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Abstract: Objective: The aim of this study was to design and propose a new test based on inertial
measurement unit (IMU) technology, for measuring cervical posture and motor control in children
with cerebral palsy (CP) and to evaluate its validity and reliability. Methods: Twenty-four individuals
with CP (4–14 years) and 24 gender- and age-matched controls were evaluated with a new test based
on IMU technology to identify and measure any movement in the three spatial planes while the
individual is seated watching a two-minute video. An ellipse was obtained encompassing 95% of
the flexion/extension and rotation movements in the sagittal and transversal planes. The protocol
was repeated on two occasions separated by 3 to 5 days. Construct and concurrent validity were
assessed by determining the discriminant capacity of the new test and by identifying associations
between functional measures and the new test outcomes. Relative reliability was determined using
the intraclass correlation coefficient (ICC) for test–retest data. Absolute reliability was obtained by
the standard error of measurement (SEM) and the Minimum Detectable Change at a 90% confidence
level (MDC90). Results: The discriminant capacity of the area and both dimensions of the new test
was high (Area Under the Curve ≈ 0.8), and consistent multiple regression models were identified to
explain functional measures with new test results and sociodemographic data. A consistent trend of
ICCs higher than 0.8 was identified for CP individuals. Finally, the SEM can be considered low in
both groups, although the high variability among individuals determined some high MDC90 values,
mainly in the CP group. Conclusions: The new test, based on IMU data, is valid and reliable for
evaluating posture and motor control in children with CP.

Keywords: pediatric neurological disease; inertial sensors; control motor assessment

1. Introduction

Cerebral palsy (CP) is a group of permanent disorders, attributed to a non-progressive damage
during the fetal period or during the first years of life [1], that affects the normal development of
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movement and posture, causing disability and activity limitations [2]. Indeed, CP has been recognized
as the most common origin of permanent physical disability in childhood, affecting between 1 to 3 per
1000 live births in Europe [3,4], and between 3 to 4 cases per 1000 among school-age children in the
US [5]. The diagnosis of CP is mainly based on the clinical presentation of motor function and postural
disorders [2].

Although cerebral palsy is associated with sensory deficits, cognitive, communication, and
behavioral disorders, together with epilepsy and motor function disorders, represent the core
symptoms [2], with spastic paresis being one of the most common forms of presentation [6,7].
This impairs the posture [8] and motor control [9], including the craniocervical region. The negative
consequences of the alterations on posture and motor control of the craniocervical region in CP include,
among others, an exacerbation of any feeding or swallowing disorder by the appearance of abnormal
muscle tone and movement patterns [10]; a deterioration of the visual and vestibular senses, since the
head is responsible for the directional orientation and its movements influence and are influenced by
the information that both sensory faculties provide [11,12]; and, also associated to the alterations of the
cranial senses, an increased risk of falls, because the maintenance of head stability has been identified as
an important part of locomotor activity [13]. Commonly, the assessment tools used for motor disorders
in CP are based on the observation of individual functional abilities [14–16]; however, these measures
are considered subjective [11,17]. Indeed, other specific approaches are also necessary in clinical
settings and in research [11,18] based on the analysis of movement and posture [19].

One of the most used assessment tools to study human position and movements are the inertial
measurement units (IMUs), due to their portability, ease of application, the high quality of obtained
data, and low energy consumption [20]. Nevertheless, as occurs with any new assessment tool,
all the IMU applications should be completely described, reproducible, and validated [20–22] to
establish clinical meaningfulness and predictive importance [19,23,24]. Thus, the IMUs have been
successfully applied in the study of specific features of neurological diseases, such as range of motion
in stroke [25], Parkinsonian tremor [26,27], or balance in multiple sclerosis [28,29]. In neurological
pediatrics, and specifically in lower limbs and gait analysis, the validity and reliability of IMUs has
been demonstrated [30,31]. To date, few studies have evaluated the craniocervical features of IMUs
applications in CP, although those available have obtained good validity and reliability results [17,32].

Thus, the aim of this study was to design and propose a new test based on IMU technology
for measuring cervical posture and motor control in children with CP. Further, the aim included the
determination of the metric features, in terms of validity and reliability, of the new test when applied
in children with CP and healthy controls. We hypothesized that the new test would display good
validity and good test–retest reliability in children with CP and healthy controls, which would allow
its implementation in clinical setting.

2. Materials and Methods

2.1. Individuals

The design of the new test was developmental and descriptive. Subsequently, a clinical
measurement study assessing construct and content validity, and test–retest reliability was performed in
a two-stage repeated measures design, which took place from January 2018 to March 2020. Patients with
CP were recruited from the private Neurological Recovery Center of Córdoba (CEDANE), in Spain,
using non-probabilistic sampling of consecutive cases. The inclusion criteria were children from 4 to
14 years old diagnosed with CP; sufficient cognitive and behavioral skills for understanding tasks and
following simple instructions; Gross Motor Function Classification System (GMFCS) levels I–IV; a level
of 3 or higher in the Manual Muscle Test of cervical muscles [33,34]; clinically stable. The exclusion
criteria were aggressive/self-injurious behavior; uncontrolled epilepsy/seizures (stable epilepsy with
medication for more than 12 weeks); involuntary/uncontrollable head or trunk movement that
prevent the application of the study protocol; orthopedic surgery at least 1 year before the evaluation;
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administration of botulinum toxin at least 6 months before the evaluation; treatment with anti-spasticity
drugs at the time of the assessments; bone deformities, contractures or tactile hypersensitivity that do
not allow the body alignment; severe visual limitations; suffering from pain; participation in other
biomedical research.

A group of control individuals, with no neurological or other impairments, matched for gender
and age (±2 years), were also selected. They were recruited via the researchers’ personal contacts and
from the University of Córdoba (Spain).

The Body Mass Index was determined for all subjects, according to the Z-score of the United
States Centers for Disease Control and Prevention [35]. The CP individuals were classified regarding
the type of movement disorders (e.g., spastic, dyskinetic, ataxic, mixed) [36,37]. Further, the spasticity
was assessed with the modified Ashworth scale for cervical flexor, extensor, and sternocleidomastoid
muscles. This scale has shown acceptable reliability in CP [38], and it is scored as follows. 0: No increase
in muscle tone. 1: Slight increase in muscle tone, manifested by minimal resistance at the end of the
range of motion in flexion or extension. 1+: Slight increase in muscle tone, manifested by minimal
resistance in less than half of the ROM. 2: More marked increase in muscle tone, but affected part(s) can
be easily moved. 3: Considerable increase in muscle tone, passive movement difficult. 4: Affected part(s)
rigid in flexion or extension [39].

All parents or caregivers of study individuals gave their informed consent prior to participating
in the study. This study protocol was approved by the Ethics Committee of Reina Sofía University
Hospital (reference 3680-17, 6 November 2017 approved).

The sample size required to test the concurrent validity between the outcomes of the new test
and functional scores was based on a bilateral Pearson’s correlation coefficient, assuming an expected
correlation of r ≥ 0.60, a level of significance of 5%, and 90% power. Thus, we determined that at
least 21 individuals were necessary in the CP group. In addition, based on previous studies [32,40,41],
and considering an intraclass correlation coefficient (ICC) of 0.8, an accuracy of 0.23, and a level of
significance of 5%, the estimated sample should consist of at least 22 individuals (Tamaño de la muestra
1.1® software (Pontificia Universidad Javeriana, Bogotá, Colombia). Due to the follow-up period,
10% data loss was expected, and 24 individuals were assessed in each group.

2.2. Cervical Motor Control Test Development and Application

To develop the new test, a literature research and two proofs of concept were performed
to improve the content validity of the new test [42]. The first proof of concept consisted of the
assessment of the protocol feasibility in two children, one of which was a CP patient and one of
which was a healthy child. Both assessments were recorded and submitted to a focus group of
four experienced professionals from diverse healthy science backgrounds (pediatric physical therapy
(Cristina Carmona-Pérez), musculoskeletal physical therapy (Daiana Priscila Rodrigues-de-Souza),
research methodology (F.A.-S.), and biomechanical engineering (Juan L. Garrido-Castro). The size
of the group was restricted to facilitate discussion. The second proof of concept aimed to test the
IMU protocol regarding the collection, extraction, transfer, and analysis of data. One more assessment
was performed in a healthy child, and all data were analyzed by the biomechanics engineer (Juan L.
Garrido-Castro) who participated in the first proof of concept and a computing engineer (Francisco
Torres Vidal). The recorded raw data based on flexion/extension and rotation angles were plotted and
following a covariance calculation, an eigenvalues and chi-square distribution were used to define the
ellipse, which bounds 95% of the raw data. On the basis of the focus group discussion and the second
proof of concept, the preliminary test was refined, resulting in the final version that was used in this
study, as described below.

The general recommendations for assessments in children were applied. Thus, relatives or
caregivers who were functionally involved and part of the daily relationship (relatives/caregiver/child)
were included in the procedures [43,44]. The evaluation was performed in a quiet room, in which the
assessors and relatives/caregiver were present, alongside the study individual. No other people were
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present. The individual was seated on a non-swivel chair in a standardized manner. The chair was
adapted in length, width, and height to the anthropometric characteristics of each child, and straps
and other orthopedic elements were used when necessary to secure and reproduce the body alignment
according to the usual posture of the child. Moreover, the child and the caregivers were asked to report
any discomfort while seated. A flexible and adjustable strap was attached to the head to support an
IMU Shimmer3 ® sensor placed on the individual’s forehead. The sensor captured the orientation
in the three planes of movement at 50 Hz, and it was connected to an android mobile phone using
iUCOTrack© software (iSAB, Córdoba, Spain) [45,46] for the acquisition and processing of the raw
data. To calibrate the IMU, at the beginning of the test, the child was instructed to keep the eyes fixed on
the monitor of a laptop (17” screen), placed 1 m in front of the child (Figure 1). The assessor observed
that there were no deviations from this position, which was determined as the initial static position,
from which the differences in the three planes of movement were collected. Next, a two-minute
video, chosen by the child among various cartoons and music videos, was shown to the individual.
Specific instructions were given to the individual to perform the test, as follows: “You will be watching
the video for 2 min, and you have to be as still as possible”. The individuals were also instructed
to avoid shoulder or thoracic movements. They were asked whether any pain appeared during the
evaluation. In the event of pain, the procedures were interrupted. All tests were performed by an
experienced physiotherapist (C.C-P.), with over 15 years’ experience working with CP patients.
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Figure 1. Inertial measurement unit (IMU) test application: sensor, subject, and laptop location.

For reliability purposes, data were collected on two different occasions, 3 to 5 days apart,
applying the same protocol. On the second day, the assessor was blinded to all previous data [20].

The first 10 s of the test were removed for the data processing of each test. Subsequently, a Butterworth
low-pass frequency filter of 10 Hz was applied. The variables obtained can be divided into two types.
The first type is the characterization of the registered movements, considering angle (in relation to the
initial position), angular velocity, angular acceleration in the three planes, and total angle distance
covered during the test. The Root Mean Square (RMS) of the angular displacement, as well as its
velocity and acceleration, were analyzed in each plane and summarized. Besides the movement per
plane (sagittal-flexion/extension, transverse-rotation, coronal-lateral bending), a mean angle, as the
mean of the three orientation angles, was calculated. The second type includes the components of an
ellipse obtained by calculating the eigenvalues of the covariance matrix between the flexion/extension
and rotation angle that covers 95% of the data (Figure 2). The area of the ellipse, the angle (direction
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of the principal axis), the size of its flexion/extension displacements on the ellipse (A-dimension),
and measures related to rotation displacements (B-dimension) were the dependent variables. Diagnostics 2020, 10, x FOR PEER REVIEW  5 of 19 
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Figure 2. Ellipse encompassing 95% of the flexion/extension and rotation displacements for control
and cerebral palsy (CP) individuals.

2.3. Funcional Assessment

To evaluate the functional state in CP individuals, two approaches were applied. First, for assessing
the execution of motor sills, the Gross Motor Function Measure (GMFM-88) was applied [47].
The GMFM-88 consists of 88 items grouped into five dimensions: A (lying and rolling, composed of
17 items), B (sitting, composed of 20 items), C (crawling and kneeling, composed of 14 items),
D (standing, composed of 13 items), and E (walking, running, and jumping, composed of 24 items).
Each item is scored on a Likert scale (4 points for each item). A percentage score is calculated for
each dimension. Overall scores can also be calculated as the mean of the five dimension scores [48].
The reliability, validity, and responsiveness of the GMFM-88 scores are documented for children
with cerebral palsy [49,50]. The Spanish version of the GMFM-88, which has shown excellent
reliability, for inter-assessor (ICC = 0.998–1; 95% confidence interval (95% CI) = 0.986–1), intra-assessor
(ICC = 0.999–1; 95% CI = 0.999–1) and test–retest (ICC = 0.991–1; 95% CI = 0.971–1), both by dimensions
and total score, was used in this study [51,52].

Subsequently, the Pediatric Evaluation of Disability Inventory (PEDI) was applied to assess
the performance of activities relevant to daily function in both activity and participation domains.
The PEDI evaluates 197 specific tasks divided into three domains: Self-Care (composed of 73 items),
Mobility (composed of 59 items), and Social Function (composed of 65 items). All the items in each
domain are scored as follows: a score of 1 indicates capability of performing the described task
independently; a score of 0 indicates inability to perform a task or requiring assistance. The sum
of scores on each item for each domain is calculated, and finally, the global score is obtained by
the sum of the three domain scores. The PEDI has shown good psychometric properties [50,53].
The Spanish version of the PEDI, which has shown high internal consistency (Cronbach’s alpha = 0.930;
95% CI = 0.890–0.950) and excellent test–retest reliability (ICC = 0.980, 95% CI = 0.982–0.993 for
the Self-Care domain; ICC = 0.990, 95% CI = 0.990–0.996 for the Mobility domain; ICC = 0.980,
95% CI = 0.972–0.990 for the Social Function), was used in this study [54].
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2.4. Statistical Analysis

Frequencies, percentages, means, standard deviations, and 95% CI were used for describing
quantitative and qualitative variables. The normality of the quantitative variables was tested and
confirmed using the Shapiro–Wilk test (p > 0.05).

2.4.1. Validity Analysis

Construct validity was determined in two different manners by comparing the outcomes of the
new test obtained during the assessment on the first day between CP individuals and the control
group. First, the differences in outcome data between both groups were identified using unpaired
t-tests. Secondly, also, a Receiver Operating Characteristic (ROC) curve was applied to assess whether
the new test data were able to discriminate between CP individuals and controls. The Area Under the
Curve (AUC) and the statistical significance of the ROC curve were reported. Furthermore, the same
analyses were performed between the non-wheelchair user individuals (GMFS I–II) and wheelchair
user individuals (GMFS III–IV) of the CP group. In this case, the Mann–Whitney U test was applied to
compare both subgroups of CP individuals.

To assess concurrent validity, in the CP group, the Pearson’s correlation coefficient (r) was applied
among sociodemographic data and outcomes obtained during the first day assessment, GMFM and
PEDI domains, and total scores. Correlation coefficient values were considered as weak (0.0 to 0.3),
moderate (0.4 to 0.6), or strong (0.7 to 1.0) [55]. Furthermore, the new test results, along with the
sociodemographic data, were included in a stepwise multiple regression model to estimate whether
these variables can explain the variance of the functional state (GMFM-88 total score and PEDI total
score) of the individuals. Multicollinearity and shared variance were assessed, defined as r > 0.80
between the variables. A p-value of 0.05 was set as the significance criterion of the critical F value for
entry into the regression equation. The changes in R2 were reported after each step of the model.

2.4.2. Reliability Analysis

The relative test–retest reliability of new test outcomes, based on the assessments performed on
different days, was determined by calculating ICC for test–retest reliability (ICC2,1) in each group [56].
ICC values below 0.20 were considered poor, from 0.21 to 0.40 were considered reasonable, from 0.41
to 0.60 were moderate, from 0.61 to 0.80 were good, and from 0.81 to 1.00 were very good [41].
Paired t-tests were also used to analyze the differences between outcome data between both days.

The absolute reliability was assessed using the standardized error of measurement (SEM),
which was calculated as SEM = SDpooled × (1 − ICC), where SDpooled is the standard deviation of
the scores, and the minimum detectable change (MDC) at 90% confidence level was calculated as
SDC = 1.96 ×

√
2 × 1.64.

The SEM provides a value for the random measurement error in the same unit as the measurement
itself, which quantifies the variability within the individual and reflects the amount of measurement
error among assessments [57,58]. The MDC is an estimate of the smallest amount of change
that can be objectively detected as a true change outside the measurement error when separate
measures are performed [57,59]. Furthermore, the MDC90 was used to determine the effectiveness of
interventions [40].

All hypothesis tests were considered significant if p was less than 0.05, because the validity and
reliability analyses were based on independent a priori hypotheses [60]. The data were managed and
analyzed with IBM-SPSS®, version 25.

3. Results

The present study included 24 children in the CP group and 24 children in the control group.
The mean age of the sample was 9.0± 3.3 years. In total, 62.5% of the CP individuals were non-wheelchair
users (GMFCS levels I–II), whereas 37.5% were considered wheelchair users (GMFCS levels III–IV).
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Regarding the type of movement disorders in the CP group, 83.3% of the individuals were spastic,
while 12.5% were dyskinetic, and 4.2% were classified as mixed. None of the individuals presented
a score of more than 2 in the modified Ashworth scale in any cervical muscle group, and none
of the individuals suffered from pain while undergoing the evaluations. Table 1 displays detailed
descriptive data.

Table 1. Demographic and clinical characteristics of the individuals.

CP Group (n = 24) Control Group (n = 24) p-Value

Age (years) 9.1 (3.0) 8.8 (3.2) 0.720
Sex (women/men) 15/9 15/9

Weight (kg) 28.5 (12.9) 33.2 (14.0) 0.250
Height (m) 1.33 (0.22) 1.35 (0.23) 0.736

BMI (Z-score) −0.15 (1.19) 0.08 (1.30) 0.171
GMFCS level (frequency) I: 11; II: 4; III: 1; IV: 8 - -
Type of motor disorder

(frequency)
Spastic: 20; Dyskinetic: 3;

Ataxic: 0; Mixed: 1 - -

GMFM-88 - -
Dimension A 81.7 (24.3) - -
Dimension B 73.5 (32.9)
Dimension C 62.8 (39.4)
Dimension D 54.2 (39.4)
Dimension E 46.1 (38.3) - -

Total score 63.6 (33.7) - -
PEDI - -

Self-Care 24.1 (13.52) - -
Mobility 20.1 (12.8) - -

Social Function 18.8 (7.3) - -
Total Score 63.0 (32.1) - -

Quantitative data are expressed as mean (standard deviation). Abbreviations: CP, cerebral palsy; GMFCS, Gross motor
function classification system; GMFM-88, Gross Motor Function Measure; PEDI, Pediatric Evaluation of Disability
Inventory; BMI, body mass index; “-” means that no value is necessary.

3.1. Construct Validity

Considering the characterization of the movement variables, the angular movement in each plane
and the mean was significantly greater in the CP group. Although the remaining variables were also
greater in the CP group, statistical differences were not observed, which was probably due to the
high variability of data. The same trend was identified in the ellipse variables, where all means were
higher in the CP group, although the statistical significance was exclusively observed for the Area,
A-dimension, and B-dimension (Table 2).

The highest discrimination between case and controls was shown by B-dimension and the
area of the ellipse (Area Under the Curve (AUC) > 0.8). The A-dimension also achieved statistical
significance, with Distance and Angle of the ellipse without discriminant capacity (AUC ≈ 0.5).
The Receiver Operating Characteristic (ROC) curve of the summarized variables of the characterization
of movements showed that only the mean angle was able to discriminate between CP and control
individuals (AUC = 0.746; p < 0.05) (Supplementary Materials Figure S1).

None of the variables concerning characterization of the movement were able to discriminate
non-wheelchair users and wheelchair users, whereas the AUCs of the Area and A-dimension were
statistically significant (AUC = 0.708 and 0.808, respectively) (Supplementary Materials Figure S2).
The only variable that revealed statistical differences between both subgroups of CP individuals were
the flexion-extension angle and the A-dimension of the ellipse.
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Table 2. Comparison of the new test results obtained on the first day between the CP and control groups.

CP Group
(n = 24)

Control Group
(n = 24) Mean Difference (95% CI) p-Value

Movement characteristics
Flexion-extension angle (◦) 8.59 (8.69) 3.93 (2.88) −4.66 (−8.56; −0.75) 0.021

Rotational angle (◦) 10.29 (11.30) 2.57 (2.53) −7.72 (−12.70; −2.75) 0.004
Lateral angle (◦) 7.16 (6.01) 2.59 (2.36) −4.57 (−7.32; −1.83) 0.002
Mean angle (◦) 8.68 (7.78) 3.03 (2.20) −5.65 (−9.11; −2.19) 0.002

Flexion-extension velocity (◦/s) 8.77 (9.92) 4.85 (3.97) −3.92 (−8.45; 0.61) 0.087
Rotational velocity (◦/s) 10.35 (14.64) 4.24 (5.75) −6.11 (−12.79; 0.57) 0.071

Lateral velocity (◦/s) 8.22 (9.25) 4.72 (4.22) −3.49 (−7.79; 0.81) 0.107
Mean velocity (◦/s) 9.11 (11.13) 4.61 (4.56) −4.51 (−9.61; 0.59) 0.081

Flexion-extension acceleration (◦/s2) 128.75 (157.13) 107.92 (75.53) −20.82 (−94.40; 52.75) 0.568
Rotational acceleration (◦/s2) 128.54 (175.01) 91.48 (62.83) −37.06 (−116.23; 42.11) 0.345

Lateral acceleration (◦/s2) 142.52 (159.44) 121.98 (92.79) −20.53 (−97.85; 56.78) 0.593
Mean acceleration (◦/s2) 133.27 (162.05) 107.13 (75.02) −26.14 (−101.60; 49.32) 0.485

Ellipse variables
Distance (◦/s) 11.61 (13.75) 6.43 (4.86) −5.18 (−11.39; 1.04) 0.099

Area (◦2) 857.18 (1374.52) 91.33 (206.35) −765.85 (−1364.98; −166.72) 0.015
Angle (◦) 7.01 (27.01) 0.64 (21.80) −6.38 (−20.59; 7.83) 0.371

A-dimension (◦) 12.34 (12.24) 4.59 (3.32) −7.75 (−13.18; −2.31) 0.007
B-dimension (◦) 13.25 (13.96) 3.65 (5.11) −9.60 (−15.92; −3.27) 0.004

Data are expressed as mean (standard deviation). Abbreviations: CP, cerebral palsy; CI, confidence interval.

3.2. Concurrent Validity

A consistent trend of moderate and strong associations between the functional scores and the
results of the new test was detected. Thus, flexion-extension angle, mean angle, lateral velocity,
and angle and Dimension-A of the ellipse were correlated to all the GMFM-88 dimensions and total
score. On the contrary, flexion-extension acceleration, rotational acceleration, and Dimension-B of the
ellipse were not associated to any GMFM-88 result (Table 3).

For PEDI, all the results of the new tests were correlated with the PEDI Self-Care domain, and with
all PEDI domains and total score in many cases. Furthermore, the Self-Care domain was correlated
with all the new test outcomes. This pattern included some strong correlation coefficients involving
flexion-extension angle root mean square error (RMSE) and Dimension-A of the ellipse and PEDI
scores (Table 3).

Table 4 summarizes the hierarchical regression analysis for both functional total scores.
For the GMFM-88 total score, the model achieved a 63.8% explanation of variance including the
flexion-extension angle RMSE and two sociodemographic variables. Thus, the regression coefficients
showed that lower flexion-extension movement (explaining 43%), age, and higher height were
associated with higher GMFM-88 values. In this case, no variable of the ellipse was included in
the model.

When the PEDI total score was considered the dependent variable, a model including two variables
of the ellipse, the rotational acceleration and age, explained 83.3% of the variance. Thus, the regression
coefficients showed that a more reduced area (explaining 56%) and distance of the ellipse, age, and
higher rotation acceleration were associated with higher PEDI values.
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Table 3. Correlations between sociodemographic, new test outcomes, and functional scores in the CP group (n = 24).

Dimension
A

Dimension
B

Dimension
C

Dimension
D

Dimension
E

GMFM-88
Total Score Self-Care Mobility Social Function PEDI Total Score

Age n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s.
Weight n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s.
Height n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s.

BMI n.s. n.s. n.s. n.s. n.s. n.s. 0.414; 0.048 n.s. 0.596; 0.003 0.442; 0.035

Flexion-extension angle −0.738;
<0.001

−0.677;
<0.001 −0.615; 0.002 −0.589; 0.003 −0.626; 0.001 −0.663; 0.001 −0.723; <0.001 −0.702; <0.001 −0.590; 0.003 −0.715; <0.001

Rotational angle −0.446; 0.033 n.s. n.s. n.s. −0.432; 0.040 n.s. −0.575; 0.004 −0.472; 0.023 −0.583; 0.004 −0.561; 0.005
Lateral angle n.s. n.s. n.s. n.s. −0.465.026 n.s. −0.476; 0.022 −0.419; 0.046 −0.463; 0.026 −0.472; 0.026
Mean angle −0.569; 0.005 −0.523; 0.010 −0.478; 0.021 −0.451; 0.031 −0.562; 0.005 −0.530; 0.009 −0.670; <0.001 −0.597; 0.003 −0.622; 0.002 −0.660; 0.001

Flexion-extension velocity −0.516; 0.012 −0.447; 0.032 −0.415; 0.049 −0.348 −0.434; 0.034 −0.439; 0.036 −0.574; 0.004 −0.479; 0.021 −0.516; 0.012 −0.549; 0.007
Rotational velocity n.s. n.s. n.s. n.s. n.s. n.s. −0.500 n.s. −0.490 n.s.

Lateral velocity −0.557; 0.006 −0.508; 0.013 −0.467; 0.025 −0.415; 0.049 −0.480; 0.020 −0.495; 0.016 −0.621; 0.002 −0.535; 0.009 −0.573; 0.004 −0.604; 0.002
Mean velocity −0.472; 0.023 −0.414; 0.048 n.s. n.s. −0.428; 0.041 −0.416; 0.048 −0.562; 0.005 −0.462; 0.026 −0.527; 0.010 −0.539; 0.008

Flexion-extension
acceleration n.s. n.s. n.s. n.s. n.s. n.s. −0.427; 0.042 n.s. n.s. n.s.

Rotational acceleration n.s. n.s. n.s. n.s. n.s. n.s. −0.442; 0.035 n.s. n.s. −0.417; 0.046
Lateral acceleration −0.521; 0.011 −0.472; 0.023 −0.426; 0.042 n.s. n.s. −0.443; 0.034 −0.573; 0.004 −0.477; 0.021 −0.542; 0.008 −0.553; 0.006
Mean acceleration −0.432; 0.039 n.s. n.s. n.s. n.s. n.s. −0.485; 0.019 n.s. −0.443; 0.034 −0.459; 0.028

Distance −0.481; 0.020 −0.423; 0.044 n.s. n.s. −0.424; 0.044 −0.418; 0.047 −0.560; 0.005 −0.462; 0.026 −0.526; 0.010 −0.538; 0.008
Area −0.578; 0.004 −0.504; 0.014 −0.461; 0.027 n.s. −0.477; 0.021 −0.489; 0.018 −0.640; 0.001 −0.545; 0.007 −0.606; 0.002 −0.623; 0.001

Angle −0.417; 0.048 −0.478; 0.021 −0.429; 0.041 −0.453; 0.030 −0.439; 0.036 −0.460; 0.027 −0.470; 0.024 −0.495; 0.016 −0.516; 0.016 −0.511; 0.016

A-dimension −0.711;
<0.001 −0.649; 0.001 −0.595; 0.003 −0.568; 0.005 −0.639; 0.001 −0.647; 0.001 −0.754; <0.001 −0.703; <0.001 −0.700; <0.001 −0.748; <0.001

B-dimension n.s. n.s. n.s. n.s. n.s. n.s. −0.540; 0.008 −0.423; 0.044 −0.575; 0.004 −0.525; 0.010

Data are expressed as r correlation coefficient (p-value). Abbreviations: CP, cerebral palsy; GMFM−88, Gross Motor Functional Measure; n.s.: not significant; BMI indicates body mass index.
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Table 4. Summary of the stepwise regression analyses to determine predictors of functional state
(GMFM-88 and PEDI total scores) of CP individuals (n = 24).

Predictor Variables B Standard
Error B 95% CI B t p R2

Adjusted

GMGM-88
total score

Step 1 Flexion-extension angle −2.569 0.633 −3.885, −1.254 −0.663 −4.062 0.001 0.413

Step 2
0.548Flexion-extension angle −2.734 0.587 −3.959, −1.508 −0.706 −4.653 <0.001

Age −3.428 1.573 −6.708, −0.147 −0.331 −2.180 0.041

Step 3

0.638
Flexion-extension angle −2.607 0.542 −3.741, −1.472 −0.673 −4.809 <0.001

Age −8.634 2.791 −14.485, −2.800 −0.833 −3.096 0.006
Height 100.671 46.130 4.121, 197.222 0.591 2.182 0.042

PEDI total score

Step 1
0.560Area −1.963 0.380 −2.753, −1.173 −0.748 −5.170 <0.001

Step 2
0.653Area −3.037 0.577 −4.242, −1.833 −1.158 −5.261 <0.001

Rotational acceleration 0.094 0.040 0.010, 0.178 0.511 2.322 0.031

Step 3

0.790
Area −2.747 0.508 −3.814, −1.681 −1.047 −5.412 <0.001

Rotational acceleration 0.255 0.068 0.111, 0.398 1.387 3.721 0.002
Age −2.265 1.078 −4.530, –0.001 −0.229 −2.102 0.050

Step 4

0.833
Area −2.486 0.484 −3.502, −1.470 −0.947 −5.139 <0.001

Rotational acceleration 0.357 0.082 0.186, 0.529 1.946 4.373 <0.001
Age −3.012 0.967 −5.043, −0.981 −0.304 −3.116 0.006

Distance −3.837 1.158 −6.270, −1.405 −1.643 −3.314 0.004

Abbreviations: CP, cerebral palsy; GMFM−88, Gross Motor Functional Measure; PEDI, Pediatric Evaluation of
Disability Inventory.

3.3. Test–Retest Reliability

In general, the reliability analysis determined that the ICCs were higher in the CP group than
in the control group. Specifically, the ICCs of the CP group ranged from 0.82 to 0.94, except for the
Angle and A-dimension of the ellipse, which were lower. For the control group, the values were
more variable, ranging from 0.51 to 0.94. The highest values were showed by angle RMSE and area
and A-dimension of the ellipse (ICC > 0.9). The 95% CI of all outcomes and both groups showed a
trend of (upper limit: ICC + 0.3, lower limit: ICC − 0.3), with the exceptions of lateral and rotational
accelerations RMSE, and distance and angle of the ellipse, of the control group, which showed a higher
amplitude of the 95% CI. No differences were detected between data obtained on both days for any
outcomes and for both groups (p > 0.05).

The absolute reliability data were variable, with the SEM of angular movements below 3.2◦,
and the velocity equal or below 4.0◦/s for both groups in all cases. For the ellipse variables, the SEM
were higher for the CP group. This trend was also observed for the MDC90 with higher values for the
CP group, which was associated with the variability of the results among individuals. All reliability
results were included in Table 5.
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Table 5. Test–retest reliability of the new test outcomes.

Intra-Day Reliability

Spatial Plane
Second Day

Data (Standard
Deviation)

ICC (95% CI) SEM MDC90

CP group (n = 24)

Flexion-extension angle (◦) 8.29 (6.30) 0.826 (0.579, 0.928) 3.13 7.25
Rotational angle (◦) 8.50 (8.48) 0.918 (0.804, 0.966) 2.83 6.57

Lateral angle (◦) 6.67 (6.16) 0.821 (0.566, 0.926) 2.58 5.97
Mean angle (◦) 7.82 (6.22) 0.923 (0.817, 0.968) 1.94 4.51

Flexion-extension velocity (◦/s) 9.81 (9.00) 0.921 (0.812, 0.967) 2.66 6.16
Rotational velocity (◦/s) 11.71 (13.03) 0.916 (0.799, 0.965) 4.00 9.30

Lateral velocity (◦/s) 8.67 (8.21) 0.889 (0.731, 0.954) 2.91 6.75
Mean velocity (◦/s) 10.06 (9.88) 0.919 (0.805, 0.966) 2.99 6.93

Flexion-extension acceleration (◦/s2) 146.09 (153.44) 0.914 (0.795, 0.964) 45.54 105.61
Rotational acceleration (◦/s2) 138.06 (138.83) 0.882 (0.714, 0.951) 54.91 125.02

Lateral acceleration (◦/s2) 141.31 (127.34) 0.854 (0.645, 0.939) 54.79 127.07
Mean acceleration (◦/s2) 141.82 (137.58) 0.892 (0.739, 0.955) 49.23 114.19

Distance (◦/s) 11.83 (11.20) 0.929 (0.829, 0.971) 3.32 7.71
Area (◦2) 944.56 (1599.32) 0.901 (0.761, 0.959) 467.85 1085.09
Angle (◦) −2.48 (22.44) 0.595 (0.334, 0.618) 15.74 36.50

A-dimension (◦) 13.11 (10.67) 0.770 (0.439, 0.905) 5.49 12.74
B-dimension (◦) 14.35 (16.72) 0.941 (0.860, 0.976) 3.73 8.64

Control group (n = 24)

Flexion-extension angle (◦) 4.45 (4.49) 0.652 (0.388, 0.850) 2.18 5.04
Rotational angle (◦) 2.45 (2.38) 0.894 (0.757, 0.954) 0.80 1.86

Lateral angle (◦) 2.08 (1.64) 0.774 (0.486, 0.901) 0.95 2.21
Mean angle (◦) 2.99 (2.43) 0.934 (0.849, 0.972) 0.59 1.38

Flexion-extension velocity (◦/s) 4.13 (2.23) 0.704 (0.332, 0.870) 1.69 3.91
Rotational velocity (◦/s) 3.22 (3.48) 0.839 (0.631, 0.930) 1.85 4.29

Lateral velocity (◦/s) 4.02 (2.37) 0.656 (0.321, 0.850) 1.93 4.48
Mean velocity (◦/s) 3.79 (2.49) 0.751 (0.437, 0.891) 1.76 4.08

Flexion-extension acceleration (◦/s2) 98.09 (60.10) 0.637 (0.365, 0.843) 40.86 94.76
Rotational acceleration (◦/s2) 77.84 (55.80) 0.578 (0.048, 0.816) 38.53 89.37

Lateral acceleration (◦/s2) 105.27 (62.22) 0.495 (0.000, 0.780) 54.08 127.74
Mean acceleration (◦/s2) 93.74 (56.87) 0.587 (0.263, 0.820) 42.38 98.29

Distance (◦/s) 5.45 (2.86) 0.522 (0.000, 0.791)) 2.67 6.19
Area (◦2) 82.59 (214.80) 0.927 (0.831, 0.968) 56.89 131.96
Angle (◦) 3.02 (20.41) 0.514 (0.000, 0.792) 14.71 34.13

A-dimension (◦) 4.98 (3.58) 0.944 (0.871, 0.976) 0.82 1.89
B-dimension (◦) 3.01 (3.98) 0.841 (0.637, 0.931) 1.81 4.20

Abbreviations: CP, cerebral palsy; IMU, inertial measurement unit; ICC, intraclass correlation coefficient; CI,
confidence interval; SEM, standard error of measurement; MDC, minimum detectable change.

4. Discussion

The application of a new test based on IMU technology for assessing the motor control of
the craniocervical region in CP children has been demonstrated as being both valid and reliable.
Furthermore, no individuals suffered from pain or any other complaint during the execution of the
test, confirming the hypotheses and increasing the possibilities of applying this test in clinical settings.
This new test was able to discriminate between CP individuals and controls, with better results for
some of the ellipse variables. Furthermore, the new test variables were moderate to strongly associated
with functional measures, and these total scores were partially explained by the combination of
movement and ellipse variables of the new test and sociodemographic measures such as age and height.
The relative reliability was very good, and the SEM for both groups were acceptably low. Some MDC90

could be high for test–retest comparisons among CP individuals, and caution is recommended when it
is applied as a parameter to detect the effects of therapeutic interventions.

Previous research has determined the clinical areas of the application of IMUs in CP individuals;
concretely, these have been used for the following: (1) Objective diagnosis of motor disorders;
(2) Proprioceptive rehabilitation based on visual-motor feedback; and (3) Functional compensation by
means of an inertial person–machine interface [17]. Furthermore, instrumented methods, and specifically
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IMUs, may lead to a better understanding of the pathophysiological aspects of CP and help guide clinical
decision making (e.g., quantifying deficits and determining progress in time) [23,61]. The current study
adds a new assessment tool for the diagnosis and assessment of craniocervical posture and motor
control impairments in CP children. This is supported by the capacity to discriminate between cases
and controls, which has reached its maximum capacity in the area and A and B-dimensions of the
ellipse (AUC ≈ 0.8).

Regarding applicability, the design of the test and the absence of complaints reported by individuals
during the assessment demonstrates high feasibility and safety of the protocol, which can be used
outside the laboratory. This characteristic is an important feature of any new instrumented propose
for motor function assessment in cerebral palsy [23]. In this sense, since motivation is a part of any
attendance procedure in CP success, the ellipse obtained by the covariance matrix, its size and form,
affords a form of visual feedback, which is easy to understand for clinicians, patients, and caregivers,
as it has been reported for other applications of IMUs [62,63].

The link between postural control and functionality is well known [8]. The current results of
the new test showed a stable pattern of association with functional parameters in CP individuals,
with this pattern being more evident for the performance of activities relevant to daily function in
both activity and participation domains, assessed with PEDI, rather than the capacity of execution of
motor skills, assessed by the GMFM-88 [64]. Thus, the amount of the flexion-extension movement was
inversely proportional to the execution of motor function, which can be explained by the need of a
constant motor control of the head against gravity to maintain the posture [32]. Although a specific
explanation of the relationship between age and gross motor function is beyond the objective of this
paper, the different demands of the GMFM-88 according to patient age could justify this association.
Interestingly, none of the variables of the ellipse were included in the gross motor function model,
which may be due to a high capacity of the ellipse to detect fine motor control, as these features were
more common in the tasks assessed with PEDI. Indeed, the area of the ellipse was able to explain
over 50% of the variance of the functional abilities assessed with PEDI. Thus, a higher combination
of movements on the sagittal and rotational planes were strongly associated with poorer functional
tasks. Furthermore, when a bivariant approach was observed, the anterior–posterior dimension of
the ellipse was strongly related to all PEDI results. Finally, the specific need for fast motor control
adjustments when the patient is watching the computer screen, which is also necessary in many daily
tasks, could explain the positive relation between function and rotational accelerations [65].

This pattern of association is highly relevant, since the functional questionnaires used in the current
study evaluate the function of the whole body, which highlights the hegemony of the head in many
tasks. Indeed, motor control of the head is relevant for balance [13], including static postures [66,67].
Moreover, the poor motor coordination of the head in CP individuals can be a cause of difficulties in
the planning and executing precise movements [17].

Most of the papers that have studied the validity of IMU applications in CP are focused on lower
limb movements and gait [68–71], which limits their application to individuals with preserved gait.
Our approach extends the validity assessment of motor control to subjects with GMFCS III and IV in
a consistent approach. Furthermore, a lower validity of IMU applications concerning the rotational
plane has been reported for determining the craniocervical range of motion in CP [32] and healthy
individuals [65], which was not detected in the current study.

It has been reported that one of the strong points of IMUs is the high reliability trend of the
assessments and the low errors of measurement: in general, between 2◦ and 5◦ [20,72]. The relative
test–retest analysis of the new test was, for almost all the variables, very good in the case of CP
individuals, and good to very good in controls. In addition, the SEM, as a measure of absolute
reliability, can be considered acceptable, since all angular values were below 4◦ in both groups. This can
be considered a reference point, since the other characteristics of the movement, such as velocity or
acceleration, are derived from the angular movements. Nevertheless, the MDC90 of CP individuals
were higher than the MDC90 of controls—in some cases by more than 100%. In line with previous
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research findings involving IMUs [32], high MDC90 hampers their applicability to detect an effect
when a therapeutic intervention is applied in research or clinical settings. The pattern of high relative
reliability with less absolute reliability, mainly in CP individuals, is probably due to the high variability
of the movement evaluations [73]. In fact, ICC increases with higher between-individual variance [59].
The heterogeneity of the level of patients’ affectation, the variation of spasticity states [74], and the
training effect between both assessments [75] could explain part of the variability. Further research
should identify whether more homogeneous subgroups show lower MDC.

Despite the promising results of the current study, some limitations were identified. First, the new
test exclusively evaluates the craniocervical region, although all body regions can be affected by losses
of motor function in CP patients. Nevertheless, limbs are usually more affected than the craniocervical
region in children with severe CP [76], which could reduce the feasibility of the new assessment
approaches. Thus, the craniocervical region can be identified as a good reference for the performance
of motor control evaluations, as proposed in other research [17,19]. Second, as previously commented,
the metric features of any assessment tool are population specific. Indeed, the applicability of the
new test is limited to similar samples. More research is necessary to apply these results to other age
ranges or populations with specific levels of functional impairment. Third, the current study only
assessed the craniocervical motor control in a specific, simple, and controlled setting, which cannot
be extrapolated to more complex tasks and different conditions [20]. In summary, further research is
necessary, considering more complex assessment protocols and different populations, with the aim of
standardizing technical procedures and obtaining normative data [65].

5. Conclusions

The new test for measuring cervical posture and motor control, based on IMU technology, is valid
and reliable for CP children. However, caution is recommended when applying this test to detect the
effects of an intervention. Its application in clinical settings can be considered feasible, providing a
visual feedback that is easy to understand.

Supplementary Materials: The following are available online at http://www.mdpi.com/2075-4418/10/9/661/s1.
Figure S1: Receiver operating characteristic (ROC) curve of the ellipse variables to discriminate between cerebral
palsy individuals and controls; Figure S2: Receiver operating characteristic (ROC) curve of the ellipse variables to
discriminate between non-wheelchair users and wheelchair users.
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