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ABSTRACT

This doctoral thesis focuses on GPU acceleration of medical image registration
and sparse general matrix-matrix multiplication (SpGEMM). The comprehen-
sive work presented here aims to enable new possibilities in Image Guided
Surgery (IGS). IGS provides the surgeon with advanced navigation tools dur-
ing surgery. Image registration, which is a part of IGS, is computationally de-
manding, therefore GPU acceleration is greatly desirable. spGEMM, which is
an essential part in many scientific and data analytics applications, e.g., graph
applications, is also a useful tool in biomechanical modeling and sparse vessel
network registration. We present this work in two parts.

The first part of this thesis describes the optimization of the most demanding
part of non-rigid Free Form Deformation registration, i.e., B-spline interpola-
tion. Our novel optimization technique minimizes the data movement between
processing cores and memory and maximizes the utilization of the very fast
register file. In addition, our approach re-formulates B-spline interpolation to
fully utilize Fused Multiply Accumulation instructions for additional benefits
in performance and accuracy. Our optimized B-spline interpolation provides
significant speedup to image registration.

The second part describes the optimization of spGEMM. Hardware manu-
facturers, with the aim of increasing the performance of deep-learning, cre-
ated specialized dense matrix multiplication units, called Tensor Core Units
(TCUs). However, until now, no work takes advantage of TCUs for sparse ma-
trix multiplication. With this work we provide the first TCU implementation
of spGEMM and prove its benefits over conventional GPU spGEMM.

RESUMEN

Esta tesis doctoral se centra en la aceleracién por GPU del registro de imédgenes
médicas y la multiplicacién de matrices dispersas (SpGEMM). El exhaustivo
trabajo presentado aqui tiene como objetivo permitir nuevas posibilidades en
la cirugia guiada por imagen (IGS). IGS proporciona al cirujano herramientas
de navegacién avanzadas durante la cirugia. El registro de imégenes, parte
de IGS computacionalmente exigente, por lo tanto, la aceleracién en GPU es
muy deseable. spGEMM, la cual es una parte esencial en muchas aplicaciones
cientificas y de analisis de datos, por ejemplo, aplicaciones de gréficos, también
es una herramienta ttil en el modelado biomecénico y el registro de redes de
vasos dispersos. Presentamos este trabajo en dos partes.

La primera parte de esta tesis describe la optimizacion de la parte mas ex-
igente del registro de deformacién de forma libre no rigida, es decir, la in-
terpolacién B-spline. Nuestra novedosa técnica de optimizacién minimiza el
movimiento de datos entre los nticleos de procesamiento y la memoria y max-
imiza la utilizacién del archivo de registro rapido. Ademads, nuestro enfoque
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reformula la interpolacién B-spline para utilizar completamente las instruc-
ciones de multiplicacién-acumulacién fusionada (FMAC) para obtener benefi-
cios adicionales en rendimiento y precisién. Nuestra interpolacién B-spline
optimizada proporciona una aceleracién significativa en el registro de imé-
genes.

La segunda parte describe la optimizaciéon de spGEMM. Los fabricantes de
hardware, con el objetivo de aumentar el rendimiento del aprendizaje pro-
fundo, crearon unidades especializadas de multiplicacién de matrices densas,
llamadas Tensor Core Units (TCU). Sin embargo, hasta ahora, no se ha encon-
trado ningtin trabajo aprovecha las TCU para la multiplicaciéon de matrices
dispersas. Con este trabajo, proporcionamos la primera implementacién TCU
de spGEMM y demostramos sus beneficios sobre la spGEMM convencional
operada sobre dispositivos GPU.
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INTRODUCTION

1.1 A need for fast medical image regisration

Registration applies a geometric transformation to an object to transform it in
a way that maximizes the similarity with a different view of the same object or
with a different object entirely.

Objects are entities in 3D and 2D images. We obtain 3D images from tomo-
graphic modalities such as: CT, MRI, PET etc. 2D images are obtained from
projections such as X-rays or individual cuts such as mode-B ultrasound. In
medical applications each image depicts an anatomical region. The two views
can come from the same patient which constitutes a problem of intra-patient
registration, or they can come from different patients (inter-patient registra-
tion).

The inputs of a registration algorithm are the two images that you want to
register, and the output is a geometric transformation, which maps the points
in one image to the corresponding points in the other. The determination of
an appropriate similarity criterion is specific to the domain of the images, in
our case the human anatomy. For the registration to be useful, the mapping it
produces must be able to assist medical doctors in the diagnosis and clinical
treatment.

Registration plays a fundamental role in computer-assisted surgery in which
preoperative medical images and graphic models are registered with the pa-
tient’s anatomy during surgery. Registration techniques demand a high amount
of computation on large amounts of data, i.e., execution time can be quite long
extending the surgery time and increasing the risk for complications for the
patient.

Therefore, image requires heterogeneous parallel computing. Thanks to the use
of massively parallel structures, not only the execution times are significantly
decreased but also the resolution of the images can be increased.

1.1.1 High performance soft tissue navigation for liver cancer interven-
tion

Primary liver cancer, typically caused by Hepatocellular Carcinoma (HCC), is
the fifth most frequent cancer and the third most frequent reason of mortality
by cancer [33]. In addition, the liver is a common target of metastases from
other cancers, e.g., colorectal metastasis, with more than 100000 liver metas-
tases in Europe [35]. The most common treatment for HCC is hepatic resection,
which removes the tumor plus a safety margin from the liver, while saving as
much of the healthy tissue as possible. However, not many patients are eligi-
ble for a resection. Therefore, it is vital to progress towards minimally-invasive
methods that will increase the eligibility of patients and improve the survival

prognosis [45].

HiperNav (High performance soft tissue navigation) project [45] aims to pro-
vide medical doctors with new tools for image-guided minimally invasive
surgery. This thesis is encompassed within the HiperNav project and focuses



1.2 SPARSE MATRIX-MATRIX MULTIPLICATION

on the high performance computing (HPC) for image registration. As the main
HPC platform we use GPUs.

1.2 Sparse Matrix-Matrix Multiplication

In Image Guide Surgery we usually have a Patient Specific Model (PSM) which
is created by CT, MR and other image modalities captured before the surgery.
During the surgery the position of the patient on the operation table can be
different than the one used when capturing the images. Furthermore, cutting,
contact, inflation of the abdominal area during minimally invasive procedures
like laparascopic surgery and ablation can deform the liver significantly. For
this reason, we need to fuse the previously created PSM with live data that we
capture during the surgery.

VESSEL REGISTRATION CT and MR scanning requires very specific con-
ditions and facilities and usually is impractical during a surgery, unlike US
which only requires a probe. Using the doppler mode of US, we can capture
the shape of the vessels and subsequently use registration to find the location
of the US in the PSM. However, vessels occupy only a small number of the
image pixels, and therefore we have to deal with sparse images (i.e., images in
which only a very small percentage of pixels contains valuable information). To
that end, we are working on Sparse General Matrix Multiplication (SpGEMM).
SpGEMM can facilitate the convolution stage of CNNs with sparse vessel im-
ages as inputs or graph matching operations.

1.3 General-Purpose GPU computing

Graphics Processing Units (GPUs) typically process computer graphics. The
use of a GPU for generic computational workloads is called General-Purpose
GPU computing. CUDA [80] is a parallel computing framework and an API
that provides easy access to the general purpose graphics processing unit
(GPGPU) functionality of NVIDIA GPUs. In this section, we give a short in-
troduction to the concepts of CUDA architecture that we use in this work.

1.3.1 Processing hierarchy

A CUDA GPU is a multicore system, with a few tens of processing cores,
which are called MultiProcessors (MPs) or Symmetric Multiprocessors (SMs).
GPUs before with Compute Capabilities (CC) less than 7.x include cores for
fp32 arithmetic, whereas the recent Volta and Turing architectures additionally
include cores for integer arithmetic and tensor cores for matrix operations [82].
Figure 1.1 illustrates a part of the architecture of the SM on Turing GPUs. We
can see the distribution of the processing cores.

Each SM deploys multiple threads which operate on data, similar to CPU
threads. These threads are organized in groups of 32 threads, called warps.
All threads that belong to the same warp execute the same instruction in lock-
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Warp Scheduler + Dispatch (32 thread/clk)

Register File (16,384 x 32-bit)

TENSOR
CORES

INT32 FP32

LD/ST LDIST LD/ST LDI/ST SFU

Figure 1.1
A part of the SM of Turing architecture that shows the distribution of int32, fp32 and ten-
sor cores, as depicted in Turing whitepaper [82].

step. There are three characteristics that make GPU threads different from CPU
threads: a) They work in lower frequencies, b) they are many more in number
(> 1000), and c) they follow the SIMD (Single instruction, multiple data) model
of the Flynn taxonomy [80].

1.3.2 Memory hierarchy

CUDA GPUs deploy a multi-level memory hierarchy (Figure 1.2). Input and
output data stay to the larger but slower off-chip memory, whereas frequently
used data remain to the faster but smaller on-chip memory. Threads can access
data from off-chip memory using three different memory spaces, optimized for
different types of access. First, global memory stores the input and output data.
Second, texture memory is optimized for texture processing. Three character-
istics of texture memory are: a) it is read-only, b) it is optimized for spatial
accesses, and c) dedicated hardware units for linear interpolation use the tex-
ture memory. Third, constant memory is a read-only memory which we use to
store constants [80].

CACHES A CUDA GPU also has small, fast on-chip caches to reduce the
cost of repeating data movements from off-chip memory. Four notable caches
are: a) shared memory, a software-managed cache, b) L1 cache, a hardware-
managed cache for global memory, c) texture cache for texture memory and
d) constant cache for constant memory [80].

REGISTERS  Each thread has access to its own registers, which are faster
than shared memory and other caches. For any instruction (arithmetic, logical,
etc) the input and output data must be in registers [80].
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Figure 1.2
Memory hierarchy in CUDA. As we go up the pyramid, memory becomes more expensive
and the bandwidth increases. As we go down the pyramid, memory becomes bigger and

latency increases.

1.3.3 Programming model

CUDA groups threads in blocks and each CUDA program can have many
blocks of threads. Blocks can contain up to 1024 threads. The GPU schedules
blocks to SMs, where the blocks stay until completion [80]. Constant and global
memory are common for all blocks, whereas shared memory / L1 cache is pri-

vate to each block [80].
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1.4 Thesis overview

This dissertation is organized in five chapters. The first chapter introduces the
necessity for fast medical image registration and the utility of sparse matrix
multiplication in medical computing. The second and third chapters present
the two main parts of this dissertation. The first part focuses on our work
on GPU acceleration of B-spline interpolation in the context of medical im-
age registration. The second part focuses on our work on GPU acceleration
of spGEMM. Both parts are presented in a similar way. We start by present-
ing the motivation and objectives. We continue with background and related
work. Then we demonstrate our methods, followed by comprehensive results
sections. Finally, we conclude each part and give some insights for future work.
The last two chapters discuss our work and outline the conclusions and contri-
butions of this work.
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B-SPLINE INTERPOLATION FOR IMAGE
REGISTRATION
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2.1 Motivation

Image Guided Surgery (IGS) aims to provide surgeons with navigation capa-
bilities for better, safer procedures and improved surgical outcome through
better visualization [10]. Surgical navigation can guide surgeons through the
use of volumetric images, such as Computed Tomography (CT), Magnetic Res-
onance Imaging (MRI) or UltraSonography (US) [12], and instrument tracking
technologies [108]. As an example, during minimally invasive surgery, the la-
paroscope camera video feedback can be augmented with reprojected CT or
MRI scans, a process known as Augmented Reality (AR) [68, 94]. However, the
accuracy of image guided surgery is often undermined by movements of the
organs, for example, manipulations performed by the surgeon such as resec-
tion (cutting) of ligaments during mobilization. Hence, due to the non-linear
behaviour of soft tissue deformation, rigid or affine transformations are not
sufficient to correctly reproduce the movements of the organs. Therefore, non-
rigid registration [106] is a more accurate way to model more complex defor-
mations and is necessary to model soft tissue deformations.

Non-rigid registration through Free Form Deformation (FFD) [96], based on
cubic B-spline interpolation, can provide a suitable solution for non-rigid im-
age registration tasks. By manipulating a grid of control points, the shape of
the underlying 3D object (e.g., an organ captured by the laparoscope camera)
can be changed using a smooth and C? continuous (i.e., continuous up to
second order derivatives) transform. One important property of B-splines is
that they deploy local support (i.e., each control point affects only its neigh-
borhood), and therefore, the workload can be balanced among the execution
threads running on multi-core processors.

Cubic B-spline interpolation or, simply, B-spline interpolation is a form of in-
terpolation that is more accurate than the conventional linear interpolation, as
B-spline interpolation better approaches the ideal sinc function interpolation
[98, 113]. Many image processing (e.g., non-rigid registration) and visualiza-
tion tasks [98] benefit from the additional accuracy. In this work we focus
on the 3D version of B-spline interpolation, also called tricubic interpolation.
B-spline interpolation is useful for handling 3D medical images and conse-
quently IGS.

Registering pre-operative (before the surgery) models to intra-operative (dur-
ing the surgery) reconstructed surfaces or to US images during IGS is partic-
ularly demanding. Graphics Processing Units (GPUs) can help achieve real-
time requirements of IGS, as they offer massive computation performance in
comparison to CPUs. A GPU deploys thousands of execution threads, which
operate on large batches of data, and provide high throughput. GPU’s multi-
threaded architecture makes it much more power-efficient than a CPU on mul-
tithreaded workloads [80]. As a result, GPUs can improve the performance of
B-spline interpolation significantly [98, 104].

2.1.1 B-spline interpolation and previous work

The intensive data movement of a large number of input samples between the
memory and the GPU cores is the main bottleneck of cubic B-spline interpo-
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lation implementations on a GPU [104]. Sigg et al. in [104] and Ruijters et
al. in [98] achieve a substantial reduction in the number of input samples by
representing the weighted sums as trilinear interpolation and utilizing the in-
terpolation unit of the GPU texture unit. Later, Ellingwood et al. in [28] and Du
et al. in [26] use GPU implementations of B-spline interpolation to improve the
performance of registration. They improve input sample loading by aligning
the control grid with the voxel grid of the volume [26, 28, 100]. However, even
including the most recent improvements, the performance of B-spline interpo-
lation is still limited by memory bandwidth, as indicated by our preliminary
profiling results.

2.1.2 Pneumoperitoneum compensation

This works focuses on image guide liver surgery. As a test case for image regis-
tration we use pneumoperitoneum, i.e., the inflation of the patient’s abdomen
during laparoscopic surgery. Pneumoperitoneum, along with the new position
of the patient on the surgical table, deforms the shape of the liver [44, 54]. Con-
sequently, on the day of the surgery, the liver has different shape than that of
the pre-operative CT or MRI scans. The deformed shape causes great inaccu-
racy within IGS systems for laparoscopic liver resection surgery, because the
plan of the surgery is based on the initial (pre-operative) CT or MRI scan. In
order to correct the inaccuracies, we have to capture new images during the
surgery and to match them to pre-operative scans with the help of non-rigid
registration [89]. The drawback is that registration is computationally demand-
ing, therefore it would benefit from an improved GPU approach. In Figure 2.14
we will show the role of image registration in matching the images before and
after pneumonoperitoneum. We will also show the main components of regis-
tration. Deformation, which is the target of our optimizations, is highlighted.
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2.2 Objectives

The primary objective of this work is to accelerate medical image registration
using General-Purpose computing on Graphics Processing Units (GPGPU). To
that end, we form the following secondary objectives:

¢ Optimize one of the most computationally demanding parts of FFD non-
rigid registration, i.e., B-spline interpolation.

¢ Test the performance of B-spline registration in regards to execution time
and accuracy in a realistic medical scenario. In order to achieve this, we
need to:

— Create a dataset of CT/MR images to test registration.
- Integrate our B-spline interpolation methodology in an existing

registration library, NiftyReg [74]. NiftyReg is used as reference
in recent works [89].
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2.3 Background

In this section, we first give an overview of medical image registration and
deformation fields. Second, we introduce B-spline interpolation and the prop-
erties that play an essential role in our proposed optimizations.

2.3.1 Medical image registration

The task of medical image registration is to find the correspondences between
two medical images and bring them to the same coordinate system. Two com-
mon medical scenarios that we need registration for are: a) to find the corre-
spondences between images that are used during planning of the surgery (i.e.,
diagnostic images) and images acquired during the surgery, and b) to find cor-
respondences between images of different modalities that we acquire during
the surgery (e.g., among US and stereoscopic camera feedback [68], [107]). Gen-
erally, image registration finds application in planning, navigation, data fusion,
visualization, segmentation based on an atlas, automatic tissue recognition etc
[102, 103].

REGISTRATION INPUTS Image registration requires a pair of images as
input, the reference (also called static) image and the target (also called floating
or moving) image. The target image needs to be transformed to match the shape
and structures of the reference image.

PNEUMONOPERITONEUM COMPENSATION FOR LIVER REGISTRATION
Our goal in this work is to use registration to match the shape of the liver be-
tween scans that are acquired before and after pneumonoperitoneum, as in
Figure 2.1. In this work, the targeted application is non-rigid registration, due
to the viscoelastic nature of the liver [89].

Figure 2.1
MRI scans, (Intra-modality) of porcine liver without (left) and with (right) pneumoperi-
toneum in preparation for minimally invasive surgery
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Usually, we represent non-rigid transformation as a deformation or displacement
vector field, which connects the corresponding points of the reference and the
floating image space.

Figure 2.2 shows an example of a displacement field created after executing
registration on the pig liver images described in Section 2.8.2. Figure 2.2a il-
lustrates the floating image, whereas Figure 2.2b illustrates the displacement
field overlaid over the reference image. The arrows connect the voxels of the
reference image with the correspondent voxels of the floating image. Typically,
medical images are 3D. Therefore, the deformation field consists of 3D vectors
in the 3D space.

(b)

Figure 2.2
(a) Liver of a pig before registration, (b) The generated deformation field overlaid on top of
the reference image

2.3.2 B-spline interpolation

In non-rigid registration, the interpolation of a deformation field describes the
transformation. We prefer B-spline interpolation because it requires data only
in a small neighborhood around the point of interest, thus reducing the com-
putational complexity for large medical images [102]. B-spline interpolation is
one of the most time consuming steps of the registration [74]. Therefore, by op-
timizing B-spline interpolation, we increase the total performance of image reg-
istration. Although the application in this work is image registration, B-spline
interpolation can also be used for general image processing, like zooming and
geometrical image transformation [48, 113]. In this section we provide the the-
oretical background of B-spline interpolation and we define the tiles, groups
of elements with common properties.

It is easier to understand B-spline interpolation by comparison to linear inter-
polation. With conventional linear interpolation we have two known points
and we want to estimate the inferpolant, a third point between the other two.
The value of the interpolant is the result of a first order function of the two
known points (i.e.,, two arguments). Similarly, in B-spline interpolation, we
have a number of known points and we would like to estimate the interpolant.
B-spline based interpolation requires 4N (where N is the image dimension)
neighboring known points as function arguments (owing to the limited sup-
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port of B-splines). In comparison to linear interpolation, the function of the
four known points is of the third order (cubic). This function is called the B-
spline basis function and it is where the name B-spline interpolation comes
from [98]. The known points are called control points, and they are arranged in
a control point grid over the entire image.

In this work we work with 3D images in the context of medical imaging, there-
fore we focus on the theoretical background required for 3D images. We de-
note the elements of a nx x ny x n; control point grid, with uniform spacing
dx X by X 8z, as ¢y j,x. The domain of the image volume is in the x,y, z coordi-
nate space. We denote the function that calculates the interpolants as T(x,y, z)

[96]:

3 3
T(x,y,z) = Z Z Z Bl(U)Bm(V)Bn(W)¢i+l,j+m,k+n (2.1)
=0

1=0m=0n

where i = [x/5x] —1,j = [u/8y| — 1,k = [2/52] — 1,0 = x/8x — [x/5x),v =
y/by — [y/dy|,w = 2/6, — |2/5,]. B are the B-spline basis function derived
weights and ¢ are the control points.

Tiles are logical groups of voxels (voxel is the analogue of pixel in 3D space)
that share common properties. Let us denote as 0, € Z the spacing in voxels,
where a is one of x, y, z (for each of the three dimensions). Then, from Equation
(2.1), we make two observations. First, |x/5«| — 1 increases by one every 6«
elements in the direction of . Second, «/6« — |/« is periodic with period
d«. Based on these two observations, we form tiles of 5x x &y x &, dimensions
and we derive the following two important properties:

1. The same set of control points affects all voxels inside the tile. In the case
of B-splines, there are four neighboring control points in each direction
that affect the voxels inside the tile.

2. B-spline weights depend only on the relative distance from the coor-
dinate origin of the tile. We emphasize that when the voxel and con-
trol point grids are aligned, there is always the same number of equally
spaced voxels between two control points. As a result, when the grids
are aligned, all tiles in this voxel grid use the same set of B-spline weights.

From Equation (2.1), it follows that 4 x 4 x 4 control points, forming a cube (Fig-
ure 2.3), affect each voxel (and consequently tile). In general, in N-dimensional
images, 4™ control points affect each voxel. Figure 2.4 highlights the tile prop-
erties of a 2D example. We present the 2-dimensional case because it is easier
to understand. In this figure, the gray-colored area highlights the pixels that
form a tile. The filled black circles delineate the 4 x 4 control points that affect
this tile.

We utilize tiles and their properties in our proposed optimization scheme to
significantly reduce memory traffic between off- and on-chip memory.
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The 4x4x4 neighboring control-points each thread requires.
The 2x2x2 sub-cubes delineate trilinear interpolations.

Trilinear interpolation

@ Control point of 8 control points

Figure 2.3
Cubes depicting the grouping in trilinear interpolations for a 3D control point grid
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2.4 Related Work

In this section we provide an overview of GPU-based medical image registra-
tion.

2.4.1 Medical image registration on GPU

In the following paragraphs we give a short review of medical image registra-
tion on GPU.

Basic components of registration

The registration procedure can be divided into four basic components. These
components are: 1) transformation, 2) interpolation, 3) measurement, and 4)
optimization (Figure 2.5).

Target image Optimize

Reference image
No

Yes

Terminate

Figure 2.5
The building blocks of registration.

Transformations

The transformation component produces a transformation function that con-
verts the target image based on parameters that the optimization component
sets. Transformations can be classified as linear or non-linear (deformable).
For linear transformations we use rigid and affine registration, whereas for
non-linear transformations we use non-rigid registration [102]. Traditionally,
we first apply rigid and affine transformations to capture the global defor-
mations and, then, non-rigid transformation to capture the more fine-grained
local transformations.
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RIGID TRANSFORMATION  Rigid transformation rotates and translates the
target to best match the reference. The target object maintains its size and
shape. These methods apply rotation and translation matrices to all pixels (or
block of pixels) in a way that maximizes a similarity criterion [30, 9o, 101].

AFFINE TRANSFORMATION  Affine transformation extends rigid transfor-
mation by adding additional transformations, like scaling, shearing etc. Points
and lines from the target match points and lines of the reference, respectively,
and parallel lines remain parallel. Similarly to rigid, these methods apply small
transformation matrices to the images [65, 74, 86].

DEFORMABLE TRANSFORMATION Rigid and affine transformations are
fast and reliable for rigid or relatively rigid tissue (e.g. brain which has limited
movement in the cranium, bones etc). Nevertheless, they do not adapt well
to elastic deformations of more fluid tissues, e.g., breast [96, 102] or liver [45,
122].

A popular category of deformable registration is Demons, which is based on
optical flow [103, 112] and is accelerated by CUDA [50, 75]. Another popular
category is the one that is based on the parameterization of the displacement
field by a number of control points [74, 96, 122]. Parametric methods often
achieve better results than other methods when registering images of multiple
modalities [103].

After the transformation component defines the desired transformation of the
pixels, an interpolation (or resampling) stage is necessary to determine the ac-
tual pixel intensities of the to-be-transformed image. Nearest neighbor, linear
interpolation, B-spline interpolation, quadratic interpolation, Gaussian interpo-
lation are possible interpolation methods [63]. Nearest neighbor is the fastest
but gives the greatest error. The most commonly used is linear interpolation,
with a good balance between computation time and error. B-spline interpola-
tion has excellent performance in keeping the characteristics of the original
image with a slight decrease in performance [63, 113].

After transformation and resampling we have to measure the similarity of the
transformed image to the reference image. Some of the common similarity
measures include Sum of Absolute Errors (SAE), Normalized Cross Correla-
tion (NCC), Correlation Ratio (CR) [95] and Normalized Mutual Information
(NMI) [101]. Although SAE and NCC are relatively trivial to implement on
GPU [38], this is not the case for NMI and CR.

NORMALIZED MUTUAL INFORMATION  Normalized mutual information
is one of the most popular methods for registration with multiple modalities
[91] and a performance critical component of the registration workflow [27].
NMI requires the computation of a joint image histogram. Histograms are
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difficult to implement on GPUs because the access to the bins requires syn-
chronization. Shams et al. avoid synchronization and atomic operations using
sorting [101], whereas Gémez-Luna et al. employ many subhistograms to min-
imize conflicts [36].

CORRELATION RATIO  Correlation ratio offers comparable results to NMI
but, unlike NMI, needs only a 1D histogram, which makes CR more suitable
for GPU implementations [64].

If the measurement component indicates that the matching between target and
reference images is not sufficient according to the selected convergence crite-
rion, we call the optimization component. Optimization searches the transfor-
mation parameter space to find a transformation that will improve the previ-
ous result. According to [102] the optimization can be categorized to gradient-
based and gradient-free.

GRADIENT-BASED AND GRADIENT-FREE  Gradient-based methods cal-
culate the partial derivatives of a cost function in order to find the minimum
of the cost function. A typical gradient-based method is gradient descent [93].
An example of gradient-free GPU approach is [43], where they use a symmet-
ric explicit search at each pixel to find the neighbor that maximizes a point-
wise mutual information metric. Typically, gradient-based methods converge
in fewer iterations [102].

PARALLELIZATION  The optimization component itself usually is inherently
serial (e.g., a partial derivative that has to “wait” for the previous partial deriva-
tive). Moreover, in comparison to other steps of registration, optimization does
not affect the execution time a lot, and therefore parallelizing the optimization
is usually not practical [102, 103]. What is important with regards to improv-
ing the execution time of registration is the number of iterations until conver-
gence.

2.4.2 B-spline interpolation in medical image registration

Since one of the most suitable applications of B-spline interpolation is non-
rigid registration for medical images, several attempts happened to accelerate
B-spline interpolation for this context. Modat et al. [74], in NiftyReg library,
optimize for GPU the FFD registration that Rueckert et al. [96] present. They
observe that the most computationally demanding step is B-spline interpola-
tion, which is used for the calculation of the deformation field.

Alignment of the control point grid with the voxel grid of the volumetric scan
significantly improves the computational efficiency of B-spline interpolation.
By aligning the grids, voxels are organized in tiles, which present beneficial
properties that reduce redundant operations. To our knowledge, Shackleford
et al. in [100], in their work on B-spline registration methods, are the first
that use tile properties to reduce redundant operations and memory transfers.
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Later, tile properties were also used by Ellingwood et al. in [28] and by Du et al.
in [26] to improve the performance of their non-rigid registration algorithm.

PREFILTERING A drawback of acquiring a reconstructed function with cu-
bic B-spline interpolation is that the function may not pass through the sample
points, and thus the output may be more smoothed than necessary. One way to
avoid over-smoothing is to add a prefiltering step before the B-spline interpola-
tion step. For this reason, Ruijters et al. in [97], additionally to B-spline interpo-
lation, they implemented on GPU the prefiltering step presented by Thévenaz
et al. in [111]. Shortly after, Champagnat et al. [15] replaced the IIR filter filter
of [97] with a FIR filter to improve the GPU performance of smaller image
outputs. Ruijters et al. provide online as a library their GPU implementation
of the prefiltering step along with cubic B-spline interpolation. This library is
still actively used in recent literature [5, 14] etc. We will not use prefiltering
in our implementations because it is not used in the calculation of the defor-
mation field. Nevertheless, our approach can use the same prefiltering step
from the literature. However, our approach is a suitable replacement for the
interpolation step of the approaches of the previous paragraph.

In the following two sections we introduce two state-of-the-art GPU B-spline
interpolation methodologies and their respective implementations.

The work by Sigg et al. [104] is one of the first attempts on acceleration of B-
spline interpolation using interpolation hardware of the GPU. Their approach
utilizes the texture unit of the GPU, a special unit usually used for computer
graphics, that is accessed through easy to use Application Programming In-
terfaces (APIs). They use the texture hardware unit to reduce the number of
memory transfers by loading only the result of the trilinear interpolation, in-
stead of loading the eight control points that the trilinear interpolation needs.
Later, Ruijters et al. [98] implemented this method in CUDA. This method
reduces memory transfers from off-chip memory significantly [98, 104].

If we define the dimensionality of the input image as N, each voxel is affected
by the 4N control points surrounding it. However, if we use the texture unit
to calculate trilinear interpolation, only 2N loads are required [104]. This is
particularly useful for higher dimensional inputs, such as 3D medical images,
where the required number of memory transfers from global memory is re-
duced from 64 loads to 8 loads of trilinear interpolation results. Figure 2.3
illustrates the control points of 3D input. Without using the trilinear interpola-
tion hardware, we have to load all 4 x 4 x 4 control points in order to calculate
each voxel. With trilinear interpolation hardware, we have to load only the re-
sults of trilinear interpolation of 2 x 2 x 2 sub-cubes. Each such sub-cube has a
different color in the figure.

Hardware interpolation is fast but it brings two problems. First, its accuracy
is very low, with only eight bits holding the interpolation result [80]. Second,
although the number of coefficient loads are drastically reduced, these loads
are dependent on the absolute position of each voxel. Therefore, there is no
way to cache them for reuse by nearby voxels because the fetched values are
unique. Texture Hardware B-spline interpolation is included in an easy-to-use
library by Ruijters et al. [97] and is used by recent works [14].
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By doing the trilinear interpolation in software, instead of hardware, we can
create different thread assignment schemes that can increase the overlap be-
tween neighboring threads significantly, achieving even fewer memory trans-
fers than TH. Moreover, we can take advantage of FMA instructions to decrease
computational complexity and avoid the inaccuracies caused by the inherently
low precision of trilinear interpolation of the texture unit of the GPU [80].

The basic mechanism of this approach is that each CUDA thread is assigned to
a single element in a straightforward way, e.g., a thread for each voxel in the
case of 3D images. Specifically, for each voxel position of the reference image
one thread calculates the deformation vector using Equation (2.1). NiftyReg
[74] uses this straightforward parallelization. This method can be further en-
hanced by utilizing the tile properties of Section 2.3.2. In this case, one or more
blocks are assigned to each tile, with one thread for each voxel of the tile, as
Ellingwood et al. [28] do. Since all voxels inside a tile need the same control
points, these control points are loaded from global memory only once and are
stored in shared memory for faster access.

The thread assignment scheme of this approach is more straightforward, and
therefore easier to implement. However, for maximum performance, the tile
size should be a multiple of the warp size (32 threads for CUDA). Otherwise,
the rest of threads of each warp remain inactive due to hardware limitation.
Essentially, this means that the users of this approach are not free to select
the tile size that best fits their needs, but they have to choose between a small
number of presets.

NIFTYREG LIBRARY NiftyReg [74] is a lightweight open-source medical
image registration library, which contains optimized implementations of B-
spline interpolation, both for CPUs and GPUs. It is open-source and well-
maintained, with competitive performance against other state-of-the-art im-
plementations [62]. For this reason, it is commonly used as the reference state-
of-the-art non-rigid registration (e.g., [89]). The GPU implementation uses the
simple, straightforward thread-per-voxel scheme, i.e., no tile properties, LUTs,
etc. The CPU implementation uses multi-core and vectorization optimizations
and does minor utilization of tile properties. We started this work by profiling
NiftyReg to find the impact of B-spline interpolation on the entire registra-
tion process. The profiling results show that B-spline interpolation takes 30%
of the total execution time. The main bottleneck is the memory latency due
to saturation of cache bandwidth when loading the control points. Therefore,
our initial goal is to minimize the memory transfers from global memory to
on-chip caches.

2.5 Optimizing B-spline interpolation

This section describes our GPU implementation of B-spline interpolation and
explains the logic behind assigning one GPU thread per tile. We present the
most important GPU optimizations in detail, along with the computation com-
plexity analysis that leads to our fastest GPU method. Furthermore, we ap-
ply our methodology to CPU to show that it is applicable to other platforms.
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Finally, we define the number of required memory transfers for the various
B-spline interpolation implementations.

Within this study, the implementation of GPU parallelization is specific to 3D
medical images (CT, MRI or US volumes). Therefore, analysis and implemen-
tations focus on the 3D case, unless otherwise specified. To facilitate under-
standing of this section, we emphasize that, in the case of 3D images, each
voxel is affected by the control points in its local 4 x 4 x 4 cubic neighborhood.
Consequently, all voxels that belong to a tile are affected by the same 4 x 4 x 4
neighborhood.

2.5.1 Overview

The key optimizations of our GPU implementation of B-spline interpolation
are two. First, an entire tile of voxels is assigned to a single GPU thread, in con-
trast to the one-thread, one-voxel paradigm. Figure 2.6b compares the thread
assignment between TV and the proposed approach. With this assignment, we
minimize: a) the reads from off-chip memory by maximizing the overlap of the
input control points and, b) the cache accesses by keeping the input points in
registers and reusing them by many voxels. Although registers are very fast,
which significantly benefits the performance of our implementation, 3D medi-
cal images require a large amount of them, which limits the number of active
GPU threads. Nevertheless, the reduced number of required memory transfers
enables us to hide their latencies efficiently by overlapping them with indepen-
dent arithmetic operations, a method commonly known as Instruction Level
Parallelism (ILP). Second, we replace the weighted sum of the basic formula of
B-spline interpolation with independent trilinear interpolations. We calculate
these trilinear interpolations with FMA instruction of the GPU. FMA increases
both accuracy and speed in regards to typical multiplication and addition.

2.5.2 Thread per Tile (TT)

In the following paragraphs we describe the optimizations utilized in the pro-
posed implementations. We show how our input loading and register opti-
mizations reduce memory accesses. To better display how are work improves
over the state-of-the-art, we describe our optimizations by comparing to the
methods of TV.

The main idea of this optimization is to reduce loads from global memory by
taking advantage of the overlap of neighboring tiles.

In a TV implementation, each block of threads works on a unique tile of voxels.
Each block stores the required 4N control points (Section 2.3.2) in a unique
shared memory area. Therefore, for each tile we need to move 4N control
points from global memory to shared memory. Step 1, of the left part of Figure
2.7, illustrates the required transfers from global memory to shared memory
for a 2D example. In this example, we have two tiles and each tile is assigned to
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Figure 2.6

a) An example 2D grid with two tiles, b) Thread assignment for Thread per Voxel (left)
and Thread per Tile (right) approaches. The different threads are represented by different
shades of gray, which correspond to the numbers

one block. The figure shows that the amount of transfers from global memory
to shared memory, that the two tiles require, is 4 X 4 + 4 x 4 control points
each.

We want to reduce the required amount of transfers from global memory to
shared memory. Two important observations derive from Equation (2.1). First,
only the four neighboring control points in each direction of a Cartesian coor-
dinate system affect each tile. Second, tiles that are consecutive in a direction
require control points that are consecutive in the same direction. Therefore,
there is overlap among neighboring tiles. Figure 2.6a illustrates two tiles that
are consecutive in the x-direction. The first tile has its pixels and necessary
control points highlighted with red color and the second with blue. The first
tile requires the first 4 x 4 area of pixels (the square defined by vertices Coo
and C33), whereas the second requires a 4 x 4 area that is shifted by one in the
x-direction (the square defined by vertices Co1 and C34). In total, the two tiles
require 4 x (4 + 1) pixels. Step 1, of the right part of Figure 2.7, illustrates the
reduction in transfers to shared memory, with overlap in the x-direction. Two
tiles require only 4 x 5 control points. In a real case scenario, with overlap in
all directions, the benefits are more pronounced.

In the general 3D case, the cubic 4 x 4 x 4 control point neighborhood of each
of the consecutive tiles overlaps with a stride of one for each direction. In the
general 3D case, a group of tiles of size 1 x m x n with overlap in the x, y, z
-directions, needs (4 +1—1) x (4+m —1) x (4+n — 1) control points in total.
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We observe that there is significant overlap of control points for neighboring
tiles. Our thread per tile assignment scheme takes full advantage of the overlap
to reduce the ratio of data movements per voxel. Our approach requires fewer
transfers from global memory than both TH and TV methods, as we detail in
Section 2.5.6.
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Comparison of input loading and register optimization for Thread per Voxel (left) and
Thread per Tile (right) for the two neighboring tiles of Figure 2.6

The two main ideas of this optimization are: a) to load the control points for
all voxels of the tile from shared memory only once, and b) to keep the loaded
control points to registers, which are the fastest on-chip memory, until the
thread exits.

In a TV implementation, threads belonging to the same block work on indi-
vidual voxels of the same tile. For every voxel belonging to the tile, the corre-
sponding threads need to access the exactly same area of shared memory as
the other threads of the block, in order to load the same set of control points.
Step 2, of the left part of Figure 2.7, illustrates the required transfers from
shared memory to registers for a 2D example. In this example, each tile com-
prises four pixels and each pixel is assigned to one thread. The figure shows
that four pixels require four transfers (from shared memory to registers) of
sixteen control points each.

Shared memory is faster than global memory, but before the GPU can execute
any instruction on the control points, each thread has to move the entire set
of control points to its registers first (Section 1.3). Thus, we want to minimize
transfers from shared memory to registers. We make two improvements. First,
we assign one thread for the entire tile. For every voxel belonging to the tile,
the corresponding thread needs to access the same shared memory area exactly
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once, in order to load the control points. Second, we utilize register tiling. The
thread keeps the control points to (the faster than shared memory) registers
[115] until it processes every voxel of the tile. Step 2, of the right part of Figure
2.7, illustrates a drastic reduction in memory transfers. A tile of four pixels
requires only one transfer of sixteen control points.

In this section we present other optimizations, that are not part of our key
optimizations.

LOOK-UP-TABLES (LUTS) LUTs are tables that hold pre-calculated val-
ues, so that we do not have to calculate them during execution of the program,
saving computational resources for other tasks. Based on the second property
of the tiles (Section 2.3.2), the B-spline basis functions weights remain the
same among tiles when having uniform (aligned) grids. Therefore, they can
be stored in LUTs in constant memory.

SKIPPING SHARED MEMORY  According to Perrot et al. [88], at least for
the case that the input is overlapping, it may be beneficial to load to regis-
ters directly, instead of first loading to shared memory and then from shared
memory to registers. The control points needed by each group of tiles can be
stored to registers directly (using instead only the hardware-managed caches).
With this approach, we avoid pointer arithmetics and synchronization that the
management of shared memory requires.

2.5.3 Thread per Tile with Linear Interpolations (TTLI)

We extend TT by reformulating the triple sum of Equation (2.1) to trilinear inter-
polations. The basic idea is that a linear interpolation can replace an addition
of two weighted summands. We can extend this to three dimensions, where
we combine eight summands to a trilinear interpolation [104].

We calculate trilinear interpolation as a combination of seven linear interpo-
lations (we do not use the hardware interpolation unit). Linear interpolations
have the form a +w * (b — a), so they can take advantage of FMA instructions.
FMA instructions combine extended precision multiplication with addition.
The benefits of FMA are two: First, owing to the increased precision of the in-
termediate product, the result is more accurate. Second, owing to the combina-
tion of multiplication with addition in the same instruction, the computational
complexity is lower.

Figure 2.3 illustrates the 4 x 4 x 4 neighborhood of control points each voxel
requires. Each one of the 2 x 2 x 2 colored sub-cubes of control points corre-
sponds to one trilinear interpolation. For each voxel in the tile, the respective
thread first calculates each one of the eight trilinear interpolations correspond-
ing to each one of the colored cubes. Then, the thread calculates one last trilin-
ear interpolation with the eight results of the eight trilinear interpolations that
are corresponding to each one of the colored cubes.
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The arithmetic operations that are needed by each trilinear interpolation (i.e.,
colored sub-cube) are independent, therefore we have independent instruc-
tions to increase ILP [115]. However, by creating several independent instruc-
tions and using loop unrolling, the required register count increases, leading
to register spills (Section 2.5.4). Although registers spills are cached in L1/L2,
cache blocks are regularly evicted. Instead, to avoid spills, we store one quarter
of the total number of required control points in the shared memory.

2.5.4 Implementation details of TT and TTLI

Register tiling, which we employ in our approach, requires a careful manage-
ment of the registers. We explain these difficulties and how we manage them
in the following paragraphs. We also provide an analysis of the computational
complexity of our approach.

THREAD LEVEL PARALLELISM (TLP) The traditional way of hiding mem-
ory latencies is to do other, independent, work while waiting. In CUDA, thread
blocks typically are independent work units and they consist of warps. We hide
latencies by deploying many blocks/warps, many more than the amount the
GPU can execute simultaneously. When one warp stalls, the GPU uses another
warp. This method is called TLP [29].

INSTRUCTION LEVEL PARALLELISM (ILP)  Instead of using independent
blocks, as in TLP, to hide latencies, we can create independent instructions in-
side the same block. We achieve that by assigning to each thread multiple
independent instructions (i.e., the inputs of the second instruction do not de-
pend on the output of the first instruction). A basic way to increase ILP is
loop unrolling. The shortcoming of loop unrolling is that more registers are
required.

OCCUPANCY  Depending on the amount of resources that are available to
each MP the number of warps that can be active per MP is determined. The
ratio of the active warps to the maximum number of warps that each MP
supports is called occupancy [78]. Higher occupancy indicates that the GPU
has more warps available when it tries to hide latencies with TLP.

Registers are one of the resources that can limit occupancy, therefore CUDA
compiler, nvece [79], applies various methods to reduce their number, for exam-
ple:

* Removing regularly from registers the values that were loaded from
shared or constant memory and reloading again later from the same
source.

* Temporarily saving some of them in L1 / L2 cache, which is known as
register spilling [73].
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Cache is slower than registers, therefore we want to keep data in registers
and to avoid register spills. In order to limit cache usage, we need to carefully
place data in registers and make it stay there. When we force data to stay in
registers, threads require more registers. More registers per thread reduces the
amount of active warps per MP (because registers are a limited resource) and
consequently occupancy becomes low. Low occupancy gives less opportunity
for TLP. Therefore we must rely on ILP to hide latencies when we have low oc-
cupancy. Nevertheless, by utilizing the fast registers, the performance benefits
greatly [115].

According to CUDA Programming Guide [80], most of the current GPUs have
65536 registers per MP and each thread can use up to 255 registers. The defor-
mation field of a 3D image requires 64 control points and each control points
comprises three values, one for each of the three coordinates (x, y, z). There-
fore, we need 3 - 64 = 192 registers to store the control points only. Program
execution requires additional registers. According to the compiler statistics, TT
requires 235 registers in total, whereas TTLI requires all 255 registers (TTLI re-
quires more due to additional loop unrolling). In both cases, due to the amount
of required resources, each MP can run at maximum 256 threads, decreasing
occupancy significantly. 256 threads correspond to eight warps - enough to oc-
cupy the four warp schedulers that NVIDIA’s GPUs commonly have [80]. We
group threads to four blocks of 4 x 4 x 4 threads. We arrange threads in this
configuration for two reasons. First, a cube is the geometrical structure that
maximizes overlap and consequently minimizes memory transfers (i.e., min-
imizes Equation 2.5 in Section 2.5.6). Second, by keeping more and smaller
blocks we follow the trend of future NVIDIA GPU generations, which have
less resources per MP but more MPs [81].

In order to evaluate the arithmetic performance of TTLI and TT, we perform
the computational analysis of both implementations in this section.

TT  For every voxel of the output image, we need to calculate the triple sum
in Equation (2.1). Each operand of the summation requires the multiplication
of one control point (¢) with three weights (B). Thus, each voxel requires
(64 summands) * (3 multiplications + 1 accumulation) — 1 = 255 vector (¢
is a 3D vector in deformation fields) arithmetic operations. The calculation of
Equation 2.1 requires 4 +4 + 4 = 12 scalar loads for the weights and 64 vector
loads for the control points. If we use one weight for the By(u) - By (v) - Bn(w)
product, instead of three individual weights, the required operations decrease
to (64 summands) * (1 multiplications + 1 accumulation) — 1 = 127 (same
as a parallel reduction) and the weights to be loaded increase to 4 x4 x4 = 64.
This is not suitable for our register-only implementations, because there are
not enough registers to store the 64 weights and the use of one of the caches
would impact the performance substantially (Section 2.5.4).

TTLI  For every voxel of the output image, we reformulate the summation of
the 4 x 4 x 4 weighted control points to trilinear interpolations. We divide the
4 x 4 x 4 cubic neighborhood to eight 2 x 2 x 2 sub-cubes, as in Figure 2.3. Each
sub-cube corresponds to a trilinear interpolation. A trilinear interpolation re-
quires seven linear interpolations for its calculation. A linear interpolation has
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the form a +w * (b — a), which equals to a subtraction and a fused multiply-
accumulate (FMA) operation. Thus, for the eight sub-cubes and the ninth final
sub-cube that is formed by the eight results of the eight trilinear interpola-
tions, we have (9 cubes) x (7 linear interpolations.) x (2 operations) = 126
operations for each voxel.

CONCLUSION  TT requires 255 arithmetic operations to calculate the value
of one voxel, whereas TTLI requires only 126 operations. TTLI has half the
computational complexity of TT.

2.5.5 Application of our methodology on CPUs

The techniques that we use for the GPU implementation of B-spline interpola-
tion can be also applied to the CPU implementations. CPUs have SIMD units
(controlled by SSE/AVX instruction sets) to execute the same instruction on
multiple input data. Normal non-SIMD units of the CPU operate on single val-
ues, commonly of 8 to 64 bits in length. SIMD units pack many single values in
a special register. We call the special register as vector and each single value it
can hold as element. Vectors of common CPUs (i.e., Intel, AMD) are 128, 256 or
512 bits in length [32, 52]. We denote as slots the places in a vector that can hold
a single element. For example a 256-bit vector has 8 slots for 32-bit elements.
Furthermore, each core of a multicore CPU contains one SIMD unit, thus we
use multi-threading to process a significant amount of data simultaneously.

We employ the two main optimizations that derive from tile properties (Section
2.3.2) in the CPU implementations. First, by grouping in tiles, we can use the
same set of control points for all voxels of the tile. Second, voxel and control
points grids are aligned and therefore we can use LUTs for B-spline weights.

In addition, we employ the following two optimizations of our GPU approach.
First, we use input loading optimization through L1 cache. Consecutive tiles
overlap in the x-direction, as each thread in our algorithm iterates through
all tiles in the x-direction first (i.e., row-wise). Second, we calculate the triple
sum of Equation (2.1) as trilinear interpolations. One point worth noting in
regards to FMA instructions is that they are available only in newer CPUs and
only through vector instruction sets [13, 46]. Nevertheless, instead of explicitly
using FMA instructions, we provide simple multiplication and addition oper-
ations. This way the compiler, depending on the CPU architecture, can choose
to replace multiplication and addition operations with FMA operations. Thus,
we maintain compatibility with older CPUs.

Our CPU implementations require minimal changes to the source code of the
GPU. The main differences among our GPU and CPU implementations are two:
a) how we load the input, and b) what we assign the vector elements for. We
avoid using vector instructions explicitly because they are architecture specific
and thus not compatible among different CPU models. To keep compatibility
with different architectures, we use “C++ vector class library” (VCL), which
uses heuristics to choose the appropriate version of instructions [31].

In the following sections we describe two CPU implementations, one using
coarse-grained parallelization and one using fine-grained parallelization. We
store control points and B-spline weights as 32-bit elements. In our descriptions
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we consider 3D tiles which contain 1 x m x n voxels, i.e., 1 voxels in the z-
direction, m voxels in the y-direction and n voxels in the x-direction.

In this method, we parallelize by processing many voxels of the tile at the same
time. We assign each of the n voxels of a row of a 1 x m x n tile to one slot
of a vector. Each thread of the CPU calculates n voxels at a time, as we iterate
through y and z directions. Let us consider the 2D example of Figure 2.6a,
where 1 = 0,m = 2,n = 2. Let us suppose we have two threads, one for each
tile. In first iteration, first thread will calculate pixels Poo and Po1, whereas
second thread will calculate pixels Poz and Pos. In second iteration (we move
one step farther in y-direction), first thread will calculate pixels P1o and P11,
whereas second thread will calculate pixels P12 and P13.

The drawback of this approach is that while n can be of any size, vectors are
fixed size. Therefore some slots of the vector may remain unused. The fewer
the slots that remain unassigned are, the more efficient the implementation
is.

In this method, we parallelize by processing all trilinear interpolations that
a single voxel requires at the same time. Specifically, each one of the eight
elements of a 256-bit vector is assigned to one 2 x 2 x 2 sub-cube of control
points (Figure 2.3). Each element of the 256-bit vector holds the current state
of the trilinear interpolation of the respective sub-cube. We can imagine the
eight elements as eight “threads”. The eight threads calculate the eight trilinear
interpolations in Figure 2.3 concurrently.

Unlike VT, no vectors slots remain unused. Nevertheless, with this approach,
loading the input control points from memory is more demanding because the
respective vertices of sub-cubes are not consecutive in memory.

To increase the performance of this approach we take advantage of the fact that
each control point of the deformation field contains three values (control points
are 3D vectors in our case). We process all three values in the same iteration
for the following three benefits. First, we simplify the addressing arithmetics
for loading the input control points from memory because we need to calcu-
late the memory address for all three values only once. Second, we increase ILP.
This is necessary because this approach processes only one voxel and therefore
there are more dependency chains (i.e., instructions that depend on the output
of previous instructions) than with VT. Third, we create more elements that fill
vector slots. This is useful because, after the calculation of the eight trilinear
interpolations, we interpolate the eight results of the eight trilinear interpola-
tions. But unlike the first part of the algorithm, where we have available eight
trilinear interpolations to calculate simultaneously, one trilinear interpolation
is not enough to fill a vector.
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2.5.6 Off-chip memory to on-chip memory data movement

We use the external memory model [58] to describe the data movement from
off-chip memory to on-chip memory. We consider a 3D image. Let us define M
as the total number of voxels, N = 64 as the number of control points, T as the
number of voxels inside each tile, and L as the size, in words (words are 32-bits
long, a common size for storing integer and real numbers), of transactions into
the cache (i.e., transactions between off- and on- chip memory). The L sized
memory transfers of the three cases we are interested in are:

a) No tiles: When we do not have tiles, for each of the M voxels, we need to
transfer N control points from global memory to shared memory. Transfers
happen in L sized chunks. Hence, the total number of transfers required is

NxM
L

(2.2)

b) Hardware trilinear interpolation: When we utilize the texture hardware for
loading the input, for each of the M voxels, we need to transfer 23 (Section
2.4.2) control points from global memory to shared memory. Transfers happen
in L sized chunks. Hence, the total number of transfers required is

23 xM
L

(2.3)

c) A block per tile: When we use a block for each tile, for each tile we need
to transfer N control points from global memory to shared memory. Each tile
contains T voxels, thus the total number of tiles is M/T. Transfers happen in L
sized chunks. Hence, the total number of transfers required is

NxM
TxL

(2.4)

d) Blocks of tiles: When we have 3D blocks of tiles, and each block contains
1L x m x n tiles, for each block we need to transfer (4+1—1) x (44+m—1) x
(44+n—1) (Section 2.5.2) control points from global memory to shared memory.
Each block contains 1 x m x n tiles and each tile contains T voxels, thus the total
number of blocks is M /(1 x m x n x T). Transfers happen in L sized chunks.
Hence, the total number of transfers required is

G+1—-)x(d4+m—-1)x@d+n—-1)xM
IlxmxnxTxL

(2.5)

We make the following four observations.

1. A hardware trilinear interpolation implementation requires fewer mem-
ory transfers than a no tiles implementation because 23 < N in all cases.

2. A block per tile implementation requires fewer memory transfers than
a hardware trilinear interpolation implementation because N/T < 23
when T > 8. T > 8 is a rare case (T is 125 by default in NiftyReg).
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3. A blocks of tiles implementation requires fewer memory transfers than a
(A+1-1)x (d+m=T)x(44+n=1) _
Ixmxn <

block per tile implementation because
as long as a block contains more than one tile.

4. We divide (2.4) by (2.5) to find the improvement of our approach over
the state-of-the-art. In our implementations we use blocks of 4 x 4 x 4
tiles, and therefore 1 = 4, m = 4,n = 4. The result of the division shows
that we reduce the data movement 11.9x.

5. The CPU implementations are a special case of Equation (2.5), in which
Ll = m = 1, ie, each thread processes contiguous tiles in the x-axis
direction.

2.6 Evaluation Methodology

In this section we describe the infrastructure of our experiments.

2.6.1 Dataset

We performed a clinical study, through which we acquired two types of med-
ical images. First, we acquired pre- and intra-operative MRI scans of the liver
of a porcine model. Second, we acquired non-deformed and deformed Dyn-
aCT scans of a patient-specific liver phantom. The detailed description of the
acquired images is in Section 2.8.2 and in Section 2.8.1 respectively. From these
images, we selected five pairs (we create pairs by corresponding either pre-
and intra-operative images in case of the porcine model, or non-deformed and
deformed images in case of the phantom). We pre-processed these pairs and
we prepared them for non-rigid registration. Table 2.1 lists the properties of
the acquired images. We utilize the five registration pairs for the analysis of
both performance and accuracy.

Table 2.1
Image characteristics.

Registration Voxel count

pair Resolution (millions) Voxel Spacing
Phantom1 512x228%x385 44.94  0.49X0.49X0.49
Phantom2 204X130x208 7.95 0.90X0.90X0.90
Phantom3 294X130x208 7.95  0.90X0.90X0.90
Pig1 303X167Xx212 10.73  0.94X0.94X1.00

Pig2 267x169x237 10.70  0.94X0.94X1.00
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2.6.2 Accuracy

TEST PLATFORM For the experiments of accuracy we use one CPU and
one GPU. The CPU is an Intel i7-7700HQ. The GPU is an NVIDIA GeForce
GTX 1050. We use CUDA SDK vo.2 for the GPU.

METRIC In our implementations (for both CPU and GPU) we use single
precision (32-bit) representations for real numbers [1]. In order to measure
the accuracy, we create a double precision (64-bit) CPU version, which uses
double precision operands. We calculate accuracy in three steps. First, we cal-
culate the deformation field with both the implementation we are testing and
the double precision CPU version. Second, we measure the accuracy in terms
of average absolute difference between respective voxels of the deformation
field. Third, we find the average of our five registration pairs for all tile size
configurations.

2.6.3 Performance

TEST PLATFORM  For the experiments of performance we use one CPU
and two GPUs. The CPU is an Intel i7-7700HQ. The first GPU is an NVIDIA
GeForce GTX 1050 (Pascal architecture [80]). We use CUDA SDK vg.2 for the
first GPU. The second GPU is an NVIDIA GeForce RTX 2070 (Turing architec-
ture [81]). We use CUDA SDK v1o0.1 for the second GPU. For both GPUs, we
use CUDA event API to acquire the timing results.

METRICS We use two metrics for measuring the performance, time per
voxel and speedup. First, we measure the time per voxel, i.e., the amount of
time B-spline interpolation needs to calculate a single voxel. This happens in
two steps: a) for each image, we divide the total B-spline interpolation time
with the total number of voxels of the image to find the average time a single
voxel requires, and b) we find the mean and standard deviation of average
times per voxel of all images of the dataset. Second, we measure the speedup
of each implementation over an optimized reference implementation on the
respective platform. We use the optimized GPU implementation of NiftyReg
library [74] as the GPU reference and the optimized CPU implementation of
NiftyReg [74] as the CPU reference. For speedup, we also find the mean and
standard deviation of all images of the dataset.

2.6.4 Parameters

We select five different tile sizes to evaluate the performance of the algorithms
under different arrangements, namely 3 x 3 x 3,4 x4 x4,5x5x5,6 x 6 X6,
7 x 7 x 7. We select these tile sizes because they are centered around 5 x 5 x 5,
which is the default of non-rigid registration in NiftyReg.
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2.6.5 Implementations we compare with

We compare our approaches with other approaches from the state-of-the-art.
In addition to NiftyReg [74] that we use as the reference for testing the per-
formance, we compare with TH and TV implementations. As TH, we use the
library from Ruijters et al. [97]. As TV, we created an implementation that uses
tile properties and is based on the recent literature. It is a highly optimized
version with both literature’s observations and our own, using shared mem-
ory, LUTs for B-spline basis functions and ILP.

2.7 Results and Analysis

2.7.1 Accuracy

One of the benefits of FMA instruction in our implementations is that the result
is more accurate due to the increased precision of the intermediate product of
this instruction.

To show the effect of FMA in accuracy, we compare each approach with a high
precision CPU implementation. Table 2.2 shows the average absolute differ-
ence between each GPU approach and the high precision CPU implementation.
Similarly, Table 2.3 shows the average absolute difference between each CPU
approach and the high precision CPU implementation.

Table 2.2
Average absolute difference of GPU approaches from high precision CPU implementation.

Implementation Error (e—°)
Nifty GPU 5.3
Texture Hardware 9245
Thread per Voxel 5.5
Thread per Tile 5.6
Thread per Tile (Interp.) 2.8

Table 2.3
Average absolute difference of CPU approaches from high precision CPU implementation.

Implementation  Error (e~ ®)

NiftyReg CPU 6.0
Vector per Tile 3.0
Vector per Voxel 3.0

We make three observations. First, our implementations that use FMA instruc-
tions (TTLI for GPU, VT and VV for CPU) are almost two times more accurate
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than the implementations that do not use FMA instructions. Second, TH ap-
proach is significantly less accurate than the rest of the implementations, as
we expect from the low accuracy of interpolation hardware [80]. Third, GPU is
competing well with CPU in regards to accuracy.

CONCLUSION  In general, accuracy of software-only implementations is sig-
nificantly better than the hardware one. TTLI and FMA-based approaches are
over 3000x more accurate than TH. We refer the reader to [116] for more infor-
mation on floating point accuracy for GPUs.

2.7.2 Performance on GPU

To study the effect of our optimizations, we measure average time per voxel
(Section 2.7.2) and speedups (Section 2.7.2). To show the performance and sta-
bility among different GPU generations, we use two GPUs of different genera-
tions.

Time per voxel

In this section, we analyze the mean and standard deviation of the average
time per voxel. Figure 2.8 and Figure 2.9 show the average time per voxel
for GTX 1050 and RTX 2070 GPUs respectively. We group times per voxel by
implementation and for each group we vary the tile size. With this grouping
scheme, we show how each implementation behaves when we vary the tile
size. We draw four major conclusions.

Average time per voxel - NVIDIA GTX 1050
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Figure 2.8
Average time per voxel of the five registration pairs for various tile sizes on GTX 1050 GPU

First, our TTLI approach is faster in all cases, for both GPUs.
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Figure 2.9
Average time per voxel of the five registration pairs for various tile sizes on RTX 2070 GPU

Second, we would expect the performance of Thread per Tile approaches to
improve with bigger tile sizes, as they require fewer memory transfers from
off- and on- chip memories. However, this is not the case. The reasons are
three. First, the thread blocks that calculate the voxels at the borders of the
image have inactive threads in our current implementations. The issue with
the borders occurs when the total amount of voxels the blocks process does not
divide exactly the dimensions of the image. Then, the threads corresponding to
the remainder of voxels stay inactive. In our approach, each thread block works
on many tiles. The bigger the tiles, the more voxels each block processes and
the bigger the remainder can be. For example, in our implementation we use
blocks with 4 x 4 x 4 threads. In the worst case of our experiments, i.e., a tile of
size 7 x 7 x 7, each block processes 28 x 28 x 28 voxels. This amount of voxels is
considerable in comparison to the size of the images in our dataset (Table 2.1)
and leads to many inactive threads. Second, tiles decrease the coalescence of
GPU memory accesses. In CUDA, in order for the memory access to be optimal,
consecutive threads must access consecutive memory locations [80]. In our
approach, a single thread processes the entire tile and subsequently stores in
memory the result of the entire tile. The bigger the tiles, the more consecutive
voxels a single thread has to store. Figure 2.7, Step 3, shows the uncoalesced
memory store of Thread per Tile approaches. Third, some resources of the
GPU may remain underutilized. In order to submit work to the GPU we have
to divide the workload into thread blocks. The amount of the blocks depends
on the dimensions of the images. The GPU scheduler distributes blocks to MPs.
If the number of MPs does not divide the amount of blocks exactly, some SMs
may remain idle (tail effect). As the tile size gets bigger and the image size
becomes smaller, the number of created blocks becomes smaller. The fewer
the created blocks and the larger the number of SMs, the more significant the
impact of the remainder of the division. GTX 1050 has 5 SMs and RTX 2070 has
36 SMs, therefore the impact of the tail effect is more pronounced on RTX 2070.
In conclusion, the performance of our approach in regards to different tile sizes,
is a balance between the acceleration that the reduction of memory transfers
produces and the deceleration that border effects and memory uncoalescence
cause.
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Third, we make three observations for NiftyReg, our reference. First, NiftyReg
is considerably slower than the rest of the implementations, similarly to TH.
Second, tile size does not affect the performance of NiftyReg because NiftyReg
is not utilizing tile properties. Third, the timings of NiftyReg are constant for
all tile sizes. As we use NiftyReg, which is constant, as reference, the speedup
graph in the next section is also a scaled time graph.

Fourth, the small standard deviation of the images of our dataset shows that
the performance is not affected by the image. The reason is that B-spline in-
terpolation acts on all voxels and therefore the image structure does not affect
B-spline interpolation. As we show in Section 2.5.4, the amount of work is
directly proportional to the number of voxels.

In this section, we analyze the mean and standard deviation of speedups. Fig-
ure 2.10 and Figure 2.11 show the average speedup for GTX 1050 and RTX
2070 GPUs respectively. We group speedup by tile size and for each group we
vary the implementation. With this grouping scheme, we show how each im-
plementation behaves in comparison to the other implementations. We draw
four major conclusions.

Average speedup - NVIDIA GTX 1050
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Figure 2.10
Average speedup of B-spline interpolation of the five registration pairs for various tile sizes
on GTX 1050 GPU. The B-spline interpolation of NiftyReg is the reference of the speedup

First, our TTLI approach is outperforming the rest in all cases and is 6.5x
faster than NiftyReg , on average. TTLI outperforms all other implementations
by at least 1.56x on GTX 1050 and 1.3x on RTX 2070 (the worst case is TV for
4 x 4 x 4 tile size).

Second, despite our optimizations of memory accesses (Section 2.5.2) , TT does
not improve a lot over TV. The reason is that, after we eliminate the memory
latencies, arithmetic computations become the bottleneck of the implementa-
tion. We use NVIDIA’s Visual Profiler [78] to solve the problem in two steps.
First, we confirm that our GPU kernel is compute bound (the profiler collects
statistics of utilization of memory and computation units). Second, we use the
Program Counter sampling of the same tool. The profiler collects, at periodic
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Figure 2.11
Average speedup of B-spline interpolation of the five registration pairs for various tile sizes
on RTX 2070 GPU. The B-spline interpolation of NiftyReg is the reference of the speedup

intervals, concurrent samples of the state of two hardware units of the GPU:
a) the warp scheduler, which is the unit responsible for scheduling the GPU
instructions, and b) the warp Program Counter, which is a counter that points
to the instruction that is currently executing [78]. Almost 80% of the acquired
samples indicate that the warps could issue (submit for execution) their instruc-
tions without waiting. This result implies that the algorithm is well optimized
and further improvement can only be achieved with structural changes to the
algorithm. Reformulating the summation of basic Thread per Tile approach to
trilinear interpolations (Section 2.5.3) solves this issue. According to Section
2.5.4, computational complexity of TTLI is half that of TT, which is reflected to
the results. TTLI is 50% — 80% faster than TT.

Third, TH has almost the same performance as NiftyReg and is the slowest ap-
proach in our experiments. The performance does not vary with the different
tile sizes as no tile properties are used, similarly to NiftyReg.

Fourth, our approach works well on both Pascal architecture (GTX 1050) and
Turing architecture (RTX 2070) GPUs. Figure 2.10 and Figure 2.11 show mostly
similar trends of the data.

We compare the performance of our approach in terms of time and speedup
over a range of images. Our approach outperforms all other approaches and
improves performance by at least 1.3x. We verify the benefits in performance
on two GPU architectures, including Turing architecture (RTX 2070), the latest
architecture at the time of writing. The speedup of the reference, NiftyReg,
is 6.5x on average and therefore our approach is a suitable alternative for B-
spline interpolation in non-rigid registration.
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2.7.3 Performance on CPU

We apply the methodology of our GPU approach to CPU (Section 2.5.5). To
study the effect of our methodology on CPU, we measure average time per
voxel (Section 2.7.3) and speedups (Section 2.7.3).

In this section, we analyze the mean and standard deviation of the average
time per voxel of the CPU approaches. Figure 2.12 shows the average time per
voxel for an i7-7700HQ CPU. We group times per voxel by implementation
and for each group we vary the tile size. With this grouping scheme, we show
how each implementation behaves when we vary the tile size. We draw four
major conclusions.
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Figure 2.12
Average time per voxel of the five registration pairs for various tile sizes on i7-7700HQ CPU

First, our implementations outperform the reference in all cases.

Second, in VV, time decreases with increasing tile size. The reason is that the
bigger the tile is, the more the voxels that use the same control points are
(Section 2.5.5). Thus, we have fewer memory transfers with bigger tiles.

Third, in VT, time decreases with increasing tile size for two reasons. First,
bigger tiles fill more slots of the SIMD vectors (Section 2.5.5) and therefore
each CPU thread calculates more voxel simultaneously. Second, bigger tiles
require fewer transfers from memory (Section 2.5.6).

Fourth, in NiftyReg, time decreases with increasing tile size. The CPU imple-
mentation of NiftyReg uses tile properties to avoid loading control points that
overlap in the x-axis. The bigger the tile is, the more the overlapping voxels
are.

In this section, we analyze the mean and standard deviation of speedups of
the CPU approaches. Figure 2.13 shows the average speedup for an iy-7700HQ
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CPU. We group speedup by tile size and for each group we vary the imple-
mentation. With this grouping scheme, we show how each implementation
behaves in comparison to the other implementations. We draw three major
conclusions.

Average speedup - Intel i7-7700HQ
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Figure 2.13
Average speedup of B-spline interpolation of the five registration pairs for various tile sizes
on i7-7700HQ CPU. The B-spline interpolation of NiftyReg is the reference of the speedup

First, our CPU implementations outperform the reference in all cases by at
least 3x and they are up to 5x faster.

Second, VT generally outperforms VV except in the 3 x 3 x 3 case, where more
slots of the vector remain empty (Section 2.5.5). It is 3x to 5x faster than the
reference. The speedup of VT increases as the tiles get bigger.

Third, VV behaves better than VT when the tile size is small, because VV uses
all vectors slots and therefore tile size does not affect the performance as much
as VT (Section 2.5.5). On average, it is 3x to 4x faster than the reference. The
speedup of VV decreases as the tiles get bigger, although VV becomes faster
with increasing tile sizes, as we show in Section 2.7.3. The reason is NiftyReg
also becomes faster.

CPU conclusion

We compared the performance of our CPU implementations in terms of time
and speedup over a range of images. We observe that all implementations
become faster as the tile size increases because they need to read fewer input
data. Our CPU implementations outperform the reference in all cases by 3x to
5x. We conclude that our methodology can be beneficial even for CPU.

2.8 Clinical validation of image registration implementation

In order to test our novel implementation of parallelization of B-spline interpo-
lation on GPU, we performed a pre-clinical study to solve a clinical application
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scenario. In the medical field, image registration aims to establish spatial cor-
respondences between volumetric datasets [110]. The clinical applications in-
clude techniques such as information fusion (inter-modality: combining MRI,
CT and US data) [72], patient motion (intra-modality: aligning of temporal
series) [77] and patient changes (intra and inter-modality: pre-post treatment
scans or volume changes over time) [61]. Our work on B spline interpolation
is focused mainly on the deformation application of image registration. Fig-
ure 2.14 shows the placement of our method within image registration algo-
rithms.

| Preoperative scan |—’| Inflation of peritoneum |—’| Intraoperative scan |

Registration algorithm

Transformation calculation | | Deformation | | Cost function minimization

Proposed methods
(TT/TTLI)
Figure 2.14

The association of our method in the pneumoperitoneum compensation workflow

Minimally invasive procedures require pneumoperitoneum (practice to inflate
the patient’s abdomen to allow space for insertion of surgical tools). As can
be seen in Figure 2.1, the effect of inflating the peritoneum causes a large de-
formation of the liver surface [8, 44, 114]. This deformation causes large errors
for image guided surgery applications because the intra-operative deformation
is not corrected. A procedure to compensate for this deformation, in case of
availability of intra-operative imaging, is to use image registration.

Non-rigid registration using FFD, as presented by Rueckert et al. in [96] and
optimized by Modat et al. in NiftyReg [74], provides a solution. NiftyReg is
capable of all phases of registration (rigid, affine, and non-rigid) and therefore
we chose it as a suitable platform to apply our method and evaluate the per-
formance improvement. Moreover, as Modat et al. mentions in [74], B-spline
interpolation is one of the most significant bottlenecks in terms of performance.
However, the FFD implemented in NiftyReg through Normalized Mutual In-
formation (NMI), a measure of similarity of the images, is not a registration
algorithm specific to compensation of liver deformations due to pneumoperi-
toneum. Hence, testing was performed throughout two different experiments
with different subjects and imaging modalities: Experiment 1 makes use of a
patient-specific liver phantom [87] and DynaCT scanning, whereas Experiment
2 was performed by the authors through the use of a porcine model and an
MR], to validate the registration process in vivo.

2.8.1 Experiment 1: Validation in liver patient-specific phantom.

The patient-specific liver phantom aforementioned presents a total of 5 tumors
and a blood vessel tree. We used these structures to evaluate the registration
process (Section 2.8.3). The liver phantom used throughout the experiments
was produced by the ARTORG centre and Cascination® [87] and has been
used also by Teatini et al. in [109] for registration studies. We performed a
series of intra-operative CT (Artis Zeego, Siemens®) scans (DynaCT) of the
liver phantom the phantom positioned on the surgical table. We executed of a
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total of 5 liver phantom scans, between which we applied various deformations
to the liver phantom.

We performed segmentation of the liver phantom DynaCT scans to remove
artifacts, and applied the segmentation to the images to perform image reg-
istration on parts of the image including only the liver phantom. Resulting
output images show that the shape of the output images of the registration
match rather precisely those of the reference deformed images. An example of
the output of the registration process is shown in Figure 2.15.

Figure 2.15
DynaCT scans of the liver before deformation and after deformation. The result of the reg-
istration shows a correctly performed registration

2.8.2 Experiment 2: Validation in porcine study.

We performed a porcine study to acquire pre-operative and intra-operative
(post pneumoperitoneum) MRI scans in order to acquire data regarding the de-
formation that the liver undergoes due to pneumoperitoneum. We performed
this study at Oslo University Hospital through the use of a 3T Siemens MRI
scanner, model Ingenia Philips ®. The surgeon applied pneumoperitoneum
through the use of a Verress needle. We applied a pneumoperitoneum at
14 mmHg pressure, although some pressure was lost throughout the duration
of the MRI scans. Both MRI scans were performed with injection of contrast to
improve imaging of the liver parenchyma and blood vessels (Flow rate 5.0 and
Volume 11.0, based on the weight of the animal at 55kg).The MRI scans are
thin sliced (1 mm and 1.5 mm) enhanced-T1 high-resolution isotropic volume
examination (e-THRIVE) scans.

2.8.3 Qualitative assessment of the registration procedure

We used our method to perform the registration between the MR images, and
we used qualitative assessment of the registration procedure using a checker-
board validation procedure [92]. In order to decrease the required amount of
GPU memory, we cropped the images to fit the volume of the segmented liver.
We then compared our results to the results from an affine (rigid) registration
procedure (visible in Figure 2.15). The affine transformation presents several
mismatches (as could be expected, and clearly visible in the outer borders of
the liver), whereas the non-rigid registration method provides very accurate
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(only based on a qualitative assessment) registration for both the parenchyma
(the outer shape of the liver is preserved correctly), and the tumor and ves-
sel structures present in the porcine model are also quite consistent between
images (Figure 2.16).

Figure 2.16
Comparison of registration through qualitative checkerboard assessment on porcine
model. a) Affine registration, b) Non-rigid FFD

2.8.4 Quantitative assessment of the registration procedure

With respects to the original FFD algorithm [74], we did not apply changes
(only the deformation section, as shown in Figure 2.14). Hence, to confirm that
nothing was modified with respect to the results obtainable through the GPU
implementation in the NiftyReg, we performed a quantitative analysis using
difference images. The image differences displayed no real differences between
various implementations, which verifies that quantitatively the method does
not introduce changes. Validation of accuracy of the registration method can
be inferred from the original studies performed by Modat et al. in [74].
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Table 2.4

Mean absolute error (and standard deviation) for our dataset. Columns 2, 3, 4 compare the

the deformed intra-operative image with the output of the registration for 3 methods: 1)
affine, 2) non-rigid with NiftyReg, 3) non-rigid with our approach. The last column shows
the mean absolute error between registration with NiftyReg and our approach.

Registration Mean absolute error
pair

Affine NiftyReg Ours NiftyReg vs Ours
Phantom 1 0.2288 +0.5403 0.1308 £0.2822  0.1301 +0.2835 0.0377 £0.11
Phantom 2 0.2338 +0.4971  0.179 £0.311  0.1718 +0.3141 0.0243 £0.0768
Phantom 3 0.256 £0.5181  0.1718 +0.3013 0.1739 £0.3109 0.0198 +0.102
Porcine 1 0.2007 £0.551  0.0724 £0.2388 0.0723 £0.2392 0.0088 +0.053
Porcine 2 0.1623 £0.477  0.0708 £0.1932  0.0723 £0.2007  0.0066 +0.0456
Average 0.2163 £0.5167  0.125 £0.2653  0.1241 £0.2697 0.0194 £0.0774

Figure 2.17 shows the normalized (z-score) difference images for the liver phan-
tom. Figure 2.17a compares the affine transformed non-inflated (pre-operative)
liver to the inflated (intra-operative) liver. Figures 2.17b and 2.17c compare the
inflated liver to the non-rigid transformed non-inflated liver with NiftyReg and
our approach, respectively. We draw two observations. First, affine transform
performs worse than non-rigid registration. Second, both approaches of non-
rigid registration give almost the same result. In order to facilitate comparison
between the two non-rigid registration approaches we create a difference im-
age of the two non-rigid registration images in Figure 2.17d. We observe that
the difference image of them is almost completely black which indicates that
the two registrations are very similar. High similarity means that the difference
will not be easily visible to the human eye.

Figure 2.18 shows the difference images for the liver phantom. Figure 2.18a
compares the affine transformed non-inflated (pre-operative) liver to the in-
flated (intra-operative) liver. Figures 2.18b and 2.18c compare the inflated liver
to the non-rigid transformed non-inflated liver with NiftyReg and our ap-
proach, respectively. Similar to the phantom, affine transform performs worse
than non-rigid registration and both approaches of non-rigid registration give
almost the same result. The difference image of the two non-rigid registration
images in Figure 2.18d again indicates that the two registrations are very simi-
lar.

To facilitate understanding of the differences we also use standard metrics
to quantify them, i.e., we use Mean Absolute Error (MAE), Sum of Squared
Errors (SSE) and Structured Similarity Index (SSIM). We show the MAE in
Table 2.4. The figures confirm our observations on the difference images, i.e.,
non-rigid registration performs much better than affine registration. Moreover,
the MAE between our approach and original NiftyReg is minimal, with our
approach having the edge slightly. SSE and SSIM in Table 2.5 confirm the same
observations.
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Figure 2.17
Comparison of registration through difference images on liver phantom.

Table 2.5

Sum of squared errors (Left) on normalised outputs of affine registration and non-rigid
registration with our approach and original NiftyReg, using the intra-operative image as
reference. Structured Similarity Index Metric (Right) of the registration output, using the
intra-operative image as reference).

Registration SSE SSIM
pair

Affine Ours NiftyReg Affine Ours NiftyReg

Phantom 1 322951 171241 170725 0.865  0.929 0.934
Phantom 2 223659 150963 152037 0.916  0.952 0.946
Phantom 3 248370 156682 153190 0.889  0.952 0.95
Porcine 1 8439875 3994665 3997671  0.797  0.912 0.911
Porcine 2 12152982 12028758 12027581  0.716  0.737 0.737

Average 4219435 0.1240 0.1249  0.8368 0.8963 0.8956

2.8.5 Performance evaluation on clinical data
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Figure 2.18
Comparison of registration through difference images on porcine liver.

We test the performance of non-rigid registration on two platforms: a) Intel
i7-7700HQ CPU and GTX 1050 GPU, and b) Intel i7-8700 CPU and RTX 2070
GPU. We use five image pairs from the data in Sections 2.8.1 and 2.8.2. The
tile size is set to 5 x 5 x 5, the default setting of NiftyReg. As timing results
we use the registration time that NiftyReg application reports at the end of the
registration. These timing results also include the time for loading and storing
images, allocating memory, initialization etc.

To test the contribution of the accelerated B-spline interpolation to the total
time required for the registration of medical images, we integrate our approach
(TTLI) to NiftyReg (Section 2.4.2) and compare it with the original. There are
two important parameters to consider before describing our methodology for
collecting the timing results.

First, the B-spline interpolation implementations affect the number of itera-
tions until convergence of the cost function (Figure 2.14). However, the dif-
ferences between the accuracy of different B-spline implementations do not
significantly impact the quality of the registration result (Sections 2.8.3 and
2.8.4). To our knowledge, the difference in number of iterations is because the
difference in accuracy is enough to change the local optima of the optimization
function. Therefore, the registration completion time may differ not because of
the time required for the B-spline interpolation, but because one of the im-
plementations happens to find different local optima and converges faster, in
fewer iterations.
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Second, NiftyReg uses a pyramidal approach, i.e., NiftyReg resamples the in-
put images to different sizes. The bottom level of the pyramid is the original
large image, and as we go up the pyramid, NiftyReg subsamples the previous
level (i.e., halves the resolution in every dimension). The bottom level requires
significantly more computation time than the upper levels (and we emphasize
there are many iterations per each level until convergence).

In order to have a fair comparison between approaches, we minimize the im-
pact of number of iterations to the total time of registration, with two methods.
First, we use a three level pyramid. We limit the number of iterations so that
the cost function iterates on the bottom level for the same number of iterations
for both the implementations. Second, we use a one level pyramid. We, again,
limit the number of iterations so that the iterations are the same for both imple-
mentations. The first method gives better quality of registration but the upper
levels (i.e., smaller images) affect (although not much) the total timing. The
second method gives slightly worse registration result, but there are no other
pyramid levels to affect the total registration time.

Tables 2.6 and 2.7 show total registration time, speedup of our approach and
allowed iterations of the cost function on GTX 1050, for one and three pyramid
levels respectively. Tables 2.8 and 2.9 show total registration time, speedup of
our approach and allowed iterations of the cost function on RTX 2070, for one
and three pyramid levels respectively.

Table 2.6

1 pyramid level registration on GTX 1050. The table shows the speedup of registration
with our improved B-spline interpolation GPU approach. The iteration column shows the
number of iterations of the cost function.

Reg1strat10n Speedup Original Our approach Tterations
pair (s) (s)

Phantom1 1.34X 70.6 52.8 150
Phantom2 1.29X 13.3 10.3 150
Phantoms3 1.26X 11.1 8.8 120
Pig1 1.32X 19.9 15.1 120
Pig2 1.30X 24.7 19.1 250
Average 1.30%

We draw two major conclusions.

First, registration with our B-spline interpolation approach is faster in all im-
ages, on both GPUs. The speedup of registration is 1.29x on average on GTX
1050, whereas the speedup on RTX 2070 is 1.13x on average.

Second, the speedup of registration depends on what portion of the total reg-
istration time the GPU approach takes. According to Amdahl’s law [3], the
smaller the time portion of B-spline interpolation in the original registration
routine is, the smaller the impact of accelerating B-spline interpolation is. For
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Table 2.7

3 pyramid levels registration on GTX 1050. The table shows the speedup of registration
with our improved B-spline interpolation GPU approach. The iteration column shows the
number of iterations of the cost function.

Reg1strat10n Speedup Original Our approach Tterations
pair (s) (5)

Phantom1 1.28% 54.2 42.3 150
Phantom2 1.24X 10.5 8.5 150
Phantom3 1.31X 8.7 6.6 120
Pig1 1.24X 11.1 9.0 120
Pig2 1.32X 20.1 15.1 250
Average 1.28%

Table 2.8

1 pyramid level registration on RTX 2070. The table shows the speedup of registration
with our improved B-spline interpolation GPU approach. The iteration column shows the
number of iterations of the cost function.

Reg1strat10n Speedup Original ~Our approach Iterations
pair (s) (s)

Phantom1 1.17X 29.3 25.2 150
Phantom2 1.15X% 5.9 5.2 150
Phantoms3 1.09% 4.9 4.5 120
Pig1 1.16X 8.7 7.5 120
Pig2 1.14X 10.5 9.2 250
Average 1.14 %

Table 2.9

3 pyramid levels registration on RTX 2070. The table shows the speedup of registration
with our improved B-spline interpolation GPU approach. The iteration column shows the
number of iterations of the cost function.

I;;gristration Speedup Origirze;; Our approa(cs})l Iterations
Phantom1 1.15X 23.0 20.0 150
Phantom2 1.12X 4.8 43 150
Phantom3 1.06 X 4.0 3.8 120
Pig1 1.08 % 5.1 4.7 120
Pig2 1.14X 8.6 7.6 250

Average 1.11X
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example, RTX 2070 is much faster than GTX 1050, and the code that runs on
RTX 2070 completes its execution in much shorter time than on GTX 1050.
Therefore, GPU code running on RTX 2070 takes a smaller portion of total reg-
istration time, and the effect on speedup is smaller. This is the reason that RTX
2070 has smaller average speedups.

CONCLUSION  We apply registration to the images of our dataset (Section
2.6.1) and we compensate for pneumoperitoneum. We obtain a speedup of non-
rigid registration of 29% and 13% on average on GTX 1050 and RTX 2070 re-
spectively. Therefore, we believe our approach is beneficial to the performance
non-rigid registration

2.8.6 Memory requirements

The memory requirements remain the same as the original implementation,
except allocations for a) LUTs in constant memory (340 bytes), and b) control
points in shared memory (12288 bytes). The memory space we use is much
less than the maximum available, and therefore it is not a limitation of our
implementations.

2.9 Conclusion

In this work, we present a new thread assignment scheme that reduces mem-
ory traffic by at least 11.9x compared to other state-of-the-art B-spline interpo-
lation approaches. We achieve that by assigning one GPU thread per tile. This
assignment has two key advantages. First, the loading of the input demon-
strates significant overlap. Second, the control points, that each group of tiles
needs, stay permanently in registers. To further enhance the performance of
our implementation, we rearrange the weighted summation of control points
to trilinear interpolations. This rearrangement has two key advantages. First,
it reduces the computational load. Second, it increases accuracy. We apply our
optimized approach to non-rigid registration of medical images to enhance the
performance of registration in time critical applications, like IGS.

The results confirm that by restructuring the B-spline interpolation algorithm
to reduce the number of memory transfers is indeed beneficial to the perfor-
mance. In addition, the use of trilinear interpolation proves helpful not only
for performance, but also for the total accuracy. The proposed method, TTLI,
improves accuracy by up to 3300x and performs up to 7x faster in compar-
ison to the other GPU implementations. We integrate the optimized B-spline
algorithm into NiftyReg medical image registration library, and improve the
performance of non-rigid registration by 29% and 13% on our two systems.

We conclude that our methodology improves the performance of B-spline in-
terpolation, in terms of both speed and accuracy. Our approach is an efficient
replacement of B-spline interpolation in non-rigid registration. We publish our
work ([122]) and make our source code publicly available at [119].




2.10 FUTURE WORK

51

2.10 Future work

This work is focused on medical image registration, but with small changes it
can be applied to more general scenarios. For example, although for the field
of medical imaging grids with uniform spacing are usually enough, with min-
imal changes the implementations can be extended to support non-uniform
grids. The most significant change needed is to calculate LUTs for B-spline
basis functions weights on-the-fly, which has a slight impact in performance.
Moreover, the same methods can also be applied to generic image interpo-
lation. In this case, image pixels are used as control points and only image
zooming is supported, which is a requirement for tiles to be created (the code
needs only to be adapted for different handling of image border). Image size
can be increased by integer multiples or by real number multiples with a slight
performance hit for the latter (due to non-uniform grid).

Regarding registration, it would prove beneficial to merge multiple steps with
B-spline interpolation (careful arranging of registers will be required). Further-
more, by merging other steps, uncoalescence of the output could possibly be
avoided. In addition, by optimizing the rest of the registration process the time
necessary for the registration diminishes, possibly allowing fast intra-operative
updates without intra-operative CT acquisitions, for example through liver
models reconstructed with US or through stereo video reconstructions [109].

The importance of speedup for image registration through FFD is not only im-
portant for the application to pneumoperitoneum compensation, but also for
compensating several other deformations that the liver commonly undergoes
throughout surgery. If the registration procedure could allow for real-time reg-
istration, FFD could be used to compensate deformations caused by a surgeon
when lifting the liver with surgical instrument or by liver mobilization (resec-
tion of liver ligaments).
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3.1 Motivation

Sparse general matrix-matrix multiplication, similar to its dense counterpart,
performs the Matrix Multiplication (MM) of two matrices. The main difference
between sparse and dense matrix multiplication is that we have to account for
sparse matrices, which contain mostly zero elements. spGEMM is an impor-
tant component in scientific and data analytics applications. Graph analytics
[22, 57], Bread-First-Search (BFS) [34], Algebraic Multigrid (AMG) [11], Schur
complement [118], etc. use sparse matrices. Sparse matrices, which often con-
tain million of elements, require matrix multiplication methods that do not
waste computing resources on elements that are zero. The diverse structure
and density of sparse matrices poses difficulties in regards to memory man-
agement and load balancing in parallel systems.

The re-emergence of deep learning motivated the creation of application spe-
cific integrated circuits (ASIC) that specialize in MM, providing significant
performance boost over standard multiplication units. Such ASICs are Tensor
Core Units (TCUs) from NVIDIA [83] and TPUs from Google [37]. We want
to utilize tensor units to accelerate sp)GEMM. TCUs from NVIDIA provide an
attractive target for two reasons. First, accessibility. They are widely available
as they are included in the new generation of GPUs from NVIDIA. Second,
mixed precision. Typically, in regards to deep learning 16-bits of precision (or
less) are sufficient for training purposes and therefore tensor unit manufactur-
ers opt for lower precisions. Mixed precision widens the application field to
scientific problems which are more demanding w.r.t. precision. Mixed preci-
sion achieves this by mixing 16-bit inputs and high precision multiplication
and accumulation.

Our work is motivated by three key observations. First, blocking sparse matrix
storage formats [123], which group the elements of the matrix into rectangu-
lar tiles, are a good fit for TCUs which expect rectangular matrices as input.
Second, TCUs are very efficient even when they are not fully occupied [19].
Third, even though TCUs support only low precision inputs, they can operate
in mixed precision mode to perform operations that require higher precision,
like GEMM [42, 70]. Therefore the key idea is to partition the input in tiles and
multiply tiles with TCUs. Tiles are sparse, but TCUs perform MM efficiently
even when not fully occupied. Mixed precision mode is necessary in order to
keep sufficient accuracy when multiplying large matrices.
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3.2 Objectives

The primary objective of the 2nd part of this work is to accelerate spGEMM
by taking advantage of TCUs. To the best of our knowledge, this is the first
proposal of using TCUs in the context of spGEMM. Our methodology has two
advantages. First, it takes advantage of fast MM of TCUs. Second, by utilizing
TCUs that would otherwise be idle, we can use the normal processing elements
for non-canonical workloads. To that end, we form the following secondary
objectives:

¢ Implement an SpGEMM implementation that works with rectangular
blocks. Blocks are necessary to utilize TCUs which work with square
matrices.

¢ Test the performance of SpGEMM. In order to achieve this, we need to:
— Collect a dataset of sparse matrices.

- Compare with State-of-the-Art SpPGEMM GPU implementations.
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3.3 Background

In this section we present the theoretical background of our work.

3.3.1 Storage format

In sparse matrices, typically, the number of non-zero (nnz) elements is much
smaller than the number of zero elements. In order to save memory, we need
an efficient way to store only non-zero (nz) elements.

COO format

COO format stores each nz value along with its coordinates. If the sparse ma-
trix is sufficiently sparse, the storage cost of saving the coordinates is much
smaller than the dense representation. This storage format is formally known
as COO format (Coordinate Format), one of the simplest and most used stor-
age formats [9]. In COO format, we have three arrays, 1) for row indices, 2)
for column indices, 3) for values. The same position in all three matrices corre-
sponds to the same element. In Figure 3.1, we show an the same 4 x 4 matrix
in dense representation and in COO format.

4x4 sparse matrix in dense and COO formats

Dense representation

o la]2 ]3]

BN o 10 20 0 COO format

Bl 55 0 0 o 0 0 1 3
o 0o o o [CEYEN™ 2 o 1
50 0 0 10 20 15 \40/ 50

Figure 3.1
A 4 x 4 matrix in dense and COO formats. Element “40”, which is located at position [3, 0]
of the dense matrix, corresponds to [3, O, 40] in COO format

Bitmap format

TCUs simultaneously process multiple elements in rectangular structures. COO
stores only single elements and has no concept of rectangular structures, there-
fore it is not sufficient by itself as a storage format for our approach. In this
work, we use a bitmap-based block shaped storage format to store sparse ma-
trices. The basic idea is to group elements to 8 x 8 square blocks, which we call
tiles. Elements have the same placement in the tile as they have in the dense
representation of the matrix. Each element in the tile can be either zero or
non-zero (nz). To keep track which elements are nz we use a bitmap, a binary
number of which each slot corresponds to one slot of the tile. If a slot contains



3.3 BACKGROUND

59

“_n
1

a nz we set the respective bit of the bitmap to , otherwise to “0”. Then, tiles
are stored in COO format. The difference with the standard COO format is
that, instead of using elements as values, now we use a tuple of two values: 1)
an index to the element array, which holds the elements of the tile (elements of
the same tile are in consecutive positions of the array), and 2) the bitmap of the
tile.

The authors of [7, 51, 124] propose various blocking storage formats, whereas
the authors of [56, 59, 66] propose various bitmap formats. In our work, we use
a format similar to [123] for three reasons: 1) it is simple and straightforward,
2) square tiles of fixed size fit well to TCUs, and 3) the performance of the
format has been evaluated in [123].

Figure 3.2 shows how we convert a dense matrix to bitmap format. We parti-
tion the dense matrix in partitions of tile size. We represent the positions of
nz elements as “1”s in the bitmap. We store four values for each tile that has
at least one nz element: 1,2) row and column indices like in COO format, 3)
index into the element array, and 4) bitmap with the location of nz elements in

the tile.

Bitmap sparse matrix storage format

Matrix in dense representation,
organized as a 3x3 grid of 4x4 tiles 16-bit bitmap tile Index in element array

0 1 2

Inde:
al
2 23 | a4 Element
0 array
as a6
a7 16-bit
Bitmap
a8 | a9
1

alo all Bitmap storage format

al2
al3
al4
’ | mo O W
als
al6 LITLET LTSI 0x829C 0x860 0x100 \0x8230/0x8412

Figure 3.2

A 12 x 12 matrix in dense (left) and bitmap formats (bottom right). Tiles have a size of 4 x 4
and partition the 12 x 12 matrix in a 3 x 3 grid of tiles. Nonzero elements a8,a9,all,al2
of the circled tile are represented as “1” in the bitmap. We store the nz elements of the tile
in consecutive locations in the element array. Index points to the first element of the tile.
On the bottom right of the figure, we circle the representation of the selected tile in bitmap
format

3.8.2 Sparse matrix-matrix multiplication

The general matrix multiplication (GEMM) has the form:
D=A*B+C (1)

where A, B, C are the input matrices and D is the output. Figure 3.3 shows how
we perform the matrix-matrix multiplication of the sparse matrices A and B
with dimensions M x K and K x N respectively. Similarly to dense matrices, to
get one element of the output, we need to multiply the nz elements of one row
of A with the corresponding nz elements of one column of B and then accu-
mulate the intermediate products (inner product). The difference in spGEMM
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Calculation of MM of Column
A (MxK) with B (KxN)

Row I

o-

Figure 3.3
Sparse matrix multiplication

is that we multiply the corresponding elements only if the elements in the cor-
responding positions of the row of A and the column of B are both nz and we
accumulate only nz products. The various ways to access the elements of A
and B are listed in [y1]. Figure 3.3 applies even if instead of elements we use
tiles. In this case the product of two corresponding tiles is their outer product
(or equally matrix multiplication). Algorithm 1 shows how to obtain the tile of
the output which has coordinates [I, J] in a simple spGEMM formulation.

We make two important observations. First, Equation 3.1 takes the form
C=AxB+C (3.2)

when we accumulate the tiles. Second, the matrix Multiplication-Accumulation
(MAC) of small tiles is exactly what the TCUs were designed to do.

3.3.3 CUSP

CUSP [20] is a library that specializes in sparse matrix operations. It is open-
source and easily accessible on github. It is written in Thrust which makes it
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Algorithm 1 Calculate [I, J] tile of C

C_tile+ 0

i+ 0

while i < K do
if A_tile[l,1] # empty AND B_tile[i, J] # empty then

C_tile[l, J] + A_tile[l, i] » B_tileli, J] + C_tile[l, J]

end if
1141

end while

easy to read and port to other platforms. Therefore, it provides a good “boiler-
plate” to test our approach.

CUSP uses Expand-Sort-Compress (ESC) method. According to ESC, there are
three main steps in spGEMM [11, 20]. First, Expand. We multiply each nz of a
row A(i,:) with all nz of the corresponding row of B (no additions i this stage)
[41, 71]. Second, Sort. We sort the products of the previous step so that prod-
ucts that correspond to the same value of C are in consecutive positions. Third,
Compress. We calculate each value of C by summing all respective products,
which are in consecutive positions, thanks to the previous step.

3.3.4 Real numbers in digital computer systems

Computer systems have to store real numbers in bit representation. Floating
point numbers are a common representation. The location of the decimal point
and the number of bits determines the precision and range of the represented
numbers. We denote the 32-bit representation as fp32, whereas the 16-bit as
fp16. In contemporary systems, typically, we use floating point numbers as
defined in IEEE 754 technical standard [17]. Usually, the fewer the number of
bits, the faster the processing of the numbers is. The arithmetic range of fp16 is
approximately 6 x 1078 ...6.55 x 10#, whereas for fp321is 1.4 x 10745 ...3.4 x
10%8. Luszczek et al. in [69] show the viability of fp16 arithmetic. They use 16-
bit LU (lower-upper) decomposition and iterative precision refinement with
mixed 16/64-bit precision to solve an A - x = b system of linear equations.

3.3.5 Matrix multiplication with CUDA

NVIDIA, with the latest generation of Graphical Processing Units (GPUs) (Tur-
ing architecture [82]), brought Tensor Cores to the mainstream market. Nvidia
Tensor Cores or Tensor Core Units (TCUs), are ASICs that have the purpose of
accelerating MM. Therefore, our work on spGEMM has significant benefits by
properly adapting spGEMM to TCUs. CUDA SDK from NVIDIA provides the
necessary Application Programming Interface (API) for TCUs.
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TCUs execute MM on the data we provide. The input matrices have two re-
strictions. First, a matrix can only contain elements of specific types, i.e., one
of the following: fp16, 8-bit integers, 4-bit integers and bits. Second, TCUs
support only specific configurations of matrix dimensions, which the program-
ming guide defines [83]. We prefer fp16, which has the most bits, because
sparse matrices are usually large and physical problems are sensitive to arith-
metic precision. We prefer 16 x 16 matrices because one TCU can fit two 8 x 8
tiles, as we describe in Section 3.6.4. The programming structure that holds
the matrices that TCUs operate on is called fragment (there is no relation with
fragments shaders from computer graphics) [85].

TCUs are mainly targeted to deep learning, which is not very demanding
precision-wise. Therefore, manufacturers opt for smaller representations (16-
bit or less) of numbers to get faster output. fp16 or lower precision is detrimen-
tal to the output when dealing with physical problems because precision and
range of numbers can be insufficient. To rectify this problem NVIDIA provides
mixed precision functionality. Mixed precision allows TCUs to work with num-
bers of different precision. The defining characteristics of the mixed precision
implementation of NVIDIA are two. First, although inputs A and B are in fp16
precision, their multiplication happens in full precision. Second, the product
is stored as fp32 to accumulators C and D [85]. Figure 3.4 shows how the
different precisions are mixed during MM.

D A B C

(Fp32) (Fp32)

Fp32 Fpl6 Fpl6 Fp32

Figure 3.4
Mixed precision with CUDA TCUs. Inputs are stored in fp16, whereas the output and ad-
dend are stored in fp32. The multiplication and addition are performed in full precision

Mixed precision fits well to our spGEMM approach. spGEMM requires the cal-
culation of many products, therefore simple fp16 precision is not sufficient for
two reasons. First, a product which has a lot of multiplicands in fp16 precision
can easily exceed the range of fp16. Second, the precision error accumulates
with each successive multiplication. [42, 70] evaluate the performance and pre-
cision of GEMM and linear equation solving using the mixed precision mode
of TCUs. They show that TCUs can be used in other physical problems, outside
deep learning.

3.3.6 Challenges of spGEMM

Unlike spGEMY, in spGEMM both inputs and output are sparse. Therefore, it
is very difficult to utilize the knowledge we infer from the sparsity structure of
the input matrices to make arithmetic and memory optimizations. The reasons
that make spGEMM more challenging than spGEMYV are three [21, 39, 40, 67,

117]:
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First, data access is highly irregular because it depends on the sparsity struc-
ture of both matrices and their interaction. Mapping the multiplication of el-
ements of A with elements of B and the accumulation to an element of C is
not trivial for two reasons: 1) it requires access of possibly distant memory
locations to load the inputs, and 2) it requires inserting data to the output with
irregular access patterns. We try to access data row-wise to increase cache lo-
cality.

Second, it is very difficult or impossible to know the size of the output before
the actual calculation. According to Liu et al. [67], there are four methods to
estimate how much memory we need to allocate for the output:

1. Precise. We make an estimate that is very close the actual size of the
output, typically by partial execution of the algorithm.

2. Upper bound method. Usually, as upper bound we use the amount of
intermediate products (before we accumulate them to their respective
values of the output).

3. By using probabilities theory [4].

4. By increasing the size of memory progressively, i.e., allocating more
memory if the previously allocated overflows. At the end of spGEMM,
we remove empty / unused entries from the allocated memory as neces-
sary.

Third, load balancing. The sparsity structure of both matrices and their interac-
tion determine the distribution of workload. Nz elements in each row may vary
significantly, which makes it difficult to partition the workload among threads.
We partition workload based on the row size of the input or estimated row size
of the output.

3.4 Related work

In this section we review the state-of-the-art GPU spGEMM approaches.

3.4.1 Expansion Sorting Compression

Expansion Sorting Compression methodology [11] has three benefits: 1) it ex-
poses fine-grained parallelism, 2) by implementing the algorithm with simple
parallel primitives it lessens the effects of load imbalance, and 3) the perfor-
mance is predictable and the computational complexity is equal to the size of
the intermediate matrix. One drawback of ESC is that the intermediate matrix
may be significantly larger than the output. Sorting the intermediate matrix is
very costly.

Dalton et al. [21] improve ESC. They perform the Expansion step using breadth-
first search on a bipartite graph to avoid the deficiencies of loading disparate
rows of various sizes from the input. They create thread and warp variants
for sorting, the most time consuming step, and use a highly optimized thread
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block-level radix sort. By using shared memory to localize processing they
further increase the performance. However, they did not release these changes
to CUSP [20].

Kunchum et al. [60], in HybridSparse, implement variants of ESC in combi-
nation with their own scatter vector approach, as we detail in the following
section about hybrid spGEMM approaches.

Winter et al. [117], in AC-SpGEMM, perform ESC locally in shared memory.
They use dynamic scheduling to keep data longer in shared memory, for many
iterations of ESC. Thus they reduce global memory traffic and the cost of sort-
ing a huge intermediate matrix in global memory. One drawback of this ap-
proach is that merging partial results degrades the performance when the nz
elements of rows of A increase.

In this work we propose a tiling approach. The intermediate matrix has fewer
entries because we are using tiles as values of ESC. The cost of ESC is smaller
with fewer entries. Moreover, in order to fully utilize MAC operations of TCUs,
we have to merge Expansion and Compression steps. This can be achieved by
using a task list.

3.4.2 Hash tables

Intermediate products that correspond to the same value of the output can be
accumulated using hash tables. Hash tables have two advantages. First, hash
tables typically require less memory than the intermediate matrix of the ESC
approach. Second, hash tables do not use an intermediate matrix. Therefore,
they do not have to sort the huge matrix of the intermediate products (they sort
the output instead, which is always smaller). Hash tables have two drawbacks.
First, efficient usage of shared memory is necessary to keep global memory
traffic low. Typically, hash table approaches use two levels of hash tables, one
on on-chip memory and another one on off-chip memory. Second, due to their
non-deterministic nature, the floating point result may be different between
different runs.

Demouth et al. [24] present one of the first implementations of spGEMM with
hash tables. In their implementation, each warp loads a row of A. For each nz
column of the loaded row of A, the warp loads the respective row of B. The ac-
tive nz element of A, which is shared to the rest of the warp by shared memory,
is multiplied with all elements of the loaded row of B. The product is put to a
warp-local memory area using a hash function. Then they repeat with the next
nz column of A. cuSPARSE, which is based on this implementation, is widely
available through the CUDA Software Development Kit (SDK) [84]. cuSPARSE
has been updated since Demouth et al. presented it, but cuSPARSE is delivered
as closed-source binary and we cannot know the changes. cuSPARSE has two
drawbacks. First, there is imbalance between threads because different threads
of the warp may have to insert a different number of values in the hash table.
Second, shared memory is small, which results in frequent data movement to
global memory.

Anbh et al. [6], in BalancedHash, first calculate the amount of intermediate prod-
ucts corresponding to each row of A. They call this amount partition. They as-
sign one thread block to each partition, and each partition has its own hash
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table. Hash conflicts are sent to a spillover queue, where they are kept until
the next round. Partitions keep the hash tables small, so that they can fit in
shared memory. The hash table size, which is static, is critical to performance.
Therefore BalancedHash may not behave well with highly varying partition
sizes.

Nagasaka et al. [76], in Nsparse, solve the small shared memory problem by
partitioning the rows of the output. Nsparse improves on BalancedHash in two
ways: 1) by using hash tables of variable size in shared memory, less shared
memory is required and more blocks can run, and 2) by using fewer auxiliary
matrices, it keeps memory traffic low and reduces memory storage require-
ments. As all hash table approaches, Nsparse is sensitive to larger rows that
cause hash conflicts or relocation to global memory.

Deveci et al. [25] use two level hash tables. They create a portable implemen-
tation that works on many platforms (GPU, Power8, Knights Landing CPUs
etc). They adapt the hash tables to the number of threads of each platform.
High portability prevents architecture specific optimizations that could give
an additional boost in performance.

In our tiling approach, the storage requirements of the intermediate matrix are
also low for two reasons: 1) we operate on tiles and not single elements, and 2)
we use precise methods to estimate the size of the output matrix. By keeping
the size of the intermediate matrix small, the sorting cost is low as well.

3.4.3 Hybrid

Depending on the thread assignment / workload partitioning of each ap-
proach, there are up to three reasons for load imbalance: 1) the number of
values in each row of A may vary substantially among rows, 2) the number
of values in each row of B may vary substantially among rows, and 3) the
number of intermediate products for each value of C may vary substantially.
Hybrid methods use an analysis phase to determine the number of values in
each row of A or C (in case of C we use an estimate because we do not know
the actual size until the algorithm completes). Then, hybrid methods select an
appropriate method / kernel depending on row size.

Dalton et al. [21] improve the load balancing of ESC methodology [11] by
permuting rows of C based on their size. They use this permutation to select
the most appropriate sorting method based on row size of C. This way they
replace the sorting of million intermediate elements with the sorting of many
groups of fewer elements. Therefore, they can select between warp- and block-
wide methods for sorting, as well as use shared memory for sorting the shorter
rows. Nevertheless, permutation of rows has an additional overhead due to
two additional sorting operations: one during pre-processing, and one before
storing the final result.

Liu et al. [67], in bhSparse, implement a four stage approach. First, they cal-
culate the upper bound limit of nz elements for each row of C. Second, they
arrange the rows of C to 38 bins. They further organize the bins to 5 groups.
Based on the bin size, they select the most appropriate memory pre-allocation
scheme for the output C. Moreover, based on the bins they select which ker-
nels to launch (warp-wide, block-wide etc). Third, they compute the result us-
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ing customized merging and sorting routines based on the bin groups. Fourth,
they allocate memory for the final output and move the result to the final C ma-
trix. Thanks to bhSparse’s multi-bin strategy, they achieve good load-balancing
with matrices that have varied row sizes. Nevertheless, bhSparse may not be
as fast as specialized spGEMM implementations when matrices have short
TOWS.

Kunchum et al. [60], in HybridSparse, evaluate the performance of various
spMM implementations using synthetic matrices to vary the workload of each
row of A. They use the results of this analysis to built an algorithm that bins
rows based on row workload of A and selects the appropriate spMM imple-
mentation and memory scheme for each bin. For smaller workloads they prefer
ESC variants. For larger rows with many nz they propose their own imple-
mentation, which is based on scatter vector method from CPU. Their approach
achieves good results when the floating point operations required for each ele-
ment of C are high, i.e.,, when their own GPU scatter vector implementation is
called. Otherwise, the ESC variants do not perform much better than the other
ESC approaches.

Gremse et al. [39], in RMerge, assign a subwarp to each whole row of A with
one thread of the subwarp for each element of this row of A. The process is
similar to the vector-matrix multiplication with matrix B for the correspondent
(whole) row of C, i.e., each thread is assigned to one row of B. Then, warp
shuffle reduction operations [83] are used to find the minimum index (of the
B rows) of the subwarp and all values belonging to this index are accumu-
lated with another shuffle reduction. If the elements per row of A are more
than subwarp size, then intermediate representations of A are created so that
each row has subwarp size elements. Later, in RMerge2 [40], they expanded
RMerge. First, they assign more rows of B to each thread. Second, they sort and
group rows of A for load balancing purposes, with different kernels serving
the various cases. Additionally, block-based row merging was implemented to
perform block wide reductions through shared memory. Third, they use con-
current kernel execution, as the kernels for the various cases could block the
GPU if launched one by one, underutilizing it. With their updated scheme,
they better balance the workload and reduce significantly the global memory
accesses. However, their approach seems to perform better when rows have
fewer than 32 elements (the size of a CUDA warp)

In our approach we will use: 1) Thrust library for the parallel primitives, and 2)
custom GPU kernels for the kernels that do MM with TCUs. Thrust achieves
good load balance. To achieve load balancing with our custom kernels, we
take into consideration that we will have more blocks than resources available.
Therefore, we can let the GPU hardware scheduler load new blocks transpar-
ently, depending on the available resources of each SM.

3.5 Overview of our technique

The key idea is to apply the Expand Sort Compress (ESC) methodology of
CUSP [20] to tiles instead of single values in order to create a task list, which
delivers tiles to TCUs. Our approach works in two steps. First, we follow the
workflow of CUSP, except the value is a tuple of values instead of single ele-
ments. Using the approach of CUSP, we determine which tiles of A need to be
multiplied with which tiles of B in order to get one tile of C. Second, we use
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the task list from the previous step to deliver the tiles to TCUs. We will show
how all parts of spPGEMM blend together in Section 3.6.5.

3.5.1 Key insights

Our work is motivated by four observations.

First, Dakkak et al. in [19] observe that full utilization of TCUs is not necessary
in order to achieve performance benefits. In fact, the high performance of TCUs
compensates for wasted resources and memory operations. In spGEMM, most
of the entries of the multiplicand matrices are zero, which in turn leads to
very sparse tiles. Therefore, the high performance of TCUs compensates for
the relatively empty tiles.

Second, Zhang et al. in [123] group nz in 8x8 tiles. Tiles are a type of rectangu-
lar matrix, and therefore they are a good target for TCUs.

Third, Haidar et al. and Markidis et al. in [42, 70], respectively, show the bene-
fits of mixed precision in GEMM computation. Similarly, we use mixed preci-
sion mode of CUDA TCUs for two reasons: 1) to perform the multiplication of
elements in full precision, and 2) keep the intermediate result of accumulation
in 32-bit format. Thus, mixed precision increases the application field of TCUs
to include: 1) matrices with a wide range of values (fp16 has tight limits), and
2) applications where accuracy is critical.

Fourth, TCUs are specialized multiplication units that perform mixed preci-
sion multiplication with 4x the floating point operations per second (flops) of
standard fp32 multiplication [82]. spGEMM requires a great amount of multi-
plications.

3.5.2 Components

We modify CUSP to work with a tuple of values instead of single values, where
each tuple consists of index in element array and bitmap of the tile. We adapt
CUSP to create a task list. Custom GPU kernels consume the entries of the list
and accelerate matrix multiplication using TCUs.

We use a methodology similar to that of CUSP to accomplish two tasks. First,
to determine which tiles of A will be multiplied with which tiles of B in order
to get each tile of C. The pairs of tiles of A and B are stored in a task list.
Second, to estimate the number of C tiles in the output.

There are two major differences in comparison to ESC from CUSP. First, instead
of using a single element as value, we use a tile as value, where each tile is a
tuple of the index in the element array and the bitmap. Second, instead of
directly multiplying corresponding tiles of A and B in the expansion phase,
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we create a task list with the pairs. The values of the pair are pointers to tiles
of A and B.

A limitation of GPU kernels is that they cannot reallocate memory during their
execution. Therefore, we have to allocate the memory for storing the output
before calling the kernel. However, an important problem when multiplying
sparse matrices is that we do not know beforehand how many elements the
output will have. In order to proceed with the multiplication, first we have to
make an estimate of the count of elements of the output. We emphasize that
the memory we allocate for the elements is different to the memory we allocate
for tiles.

In our implementation we use the counting kernel to get an estimate of how
many elements the result has. The counting kernel is a partial implementation
of the multiplication kernel, that neither loads nor stores any elements. Instead,
this kernel uses only zeros and ones as elements according to the bitmap in or-
der to simulate the MAC operations. The estimation of memory requirements
is typically more that what is actually required, so after the actual multiplica-
tion, we shrink the allocated array accordingly.

Once we know how much memory to allocate for tiles and elements we use
the multiplication kernel for the main spGEMM operation.

In order to perform the matrix multiplication of A with B, we need to 1) de-
termine which products need to be accumulated for each tile of C, and 2) to
allocate memory for the C tiles and the element array. Using CUSP and the
counting kernel we determine the memory allocation size for C tiles and the
element array, respectively. Subsequently, the multiplication kernel has every-
thing it needs to multiply A with B.

We expect three benefits. First, by placing both the multiplication and accumu-
lation steps of matrix multiplication in the same kernel we can use TCUs for
MM. By moving MM to TCUs, the computational heavy MM is no longer a bot-
tleneck of the spGEMM algorithm. Second, the use of bitmap format reduces
memory consumption [123]. Third, by grouping elements to tiles, we have less
values to manipulate and therefore there are additional performance benefits
(e.g., less values to sort during sorting phase of ESC).
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3.6 Our technique in-depth

3.6.1 Creating the task list and allocating memory for tiles

Our implementation is similar to CUSP. It uses parallel primitives from Thrust
library to find the correspondence among values of A and values of B. One
important difference in comparison to CUSP is that instead of using elements
as the values of the input/output COO matrices, we use tuples. Each tuple
consists of two values. The index in element array and the bitmap that corre-
spond to each tile. The two main parts of our algorithm are: 1) the part that
determines which tiles of A will be multiplied with which tiles of B and creates
a task list, and 2) the part that estimates how much memory to allocate for the
tiles of the output.

The first part uses CUSP methodology with tiles as values to find correspond-
ing tiles of A and B. One important consideration of our approach is that TCUs
perform MAC in the same operation. Therefore, in order to have TCUs perform
both multiply and accumulation of tiles in the same operation, we need to fur-
ther modify the ESC implementation of CUSP. The method from CUSP is not
sufficient because it multiplies and accumulates in different steps, i.e., the ac-
cumulation step is after the sorting step. In detail the steps in CUSP are three:
1) multiplication of all corresponding values of A and B (but no accumulation
yet) to get the intermediate products (Expand), 2) sorting of the products of
the previous step so that products that correspond to the same values of C
are in consecutive positions (Sort), and 3) accumulation of the products that
correspond to each value of C (Compress). In order to put multiplication and
accumulation in the same step we sort the locations of the multiplicands, in-
stead of sorting the intermediate products. Effectively, we create a task list,
of which each entry holds the pointers to the corresponding tiles of A and B.
Then we sort the task list instead of the intermediate products, deferring the
multiplication step until the accumulation step.

The second part counts how many of the intermediate products correspond to
the same tile of C using a segmented reduce parallel primitive. We create an
offset array from the prefix sum of the counted intermediate products.

3.6.2 Counting kernel

An important observation is that because tiles of A and B are sparse, the re-
sult of their MM will not necessarily have any nz values. The purpose of the
counting kernel is to find if there are any nz elements of A that will be multi-
plied with nz elements of B and consequently what elements of C will become
nz (i.e., not accounting for cancellation because of addition of opposite num-
bers). The counting kernel makes an estimation of the size of memory we need
to allocate in order to store the element array of C. The counting kernel has
functionality which is very similar to multiplication kernel. The two main dif-
ferences of the counting kernel are: 1) it does not load the elements to multiply
them, and 2) consequently, it does not store any data to the output. The count-
ing kernel returns an array of which each value holds an estimation of how
many elements each tile of C has.
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The counting kernel works in four steps. First, it reads the bitmaps of A and
B. Second, it creates tiles, wherein each value is set to “1” or “0” based on the
corresponding position in the bitmap. Third, it multiplies and accumulates the
tiles of A and B that correspond to each individual tile of C using TCUs. Fourth,
we count how many values of the resulting tile are not zero. To count them,
threads of the same warp retrieve values from the fragment of the result. Then
threads share the retrieved values that are greater than zero with the ballot
instruction. Finally, we count how many values are greater than zero.

Our method of estimating the required memory size is the precise one (Sec-
tion 3.3.6). As each tile stores only “1” or “0” and we only check the output
for zero and nonzero values, half precision is enough for executing the MM

multiplication.

3.6.3 Multiplication kernel

The multiplication kernel performs the actual multiplication and constructs
the COO matrix of the output, i.e., it sets the row and column indices, the idx
and bitmap tuple and the elements of the element array. Using the memory
allocated by the counting kernel to store the elements of C, the multiplication
kernel loads the actual elements from A and B.

There are two important considerations when multiplying the elements, that
are real numbers.

First, fp16 arithmetic has a very limited representation range of numbers (ap-
proximately 6 x 1078 ... 6.55 x 10%), which we can easily exceed with multipli-
cation. Therefore, we prefer the mixed precision functionality of TCUs.

Second, unlike the counting kernel where we have only positive numbers,
when accumulating real numbers, elements get canceled as a result of addition
of opposite numbers. Many tiles may end up empty, something that counting
kernel, which acts on boolean values, does not predict. For this reason, our
multiplication kernel has the additional task of marking for removal tiles that
are completely empty.

Figure 3.5 shows that the counting kernel does not need to load any actual
element. It just creates “1”s based on the bitmap. The multiplication kernel,
on the other hand, loads the elements and it places them according to the

bitmap.

3.6.4 Other components

ARRANGEMENT OF TILES IN THE TCUS TCUs execute MM on 256 ele-
ments at a time. TCUs only support specific matrix sizes, of which we prefer
the square 16 x 16 configuration [83]. Nevertheless, our tiles have a size of 8 x §,
which means that a large part of the TCU remains unused. Although a TCU
does not have to be fully loaded in order to get performance benefits (Section
3.5.1), we can fit two tiles in a single TCU. To put two tiles in the same TCU
two steps are necessary. First, we initialize the fragment to zero. Second, the
tiles must be placed in the same diagonal of the fragment. If the tiles were not
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Figure 3.5

Comparison of counting and multiplication kernels. The counting kernel (left) places “1”s
at the locations indicated by the bitmap. The multiplication kernel (right) loads the actual
elements and places them at the locations indicated by the bitmap

in the diagonal, but instead side-by-side, a row (column) would have elements
of two unrelated tiles, which would spoil the inner product of rows of A with
columns of B. Figure 3.6 show the placement of tiles in the fragment during
MM. Of all supported configurations, only the square 16 x 16 can fit the two
square 8 x 8 tiles.
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Figure 3.6
(Up) Placement of the two tiles in the fragment, (Down) Tile placement during multiplica-
tion

LOAD BALANCING Both counting and multiplication kernels calculate an
inner product of tiles. The number of intermediate required for each tile of C
is different, because the number depends on the sparsity structure of A and
B. Therefore the execution time for the calculation of each tile of C is different.
There are two types of load imbalance.

First, imbalance among thread blocks. Blocks with different execution times
create load balancing issues among the SMs of the GPU. To tackle this issue,
we assign (pairs of) tiles of C to different blocks. When a block finishes and
releases the resources, the scheduler of the SM schedules another block to take
its place.

Second, inside the TCU. Each TCU multiplies two independent tiles. The two
tiles may require the accumulation of a different amount of intermediate prod-
ucts, which leads to load balancing issues. The second type of imbalance is not
as important as the first for two reasons: 1) because TCUs are efficient even if
they are fully utilized, and 2) the current bottleneck in our implementations is
memory latency.
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Sorting the tiles by number of intermediate products fixes load balancing for
both types of imbalance. Nevertheless, sorting sacrifices data locality, which in
our current implementation is more important performance-wise.

COMPACTION OF ZEROS  Multiplication and accumulation (MAC) creates
zero elements because of cancellation (addition of opposite numbers). To store
the output in a strictly sparse format we need to remove all zeros. Therefore,
we need a way to detect zeros and remove them or, in other words, compact
the arrays that hold the elements and the tiles. For the element array, which is
just an array, we use a compaction parallel primitive from Thrust. For the array
that holds the tiles, we first mark empty tiles during the multiplication phase
(see Section 3.6).

3.6.5 Putting everything together

Algorithm 2 shows the steps of our approach:
1. We create the task list (lines 1-7).
2. We allocate memory for tuples (lines 8-14).

3. We estimate the count of elements in the output, C, and allocate the
respective memory (lines 15-16).

4. We perform the main multiplication (line 17).

5. We remove zero elements and tiles from the output (lines 18 and 19).

Algorithm 2 Pseudocode for tSparse

. for all nnz tiles Ali,j] in A[;,:] do
for all nnz tiles B[j, k] in B[j,:] do
task_list « {row_ptr(Ali,jl), col_ptr(B[j, kl)}
end for
end for
: SORTBYKEY(Bo1s[task_list], task_list)
: SORTBYKEY(Aows[task_list], task_list)
. tile_count < 0
: for all ¢ in task_list do
if C[Arows [c], Beots [c]] is unique then
tile_count <« tile_count +1
end if
: end for
. ALLocaTEMEMGPU(tile_count)
: element_count < COUNTINGKERNEL(task_list)
. ALLOCATEMEMGPU(element_count)
: Ctiless Celements ¢ MULTIPLICATIONKERNEL(task_list)
: COMPACTZEROELEMENTS(Celements)
: CoMPACTEMPTYTILES(Cyites)

L e e e oL o =
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Figure 3.7 shows details of the multiplication kernel and its connection to the
task list. For each tile of the the output we have to accumulate a varied number
of products of MMs. For example tile CO = A0y x BOp + A0y x B0y and tile
Cl1 = Aly x Bly. As the amount of addends for Cz is less, on the 2nd load
to TCUs, we load zeros in its place. Finally, we get the elements of C and the
bitmaps (using ballot).

Task list Loading to TCUO Result of MM
1st load Ist load
EEEEEE T T T TTT T
AO,| A0 | AL, | A2, | A2, | A3,| A3, |  EEFEHEHH EHERH FEEHH EEEEballotO). piinap Co
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Figure 3.7

The multiplication kernel and its connection to the task list. Each TCU calculates two tiles
of the output C. If the accumulation of the two output tiles requires a different number of
addends, we fill with “0”s as appropriate. As output we get the elements of the two output
tiles, C, and the respective bitmaps (using ballot operations).

3.7 Evaluation Methodology

We test our approach on a system with an Intel i7-8700 CPU and an NVIDIA
RTX 2070 GPU (Turing architecture [82]). We use CUDA SDK vio.1 and the
accompanying parallel primitives library, Thrust [84], for our GPU code.

We compare our approach with cuSPARSE from CUDA Toolkit [84] and CUSP
[20]. We select the best performing storage format for each approach, i.e, for
cuSPARSE we use CSR format, whereas for CUSP we use COO format. In ad-
dition, to confirm the benefit of using TCUs, we create one implementation of
our approach without TCUs. In this implementation, we use a method similar
to [123] to multiply the tiles (Algorithm 3).

Algorithm 3 Matrix multiplication of two 8 x 8 tiles without TCUs

tid: The id of a thread

i+0

while i < 8 do
C_tile[tid] = C_tile[tid] + A_tile[(tid/8) * dim +1] * B_tile[i* 8 +
mod(tid, 8)]

end while

To evaluate the performance of our approach, we perform the A*A MM, which
has the benefit that both matrices have the same sparsity structure. We select
matrices from SuiteSparse Matrix Collection (formerly known as the University
of Florida Sparse Matrix Collection) [23] for our dataset. All selected matrices
are square, as our A*A problem dictates. We select matrices which have ele-
ments in the fp16 range. A good fit (but not exclusively) to the fp16 range
are binary matrices, like certain graphs or structural problems. We divide our
dataset into two parts. The first part consists of matrices that other works use
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[6, 21, 24, 39, 40, 60, 67, 76, 117, 123]. The second part consists of matrices
that we select after taking into consideration the characteristics that define
the performance of our approach. Table 3.1 shows the characteristics of our
dataset. The upper half corresponds to the first part, whereas the bottom half
corresponds to the second part. We denote a matrix stored in bitmap storage
format as Cyj,s. We denote the intermediate matrices as Cyj,s and C, for bitmap
and non-bitmap storage formats respectively.

Table 3.1

Matrix characteristics. We list the size of the matrix (number of rows (columns)), the den-
sity of the tiles, and the number of non-zeros of: the input (nnz(A)), the output (nnz(C)),
the intermediate matrix (nnz(C), the number of tiles (nnz(Cyes)), and the number of tiles
of the intermediate matrix (nnz(Cyyes)). The upper part corresponds to matrices that are
commonly used in the literature, the bottom part to matrices we selected based on their
characteristics

x?:;x Size nnz(A) nnz(C) nnz(C) nnz(Cgles) NNZ(Ciites) (me dti’;:f‘rarfe:r?,ns':;};
mc2depi 525825 2100225 5245952 8391680 718228 1620780 6,7.3,6.2
qeds_g4 49152 1916928 10911744 74760192 477184 2004992 16, 22.8, 14.8
rmaio 46835 2374001 7900917 156480259 234561 2023575 32, 33.7, 19.8
webbase-1M 1000005 3105536 51111996 69524195 2546355 7540274 8, 20.1, 23
ca-CondMat 23133 186936 2355437 4127524 1787564 13629092 1, 1.31, 0.8
cagei2 130228 2032536 15231874 34610826 2045653 15390213 4,52, 4.9
dawsons 51537 1010777 3616737 21284355 219077 2078495 12, 16.5, 14.6
lock1074 1074 51588 134676 2752056 3050 21170 52, 44.2, 20.3
m133-b3 200200 800800 3165861 3203200 1591414 4912984 1,2,2.1
p2p-Gnutella31 62586 147892 537601 538318 361039 1501316 1,1.5,1.2
patents_main 240547 560043 2281308 2604790 2089143 11688648 1,1.1, 0.3
wiki-Vote 8297 103689 1831112 4542805 526421 7261770 2,3.5,3.3
besstk3o 28924 2043492 8946070 173481412 252076 1925418 32, 35.5, 20.8
nemeth21 9506 1173746 2578720 146859992 47341 526143 64, 54.5, 17.7
perystko3 24696 1751178 7240266 129128312 212471 1876143 31, 34.1, 20.2
pct2ostif 52329 2608463 10016951 154237335 323396 2366028 26, 31, 20.5
pkustko6 43164 2571768 10596384 179924544 451380 3641052 16, 23.5, 15.6
pli 22695 1350309 8548665 99698581 292851 2721449 28,29.2,19.2
qa8fk 66127 1660579 7351189 42857197 443738 2867240 18, 16.6, 10.9
struct3 53570 1173694 3400384 26704476 146007 583547 29, 23.3, 11.1
web-NotreDame 325729 1497134 16801350 64593748 693759 3216627 8,24.2,25.8

We collect two types of measurements: 1) the absolute times to perform an
spGEMM, and 2) speedup. For speedup, we divide each implementation with
our approach. We collect all timing data with CUDA event APL

Tests with cuSPARSE, CUSP and no TCU version use fp32 (single precision)
for both the input and the output, whereas our TCU approach uses fp16 for
the input and fp32 for the output (mixed precision).

3.8 Results and Analysis

In this work, we use a tiling approach to group nz elements. Tiles are suit-
able for MM with TCUs. To show the performance benefits we compare our
approach with other approaches from the state-of-the-art, as well as, with one
version of our approach that does not use TCUs. To study the effect of our op-
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timizations, we execute the A*A spGEMM and we measure the absolute times
and the speedup of our approach over the other approaches.

3.8.1 Times

We measure the execution time of each approach for each matrix in Table 3.1.
We compare the timing results to the matrix characteristics in Table 3.1 to make
general observations in regards to the performance of each approach. Figures
3.8 and 3.9 show the absolute execution time of the four approaches when
multiplying a matrix with itself on an RTX 2070 GPU. We form groups of four
bars, one bar for each approach, in order to facilitate the comparison of execu-
tion time of spGEMM for each matrix of the dataset. Figure 3.8 corresponds
to the first part of our dataset (randomly selected matrices), whereas Figure
3.9 corresponds to the second part of our dataset (matrices selected based on
criteria).

Execution time of A*A spGEMM on RTX 2070 GPU - Random selection

Approach
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B noTCU
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Figure 3.8
Absolute times of our approach on A*A spGEMM using randomly selected matrices

We make three major observations.

First, our approach shows better performance with denser tiles. Grouping nz
elements in tiles reduces the number of intermediate products of the expansion
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Execution time of A*A spGEMM on RTX 2070 GPU - Criteria based selection
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Figure 3.9
Absolute times of our approach on A*A spGEMM using matrices selected based on criteria

phase. According to [21], the main cost of CUSP is sorting. Consequently, fewer
entries equals to less time sorting. Generally, our approach performs better for
densities greater than five.

Second,our approach performs better than CUSP when the number of interme-
diate tiles is sufficiently smaller than the number of intermediate elements of
the normal CUSP approach, i.e., Cyes < C. Tiles group elements in a 8 x 8 area.
When the two multiplicand tiles hold only a very small number of elements,
it is very likely that when calculating the product all the elements of the tile
that holds the product will be zero. The reason is that no elements of the tile
of A multiply with elements of the tile of B. If there are many intermediate
products like this, the number of intermediate values with our approach will
exceed the number of the intermediate values with CUSP approach. In such
cases, CUSP, which handles only single elements, is faster, as our approach has
an additional overhead for handling tiles.

Third, our approach generally outperforms cuSPARSE in the larger matrices
of our dataset (~ nnz(A) > 1000000). This happens probably because shared
memory is not sufficient for the hash tables and therefore global memory traffic
increases. Nevertheless, the size of the matrix is not the only thing that decides
the performance. To the best of our knowledge, performance of cuSPARSE
also depends on the sparsity structure of the matrix because the structure also
affects the number of hash conflicts.

Based on the observations of this section, we create a dataset of matrices that fit
well to our approach (second part of Table 3.1). Specifically, we select matrices
that fulfill the following two criteria: 1) nnz(A) > 1000000, and 2) Cyjjes < C.
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3.8.2 Speedup

To show the benefits of our approach that uses tiles and TCUs for MM, we find
the speedup over cuSPARSE, CUSP and the non-TCU implementation over all
matrices of our dataset. Figures 3.10 and 3.11 show the speedup of our ap-
proach over the other three approaches when multiplying a matrix with itself
on an RTX 2070 GPU. We, again, group bars by matrix, but in this experiment
we show the speedup instead. Figure 3.10 corresponds to the first part of our
dataset (randomly selected matrices), whereas Figure 3.11 corresponds to the
second part of our dataset (matrices selected based on criteria).

Speedup of A*A spGEMM on RTX 2070 GPU - Random selection
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Figure 3.10
Speedup of our approach on A*A spGEMM using randomly selected matrices

Speedup of A*A spGEMM on RTX 2070 GPU - Criteria based selection

50 n
b} I uSPARSE s noTCU

3 | cusp

Speedup

D N

£ &
2] <
§ &
&

Q‘;\}\
R
O

]

Matrix

Figure 3.11
Speedup of our approach on A*A spGEMM using matrices selected based on criteria

We make two major observations.

First, our approach that uses TCUs performs 1.25x faster on average. This
speedup may seem low considering that TCUs in mixed precision promise 4 x
more flops than normal fp32 operations. There are two reasons that keep it low:
1) our counting and multiplication kernels, that use TCUs, occupy about 50%
of the total execution time, so according to Amdahl’s law we do not expect
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more than 2x speedup, and 2) our approach is memory bound, rather than
arithmetic bound, because it loads the input from non-continuous memory
locations.

Second, in sixteen and fourteen out of the 21 matrices our approach outper-
forms CUSP and cuSPARSE, respectively. In comparison to cuSPARSE, CUSP
and non-TCU implementation our approach is 1.12x, 1.23x, 1.26x faster in
a random selection of matrices. If we select matrices that fit well to our ap-
proach, based on the criteria of Section 3.8.1, our approach is 2.31x, 13.19x,
1.23x faster. The total speedups for all the matrices of our dataset are 1.6x,
3.4x%x,1.25%.

3.8.3 Conclusion

We compare the performance of our approach in A*A, in terms of time and
speedup, to CUSP and cuSPARSE over 21 sparse matrices. We draw three
important conclusions. First, our approach generally outperforms CUSP with
denser tiles. Second, our approach usually performs better than cuSPARSE
for the larger matrices of our dataset. Third, TCUs improve performance over
non-TCU implementation by 25%.

Our approach outperforms cuSPARSE and CUSP 1.6x and 3.4x respectively.
Therefore our approach is a suitable alternative for spGEMM.

3.9 Conclusion

In this work, we present an spGEMM approach which uses a tiling scheme to
divide the matrices to blocks of equal size. Tiles are stored as bitmaps. As our
spGEMM approach follows a blocking approach, it has to act on fewer values.
Therefore, sorting the intermediate matrices of tiles is faster in comparison to
sorting millions of intermediate elements in a non-blocking approach.

We perform MM of these tiles using TCUs. To the best of our knowledge,
our approach is the first to use TCUs for spGEMM. TCUs perform the MM
much faster than normal CUDA cores. Tensor core units perform both matrix
multiplication and accumulation. We create a task list of of pairs of tiles of A
and B. The task list is responsible for efficiently distributing the workload to
thread blocks.

The results confirm that TCUs increase the performance of MM and the com-
bination of our tiling approach with TCUs provides significant benefits to
spGEMM. TCUs increase the performance of our approach by 25%. Our ap-
proach is, on average, 1.6x and 3.4x faster than state-of-the-art libraries cuS-
PARSE and CUSP respectively. We conclude that our methodology improves
the performance of spGEMM by making efficient use of tiles and TCUs. We
publish our work ([121]) and make our source code publicly available at [120].




3.10 FUTURE WORK

3.10 Future work

Future work can take two paths, either on the application level or on the
spGEMM algorithm level.

3.10.1 SpGEMM algorithm extensions

The possible optimizations of the spGEMM algorithm are summarized as:

¢ Adjust tile size depending on the density of tiles. Determine the den-
sity of the tiles by sampling the input. If the tiles do not contain many
elements, we can use smaller tiles. Then each TCU can run more tiles
simultaneously.

* Attempt to increase the density of the tiles. For example we could re-
arrange the rows of the input [21] or apply tiling only to areas of the
matrix that are dense enough [47].

¢ Increase data locality. The task list accesses bitmap and the correspond-
ing tiles from disparate memory locations. Matrix storage formats other
than COO may help with increasing memory coalescence.

e Optimize sorting of task list. Sorting the task list is one of the most
computationally demanding parts of our approach. Possible methods
are bipartite graphs [21], hash tables [6, 76] and improved segmented
sort algorithms [49].

¢ Create a hybrid approach that adapts to the input. For example, depend-
ing on density of tiles or tiles per row of C we could choose different
type of sorting or a different approach all together.

3.10.2 SpGEMM applications

Although there are numerous spGEMM application for sparse matrix-matrix
multiplication we focus to only a few that are of special interest in this line of
work.

A system of equations is usually solved by using iterative methods, e.g., con-
jugate gradient, as inverting the system matrix is practically impossible for
bigger matrices. To attain faster convergence we use preconditioner matrices.
One interesting preconditioner is Algebraic Multigrid (AMG). AMGs have a
setup phase and a cycle phase. During the setup phase the most time con-
suming part is a sparse matrix-matrix multiplication called Galerkin product.
Galerkin product is a good target for spGEMM [2].
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Finite element method (FEM), a method that is used to solve partial differ-
ential equations in many engineering problems, can benefit from accelerated
spGEMM. We are specifically interested in simulation of biomechanical models
of the liver, where FEM is particularly useful. By increasing the performance
of simulation we can have more realistic simulation of contacting and cutting
a liver at increase resolution [18].

Vessel registration is an interesting field [99]. However, using deep-learning for
vessel registration faces performance problems because using sparse inputs,
like vessels, is computationally costly. SpGEMM could help in this case as
the convolution of Convolutional Neural Networks (CNNs) is calculated as a
matrix-matrix multiplication [16].

Betweenness centrality finds the importance of a vertex based on the number
of shortest paths that pass through it. Betweenness centrality is an essential
graph operation for analyzing biological networks, transportation networks
etc [55, 105]. The multi-source BFS that is used in betweenness centrality can
benefit from spGEMM. This accounts for multiplying A with a tall skinny
sparse matrix where each column is a BES frontier.
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CONTENTS

4.1 Accelerating B-spline interpolation 83
4.2 Accelerating sparse matrix-matrix multiplication: tSparse 84

n the recent years great progress has been made towards image guided surgery,

enabling safer surgeries and increased survivability rate. GPU image process-
ing plays a critical role at all levels, enabling faster and more accurate image
analysis. This chapter gives an overview of the work done as a part of attaining
the goal of this thesis.

4.1 Accelerating B-spline interpolation

In this work, we apply registration between pre and intra-operative medical
images for both MRI and CT liver scans and we evaluate the performance
of B-spline interpolation and its impact on the total registration time using
NiftyReg as a registration tool [74]. NiftyReg is a GPU accelerated lightweight
medical image registration library, which includes a GPU implementation of
B-spline interpolation. Recent works [89] use it as reference for registration.

The key optimizations of our GPU implementation of B-spline interpolation
are two. First, we partition the workload carefully. This way, not only we re-
duce the data movement needs (i.e., need to bring less data from off-chip mem-
ory), but also we maximize register reuse. Second, we substitute the weighted
sum of the basic formula of B-spline interpolation with linear interpolations.
This way, we can use special interpolation instructions, namely Fused Multiply-
Add (FMA) instructions [83]. The use of such instructions not only reduces
computational complexity, but also increases arithmetic accuracy. Many of our
proposed optimizations can also be applied to CPUs.

In order to show how our approach impacts the performance and accuracy
of registration in a realistic scenario and to provide clinical validation, we in-
tegrate it to the FFD registration of NiftyReg. We use FFD on CT scans of
patient-specific liver phantom (artificial liver) and MRI scans of a porcine liver
model to compensate for liver deformation due to pneumoperitoneum.

83
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4.2 Accelerating sparse matrix-matrix multiplication: tSparse

In this work, we propose a new methodology of spGEMM that utilizes TCUs to
accelerate spGEMM. To the best of our knowledge, this is the first proposal of
using TCUs in the context of spGEMM. Our methodology has two advantages.
First, it takes advantage of fast MM of TCUs. Second, by utilizing TCUs that
would otherwise be idle, we can use the normal processing elements for non-
canonical workloads.

We use CUSP [20], an open-source library, as the “boilerplate” of our approach.
We make two modifications to ESC methodology [11] of CUSP [20]. First, we
make it work with tiles. Second, we form a task list instead of calculating the
intermediate products immediately. The tiles and the task list allow our custom
kernels to calculate MM of blocks with TCUs.

We compare the performance of our approach in matrix squaring (A2) on ma-
trices from SuiteSparse (formerly known as University of Florida Sparse Matrix
Collection) [23]. We show that by converting ESC method to work with tiles
and processing the blocks with TCUs, we perform spGEMM, on average, 1.6x
and 3.4x faster than cuSPARSE and CUSP respectively. We show that TCUs
improve the performance of the whole spGEMM procedure by 25% on aver-
age.



CONCLUSIONS

CONTENTS

5.1 B-spline interpolation 86
5.2 Sparse matrix-matrix multiplication ~ 86

his thesis covers two topics. The first targets the computationally demanding
B-spline interpolation, which is often found as a part of image registration.
The second targets sparse matrix-matrix multiplication (spGEMM), a frequent
component in linear algebra applications. In both cases, we create efficient
GPU implementations that take full advantage of the underlying hardware.

85



86

CONCLUSIONS

5.1 B-spline interpolation

To our knowledge, our work is the first to use a single GPU thread for an
entire tile of voxels in the context of B-spline interpolation. With this method
each thread handles a whole tile of voxels instead of a single voxel, which
normally occurs with the previously introduced approaches. We show that,
with this thread assignment scheme, we reduce memory accesses substantially.
Our main contributions are:

* A GPU implementation of B-spline interpolation with three key op-
timizations: a) new workload partitioning scheme for GPU execution
threads that reduces the number of accesses to off-chip memory and
caches, b) register-only approach that keeps input data close to the ex-
ecution units, and c) replacement of weighted summation with linear
interpolations that reduces the computational load and increases accu-
racy.

® A pre-clinical validation of non-rigid registration between pre-operative
and intra-operative MRI and DynaCT scans after pneumoperitoneum
and repositioning on a porcine model and a patient-specific liver phan-
tom.

¢ A highly-optimized GPU-based implementation of B-spline interpola-
tion which improves performance by up to 7x and accuracy by up to
3300x in respect to other state-of-the-art B-spline interpolation meth-
ods. We integrate the proposed approach to FFD registration algorithm,
which improves the total registration time by up to 34%.

* A new dataset for image registration from MRI and CT scans of a porcine
model and a liver phantom. This dataset is publicly available [53].

¢ The source code of our B-spline interpolation, which is publicly available
on https://github.com/oresths/niftyreg_bsi, as part of the medical
image registration library, NiftyReg.

Our acceleration of B-spline interpolation directly improves the execution time
and accuracy of image registration as we show by integrating our approach
to a popular registration methodology. The benefits of an optimized B-spline
interpolation are not limited to image registration. Other fields like image re-
construction, image zooming etc. also benefit from our approach.

5.2 Sparse matrix-matrix multiplication

To our knowledge, our work is the first to use Tensor core Units (TCUs) in
the context of spGEMM. With this approach, we group non zero elements into
tiles. Unlike previous methods, which use normal CUDA cores, we use tensor
cores to multiply the tiles. We show that, with this approach, we can increase
the performance of spGEMM. Our main contributions are:

¢ A fast GPU approach of spGEMM. We modify the Expand-Sort-Compress
method to bring both multiplication and accumulation after Sort. This


https://github.com/oresths/niftyreg_bsi

5.2 SPARSE MATRIX-MATRIX MULTIPLICATION

change has two advantages. First, we do not have to store in memory
a large matrix of intermediate products. Second, we can take full ad-
vantage of the combined Multiply-Accumulate operation of TCUs. For
this purpose, we create a task list that feeds our highly optimized TCU
kernel with tiles to multiply.

* An attestation that algorithms can enjoy performance benefits even if the
TCUs are not fully occupied, thanks to the high computational through-
put of TCUs.

¢ A highly-optimized GPU-based implementation of spGEMM, which im-
proves the performance of spGEMM of cuSPARSE and CUSP by 1.6x
and 3.4x on average. We performed our tests on SuiteSparse dataset, the
most common benchmark for spGEMM, to facilitate comparison with
other spGEMM approaches.

¢ The source code of our spGEMM approach, tSparse, which is publicly
available on https://github.com/oresths/tSparse.

Our techniques reduce the total execution time of spGEMM. Our approach
can be used to accelerate linear algebra applications, e.g., solving of a system
of equations, graph applications, e.g. betweenness centrality etc.
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