subredes se realiza de una manera no apropiada, se puede desperdiciar direcciones que no van a ser utilizadas o es posible que la red sea lenta por una configuración innecesaria.

Una red puede ser vulnerada de diferentes maneras, por ello es importante colocar varios niveles de seguridad, así como se colocó claves de acceso a los Routers y los Switch, de manera que sólo los usuarios que estén autorizados (que tengan la clave) puedan acceder a realizar configuraciones y obtener información.

Para complementar la seguridad se utiliza las listas de control de acceso (ACL) en cada router, de manera que haya mayor control en el acceso entre los equipos de la red.

Bibliografía

- Ariganello, E. (s.f.). *Blog CNNA. Configuración de EIGRP*. Obtenido de https://aprenderedes.com/2006/10/configuracion-de-eigrp/
- Ariganello, E. (s.f.). *Blog CNNA.Aprende redes. Proceso de configuración de ACL*. Obtenido de https://aprenderedes.com/2006/11/proceso-de-configuracion-de-acl/
- Cisco. (2014). *Enrutamiento Dinámico. Principios de Enrutamiento y Conmutación.* Obtenido de https://static-course-assets.s3.amazonaws.com/RSE50ES/module7/index.html#7.0.1.1
- Cisco. (s.f.). Configurar ACL de IP de uso general. Obtenido de https://www.cisco.com/c/es_mx/support/docs/ip/access-lists/26448-ACLsamples.html#anc5
- Prieto, R. (s.f.). *Blog. Configuración de ACLs con Packet Tracer*. Obtenido de https://www.raulprietofernandez.net/blog/packet-tracer/configuracion-de-acls-con-packet-tracer