
Universidad de Córdoba

Programa de Doctorado en Computación
avanzada, energía y plasmas

Nuevos retos en clasificación asociativa: Big
Data y aplicaciones

New challenges on associative classification: Big Data and

applications

Memoria de tesis presentada por
Francisco Padillo Ruz

como requisito para optar al
grado de doctor en Informática

Directores
Sebastián Ventura Soto
José María Luna Ariza

14 de mayo de 2020

TITULO: New challenges on associative classification: Big Data and applications

AUTOR: Francisco Solano Padillo Ruz

© Edita: UCOPress. 2020
Campus de Rabanales
Ctra. Nacional IV, Km. 396 A
14071 Córdoba

https://www.uco.es/ucopress/index.php/es/
ucopress@uco.es

La memoria de Tesis Doctoral titulada "Nuevos retos en clasificación asociativa: Big Data
y aplicaciones", que presenta Francisco Padillo Ruz para optar al grado de Doctor, ha
sido realizada dentro del Programa de Doctorado en Computación, Avanzada, Energía y
plasmas, bajo la dirección de los doctores Sebastián Ventura Soto y José María Luna Ariza,
cumpliendo con los requisitos exigidos a este tipo de trabajos, y respetando los derechos
de otros autores a ser citados, cuando se han utilizado sus resultados o publicaciones.

Córdoba, 13 de mayo de 2020

El Doctorando

Fdo: Francisco Padillo Ruz

Directores

Fdo: Dr. Sebastián Ventura Soto Fdo: Dr. José María Luna Ariza

TÍTULO DE LA TESIS: Nuevos retos en clasificación asociativa: Big Data y
aplicaciones

DOCTORANDO/A: Francisco Solano Padillo Ruz

INFORME RAZONADO DEL/DE LOS DIRECTOR/ES DE LA TESIS
(se hará mención a la evolución y desarrollo de la tesis, así como a trabajos y publicaciones derivados de la misma).

El trabajo realizado por el doctorando durante todo el periodo de investigación ha sido muy

satisfactorio, como bien justifican los resultados obtenidos. Se comenzó trabajando en un modelo

evolutivo basado en MapReduce para extraer reglas de asociación en Big Data, primer paso en

clasificación asociativa. Como resultado, se publicó el modelo en la revista Integrated Computer-

Aided Engineering. Posteriormente, se comenzó a trabajar tanto en la integración de dicho modelo

en un entorno de clasificación asociativa, como en el desarrollo de modelos existentes con los que

realizar comparativas. El nuevo modelo dio lugar a la publicación en la revista Cognitive

Computation. Además, el conjunto de modelos existentes y que representaban el estado del arte

en clasificación asociativa fue unificado en formato librería y publicado en la revista Knowledge-

Based Systems. Por último, destacar que algunas modificaciones de modelos existentes fueron

también publicados en la revista Big Data Analytics, si bien esta no está incluída dentro del JCR.

Además, se han presentado avances de nuestro trabajo en un congreso internacional de Big Data,

como el 4th International Conference on Internet of Things, Big Data and Security, y una

propuesta evolutiva en un congreso internacional como 2017 IEEE Congress on Evolutionary

Computation.

Por todo ello, se autoriza la presentación de la tesis doctoral.

Córdoba, 13 de mayo de 2020

Firma del/de los director/es

Fdo.: José María Luna Ariza Fdo.: Sebastián Ventura Soto

Tesis Doctoral subvencionada por la Comisión Interministerial de
Ciencia y Tecnología (CICYT) con los proyectos TIN2014-55252-P

y TIN-2017-83445-P.

Resumen

La clasificación asociativa surge como resultado de la unión de dos importantes ám-
bitos del aprendizaje automático. Por un lado la tarea descriptiva de extracción de re-
glas de asociación, como mecanismo para obtener información previamente desconocida
e interesante de un conjunto de datos, combinado con una tarea predictiva, como es la
clasificación, que permite en base a un conjunto de variables explicativas y previamente
conocidas realizar una predicción sobre una variable de interés o predictiva. Los objetivos
de esta tesis doctoral son los siguientes: 1) El estudio y el análisis del estado del arte
de tanto la extracción de reglas de asociación como de la clasificación asociativa; 2) La
propuesta de nuevos modelos de clasificación asociativa así como de extracción de reglas
de asociación teniendo en cuenta la obtención de modelos que sean precisos, interpreta-
bles, eficientes así como flexibles para poder introducir conocimiento subjetivo en éstos.
3) Adicionalmente, y dado la gran cantidad de datos que cada día se genera en las últi-
mas décadas, se prestará especial atención al tratamiento de grandes cantidades datos,
también conocido como Big Data.

En primer lugar, se ha analizado el estado del arte tanto de clasificación asociativa
como de la extracción de reglas de asociación. En este sentido, se ha realizado un estudio
y análisis exhaustivo de la bibliografía de los trabajos relacionados para poder conocer con
gran nivel de detalle el estado del arte. Como resultado, se ha permitido sentar las bases
para la consecución de los demás objetivos así como detectar que dentro de la clasificación
asociativa se requería de algún mecanismo que facilitara la unificación de comparativas así
como que fueran lo más completas posibles. Para tal fin, se ha propuesto una herramienta
de software que cuenta con al menos un algoritmo de todas las categorías que componen
la taxonomía actual. Esto permitirá dentro de las investigaciones del área, realizar com-
paraciones más diversas y completas que hasta el momento se consideraba una tarea en
el mejor de los casos muy ardua, al no estar disponibles muchos de los algoritmos en un
formato ejecutable ni mucho menos como código abierto. Además, esta herramienta tam-

7

bién dispone de un conjunto muy diverso de métricas que permite cuantificar la calidad de
los resultados desde diferentes perspectivas. Esto permite conseguir clasificadores lo más
completos posibles, así como para unificar futuras comparaciones con otras propuestas.

En segundo lugar, y como resultado del análisis previo, se ha detectado que las prop-
uestas actuales no permiten escalar, ni horizontalmente, ni verticalmente, las metodologías
sobre conjuntos de datos relativamente grandes. Dado el creciente interés, tanto del mundo
académico como del industrial, de aumentar la capacidad de cómputo a ingentes canti-
dades de datos, se ha considerado interesante continuar esta tesis doctoral realizando un
análisis de diferentes propuestas sobre Big Data. Para tal fin, se ha comenzado realizando
un análisis pormenorizado de los últimos avances para el tratamiento de tal cantidad de
datos. En este respecto, se ha prestado especial atención a la computación distribuida
ya que ha demostrado ser el único procedimiento que permite el tratamiento de grandes
cantidades de datos sin la realización de técnicas de muestreo. En concreto, se ha prestado
especial atención a las metodologías basadas en MapReduce que permite la descomposi-
ción de problemas complejos en fracciones divisibles y paralelizables, que posteriormente
pueden ser agrupadas para obtener el resultado final. Como resultado de este objetivo se
han propuesto diferentes algoritmos que permiten el tratamiento de grandes cantidades
de datos, sin la pérdida de precisión ni interpretabilidad. Todos los algoritmos propuestos
se han diseñado para que puedan funcionar sobre las implementaciones de código abierto
más conocidas de MapReduce.

En tercer y último lugar, se ha considerado interesante realizar una propuesta que
mejore el estado del arte de la clasificación asociativa. Para tal fin, y dado que las reglas
de asociación son la base y factores determinantes para los clasificadores asociativos, se ha
comenzado realizando una nueva propuesta para la extracción de reglas de asociación. En
este aspecto, se ha combinado el uso de los últimos avances en computación distribuida,
como MapReduce, con los algoritmos evolutivos que han demostrado obtener excelentes
resultados en el área. En particular, se ha hecho uso de programación genética gramat-
ical por su flexibilidad para codificar las soluciones, así como introducir conocimiento
subjetivo en el proceso de búsqueda a la vez que permiten aliviar los requisitos com-
putacionales y de memoria. Este nuevo algoritmo, supone una mejora significativa de
la extracción de reglas de asociación ya que ha demostrado obtener mejores resultados
que las propuestas existentes sobre diferentes tipos de datos así como sobre diferentes
métricas de interés, es decir, no sólo obtiene mejores resultados sobre Big Data, sino que
se ha comparado en su versión secuencial con los algoritmos existentes. Una vez que se
ha conseguido este algoritmo que permite extraer excelentes reglas de asociación, se ha
adaptado para la obtención de reglas de asociación de clase así como para obtener un
clasificador a partir de tales reglas. De nuevo, se ha hecho uso de programación genética

8

gramatical para la obtención del clasificador de forma que se permite al usuario no sólo
introducir conocimiento subjetivo en las propia formas de las reglas, sino también en la
forma final del clasificador. Esta nueva propuesta también se ha comparado con los algo-
ritmos existentes de clasificación asociativa forma secuencial para garantizar que consigue
diferencias significativas respecto a éstos en términos de exactitud, interpretabilidad y
eficiencia. Adicionalmente, también se ha comparado con otras propuestas específicas de
Big Data demostrado obtener excelentes resultados a la vez que mantiene un compromiso
entre los objetivos conflictivos de interpretabilidad, exactitud y eficiencia.

Esta tesis doctoral se ha desarrollado bajo un entorno experimental apropiado, ha-
ciendo uso de diversos conjunto de datos incluyendo tanto datos de pequeña dimension-
alidad como Big Data. Además, todos los conjuntos de datos usados están publicados
libremente y conforman un conglomerado de diversas dimensionalidades, número de in-
stancias y de clases. Todos los resultados obtenidos se han comparado con el estado de
arte correspondiente, y se ha hecho uso de tests estadísticos no paramétricos para compro-
bar que las diferencias encontradas son significativas desde un punto de vista estadístico,
y no son fruto del azar. Adicionalmente, todas las comparaciones realizadas consideran
diferentes perspectivas, es decir, se ha analizado rendimiento, eficiencia, precisión así como
interpretabilidad en cada uno de los estudios.

9

Abstract

This Doctoral Thesis aims at solving the challenging problem of associative classifica-
tion and its application on very large datasets. First, associative classification state-of-art
has been studied and analyzed, and a new tool covering the whole taxonomy of algorithms
as well as providing many different measures has been proposed. The goal of this tool is
two-fold: 1) unification of comparisons, since existing works compare with very different
measures; 2) providing a unique tool which has at least one algorithm of each category
forming the taxonomy. This tool is a very important advancement in the field, since until
the moment the whole taxonomy has not been covered due to that many algorithms have
not been released as open source nor they were available to be run.

Second, AC has been analyzed on very large quantities of data. In this regard, many
different platforms for distributed computing have been studied and different proposals
have been developed on them. These proposals enable to deal with very large data in a
efficient way scaling up the load on very different compute nodes.

Third, as one of the most important part of the associative classification is to extract
high quality rules, it has been proposed a novel grammar-guided genetic programming
algorithm which enables to obtain interesting association rules with regard to different
metrics and in different kinds of data, including truly Big Data datasets. This proposal
has proved to obtain very good results in terms of both quality and interpretability, at the
same time of providing a very flexible way of representing the solutions and enabling to
introduce subjective knowledge in the search process. Then, a novel algorithm has been
proposed for associative classification using a non-trivial adaptation of the aforementioned
algorithm to obtain the rules forming the classifier. This methodology is also based on
grammar-guided genetic programming enabling user not only to constrain the form of the
rules, but the final form of the classifier. Results have proved that this algorithm obtains
very accurate classifiers at the same time of maintaining a good level of interpretability.

All the methodologies proposed along this Thesis has been evaluated using a proper
experimental framework, using a varied set of datasets including both classical and Big
Data dataset, and analyzing different metrics to quantify the quality of the algorithms
with regard to different perspectives. Results have been compared with state-of-the-art
and they have been verified by means of non-parametric statistical tests proving that the
proposed methods overcome to existing approaches.

Contents

Part I: Ph.D. Dissertation 1

1. Introduction 1
1.1. Unification: facilitating adoption and comparison with existing approaches 2
1.2. Scalability issues on Big Data problems . 3
1.3. Building accurate, efficient, interpretable and flexible classifiers 5

2. Objectives 7

3. Methodology 9

4. Results 11
4.1. Unification: facilitating adoption and comparison with existing approaches 11
4.2. Scalability issues on Big Data problems . 12
4.3. Building accurate, efficient, interpretable and flexible classifiers 13

5. Conclusions and future works 17
5.1. Conclusions . 17

5.1.1. Unification: facilitating adoption and comparison with existing ap-
proaches . 17

5.1.2. Scalability issues on Big Data problems 18
5.1.3. Building accurate, efficient, interpretable and flexible classifiers . . . 18

5.2. Future works . 19

Bibliography 21

Part II: Journal Publications 25
LAC: Library for Associative Classification . 25

i

Evaluating associative classification algorithms for Big Data 32
A Grammar-Guided Genetic Programming Algorithm for Associative Classifica-

tion in Big Data . 62
Mining Association Rules on Big Data through MapReduce Genetic Programming 81

Publications in conferences 101

ii

Chapter 1
Introduction

The increasing innovation in technology over the last decades has provoked an expo-
nential growth on both the quantity of data being generated, and its complexity [14].
The discovery of high level information and knowledge from these complex large quan-
tities of data has become significantly ambitious and challenging. Knowledge Discovery
in Databases (KDD) is the non-trivial process of extracting implicit, previously unknown
and potentially useful information from a collection of raw data [12]. Additionally, as
technology advances and hardware is improved, more and more data are being able to be
stored, thus, the quantity of data to deal with have increased like never before [10]. Big
Data is the term more and more used to comprise a subset of these techniques focused
on facing up the problems derived from the management and analysis from very huge
quantities of data [5].

Aiming at extracting hidden, interesting and previously unknown information from
large quantities of data, many different techniques have been proposed along the years [12].
Nevertheless, all of them could be categorized in two main groups: descriptive tasks, which
depict intrinsic and important properties of data; and predictive tasks, which predict an
output variable for unseen data. Focusing on the last one, a diverse set of methodologies
could be considered to build accurate models for predicting the output variable: rule-
based systems [19], decision trees [27] and support vector machines [7], just to list a few
of them. Even when all these methodologies have obtained very good results, rule-based
classifiers have stand out thanks to provide a high-level interpretability, while maintaining
a good trade-off in both efficiency and accuracy [20]. Such systems are mainly divided into
two main groups: rule induction [6]; and classification based on Association Rule Mining
(ARM) [2]. While rule induction approaches locally derive rules, AC aims at constructing
global classifiers using techniques from ARM. Very briefly, ARM could be described as
the process of identifying an antecedent (or condition) and a consequent (or output) that

1

have a conditional connection, i.e. if a condition or set of conditions take place, a result
will occur with a large probability.

Classification based on ARM, generally known as Associative Classification (AC),
integrates a descriptive task (ARM) in the process of generating a classifier [19]. Sev-
eral researches have proved that AC has specific advantages over other classification ap-
proaches [31]. AC algorithms are able to obtain accurate and interpretable results in an
efficient way thanks to leveraging association rule discovery methods in the training phase.
This enables to obtain all the possible hidden relationships among the attribute values
which possibly may be missed by other lesser exhaustive methodologies [6]. Furthermore,
AC also enables to update and tune a subset of rules without having to redraw the whole
tree as happens in decision tree approaches [20]. Last but not least, the main advantage
of AC with regard to other techniques is the final model representation, which is formed
by simple and easy to interpretate rules that enables end-user to understand and interpret
the results.

Even when AC has received attention from the research community in the last years [4,
28, 34], to the best of our knowledge there is not a universal tool with enough AC al-
gorithms and even less covering all the diverse taxonomy of types of algorithms [31].
Furthermore, although the state-of-art in AC is very rich and is formed by very efficient
algorithms, there are very few researches on proposes exclusively aimed at solving this
challenging problem on Big Data. Finally, existing approaches have not yet incorpo-
rated both the Big Data branch and new advances on ARM algorithms to obtain flexible,
interpretable and accurate classifiers. The goal of this dissertation is to solve the afore-
mentioned problems. Next, each issue is analyzed in more detail and the motivation and
justification behind them are also provided.

1.1. Unification: facilitating adoption and comparison
with existing approaches

Nowadays there are a very varied set of techniques of AC proposed obtaining very good
results [31], however there has not been almost any effort on standardizing it in one unique
tool or programming language. Until the moment, researchers have focused on proposing
new approaches without performing enough comparison with state-of-art or performing
comparisons which may not be fair enough [1, 16]. Given that very few AC algorithms
are distributed as open source, researchers have compared runtime from other algorithms
using those results published on papers without having into account that the hardware
between themselves and other researchers may be very different [3, 13]. Furthermore,

2

comparisons between algorithms implemented on very different programming languages
have also been performed ignoring the implementation details, and the obtained small
differences may be provoked by this fact and not by differences on the runtime complexity
of the algorithms [35, 38]. Similarly, other kind of researchers have performed comparisons
with some open source algorithms but they are not enough representative because existing
open source tools do not cover the whole taxonomy of algorithms [31]. In this sense, very
well-known existing tools such as KEEL [32] or WEKA [11] provides a subset of these
algorithms but they do not cover the whole taxonomy. Even what is much more important,
KDD community has not been able to adopt many of these algorithms because they are
not released as open source or they use its own complex data format hampering the
adoption.

Finally, related to this very fact of lacking a standardized tool, comparisons among
algorithms are not universally performed, but almost each researcher uses a different set
of metrics. Whereas some researchers perform comparisons having into account accuracy,
they disregard classification on not balanced datasets. In this same regard, the similar
problems happen with interpretability which is differently measured in each work [1].

1.2. Scalability issues on Big Data problems

Algorithms for AC commonly consist of four parts to generate the final classifier. First,
continuous features are discretized. Second, patterns of associations among attributes and
the class are generated by means of exhaustive search algorithms [2], and only those whose
frequency of occurrence is greater than a threshold are selected for the next phase. Third,
association rules are obtained using the previously mined frequent patterns. Fourth and
last, rules are ranked and post-processed to build the final classifier. This methodology
is very well-known and it has been widely used for almost all the state-of-art algorithms.
For instance, CBA [19] and its improved version CBA2 [20] are two examples of AC al-
gorithms that mine association rules by means of exhaustive search algorithms. However,
this is a major drawback when large datasets are required to be analysed since for a
dataset comprising k single items, a total of 3k − 2k+1 + 1 rules can be computed and
saved in memory. To solve this issue, additional approaches, e.g. CMAR [18], have been
proposed which are mainly based on novel data structures that avoid the generation of
any candidate. Another example is CPAR [38], which combines the advantages of AC
with traditional rule induction algorithms. While these algorithms work well for not so
big datasets, they cannot be used in Big Data due to the associated complexity [22].
Under these circumstances, new forms of building this type of classifiers from a Big Data

3

perspective is an interesting and emerging topic [30], which has not received the needed
attention yet.

Recent advances on distributed computing has been more and more used to solve
the aforementioned problems [28]. In this sense, MapReduce [8] is a recent paradigm
of distributed computing in which programs are composed of two main stages, map and
reduce. In the map phase each mapper processes a subset of input data and produces a set
of �k, v� pairs. Finally, the reducer takes this new list to produce the final values. Among
the many open source implementations available, Hadoop [17] is the de facto standard for
MapReduce applications. Even when Hadoop implements these paradigms efficiently, its
major drawback is it imposes an acyclic data flow graph, and there are applications that
cannot be modelled efficiently using this kind of graph such as iterative or interactive
analysis [39]. To solve these downsides, Apache Spark has risen up for solving all the
deficiencies of Hadoop, introducing an abstraction called Resilient Distributed Datasets
(RDD) to store data in main memory and a new approach using micro-batch technology.
Unfortunately, Spark does not support native iterations, which means that its engine does
not directly handle iterative algorithms. In order to implement an iterative algorithm,
a loop needs to repeatedly instruct Spark to execute the step function and manually
check the termination criterion, significantly increasing overhead for large-scale iterative
jobs. This issue is unlikely to have any practical significance on operations unless the use
case requires low latency where delay of the order of milliseconds can cause significant
impact. Furthermore, Flink includes its own memory manager reducing the time required
by garbage collector, whereas Spark addresses this issue later with Tungsten optimization
project [37]. In this sense, Apache Flink has been proposed to face the problems of Spark
and to address the problem of streaming applications differently and in a more native way
(vs the micro-batch methodology of Spark). Apache Spark was commonly being used as
the most suitable in-memory Big Data analytic tool when Apache Flink came along. This
fact may have hampered the appearance of Flink, although in the last years the attention
on this platform has risen up.

In conclusion, although there have been some advances on distributed computing and
even some of them have been incorporated into the AC field [34], existing approaches for
AC in Big Data are not able to scale up for truly Big Data, or if they do, they completely
sacrifice both acccuracy and interpretability of the classifiers.

4

1.3. Building accurate, efficient, interpretable and flex-
ible classifiers

Even when AC is a mature and studied field, and many different methodologies have
been proposed along the years, almost all of them have completely ignored the inter-
pretability and the flexibility of the classifiers. Existing researches have been mainly
focused on optimizing the accuracy of the classifiers at the cost of reducing interpretabil-
ity. In this sense, current approaches in AC obtain very complex classifiers formed by
many rules and complicated rules, hampering the ability of the user to follow the logic
behind the prediction or to extract interesting and previously unknown information from
the classifiers. In order to solve these problems, many studies have proved that a trade-off
between these conflicting goals are required to guarantee their applicability on many dif-
ferent real-world problems [20]. This challenge is even worse when considering Big Data
problems where there are tons of available data, and where their properties are even more
complex. All these issues have hampered the use of AC and specially of exhaustive search
algorithms on these kind of data.

Aiming at solving these challenges, and specially on Big Data, two main issues should
be addressed:

Optimizing the phase of obtaining rules and improving its quality. As it was previ-
ously aforementioned, this phase is hindered by the use of exhaustive search method-
ologies which take a very long time to obtain all the rules. In this sense, Evolutionary
Algorithms (EAs) have been successfully used on ARM to alleviate the runtime and
memory requirements [33]. In concrete terms, a significant extension of genetic pro-
gramming, known as Grammar-Guided Genetic Programming (GGGP or G3P), has
proved to reduce the memory and computational complexity of exhaustive method-
ologies while obtaining both very interesting and interpretable rules [21]. G3P
thanks to its flexible representation enables to remove the first step of discretizing
the numeric attributes followed in classical AC algorithms. Finally but not least,
G3P also makes use of a context-free grammar to encode the solutions allowing to
restrict the search space by adding some syntax constraints, i.e., it enables expert’s
knowledge to be introduced into the mining process. This prior knowledge is highly
important since it provides domain consistency and it drastically reduces the num-
ber of admissible solutions. Additionally, the obtained rules form the foundations
for the classifier, so more attention has to be given to this key part of the algorithms
to guarantee more accurate and interpretable classifiers.

Improving scalability of the classifiers while obtaining a good trade-off between ac-

5

curacy and interpretability. Existing approaches for AC do not incorporate the last
trends on ARM, but they are based on basic algorithms which have been improved
or surpassed on more recent works [31]. This very fact is even worse on current
Big Data methodologies for AC where rules are obtained following naive or older
methodologies. Furthermore, existing AC methodologies for Big Data have disre-
garded interpretabily or flexibility despite being one of the main reasons while using
AC [19]. Finally, existing methodologies for AC are not flexible and experts are not
able to constrain or to guide the final form of the classifiers hampering the appli-
cability of very large search spaces or directly its complete applicability on some
real-world domains. Each one of the aforementioned problems have proved to be
interesting, and no enough attention has been given due to its complexity and the
challenge that it involves.

6

Chapter 2
Objectives

The main objective of this dissertation is to propose new, accurate, efficient and inter-
pretable AC algorithms which are able to tackle very high-dimensional data by means of
G3P algorithms and distributed computing. To achieve this aim, the following objectives
were pursued.

Analysis of the start-of-art in the AC field to detect drawbacks of existing method-
ologies, and to pinpoint new and exciting open challenges. Analyzing flexibility,
comprehensibility and accuracy of the existing algorithms.

Analysis and study of the new and appealing distributed platforms to speed up and
scale up the performance of the algorithms. Analysis on the flexibility, efficiency and
accuracy of current algorithms when they are adapted to work on those distributed
platforms.

Design and implementation of novel ARM algorithms to obtain very interesting
rules considering EAs and G3P methodologies to overcome the computational and
memory requirements of other methodologies. Although the focus is on Big Data
datasets, it should be also able to obtain very good results on classical datasets.

Making use of the previously obtained algorithm to mine association rules, to pro-
pose new AC algorithms which are able to solve the conflicting goal of performing
accurate predictions while maintaining interpretable rules. Furthermore, special
focus is given on the flexibility of the solutions and the possibility of introducing
subjective knowledge on the search process. Finally, special attention would be given
to comprehensibility, accuracy, complexity, flexibility and human understanding of
the final classifiers.

7

Chapter 3
Methodology

The goal of this chapter is to provide a detailed explanation on the methods and tools
used in the development in this dissertation. A more detailed description of the employed
methodologies for each of the experimental studies performed along this thesis is provided
in each respective article.

Datasets

All the datasets used in this dissertation are publicly available and are free to be
downloaded and used. Datasets have been obtained mainly from two repositories, UCI
machine learning repository 1 and the KEEL repository2. At least 40 different datasets
have been considered in each work performed in this dissertation and, in some cases,
this number is even larger (around 75 different datasets). They contain a varied set of
properties such as, the number of attributes ranges from 3 up to 2000, the number of
instances ranges from 40 up to 34, 890, 838, and file sizes up to 800 GBytes have been
analyzed. This variability on the properties enables to evaluate the performance, accuracy
and soundness of the methodologies under very different problems.

1https://archive.ics.uci.edu/ml/datasets.php
2https://sci2s.ugr.es/keel/datasets.php

9

Software

In this work different well-known distributed platforms have been used (Apache Hadoop3,
Apache Spark 4 and Apache Flink 5). Furthermore, another type of framework as Remote
Method Invocation (RMI) for Java has also been considered. Depending on the plat-
form two different programming languages have been used. Java has been mainly used
to work with Apache Hadoop, RMI and in a sequential fashion. When considering more
functional-oriented platforms as Apache Spark or Apache Flink, Scala has been consid-
ered for being a much better fit for this kind of work. Both languages run on the Java
Virtual Machine so there is not much many differences regarding performance between
them. Operating system was Linux CentOS 6.3.

Hardware

All the experiments have been run on a HPC cluster comprising 12 compute nodes,
with two Intel E5-2620 microprocessors at 2 GHz and 24 GB DDR memory.

Performance evaluation

The evaluation framework employed in the experimentation includes very well-known
measures to quantify the quality of the solutions both with regard to accuracy and in-
terpretability [31]. A 10-fold stratified cross-validation has been used [15]. Stochastic
algorithms have been run at least 10 times with different seeds to avoid randomness on
the result. Statistical tools as non-parametric tests, such as Wilcoxon signed-rank [36],
Friedman and Holland tests [29], have also been used to prove the significance of the
conclusions [9].

3https://hadoop.apache.org
4https://spark.apache.org
5https://flink.apache.org

10

Chapter 4
Results

This chapter presents a discussion of the results achieved while pursuing the objectives
aimed at this thesis.

4.1. Unification: facilitating adoption and comparison
with existing approaches

As it was previously stated, even when there are many interesting approaches for AC,
there are not any kind of tools or libraries which contain a varied set of AC algorithms.
In this regard, existing tools as KEEL [32] or WEKA [11] have some algorithms, but they
do not cover the whole taxonomy of algorithms and they are not exclusively limited to
AC [31]. Moreover, the community lacks a suitable software tool that can integrate the
major works in the field as others have previously done. In [26] we have proposed, to the
best of our knowledge, the very first AC library known as LAC (Library for Associative
Classification). Unlike existing tools, LAC covers the whole taxonomy containing at least
one algorithm for each category of algorithms. In this sense, LAC even includes algo-
rithms which have not been publicly released as open source (nor as a private software).
Nevertheless LAC is not exclusively limited to algorithms, but it also includes several qual-
ity measures to quantify different perspective of the results. 6 well-known metrics have
been included regarding accuracy of the solutions (Accuracy, Kappa, Recall, Precision,
F-Measure micro, F-Measure macro), and confusion matrix has also been included. With
regard to interpretability, LAC provides 2 measures to quantify the interpretability of the
solutions (number of rules forming the classifier and the average number of attributes in
those rules). Additionally, LAC includes three different input formats (CSV, KEEL and
ARFF) to guarantee its adoption on existing datasets. While considering output, LAC

11

provides different reports to satisfy all the requirements of the user.

LAC is configured by means of YAML file easing the work. YAML enables to share
configuration for the algorithm in all the datasets or only in the specified one, facilitating
future changes in the parameters. Unlike existing approaches, LAC does not require spec-
ifying all the parameters, but if it is not specified, default values will be used reducing the
complexity of configuration for the majority of users. No restriction is imposed with re-
gard to datasets, that is, configuration file could be created on a computer where datasets
are not present, and then the configuration file could be moved to a remote server where
the datasets are present. This reduces the disk usage, since no datasets is duplicated nor
personal computer has to have the dataset but only the remote server where the execution
will be run and it also reduces the network use since a YML file is a text-file which may
take some KB in very heavy scenarios being bytes in the majority of cases. LAC enables
to use one big file with all the experimental study to run, or to split that file in as many
as you want, and run all of them at the same time.

Finally, LAC aims at being the standardized tool in AC, thus special attention has
been given to the hierarchy of classes and its software design. In this sense, each algorithm
in LAC has to implements an interface to guarantee that each algorithm has to follow the
same conventions. LAC provides several utilities classes to perform common operations
of AC algorithms. New algorithms are completely abstracted from the input type being
used, since this logic is covered by the layer of inputs. In the same regard, output neither
has not to be implemented in each algorithm but this responsibility is covered by the
layer of outputs. Reading of the configuration or parsing are also completely transparent
to developers adding new algorithms, since they only have to specify which parameters
requires its algorithm and their types. These facts, facilitate the creation of new algorithm
in LAC, since developers of new algorithms only have to know how to implement their
algorithms and can be completely focused on only that task. The abstraction is done up
to that level that developers do not need to register their algorithms, but LAC is able to
automatically detect, load and run them. Finally, it should be highlighted that to ease
the labor of adding new algorithms the manual covers a complete example, and provide a
guided and easy to follow steps (https://github.com/kdis-lab/lac/blob/main/doc/
manual.pdf).

4.2. Scalability issues on Big Data problems

Even when there has been recent advances on distributed computing, these have not
been fully incorporated in AC. Some works have been initiated on the adoption on these

12

distributed platforms but the approach followed have been mainly on sampling techniques
or generating classifiers for subsets of the classifiers, and subsequently joining them on
only one final classifier. These new methodologies are not able to scale up for truly Big
Data, or if they do, they completely sacrifice both accuracy and interpretability of the
classifiers. In this sense, in [25] we have proposed two different methods based on tradi-
tional algorithms for AC (CBA and CPAR) through emerging paradigms of distributed
computing (Spark and Flink). In this regard, CBA and CPAR were selected since, accord-
ing to some authors [18, 19, 38], these are the most interesting ones based on accuracy and
interpretability. CBA is considered as the algorithm that obtains the most interpretable
classifiers, whereas CPAR is able to obtain very accurate classifiers with accuracy values,
in average, greater than those obtained by CBA [38]. The new algorithms based on dis-
tributed platforms return the same results as those obtained on the sequential approaches.

An experimental study has been performed on 40 datasets. Results have been ana-
lyzed by means of non-parametric tests, and they proved that CBA-Spark/Flink obtained
interpretable classifiers but it was more time consuming than CPAR-Spark/Flink. Thus
in this Ph.D. dissertation, it has been demonstrated that the proposals have been able to
run on Big Data (file sizes up to 200 GBytes). The analysis of different quality metrics
revealed that no statistical difference can be found for these two approaches.

Once of the goal of this Ph.D. dissertation is to determine if it is required to develop
new algorithms, or it is enough if existing algorithms are adapted to be run on distributed
platforms. Even when we have been able to run on large datasets, the process was time-
consuming and require many main memory. Both points were caused because these
algorithms generate many different rules which are redundant and hence discarded on
following phases (but in the meantime they are considered, and therefore they has to be
saved on memory). Regarding scalability, three different metrics (speed-up, scale-up and
size-up) have also been analyzed to determine the behavior of the algorithms on Big Data.
For our cluster we have found that at one particular level more compute nodes do not
improve as much as expected, meaning that scalability of these approaches may be limited
to certain point (250 GBytes). Notwithstanding, both approaches have been able to tackle
larger datasets than those reported by other AC algorithms until the moment [31].

4.3. Building accurate, efficient, interpretable and flex-
ible classifiers

Even when AC is a mature and studied field, and many different methodologies have
been proposed along the years, almost all of them have mainly focused on maximizing

13

the accuracy. However, one of the main reasons behind using AC approaches are obtain-
ing both interpretable and flexible classifiers, being those objective until a certain point
conflicting goals with maximizing accuracy. In this sense, current approaches in AC ob-
tain very complex classifiers formed by many rules and complicated rules, hampering the
ability of the user to follow the logic behind the prediction or to extract interesting and
previously unknown information from the classifiers. In order to solve these problems,
two different actions have been taken in this thesis:

Optimizing the phase of obtaining rules and improving its quality. In [23] we have
proposed an ARM algorithm to obtain very interesting rules on Big Data. In this
sense, we have proposed a new efficient EA to extract association rules in Big Data.
The baseline of this work is a new Grammar-Guided Genetic Programming algo-
rithm to optimize Leverage, Support and Confidence, known as G3P-LSC. The
proposed model makes use of a context-free grammar to encode the solutions and
it allows to restrict the search space by adding some syntax constraints, i.e. it en-
ables expert’s knowledge to be introduced into the mining process. Furthermore,
our proposal is eminently designed to be as parallel as possible so Big Data can be
tackled, and its operators have been specifically designed to avoid the loss in large
search spaces as well as to maintain diversity in the solutions. In this regard, its
genetic operators provide a reduced set of rules with high values for many different
quality measures and few attributes, making it easier to understand from a user’s
perspective. Due to the growing interest in data gathering, a unique implementa-
tion of the proposed algorithm is not useful. In this sense, during this Ph.D. thesis
different implementations (considering different architectures such as RMI, Hadoop
and Spark) have been developed depending on the data size. All these adaptations
obtain exactly the same solutions as those of the original algorithm since they only
differ on the software architectures. When comparing the obtained results with other
14 algorithms, using 12 different metrics and more than 75 datasets, it is obtained
that the work performed along this Ph.D. thesis mines rules with better values for
interesting metrics and few attributes, providing the user with high quality rules.
In order to analyze whether exists any statistical difference, several non-parametric
tests were carried out, proving that the results obtained in this dissertation are sta-
tistically significant. Finally, the scalability is also analyzed by considering the three
parallel implementations on high dimensional datasets (3,000 millions of instances)
and file sizes up to 800 GB. This fact proves that the work developed along this
Ph.D presents a good computational cost and a promising scalability when the size
of the problem increases.

14

Combining all the state-of-art ARM, distributed computing and ideas from ARM in
AC. The state-of-the-art in associative classification includes interesting approaches
for building accurate and interpretable classifiers [31]. These approaches generally
work on four different phases (data discretization, pattern mining, rule mining, and
classifier building), some of them being computational expensive. In [24] we have
proposed a novel evolutionary algorithm for efficiently building associative classi-
fiers in Big Data. The work proposed in this thesis makes uses of only two phases
(a grammar-guided genetic programming framework is performed in each phase):
(1) mining reliable association rules; (2) building an accurate classifier by rank-
ing and combining the previously mined rules. First, the best rules for each class
are obtained by means of multiple and independent evolutionary processes (no dis-
cretization step is required since the use of a grammar enables continuous features
to be encoded). Thanks to using the key ideas of our previous work [23] in the first
phase, we could guarantee that the obtained rules were very interesting, and we
were able to tackle very large datasets using this philosophy. In the second phase,
the set of the previously mined rules are ranked and combined to form an accurate
classifier. Since rules for each class is obtained, it is guaranteed that minority/ma-
jority classes are equally considered. This is an additional major feature of the work
of this thesis since many AC approaches have been focused on improvements of clas-
sification accuracy, not paying attention to the imbalance problem. Additionally,
we are also adapted a grammar-guided genetic programming framework to be able
to introduce subjective knowledge in the final classifier. As it was previously afore-
mentioned, in this Ph.D. thesis each algorithm has been implemented on different
architectures where the unique difference among them is the parallelism, all of them
return the very same results. These implementations include recent advantages of
distributed computing by means of platforms such as Spark and Flink, or more clas-
sic approaches as sequential and multi-thread solutions. Finally, in an experimental
analysis, the results obtained during this thesis has been compared to multiple AC
approaches as well as traditional classification algorithms. Both sequential and
trending MapReduce AC algorithms have been considered. Experiments were per-
formed on a total of 40 datasets (including large datasets of 250 GBytes) and results
were validated by non-parametric statistical tests regarding three different levels:
quality of the predictions, level of interpretability, and efficiency (ability to scale
up). Hence, we conclude that during this Ph.D. thesis we have obtained obtained
accurate and interpretable classifiers in an efficient way even on high-dimensional
data, outperforming the state-of-art algorithms.

15

Chapter 5
Conclusions and future works

The goal of this chapter is to summarize the concluding remarks obtained during this
Ph.D. dissertation and to provide some future works.

5.1. Conclusions

In this Ph.D. thesis we have explored the use of G3P on AC. We have exhaustively
reviewed existing bibliography, identified open issues and proposed solutions for them.
In more concrete terms, different objectives have been pursued, namely the unification
of algorithms, the scalability of the algorithms and the building of interpretable, flexible
and accurate associative classifiers.

5.1.1. Unification: facilitating adoption and comparison with ex-
isting approaches

First, we have carefully studied and analyzed the state-of-the-art in AC. As a result
of this process, we have identified an open issue, there was not any specific tool for AC,
many algorithms were not available to be run and even less as open source. Furthermore,
existing works use very different metrics to quantify the quality of the solutions or they
were not quantifying all the perspective while considering AC (interpretability, accuracy
and efficiency). In this sense, in [26] we have proposed a tool, known as LAC, which covers
the whole taxonomy of AC. To the best of our knowledge this is the very first tool for AC,
and while some tools exists with some algorithms they were very limited (having very
few algorithms) or they imposed very specific data formats. LAC provides support for
different input formats to guarantee compatibility with existing tools (CSV, KEEL and
ARFF). Including 10 well-known algorithms from the AC field, and covering the whole

17

taxonomy. With regard to results, LAC provides different kind of outputs, being the
most basic one a summary containing accuracy and runtime, but it also supports more
extensive outputs containing many different measures to quantify both interpretability
and accuracy. Additionally, LAC also provides an experimental framework which enables
to automate and parallel the experimentation. In this sense, LAC is able to run each
algorithm contained in the experimental study in one different thread to speed-up the
overall time required for experimentation. This tool has been released as open source and
distributed under GPLv3.

5.1.2. Scalability issues on Big Data problems

Next, we have continued analyzing the associative classification field and we have dis-
covered that existing proposals do not scale with large quantities of data. Concretely,
these algorithms were not able to neither scale horizontally nor vertically. This problem
has proved to be very challenging specially on exponential search spaces as those shown
in pattern mining. Thus, we follow a complete different approach to scale up. In [25] we
have proposed two different algorithms to deal with Big Data based on different platforms
for distributed computing. In this sense, Apache Spark and Apache Flink have been used
to scale up two well-known algorithms. This process of scalability was achieved without
altering the accuracy of the final classifiers neither its interpretability, but both the se-
quential approach as the distributed returns the very same results. The work performed
during this Ph.D. thesis has behaved very well on large quantities of data, and no statis-
tical significant difference could be found with regard to accuracy. Although these results
were very interesting and achieved a very good performance on Big Data, they were not
enough when dealing with very complex data or different types of attributes.

5.1.3. Building accurate, efficient, interpretable and flexible clas-
sifiers

Finally, we have approached the challenge of improving existing state-of-the-art for
AC, including but not being exclusively limited to Big Data. In this sense, as the most
important part for associative classifiers are the rules, we have opened the problem propos-
ing a very efficient algorithm for obtaining association rules in [23]. This algorithm aims
at obtaining very interesting association rules as well as maintaining the interpretability.
Thanks to its flexible representation, it is able to encode many different kinds of data
as well as enabling to introduce subjective knowledge in the search space thanks to its
context-free grammar. The experimental study developed in this Ph.D. thesis for this

18

work includes more than 14 different algorithms using more than 75 datasets and analyz-
ing the behavior of 12 quality measures. Different implementations have been presented
depending on the data size. Finally, in terms of scalability has obtained excellent results
being able to tackle up file size up to 800 GBytes.

Once, we have obtained very interesting rules with the aforementioned algorithm. We
have adapted the proposal to obtain class association rules, and in [24] we have proposed
a novel algorithm for associative classification. This work includes the philosophy of the
first for mining association rules, including the grammar to constrain the form of the
rules, and it also includes a grammar for the second phase of the algorithm, that is, the
post-processing of the rules. This second grammar enables to constrain the form of the
classifier, and to introduce subjective knowledge in the form of the final classifier. This
approach has also been developed on different levels of parallelism depending on the data
size. Results have been compared to 13 different algorithms, with different measures
(accuracy, interpretability and efficiency) on many different datasets. Non-parametric
tests have been performed, and they have proved that the results obtained along this Ph.D.
thesis have statistical significant differences with regard to the state-of-art algorithms.

5.2. Future works

The goal of this section is to provide future lines of research that have given rise along
the development of this dissertation.

First, there are methodologies of ARM which aim to extract rare association rules.
These kinds of rules enables to obtain interesting and unknown information for very
infrequent patterns. Thus, the synergy of rare association rules with AC may be beneficial
to obtain classifiers for identifying outliers or rare patterns.

Second, multi-objective algorithms have proved to obtain excellent results for opti-
mizing multiple and conflicting objectives. The combination of multi-objective with dis-
tributed computing may be interesting to analyze in future works, since the distribution
of the objective along with the data may achieve very good results.

19

Bibliography

[1] N. Abdelhamid, A. Ayesh, F. Thabtah, S. Ahmadi, and W. Hadi, “Mac: A multiclass
associative classification algorithm,” Journal of Information Knowledge Manage-
ment, vol. 11, 06 2012.

[2] R. Agrawal, T. Imieliński, and A. Swami, “Mining association rules between sets of
items in large databases,” SIGMOD Rec., vol. 22, no. 2, pp. 207–216, 1993.

[3] E. Baralis and P. Garza, “A lazy approach to pruning classification rules,” in 2002
IEEE International Conference on Data Mining, 2002. Proceedings., Dec 2002, pp.
35–42.

[4] A. Bechini, F. Marcelloni, and A. Segatori, “A mapreduce solution for associative
classification of big data,” Information Sciences, vol. 332, pp. 33 – 55, 2016.

[5] H. Chen, R. Chiang, and V. Storey, “Business intelligence and analytics: From big
data to big impact,” MIS Quarterly: Management Information Systems, vol. 36,
no. 4, pp. 1165–1188, 2012.

[6] P. Clark and T. Niblett, “The cn2 induction algorithm,” Machine Learning Journal,
vol. 3, no. 4, pp. 261–283, 1989.

[7] C. Cortes and V. Vapnik, “Support vector networks,” Machine Learning, vol. 20, pp.
273–297, 1995.

[8] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing on Large Clus-
ters,” Communications of the ACM - 50th anniversary issue: 1958 - 2008, vol. 51,
no. 1, pp. 107–113, 2008.

[9] J. Derrac, S. García, D. Molina, and F. Herrera, “A practical tutorial on
the use of nonparametric statistical tests as a methodology for comparing

21

evolutionary and swarm intelligence algorithms,” Swarm and Evolutionary
Computation, vol. 1, no. 1, pp. 3 – 18, 2011. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/S2210650211000034

[10] A. Fernández, S. del Río, N. V. Chawla, and F. Herrera, “An insight into imbalanced
big data classification: outcomes and challenges,” Complex & Intelligent Systems,
vol. 3, no. 2, pp. 105–120, Jun 2017.

[11] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witten, “The
weka data mining software: An update,” SIGKDD Explor. Newsl., vol. 11, no. 1, pp.
10–18, Nov. 2009.

[12] J. Han and M. Kamber, Data Mining: Concepts and Techniques. Morgan Kaufmann,
2011.

[13] Z. Huang, Z. Zhou, T. He, and X. Wang, “Acac: Associative classification based on
all-confidence,” 11 2011, pp. 289–293.

[14] N. Khan, I. Yaqoob, I. A. T. Hashem, Z. Inayat, W. K. Mahmoud Ali, M. Alam,
M. Shiraz, and A. Gani, “Big Data: Survey, Technologies, Opportunities, and
Challenges,” The Scientific World Journal, vol. 2014, pp. 1–18, 2014. [Online].
Available: http://www.hindawi.com/journals/tswj/2014/712826/

[15] R. Kohavi, “A study of cross-validation and bootstrap for accuracy estimation and
model selection,” in Proceedings of the 14th International Joint Conference on Ar-
tificial Intelligence - Volume 2, ser. IJCAI’95. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 1995, p. 1137–1143.

[16] G. Kundu, M. M. Islam, S. Munir, and M. F. Bari, “Acn: An associative classifier
with negative rules,” in 2008 11th IEEE International Conference on Computational
Science and Engineering, July 2008, pp. 369–375.

[17] C. Lam, Hadoop in Action, 1st ed. Greenwich, CT, USA: Manning Publications
Co., 2010.

[18] W. Li, J. Han, and J. Pei, “Cmar: Accurate and efficient classification based on
multiple class-association rules,” in 2001 IEEE International Conference on Data
Mining(ICDM01), 2001, pp. 369–376.

[19] B. Liu, W. Hsu, and Y. Ma, “Integrating classification and association rule mining,”
in 4th International Conference on Knowledge Discovery and Data Mining(KDD98),
1998, pp. 80–86.

22

[20] B. Liu, Y. Ma, and C. Wong, Classification Using Association Rules: Weaknesses
and Enhancements. Kluwer Academic Publishers, 2001, pp. 591–601.

[21] J. M. Luna, J. R. Romero, and S. Ventura, “G3PARM: A grammar
guided genetic programming algorithm for mining association rules,” in
Proceedings of the IEEE Congress on Evolutionary Computation, ser. IEEE
CEC 2010, Barcelona, Spain, 2010, pp. 2586–2593. [Online]. Available:
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=5586504

[22] L. Oneto, F. Bisio, E. Cambria, and D. Anguita, “Slt-based elm for big social data
analysis,” Cognitive Computation, vol. 9, no. 2, pp. 259–274, Apr 2017.

[23] F. Padillo, J. M. Luna, H. F., and S. Ventura, “Mining association rules
on big data through mapreduce genetic programming,” Integrated Computer-
Aided Engineering, vol. 25, no. 1, pp. 31–48, 2018. [Online]. Available:
https://doi.org/10.3233/ICA-170555

[24] F. Padillo, J. M. Luna, and S. Ventura, “A grammar-guided genetic
programing algorithm for associative classification in big data,” Cognitive
Computation, vol. 11, no. 3, pp. 331–346, 2019. [Online]. Available: https:
//doi.org/10.1007/s12559-018-9617-2

[25] ——, “Evaluating associative classification algorithms for big data,” Big
Data Analytics, vol. 4, no. 1, p. 2, 2019. [Online]. Available: https:
//doi.org/10.1186/s41044-018-0039-7

[26] ——, “Lac: Library for associative classification,” Knowledge-Based Systems, p.
105432, 2019. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S0950705119306586

[27] R. Quinlan, C4.5: Programs for Machine Learning. San Mateo, CA: Morgan Kauf-
mann Publishers, 1993.

[28] A. Segatori, A. Bechini, P. Ducange, and F. Marcelloni, “A distributed fuzzy asso-
ciative classifier for big data,” IEEE Transactions on Cybernetics, vol. 48, no. 9, pp.
2656–2669, Sept 2018.

[29] D. Sheskin, Handbook of parametric and nonparametric statistical procedures. Chap-
man and Hall/CRC, 2003.

[30] N. Siddique and H. Adeli, “Nature inspired computing: An overview and some future
directions,” Cognitive Computation, vol. 7, no. 6, pp. 706–714, Dec 2015.

23

[31] F. A. Thabtah, “A review of associative classification mining,” Knowledge Engineering
Review, vol. 22, no. 1, pp. 37–65, March 2007.

[32] I. Triguero, S. González, J. M. Moyano, S. Garcîa, J. Alcalá-Fdez, J. Luengo, A. Fer-
nández, M. J. del Jesús, L. Sánchez, and F. Herrera, “Keel 3.0: an open source
software for multi-stage analysis in data mining,” International Journal of Compu-
tational Intelligence Systems, vol. 10, no. 1, pp. 1238–1249, 2017.

[33] S. Ventura and J. M. Luna, Pattern Mining with Evolutionary Algorithms. Springer
International Publishing, 2016.

[34] L. Venturini, E. Baralis, and P. Garza, “Scaling associative classification for very
large datasets,” Journal of Big Data, vol. 4, no. 1, p. 44, Dec 2017.

[35] K. Wang, S. Zhou, and Y. He, “Growing decision trees on support-less association
rules,” in Proceedings of the sixth ACM SIGKDD international conference on
Knowledge discovery and data mining, Boston, MA, USA, August 20-23, 2000, 2000,
pp. 265–269. [Online]. Available: https://doi.org/10.1145/347090.347147

[36] F. Wilcoxon, “Individual comparisons by ranking methods,” Biometrics, vol. 1, pp.
80–83, 1945.

[37] R. Xin and J. Rose, “Project tungsten: Bringing apache spark closer to
bare metal,” urlhttps://databricks.com/blog/2015/04/28/project-tungsten-bringing-
spark-closer-to-bare-metal.html, 2015.

[38] X. Yin and J. Han, “Cpar: Classification based on predictive association rules,” in
3rd SIAM International Conference on Data Mining(SDM03), 2003, pp. 331–335.

[39] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica, “Spark: Cluster
computing with working sets,” in Proceedings of the 2nd USENIX Conference on Hot
Topics in Cloud Computing, ser. HotCloud’10, Berkeley, CA, USA, 2010.

24

Part II: Journal Publications

Title:
LAC: Library for Associative Classification

Authors:
F. Padillo, J.M. Luna and S. Ventura

Knowledge-Based Systems, pp. 105432, 2019

Ranking:
Impact factor (2018 JCR): 5.101
Knowledge area: Computer Science.
DOI: 10.1016/j.knosys.2019.105432

27

Please cite this article as: F. Padillo, J.M. Luna and S. Ventura, LAC: Library for associative classification, Knowledge-Based Systems (2019) 105432,
https://doi.org/10.1016/j.knosys.2019.105432.

Knowledge-Based Systems xxx (xxxx) xxx

Contents lists available at ScienceDirect

Knowledge-Based Systems

journal homepage: www.elsevier.com/locate/knosys

Original software publication

LAC: Library for associative classification✩

Francisco Padillo a, Jose Maria Luna a,c, Sebastian Ventura a,b,c,∗
a Department of Computer Science and Numerical Analysis, University of Cordoba, Spain
b Department of Information Systems, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah, Saudi Arabia
c Knowledge Discovery and Intelligent Systems in Biomedicine Laboratory. Maimonides Institute of Biomedicine, Cordoba, Spain

a r t i c l e i n f o

Article history:
Received 5 September 2019
Received in revised form 21November 2019
Accepted 23 December 2019
Available online xxxx

Keywords:
Associative classification
Association rule mining
Java class library
Classification software

a b s t r a c t

The goal of this paper is to introduce LAC, a new Java Library for Associative Classification. LAC is
the first tool that covers the full taxonomy of this classification paradigm through 10 well-known
proposals in the field. Furthermore, it includes several measures to quantify the quality of the solutions
as well as different input/output data formats. Last but not least, the library also provides a framework
to automate experimental studies, supporting both sequential and parallel executions. Thanks to the
GPLv3 license, LAC is totally free, open-source and publicly available.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Classification based on association rule mining, generally
known as Associative Classification (AC), integrates a descriptive
task (association rule mining [1]) in the process of inferring a
new classifier [2]. Recent studies [3] have shown that AC has the
following advantages over traditional classification approaches:
(1) Accuracy [2], models in AC are often capable of building
efficient and accurate classification systems since in the training
phase they leverage association rule discovery methods that find
all possible relationships among the attribute values; (2) Usabil-
ity [4], unlike decision tree approaches, AC does not require to
redraw the whole model when the rule set is updated and tuned;
(3) Readability [3], the final model of AC comprises a simple set of
rules that allow the end-user to easily understand and interpret
the results. Nonetheless, it is important to remark that AC models
are not often as accurate as black-box models [5].

AC could be seen as a special case of Association Rule Mining
(ARM) in which only the class attribute is considered in the
consequent part of the rule, aiming at obtaining this kind of
classifiers many different approaches have been proposed [3].
Almost all of them share a two-steps process to obtain the final
classifier [2]. First, rules are obtained using adapted versions of
algorithm from ARM. Second, once the rules have been mined,

✩ No author associated with this paper has disclosed any potential or
pertinent conflicts which may be perceived to have impending conflict with
this work. For full disclosure statements refer to https://doi.org/10.1016/j.knosys.
2019.105432.∗ Corresponding author at: Department of Computer Science and Numerical
Analysis, University of Cordoba, Spain.

E-mail address: sventura@uco.es (S. Ventura).

they are post-processed to remove redundant rules, sorted to
improve accuracy and to form the final classifier. While in the
former many algorithms share the same philosophy with small
differences, in the latter many more differences exist since each
algorithm use a different step to perform the post-processing
of the rules. By this last reason, existing work has centered on
classifying algorithms in a taxonomy based on the first step used
to obtain the rules [3]. In this regard, Abdelhamid et al. proposed
the following criteria: apriori-like (as CBA), FP-Growth-like (as
CMAR), greedy-like (as CPAR), charm-like (as ACCF), multiple sup-
ports (as CBA2), emerging patterns (as ADT), TID list intersection
(as MAC).

However, in spite of AC is really interesting for the research
community, to the best of our knowledge there is not any avail-
able library or tool [6,7] covering the full taxonomy of AC [3].
Existing tools have its own restrictions with regard to input
format, quality metrics, and the inability to automate and parallel
experimental studies. Moreover, the community lacks a suit-
able software tool that can integrate the major works in the
field as others have previously done [8]. Unlike existing tools,
LAC includes algorithms which have not been published released
as open source until now (nor as a private software). Specific
measures for AC has also been included to better quantify the in-
terpretability of the models, and many different but well-known
metrics have also been added to gauge the quality of the obtained
solutions. Thus, the main contributions of LAC could be summa-
rized in four points: (1) It covers the whole AC taxonomy; (2)
It includes plenty of quality measures to quantify not only the
quality but also the interpretability; (3) It is easy to be used with
multiple input data formats; (4) It enables to fully automate and
parallelize the experimental studies.

https://doi.org/10.1016/j.knosys.2019.105432
0950-7051/© 2019 Elsevier B.V. All rights reserved.

29

Please cite this article as: F. Padillo, J.M. Luna and S. Ventura, LAC: Library for associative classification, Knowledge-Based Systems (2019) 105432,
https://doi.org/10.1016/j.knosys.2019.105432.

2 F. Padillo, J.M. Luna and S. Ventura / Knowledge-Based Systems xxx (xxxx) xxx

Table 1
Software metadata.
Nr. (Executable) software metadata

description
Please fill in this column

S1 Current software version 0.2.0
S2 Permanent link to executables

of this version
https://github.com/kdis-
lab/lac/releases/tag/v0.2.0

S3 Legal Software License GPLv3
S4 Computing platforms/Operating

Systems
GNU Linux, OS X, Microsoft
Windows

S5 Installation requirements &
dependencies

Java version 1.8 or higher.

S6 If available, link to user
manual–if formally published
include a reference to the
publication in the reference list

https://github.com/kdis-lab/lac/
tree/v0.2.0/doc/manual.pdf

S7 Support email for questions sventura@uco.es

Table 2
Code metadata.
Nr. Code metadata description Please fill in this column

C1 Current code version 0.2.0
C2 Permanent link to

code/repository used for this
code version

https://github.com/kdis-
lab/lac/tree/v0.2.0

C3 Legal Code License GPLv3
C4 Code versioning system used git
C5 Software code languages, tools,

and services used
Java version 1.8 or higher.
Maven 3.3.9 or higher.

C6 Compilation requirements,
operating environments &
dependencies

SnakeYAML 1.24.
maven-jar-plugin 3.1.2.
maven-assembly-plugin 3.1.1.
junit 4.12. mockito 3.1.0.
system-rules 1.19.0

C8 If available Link to developer
documentation/manual

https://github.com/kdis-lab/lac/
tree/v0.2.0/doc/manual.pdf

C8 Support email for questions sventura@uco.es

The rest of the manuscript is organized as follows: Section 2
presents the software framework, Section 3 shows some illustra-
tive examples and finally Section 4 presents some conclusions.

2. LAC software

The LAC code and its documentation are publicly available
under GPLv3 license at Github (https://github.com/kdis-lab/lac/)

2.1. Software architecture

LAC has been developed using Java. It only has one external
dependency, called SnakeYaml, used to read yaml files (used
for configuration and the automation framework). Next, each
package is briefly described.

• lac.algorithms includes the base classes for all the algo-
rithms. Each algorithm is contained in one package with
the same name as the algorithm. For example, considering
the CBA [2] algorithm, the name of the package must be
lac.algorithms.cba.

• lac.data includes several classes to represent the data, and
one class for each format of input file. At the current version,
the following formats are supported: arff [7], keel dat [6]
and csv [9].

• lac.metrics includes all the metrics to quantify the quality
of the solutions. The following measures are supported:
accuracy, cohen’s kappa, recall, precision, f-measure, number
of rules and average number of attributes per rule.

• lac.reports provides reports to show different results of the
algorithms.

• lac.runner provides a framework to automate and parallelize
the experimental studies.

• lac.utils includes some extra and useful methods to work
with rule sets.

2.2. Software functionalities

LAC provides the following functionalities:

• 10 well-known AC algorithms. LAC covers the whole taxon-
omy of AC [3], including at least one algorithm per taxon-
omy.

• Easy to add new algorithms thanks to its base classes.
• Three input formats are supported (arff [7], keel dat [6] and

csv [9]).
• Several measures to quantify the quality of solutions, includ-

ing both traditional and specific quality measures accuracy,
cohen’s kappa, recall, precision, f-measure, number of rules
and average number of attributes per rule.

• Automation framework for experimental studies, which fa-
cilitates the comparison of many algorithms and datasets.
The level of parallelism could be configured to be both
sequential or parallel. The parallelism of each algorithm is
not changed, since they were designed to be sequentially
run, but each independent execution is parallelized, that is,
if one config file has 5 different executions, each one will be
performed on a different thread, where each thread will run
the sequential algorithm.

3. Illustrative examples

In this section, a brief example of LAC is described. In this
example, the well-known CBA [2] algorithm is configured and
run on weather.nominal. In order to use LAC, a YAML file needs
to be created (see Listing ??). This file is responsible for selecting
the algorithms to be executed, the datasets, the parameters and
the type of report. These config files need to follow a set of
conventions and they are fully explained on Section 4.3 of user
manual available at https://github.com/kdis-lab/lac/tree/v0.2.0/
doc/manual.pdf.

The configuration file needs to have a root called executions of
kind array. Each element for this array in YAML is represented
by each line starting with the ‘-’ symbol and tabulated below
the parent element. The algorithm to be run is specified using
name_algorithm. Then, the configuration of this specific algorithm
should be described using configuration, or default configuration
will be used in case of omission. For this specific case, two
parameters are specified. Then, both training and test file have
to be specified using train and test directives. Finally, reports
could be also specified. First, the path to save all the produced
files should be specified using reports. Second, the type of re-
port could also be specified using reports_type. In this particular
case, ClassifierReport is being used to save the final classifier and
MetricsReport to calculate all the possible measures included in
LAC.

Finally, it is also interesting to point that based on the same
schema of the previous config file, more advanced experimental
studies could be designed and they even could be run on parallel
by means of the automation framework. Aforementioned manual
contains richer examples considering more complex cases of both
sequential and parallel executions.

30

Please cite this article as: F. Padillo, J.M. Luna and S. Ventura, LAC: Library for associative classification, Knowledge-Based Systems (2019) 105432,
https://doi.org/10.1016/j.knosys.2019.105432.

F. Padillo, J.M. Luna and S. Ventura / Knowledge-Based Systems xxx (xxxx) xxx 3

4. Conclusions

LAC provides 10 state-of-art algorithms for AC and covering its
whole taxonomy. Several measures have been included together
with a framework to carry out both parallel and sequential ex-
perimental studies. Therefore, this library is a very interesting
option to compare the performance of new proposals with the
well-known methods available in LAC.

Acknowledgments

This research was supported by the Spanish Ministry of Econ-
omy and Competitiveness and the European Regional Develop-
ment Fund, Project TIN-2017-83445-P.

Appendix. Required metadata

Current executable software version

See Table 1.

Current code version

See Table 2.

References

[1] R. Agrawal, T. Imieliński, A. Swami, Mining association rules between sets
of items in large databases, SIGMOD Rec. 22 (2) (1993) 207–216.

[2] B. Liu, W. Hsu, Y. Ma, Integrating classification and association rule mining,
in: 4th International Conference on Knowledge Discovery and Data Mining,
KDD98, New York, 1998, pp. 80–86.

[3] N. Abdelhamid, F. Thabtah, Associative classification approaches: Review
and comparison, J. Inf. Knowl. Manag. 13 (03) (2014) 1450027.

[4] F. Padillo, J.M. Luna, S. Ventura, A grammar-guided genetic programing
algorithm for associative classification in big data, Cogn. Comput. (2019)
http://dx.doi.org/10.1007/s12559-018-9617-2.

[5] J. Han, M. Kamber, Data Mining: Concepts and Techniques, Morgan
Kaufmann, 2011.

[6] I. Triguero, S. González, J.M. Moyano, S. Garcîa, J. Alcalá-Fdez, J. Luengo, A.
Fernández, M.J. del Jesús, L. Sánchez, F. Herrera, KEEL 3.0: an open source
software for multi-stage analysis in data mining, Int. J. Comput. Intell. Syst.
10 (1) (2017).

[7] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, I.H. Witten, The
WEKA data mining software: An update, SIGKDD Explor. Newsl. 11 (1)
(2009) 10–18.

[8] C. Zhang, J. Bi, S. Xu, E. Ramentol, G. Fan, B. Qiao, H. Fujita, Multi-imbalance:
An open-source software for multi-class imbalance learning, Knowl.-Based
Syst. 174 (2019) 137–143, http://dx.doi.org/10.1016/j.knosys.2019.03.001.

[9] RFC, Common format for comma-separated values (CSV) files, 2019, https:
//tools.ietf.org/html/rfc4180.

31

Title:
Evaluating associative classification algorithms for Big Data

Authors:
F. Padillo, J.M. Luna and S. Ventura

Big Data Analytics, Volume 4, Issue 1, pp. 2, 2019

Ranking:
Impact factor (2018 JCR): -
Knowledge area: Big Data, Data Mining and Knowledge Discovery
DOI: 10.1186/s41044-018-0039-7

33

Big Data AnalyticsPadillo et al. Big Data Analytics (2019) 4:2
https://doi.org/10.1186/s41044-018-0039-7

RESEARCH Open Access

Evaluating associative classification
algorithms for Big Data
Francisco Padillo1, José María Luna1,3 and Sebastián Ventura1,2,3*

*Correspondence: sventura@uco.es
1Department of Computer Science
and Numerical Analysis, University
of Cordoba, Cordoba, Spain
2Faculty of Computing and
Information Technology, King
Abdulaziz University, Jeddah, Saudi
Arabia
3Knowledge Discovery and
Intelligent Systems in Biomedicine
Laboratory, Maimonides Biomedical
Research Institute of Cordoba,
Cordoba, Spain

Abstract
Background: Associative Classification, a combination of two important and different
fields (classification and association rule mining), aims at building accurate and
interpretable classifiers by means of association rules. A major problem in this field is
that existing proposals do not scale well when Big Data are considered. In this regard,
the aim of this work is to propose adaptations of well-known associative classification
algorithms (CBA and CPAR) by considering different Big Data platforms (Spark and Flink).

Results: An experimental study has been performed on 40 datasets (30 classical
datasets and 10 Big Data datasets). Classical data have been used to find which
algorithms perform better sequentially. Big Data dataset have been used to prove the
scalability of Big Data proposals. Results have been analyzed by means of
non-parametric tests. Results proved that CBA-Spark and CBA-Flink obtained
interpretable classifiers but it was more time consuming than CPAR-Spark or
CPAR-Flink. In this study, it was demonstrated that the proposals were able to run on
Big Data (file sizes up to 200 GBytes). The analysis of different quality metrics revealed
that no statistical difference can be found for these two approaches. Finally, three
different metrics (speed-up, scale-up and size-up) have also been analyzed to
demonstrate that the proposals scale really well on Big Data.

Conclusions: The experimental study has revealed that sequential algorithms cannot
be used on large quantities of data and approaches such as CBA-Spark, CBA-Flink,
CPAR-Spark or CPAR-Flink are required. CBA has proved to be very useful when the
main goal is to obtain highly interpretable results. However, when the runtime has to
be minimized CPAR should be used. No statistical difference could be found between
the two proposals in terms of quality of the results except for the interpretability of the
final classifiers, CBA being statistically better than CPAR.

Keywords: Big Data, Associative classification, Flink, Spark

Introduction
Classification set of rules to form an accurate classifier [1], ARM aims at describing a
dataset by means of reliable associations among patterns [2]. Associative Classification
(AC) [3] come into being as the combination of the two previous fields as a way of building
an interpretable and accurate classifier by means of association rules [4].
When building accurate classifiers, many different techniques have been proposed in

literature such as those based on rules [5], decision trees [1] or support vector machine

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://
creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

35

Padillo et al. Big Data Analytics (2019) 4:2 Page 2 of 27

[6], to list a few. Many of these techniques achieve great results, but just some of them
are able to build interpretable classifiers which are essential in many fields as health-care
[7] or biology [8]. In general, those approaches based on rules or trees are able to obtain
highly interpretable models. However, decision trees suffer from a problem of adapt-
ability since a small change in the input data may produce large changes in the model
[5]. Other approaches do not consider the whole dataset to mine rules but small sam-
ples of data and, therefore, the final classifier could not be representative of the overall
trends [9]. Unlike these approaches, in AC the training phase is about searching for hid-
den knowledge by means of association rule mining algorithms and then a classification
model (classifier) is constructed after sorting the knowledge in regards to certain criteria
as well as pruning useless and redundant knowledge [4]. AC is often capable of building
robust classifiers since it obtains any association rule within the dataset that can bemissed
by other classification systems [10]. Moreover, the rules produced in AC are easy to
understand and they even could be manually updated by the end-user, unlike neural net-
work and probabilistic approaches, which produce classification models that are hard to
understand [11].
The first algorithm proposed in the AC field is known as CBA [4]. It works in two

phases and the first one generates association rules by means of an exhaustive search
algorithm [2]. Then, in a second phase, it ranks the discovered rules to form the final
classifier. Even when this proposal obtains very interpretable and accurate classifiers, it
has some problems since the runtime could take more than expected or some minority
classes could be ignored. Aiming at solving these drawbacks, the same authors proposed
CBA2 [12] as an improvement of the previous proposal to avoid ignoring the minority
class by using multiple class minimum support. Other approaches like CMAR [12] try to
solve the same problem by considering multiple rules to predict unseen examples as well
as speeding up the runtime by means of complex data structures. Even all these proposals
work pretty well in terms of both accuracy and efficiency, CPAR [13] was proposed as a
combination of classic approaches of rule induction with features of AC obtaining both
an improvement on accuracy and runtime ignoring, in part, the interpretability.
As it is described, interesting AC algorithms have been proposed in literature, obtaining

good results in interpretability, predictive power and efficiency. However, with the recent
need for dealing with bigger amounts of data, these proposals are becoming insufficient.
Big Data is a new buzzword used to refer to the techniques used to face up the problems
arising from the management and analysis of these huge quantities of data [14]. Applying
existing AC approaches on such high dimensional datasets produce some limitations in
terms of both computational complexity and memory requirements [15]. Hence, it is vital
to propose new approaches able to scaled out [16] and to obtain results, in a reasonable
quantum of time, when they are applied to Big Data.
At this point, the goal of this work is to propose two different methods based on tra-

ditional algorithms for AC (CBA and CPAR) through emerging paradigms of distributed
computing (Spark and Flink). In this regard, CBA and CPAR were selected since, accord-
ing to some authors [4, 12, 13, 17], these are the most interesting ones based on accuracy
and interpretability. CBA is considered as the algorithm that obtains the most inter-
pretable classifiers, whereas CPAR is able to obtain very accurate classifiers with accuracy
values, in average, greater than those obtained by CBA [13]. In the experimental stage,
these two proposals have been compared to existing AC approaches to demonstrate that

36

Padillo et al. Big Data Analytics (2019) 4:2 Page 3 of 27

both are the most interesting ones. In this work, the two proposed methods have been
designed on both Apache Spark and Apache Flink, and these two platforms were selected
since they are the most representative within the Big Data field [18]. Then, these two
approaches have been compared to current state-of-art of associative classification in Big
Data. It should be noted that the two proposals, that is, CBA (based on Spark and Flink)
and CPAR (based on Spark and Flink), return exactly the same results as their sequen-
tial versions (CBA [4] and CPAR [13]) and the main difference lies in the runtime and
the ability to be run on Big Data. The two proposals have been analyzed on 40 different
datasets (30 classical datasets and 10 Big Data datasets), proving that they scale well even
for file sizes up to 200 GBytes. Classical datasets were considered to find the algorithm
or algorithms that best perform among sequential approaches. Such best algorithms were
parallelized using Apache Spark and Flink, and considering 10 well-known Big Data
datasets. Additionally, in order to prove the scalability of Big Data approaches three well-
knownmetrics (scale-up, speed-up and size-up) have been considered to analyze how the
algorithms behave on different number of nodes and data sizes [19]. Finally, it is impor-
tant to remark that all the experimental results have been validated by non-parametric
statistical tests.
The rest of the paper is organized as follows. “Methods” section presents the most rel-

evant definitions and related work; “Results” section describes the proposed algorithm;
“Discussion” section presents the datasets used in the experiments and the results; finally,
some concluding remarks are outlined in “Conclusion” section.

Preliminaries
In this section, the associative classification task is first introduced in a formal way. Then,
different paradigms for distributed computing are described.

Associative classification

The task of associative classification (AC) was proposed as a combination of two well-
known tasks in the data mining fields, namely association rule mining and classification,
as a way of building a interpretable and accurate classifiers [4]. In this regard, this section
formally describes these two different tasks and, finally, it formally introduce the AC
problem.
Let us first introduce association rule mining (ARM) in a formal way by considering a

dataset comprising a set of transactions T = {t1, t2, ..., tm} and a set of items or features
I = {i1, i2, ..., in}. Here, each transaction tj comprises a subset of items {ik , ..., il}, 1 ≤ k,
l ≤ n. An association rule is formally defined [2] as an implication of the form X → Y
where X ⊂ I , Y ⊂ I , and X ∩ Y = ∅. The meaning of an association rule is that if the
antecedent X is satisfied for a specific transaction tj, i.e. X ⊂ tj, then it is highly probable
that the consequent Y is also satisfied for that transaction, i.e. Y ⊂ tj. The frequency of
an itemset X ⊂ I , denoted as support(X), is defined as the number of transactions from
T that satisfies X ⊂ tj, i.e. |{∀tj ∈ T : X ⊆ tj; tj ⊆ I}|. In the same way, the support of an
association ruleX → Y is defined as the number of transactions from T that satisfies both
X and Y, i.e. |{∀tj ∈ T : X ⊂ tj,Y ⊂ tj; tj ⊆ I}|. Additionally, the strength of implication
of the rule, also known as confidence, is defined as the proportion of transactions that
satisfy both X and Y among those transactions that contain only the antecedent X, i.e.
confidence(X → Y) = support(X → Y)/support(X) [20].

37

Padillo et al. Big Data Analytics (2019) 4:2 Page 4 of 27

The classification task, on the contrary, can be formally defined by considering a set of
items or features I = {i1, i2, ..., in} and a variable of interest or class C including a number
of values. Here, a dataset is formed as a set of transactions T = {t1, t2, ..., tm} and each
transaction tj comprises a subset of items {ik , ..., il}, 1 ≤ k, l ≤ n and a specific value for
the class C. The task of classification could be formally defined as predicting the class
value of a l-dimensional input vector S such as S = {s1, s2, ..., sl} where ∀s ∈ S : s ⊆ I .
This task of mapping a set of input variables to an output variable is done by means of
functions or rules [5].
AC is an special kind of classification where rules previously discovered by ARM are

used to build an accurate classifier, that is, able to predict unseen examples. Aiming at
obtaining this kind of classifiers many different methodologies have been proposed [10],
and most of them obtain association rules by means of exhaustive search algorithms [2].
CBA [4] and its improved version CBA2 [17] are two examples of AC algorithms that first
mine association rules by means of exhaustive search algorithms. However, this is a major
drawback when large datasets are required to be analysed since for a dataset comprising
k single items, a total of 3k − 2k+1 + 1 rules can be computed and saved in memory. To
solve this issue, additional approaches, e.g. CMAR [12], have been proposed which are
mainly based on novel data structures that avoid the generation of any candidate. Another
example is CPAR [13], which combines the advantages of AC with traditional rule induc-
tion algorithms. While these algorithms work well for not so big datasets, they cannot be
used in Big Data due to the associated complexity [21]. Under these circumstances, new
forms of building this type of classifiers from a Big Data perspective is an interesting and
emerging topic [22], which has not received yet the needed attention.

Big Data architectures: Apache Spark, Apache Flink and its origins

MapReduce [16] is a recent paradigm of distributed computing in which programs are
composed of two main stages, map and reduce. In the map phase each mapper processes
a subset of input data and produces a set of
k, v� pairs. Finally, the reducer takes this new
list to produce the final values. To clarify this idea, let us analyze a social network in which
it is required to know the number of friends in common that each pair of friends have.
Assume that friends are stored as Person →[List of friends]. Thus, the list of friends would
be something like: A → BCD, B → ACDE, C → ABDE, D → ABCE, and E → BCD. For
every friend in the list of friends, the mapper will output a
k, v� pairs, where the key k is
a friend along with the person (e.g. AB). The value v will be the list of friends (e.g. BCD).
The key will be sorted so that the friends are in order, causing all pairs of friends to go
to the same reducer. Before we send these
k, v� pairs to the reducers, we group them by
their keys and get (AB) → (ACDE)(BCD). The reduce function will simply intersect the
lists of values and output the same key with the result of the intersection. For example,
the previous reduce ((AB) → (ACDE)(BCD)) will output (AB) : (CD) which means that
friends A and B have C and D as common friends.
Hadoop [23] is the de facto standard for MapReduce applications. Even when Hadoop

implements these paradigms efficiently, its major drawback is it imposes an acyclic data
flow graph, and there are applications that cannot be modeled efficiently using this kind
of graph such as iterative or interactive analysis [18]. Besides, MapReduce is not aware of
the total pipeline of map plus reduce steps so it cannot cache intermediate data in mem-
ory for faster performance. Instead, it flushes intermediate data to disk between each step.

38

Padillo et al. Big Data Analytics (2019) 4:2 Page 5 of 27

To solve these downsides, Apache Spark has risen up for solving all the deficiencies of
Hadoop, introducing an abstraction called Resilient Distributed Datasets (RDD) to store
data in main memory and a new approach using micro-batch technology. Unfortunately,
Spark does not support native iterations, which means that its engine does not directly
handle iterative algorithms [24]. In order to implement an iterative algorithm, a loop
needs to repeatedly instruct Spark to execute the step function and manually check the
termination criterion, significantly increasing overhead for large-scale iterative jobs. This
issue is unlikely to have any practical significance on operations unless the use case
requires low latency where delay of the order of milliseconds can cause significant impact.
Furthermore, Flink includes its own memory manager reducing the time required by
garbage collector, whereas Spark addresses this issue later with Tungsten optimization
project [25]. In this sense, Apache Flink has been proposed to face the problems of Spark
and to address the problem of streaming applications differently and in a more native
way (vs the micro-batch methodology of Spark). By the time Flink came along, Apache
Spark was already the most suitable framework for fast, in-memory Big Data analytic
requirements for a number of organizations around the world. This made Flink appear
superfluous, but in the recent years the attention on this new platform has risen up
considerably.

Methods
In this section the two proposals are fully described. Even though the algorithms have
been run on both Spark and Flink, the explanation is in common since the philosophy
is the same and the unique difference is the platform. Then, In the experimental stage,
these two proposals have been compared to existing AC approaches to demonstrate that
both are the most interesting ones. The experimental set-up is also fully described in this
section including which comparisons have been performed.

Aim of this work and our proposals

The goal of this work is to propose two different methods based on traditional algorithms
for AC, that is, CBA and CPAR, through emerging paradigms of distributed computing
(Spark and Flink). In this regard, CBA and CPAR were selected since, according to
some authors [4, 12, 13, 17], these are the most interesting ones based on accuracy and
interpretability. CBA is considered as the algorithm that obtain the most interpretable
classifiers, whereas CPAR is able to obtain very accurate classifiers with accuracy values,
in average, greater than those obtained by CBA [13]. In this work, the two proposedmeth-
ods have been designed on both Apache Spark and Apache Flink, and these two platforms
were selected since they are the most representative within the Big Data field [18].

CBA-Spark/Flink

This proposal is based on the well-known CBA [4] algorithm1, which makes use of
two different stages. Firstly, the Apriori [2] algorithm is used to find association rules.
Secondly, an accurate classifier is built using the previously mined rules.
Sequential algorithm. Aiming at easing the comprehension of the parallel approach,

the original algorithm is briefly described through an example. First, association rules
are extracted by means of the Apriori algorithm, only considering those rules hav-
ing a support and a confidence values higher than a threshold. Let us considered the

39

Padillo et al. Big Data Analytics (2019) 4:2 Page 6 of 27

well-known weather dataset (the class attribute determines whether someone will play
tennis or not) and the rules: outlook = rainy → play = no, outlook = sunny →
play = yes, windy = no → play = yes, windy = no AND outlook = sunny →
play = yes, windy = no AND outlook = rainy → play = no, windy = no AND
outlook = rainy → play = yes. Second, an accurate classifier is built by considering the
previously mined rules. In this regard, rules are sorted according to their support, con-
fidence and size [4]. However, sorting is not enough since the final classifier might be
formed of many and repetitive rules: windy = no → play = yes and windy = no AND
outlook = sunny → play = yes may be fired by any example that satisfies windy = no.
In this regard, the final step in the algorithm is to remove those rules with a low level of
precedence and not covering at least one example on the training dataset.
Generation of association rules. The goal of this phase is to obtain those rules whose

frequency of occurrence is greater than a threshold value predefined by the user. In this
sense, an iterative algorithm based on the well-knownApriori [2] is considered. An impor-
tant problem of this kind of methodologies is the extremely high number of rules that
may be produced at the same time. To deal with this issue, an option is not to create
the whole lattice for each transaction but the l-sized sub-lattice each time, requiring a
predefined number of iterations. In this regard, both the memory requirements and the
computational time can be reduced. Furthermore, when the l-sized rules are generated,
only the supersets from l-1-sized frequent rules are used as a seed, enabling to speed up
the runtime. The explanation behind this fact is that any rule can be only frequent if all
its sub-rules are also frequent [2].
This phase has been developed with a classical MapReduce application includ-

ing three different types of processes: 1) driver: it is the main program when run-
ning the algorithm; 2) mappers: they aim at processing an input and producing
a set of
k, v� pairs; 3) reducers: they receive the previously set of pairs in order
to aggregate and filter the final results. Each of these steps are fully described as
follows:

• Step 1. The driver reads the database from disk and save it in the main memory of the
cluster. Either using Spark or Flink, the driver splits the dataset in data subsets in
order to ease both the data access and data storage.

• Step 2. Each time this phase (see Listing 1) is performed a MapReduce procedure is
run. The proposed model works by running a different mapper for each specific
sub-database and, then, the results are collected and filtered in a reducer phase.
These two sub-steps are described as follows.

- Step 2.1. Mappers phase. Each mapper is responsible for mining the complete
set of rules of size l for its sub-database. A set of
k, v� pairs are produced
where k represents a set of items and class values, whereas v denotes an array
of values (support of antecedent, support for each class value, and support of
the rule considering each possible class value). All the rules produced in this
step do not have any sub-set of infrequent itemsets, since the l -1-itemsets are
used to avoid infrequent patterns to be generated (see Listing 1, line 3 in
mapper function).

- Step 2.2 Reducers phase. The rules for each data subsets are collected,
aggregated in order to obtain the support value for the whole dataset (see

40

Padillo et al. Big Data Analytics (2019) 4:2 Page 7 of 27

Listing 1, lines 2 to 4 in reducer function), and filtered (see Listing 1, line 5 in
reducer function) according to a minimum threshold for their support.

• Step 3. After the MapReduce phase is carried out, the best rules of size l are reported
to the driver.

Listing 1 CBA-Spark/Flink - Generation of association rules - Step 2
functionmapper(instance, l, l-1-sizedRules)
1: candidates ← generateRulesSizeL(l, instance)
2: for all candidate in candidates do
3: if candidate is not a subset of any l-1-sizedRules then
4: supports ← calculateSupports(candidate, instance)
5: emit(candidate, supports) // Emit
k, v� pair
6: end if
7: end for

end function
function reducer(candidate, supports)
1: finalSupports ← {supportAntecedent: 0, supportConsequent: 0, supportRule: 0}
2: for all support in supports do
3: finalSupports ← finallSupports + support
4: end for
5: if finalSupports.supportRule ≥ threshold then
6: emit(candidate, supports) // Emit
k, v� pair
7: end if

end function

It should be noted that all these steps are repeated until l is equal to the number of the
items in data. These l-sized rules are kept in a pool of rules, known as R, which will be
used in the next phase, that is, the generation of the final classifier.
Building the final classifier. The goal of this phase is to build the final classifier by

means of the previously obtained rules. Let R be the set of generated rules and D the
training dataset. The basic idea is to choose a set of high accurate rules from R to cover
D. The final classifier is therefore formed as a list [r1, r2, ..., rn, default_class] where ri ∈ R
and default_class is only used when none of the rules is fired. This phase is tough since a
huge number of combinations are possible so a heuristic is usually used to alleviate this
problem.
Four different steps are considered to build the final classifier:

• Step 1. Rules are sorted according to a precedence criterion. Given two rules, ri and
rj, ri has a higher precedence than rj:

- The confidence of ri is greater than that of rj.
- The confidence values are the same for both rules but the support of ri is

greater than that of rj.
- The confidence and support values for both rules are the same, but ri was first

generated, that is, size(ri) < size(rj) where size returns the number of
attributes in each rule.

• Step 2. After sorting, a MapReduce is required to select candidate rules.

41

Padillo et al. Big Data Analytics (2019) 4:2 Page 8 of 27

- Step 2.1. Mappers phase. The input of the mappers is a chunk of the dataset
and R. The goal is to iterate on each instance of the dataset to find the rule
with the highest precedence that it will be fired given that example (see
Listing 2). In order to do so, for each instance two rules are selected: 1) cRule:
the rule with the highest precedence that correctly classify the instance; 2)
wRule: the rule with also the highest precedence that wrongly classify the
instance. When cRule has a higher precedence than wRule is trivial that cRule
will be fired, thus it will classify this instance. However, when the contrary
happens the problem is more complex and more analysis is required (these
rules will be re-studied in the next step of the algorithm). When all the
instances for the chunk are processed two kind of
k, v� pairs are generated:
1) cRule type. For those rules which were selected at least one time as cRule a

k, v� pair is emitted, where k is the rule and v is an array containing two
values: QFlag if it had at least one time more precedence than its wRule;
classCasesCovered an array containing the number of cases per classes which
were covered by this rule.
2) wRule type. For those rules which were selected at least one time as wRule
and they had a higher precedence than its respective cRule a
k, v� pair is
emitted, where k is the rule and v is an array containing three values: Instance,
cRule and wRule.

- Step 2.2. Reducers phase. They receives the two types of
k, [v0, ..., vn] � pairs
generated in the previous step. In function of the type an action is done:
1) cRule type: they are sent directly to driver, without performing any action.
They are saved in the driver as Q.
2) wRule type. The overall count is calculated aggregating the results for each
mapper. In case of properties as classCasesCovered the values are added and
for binary values, the OR operator is applied. Then, they are sent to the driver
saving it in A.

• Step 3. Next, those complex cases which could not be studied in the previous step,
are now examined. In this regard, for each case where wRule has a higher precedence
than cRule is checked if this very wRule has been used as cRule for other instances
(that is, QFlag is enabled) in that case is clear that wRule will cover this instance. For
the another case, it is required to find all the rules with higher precedence than cRule
and they also have to wrongly classify this instance. These returned rules are those
that may replace cRule to cover this instance because they have higher precedences,
thus in this sense the counter of covered classes are updated and they are saved. As
these rules are candidate of being in the final classifier.

• Step 4. All the previously generated rules are sorted in function of the precedence of
the rules. Then, all the rules which do not cover at least one instance are removed.
Finally, add one by one those rules to the final classifier until the point where adding
a new rule does not improve the overall performance but they worsen.

Finally, the computational complexity of this algorithm is the same as the original
approach [4]. As it could be appreciated, this algorithm is computationally expensive
since it is based on Apriori [2]. Let us consider N as the number of input transactions,
M is the threshold and k the number of unique elements. To generate rules of size i it

42

Padillo et al. Big Data Analytics (2019) 4:2 Page 9 of 27

Listing 2 CBA-Spark/Flink - Building the final classifier - Step 2
functionmapper(chunk, R)
1: finalResult ← generateCustomStructure(R)
2: for instance in chunk do
3: cRule ← correctClassifyRule(R, instance)
4: wRule ← wronglyClassifyRule(R, instance)
5: finalResult[cRule.id].classCasesCovered[instance.class]++
6: finalResult[cRule.id].UFlag ← true
7: if cRule � wRule then
8: finalResult[cRule.id].QFlag ← true
9: else

10: emit(
 cRule, [instance, cRule, wRule] �) // Emit
k, v� pair
11: end if
12: end for
13: emit(finalResult) // Emit each result as one
k, v� pair
end function

requiresO
�
ki

�
, and for calculating support it requiresO(N). Therefore, time complexity

for algorithm would beO
�
(k + N) + �

k2 + N
� + ...

� = O
�
MN + 1−kM

1−k

�
.

CPAR-Spark/Flink

This proposal is based on the well-known CPAR [13] algorithm, which also works in two
different stages. Firstly, a greedy approach is considered in the rule generation phase,
which is much more efficient than generating all candidate rules. Secondly, CPAR repeat-
edly searches for the current best rule and removes all the data records covered by the
rule until there is no uncovered data record.
Sequential algorithm. CPAR2 extracts rules by means of a greedy algorithm inspired

in the well-known FOIL algorithm [13]. FOIL repeatedly searches for the current best
rule and removes all the positive examples covered by such rule until all the positive
examples in data are covered. To facilitate understanding let suppose the well-known
weather dataset, where the rule with a highest gain is outlook = sunny → play = yes.
Then, two items windy = no and temperature = hot are found to have similar gain. The
rules outlook = sunny AND windy = no → play = yes and outlook = sunny AND
temperature = hot → play = yes are therefore generated. This process will be repeated
until all the instances are covered. Finally, to predict an unseen example the best k rules
for each class is used, with the following procedure: 1) select any rule that satisfies the
example; 2) from the rules selected in step 1, take the best k rules for each class; and 3)
compare the average expected accuracy of the best k rules for each class and choose the
class with the highest expected accuracy as the predicted class.
Generation of association rules. This phase is responsible for obtaining class asso-

ciation rules. It makes use of an adaptation of FOIL which has proved to obtain good
results [13]. This algorithm makes use of a unique iteration on the dataset to build a
special data structure which enables to reduce the number of times that a dataset has
to be read. Then, the rules could be extracted directly using this data structure. At this
point, and similarly to the other proposal (CBA-Spark/Flink), this first phase has been
developed with a classicalMapReduce framework by including four different types of pro-
cesses: 1) driver: it is the main program when running the algorithm; 2) mappers: they
aim at processing an input and producing a set of
k, v� pairs; 3) reducers: they receive

43

Padillo et al. Big Data Analytics (2019) 4:2 Page 10 of 27

the previously set of pairs in order to aggregate and filter the final results; 4) a set of asso-
ciation rules are produced in a greedy fashion. Each of these steps are fully described as
follows:

• Step 1. The driver reads the database from disk and save it in the main memory of the
cluster. Either using Spark or Flink, the driver splits the dataset in data subsets in
order to ease both the data access and data storage.

• Step 2. Building a data structure to synthesize the dataset. Unlike the previous
approach where an iterative approach was used, in this case a unique MapReduce
phase is used. The goal is to calculate the frequency of occurrence or support value
for each attribute=value combined with one value of the class, that is, itemsets of size
2 where one of the items is the class and the other is an item of the form
attribute=value. Therefore, for binary classification two parallel MapReduce would
be required (one for positive and another for negative). In multi-class problems the
process is repeated for each class value, considering the current value as positive and
the rest of values as negative. This step is split in two different sub-parts as follows.

- Step 2.1. Mapper phase (see Listing 3 mapper function). Each mapper
analyzes a data subset and produces a set of
k, v� pairs where k is an
expression of the form attribute=value; and v is an array of the form
(instance.id, instance.weight, instance.class), where instance.id is a unique
identifier for this instance; instance.weight is the weight associated to this
instance (by default is 1); instance.class is the class for this instance. It should
be noted that the number of mappers for this phase is limited to the size of the
data, and its calculation is delegated to the platforms (Spark/Flink).

- Step 2.2. Reducer phase (see Listing 3 reducer function). The set of
k, v� pairs
is aggregated in the reducers to produce the final count for both the positive
and negative classes of the instances for each attribute=value. Each reducer
returns its result to the driver, which saves all the final results in
simplified_dataset. As the number of produced
k, v� are very large a unique
reducer could be act as a bottleneck. To avoid this situation, several reducers
are considered to achieve a higher level of parallelism. In concrete, the meta-
data (attributes and values included in data) is used to calculate the number of
reducers as numberOfReducers = �n

i=0 numberOfValuesForAttribute(i),
where n is the number of attributes; numberOfValuesForAttribute(i) returns
the number of different values which could take the attribute i.

• Step 3. Next, the dataset is split in subparts, one for each value of the class. It is
required as a previous step of generating rules, since it will be used combined with
the simplified_dataset to avoid to iterate several times in the original dataset. In case
of binary classification, two new sub-sets of the original dataset would be created (see
lines 3 to 4, Listing 3, driver function). Furthermore, the total weight for positive
instances is calculated by the function totalWeightPositiveInstances (see line 5,
Listing 3, driver function), having into account that each instance has a value of
weight equal to 1 by default. In multi-class problems the problem of calculating the
total weight would be repeated for each class value, iterating on the values and
considering the current value as positive and the rest of values as negative.

44

Padillo et al. Big Data Analytics (2019) 4:2 Page 11 of 27

Listing 3 CPAR-Spark/Flink - Generation of association rules
functionmapper(instance)
1: for all attributeAndValue in instance do
2: emit(attributeAndValue, (instance.id, instance.weight, instance.class)) // Emit
k, v� pair
3: end for

end function
function reducer(attributeAndValue, values)
1: result ← {positiveInstances: ∅, negativeInstances: ∅}
2: for all value in values do
3: // value has the form (instance.id, instance.weight, instance.class)
4: if value.class is positive then
5: result.positiveInstances ← result.positiveInstances ∪ (value.id, value.weight)
6: else
7: result.negativeInstances ← result.negativeInstances ∪ (value.id, value.weight)
8: end if
9: end for

10: emit(attributeAndValue, result) // Emit
k, v� pair
end function
function driver(dataset,minGain)
1: R ← ∅
2: A ← MapReduce to synthesize dataset
3: P ← Filter dataset to select only positive instance from dataset
4: N ← Filter dataset to select only negative instance from dataset
5: originalTotalWeight ← totalWeightPositiveInstances(simplified_dataset)
6: while totalWeightPositiveInstances(simplified_dataset) < δ · originalTotalWeight do
7: N � ← N ,P� ← P, simplified_dataset� ← simplified_dataset
8: r ← emptyRule
9: while (attributeValue = bestAttributeValue(simplified_dataset)).gain < minGain do

10: r ← r ∪ attributeValue
11: for all t in P� ∪ N � not satisfying r‘s body do
12: remove t from P�orN �
13: recalculate simplified_dataset according to the removal of t
14: end for
15: end while
16: R ← R ∪ r
17: for all t in P satisfying r‘s body do
18: t.weight ← α · t.weight
19: change simplified_dataset according to the weight decreased
20: end for
21: end while
end function

• Step 4. Find a set of rules in a greedy fashion by means of the previously obtained data.
Each rule is initialized with an empty set (see line 8, Listing 3, driver function), and the
best attribute=value is selected from simplified_dataset using the gain measure. This
measure is calculated as gain(rule) = |P|

�
log |P∗|

|P∗|+|N∗| − log |P|
|P|+|N |

�
, where N and

P is the number of negative instances and positive instances respectively; N∗ and P∗
are the number of both the number negative and positive instances satisfying the rule
body. When the best attribute=value is selected, it is added to the current rule r (see
line 10, Listing 3, driver function), then the temporal P�, N � and simplified_dataset�
are updated considering that this new rule covers some instances (see lines 11 to 14,
Listing 3, driver function) and the process of adding a new attribute=value is
repeated until the gain of the new attribute=value is smaller than a threshold

45

Padillo et al. Big Data Analytics (2019) 4:2 Page 12 of 27

minGain. Once the rule is completely formed, it is added to the final set of rules (see
line 16, Listing 3, driver function), and P and simplified_dataset are updated
considering this new rule (see lines 17 to 20, Listing 3, driver function). The process is
repeated until a sufficient number of positive instances have been covered by means
of the threshold δ. All the rules generated are saved in R. It generates rules while the
number of positive instances in the remaining dataset are larger than a threshold (δ).

Building the final classifier. The aim of this step is to build the final classifier by means
of the previously obtained rules. Before anything, it is required to calculate the power of
predictability of the rules. In this sense, the Laplace error estimate is used to calculate the
accuracy of rules, which is defined as LaplaceAccuracy = nc+1

ntot+k , where k is the number of
classes, ntot is the total number of examples satisfying the antecedent of the rule, among
which nc examples belong to the predicted class value c.
When an unseen example has to be predicted, the best k rules of each class are used for

prediction following the next procedure. First, it selects all the rules whose antecedents
are satisfied by this unseen example. Second, from the previously selected rules, it selects
the best k rules for each class value. Finally, it compares the average expected accuracy
of the best k rules of each class value and the class value with the highest expected accu-
racy is selected. Finally, it should be considered that multiple rules are used in prediction
because two reasons: 1) the accuracy of rules cannot be precisely estimated; 2) it cannot
be expected that any single rule can perfectly predict the class value of every example.
Moreover, only the best k rules are used instead of all the rules since there are different
number of rules for different class values.
Finally, the computational complexity of this algorithm is the same as the original

approach [13]. During the process of building a rule, it removes in simplified_dataset each
example at most once. Moreover, it takes O(k) time to remove an example from it. So it
takes O(nk) time to build a rule, thus the final time complexity of calculating the ruleset
is measured asO(nk|R|).

Experimental set-up

This section describes both the experimental set-up (algorithms and datasets) and the
achieved results. The goal of this experimental analysis is four-fold:

1 To compare the quality of the predictions with other well-known algorithms taken
from the AC field.

2 To analyze the interpretability of the results with regard to other methodologies.
3 To compare the efficiency of these approaches which obtain the best possible

results in terms of both quality (accuracy and kappa) and interpretability.
4 To analyze the scalability in Big Data environments when different parallel

implementations are considered.

All the results obtained in the experimental analysis are available at http://www.uco.es/
kdis/cba-cpar/.

Design of the experimental study and criteria for selecting the best algorithms

In this analysis, 40 real-world datasets widely used by researchers in AC and Big Data
datasets have been considered. Table 1 shows the number of both attributes and instances,
they have been categorized into two different groups: classical datasets and Big Data

46

Padillo et al. Big Data Analytics (2019) 4:2 Page 13 of 27

Table 1 List of datasets (in alphabetical order) used for the experimental study

Datasets Attributes Instances

Classical datasets

Appendicitis 7 106

Australian 14 690

Banana 2 5300

Breast 9 277

Cleveland 13 297

Contraceptive 9 1473

Flare 11 1066

German 20 1000

Hayes-roth 4 160

Heart 13 270

Iris 4 150

Lymphography 18 148

Magic 10 19,020

Mammographic 5 830

Monk-2 6 432

Mushroom 22 5644

Page-blocks 10 5472

Phoneme 5 5404

Pima 8 768

Post-operative 8 87

Saheart 9 462

Spectfheart 44 267

Splice 60 3190

Tae 5 151

Tic-tac-toe 9 958

Titanic 3 2201

Vehicle 18 846

Wine 13 178

Winequality-white 11 4898

Wisconsin 9 683

Big Data datasets

Census 40 299,285

CoverType 54 581,012

Hepmass 28 10,500,000

Higgs 28 11,000,000

Poker 10 1,025,010

Kddcup1999 41 4,898,431

KDD99_2 41 4,856,151

KDD99_5 41 4,856,151

Record-Linkage 12 5,749,132

Sussy 18 5,000,000

datasets. All of them are publicly available at the KEEL [26] repository. For these datasets,
the number of attributes ranges from 2 to 60, the number of class values varies between
2 to 23, and the number of instances ranges from 87 to 11,000,000. A 10-fold stratified
cross-validation has been used, and each algorithm has been executed 5 times. Thus, the
results shown for each dataset are the average results obtained from 50 different runs.

47

Padillo et al. Big Data Analytics (2019) 4:2 Page 14 of 27

Additionally, 12 different algorithms have been considered to be analyzed, which are
based on different methodologies such as exhaustive search from ARM, bio-inspired
methodologies, Big Data approaches as well as classic methodologies. All these algo-
rithms, which aremainly used by researchers in the AC field, have been selected according
to their efficiency and significance within the predictive tasks. It is important to note that
the configurations for these algorithms are those provided by the authors in their original
works. Each of these algorithms have been categorized as follows:
Classical algorithms

• CBA [4]. It is the first algorithm that was proposed in the AC field. It is based on a
well-known algorithm from ARM known as Apriori [2].

• CBA2 [17]. It is an improvement of CBA that considers multiple class minimum
support in rule generation.

• CMAR [12]. It uses a recognized algorithm (FP-Growth [27]) from ARM to obtain
rules without candidate generation.

• CPAR [13]. It adopts a greedy algorithm to generate interval association rules directly.
• C4.5 [1]. One of the most well-known algorithms to generate a decision tree in the

same way as ID3 algorithm [5].
• RIPPER [28]. It is a rule-based learner that builds a set of rules to identify the classes

while minimizing the amount of error (the number of training examples misclassified
by the rules).

• CORE [29]. It is a coevolutionary algorithm for rules induction. It coevolves rules and
rule sets concurrently in two cooperative populations.

• OneR [30]. It is a simple, yet accurate, classification algorithm that generates one rule
for each predictor in the data. Then, it selects the rule with the smallest total error as
its one rule.

Big Data algorithms
• MRAC [31]. Distributed association rule-based classification scheme shaped

according to the MapReduce programming model.
• MRAC+ [31]. Improved version of MRAC where some time-consuming operations

were removed.
• DAC [32]. Ensemble learning which distributes the training of an associative

classifier among parallel workers.
• DFAC-FFP [33]. An efficient distributed fuzzy associative classification approach

based on the MapReduce paradigm.

In order to analyze each of the aforementioned algorithms, an experimental study
has been performed. In this study, the main and most important criteria to choose an
algorithm is described as:

• Predictive power. In this regard, accuracy rate [5] and Cohen’s kappa rate [34] have
been considered. The accuracy rate (number of successful predictions relative to the
total number of examples in data) has been taken since it is the most well-known
metric in classification. On the contrary, an due to accuracy may achieve unfair
results with imbalanced data, Cohen’s kappa rate [34] has been considered, evaluating

48

Padillo et al. Big Data Analytics (2019) 4:2 Page 15 of 27

the actual hits that can be attributed to the classifier and not by mere chance. It takes
values in the range [−1, 1], where a value of −1means a total disagreement, a value
of 0 may be assumed as a random classification, and a value of 1 is a total agreement.
This metric is calculated as Kappa = N

�k
i=1 xii−

�k
i=1 xi·x·i

N2−�k
i=1 xi·x·i

, where xii is the count of
cases in the main diagonal of the confusion matrix, N is the number of instances and,
finally, x·i and xi· are the column and row total counts respectively.

• Interpretability has been selected as one of the main reasons of using AC, that is, to
obtain interpretable classifiers that facilitate the understanding from an expert in the
domain. Rules with a less quantity of attributes and classifiers formed by a small
number of rules are denoted as more interpretable from a point of view of a human
expert. In this sense, it is straightforward to state that the ideal classifier would be
composed of a small number of rules with very few variables. Let C be a classifier
including a set of rules, i.e. C = {R0, ...,Rn}, the complexity or interpretability of C is
calculated as complexity(C) = n

�n
i=0 attributes(Ri), where n is the number of rules

used by the classifier C, Ri is a specific rule of the form Ri = X → y in the position i
of the classifier C, and attributes(Ri) is defined as the number of variables, i.e. |X|,
that Ri includes.

• Efficiency is of great interesting since, nowadays, more and more data is daily
generated and it is vital to propose approaches that are able to be scaled out and to
obtain results, in a reasonable quantum of time.

Then, the analysis is exclusively focused on Big Data algorithms. Three well-known
metrics have been used to show how our proposals behave [19]. Next, each metric is
briefly described.

• Speed-up [19]: given a fixed job run on a small system, and then run on a larger
system, the speed-up is measured as speed − up(p) = T1

Tp
, where p is the number of

nodes, T1 is the execution time on one node and Tp is the execution time on p nodes.
It holds the problem size constant, and grows the system.

• Scale-up [19]: is defined as the ability of a N-times larger system to perform an
N-times larger job in the same elapsed time as the original time. Thus, it measures
the ability to growth both the system and the problem. It is defined as
scale − up(D, p) = TD1

TDp
, where D is the dataset, TD1 is the execution time for D on

one node, TDp is the execution time for p × D on p nodes.
• Size-up [19]: it measures how much longer it takes on a given system, when the

dataset size is p larger than the original dataset. It is defined as size − up(D, p) = Tp
T1
,

where Tp is the execution time for processing p × D and T1 is the execution time for
processing data.

Finally, all the experiments have been run on a HPC cluster comprising 12 compute
nodes, with two Intel E5-2620 microprocessors at 2 GHz and 24 GB DDR memory. Clus-
ter operating system is Linux CentOS 6.3. As for the specific details of the used software,
the experiments have been run on Spark 2.0.0 and Flink 1.3.0.

Results
All the algorithms studied in this work have been analyzed in function of the different
criteria and considering non-parametric tests. The result for each analysis is as follows:

49

Padillo et al. Big Data Analytics (2019) 4:2 Page 16 of 27

• Analysis of the predictive power: all the aforementioned algorithms have been
analyzed according to both the accuracy and kappa quality measures. CPAR obtained
the best result.

• Interpretability: from the best algorithms obtained in the previous study, an analysis
of interpretability have been performed considering both number of rules and
attributes. CBA obtained the best results.

• Efficiency: after the two previous analysis, the best algorithms have been compared
with regard to quantity of time. CBA was the best algorithm.

Additionally, two additional analyses were performed. First, traditional approaches on
traditional datasets were considered to prove the importance of parallelizing such algo-
rithms. Second, Big Data algorithms and datasets were considered. The proposals for Big
Data (CBA-Spark/Flink and CPAR-Spark/Flink) are deeply analyzed and compared to the
state-of-the-art in Big Data proving that they scale very well in terms of metrics such as
speed-up, scale-up and size-up.

Discussion
This section discuss the implications of the findings in context of existing research.

Comparative study on predictive power, interpretability and efficiency

The aim of this section is to analyze all the aforementioned algorithms according to three
main criteria: predictive power, interpetability and efficiency. It is important to remark
that the best algorithms for each criterion are the only ones used in the experimental
analysis of the following criterion. Each of these three analyses are carried out from two
different perspectives: classical algorithms and datasets (aiming at proving that our pro-
posal outperforms the state-of-art even when a small quantity of data is considered); Big
Data algorithms and datasets (aiming at comparing to current state-of-art in Big Data).
Finally, it is important to remark that classical approaches cannot be run on Big Data
datasets.

Analysis of the predictive power

The goal of this study is to analyze the quality of the solutions, in terms of Accuracy and
Kappa measures, obtained by different algorithms.

Classical state-of-art

Analyzing the accuracy (see Table 2), it is obtained that CMAR and OneR obtained the
worst results. This behavior is caused by the fact that OneR only uses a unique rule to
predict on the whole datasets. It should be noted that in those datasets comprising a huge
number of instances, a higher number of rules are required to cover all the instances.
Besides, CMAR did not obtain good results since it optimizes the confidence measure in
isolation, that is, it generates very specific classifiers that are not able to correctly pre-
dict unseen examples. As for CBA and its improved version CBA2, they obtained good
results in terms of accuracy, being even close to the results obtained by C4.5. It should be
highlighted that, among all the algorithms under study, CPAR obtained the best results
for the Accuracy metric. Finally, focusing on the Kappa metric (see Table 2), very similar
results were obtained, although in this case the difference between CPAR and C4.5 is not
so high.

50

Padillo et al. Big Data Analytics (2019) 4:2 Page 17 of 27

Table 2 Classical algorithms

Algorithm Ranking

Ranking for the accuracy measure

CMAR 6.200

OneR 5.566

CORE 5.516

CBA 4.466

Ripper 4.500

CBA2 3.383

C4.5 3.816

CPAR 2.550

Ranking for the kappa measure

OneR 6.083

CORE 5.750

CMAR 5.683

CBA 4.633

Ripper 3.816

CBA2 3.516

C4.5 3.300

CPAR 3.216

Average ranking for each algorithm (sorted in descending order) according to the Friedman test. Bold typeface denotes the
algorithm whose ranking was the best

In order to analyze whether there are any statistical difference in the previous results,
several non-parametric tests have been performed. First, a Friedman test has been run
on the Accuracy measure, obtaining a X2

F = 52.894 with a critical value of 18.475 and a
p-value = 3.889−9. Therefore, it is possible to assert that there exist some kind of sta-
tistical difference among the algorithms for this measure with α = 0.01. In the same
way, a X2

F = 50.042 with a critical value of 18.475 and a p-value = 1.418−8 has
been obtained for the Kappa metric, meaning that there exist some statistical differ-
ences among the algorithms for α = 0.01. Next, a post-hoc test has been performed
to state among which algorithms there exist any difference. In this regard, Table 3
shows the p-values for the Holland test with α = 0.01. CPAR has been selected
as control since it achieved the best ranking in the previous analysis. Focusing on
the Accuracy measure, results of this post-hoc test (see Table 4) denoted some sta-
tistical differences with regard to CMAR, CORE and OneR. The rest of algorithm
equally behaves in terms of Accuracy measure. Finally, focusing on the Kappa mea-
sure, results of this post-hoc test (see Table 4) revealed some statistical differences with
regard to CMAR, CORE and OneR. To sum up, among the ten selected algorithms,

Table 3 Classical algorithms

CBA2 CPAR C4.5 Ripper

CBA 0.983 0.000 0.000 0.000

p-value for the Holland test with α = 0.01 for the complexity measure. Bold typeface denotes the algorithm whose ranking was
the best

51

Padillo et al. Big Data Analytics (2019) 4:2 Page 18 of 27

Table 4 Classical algorithms

CBA CBA2 CMAR C4.5 Ripper CORE OneR

Results for the accuracy measure

CPAR 0.048 0.810 0.000 0.500 0.042 0.000 0.000

Results for the kappa measure

CPAR 0.317 0.996 0.002 0.996 0.977 0.002 0.000

p-values for the Holland test with α = 0.01. Bold typeface denotes the algorithm whose ranking was the best

five of them equally behave according to the predictive power (measured with Accu-
racy and Kappa metrics) and, therefore, additional criteria need to be used to select the
best approach.

Big Data state-of-art

Table 5 shows the ranking for Big Data algorithms for accuracy measure. DAC obtained
close results to those obtained byMRAC.MRAC+was the next best algorithm, improving
its original non-improved version (MRAC). DFAC-FFP obtained also good results but not
as good as those obtained by CBA Spark/Flink. CPAR Spark/Flink has been the algorithm
which achieved the best performance on accuracy measure. Similarly, Table 5 shows the
ranking for kappa measure. The results are very similar to those previously obtained. The
unique difference was between MRAC andMRAC+ where in this case this last algorithm
obtained worse performance than MRAC. Again, CPAR Spark/Flink has been the best
algorithm.
In order to study whether there are any statistical significant difference among the

results, several non-parametric tests have been considered. First, a Friedman test has been
performed on accuracy measure obtaining a X2

F = 36.5 with a critical value of 15.086 and
a p-value= 7.543−7. Hence, it is possible to state some kind of statistical significant differ-
ences among the algorithms. Likewise, a Friedman test has also been performed on kappa
measure obtaining a X2

F = 45.371 with a critical value of 15.086 and a p-value = 1.219−8.

Table 5 Big Data algorithms

Algorithm Ranking

Ranking for accuracy measure

DAC 5.100

MRAC 5.000

MRAC+ 4.150

DFAC-FFP 3.550

CBA Spark/Flink 2.000

CPAR Spark/Flink 1.200

Ranking for kappa measure

DAC 6.000

MRAC+ 4.700

MRAC 4.150

DFAC-FFP 2.950

CBA Spark/Flink 1.950

CPAR Spark/Flink 1.250

Average ranking for each algorithm (sorted in descending order) according to the Friedman test when 10 Big Data datasets are
considered. Bold typeface denotes the algorithm that achieves the best ranking

52

Padillo et al. Big Data Analytics (2019) 4:2 Page 19 of 27

Next, a post-hoc test has also been performed to find among which algorithms there are
any kind of differences. In this sense, Table 6 shows p-values for the Holland test with
α = 0.01. Thus, it could be stated that there are some statistical differences with regard
to MRAC, MRAC+ and DAC. Then, it has not been possible to find differences in terms
of accuracy for CPAR Spark/Flink, CBA Spark/Flink and DFAC-FFP. Finally, focusing on
kappa measure (see Table 6), shows statistical differences with regard to MRAC, MRAC+
and DAC.
Considering these results and comparing with those obtained in classical algorithms, it

is found the same behavior. CPAR obtained the best performance so much in small data
as in big data. CBA did not obtain very different results than those obtained by CPAR,
however in average they have been a little worse.

Analysis of the interpretability

Continuing with the analysis of the interpretability, the number of attributes per rule as
well as the number of rules have been analyzed.

Classical state-of-art

The average ranking for the complexity measure is shown in Table 7. CBA obtained
the best results closely followed by its improved version CBA2. CPAR, C4.5 and Ripper
obtained the worst results and, among them, there are not many big differences. In order
to analyze these results in a statistical way, a Friedman test has been performed, obtain-
ing a X2

F = 66.647 with a critical value of 13.277 and a p-value = 2.698−14, meaning
that it exists some kind of statistical differences among the complexity of the solutions of
these algorithms. Next, a post-hoc test has been performed to state among which algo-
rithms there exist any type of differences. In this sense, Table 3 shows the p-values for the
Holland test with α = 0.01. Taking into account only the interpretability, the algorithm
with the best ranking has been selected as control, that is, CBA. Results of this post-hoc
test proved that CPAR, C4.5 and Ripper obtained statistical significant differences with
regard to CBA. However, when comparing CBA and CBA2, an additional criterion is
required since no statistical difference was obtained among them for the interpretability
measure.

Big Data state-of-art

Table 8 shows the average ranking for the complexity measure. CBA Spark/Flink has out-
performed the rest of algorithms achieving the most interpretable classifiers. DFAC-FFP
obtained better results than CPAR Spark/Flink. This results are very similar to those
obtained in classical algorithms. CPAR almost always obtains a very large number of rules
hampering interpretability of classifiers. Unlikely, CBA obtained almost always the best

Table 6 Big Data algorithms

CBA Spark/Flink MRAC MRAC+ DFAC-FFP DAC

Results for the accuracy measure

CPAR Spark/Flink 0.773 0.000 0.005 0.049 0.000

Results for the kappa measure

CPAR Spark/Flink 0.643 0.000 0.006 0.229 0.000

p-values for the Holland test with α = 0.01. Bold typeface denotes the algorithm whose ranking was the best

53

Padillo et al. Big Data Analytics (2019) 4:2 Page 20 of 27

Table 7 Classical algorithms

Algorithm Ranking

Ripper 4.000

C4.5 3.850

CPAR 3.783

CBA2 1.700

CBA 1.667

Average ranking for complexity measure of each algorithm (sorted in descending order) according to the Friedman test. Bold
typeface denotes the algorithm whose ranking has been the best

possible results since it obtained small rules (few attributes) and classifiers with a small
number of rules.
In order to find some statistical significant differences among the results several

non-parametric test have been performed. Firstly, a Friedman test has been performed
obtaining a X2

F = 11.450 with a critical value of 9.210 and a p-value = 0.003 proving
that there are some kind of differences. Then, a post-hoc test has been performed to state
among which algorithms there are differences. In this way, Table 9 shows the p-values for
the Holland test with α = 0.01. It proves that there are differences with regard to CPAR
Spark/Flink.

Analysis of the efficiency

Once the predictive power and the interpretability of the solutions have been analyzed,
the final criteria to be considered is efficiency. In this sense, only the best algorithms until
the moment have been taken into account.

Classical state-of-art

The runtime for the CBA and CBA2 algorithms were measured, and a Wilcoxon
signed rank test was performed obtaining a Z-value= −2.519 with p-value = 0.005.
Results denoted that some statistical differences were found when comparing CBA
and CBA2 with α = 0.01, CBA2 obtaining the worst results. The explanation behind
this fact is simple, CBA2 needs to build a classifier by means of a close adaptation
of CBA. Then, it builds a decision tree method as in C4.5 and, at the same time, a
Naive-Bayes method is also performed. It means that, in the best case, CBA2 requires
the same time as CBA. However, in practice, this best case was rarely found since
the building of the tree also consumes a quantity of time that increases the overall
runtime.

Table 8 Big Data algorithms

Algorithm Ranking

CPAR Spark/Flink 2.600

DFAC-FFP 2.250

CBA Spark/Flink 1.150

Average ranking for complexity measure of each algorithm (sorted in descending order) according to the Friedman test. Bold
typeface denotes the algorithm whose ranking has been the best

54

Padillo et al. Big Data Analytics (2019) 4:2 Page 21 of 27

Table 9 Big Data algorithms

DFAC-FFP CPAR Spark/Flink

CBA Spark/Flink 0.028 0.004

p-value for the Holland test with α = 0.01 for the complexity measure. Bold typeface denotes the algorithm whose ranking was
the best

Big Data state-of-art

Finally, the runtime of the two best algorithms have been studied. Time for CBA
Spark/Flink has been the average obtained in the two platforms, being both very similar.
In the next section, a different study is performed to prove whether exists differ-
ences between these two platforms. A Wilcoxon signed rank test has been performed
obtaining a Z-value= −2.310 obtaining that classical CBA implemented on cur-
rent distributed computing obtained statistically significant differences with regard to
DFAC-FFP.

Conclusions achievedwith this analysis on three different criteria

After performing a complete analysis based on three different criteria, next the follow-
ing conclusions could be stated. Two algorithms for AC have been selected to be adapted
to Big Data platforms. On the one hand, CBA has been considered since it obtained
a good trade-off among predictive power, interpretability and efficiency. On the other
hand, CPAR has proved to obtain very accurate classifiers in a reduced quantum of
time but the interpretability of the results is not so good compared to other such as
CBA and CBA2. In this regard, if the time required to produce results can be improved,
it is obvious that CPAR should be used due to its good results in predictive power.
On the contrary, when a high interpretability is required, CPAR is not recommended
but CBA.
Very similar results have been obtained in Big Data. CPAR Spark/Flink obtained

the best results in terms of performance. When interpretability is considered, CBA
Spark/Flink is the winner outperforming both DFAC-FFP and CBA Spark/Flink. Finally,
CBA Spark/Flink has also obtained the most efficient results.

Scalability of the different proposals in Big Data

The goal of this analysis is to study the scalability of the different proposals in Big Data.
In this regard both the original and the adaptations have been run on a series of synthetic
datasets. This kind of datasets has been selected due to the fact that only the runtime
is analyzed because both algorithms have proved to obtain accurate and interpretable
classifiers on real-world datasets. Furthermore, synthetic datasets enables to change both
the number of instances and the search space easily to study the behavior when different
data sizes are considered. On this matter, the datasets have been generated following a
Gaussian distribution where the number of instances ranges from 1 · 104 to 1 · 108, with
a search space ranging from 6500 to 1.04229 , and file sizes up to 200 GBytes have been
included.
Figure 1 shows the behavior of the selected algorithms when the number of instances

changes. As it is illustrated, when the number of instances is low CBA-Sequential is more
efficient than CPAR-Sequential, that is because CBA is more direct in building the clas-
sifier than the greedy algorithm used in CPAR. Neither the implementations based on

55

Padillo et al. Big Data Analytics (2019) 4:2 Page 22 of 27

Fig. 1 Runtime of the different implementations of CBA and CPAR when the number of instances drastically
changes

Spark or Flink obtained good runtime with few instances. When the number of instances
continues growing, the approaches based on Spark And Flink obtained much better per-
formance that sequential methodologies. Finally, it should be remarked that between the
implementations of Spark and Flink of each algorithm there are not many differences,
Spark obtained a small better performance than Flink although it is not game-changing.
Between CBA-Spark/Flink and CPAR-Spark/Flink, this last method obtained a better per-
formance than CBA-Spark/Flink thanks to its greedy approach that in this case is more
efficient than considering all the possible cases as an exhaustive search like the used in
CBA-Spark/Flink does.
Continuing with this study, it has also been considered of high interest to analyze

how the behavior of the proposals varies when the search space changes. The search
space was calculated as the number of feasible rules that can be mined from data
(3k − 2k+1 − 1 where k is the number of items). To perform this analysis several syn-
thetic datasets were used where the number of attributes were changed to analyze the
performance on different search spaces. In this regard, Fig. 2 shows the performance,
proving that the behavior is more different than in the previous analysis. It is due to
the fact that CPAR-Sequential is not as affected as CBA-Sequential thanks to its greedy
methodology. With a small search space, the proposals based on Spark and Flink do
not obtain a good performance however when the search space increases, they begin to
obtain a very good performance. Finally when the number of search spaces highly grows,
CPAR-Spark/Flink obtained a good performance followed by CBA-Spark/Flink. With this
large search space sequential approaches are not able to be run, requiring several hours
to end.

56

Padillo et al. Big Data Analytics (2019) 4:2 Page 23 of 27

Fig. 2 Runtime of the different implementations of CBA and CPAR when the search space drastically increases

The analysis now continues considering only Big Data approaches. In this regard, three
well-known metrics have been studied [19]. Firstly, speed-up is analyzed aiming at mea-
suring how algorithms behave when parallelism increases (without altering data size).
Figures 3 and 4 show the results when the number of nodes increases from 1 to 12 with
different data sizes, as it could be seen speed-up holds linear proving that performance

Fig. 3 Speed-up for CBA Spark and Flink when the number of nodes changes. A file size of 120 GBytes has
been used

57

Padillo et al. Big Data Analytics (2019) 4:2 Page 24 of 27

Fig. 4 Speed-up for CPAR Spark and Flink when the number of nodes changes. A file size of 120 GBytes has
been used

increases linearly with the number of nodes. Then, scale-up is analyzed to see how well
the proposed algorithms handle larger datasets when more nodes are available. In this
case the size of the dataset is increased in direct proportion with the number of nodes
in the system. Figures 5 and 6 shows that it is practically evaluated to 1 in almost the
cases being linear and proving good scalability [19]. Lastly, size-up is analyzed where
the number of nodes grows from 1 to 12 and the sizes of datasets from 10 GBytes to
120 GBytes (see Figs. 7 and 8). As the result shows, the size-up performance of our
proposals is also very good.

Fig. 5 Scale-up for CBA Spark and Flink when the number of nodes changes. A file size of 120 GBytes has
been used

58

Padillo et al. Big Data Analytics (2019) 4:2 Page 25 of 27

Fig. 6 Scale-up for CPAR Spark and Flink when the number of nodes changes. A file size of 120 GBytes has
been used

Conclusion
In this work an experimental study including 40 datasets and 12 different algorithms
have been performed. This analysis has been arranged having into account three differ-
ent criteria. First, predictive power of the algorithms have been measured by means of
both kappa and accuracy. Second, the interpretability of the classifiers have been studied.
Finally, the efficiency has been also measured. After performing this experimental study,
two different algorithms of the state-of-art have been selected. On the one hand, CBA has
been selected since it obtained a very good predictive power, and the best results in terms

Fig. 7 Size-up for CBA Spark when the number of nodes changes. Only Spark version has been run on this
case since it behaves in the same way as Flink

59

Padillo et al. Big Data Analytics (2019) 4:2 Page 26 of 27

Fig. 8 Size-up for CPAR Spark when the number of nodes changes. Only Spark version has been run on this
case since it behaves in the same way as Flink

of interpretability. On the other hand, CPAR was selected after obtaining the very best
results for predictive power in a reduced quantum of time.
These two algorithms have been adapted to be run on Big Data platforms considering

both Apache Spark and Apache Flink. These adaptations obtained the same results as
the sequential approaches but in a reduced quantum of time. Finally, an analysis of the
scalability has also been performed considering files sizes up to 200 GBytes proving that
our methods are able to work in an efficient way in Big Data, where sequential approaches
would never be able to work in a efficient way.

Endnotes
1 The original pseudocode can be found at http://www.uco.es/kdis/cba-cpar/
2The original pseudocode can be found on at http://www.uco.es/kdis/cba-cpar/.

Abbreviations
AC: Associative classification ARM: Association Rule Mining

Acknowledgments
Not rule mining and association rule mining (ARM) are two important and different fields in data mining. Whereas the
first one has a predictive purpose by discovering a small applicable.

Funding
This research was supported by the Spanish Ministry of Economy and Competitiveness and the European Regional
Development Fund, projects TIN2017-83445-P.

Availability of data andmaterials
All the results which have been used to obtain the tables and figures shown in this work are available at http://www.uco.
es/kdis/cba-cpar/.

Authors’ contributions
All the authors contributed in equal parts. All authors read and approved the final manuscript.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

60

Padillo et al. Big Data Analytics (2019) 4:2 Page 27 of 27

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 15 May 2018 Accepted: 11 December 2018

References
1. Quinlan R. C4.5: Programs for Machine Learning. San Mateo, CA: Morgan Kaufmann Publishers; 1993.
2. Agrawal R, Imieliński T, Swami A. Mining association rules between sets of items in large databases. SIGMOD Rec.

1993;22(2):207–16.
3. Ventura S, Luna JM. Supervised Descriptive Pattern Mining; 2018.
4. Liu B, Hsu W, Ma Y. Integrating classification and association rule mining. In: 4th International Conference on

Knowledge Discovery and Data Mining(KDD98); 1998. p. 80–6.
5. Han J. Data Mining: Concepts and Techniques. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.; 2011.
6. Cortes C, Vapnik V. Support vector networks. Mach Learn. 1995;20:273–97.
7. Valdes G, Luna J, Eaton E, B Simone C, H Ungar L, D Solberg T. Mediboost: A patient stratification tool for

interpretable decision making in the era of precision medicine. In scientific reports. 2016;6:37854.
8. Kim SG, Theera-Ampornpunt N, Fang C-H, Harwani M, Grama A, Chaterji S. Opening up the blackbox: an

interpretable deep neural network-based classifier for cell-type specific enhancer predictions. BMC Syst Biol.
2016;10(2):54. https://doi.org/10.1186/s12918-016-0302-3.

9. Clark P, Niblett T. The cn2 induction algorithm. Mach Learn J. 1989;3(4):261–83.
10. Thabtah FA. A review of associative classification mining. Knowl Eng Rev. 2007;22(1):37–65.
11. Fong RC, Vedaldi A. Interpretable explanations of black boxes by meaningful perturbation. In: IEEE International

Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017; 2017. p. 3449–57. https://doi.org/10.
1109/ICCV.2017.371.

12. Li W, Han J, Pei J. Cmar: Accurate and efficient classification based on multiple class-association rules. In: 2001 IEEE
International Conference on Data Mining(ICDM01); 2001. p. 369–76.

13. Yin X, Han J. Cpar: Classification based on predictive association rules. In: 3rd SIAM International Conference on Data
Mining(SDM03); 2003. p. 331–5.

14. Gumbus A, Grodzinsky F. Era of big data: Danger of descrimination. SIGCAS Comput Soc. 2016;45(3):118–25. https://
doi.org/10.1145/2874239.2874256.

15. Wu X, Zhu X, Wu GQ, Ding W. Data mining with big data. IEEE Trans Knowl Data Eng. 2014;26(1):97–107. https://
doi.org/10.1109/TKDE.2013.109.

16. Dean J, Ghemawat S. MapReduce: Simplified Data Processing on Large Clusters. Commun ACM - 50th Anniversary
Issue: 1958 - 2008. 2008;51(1):107–13.

17. Liu B, Ma Y, Wong C-K. In: Grossman RL, Kamath C, Kegelmeyer P, Kumar V, Namburu RR, editors. Classification
Using Association Rules: Weaknesses and Enhancements. Boston, MA: Springer; 2001, pp. 591–605.

18. Zaharia M, Chowdhury M, Franklin MJ, Shenker S, Stoica I. Spark: Cluster computing with working sets. In:
Proceedings of the 2nd USENIX Conference on Hot Topics in Cloud Computing. HotCloud’10. Berkeley: USENIX
Association; 2010.

19. DeWitt D, Gray J. Parallel database systems: The future of high performance database systems. Commun ACM.
1992;35(6):85–98. https://doi.org/10.1145/129888.129894.

20. Ventura S, Luna JM. Pattern Mining with Evolutionary Algorithms; 2016.
21. Oneto L, Bisio F, Cambria E, Anguita D. Slt-based elm for big social data analysis. Cogn Comput. 2017;9(2):259–74.
22. Siddique N, Adeli H. Nature inspired computing: An overview and some future directions. Cogn Comput. 2015;7(6):

706–14.
23. Lam C. Hadoop in Action, 1st edn. Greenwich, CT, USA: Manning Publications Co.; 2010.
24. Padillo F, Luna JM, Ventura S. Exhaustive search algorithms to mine subgroups on big data using apache spark.

Prog Artif Intell. 2017;6(2):145–58.
25. Xin R, Rose J. Project Tungsten: Bringing Apache Spark Closer to Bare Metal; 2015. https://databricks.com/blog/

2015/04/28/project-tungsten-bringing-spark-closer-to-bare-metal.html.
26. Triguero I, González S, Moyano JM, Garcîa S, Alcalá-Fdez J, Luengo J, Fernández A, del Jesús MJ, Sánchez L,

Herrera F. Keel 3.0: an open source software for multi-stage analysis in data mining. Int J Comput Intell Syst.
2017;10(1):1238–49.

27. Han J, Pei J, Yin Y, Mao R. Mining frequent patterns without candidate generation: A frequent-pattern tree
approach. Data Min Knowl Discov. 2004;8(1):53–87.

28. Cohen WW. Fast effective rule induction. In: Machine Learning: Proceedings of the Twelfth International Conference;
1995. p. 1–10.

29. Tan KC, Yu Q, Ang JH. A coevolutionary algorithm for rules discovery in data mining. Int J Syst Sci. 2006;37(12):
835–64.

30. Holte RC. Very simple classification rules perform well on most commonly used datasets. Mach Learn. 1993;11:63–91.
31. Bechini A, Marcelloni F, Segatori A. A mapreduce solution for associative classification of big data. Inf Sci. 2016;332:

33–55.
32. Venturini L, Baralis E, Garza P. Scaling associative classification for very large datasets. J Big Data. 2017;4(1):44.

https://doi.org/10.1186/s40537-017-0107-2.
33. Segatori A, Bechini A, Ducange P, Marcelloni F. A distributed fuzzy associative classifier for big data. IEEE Trans

Cybern. 2018;48(9):2656–69.
34. Ben-David A. Comparison of classification accuracy using cohen’s weighted kappa. Expert Syst Appl. 2008;34(2):

825–32.

61

Title:
A Grammar-Guided Genetic Programming Algorithm for Associative Classification in

Big Data

Authors:
F. Padillo, J.M. Luna and S. Ventura

Cognitive Computation, Volume 11, Issue 3, pp. 331-446, 2019

Ranking:
Impact factor (2018 JCR): 4.287
Knowledge area: Computer Science; Neurosciences & Neurology
DOI: 10.1007/s12559-018-9617-2

63

Cognitive Computation (2019) 11:331–346
https://doi.org/10.1007/s12559-018-9617-2

A Grammar-Guided Genetic Programing Algorithm for Associative
Classification in Big Data

F. Padillo1 · J. M. Luna1,3 · S. Ventura1,2,3

Received: 18 April 2018 / Accepted: 12 November 2018 / Published online: 16 January 2019
© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
The state-of-the-art in associative classification includes interesting approaches for building accurate and interpretable
classifiers. These approaches generally work on four different phases (data discretization, pattern mining, rule mining, and
classifier building), some of them being computational expensive. The aim of this work is to propose a novel evolutionary
algorithm for efficiently building associative classifiers in Big Data. The proposed model works in only two phases (a
grammar-guided genetic programming framework is performed in each phase): (1) mining reliable association rules; (2)

building an accurate classifier by ranking and combining the previously mined rules. The proposal has been implemented
on different architectures (multi-thread, Apache Spark and Apache Flink) to take advantage of the distributed computing.
The experimental results have been obtained on 40 well-known datasets and analyzed through non-parametric tests. Results
were compared to multiple approaches in the field and analyzed on three ways: quality of the predictions, level of
interpretability, and efficiency. The proposed method obtained accurate and interpretable classifiers in an efficient way even
on high-dimensional data, outperforming the state-of-the-art algorithms on three different levels: quality of the predictions,
interpretability, and efficiency.

Keywords Big data · Associative classification · Evolutionary computation

Introduction

As time goes by, data storage is getting cheaper and cheaper
what implies an increment in the efforts for analyzing
and extracting valuable information from such ever larger
datasets [1]. This issue has motivated that recent research

� S. Ventura
sventura@uco.es

F. Padillo
fpadillo@uco.es

J. M. Luna
jmluna@uco.es

1 Department of Computer Science and Numerical Analysis,
University of Cordoba, Cordoba, Spain

2 Faculty of Computing and Information Technology,
King Abdulaziz University, Jeddah, Saudi Arabia

3 Knowledge Discovery and Intelligent Systems in Biomedicine
Laboratory, Maimonides Biomedical Research Institute
of Cordoba, Cordoba, Spain

studies is being focused on high-performance techniques
for data analysis, giving rise to the new buzzword Big
Data [2]. This term encompasses a set of techniques
to face up problems derived from the management and
analysis of huge quantities of data [3]. In data analysis,
two different tasks are considered: descriptive tasks, which
depict intrinsic and important properties of data [4];
and predictive tasks, which predict output variables for
unseen data [5] by learning a mapping between a set
of input variables and the output variable. Focusing on
predictive tasks, different methodologies can be considered
to build accurate models that predict the output variable:
rule-based systems [5], decision trees [6], and support
vector machines [7], just to list a few. From all these
methodologies, rule-based classifiers provide a high-level
of interpretability and, therefore, classification results can
be explained since rules tend to be easily understood and
interpreted by the end-user. Additionally, different research
studies [8] have demonstrated that rule-based classification
systems are competitive with other methodologies [9].
Such systems are mainly divided into two main groups:
rule induction; and classification based on association rule
mining.

65

332 Cogn Comput (2019) 11:331–346

Classification based on association rule mining, gener-
ally known as associative classification (AC), integrates a
descriptive task (association rule mining [4]) in the pro-
cess of inferring a new classifier [10]. Recent studies have
shown that AC has specific advantages over other traditional
classification approaches. In this sense, Bechini et al. [11]
described that the resulting models in AC are often capa-
ble of building efficient and accurate classification systems,
since in the training phase they leverage association rule dis-
covery methods that find all possible relationships among
the attribute values in the training dataset. This in turn
leads to extract all hidden rules possibly missed by other
classification algorithms. Bechini et al. [11] also describe
that a major advantage of AC with regard to decision tree
approaches is its ability to update and tune rules without
affecting the complete rule set; whereas in the decision
tree approach, the same task requires redrawing the whole
tree [5]. Last but not least, an advantage of AC with regard to
approaches not based on rules (neural networks [5], support
vector machines [7], etc.) is the final model representa-
tion, which considers simple rules that allow the end-user to
easily understand and interpret the results.

AC algorithms generally operate in four phases. First,
those datasets including continuous attributes are required
to be preprocessed so any variable is finally defined in
a discrete domain. Second, the attribute values are com-
bined and characterized by an occurrence value beyond a
given threshold. Third, any feasible association rule (the
consequent is fixed to the class variable) is obtained.
Finally, rules are ranked and post-processed to build an
accurate classifier. These numerous phases, specially when
working on Big Data, become unfeasible to be addressed by
existing methodologies even when advanced techniques in dis-
tributed computing [12] are considered. At this point,
a reduction in the number of required phases has been
recently addressed by considering evolutionary algorithms
(EAs) [13]. Here, rules were directly mined without a pre-
vious step of extracting patterns (combination of attribute
values). Nevertheless, even for a lower number of phases,
the computational complexity in Big Data is still a hand-
icap since it exponentially increases with the number of
variables (2k − 1 solutions can be found from k variables).
Recent approaches (MRAC [11], MRAC+ [11], DAC [14],
etc.) have dealt with the problem through current advances
in distributed computing. These approaches, however, were
based on classical algorithms and only provided an improve-
ment in runtime. The Big Data problem is much more
complex (the increment of data also increases fake correla-
tions among variables hampering both interpretability and
accuracy [11]) and it therefore requires new methodologies
specifically designed to be run on Big Data [15].

The aim of this paper is therefore to improve the state-
of-the-art algorithms in AC. Here, a new grammar-guided

genetic programming (G3P) algorithm for AC in Big Data
is proposed. G3P has been already studied in mining
association rules [16], and it has proved to obtain excellent
results in both introducing subjective knowledge into the
mining process and constraining the search space by
including syntax constraints. Special interest has been
paid on the complexity of the obtained rules with the
aim of easing the interpretability of the results. Another
major feature of the proposed algorithm, which really
improves the state-of-the-art, is the running on just two
phases: (1) mining reliable association rules; and (2)

building an accurate classifier. First, the best rules for each
class are obtained by means of multiple and independent
evolutionary processes (no discretization step is required
since the use of a grammar enables continuous features to
be encoded). Second, the set of the previously mined rules
are ranked and combined to form an accurate classifier.
Since rules for each class is obtained, it is guaranteed that
minority/majority classes are equally considered. This is an
additional major feature of the proposal since many AC
approaches are focused on improvements of classification
accuracy, not paying attention to the imbalance problem.
Finally, it is important to remark that, even when the
computational complexity is reduced (only two phases are
required now), the analysis of truly Big Data still slows
the process down, hampering their applicability in real-
world scenarios [1]. To this end, our proposal has been
implemented on different architectures where the unique
difference among them is the parallelism, all of them return
the very same results. These implementations include recent
advantages of distributed computing by means of platforms
such as Spark and Flink, or more classic approaches
as sequential and multi-thread solutions. This work aims
at solving some of the problems related to cognitive
computation. First, it deals with very large datasets on an
efficient way [17]. Among all the possible solutions [18], an
evolutionary algorithm has been selected since it has proved
to obtain excellent results in many different fields as well
as AC [19, 20]. Second, interpretability of the solutions is
a dare, so the use of grammars (in the form desired by the
end-user) to encode solutions and restrict the search space
is a major feature.

In an experimental analysis, the proposal has been
compared to multiple AC approaches as well as traditional
classification algorithms. In this study, both sequential
and trending MapReduce AC algorithms are considered.
Experiments were performed on a total of 40 datasets (10 of
them are Big Datasets) and results were validated by non-
parametric statistical tests. Results were analyzed on three
ways: quality of the predictions, level of interpretability, and
efficiency (ability to scale up).

The rest of the paper is organized as follows. Section
“Preliminaries” presents the most relevant definitions and

66

Cogn Comput (2019) 11:331–346 333

related work; “Methods” describes the proposed algorithm;
“Results” presents the datasets used in the experiments and
the results; finally, some concluding remarks are outlined in
“Conclusions”.

Preliminaries

In this section, the associative classification task is formally
defined first. Then, different frameworks for distributed
computing are described.

Associative Classification

Let I = {i1, i2, ..., in} be the set of items, features, or
attributes in a dataset comprising a set of transactions T =
{t1, t2, ..., tm}. Here, each transaction tj comprises a subset
of items {ik, ..., il}, 1 ≤ k, l ≤ n. An association rule is
formally defined [4] as an implication of the form X → Y

where X ⊂ I, Y ⊂ I, and X ∩ Y = ∅. The meaning of
an association rule is that if the antecedent X is satisfied
for a specific transaction tj , i.e., X ⊂ tj , then it is highly
probable that the consequent Y is also satisfied for that
transaction, i.e. ,Y ⊂ tj . The frequency of an itemset
X ⊂ I, denoted as support (X), is defined as the number
of transactions from T that satisfies X ⊂ tj , i.e., |{∀tj ∈
T : X ⊆ tj ; tj ⊆ I}|. In the same way, the support of
an association rule X → Y is defined as the number of
transactions from T that satisfies both X and Y , i.e., |{∀tj ∈
T : X ⊂ tj , Y ⊂ tj ; tj ⊆ I}|. Additionally, the strength
of implication of the rule, also known as confidence, is
defined as the proportion of transactions that satisfy both
X and Y among those transactions that contain only the
antecedent X, i.e., conf idence(X → Y) = support (X →
Y)/support (X). Finally, it is noteworthy to mention that
association rules can also be used to describe a specific
target variable or class label, giving rise to the concept of
class association rules [16]. These are implications of the
form X → y, where X ⊆ I and y ∈ Y , Y being the set of
class labels.

In 1998, Liu et al. [10] connected association rule mining
(ARM) and classification rule mining to give rise to the task
known as associative classification (AC). The aim of this
task is to build an accurate and high interpretable classifier
by means of rules obtained from ARM techniques. In order
to obtain this kind of classifiers, many methods have been
proposed along the years [8], almost all of them being
based on exhaustive search ARM algorithms [4]. In general,
existing AC approaches work on four different steps,
which is a real handicap when computationally expensive
problems are addressed. For instance, the extraction of
patterns (item sets) and association rules from them

implies two different and computationally hard problems
(the number of solutions exponentially increases with the
number of items in data) [15]. To overcome these and
other problems (working on continuous domains), some
researchers have focused on the application of evolutionary
algorithms (EAs) for performing the AC task. Nevertheless,
although really efficient and accurate AC algorithms have
been proposed, the analysis of truly Big Data slows
down the process [17]. Under these circumstances, new
forms of building this type of classifiers from a Big Data
perspective is an interesting and emerging topic [21], which
has not received yet the needed attention. At this point,
the combination of EAs with emerging paradigms like
MapReduce to process high volumes of data in an accurate
and efficient fashion is a trending topic [15].

Big Data Architectures: Apache Spark, Apache Flink,
and its Origins

MapReduce [12] is a recent paradigm of distributed
computing in which programs are composed of two main
stages, that is, map and reduce. In the map phase, each
mapper processes a subset of input data and produces a
set of
k, v� pairs. Finally, the reducer takes this new list
to produce the final values. A typical problem in which
this framework is the word count. In this example, mappers
produce a set of
k, v� pairs, where k is each word in the
sentence and v is its frequency of occurrence, which takes
the value 1 by default. Then, an intermediate step is carried
out, known as shuffle phase, which merges all the values
associated with the same key k. For example, given three
different pairs with the same key, i.e. ,
k, v1�
k, v2�
k, v3�,
the merging process will return
k,
v1, v2, v3��. Finally, the
reducer takes this new list as input to produce the final
values. It should be noted that all the map and reduce
operations are run on a distributed way.

Hadoop [22] is the de facto standard for MapReduce
applications. Even when the paradigm is efficiently imple-
mented by Hadoop, its major drawback is it imposes an
acyclic data flow graph, and there are applications (iterative or
interactive analysis [23]) that cannot be efficiently mod-
eled through this kind of graph. Besides, MapReduce is
not aware of the total pipeline so it cannot keep interme-
diate data in memory for faster performance. Instead, it
flushes intermediate data to disk between each step. To solve
these downsides, Apache Spark has risen up for solving
all the deficiencies of Hadoop, introducing an abstraction
called RDD (resilient distributed datasets) to store data
in main memory as well as a new approach that consid-
ers micro-batch technology. Unfortunately, Spark does not
support native iterations, meaning that its engine does not
directly handle iterative algorithms. In order to implement

67

334 Cogn Comput (2019) 11:331–346

an iterative algorithm, a loop needs to repeatedly instruct
Spark to execute the step function and manually check the
termination criterion, significantly increasing overhead for
large-scale iterative jobs. This issue is unlikely to have
any practical significance on operations unless the use case
requires low latency. In this sense, Apache Flink has been
proposed to face the problems of Spark. By the time Flink
came along, Apache Spark was already the most suitable
framework for fast, in-memory Big Data analytic require-
ments for a number of organizations around the world. This
made Flink appears superfluous, but in the recent years the
attention on this new platform has risen up considerably
[24, 25].

Methods

The proposed algorithm, named G3P-ACBD (grammar-
guided genetic programming algorithm for associative
classification in Big Data), has been eminently designed
to tackle Big Data problems and, by this reason, its
evolutionary process can be performed in a parallel way
without affecting the final accuracy. Unlike existing AC
approaches, G3P-ACBD just requires two stages: (1)

mining reliable association rules; (2) building an accurate
classifier by ranking and combining the previously mined
rules. Additionally, due to the growing interest in data
gathering, a unique and universal implementation of the
proposed algorithm is not useful different adaptations are
required depending on the data size. It is noteworthy
to mention that all these adaptations return the exact
same classifier, being the unique difference the level of
parallelism. They all require two stages to obtain the final
classifier:

1. Rule extraction. An evolutionary process is performed
for each different class to extract interesting rules from
the training dataset.

2. Rule selection. Using the previously mined rules, a new
evolutionary process aims at sorting and selecting the
best rules to build the final classifier.

These two stages are described in the following
subsections by considering different implementations, that
is, a sequential version (baseline) as well as different
parallel versions (multi-thread, Spark, and Flink).

Baseline Approach

The baseline algorithm is based on a grammar-guided
genetic programming methodology and only requires two
steps to perform the AC task. Each of these steps are
described in the following subsections.

Step 1: Rule Extraction

The first step is responsible for extracting the best set
of rules for each class by means of several evolutionary
processes (one per class). In each of these processes, indi-
viduals (representing class association rules) are encoded by
a context-free grammar. Thanks to this grammar, an expert
in the domain may determine the maximum or minimum
length of the rules, and the kind of conditions each rule
should include [16].

Encoding This first phase of G3P-ACBD represents each
solution as a derivation syntax tree encoded by means of
a set of production rules from the context-free grammar
shown in Fig. 1. A context-free grammar is formally defined
as a four-tuple (ΣN , ΣT , P , S) where ΣT represents the
alphabet of terminal symbols, ΣN the alphabet of non-
terminal symbols, and they have no common elements,
i.e., ΣN ∩ ΣT = ∅. Additional P represents the set of
productions rules, and S the start symbol. A production
rule is defined as α → β where α ∈ ΣN , and β ∈
{ΣT ∪ ΣN }∗. To encode a solution, a number of production
rules from P is applied, resulting in a derivation syntax
tree (internal nodes contain only non-terminal symbols,
and leaves contain only terminal symbols). Considering the
grammar G (see Fig. 1), the following language is obtained
L(G) = {condition (AND condition)∗ consequent},
where {condition (AND condition)∗} represents the
antecedent of the rule. Finally, it is important to highlight
that, in order to avoid bloating, the maximum number of
derivations (maximum length of the rules) is determined by
a predefined parameter.

Let us finally consider a sample individual (see Fig. 2)
encoded through the grammar illustrated in Fig. 1. This
sample individual has been generated from the set of
production rules P and start from the start symbol S (root
of the syntax tree). As shown, leafs represent terminal
symbols. In order to obtain the phenotype of this individual,
non-terminal symbols are removed giving rise to the

Fig. 1 Context-free grammar defined for the rule extraction stage of
the G3P-ACBD algorithm. The grammar is expressed in extended BNF
notation

68

Cogn Comput (2019) 11:331–346 335

Fig. 2 Sample rule encoded through the grammar defined in Fig. 1

following rule: If outlook = rainy AND temperature

IN 10, 15 THEN no-rain.

Fitness Evaluation It is the responsible for determining how
promising each individual is to achieve the aim. This fitness
function has been specifically designed to obtain a good
trade-off between reliability (confidence of the rule) and
frequency with regard to the class. Given a rule R ≡
X → Y , the fitness function is mathematically defined
as F(R) = conf idence(R) × support (R)/support (Y),
taking values in the range [0, 1] (the higher the value, the
better the solution). Support values are calculated taken
into account the weights of the transactions so individuals
have a greater chance for covering new areas of the
search space. Analyzing each of the metrics that appear
in F , it should be noted that the use of confidence in
isolation may provoke overfitting in the classifier [8]—
infrequent rules may produce high confidence values due
to they represent very concrete examples from the training
dataset and, therefore, they are not representative to generate
predictions. In order to avoid this drawback, the frequency
with regard to the class is also considered by the fitness
function.

Genetic Operators A crossover genetic operator is first
applied with a certain probability, generating two offspring.
Individuals are then independently mutated with a cer-
tain probability. Here, genetic operators widely used in
grammar-guided genetic programming have been consid-
ered [26]. The crossover operator works by interchanging
random sub-trees between two parents (conditions within
the rules), whereas the mutation operator applies changes
to attributes (changing the whole attribute or just its value).
It is worth mentioning that results obtained after applying
these operators will fulfill the context-free grammar and
also maintain the same class value.

Algorithm 1 G3P-ACBD baseline algorithm - Rule
extraction stage
1: for all in do
2: Generate a random population of rules following

the grammar with class
3:
4: for i = 0 to NumberOfGenerations do
5: evaluate rules()
6: Maintain elitism using

7: Stop if mean() has not
changed in a number of generations specified by the
user

8: Apply tournament selector
to

9: for all in do
10:
11: if 0 1 then
12: Apply crossover operator

(offspring)
13: end if
14: for all of the do
15: if 0 1 then
16: Apply mutation operator

()
17: end if
18: end for
19: end for
20: best individuals from

21: end for
22:
23: end for

Algorithm The pseudo-code of the baseline approach is
shown in Algorithm 1. It starts by encoding a set of
individuals (see line 2, Algorithm 1) through a number
of production rules from the previously defined context-
free grammar. In this process, each individual represents
a unique rule for a specific class, so the population
Pc comprises a set of rules related to the c-th class
value within the dataset. The algorithm includes an elite
population (auxiliary population) in which the best
solutions found until that moment are kept unaltered
(see line 6, Algorithm 1). Unlike the main population
Pc, which size is fixed to n beforehand, the size of
auxiliary population will vary along the evolutionary
process in order to guarantee that enough rules from each
class can be mined (classes that are hardly described by
general rules may require a higher number of really specific
rules).

The first phase of the G3P-ACBD algorithm works in an
iterative fashion through a number of generations previously
fixed by the end-user (see lines 4 to 21, Algorithm 1). This
iterative process may finish without reaching the maximum

69

336 Cogn Comput (2019) 11:331–346

Fig. 3 Context-free grammar defined for the rule selection stage of the
G3P-ACBD algorithm. The grammar is expressed in extended BNF
notation. It should be noted that the terminal symbol rule represents an
individual from the previous phase and encoded through the grammar
shown in Fig. 1

number of generations in situations where the average
fitness value of individuals within auxiliary population

does not change for a number of generations (see line 7).
In order to guarantee the quality of the solutions within
auxiliary population and to avoid redundant solutions,
a pattern weighting scheme is used [27]. For each data
instance, a count j is considered to represent the number
of rules that covers this example. The weight of each
instance decreases based on the formula w(ei, j) = 1

j+1 .
The default weight is 1 for all the instances and, in the
following iterations, the contributions of covered instances
are inversely proportional to their coverage by previously
selected rules. In this way, the examples already covered
by one or more selected rules decrease their weights while
uncovered instances will have a greater chance of being
covered in the following iterations.

In order to produce new individuals, a tournament
selector is applied in each iteration of the evolutionary
process (see line 8, Algorithm 1). Such new individuals
are obtained by the previously defined genetic operators,
giving rise to a new population named off spring (see
lines 9 to 19, Algorithm 1). Finally, the general population
Pi+1,c is updated by considering the sets off spring and
auxiliary population (see lines 20, Algorithm 1). Once
the whole evolutionary process has been performed for each
class value c, results within auxiliary population are kept
into a major population of rules that will be used in the next

stage of the G3P-ACBD algorithm (see line 22), that is, the
rule selection step to form a classifier.

Step 2: Rule Selection

In this second phase of G3P-ACBD, the resulting set of rules
previously mined are filtered, sorted, and arranged to form
the final classifier. Here, a completely different evolutionary
process is run. Unlike the previous step (a single individual
represents a single rule), each individual represents now a
set of rules that will form the final classifier. It is important
to remark that no rule can be produced in this phase and it
only works with those previously obtained in the first phase.

Encoding This second phase considers a grammar (see Fig. 3)
to customize the shape of the final classifer. For instance,
an expert could determine that those rules that describe
the class c1 should appear first in the final classifier,
or whatever restriction the domain problem requires. The
process of producing new individuals is similar to the one
considered in the first phase of G3P-ACBD (see “Step 1:
Rule Extraction”). A maximum number of derivations is
considered, determining the number of rules that will be
included in the final classifier. For a matter of clarification,
a sample individual is illustrated in Fig. 4. This sample
individual has been generated from the set of production
rules P of the proposed grammar, where the leafs represent
terminal symbols (each one is replaced by a rule from the
previous stage). Focusing on the sample tree depicted, the
phenotype represents a classifier including three different
rules and a default class.

Fitness Evaluation The quality of each individual (set of
rules that form a classifier) is calculated as the average
accuracy in training for each class. Given an individual
ind , the fitness function F is defined as F(ind) = 1

l
∗�m

n=1 accuracyc

m
. Here, m is the number of classes, l the

number of rules included in ind , and accuracyc is the
accuracy in the training set for the class c. The aim of
considering l is to avoid classifiers including a large number
of rules and, therefore, hardly understandable. Additionally,

Fig. 4 Sample rule encoded
through the grammar defined in
Fig. 3. Rule is a terminal symbol
that represents a rule encoded
through the grammar previously
illustrated in Fig. 1

70

Cogn Comput (2019) 11:331–346 337

it is specifically designed to penalize classifiers that ignore
minority class.

Genetic Operators A crossover genetic operator is first
applied with a certain probability, and producing two
offspring. Then, individuals are independently mutated with
a certain probability. The crossover genetic operator works
by interchanging the best rules (considering the fitness value
assigned in the first stage) within two individuals, whereas
the mutation operator applies changes to the set of rules
(adding, subtracting or reordering the rules). These are two
well-known genetic operators that have proved to obtain
promising results [26].

Algorithm The pseudo-code of the second stage of G3P-
ACBD is illustrated in Algorithm 2. This algorithm starts
by initializing individuals by randomly selecting rules from
the pool of rules previously mined (poolrules returned
in the first phase of G3P-ACBD). Like any evolutionary
process, the algorithm is repeated a number of generations
(see lines 2 to 19, Algorithm 2) previously specified by
the end-user. This iterative process may finish without
reaching the maximum number of generations in situations
where the average fitness value of individuals within
auxiliary population does not change for a number
of generations (see line 5). In order to produce new
individuals along the evolutionary process, a tournament
selector is considered (see line 6, Algorithm 2) and
different genetic operators are applied (see lines 7 to 17,
Algorithm 2). Finally, a new population Pi+1 is generated
by also considering the best individual discovered along
the generations (see lines 18, Algorithm 2). It is therefore
guaranteed that the improvement of the final classifier
along the evolutionary process. Last but not least, the most
frequent class is taken as default class and it would be
only used when no rule covers an example (see line 21,
Algorithm 2).

Parallel and Distributed Computing to Scale
G3P-ACBD Up

The runtime of the baseline approach can be improved
through parallel and distributed computing architectures
(multi-thread, Spark, and Flink), enabling Big Data
environments to be also considered. It is important to
highlight that all these implementations produce the same
results and the only difference lies in the runtime. To
improve the runtime, the process to be parallelized is
the evaluation process that is the most time-consuming
process [28]. In the following subsections, each of three
parallel and distributed computing versions of G3P-ACBD
are described.

Algorithm 2G3P-ACBD baseline algorithm - rule selection
stage
1: 0 Initialize a random population of individuals
(classifiers) including rules from

2: for i = 0 to NumberOfGenerations do
3: evaluate()
4: Best individual from
5: Stop if has not improved in a

number of generations specified by the user
6: Apply tournament selector to

7: for all in do
8:
9: if 0 1 then
10: Apply crossover operator

(offspring)
11: end if
12: for all of the do
13: if 0 1 then
14: Apply mutation operator

()
15: end if
16: end for
17: end for
18: 1
19: end for
20: Class whose frequency of occurrence is the

highest
21: Classify using and

Multi-thread Implementation

In this parallel version of G3P-ACBD, any available core
in the computer is used by means of threads. The two
phases (rule extraction and rule selection) of G3P-ACBD
are described as follows:

Algorithm 3 G3P-ACBD Multi-thread algorithm - Rule
extraction stage
1: for all in do
2: new Thread() do
3: 0 Generate a random population of rules following

the grammar with class
4:
5: for i = 0 to NumberOfGenerations do
6: if Thread.avalailables() 0 then
7: creates evaluation threads to evaluate ()
8: else
9: evaluate rules in current thread ()
10: end if
11: evolve population as baseline. Algorithm 1 (Line 6-20)
12: end for
13:
14: end
15: end for

71

338 Cogn Comput (2019) 11:331–346

Algorithm 4 G3P-ACBD Multi-thread algorithm - Rule
selection stage
procedure evaluate()
1: .groups(Thread.availables())
// Split population in as many subsets as free threads

2: for all in do
3: new Thread() do
4: evaluate
5: end
6: end for
end procedure

– Rule extraction. In this first phase, two different
types of threads are considered. The first one is an
evolutionary thread in which the number of threads to
be created is equal to the number of classes in data.
Here, in each thread, a whole evolutionary process is
performed for each class (see Algorithm 3). Neither
communication nor synchronization is required among
the threads since the processes are totally independent.
Results for each thread are gathered by the main
process. The second type of thread is responsible for
evaluating the population of individuals and it is only
performance if there are available threads. Otherwise,
the evaluation is performance in the main thread.

– Rule selection. In this second phase, the paralleliza-
tion is carried out on the evaluation process (see
Algorithm 4). In this stage, as many threads as resources
exists in the computer are created, and the population
is split into such number (one chunk per thread). The
evaluation process is not fully performed until all the
threads end their execution.

Spark and Flink Implementations

These two implementations follow the exact same philos-
ophy between them except for some minor adaptations
depending on the platform (Spark or Flink). These imple-
mentations have been designed to be run on a cluster of
computers that includes a central computer (driver program)
acting as point of coordination, and several additional nodes
that collaboratively work with the driver. The two phases
(rule extraction and rule selection) are described as follows:

– Rule extraction. Similarly to the multi-thread imple-
mentation, the driver program starts by creating as many
threads as classes exist in data (see driver procedure

of Algorithm 5). After that, each thread enqueues sev-
eral MapReduce jobs (which will run on several com-
pute nodes) to evaluate its population. In the mapper

procedure (see Algorithm 5), the input for each mapper
is a chunk of data and the population. A group of pairs

key, value� is generated by each mapper, key being
the rule, value representing a tuple of support values

(antecedent, consequent, and whole rule). Reducers (see
reducer procedure, Algorithm 6), on the contrary, receive
the previously created
key, value� pairs as input. Here,
the global support values for antecedent (support (X)),
consequent (support (Y)), and rule (support (R)) are
obtained for each individual. Once, these three measures
have being calculated, the fitness function is obtained as
F(R) = conf idence(R) × support (R)/support (Y)

and the rules (individuals) are returned to their
respective threads. Each thread continues its evolu-
tionary process until a new population is required
to be evaluated and the previous process repeated.�m

i=0 numberGenerations(ci) represents the number
of MapReduce jobs, where m is the number of classes,
and numberGenerations(ci) is the number of genera-
tions for the i-th class. Once all the threads end, a pool
of rules is obtained by gathering rules for each class
(obtained by different threads). This pool of rules is
saved on distributed structures of storage as RDD for
Spark and ataset for Flink, enabling a distributed fast
access as well as a large quantity of results to be saved.

Algorithm 5 G3P-ACBD Spark-Flink algorithm - Rule
extraction stage
procedure driver
1: for all in do
2: new Thread() do
3: 0 Generate a random population of rules following

the grammar with class
4:
5: for i = 0 to NumberOfGenerations do
6: MapReduce to evaluate rules ()
7: evolve population as baseline. Algorithm 1 (Line 6-20)
8: end for
9:
10: end
11: end for
end procedure
procedure mapper()
1: for all in do
2: .evaluate()
3: emit()
4: end for
end procedure
procedure reducer()
1: (0, 0, 0) // Support antecedent, conse-
quent and rule

2: for all in do
3: for 0 to 2 do
4: +

5: end for
6: end for
7: calculateFitness()
8: emit()
end procedure

72

Cogn Comput (2019) 11:331–346 339

– Rule selection. In this second phase, the evaluation
process is the only procedure to be parallelized. In
this regard, Algorithm 6 shows pseudo-code for the
evaluation process through a MapReduce Job. The
mapper procedure (see Algorithm 6) receives two
elements as input: a subset of the dataset, and the
population. A group of pairs
key, value� is generated
by each mapper, where the key is the rule set, and the
value is a tuple with the accuracy values per class. The
reducer procedure (see Algorithm 6), on the contrary,
receives the previously created
key, value� pairs as
input. Its goal is to calculate the total accuracy values
per class (considering the whole dataset). After that,
the fitness function is calculated as F(rule − set) =
1
l
∗

�m
n=1 accuracyc

m
and the rule set is returned. The output

of the reducer is the evaluated population considering
the whole dataset.

Algorithm 6 G3P-ACBD Spark/Flink algorithm - Rule
selection stage
procedure evaluate()
1: for all in do
2: MapReduce to evaluate
3: end for
end procedure
procedure mapper()
1: (0, ..., 0) // As many as classes exist
in dataset

2: for all in do
3:

+ Accuracy of
in

4: end for
5: emit()
end procedure
procedure reducer()
1: (0, ..., 0) // As many as classes
exist in dataset

2: for all in do
3: for 0 until do
4:

5: end for
6: end for
7: .calculateFitness(

8: emit()
end procedure

)

Results

The aim of this section is to study the results of multiple
approaches on three ways: quality of the predictions, level of

interpretability, and efficiency. This analysis is carried out
through non-parametric tests and considering more than 40
well-known datasets. The goal of this experimental section
is therefore summarized as follows:

1. To compare the quality of the predictions with other
well-known algorithms taken from the associative
classification field, considering classical approaches,
bio-inspired algorithms, and Big Data methods.

2. To analyze the interpretability of the results with regard
to other methodologies.

3. To compare the efficiency of these approaches which
obtain the best possible results.

4. To analyze the scalability in Big Data environments
when different parallel implementations are considered.

All the experiments have been run on a HPC cluster
comprising 12 compute nodes, with two Intel E5-2620
microprocessors at 2-GHz and 24-GB DDR memory.
Cluster operating system was Linux CentOS 6.3. As for the
specific details of the used software, the experiments have
been run on Spark 2.0.0 and Flink 1.3.0. To quantify the
usefulness of the solutions in this experimental analysis,
both accuracy rate [5] and Cohen’s kappa rate [29]
are considered. The accuracy rate (number of successful
predictions relative to the total number of examples in data)
has been taken since it is the most well-known metric.
On the contrary, and due to it may achieve unfair results
with imbalanced data, Cohen’s kappa rate [29] has been
considered since it evaluates the merit of the classifier, i.e.,
the actual hits that can be attributed to the classifier and
not by mere chance. It takes values in the range [−1, 1],
where a value of −1 means a total disagreement, a value
of 0 may be assumed as a random classification, and a
value of 1 is a total agreement. This metric is calculated as

Kappa = N
�k

i=1 xii−
�k

i=1 xi·x·i
N2−�k

i=1 xi·x·i
, where xii is the count of

cases in the main diagonal of the confusion matrix, N is the
number of instances and, finally, x·i and xi· are the column
and row total counts respectively.

Experimental Setup

For the sake of analyzing the behavior of our proposal,
40 well-known datasets are considered (see Table 1)—all
of them are available at KEEL [30] repository. In these
datasets, the number of attributes ranges from 2 to 60,
the number of classes varies between 2 and 23, and the
number of instances ranges from 87 to 11 · 106. A 10-fold
stratified cross-validation has been used, and each algorithm
has been executed 5 times. Thus, the results for each dataset
are the average result of 50 different runs. An additional
experimental study was previously performed to setup the
parameters of our proposal. Here, different datasets and

73

340 Cogn Comput (2019) 11:331–346

Table 1 List of datasets (in alphabetical order) used for the experimen-
tal study

Datasets # attributes # instances # classes

Classical datasets

Appendicitis 7 106 2

Australian 14 690 2

Banana 2 5300 2

Breast 9 277 2

Cleveland 13 297 5

Contraceptive 9 1473 3

Flare 11 1066 6

German 20 1000 2

Hayes-Roth 4 160 3

Heart 13 270 2

Iris 4 150 3

Lymphography 18 148 4

Magic 10 19,020 2

Mammographic 5 830 2

Monk-2 6 432 2

Mushroom 22 5644 2

Page-blocks 10 5472 5

Phoneme 5 5404 2

Pima 8 768 2

Post-operative 8 87 3

Saheart 9 462 2

Spectfheart 44 267 2

Splice 60 3190 3

Tae 5 151 3

Tic-tac-toe 9 958 2

Titanic 3 2201 2

Vehicle 18 846 4

Wine 13 178 3

Winequality-white 11 4898 7

Wisconsin 9 683 2

Big Data datasets

Census 40 299,285 2

CoverType 54 581,012 2

Hepmass 28 10,500,000 2

Higgs 28 11,000,000 2

Poker 10 1,025,010 11

Kddcup1999 41 4,898,431 23

KDD99 2 41 4,856,151 2

KDD99 5 41 4,856,151 5

Record-linkage 12 5,749,132 2

Sussy 18 5,000,000 2

They have been categorized into two categories: classical datasets and
Big Data datasets

combination of parameters were considered and results
are publicly available at http://www.uco.es/kdis/g3p-acbd/.
Additionally, 14 different algorithms have been considered
in the experimental study. Some classic methodologies for
predictive tasks were also taking into account since they
are generally considered in many related works [10, 31,
32]. Furthermore, due to this work is mainly designed
to be run on large quantities of data, algorithms for Big
Data have also been included in the experiments. All the
algorithms have been selected according to their efficiency
and significance within AC field. It is important to note that
the parameters for these algorithms are those provided by
the original authors since they have proven to obtain the best
results. The algorithms used in this experimental analysis
are divided into two main groups, that is, classical and Big
Data algorithms.

• Classical algorithms

– CBA [10]. The very first AC algorithm. It is
composed of two parts: first, it obtains class
association rules and, then, rules are sorted
according to their precedence relation.

– CBA2 [33]. It is an improvement of CBA that
considers multiple class minimum support in
rule generation.

– CMAR [32]. It uses a recognized algorithm
(FP-Growth [34]) from ARM to obtain rules
without candidate generation.

– CPAR [31]. It adopts a greedy algorithm to
generate interval association rules directly. In
this process, this algorithm selects multiple
literals with similar gains to build multiple
rules simultaneously in order to avoid missing
important rules.

– FARCHD [13]. It is a fuzzy association
rule–based classification method for high-
dimensional problems based on three stages
to obtain an accurate and compact fuzzy rule
based classifier.

– C4.5 [6]. One of the most well-known algo-
rithms to generate a decision tree in the same
way as ID3 algorithm [5], which uses the
concept of information entropy.

– RIPPER [35]. It is a rule-based learner that
builds a set of rules to identify the classes while
minimizing the amount of error (the number of
training examples misclassified by the rules).

– CORE [36]. It is a coevolutionary algorithm
for rules induction. It coevolves rules and
rule sets concurrently in two cooperative
populations.

– OneR [37]. It is a simple, yet accurate,
classification algorithm that generates one rule

74

Cogn Comput (2019) 11:331–346 341

for each predictor in the data. Then, it selects
the rule with the smallest total error as its one
rule.

• Big Data algorithms

– MRAC [11]. Distributed association rule–
based classification scheme shaped according
to the MapReduce programming model.

– MRAC+ [11]. Improved version of MRAC
where some time-consuming operations were
removed.

– DAC [14]. Ensemble learning which dis-
tributes the training of an associative classifier
among parallel workers.

– DFAC-FFP [38]. An efficient distributed fuzzy
associative classification approach based on
the MapReduce paradigm.

Comparative Analysis

The main goal of this experimental study is to statistically
determine which algorithm performs better in three ways:
quality of the solutions, interpretability, and efficiency. The
experimental study has been divided into three steps (quality
of the solutions, interpretability, and efficiency). In each
step, the best algorithms are selected and used in the next
step so the final step will provide the best algorithms for all
the three criteria. Each of these three analyses are carried
out from two different perspectives: classical algorithms and
datasets (aiming at proving that our proposal outperforms
the state-of-the-art even when a small quantity of data is
considered); Big Data algorithms and datasets (aiming at
comparing to current state-of-the-art in Big Data). Finally,
it is important to remark that classical approaches cannot be
run on Big Data datasets.

Analysis of the Quality of the Solutions

The goal of this study is to analyze the quality of the
solutions obtained by G3P-ACBD and other well-known
algorithms in the field.

Classical State-of-the-Art

Table 2 shows average ranking for both accuracy and
kappa measures. Analyzing accuracy (see Table 2a), it is
obtained that CMAR and OneR have obtained the worst
results. It is mainly caused by two different facts. First,
CMAR is based on exhaustive search algorithms that
cannot be directly run on numeric attributes, requiring
a discretization step that implies data loss [39]. Second,
CMAR optimizes the confidence measure in isolation,
generating very specific classifiers that are not able to

Table 2 Average ranking for each algorithm (sorted in descending
order) according to the Friedman test when 30 datasets are considered

Algorithm Ranking

(a) Ranking for the accuracy measure

CMAR 7.916

OneR 7.350

CORE 7.150

CBA 6.233

Ripper 5.950

CBA2 4.816

C4.5 4.233

FARCHD 3.983

CPAR 3.683

G3P-ACBD 3.683

(b) Ranking for the kappa measure

OneR 7.850

CMAR 7.400

CORE 7.383

CBA 6.100

Ripper 4.966

CBA2 4.766

C4.5 4.383

CPAR 4.283

FARCHD 4.150

G3P-ACBD 3.716

Italic typeface denotes the algorithm that achieves the best ranking

correctly predict unseen examples. Results obtained by
rule induction algorithms (Ripper and CORE) are not
very interesting at all. Considering CBA and its improved
version CBA2, very good results in accuracy have been
obtained, being even similar to the results obtained by
C4.5. Additional AC algorithms such as FARCHD, CPAR,
and G3P-ACBD obtained the best results with really small
differences among them. Finally, focusing on the Kappa
metric (see Table 2b), very similar results have been
obtained and the three best algorithms in ranking were
FARCHD, CPAR, and G3P-ACBD.

Aiming at analyzing whether there exist any statistical
difference in the aforementioned results, several non-
parametric tests were carried out. First, a Friedman test
has been performed on the accuracy measure, obtaining
a X2

F = 77.55 with a critical value of 21.66 and a p

value = 4.93−13. In the same way, a X2
F = 70.66 with

a critical value of 21.66 and a p value = 1.12−11 has
been obtained for the Kappa metric. In both cases, and
considering a value α = 0.01, it is not possible to assert that
all the algorithm equally behave for both measures. Thus,
a post-hoc test is performed (see Table 3) and considering
α = 0.01. Focusing on the accuracy measure, those

75

342 Cogn Comput (2019) 11:331–346

Table 3 p values for the Holland test with α = 0.01

CBA CBA2 CMAR CPAR FARCHD C4.5 Ripper CORE OneR

(a) Results for the accuracy measure

CPAR 0.035 0.933 0.000 0.999 0.998 0.100 0.000 0.000

G3P-ACBD 0.035 0.933 0.000 0.999 0.998 0.100 0.000 0.000

(b) Results for the kappa measure

G3P-ACBD 0.060 0.965 0.000 0.999 1.000 0.999 0.890 0.000 0.000

algorithms that achieved the best ranking in the previous
analysis have been taken as control, that is, CPAR and
G3P-ACBD. Results of this post-hoc test (see Table 3a)
denote some statistical differences with regard to CMAR,
CORE, and OneR. Additionally, it is also interesting to
study whether there are any statistical difference between
CPAR and G3P-ACBD (those algorithms that achieved
the best ranking). A Wilcoxon signed-rank test has been
carried out in this regard, obtaining a Z value = −0.6582
with p value = 0.50926. It is therefore not possible to
assert that, at a significance level of α = 0.01, there is
a significant difference between CPAR and G3P-ACBD.
Finally, the same process is carried out for the kappa
measure, taking the algorithm that achieved the best ranking
as control, that is, G3P-ACBD. Results of a post-hoc test
(see Table 3b) revealed that there are statistical differences
with regard to CMAR, CORE, and OneR. To sum up, among
the ten selected algorithms, seven of them equally behave
according to the quality of their solutions (accuracy and
kappa) and, therefore, additional criteria need to be used to
select the best approach.

Table 4 Average ranking for each algorithm (sorted in descending
order) according to the Friedman test when 10 Big Data datasets are
considered

Algorithm Ranking

(a) Ranking for accuracy measure

DAC 4.350

MRAC 4.150

MRAC+ 2.700

DFAC-FFP 2.150

G3P-ACBD 1.650

(b) Ranking for kappa measure

DAC 4.600

MRAC 4.100

MRAC+ 2.600

DFAC-FFP 1.900

G3P-ACBD 1.800

Italic typeface denotes the algorithm that achieves the best ranking

Big Data State-of-the-Art

Table 4 shows the ranking for both accuracy and kappa
measure, G3P-ACBD achieving the best results. DFAC-
FPP obtained almost the same results as G3P-ACBD
for both quality measures. In order to analyze whether
exists any statistical difference, several non-parametric tests
are carried out. Focusing on accuracy, the Friedman test
revealed a X2

F = 23.12 with a critical value of 13.277
and a p value = 0.0001. Considering the Kappa measure,
results for Friedman was X2

F = 26.32 with a critical
value of 13.277 and a p value =2.72 · 10−5. For both
measures, with α = 0.01, it is possible to assert not all
the algorithms equally behave. A post-hoc test is therefore
performed to determine the algorithms that present some
differences. Table 5 shows the p values for Holland test
with α = 0.01. According to the results, DAC and MRAC
behave statistically different (worse) with regard to the
rest of algorithms. Considering G3P-ACBD, DFAC-FFP,
and MRAC+, there are no statistical difference in terms of
quality and all of them obtained very good results.

Analysis of the Interpretability of the Solutions

In the previous section, several algorithms obtained
statistically significant differences in terms of accuracy and
kappa measures. Only those best algorithms have been
considered in this next study of interpretability of the
classifiers. This is a key analysis since a major reason
to use AC algorithms is the interpretability of the final
classifier. In this sense, the number of variables per
rule and the number of rules per classifier are analyzed
(few variables and rules ease the understanding from the

Table 5 p values for Holland test with α = 0.01

MRAC MRAC+ DAC DFAC-FFP

(a) Results for accuracy measure

G3P-ACBD 0.004 0.447 0.001 0.821

(b) Results for kappa measure

G3P-ACBD 0.009 0.697 0.001 0.888

Italicized values represent the best ranking value

76

Cogn Comput (2019) 11:331–346 343

Table 6 Ranking (sorted in descending order) for the complexity of
the classifiers

Algorithm Ranking

Ripper 5.900

CPAR 5.750

C4.5 5.650

CBA2 2.967

G3P-ACBD 2.900

CBA 2.766

FARCHD 2.066

Italic typeface denotes the algorithm that achieves the best ranking

expert’s point of view). Given a classifier C including a
set of rules C = {R0, ..., Rn}, then complexity(C) =
n

�n
i=0 attributes(Ri) represents the intepretability or

complexity of C, where n is the number of rules used by the
classifier C, Ri is a specific rule of the form Ri = X → y

in the position i of the classifier C, and attributes(Ri) is
defined as the number of variables, i.e. |X|, that Ri includes.

Classical State-of-the-Art

Table 6 shows the average ranking for complexity measure.
As it is illustrated, the best results have been obtained by
FARCHD and closely followed by CBA, G3P-ACBD and
CBA2. At this point, it is important to remark that the
size of the rules in FARCHD is limited, by definition, to
3 variables or conditions. Hence, any rule discovered by
this algorithm is extremely short. To prove whether exist
some kind of statistical differences among the results, a
Friedman test has been performed, obtaining a value of
X2

F = 108.850 with a critical value of 16.812 and a p-
value = 2.2−16, meaning that there are some statistically
differences among the algorithms for α = 0.01. Next, a
post-hoc test has been performed to state among which
algorithms there are any differences. In this regard, Table 7
shows the p values for the Holland test with α = 0.01.
Focusing on complexity, the algorithm selected as control
is FARCHD. Results of this post-hoc test (see Table 7)
denote that there are statistical differences with regard to
CPAR, C4.5, and Ripper. Focusing on the proposed G3P-
ACBD algorithm, a good interpretability behavior has been
achieved since no statistical differences have been found
with regard to the control algorithm for interpretability. To

Table 7 p values for the Holland test with α = 0.01 for the complexity
measure

CBA CBA2 CPAR G3P-ACBD C4.5 Ripper

FARCHD 0.807 0.637 0.000 0.687 0.000 0.000

Italicized values represent the best ranking value

Table 8 Ranking (sorted in descending order) for complexity of the
classifiers

Algorithm Ranking

MRAC+ 2.800

DFAC-FFP 2.200

G3P-ACBD 1.000

Italic typeface denotes the algorithm that achieves the best ranking

sum up, it is possible to state that, in terms of both quality
of predictions and interpretability, the best algorithms are
FARCHD, CBA, CBA2, and G3P-ACBD. As there are not
statistical differences among them, different criteria are
required to choose the best algorithm.

Big Data State-of-the-Art

Table 8 shows the ranking obtained for each algorithm
according to the complexity measure. G3P-ACBD obtained
the best results, whereas MRAC+ obtained the worst
solutions in terms of interepretability. This behavior is
explained by the fact that MRAC+ aims at optimizing the
confidence measure, giving rise to really specific rules
(including a large number of attributes). The Friedman test
was performed in order to determine whether there exist
some statistical differences among the algorithms. A value
of X2

F = 16.800 with a critical value of 9.210 and a p

value = 0.0002 were obtained, meaning that not all the
algorithms equally behave with α = 0.01. A post-hoc test
was then performed (see Table 9) considering α = 0.01.
According to this test, G3P-ACBD obtained statistically
significant differences with regard to MRAC+. No statistical
differences were found between G3P-ACBD and DFAC-
FFP, but the former obtained a better ranking.

Analysis of the Efficiency

This third analysis is related to the runtime, and the aim is to
select the faster algorithm among those that obtained good
results in accuracy and interpretability.

Classical State-of-the-Art

As a result of the previous sections, FARCHD, CBA, CBA2,
and G3P-ACBD are the algorithms that have achieved

Table 9 p values for the Holland test with α = 0.01 for the complexity
measure

MRAC+ DFAC-FFP

G3P-ACBD 0.000 0.015

Italicized values represent the best ranking value

77

344 Cogn Comput (2019) 11:331–346

Table 10 Ranking for the runtime (ordered in descending order) of the
different algorithms in the original datasets

Algorithm Ranking

FARCHD 6.433

G3P-ACBD (Flink) 4.766

G3P-ACBD (Spark) 4.433

CBA 4.000

G3P-ACBD (Baseline) 3.500

CBA2 2.700

G3P-ACBD (Multi-thread) 2.167

Italic typeface denotes the algorithm that achieves the best ranking

a better trade-off between quality of the predictions and
interpretability. It is therefore required to analyze such
algorithms according to the efficiency. In this study, three
different implementations of G3P-ACBD at different levels
of parallelism are considered—all of them achieved the
exact same solutions so neither the quality of the predictions
nor the interpretability vary.

As it is illustrated in Table 10, the multi-thread imple-
mentation of G3P-ACBD obtained the best runtime. The
baseline version of G3P-ACBD (sequential implementa-
tion) achieved the third best ranking, which is better than
CBA and FARCHD. In fact, FARCHD obtained the worst
performance. Finally, focusing on those G3P-ACBD ver-
sions based on distributed platforms (Spark and Flink),
really bad results were obtained. These results demon-
strate that such platforms are not good options for non-big
datasets. The Friedman statistical test was performed to
detect whether there are statistical differences, obtaining a
value of X2

F = 77.129 with a critical value of 16.812 and
p value = 1.399−14. As a result, and considering α = 0.01,
it is possible to assert that not all the algorithm equally
behave. Thus, a post-hoc test was performed to state among
which algorithms there are any statistical difference. In this
regard, Table 11 shows the p values for the Holland test with
α = 0.01. The multi-thread of G3P-ACBD was taking as
control, and the statistical test revealed some significant dif-
ferences with regard to FARCHD and distributed versions
of G3P-ACBD.

Table 11 Holland test for the runtime when the original datasets are
considered with α = 0.01

CBA CBA2 FARCHD G3P-ACBD

Baseline Spark Flink

G3P-ACBD
(multi-thread)

0.013 0.809 0.000 0.156 0.001 0.000

Italicized values represent the best ranking value

Table 12 Ranking for the runtime (ordered in descending order) of the
different algorithms in datasets with the instances duplicated

Algorithm Ranking

DFAC-FFP 3.900

G3P-ACBD (multi-thread) 2.700

G3P-ACBD (Flink) 1.750

G3P-ACBD (Spark) 1.650

Italic typeface denotes the algorithm that achieves the best ranking

Big Data State-of-the-Art

G3P-ACBD and DFAC-FFP are the only two algorithms
that have achieved a good trade-off between quality of
the predictions and interpretability. The aim now is to
compare the runtime for both methods. Due to several
implementations of G3P-ACBD for Big Data (multi-thread,
Spark, and Flink) are provided in this work, all of them
have been considered in this analysis. Table 12 shows the
results obtained for these algorithms. G3P-ACBD Spark
appears as the most efficient method, and closely followed
by G3P-ACBD Flink. On the contrary, DFAC-FFP obtained
the worst performance. A Friedman rank test was performed
obtaining a X2

F = 19.710 with a critical value of 11.345
and a p value = 0.0001. Thus, considering α = 0.01, it
is possible to assert that not all algorithms equally behave
in runtime. A Holland test is therefore carried out (see
Table 13) with α = 0.01 in order to determine significant
differences among the algorithms. As a result, no statistical
difference can be found among the three implementations
of G3P-ACBD (Spark version obtained the best results).

Scalability of the Different Implementations in Big
Data

The goal of this section is to study the behavior (see
Fig. 5) of the four different implementations of G3P-ACBD
proposed in this paper (sequential, multi-thread, Spark, and
Flink). Authors are aware that parallel implementations
obtain better results in runtime for Big Data than the
baseline (sequential version). They are also aware that the

Table 13 Holland test for runtime when Big Data datasets are consid-
ered with α = 0.01

DFAC-FFP G3P-ACBD

Multi-thread Flink

G3P-ACBD (Spark) 0.001 0.193 0.862

Italicized values represent the best ranking value

78

Cogn Comput (2019) 11:331–346 345

a

b

Fig. 5 Runtime of the different implementations considering truly Big
Data

multi-thread version will be worse than Spark/Flink for
truly large datasets. However, the aim of this section is to
know the real behavior when the search space increases and
the number of instances also does. A series of synthetic
datasets have been generated sampling a normal Gaussian
distribution. The number of instances ranges from 1 · 105 to
2 · 108, with a search space ranging from 6500 to 1.04229,
and file sizes up to 250 GB have been included. Generator
is publicly available at http://www.uco.es/kdis/g3p-acbd/.

Figure 5a illustrates how the number of rules affects
to the runtime. As it could be appreciated, the baseline
approach has been the most efficient solution for small
search spaces. When this number starts to grow, the
approach based on multi-threads achieved a much better

runtime than baseline version (sequential version). As
for Spark and Flink implementations, they obtained good
results for extremely large search spaces. For truly big
search spaces, the sequential version becomes totally
meaningless since it requires several days to finish.
Considering both Spark and Flink versions, not high
differences are found—Flink obtained a little worse runtime
in some cases. Finally, it should be pointed out that Spark is
more mature software than Flink and, therefore, these values
might vary in future versions.

Continuing this analysis, Fig. 5b illustrates how the num-
ber of instances affects to the runtime. As previously done,
different implementations of G3P-ACBD are considered
and the number of instances varies in data from 1 · 105 to 2 ·
108. The baseline (sequential) approach is more compelling
when not so large datasets are considered, whereas paral-
lel versions are much more appropriate when the number
of instances increases. For truly large datasets (according to
the number of instances), small differences in runtime are
obtained between Spark and Flink.

Conclusions

In this work, a grammar-guided genetic programming
algorithm for associative classification in Big Data has been
proposed. The novelty of this approach, known as G3P-
ACBD, is that it is eminently designed to be as parallel as
possible without affecting the accuracy and interpretability
of the classifier. As a consequence of the increasing interest
in data gathering, a unique and universal implementation
is unfeasible and different adaptations (different levels of
parallelism) are required depending on the data size. In
this sense, four different versions of G3P-ACBD have been
implemented including sequential, multi-thread, Apache
Spark, and Apache Flink. It should be taken into account
that all of them return the same classifier and the difference
lies on the runtime. Additionally, a comparison with
other well-known algorithms was performed by considering
interpretability, efficiency, and scalability.

Funding Information This research was financially supported by the
Spanish Ministry of Economy and Competitiveness and the European
Regional Development Fund, projects TIN2017-83445-P.

Compliance with Ethical Standards

Conflict of interest The authors declare that they have no conflict of
interest.

Ethical approval This article does not contain any studies with human
participants or animals performed by any of the authors.

79

346 Cogn Comput (2019) 11:331–346

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

References

1. Fernández A, del Rı́o S, Chawla NV, Herrera F. An insight
into imbalanced big data classification: outcomes and challenges.
Complex &, Intelligent Systems. 2017;3(2):105–20.

2. Chen H, Chiang R, Storey V. Business intelligence and analytics:
from big data to big impact. MIS Quarterly: Management
Information Systems. 2012;36(4):1165–88.

3. Cambria E, Chattopadhyay A, Linn E, Mandal B, White B.
Storages are not forever. Cogn Comput. 2017;9(5):646–58.

4. Agrawal R, Imieliński T, Swami A. Mining association
rules between sets of items in large databases. SIGMOD Rec.
1993;22(2):207–16.

5. Han J, Kamber M. Data mining: concepts and techniques. Morgan
Kaufmann. 2011.

6. Quinlan R. C4.5: Programs for machine learning. San Mateo:
Morgan Kaufmann Publishers; 1993.

7. Cortes C, Vapnik V. Support vector networks. Mach Learn.
1995;20:273–97.

8. Thabtah FA. A review of associative classification mining. Knowl
Eng Rev. 2007;22(1):37–65.

9. Asghar MZ, Khan A, Bibi A, Kundi FM, Ahmad H. Sentence-
level emotion detection framework using rule-based classification.
Cogn Comput. 2017;9(6):868–94.

10. Liu B, Hsu W, Ma Y. Integrating classification and association
rule mining. In: 4th International Conference on Knowledge
Discovery and Data Mining(KDD98); 1998. p. 80–86.

11. Bechini A, Marcelloni F, Segatori A. A MapReduce solution for
associative classification of big data. Inf Sci. 2016;332:33–55.

12. Dean J, Ghemawat S. Mapreduce: Simplified data processing on
large clusters. Communications of the ACM - 50th anniversary
issue: 1958 - 2008. 2008;51(1):107–13.

13. Alcalá-Fdez J, Alcalá R, Herrera F. A fuzzy association rule-
based classification model for high-dimensional problems with
genetic rule selection and lateral tuning. IEEE Trans Fuzzy Syst.
2011;19(5):857–72.

14. Venturini L, Baralis E, Garza P. Scaling associative classification
for very large datasets. Journal of Big Data. 2017;4(1):44.

15. Padillo F, Luna JM, Ventura S. Exhaustive search algorithms
to mine subgroups on big data using Apache spark. Progress in
Artificial Intelligence. 2017;6(2):145–58.

16. Ventura S, Luna JM. Pattern mining with evolutionary algorithms.
New York: Springer International Publishing; 2016.

17. Oneto L, Bisio F, Cambria E, Anguita D. SLT-based ELM for
big social data analysis. Cogn Comput. 2017;9(2):259–74.

18. Kim SS, McLoone S, Byeon JH, Lee S, Liu H. Cognitively
inspired artificial bee colony clustering for cognitive wireless
sensor networks. Cogn Comput. 2017;9(2):207–224.

19. Al-Radaideh QA, Bataineh DQ. A hybrid approach for arabic text
summarization using domain knowledge and genetic algorithms.
Cogn Comput. 2018;10(4):651–69.

20. Molina D, LaTorre A, Herrera F. An insight into bio-inspired and
evolutionary algorithms for global optimization: review, analysis,
and lessons learnt over a decade of competitions. Cogn Comput.
2018;10(4):517–44.

21. Siddique N, Adeli H. Nature inspired computing: an overview and
some future directions. Cogn Comput. 2015;7(6):706–14.

22. Lam C. Hadoop in action, 1st ed. Greenwich: Manning
Publications Co.; 2010.

23. Zaharia M, Chowdhury M, Franklin MJ, Shenker S, Stoica I.
Spark: cluster computing with working sets. In: Proceedings of
the 2nd USENIX Conference on Hot Topics in Cloud Computing.
HotCloud’10. Berkeley, CA, USA; 2010.

24. Kumar C, Anjaiah P, Patil S, Lingappa E, Rakesh M. Mining
association rules from NoSQL data bases using MapReduce fuzzy
association rule mining algorithm. 2017.

25. Martı́n D, Martı́nez-Ballesteros M, Garcı́a-Gil D, Alcalá-Fdez J,
Herrera F, Riquelme-Santos JC. MRQAR: a generic MapReduce
framework to discover quantitative association rules in big data
problems. Knowl-Based Syst. 2018;153:176–92.

26. McKay RI, Hoai NX, Whigham PA, Shan Y, O’Neill M.
Grammar-based genetic programming: a survey. Genet Program
Evolvable Mach. 2010;11:365–96.

27. Herrera F, Carmona CJ, González P, del Jesus MJ. An overview
on subgroup discovery: foundations and applications. Knowl Inf
Syst. 2011;29(3):495–525.

28. Luna JM, Padillo F, Pechenizkiy M, Ventura S. Apriori versions
based on MapReduce for mining frequent patterns on big data.
IEEE Trans Cybern. 2017;PP(99):1–15.

29. Ben-David A. Comparison of classification accuracy using
Cohen’s Weighted Kappa. Expert Syst Appl. 2008;34(2):825–
32.

30. Triguero I, González S, Moyano JM, Garcı̂a S, Alcalá-Fdez
J, Luengo J, et al. KEEL 3.0: an open source software for
multi-stage analysis in data mining. Int J Comput Intell Syst.
2017;10(1):1238–49.

31. Yin X, Han J. CPAR: classification based on predictive
association rules. In: 3rd SIAM International Conference on Data
Mining(SDM03); 2003. p. 331–5.

32. Li W, Han J, Pei J. CMAR: accurate and efficient classification
based on multiple class-association rules. In: 2001 IEEE
International Conference on Data Mining(ICDM01); 2001. p.
369–76.

33. Liu B, Ma Y, Wong CK. In: Classification Using Associa-
tion Rules: Weaknesses and Enhancements. Kluwer Academic
Publishers; 2001. p. 591–601.

34. Han J, Pei J, Yin Y, Mao R. Mining frequent patterns without
candidate generation: a frequent-pattern tree approach. Data Min
Knowl Disc. 2004;8(1):53–87.

35. Cohen WW. Fast effective rule induction. In: Machine Learning:
Proceedings of the 12th International Conference; 1995. p. 1–10.

36. Tan KC, Yu Q, Ang JH. A coevolutionary algorithm for rules
discovery in data mining. Int J Syst Sci. 2006;37(12):835–64.

37. Holte RC. Very simple classification rules perform well on most
commonly used datasets. Mach Learn. 1993;11:63–91.

38. Segatori A, Bechini A, Ducange P, Marcelloni F. A distributed
fuzzy associative classifier for big data. IEEE Trans Cybern.
2018;48(9):2656–69.

39. Fazzolari M, Alcalá R, Herrera F. A multi-objective evolutionary
method for learning granularities based on fuzzy discretization
to improve the accuracy-complexity trade-off of fuzzy rule-
based classification systems: D-MOFARC algorithm. Appl Soft
Comput. 2014;24:470–81.

80

Title:
Mining association rules on Big Data through MapReduce genetic programming

Authors:
F. Padillo, J.M. Luna, F. Herrera and S. Ventura

Integrated Computer-Aided Engineering, Volume 25, Issue 1, pp. 31–48, 2018

Ranking:
Impact factor (JCR): 4.904
Knowledge area: Computer Science; Engineering.
DOI: 10.3233/ica-170555

Mining Association Rules on Big Data
through MapReduce Genetic Programming

F. Padilloa, J.M. Lunabf, F. Herreracd and S. Venturaaef*
aDepartment of Computer Science and Numerical Analysis, University of Cordoba, 14071 Cordoba, Spain.
bDepartment of Computer Science, University of Jaén, 23071, Jaén, Spain.
cFaculty of Computing and Information Technology, North Jeddah, Saudi Arabia Kingdom.

dDepartment of Computer Science and Artificial Intelligence, University of Granada, 18071, Granada, Spain.
eFaculty of Computing and Information Technology, King Abdulaziz University, Saudi Arabia Kingdom.
fKnowledge Discovery and Intelligent Systems in Biomedicine Laboratory, Maimonides Biomedical
Research Institute of Cordoba, Spain.

Abstract. Association rule mining is one of the most important tasks to describe raw data. Although many efficient algorithms
have been developed to this aim, existing algorithms do not work well on huge volumes of data. The aim of this paper is to
propose a new genetic programming algorithm for mining association rules in Big Data. The genetic operators of our proposal
have been specifically designed to avoid a growing in the complexity of the solutions without an improvement in their fitness
function values. Furthermore, it introduces a repairing operator to improve the convergence. Additionally, to facilitate its ap-
plication on real world problems a grammar has been included, allowing it to introduce subjective knowledge into the mining
process and to reduce the search space. Due to the growing interest in data gathering, a unique implementation of the proposed
algorithm is not useful so different implementations (considering different architectures such as RMI, Hadoop and Spark) are
required depending on the data size. All these adaptations obtain exactly the same solutions as those of the original algorithm
since they only differ on the software architectures. The experimental study considers more than 75 datasets and 14 algorithms
and the results reveal that the proposed algorithm obtains excellent results for more than 12 quality measures. The scalability
of the proposal is also analyzed by considering the three parallel implementations on high dimensional datasets (3,000 millions
of instances) and file sizes up to 800 GB.

Keywords: Association Rules, Big Data, MapReduce, Hadoop, Spark

1. Introduction

As technology advances, high volumes of valuable
data are generated in modern organizations. Nowa-
days, the extraction of knowledge from such raw
massive data is a priority to support decision making.
It has driven and motivated the research in improving
techniques for data analysis in such massive datasets,
giving rise to the new buzzword Big Data [30]. This
term encompasses a set of techniques to face up the
problems derived from the management and analysis
of these huge quantities of data [10].

The extraction of patterns of interest that represent
intrinsic and important properties of data plays an
important role in data analysis. Nevertheless, the
knowledge extracted by a single pattern might be
meaningless, and a more descriptive analysis can be

required. In this sense, the concept of association
rules was proposed by Agrawal et al. [2] as a way of
describing correlations within patterns of potential
interest. Association rule mining was firstly described
in the context of market basket analysis [40], where it
was used to determine which products were bought
together. Nowadays, though, the applications are not
limited to the market basket analysis and more and
more domains [16, 18, 26] are interested in using this
kind of relationships.

First approaches in the association rule mining [1]
field were based on the Apriori algorithm. It is an
exhaustive search algorithm that extracts associations
of interest by dividing the problem into two sub-
tasks: (1) finding patterns whose frequency of occur-
rence is greater than a minimum threshold; and (2)
extracting association rules from the previously ob-

83

tained patterns. Despite the fact that this first algo-
rithm [2] worked well in many different fields, the
number of applications has grown exponentially and
this rapid increment in size and number of datasets
has given rise to some limitations. For instance, ob-
taining all the rules could be unfeasible if the dataset
has a high number of k different single items, produc-
ing 2k − 1 patterns and 3k − 2k+1 + 1 rules to be ana-
lyzed and saved in main memory. In addition, real-
world datasets include continuous features so the
high number of distinct values produces extremely
large search spaces to be considered by traditional

In order to overcome existing drawbacks in the
mining of association rules, many research studies
[36] have been focused on extracting these relation-
ships by means of Evolutionary Algorithms (EAs).
The use of EAs enables to extract association rules in
a single step, not requiring a previous subtask for
mining frequent patterns. Multi-objective optimiza-
tion [31, 32] has been also considered by different
researchers to extract association rules by means of
EAs [12, 20, 21]. Additionally, some researchers

tinuous domains, not requiring any previous discreti-

is the reduction in both the computational time and
the memory requirements by considering the pattern
mining problem as a combinatorial optimization issue.
Even when really efficient algorithms have been pro-
posed for mining association rules, truly Big Datasets
hamper the process of mining association rules. In the
1990s, 20 attributes were called a large-scale problem
[27]. Nowadays, the number of attributes in many
areas, e.g. gene analysis, can easily reach thousands
or even millions [33]. Under these circumstances,
new forms of processing data are needed to enhance
the process of decision making and knowledge dis-
covery when massive data are considered [14, 17].
Additionally, parallel computing is being applied in
this field, by considering both multi-core processors
and multiple computers through a Remoted Method
Invocation (RMI). In this sense, Cano et al. [5] pro-
posed the use of Graphics Processor Units (GPUs) to
speed up the process of mining association rules.
GPU computing allows thousands of cores to be used
at the same time, however, it could not be enough
when truly Big Data are considered. In this regard,
MapReduce [6] has emerged as a paradigm to tackle
Big Data. It uses multiple machines in a distributed
way, enabling a higher level of parallelism. Neverthe-

less, not only are new huge quantities of data availa-
ble but also a massive number of decision variables,
different mathematical properties of the data or even
various type of constraints. Thus, this problem cannot
be solved by only increasing the computational pow-
er or by using paradigms such as MapReduce. Hence,
novel methods and algorithms based new advances in
distributed computing [27] have become a necessity
[25].

The goal of this paper is therefore to propose a
new efficient EA to extract association rules in Big
Data. The baseline of this work is a new Grammar-
Guided Genetic Programming algorithm to optimize
Leverage, Support and Confidence, known as G3P-
LSC. The proposed model makes use of a context-
free grammar to encode the solutions and it allows to
restrict the search space by adding some syntax con-
straints, i.e. it enables expert’s knowledge to be in-
troduced into the mining process. Furthermore, our
proposal is eminently designed to be as parallel as
possible so Big Data can be tackled, and its operators
have been specifically designed to avoid the loss in
large search spaces as well as to maintain diversity in
the solutions. In this regard, its genetic operators pro-
vide a reduced set of rules with high values for many
different quality measures and few attributes, making
it easier to understand from a user’s perspective. Tak-
ing the proposed sequential algorithm G3P-LSC as a
starting point, different approaches have been finally
implemented considering both RMI and MapReduce
(Hadoop and Spark). In order to analyze the scalabil-
ity of the proposal and its parallel versions, the exper-
imental study includes different data sizes, consider-
ing datasets with more than 3,000 millions of in-
stances. G3P-LSC has been compared with other 14
algorithms and using more than 75 datasets. Results
state that the proposed G3P-LSC algorithm mines
rules by optimizing the desired qualities, providing
the user with rules of high interest. Finally, the pro-
posed approach presents a good computational cost
and a promising scalability when the size of the prob-
lem increases.

The rest of the paper is organized as follows. Sec-
tion 2 presents the most relevant definitions and re-
lated work; Section 3 describes the proposed algo-
rithm; Section 4 presents the datasets used in the ex-
periments and the results; finally, some concluding
remarks are outlined in Section 5.

approaches.

have applied EAs for optimizing patterns in con-

zation step. But even more important than all of this

84

2. Preliminaries

In this section, the association rule mining task is
formally defined, and the MapReduce paradigm is
analyzed.

2.1. Association Rule Mining

Association Rule Mining (ARM) [40] is consid-
ered as one of the most relevant tasks in unsupervised
learning. It aims to discover accurate associations
between item-sets of interest for the application do-
main. These associations have a descriptive nature,
describing useful behaviors for the end user.

In a formal way, it is possible to define an associa-
tion rule as follows [36]. Let I = {i1, i2, i3, ..., in} be
the set of items or features, and let define a set of all
transactions T = {t1, t2, t3, ..., tm} in a dataset, where
each transaction tj comprises a subset of items {ik, ...,
il}, 1 ≤ k, l ≤ n. An association rule is formally de-
fined [1] as an implication of the form X → Y where
X ⊂ I, Y ⊂ I, and X ∩ Y = ∅. The meaning of an
association rule [13] is that if the antecedent X is sat-
isfied for a specific transaction tj, i.e. X ⊂ tj, then it is
highly probable that the consequent Y is also satisfied
for that transaction, i.e. Y ⊂ tj. Nevertheless, in some
scenarios the extraction of rules of the form X → Y
could not be enough, and it may be interesting to ex-
tract rules such as X → ¬Y. This kind of rules relates
the presence of X to the absence of Y [13].

ARM obtains relationships from data were no in-
formation is known, so the extracted knowledge
might be hardly quantifiable sometimes. In general,
association rules represent data behavior and their
interest is quantified by means of metrics that deter-
mine how representative a specific rule is within a
dataset. Tons of quality measures have been defined
for this aim [3], being support and confidence the two
most widespread metrics in literature [1]. The support
of the item-set X (see Equation 1) is defined [1, 40]
as the number of transactions that satisfies X ⊂ tzÎT.

Support(X) = |{∀tj ∈ T , X ⊆ tj : tj ⊆ I}| (1)

In the same way, the support of an association rule
X → Y (see Equation 2) is defined as the number of
transactions from T that satisfies both X and Y [1, 13,
40].

Support(X →Y) = |{∀tj ∈ T , X ⊂ tj ∧ Y ⊂ tj : tj ⊆ I}| (2)

As for the confidence quality measure [1, 13, 40],
it determines the strength of implication of the rule,
so the higher its value, the more accurate the rule is.
In a formal way, the confidence measure (see Equa-
tion 3) is defined as the proportion of transactions
that satisfies both the antecedent X and the conse-
quent Y among those transactions that contain only
the antecedent X [1].

Confidence(X→Y) = Support(X→Y)/Support(X) (3)

Even though these quality measures are extensive-

ly used in the field, they have some downsides [13,
36]. First, the confidence measure does not detect
statistical independence or negative dependence be-
tween items. Second, item-sets with very high sup-
port are a source of misleading rules. To overcome
these drawbacks, many researchers have proposed
several measures for the selection of interesting rules,
and leverage is one of the most alluring since it satis-
fies the three properties proposed by Piatetsky-
Shapiro [28]. Leverage (see Equation 4) calculates
how different is the co-occurrence of the antecedent
X and consequent Y from expected [1], i.e. from in-
dependence. This quality measure [36] takes values
in the range [−0.25, 0.25], and a zero value states for
statistical independence between X and Y.

Leverage (X → Y) = Support(X →
Y)−(Support(X)×Support(Y)) (4)

2.2. MapReduce

MapReduce [6] is a recent paradigm of distributed
computing in which programs are composed of two
main phases defined by the programmer: map and
reduce. MapReduce considers that the input and out-
put are based on (key, value) pairs, which are also
denoted as tuples <k, v>. In the map phase, each
mapper processes a sub-set of input data and produc-
es <k, v> pairs. Then, an intermediate step is carried
out, known as shuffle phase, which merges all the
values associated with the same key. For example,
given three different pairs with the same key, i.e. <k,
v1> <k, v2> <k, v3>, the merging process will return
<k, <v1, v2, v3>>. Finally, the reducer takes this new
list as input to produce the final values. It should be
noted that all the map and reduce operations are run
on a distributed way. The flowchart of a generic
MapReduce framework is depicted in Figure 1.

Hadoop [15] is the de facto standard for MapRe-
duce applications. Hadoop implements the MapRe-

85

duce paradigm and provides a distributed filesystem
known as Hadoop Distributed File System (HDFS),
which replicates file data in multiple storage nodes
that can concurrently access to the data. The main
drawback of Hadoop is that it imposes an acyclic data
flow graph, and there are applications that cannot be
modeled efficiently using this kind of graph such as
iterative or interactive analysis [38]. Moreover, the
communication among mappers and reducers are
performed using disk. This operation could cause
problems of I/O, when the number of (key, value)
pairs are extremely large. The disk being the main
bottleneck due to the slow speed of read/write. All of
this has hampered the modeling of efficient iterative
algorithms in this platform. To solve these downsides,
a novel solution has been proposed known as Spark
[38]. This new proposal is eminently designed to be
used in iterative and interactive algorithms. To speed
up the process of tackling huge amounts of data, it
introduces an abstraction called Resilient Distributed
Datasets (RDDs). RDD represents a read-only collec-
tion of objects partitioned across a set of machines
stored in main memory. It allows us to load a dataset
in memory one time, and read multiple times without
having to load it from disk in each iteration as Ha-
doop does. Furthermore, the communication among
mappers and reducers are performed in memory, be-
ing much faster than the approach followed by Ha-
doop. One of the main strengths of Spark is its rich
application program interface, which provides a set of
in-memory primitives facilitating the modeling of
algorithms.

<k 1, v>
<k 3, v>

Input

<k 1, v>
<k 2, v>
<k 3, v>

<k 1, v>
<k 2, v>
<k 3, v>

<k 1, v>
<k 2, v>
<k 3, v>

<k 4, v>

<k 4, v>

Map

<k 1,<v 1,v 2,v 3,v 4>>

<k 2,<v 2,v 3,v 4>>

<k 3,<v 1,v 2,v 3,v 4>>

<k 4,<v 1,v 3>>

Reduce

Output

Figure 1. Diagram of a generic MapReduce framework

3. Evolutionary algorithm based on grammars for
mining association rules in Big Data

The main motivation of this work is to propose an
EA based on grammars for mining association rules.

This work has been eminently designed to tackle
massive amounts of data, where its genetic operators
enable to scale on huge search spaces without losing
accuracy and maintaining diversity among solutions.
Its repairing operator allows to improve the conver-
gence in complex spaces. Additionally, the fitness
function has been explicitly designed to find frequent
and reliable rules whose antecedent and consequent
are not independent. To accomplish this, two differ-
ent populations and three genetic operators as well as
a grammar have been used. Also, due to the growing
interest in data gathering, a unique and universal im-
plementation of the proposed algorithm is not useful,
so different adaptations are carried out depending on
the data size. Hence, different adaptations have been
performed in function of the used architecture, and all
of them are fully described in further sections. Finally,
it is worth noting that all of these adaptations obtain
exactly the same solutions, the unique difference
among them is the used software architecture.

3.1. Baseline

The baseline of this work is a new EA, known as
G3P-LSC, that makes use of a context-free grammar
to constrain the search space. Many authors have
explored the use of grammars in pattern mining,
achieving excellent results in both introducing sub-
jective external knowledge into the mining process
and restricting search space by introducing some syn-
tax constraints [19]. A major strength of using gram-
mars is the adaptability to represent solutions with
different forms and features in such a way that a sim-
ple change in the grammar is able to produce com-
pletely different solutions. However, the user should
be cautious when using grammars in pattern mining
since the fact of reducing the search space may pro-
duce the loss of high interesting solutions, e.g. those
that do not satisfy the constraints provided by the
grammar. Besides, another major limitation of using
grammars is the possibility of bloating by which the
trees expand without control and the complexity in-
creases. All these downsides are overcome in the
proposed G3P-LSC as it is described below.

Encoding. G3P-LSC represents each solution as a
derivation syntax tree encoded by means of a set of
production rules from the context-free grammar
shown in Figure 2. It is defined as a four-tuple (ΣN,
ΣT, P, S) where ΣN and ΣT represent the alphabet of
non-terminal and terminal symbols, respectively; and
they have no common elements, i.e. ΣN ∩ ΣT = ∅.

86

Terminal symbols are literals of the grammar and
cannot be changed using the rules of the grammar.
For example, the value of an attribute does not
change even when the rules of the grammar are modi-
fied. Additionally, terminal symbols do not appear in
the left-hand side of any production rule. On the con-
trary, non-terminal symbols are lexical elements used
to form a grammar, and they can be replaced to pro-
duce different solutions Non-terminal symbols may
appear in both left and right-hand side of the produc-
tion rules. In order to encode a solution, a number of
production rules from the set P are applied beginning
from the start symbol denoted by S. A production
rule is defined as α → β where α ∈ ΣN, and β ∈
{ΣT ∪ ΣN}*. After applying the production rules, a
derivation syntax tree is obtained for each solution,
where internal nodes contain only non-terminal sym-
bols, and leaves contain only terminal symbols.

G = (ΣN, ΣT, P , S) with:
 S = Rule
 ΣN = {Rule, Antecedent, Consequent, Condition, Nominal,
 Numerical}
 ΣT = {‘name’, ‘=’, ‘value’, ‘IN’, ‘Min_value’, ‘Max_value’}
 P = {

Rule := Antecedent, Consequent;
Antecedent := Condition | Condition, Antecedent;
Consequent := Condition | Condition, Consequent;

 Condition := Numerical | Nominal;
Numerical := ‘name’ ‘IN’ ‘Min_value’, ‘Max_value’;
Nominal := ‘name’ ‘=’ ‘value’;

 }

Figure 2. Context-free grammar defined by G3P-LSC

To generate each solution, the derivation syntax

tree is obtained by applying a series of derivation
steps from the start symbol of the grammar. From this
symbol, the algorithm searches solutions belonging to
the set P, until a valid derivation chain is reached.
Additionally, in order to avoid bloating that is one of
the main problems of using grammars, a maximum
number of derivations is previously determined as an
input parameter. In this regard, there is a maximum
length that no rule can excess. Genetic operators are
aware of this maximum length so they are specifical-
ly designed to avoid an uncontrolled growth of the
solutions.

Evaluation procedure. In any evolutionary ap-
proach, the evaluation process is cornerstone since it
is responsible for assigning a fitness value to deter-
mine how promising each rule is for a specific aim.
The proposed fitness function F of a solution (rule) R
≡ X → Y is the product of support, confidence and

leverage, i.e. F(R) = support(R) × confidence(R) ×
leverage(R). This fitness function takes values in the
range [−0.25, 0.25]. Support and confidence are the
most widespread measures in association rule mining
and they are related in such a way that the confidence
value of a rule cannot be lower than its support [36].
It means that high support values imply high confi-
dence values but in those datasets where the maxi-
mum feasible support value is not too high, then con-
fidence is required to be maximized and, therefore
both metrics should be considered at time. Even
though these two quality measures are extensively
used in the field they should be considered together
with additional quality measures [35]. In this regard,
Leverage appears as a good metric to determine co-
occurrence of the antecedent and consequent of a rule
from independence. A major feature of this quality
measure with regard to similar metrics [36] is that its
values have predefined lower and upper bounds, i.e.
[−0.25, 0.25], zero value denoting a statistical inde-
pendence between antecedent and consequent.

The fitness function has been precisely designed to
avoid frequent (support) and reliable (confidence)
rules where the antecedent and consequent are not
independent. Using the product of these metrics it is
obtained that when leverage is zero, then the overall
fitness value is also zero.

Finally, it is important to highlight that the evalua-
tion procedure is carried out in a sequential way,
where the whole dataset has to be read from one pro-
cessor, evaluating each rule of the main population in
each instance.

Algorithm. The G3P-LSC algorithm proposed as
baseline for mining association rules in Big Data en-
vironments is depicted in Listing 1. It starts by encod-
ing rules (line 1, Listing 1) by using the context-free
grammar defined in Figure 2 and the extracted
metadata. Additionally, the maximum feasible length
of this grammar is set to the number of attributes in
data, so it is possible to obtain rules comprising the
whole set of features.

After selecting a set of individuals to work as par-
ents (line 7, Listing 1), the next step is to apply the
crossover operator with a certain probability. If the
crossover operator is applied, two offspring will be
generated, which could be independently mutated
with a certain probability. On the contrary, if the
crossover operator is not applied, then the two par-
ents could be separately mutated with a certain prob-
ability (see lines 7 to 16, Listing 1). A major feature
of G3P-LSC is the elitism, in which best solutions are
guaranteed a place in the next generation. It is espe-
cially important in mining association rules since

87

both crossover and mutation are too disruptive opera-
tors and may cause the loss of really promising solu-
tions. This evolutionary process is repeated a number
of generations specified by the user.

Listing 1 G3P-LSC sequential algorithm

1: Initialize a random population of N rules as P0
2: auxiliary_population ← ∅
3: for i = 0 to NumberOfGenerations do
4: offspring ← ∅
5: evaluate_rules(Pi)
6: Maintain elitism using auxiliary_population
7: Apply BetterSelector to Pi
8: for each pair in Pi do
9: if Rand_number(0, 1) < Pcro then

10: pair ← Apply crossover and repairing oper-
ator (pair)

11: end if
12: for each individual of the pair do
13: if Rand_number(0, 1) < Pmut then
14: individual ← Apply mutation and re-

pairing operator (individual)
15: end if
16: end for
17: offspring ← offspring + pair
18: end for
19: Pi+1 ← offspring + auxiliary_population
20: end for

Genetic operators. The crossover genetic operator

works by interchanging a random sub-tree between
two parents, whereas the mutation operator applies
changes to attributes from the antecedent and the
consequent. These are high disruptive operators, giv-
ing rise to solutions whose fitness values highly vary
from the original solution (parents). This issue is
caused by the ARM problem itself since the simple
fact of changing a single attribute in a rule may pro-
duce wrong solutions or even completely different
leverage, support and confidence values. In this re-
gard, G3P-LSC also proposes a repairing operator
used to improve the algorithm’s performance by
modifying invalid rules. The main idea is really sim-
ple since this operator checks whether the antecedent
and consequent of the rule include similar items, and
it is checked on each of the resulting solutions. It is
important to highlight that, according to the formal
definition of association rules provided in Section 2.1,
both the antecedent and consequent cannot include
the same items, i.e. X ∩ Y ≠ ∅.	 Thus, a rule is con-
sidered as invalid if both the antecedent and the con-
sequent comprise common items and the repairing

operator therefore works by removing those repeated
items and providing rules satisfying X ∩ Y = ∅. In
general, invalid elements are randomly removed ei-
ther from antecedent or consequent with the only
constraint that the resulting solution satisfies that X =
∅	and Y = ∅.

3.2. Scaling G3P-LSC using parallel and distributed
computing

Focusing on the same idea of G3P-LSC, different
parallel and distributed computing architectures have
been used to speed up the mining of association rules
in Big Data environments. In these implementations,
the evaluation procedure has been the unique parallel
phase since it has been proved to be the most time
consuming [5]. Each version is developed following a
different kind of implementation, although all the
versions share the same idea and the same results are
therefore obtained.

RMI Version. The first parallel version of the
G3P-LSC algorithm is based on a master/slave archi-
tecture that uses RMI to communicate the master
process with each slave. This version, known as G3P-
LSC RMI, uses multiple threads and different pro-
cesses that are distributed among a cluster of ma-
chines (See Listing 2).

Listing 2 G3P-LSC RMI-rules are distributed among
slaves
function evaluate_rules(Pi)
1: Split Pi in subPopulations // As much as slaves
2: for each subPopulation in subPopulations do
3: Slavej .evaluate(subPopulation)
4: end for
end function

Focusing on the master process, only a single mas-

ter procedure is used since it is the coordination point.
The master process is almost the same as the baseline
approach shown in Listing 1, being the difference the
function evaluate_rules. In this case, this function
splits the main population in as many subpopulations
as number of slaves exist (see Listing 2). The aim of
each slave is to evaluate the subpopulation of rules in
the whole dataset. Furthermore, each slave is located
in a different computer node, enabling parallel and
distributed computing, and achieving a better perfor-
mance.

Although RMI provides a high-level programming
interface, the load balancing, fault tolerance and the
coordination among slaves are very troublesome to
manage. In this approach, the dataset has to be repli-

88

cated in each slave, provoking both high network and
I/O activity. Even when this implementation works
well for large datasets, the use of truly Big Data
hampers the process of replicating data. Some re-
searchers have proposed distributed file systems to
solve this issue. However, it is not enough when truly
Big Data is considered since each slave process has
to read the whole dataset and this operation becomes
impossible if the file size is big enough.

MapReduce Versions. These versions have been
implemented in two different MapReduce architec-
tures (Apache Hadoop and Apache Spark). Both im-
plementations share the same approaches, even
though slight adaptations have been required to adapt
to the used architecture. They require three different
processes: (1) the driver performs the main code of
G3P-LSC baseline, however, the evaluate_rules
function has been implemented to use MapReduce.
Thus, in each generation of the evolutionary process
a MapReduce phase is required to evaluate the main
population; (2) Mappers in which the main popula-
tion of rules is evaluated; (3) Reducers which collect
the data produced by mappers, and return the evalu-
ated main population for the whole dataset.

Listing 3 G3P-LSC MapReduce

function evaluate_rules(population)
1: MapReduce to evaluate rules in population

end function

procedure evaluatorMapper(instance)
1: for each rule in population do
2: measures ← rule.evaluate(instance)
3: emit(rule, measures)
4: end for
end procedure
procedure reducer(rule, measures)
1: finalMeasure 0
2: for each measure in measures do
3: finalMeasure finalMeasure + measure
4: end for
5: emit(rule, finalMeasure)

 end procedure

In the mapper phase (see evaluatorMapper proce-

dure, Listing 3) each mapper receives as input a sub-
set of the dataset and the main population. A group of
pairs (key, value) are generated by each mapper,
where the key is the individual (rule or solution with-
in the population set), and the value is a tuple consist-
ing of values for the support of the antecedent, con-
sequent and rule. Hence, each evaluatorMapper pro-
cedure produces the same number of (key, value)

pairs as number of individuals exist in the main popu-
lation. Hence, the number of (key, value) pairs in
each generation is calculated as the number of map-
pers multiplied by the number of individuals in the
main population. The reducer phase, on the contrary,
receives these (key, value) pairs, calculating the total
sums of support antecedent, consequent and rule for
each individual. Hence, the reducer produces the
same quantity of (key, value) pairs as individuals ex-
ist in the main population (see reducer procedure,
Listing 3). At the end of this phase, the output is the
evaluated main population. Finally, the driver contin-
ues the evolutionary procedure similar to the baseline
of G3P-LSC. The procedure followed by MapReduce
versions can be summarized as illustrated in Figure 3,
where the input of the MapReduce phase is the da-
taset and the main population (shaded rectangle). The
output is the evaluated main population which is re-
turned to the driver.

RDD

reducer s

Figure 3. Flowchart for each generation in G3P-LSC versions
based on MapReduce. It receives the main population and the
dataset as inputs, and it produces as output the evaluated main
population. The main population is returned to the driver

 Although the two implementations (Hadoop and

Spark) share the same approaches some slight differ-
ences exist. These differences are produced by the
structure of each platform. Hadoop version uses disk
as the way of communicating. Thus, communication
among driver-mappers, mappers-reducers and reduc-
ers-driver are performed using disk. Furthermore,
Apache Hadoop does not provide any way of saving
the dataset in main memory so each generation has to
read the dataset from disk. It should be noted that the
process of this algorithm in each generation is exactly
the same, so the dataset is loaded in each generation
and the outputs are written on disk. In cases where

89

the dataset is big enough, the reading process could
be very time consuming so reading once, saving in
main memory and using multiple times could be
more efficient. On the other hand, Apache Spark al-
lows to communicate among processes using main
memory and enabling a faster communication. The
main difference between Hadoop and Spark versions
is that in the first generation of Spark, the whole da-
taset will be loaded in main memory using a RDD. It
is split into the cluster, and each mapper could access
to one different partition (sub-dataset). Unlike the
previous Hadoop version, the dataset is loaded in
memory only once, so it does not require a loading
for each generation and the global performance can
be substantially improved. Moreover, the communi-
cation among mappers and reducers are not per-
formed using disk but memory, being this much fast-
er. Both versions return exactly the same set of rules
as the previous versions. In order to clarify these
points, all the source code is available at
http://www.uco.es/grupos/kdis/wiki/G3PLSC.

4. Experiments

The aim of this section is to study the performance
of the G3P-LSC algorithm and its versions on differ-
ent parallel architectures when different data dimen-
sionalities are considered. The goal of this study is
three-fold:

1. To prove the quality of the obtained solutions.
In this sense, a comparative study has been
carried out by using exhaustive search algo-
rithms to prove that our proposal is able to
discover global optimum solutions in a re-
duced quantum of time. Additionally, a set of
EAs for mining association rules has also been
considered in this experimental study, and a
comparative analysis of different quality
measures has been carried out. A set of statis-
tical tests [8, 9, 10, 11] has been applied to
compare the differences.

2. To analyze the scalability of the proposed al-
gorithm when different parallel implementa-
tions are considered truly Big Datasets are
used in this section to prove scalability con-
sidering both synthetic and real-world datasets.

3. To show the interesting of using grammars is
to restrict the search space and to include ex-
ternal subjective knowledge that helps in the
process of mining association rules.

All the experiments have been run on an HPC
cluster comprising 16 computing nodes, with two
Intel E5-2620 microprocessors at 2 GHz and 64 GB
DDR memory. Cluster operating system was Linux
CentOS 6.3. As for the specific details of the used
software, the experiments have been run on Hadoop
2.6.0 and Spark 1.6.0.

4.1. Study of the grammar

As previously described, the grammar considered
in this approach is defined in Figure 2. Considering
this grammar G, the following language is obtained
L(G) = {condition (condition)* condition (condi-
tion)*} where the first part of the language, i.e. {con-
dition (condition)*}, corresponds to the antecedent of
the rule, whereas the second part represents the con-
sequent of the rule.

According to the grammar G (see Figure 2), the
minimum length of a rule includes a single item in
the antecedent, and a single item in the consequent.
Hence, the minimum tree will have a depth of 4, a
total of 7 internal nodes (one of them is the starting
symbol Rule), and requiring 7 derivations to create
the final tree. Additionally, the maximum derivation
size is fixed to the number of attributes in data, so the
maximum value depends on the dataset to be used.
Taking a dataset comprising 3 features, the number of
internal nodes in the tree is 9, requiring 10 deriva-
tions; 11 internal nodes if the dataset comprises 4
features, requiring 13 derivations; and so on. As a
result, the maximum number of internal nodes is
equal to 3 + 2n, n being the number of features in
data satisfying that n>1; whereas the number of deri-
vations required to create the final tree is 3n + 1. As
for the depth of the tree, it should be highlight that it
remains the same for whatever number of features. It
implies that the size of the resulting trees increases in
width, not in depth.

4.2. Computational complexity

An analysis of the computational complexity is es-
sential to determine the efficiency of the proposed
approach. In this sense, we analyze each of its main
procedures: encoding criterion, evaluator procedure
and genetic operators. According to all these proce-
dures, it is possible to determine the computational
complexity of the whole algorithm.

As for the computational complexity of the encod-
ing criterion, it depends on the number of derivations

90

required to form the tree, which depends on the num-
ber of attributes in data as described in Section 4.1,
i.e. 3n + 1, n being the number of features in data.
Hence, the final complexity of the encoding criterion
will be determined by the number of times (individu-
als) the derivation process is carried out, resulting as
O(3n ´ m + m), n denoting the number of features in
data, and m stating for the number of individuals to
be created. Concerning the evaluator procedure, its
complexity depends on the number m of individuals, t
instances in data and n attributes. Mathematically, the
final complexity is defined as O(m ´ t ´ n). Finally,
the computational complexity of the three genetic
operators depends on both the derivation tree size
(number of derivations, i.e. 3n + 1, for a dataset with
n attributes or features) and the number of individuals
m. In consequence, the final complexity order is de-
fined as O(3n ´ m + m).

Analyzing the computing requirements for each
procedure, it is stated that the number m of individu-
als is previously fixed, so it is considered as a con-
stant with a complexity O(1). Additionally, all the
procedures are repeated as many times as the prede-
fined number of generations, which is also a constant
value predefined. Therefore, bearing in mind all these
issues, the resultant computational complexity of the
complete algorithm is defined as O(n ´ t). Thus, the
complexity of the proposed approach is linear with
regard to the number of instances and the number of
attributes. It is important to highlight that any of the
evolutionary approaches used in the experimental
stage presents the same computational complexity,
being linear with regard to the number of instances
and attributes in data. On the contrary, exhaustive
search approaches require the whole search space to
be generated, existing 2n − 1 different patterns in data
when n attributes are considered. Thus, the computa-
tional complexity is exponential with regard to the
number of attributes in data, and it becomes prohibi-
tively expensive for really large datasets.

4.3. Analysis of the genetic operators

In this section, an interesting analysis of the use-
fulness of the proposed genetic operators is carried
out. The aim of this section is to demonstrate that the
fitness function improves when the three proposed
genetic operators are considered at time. To this aim,
it is analyzed how the average fitness function im-
proves along the generations when considering the
same algorithm with, and without, the proposed ge-
netic operators.

According to the results illustrated in Figure 4, the
worst results are obtained when the algorithm in-
cludes only a single genetic operator (either crossover
or mutation). In fact, the behavior of the algorithm is
almost the same for these two genetic operators, and
only a slight difference is obtained close to the gener-
ation number 1,000 (the crossover operator converges
faster than the mutation operator). However, when
the repairing operator comes into play the results ob-
tained by each of the previously analyzed genetic
operators (mutation and crossover) are improved.
Now, both genetic operators achieve a higher conver-
gence. Finally, both mutation and crossover are con-
sidered at time including (or not) the repairing opera-
tor. As a result, it is obtained that the fact of consider-
ing the two main genetic operators (mutation and
crossover) produces a huge improvement in the con-
vergence of the algorithm. In fact, the resulting aver-
age fitness values are one order of magnitude better
than those obtained when the genetic operators were
considered in isolation. These results are even better
when the three genetic operators (crossover, mutation
and repairing) are considered at time.

Figure 4. Analysis of the convergence of the three proposed genet-
ic operators

To sum up, both crossover and mutation genetic

operators play an important role in the convergence
of the algorithm and they should be considered at
time. The fact of including the repairing operator in
the proposed algorithm slightly improves the ob-
tained results, and this improvement is higher when
the number of generations increases.

4.4. Datasets included in the experimental study

This experimental section considers a large num-
ber of datasets (see Table 1) comprising both synthet-

91

ic and real-world datasets. The goal of these studies is
to analyze the performance of different algorithms for
mining association rules on a high number of datasets
and to prove the scalability of the proposed approach.
Thus, the used datasets depend on the type of exper-
iment as described below.

Table 1: Datasets considered for the experimental study
Dataset Attributes

(R/I/N)
File size

(MB)
Instances

Bolts 8 (2/6/0) 0.20 40
Breast Cancer Wisc.1 10 (0/10/0) 0.10 699
Stock Price 10 (10/0/0) 0.06 950

Tic-Tac-Toe1 9 (0/0/9) 0.02 958
Statlog1 20 (0/7/13) 1.50 1,000

Flare2 11 (0/0/11) 0.02 1,066
Car2 6 (0/0/6) 0.04 1,728
Chess1 36 (0/0/36) 0.40 3,196
Texture2 40 (40/0/0) 1.50 5,500
Optdigits2 64 (0/64/0) 0.80 5,620
Satimage2 36 (0/36/0) 0.70 6,435
Marketing2 13 (0/13/0) 0.10 6,876
Thyroid2 21 (6/15/0) 0.40 7,200
Ring2 20 (20/0/0) 0.70 7,400
Twonorm2 20 (20/0/0) 1.20 7,400
Mushroom1 22 (0/0/22) 0.20 8,124
Coil20001 85 (0/85/0) 1.80 9,822
PenBased2 16 (0/16/0) 0.60 10,992
Nursery2 8 (0/0/8) 1.20 12,690
Magic1 10 (10/0/0) 1.50 19,020
Letter2 16 (0/16/0) 0.70 20,000
UJIIndoorLoc1 529 (2/527/0) 45.00 21,048
House16H2 17 (10/7/0) 3.80 22,784
Grammatical1 100 (100/0/0) 56.00 27,965
ChessKrKp1 6 (0/0/6) 0.70 28,056
Adult1 14 (6/0/8) 3.00 48,842
Statlog (Shuttle)1 10 (0/10/0) 1.60 58,000
Connect41 42 (0/0/42) 11.00 67,557
ColorTexture2 17 (16/1/0) 11.00 68,040
ColorHistogram2 33 (32/1/0) 20.00 68,040
Fars2 29 (5/0/24) 11.00 100,968
Census2 41 (1/12/28) 60.00 299,284
Epsilon 2000 (2000/0/0) 11,000.00 500,000
Covtype1 54 (0/10/44) 72.00 581,012
Transactions90k2 3 (0/3/0) 11.00 855,367
Poker2 10 (0/10/0) 25.00 1,025,010
US Census Data 19901 68 (0/0/68) 328.00 2,458,285
SUSY1 18 (18/0/0) 2,000.00 5,000,000
HEPMASS1 28 (28/0/0) 7,000.00 10,500,000
HIGGS1 28 (28/0/0) 7,300.00 11,000,000
Protein Structure34 631 (77/462/92) 62,000.00 34,890,838

1 UCI repository: https://archive.ics.uci.edu/ml/datasets.html
2 KEEL repository: http://keel.es
3 LIBSVM repository: http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/

In the first analysis only real-world datasets have
been considered since the quality of the solutions
have been studied. In this sense, a total of 41 real-
world datasets have been analyzed, their main charac-
teristics are shown in Table 1. Here, the label Attrib-
utes(R/I/N) states for the number of Real, Integer, and
Nominal features included in each dataset; File size
denotes the size in terms of memory for each dataset;
whereas the Instances variable indicates the number
of transactions within each dataset. It should be
pointed out that all these datasets are freely available
and the source to be downloaded is specified for each
one. Finally, the second study considers 35 synthetic
datasets so the scalability of the proposal can be ana-
lyzed. Synthetic datasets have been required since the
number of both instances and attributes can be
changed to illustrate the performance of different
implementations. In these datasets, the number of
instances ranged from 1 · 105 to 3 · 109, the number
of continuous and discrete attributes ranged from 8
to 48 distributed following a Gaussian distribution
throughout the whole set of instances, the file size
varies from 46 MB to 804 GB.

4.5. Sequential algorithms and set up

In these experimental studies, 14 different non-
parallel algorithms have been considered to be
analyzed, comprising both exhaustive search and
evolutionary approaches. All these algorithms have
been selected according to their efficiency and signif-
icance within the association rule mining field. The
aim of this first study is therefore to analyze the re-
sulting set of solutions in terms of quality measures.
Each of these non-parallel algorithms has been brief-
ly described as follows:

1) Apriori [2]: first algorithm for mining asso-
ciation rules, which is based on an exhaus-
tive search methodology. It exploits the
search space by means of the downward clo-
sure property.

2) Eclat [39]: it employs a depth-first strategy
by extending prefixes of candidate itemsets.

3) GENAR [23]: genetic algorithm for mining
quantitative association rules without a pre-
vious discretization step. Each solution is
encoded by using the minimum and maxi-
mum intervals of each numerical attribute.

4) GAR [24]: extension of the GENAR [23]
algorithm. Each solution is encoded by us-
ing all the attributes within data.

92

5) EARMGA [37]: genetic algorithm for min-
ing association rules in continuous domains.
It does not require a minimum predefined
support threshold.

6) Alatasetal [3]: genetic algorithm for mining
quantitative association rules. This algo-
rithm is able to extract both positive and
negative relationships between item-sets.

7) G3PARM [19]: grammar-guided genetic
programming algorithm for mining different
types of association rules by means of a pre-
defined grammar.

8) MOEA_Ghosh [12]: multi-objective genetic
algorithm that extracts useful and interesting
association rules. It is based on three
measures: comprehensibility, interestingness
and accuracy.

9) MOPNAR [21]: multi-objective evolution-
ary algorithm that mines positive and nega-
tive quantitative association rules. It looks
for a good trade-off between comprehensi-
bility, lift and performance (product of
support and certainty factor).

10) MODENAR [4]: multi-objective differential
evolutionary algorithm based on the pro-
posed algorithm in [3]. It weights four
quality measures: support, confidence,
comprehensibility and amplitude of the at-
tributes.

11) ARMMGA [29]: multi-objective evolution-
ary algorithm based on EARMGA [37] . It
looks for a good trade-off between support
and confidence.

12) NSGA-G3P [20] : multi-objective version
of the G3PARM [19] algorithm. It is based
on the well-known NSGA-II multi-objective
algorithm [7].

14) QAR-CIP-NSGA-II [22]: multi-objective
evolutionary algorithm that extends the well-
known NSGA-II algorithm [7] . It performs
an evolutionary learning of the intervals of
continuous attributes.

All the configurations are those provided by the
original authors. A summarizing table could be found
in the supplementary material.

4.6. Quality evaluation on sequential algorithms

The aim of this study is to analyze the quality of
the solutions obtained by G3P-LSC. First, our pro-
posal is compared to exhaustive search algorithms
so only datasets comprising nominal attributes are
considered. No minimum quality threshold has been
considered so any solution present in the dataset is
obtained. In this regard, the best solution found by
Apriori or Eclat represents the best possible solution
within the dataset since all the existing rules are dis-
covered by these algorithms. Any solution is ranked
by the aforementioned fitness function (F(R) =
support(R) × confidence(R) × leverage(R)) and the
top twenty rules are analyzed. Similarly, the G3P-
LSC algorithm returns the best twenty discovered
rules along its evolutionary process, so the aim is
to check whether these solutions are good enough.

Table 2 shows the results, where the average fitness
function represents the obtained average by the 20
top rules, whereas the maximum fitness function
states for the best value F(R) of any association
rule R within the set of discovered rules. Finally,
Ratio time means how many times G3P-LSC is
faster than Apriori and Eclat, and it is calculated as
the runtime of Apriori (and Eclat) divided by the
runtime required by G3P-LSC. Analyzing the results
shown in Table 2, it is obtained that G3P-LSC dis-
covers the best rule (maximum fitness function value)
in all the datasets, so the proposed algorithm is able
to converge to the global optimum. Additionally, if
the set of top rules is analyzed, it is discovered that
G3P-LSC obtains really promising results since the
average value of its resulting set of rules is close to
the global optimum (remember that the set of top
rules for Apriori and Eclat includes the best rules
within each dataset).

Table 2: Comparative of efficiency and effectiveness among Apri-
ori, Eclat and G3P-LSC

Dataset

Algorithm
Fitness function

Average Maximum

Ratio time

Tic-Tac-Toe

G3P-LSC 0.006 0.021 -
Apriori 0.006 0.021 28.390
Eclat 32.615

Flare

G3P-LSC 0.066 0.066 -
Apriori 0.066 0.066 19.910
Eclat 22.270

Car

G3P-LSC 0.008 0.033 -
Apriori 0.008 0.033 1.4
Eclat 1.29

Chess

G3P-LSC 0.095 0.146 -
Apriori 0.141 0.146 158.22
Eclat 142.45

 G3P-LSC 0.117 0.121 -

13) SPEA-G3P [36]: multi-objective
version of the G3PARM [19] algorithm. It is
based on the well-known SPEA multi-
objective algorithm [36].

93

Mushroom Apriori 0.118 0.121 75.95
Eclat 61.47

Nursery

G3P-LSC 0.074 0.017 -
Apriori 0.074 0.017 18.46
Eclat 22.41

ChessKrKp

G3P-LSC 0.001 0.004 -
Apriori 0.001 0.004 19.708
Eclat 31.12

Connect4

G3P-LSC 0.067 0.074 -
Apriori 0.074 0.074 398.84
Eclat 230.27

USCensus1990

G3P-LSC 0.123 0.137 -
Apriori 0.136 0.137 1,230,045
Eclat 1,680,098

Finally, the average values for each of the quality
measures (support, confidence and leverage) that
form the fitness function are also illustrated in Table
3. As it is shown, the results obtained by G3P-LSC
are quite similar to those obtained by exhaustive
search approaches.

Table 3: Comparative of the single values obtained within the
fitness function Apriori, Eclat and G3P-LSC

Dataset

Algorithm

Fitness function
Support Confidence Leverage

Tic-Tac-Toe

G3P-LSC 0.235 0.600 0.047
Apriori 0.235 0.600 0.047
Eclat

Flare

G3P-LSC 0.310 1.000 0.214
Apriori 0.309 1.000 0.213
Eclat

Car

G3P-LSC 0.173 0.884 0.048
Apriori 0.173 0.885 0.048
Eclat

Chess

G3P-LSC 0.589 0.978 0.165
Apriori 0.611 1.000 0.107
Eclat

Mushroom

G3P-LSC 0.559 0.979 0.213
Apriori 0.556 1.000 0.213
Eclat

Nursery

G3P-LSC 0.167 0.849 0.108
Apriori 0.018 0.900 0.107
Eclat

ChessKrKp

G3P-LSC 0.087 0.512 0.032
Apriori 0.082 0.546 0.032
Eclat

Connect4

G3P-LSC 0.646 0.983 0.108
Apriori 0.641 1.000 0.116
Eclat

USCensus1990

G3P-LSC 0.654 0.982 0.195
Apriori 0.734 0.997 0.187
Eclat

To prove that there is no statistically significant

difference in the average fitness function values, a
Wilcoxon signed rank test has been used. A p-value
of 0.1814 has been obtained, so it possible to assert
that, at a significance level of α = 0.01, there is no
significant difference between exhaustive search al-

gorithms and G3P-LSC on the average set of solu-
tions. It is interesting to note that the global optimum
was attained in all datasets (see Table 2) so the con-
vergence to the global optimum is guaranteed. Final-
ly, according to the runtime, our proposal performs
better that Apriori and Eclat, and this performance is
even better when large datasets are considered (see
USCensus1990).

Once it is demonstrated that G3P-LSC converg-
es well to the global optimum, a comparative study
among different EAs have been performed by con-
sidering continuous and discrete attributes. In this
experimental study, all the described datasets in Ta-
ble 1 have been used, and each EA has been run
10 times for each dataset. Note that EAs are non-
deterministic algorithms so the results shown are the
obtained average results for these executions. Table 4
shows the obtained average ranking for different
quality measures after running all the algorithms on
all the datasets. It should be noted that these algo-
rithms were run on their original versions, so each
one optimizes its own fitness function. Due to space
limitation only the ranking table has been illustrated
in this paper, although the whole set of results can
be checked in the supplementary material. Differ-
ent quality measures have been selected to quantify
the quality of the rules. In Table 4, each column rep-
resents a different EA, whereas each row is used to
represent a different quality measure.

As it is illustrated in Table 4, G3P-LSC obtains the
best results in Leverage, NetConf, Pearson and La-
place quality measures. If we focus on the Confi-
dence quality measure, the ranking values determine
that G3P-LSC does not behave well for this specific
quality measure. However, if we analyze the confi-
dence values for each run 5 it is obtained that all the
values are above 0.9 and, in some specific datasets,
the confidence values obtained are greater than 0.95.
Thus, it is possible to assert that the results of G3P-
LSC for this quality measure are alluring enough. In
the same way, the ranking values for support seem to
be worse than for other algorithms. It is worth noting
that extremely high support values, as it is obtained
by some algorithms, imply misleading rules accord-
ing to some of the quality measures. In fact, maxi-
mum support values, i.e., 1.00, imply misleading
rules since they do not provide unknown information
about the dataset. As it is demonstrated by analyzing
the rankings (see Table 4), the rules obtained by G3P-
LSC present values for the interestingness measures
that are better than or similar to the obtained by the
analyzed algorithms.

94

In order to prove if the differences obtained by the
ranking analysis are statically significant, a Friedman
test [10, 11] for each quality measure is carried out.
In this regard, we consider the null hypothesis H0 that
all algorithms equally perform. Table 5 shows wheth-
er the null hypothesis is rejected, considering a criti-

cal interval F0.01,29,348 = 2.23. According to the results
of the Friedman statistical test, it is possible to assert
that the null hypothesis is rejected for each of the
analyzed quality measures since FF obtains the fol-
lowing values: 23.08 for CF; 47.06 for Confidence;
58.03 for Cosine; 35.57 for Gain; 85.59 for Laplace;

Table 4: Obtained ranking after executing 10 times each algorithm in the whole set of real-world datasets. Different well-known quality
measures have been calculated. Values in bold typeface represent the best ranking for each quality measure
Measure (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)
CF 4.167 9.083 5.283 11.267 9.750 5.750 9.117 3.400 6.633 8.500 7.817 7.400 2.833
Confidence 8.100 8.750 5.950 1.883 9.933 2.900 10.967 9.167 10.367 6.883 2.883 4.850 8.366
Cosine 4.467 5.733 9.733 8.900 11.383 3.600 7.867 12.167 9.233 4.750 1.833 4.300 7.033
Gain 2.933 6.750 6.717 9.850 8.783 9.400 5.383 8.267 3.367 8.417 10.517 9.117 1.500
Laplace 1.267 6.663 9.183 7.433 11.300 3.833 8.300 12.300 9.033 5.483 2.550 4.200 9.433
LeastContradiction 4.933 5.367 8.717 7.967 9.867 3.350 11.167 10.800 11.133 5.150 1.717 3.900 6.933
Leverage 1.067 5.383 8.100 9.067 10.117 8.617 6.800 8.467 5.417 6.800 9.783 8.483 2.900
Lift 3.950 7.133 6.983 8.300 9.867 8.650 3.767 12.167 2.833 7.633 9.600 8.383 1.733
NetConf 2.033 6.200 7.950 10.617 9.617 9.800 7.617 2.633 5.900 7.533 10.150 8.817 2.133
Pearson 1.700 6.333 8.233 11.200 10.500 7.017 6.233 10.017 5.700 6.900 7.000 8.200 1.966
Support 6.250 5.617 9.983 8.000 11.367 3.117 7.933 9.067 9.600 4.817 1.617 3.267 10.366
YulesQ 2.567 6.617 7.533 10.683 9.983 8.233 8.483 2.217 6.167 7.117 9.600 8.433 3.366
Zhang 4.283 8.833 5.250 10.683 9.500 6.050 8.067 10.667 5.633 8.483 7.133 4.283 2.133

(1) G3P-LSC (4) EARMGA (7) MOEA_Ghosh (10) ARMMGA (12) SPEA-G3P
(2) GAR (5) Alatasetal (8) MOPNAR (11) NSGA-G3P (13) QAR-CIP-NSGA-
(3) GENAR (6) G3PARM (9) MODENAR

Table 5: FF Friedman’s values to test whether the null hypothesis
H0 that all the algorithms equally behave for each quality measure
can be rejected or not, considering the critical interval
F0.01,29,348 = 2.23

Measure FF H0

CF 23.08 Rejected
Confidence 47.06 Rejected
Cosine 58.03 Rejected
Gain 35.57 Rejected
Laplace 85.59 Rejected
LeastContradiction 59.26 Rejected
Leverage 26.62 Rejected
Lift 49.87 Rejected
NetConf 46.21 Rejected
Pearson 33.91 Rejected
Support 53.80 Rejected
YulesQ 31.81 Rejected
Zhang 27.18 Rejected

26.62 for Leverage; 49.87 for Lift; 46.21 for
NetConf; 33.91 for Pearson; 53.80 for Support; 31.81
for YulesQ; and 27.18 for Zhang. Thus, none of the
FF values belongs to the critical interval F0.01,29,348 =
2.23, so it is not possible to statistically assert that all
algorithms equally behave. In this regard, a Bonfer-
roni-Dunn test [8] has been considered to deter-
mine the statistical differences among the algo-

rithms under study. According to the Bonferroni-
Dunn test, the obtained critical difference is 3.36 for
α = 0.01. In this regard, Table 6 shows the number of
quality measures in which G3P-LSC is better than
other algorithms (# Wins), worse (# Losses) or there
is no significant difference between them (# Draws).
Alatasetal is the algorithm most different with respect
to G3P-LSC, since our proposal has obtained 12 wins
of a total of 13. The highest number of losses is ob-
tained with NSGA-G3P. Although, G3P-LSC loses 2
times with NSGA-G3P, our proposal obtains 7 wins,
thus G3P-LSC behaves better than the rest. The most
similar algorithm is QAR-CIP-NSGA-II, obtaining
11 draws. However, G3P-LSC obtains 2 wins and no
losses.

As a result, G3P-LSC behaves statistically bet-
ter for more quality measures and in very few
cases the quality measures obtained by other al-
gorithms behave statistically better than G3P-LSC.

Table 6: Statistical differences among distinct measures and algo-
rithms according to the Bonferroni-Dunn test. G3P-LSC achieves
the highest number of significant differences and it does not almost
loss. QAR-CIP-NSGA-II is the algorithm more similar to our
proposal

G3P-LSC vs #Wins #Losses #Draws
GAR 8 0 5

95

GENAR 9 0 4
EARMGA 10 1 2
Alatasetal 12 0 1
G3PARM 7 1 5

MOEA_Ghosh 9 0 4
MOPNAR 8 0 5

MODENAR 7 0 6
ARMMGA 9 0 4
NSGA-G3P 7 2 4
SPEA-G3P 3 1 9

QAR-CIP-NSGA-II 2 0 11

Table 7: Rules obtained by G3P-LSC when different grammars are considered on the stock dataset.
Type of grammar Rule Support Confidence Leverage

Original IF Company1 IN [17.38, 40.73]
THEN Company5 IN [59.41, 93.54] 0.51 0.98 0.23

Positive and negative rules IF Company1 IN [42.023, 60.05] AND Company3 IN [34.83,
56.31]
THEN Company4 NOT IN [28.29, 57.96]

0.54 0.99 0.23

Only one item into the antecedent
and consequent

IF Company4 IN [58.67, 93.73]
THEN Company1 IN [42.51, 60.16]

0.54 0.98 0.22

4.7. Different grammars for G3P-LSC

The aim of this section is to demonstrate how the
grammar can be modified to achieve different results
(see Table 7). All these alluring quantitative associa-
tion rules have been obtained on the Stock dataset
and the proposed G3P-LSC algorithm with different
grammars each time. Taking the original grammar
(see Figure 2), the following rule is obtained: IF
Company1 IN [30.46, 58.83] THEN Company10 IN
[42.67, 61.01]. As shown, this rule describes continu-
ous patterns by means of enclosed values (lower and
upper bounds). One of the main advantages of using
grammars is the ability to introduce syntax con-
straints and to apply external knowledge to the
mining process. In this regard, for some specific
domains, it is possible to require specific rules, deter-
mining the position of an attribute or even the range
in which is defined.

G = (ΣN, ΣT, P, S) with:
 S = Rule
 ΣN = {Rule, Antecedent, Consequent, Condition, Nominal,
 Numerical, NegativeNominal, NegativeNumerical}
 ΣT = {‘name’, ‘=’, ‘!=’, ‘value’, ‘IN’, ‘NOT IN’, ‘Min_value’,
 ‘Max_value’}
 P = {

Rule := Antecedent, Consequent;
Antecedent := Condition | Condition, Antecedent;
Consequent := Condition | Condition, Consequent;

 Condition := Numerical | Nominal |
 NegativeNumerical | NegativeNominal;

Numerical := ‘name’ ‘IN’ ‘Min_value’, ‘Max_value’;
NegativeNumerical := ‘name’ ‘NOT IN’ ‘Min_value’,
 ‘Max_value’;
Nominal := ‘name’ ‘=’ ‘value’;
NegativeNominal := ‘name’ ‘!=’ ‘value’;

 }
Figure 5. Context-free grammar modified to obtain negative items

As a matter of example, Table 7 shows some ob-
tained rules for the stocks dataset when different
restrictions are defined. For instance, it is possible
to include not only positive but also negative asso-
ciations, so a simple change in the grammar (see
Figure 5) allows to obtain rules as the one depicted
in the second row. The consequent of this rule denotes
that Company4 cannot include a value in the range
[28.29, 57.96].

Finally, the third example is obtained from a
grammar (see Figure 6) that allows to obtain only
rules having a single item in both the antecedent and
consequent. Considering this grammar, an example of
rule obtained from the stocks dataset is IF Company4
IN [58.67, 93.73] THEN Company1 IN [42.51,
60.16].

G = (ΣN, ΣT, P , S) with:
 S = Rule
 ΣN = {Rule, Antecedent, Consequent, Nominal, Numerical}
 ΣT = {‘name’, ‘=’, ‘value’, ‘IN’, ‘Min_value’, ‘Max_value’}
 P = {

Rule := Antecedent, Consequent;
Antecedent := Numerical | Nominal;
Consequent := Numerical | Nominal;
Numerical := ‘name’ ‘IN’ ‘Min_value’, ‘Max_value’;
Nominal := ‘name’ ‘=’ ‘value’;

 }

Figure 6. Context-free grammar modified to obtain rules having a
single item in both the antecedent and consequent

4.8. Scalability on parallel implementations

The aim of this study is to analyze the performance of
the different proposed implementations when the
number of both attributes and instances increases. In
the first part of this study, a set of synthetic datasets
has been used that have been properly created to ana-
lyze how the number of both instances and attributes

96

affect to the algorithms’ performance. Finally, note
that all these algorithms obtain the same results being
the followed approach to parallelize the unique dif-
ference among them. Analyzing Figure 7, the results
illustrate that the baseline implementation of G3P-
LSC is the most efficient when a small number of
instances is bore in mind. However, when the number
of instances continues growing (up to 6 · 105), its per-
formance begins to decrease starting to be needed
some kind of parallelization to improve the runtime.
Although Big Data architectures provide a way to
improve runtime using distributed computing, they
are totally unsuitable for small datasets as it is
shown. It is due to the expensive cost of com-
munication and scheduling of the platform, in cases
where the data are smaller this cost is not justified.
Thus, other kind of parallelization is needed.
RMI has been considered as a simple way of par-
allelization achieving excellent results when the
number of instances ranges from 6 · 105 to 9 · 105,
obtaining better results than sequential approach
in this range of examples. Up to 6 · 105 examples,
Sparks’ performance is almost the same as RMI,
while the performance of Hadoop is far from
being the best. It demonstrates that the sequential
baseline approach and RMI version are appropriate
to be used on small datasets unlike Big Data im-
plementations, which are useful for truly large
datasets. Hadoop is the worst since it has to
read the whole dataset from disk in each gener-
ation and write on disk each communication
among mappers and reducers, hampering the
overall performance. Continuing the experimental
study, the number of instances is increased from 9
· 105 to 1 · 109. Figure 8 illustrates that a sequential
implementation is meaningless when datasets with
millions of instances are considered ant its runtime
exponentially increases. This baseline implementa-
tion is unfeasible when file sizes of GB are consid-
ered since it takes more than 300 days on mining
a dataset with 1 · 109 instances.

Figure 7. Runtime of different implementations when they are run
on datasets comprising 48 attributes and a number of instances that
varies from 1 · 105 to 9 · 105. The file size varies from 28 MB to
248 MB.

Figure 8. Runtime of different implementations when they are run
on datasets comprising 48 attributes and a number of instances that
varies from 1 · 106 to 1 · 109. The file size varies from 275 MB to
275 GB.

Although RMI obtains the same results using
only a 15% of sequential runtime, it is not enough
when huge datasets are considered. Spark’s im-
plementation obtains the best results since the da-
tasets could be stored in main memory. On the
other hand, the implementation based on Hadoop
obtains worse results than Spark. Again, the
number of instances is increased from 1 · 109 to 3 ·
109, with a range of file size from 275 GB to 804
GB. Figure 9 only shows Hadoop and Spark since
both have proved to obtain the best performance in

97

Big Data. It illustrates that Spark achieves a better
performance until the file size of the dataset
could not be stored in main memory (≈790 GB).

Figure 9. Runtime of different implementations when they are run
on datasets comprising 1 · 109 to 3 · 109 instances and a number of
attributes of 48. The file size varies from 275 GB to 804 GB.

At this point, Spark begins to use both disk and
memory as cache system (hard ware limitations), thus
its behavior is almost the same as Hadoop having to
read almost the whole dataset from disk in each gen-
eration. Thus, Spark is appropriate to handle an ex-
tremely large number of examples when data can be
stored in main memory. On the other hand, Hadoop is
quite appropriate to handle huge datasets that cannot
be stored in main memory.

Additionally, an analysis has been carried out to
study how the number of attributes affects. In this
regard, Figure 10 illustrates how the number of at-
tributes linearly affects to the global performance of
the algorithms. Note that the higher the number of
attributes, the higher the search space, so the conver-
gence time increases linearly with the number of
attributes.

Figure 10. Runtime of different implementations when they are
run on datasets comprising 1 · 109 instances and a number of
attributes that varies from 8 to 48. The file size varies from 45
GB to 275 GB.

In a third study, it has been considered interest-
ing to note how relevant is the cluster capacity in
the decision on which implementation should be
used. Figure 11 illustrates how the performance is
affected by the cluster capabilities. RMI is the im-
plementation less improved when the number of
nodes increases since each node has to evaluate the
whole dataset. However, Apache Hadoop and
Apache Spark benefit because a greater number of
nodes means a greater level of parallelism, since
each node evaluates a subset of the dataset.

Figure 11. Runtime of parallel approaches when the number of
nodes decreases. A dataset comprising 1 · 109 instances with 48
attributes and a file size of 275 GB is used.

Table 8: Runtime in hours required when large real-world datasets
are used by running Spark & Hadoop implementation. As all these
datasets could be stored in main memory.

Dataset Hadoop Spark

98

Epsilon 8.37 1.42

Poker 7.65 0.01

US Census 1990 7.50 0.83

Susy 14.31 8.20

Heap Mass 33.33 14.25

Higgs 24.46 12.33

Protein Structure Prediction 37.76 18.44

Once it has been demonstrated that implementa-
tions based on Spark and Hadoop obtain alluring
runtime on synthetic datasets, they have been run
on real-world datasets. No comparison with sequen-
tial approaches have been considered since it was
previously demonstrated that these algorithms can-
not be run efficiently. Table 8 shows the obtained
results for a set of Big Data real-world datasets. As
it could be appreciated, the behavior is the same as
was shown in previous studies. Spark achieves a
better performance since the whole dataset could
be stored in main memory. It achieves the same
results as Hadoop but using only a half amount of
the time, and in some cases Spark only needs a
13% of the time required by Hadoop. The issue of
Hadoop is also shown, needing almost the same
time to process several GB (Epsilon datasets) than
several MB (Poker dataset). It is due to that much
of the time is used to orchestrate the platform and
no to our main computations, thus, Hadoop always
needs a quantity of time to coordinate the platform
independently of the size of the data. However,
Spark does not require this large time in orchestra-
tion.

5. Concluding remarks

In this work, a genetic programming algorithm
based on grammars for mining association rules in
Big Data has been proposed, known as G3P-LSC.
The novelty of this work is that it proposed a new
evolutionary approach which is able to be run in a
distributed way enabling the use of parallel para-
digms such as MapReduce. Our proposal provides a
reduced set of rules, easy to understand, and with a
good level in many quality measures. The main aim
of G3P-LSC is to optimize a set of well-known
quality measures in the association rule mining field.

Currently, due to the increasing interest in data
storage, a unique and universal implementation of a
single algorithm is unfeasible and different adapta-
tions should be done depending on the data size. In
this sense, the proposed algorithm has been imple-

mented on different architectures including a se-
quential approach, RMI and MapReduce. It should be
noted that all the implementations return exactly the
same results and the unique change is the architec-
ture.

When comparing the obtained results with other
14 algorithms and using more than 75 datasets, it
is obtained that the proposed G3P-LSC algorithm
mines rules with better values for interesting
measures and few attributes, providing the user
with high quality rules. As a grammar is used, the
user could even specify which set of attributes must
appear in the proposed solutions, allowing to con-
strain the search space only for rules of his interest.
Finally, the proposed approach presents a good
computational cost in all datasets and good scala-
bility when the size of the problem increases.

5.1. Future work

Finally, as a future work some parallel searches
could be considered to be adapted to the extraction
of association rules in Big Data. Its application is
not trivial and these paradigms have not been stud-
ied yet in the association rule mining field and fur-
ther research is encouraged. Next, each of the
most well-known parallel models is analyzed [34].
Island models or even cellular EAs could be studied
to mine association rules in a parallel way. Indeed,
hybrid models could improve the convergence of
the previous models, where some relaxations of the
original methods could further improve the diversity.

Acknowledgment

This work was Supported by the Spanish Ministry
of Economy and Competitiveness under the project
TIN2014-55252-P, and FEDER funds. This work is
also supported by the Juan de la Cierva Formacion
post-doctoral grant, reference FJCI-2015-23560.

References

[1] Aggarwal C. C. and Han J. Frequent Pattern Mining.
Springer International Publishing, 2014.
[2] Agrawal R., Imielinski T., and Swami A. Mining association
rules between sets of items in large databases. SIGMOD Rec. 1993:
22(2):207–216.
[3] Alatas B. and Akin E. An efficient genetic algorithm for
automated mining of both positive and negative quantitative asso-
ciation rules. Soft Computing. 2006:10(3):230–237.

99

[4] Alatas B., Akin E. and Karci A. MODENAR: Multi-
objective Differencial Evolution Algorithm for Mining Numeric
Association Rules. Applied Soft Computing. 2008: 8:646–656.
[5] Cano A., Luna J. M. and Ventura S. High performance
evaluation of evolutionary-mined association rules on GPUs. The
Journal of Supercomputing. 2013: 66(3): 1438–1461.
[6] Dean, J. and Ghemawat S. MapReduce: Simplified Data
Processing on Large Clusters. Communications of the ACM - 50th
anniversary issue: 1958 – 2008. 2008: 51(1):107–113.
[7] Deb K., Pratap A., Agarwal S. and Meyarivan T. A fast and
elitist multiobjective genetic algorithm: Nsga-ii. IEEE Transac-
tions on Evolutionary Computation. 2002: 6(2): 182–197.
[8] Demsar J. Statistical comparisons of classifiers over multi-
ple data sets, Journal of Machine Learning Research. 2005: 7: 1-
30.
[9] García S., Fernández A., Luengo J. and Herrera F.. Ad-
vanced nonparametric tests for multiple comparisons in the design
of experiments in computational intelligence and data mining:
Experimental analysis of power. Information Sciences. Special
Issue on Intelligent Distributed Information Systems. 2010:
180(10): 2044 – 2064.
[10] García S. and Herrera F. An extension on statistical compar-
isons of classifiers over multiple data sets for all pairwise compari-
sons. Journal of Machine Learning Research. 2008: 9: 2677-2694.
[11] García S., Molina D., Lozano M. and Herrera F. A study on
the use of non-parametric tests for analyzing the evolutionary
algorithms’ behaviour: A case study. Journal of Heuristics. 2009:
15(6): 617–644.
[12] Ghosh A. and Nath B. Multi-objective Rule Mining Using
Genetic Algorithms. Information Science. 2004: 163(1-3): 123–
133.
[13] Han J. and Kamber M. Data Mining: Concepts and Tech-
niques. Morgan Kaufmann, 2011.
[14] Kyriklidis C. and Dounias G. Evolutionary computation for
resource leveling optimization in project management. Integrated
Computer-Aided Engineering. 2016: 23(2): 173–184.
[15] Lam C. Hadoop in Action. Manning Publications Co.,
Greenwich, CT, USA, 1st edition, 2010.
[16] Li T. and Li X. Novel alarm correlation analysis system
based on association rules mining in telecommunication networks.
Information Sciences. 2010: 180(16): 2960–2978.
[17] Luna J. M., Cano A., Pechenizkiy M. and Ventura S. Speed-
ing-Up Association Rule Mining with Inverted Index Compression.
IEEE Transactions on Cybernetics. 2016: 46(12): 3059-3072.
[18] Luna J. M., Romero C., Romero J. R. and Ventura S. An
Evolutionary Algorithm for the Discovery of Rare Class Associa-
tion Rules in Learning Management Systems. Applied Intelligence.
2015: 42(3): 501–513.
[19] Luna J. M., Romero J. R. and Ventura S. Design and behav-
ior study of a grammar-guided genetic programming algorithm for
mining association rules. Knowledge and Information Systems.
2012: 32(1): 53–76.
[20] Luna J. M., Romero J. R. and Ventura, S. Grammar-based
multi-objective algorithms for mining association rules. Data &
Knowledge Engineering. 2013: 86: 19–37.
[21] Martin D., Rosete A., Alcala-Fdez J. and Herrera, F. A new
multiobjective evolutionary algorithm for mining a reduced set of
interesting positive and negative quantitative association rules.
IEEE Transactions on Evolutionary Computation. 2014: 18(1):
54–69.
[22] Martín D., Rosete A., Alcalá-Fdez J. and Herrera F. QAR-
CIP-NSGA-II: A new multi-objective evolutionary algorithm to
mine quantitative association rules. Information Sciences. 2014:
258: 1–28.
[23] Mata J., Alvarez J. L. and Riquelme J. C. Mining numeric
association rules with genetic algorithms. In Proceedings of the 5th

International Conference on Artificial Neural Networks and Ge-
netic Algorithms, ICANNGA 2001. Taipei, Taiwan. 2001: 264–
267.
[24] Mata J., Alvarez J. L. and Riquelme J. C. Discovering nu-
meric association rules via evolutionary algorithm. In Proceedings
of the 6th Pacific-Asia Conference on Advances in Knowledge
Discovery and Data Mining, PAKDD 2002. Taipei, Taiwan. 2002:
40-51.
[25] Mencá R., Sierra M. R., Mencá C. and Varela R. Genetic
algorithms for the scheduling problem with arbitrary precedence
relations and skilled operators. Integrated Computer-Aided Engi-
neering. 2016: 23(3): 269–285.
[26] Ordoñez N., Ezquerra C. and Santana C. Constraining and
Summarizing Association Rules in Medical Data. Knowledge and
Information Systems. 2006: 9(3): 259-283.
[27] Pan L., He C., Tian Y., Su Y. and Zhang X. A region divi-
sion based diversity maintaining approach for many-objective
optimization. Integrated Computer-Aided Engineering. 2017:
24(3): 1–18.
[28] Piatetsky-Shapiro G. Discovery, analysis and presentation of
strong rules. In G. Piatetsky-Shapiro and W. Frawley, editors,
Knowledge Discovery in Databases. AAAI Press. 1991: 229–248.
[29] Qodmanan H. R., Nasiri M. and Minaei-Bidgoli B. Multi
objective association rule mining with genetic algorithm without
specifying minimum support and minimum confidence. Expert
Systems with Applications. 2011: 38: 288–298.
[30] Ramírez-Gallego S., Fernández A., García S., Chen M. and
Herrera F. Big Data: Tutorial and guidelines on information and
process fusion for analytics algorithms with MapReduce. Infor-
mation Fusion. 2018: 42: 51-61.
[31] Rostami S. and Neri F. Covariance matrix adaptation pareto
archived evolution strategy with hypervolume-sorted adaptive grid
algorithm. Integrated Computer-Aided Engineering. 2016: 23(4):
313-329.
[32] Rostami S., Neri F. and Epitropakis M. Progressive prefer-
ence articulation for decision making in multi-objective optimisa-
tion problems. Integrated Computer-Aided Engineering. 2017:
24(4): 315-335.
[33] Sabar N. R., Abawajy J. and Yearwood J. Heterogeneous
cooperative co-evolution memetic differential evolution algorithm
for big data optimization problems. IEEE Transactions on Evolu-
tionary Computation. 2017: 21(2): 315–327.
[34] Sudholt D. Parallel evolutionary algorithms. In Springer
Handbook of Computational Intelligence. 2015: 929–959.
[35] Tan P. and Kumar V. Interestingness Measures for Associa-
tion Patterns: A Perspective. In Proceedings of the Workshop on
Postprocessing in Machine Learning and Data Mining, KDD ’00.
New York, USA, 2000.
[36] Ventura S. and Luna J. M. Pattern Mining with Evolutionary
Algorithms. Springer International Publishing, 2016.
[37] Yan X., Zhang C. and Zhang S. Genetic algorithm-based
strategy for identifying association rules without specifying actual
minimum support. Expert Systems with Appications. 2009: 36:
3066–3076.
[38] Zaharia M., Chowdhury M., Franklin M. J., Shenker S. and
Stoica I. Spark: Cluster computing with working sets. In Proceed-
ings of the 2nd USENIX Conference on Hot Topics in Cloud Com-
puting, HotCloud’10, Berkeley, CA, USA, 2010.
[39] Zaki M. J. Scalable algorithms for association mining. IEEE
Transactions on Knowledge and Data Engineering. 2000: 12(3):
372–390.
[40] Zhang C. and Zhang S. Association rule mining: models and
algorithms. Springer Berlin / Heidelberg, 2002.

View publication statsView publication stats

100

Publications in conferences

J.M. Luna, F. Padillo and S. Ventura, "Associative Classification in Big Data
through a G3P Approach", 4th International Conference on Internet of Things, Big
Data and Security - Volume 1: IoTBDS, 2019, po. 94-102. DOI: 10.5220/0007688400940102

F. Padillo, J. M. Luna and S. Ventura, "An evolutionary algorithm for mining rare
association rules: A Big Data approach", 2017 IEEE Congress on Evolutionary
Computation (CEC), 2017, pp. 2007-2014. DOI: 10.1109/CEC.2017.7969547

101

		2020-05-13T17:53:13+0200
	LUNA ARIZA JOSE MARIA - 30979388K

		2020-05-14T19:24:26+0200
	VENTURA SOTO SEBASTIAN EMILIO - 30510000V

		2020-05-14T19:39:21+0200
	PADILLO RUZ FRANCISCO SOLANO - 20226758Y

		2020-05-13T17:53:46+0200
	LUNA ARIZA JOSE MARIA - 30979388K

		2020-05-14T19:35:38+0200
	VENTURA SOTO SEBASTIAN EMILIO - 30510000V

